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Abstract Vector fields arise in many problems of computer
vision, particularly in non-rigid registration. In this paper,
we develop coupled partial differential equations (PDEs) to
estimate vector fields that define the deformation between
objects, and the contour or surface that defines the segmen-
tation of the objects as well. We also explore the utility of in-
equality constraints applied to variational problems in vision
such as estimation of deformation fields in non-rigid regis-
tration and tracking. To solve inequality constrained vector
field estimation problems, we apply tools from the Kuhn-
Tucker theorem in optimization theory. Our technique dif-
fers from recently popular joint segmentation and registra-
tion algorithms, particularly in its coupled set of PDEs de-
rived from the same set of energy terms for registration and
segmentation. We present both the theory and results that
demonstrate our approach.

Keywords Variational problems · Equality constraints ·
Inequality constraints · Kuhn-Tucker theorem · Vector
fields · Nonrigid registration · Joint registration and
segmentation · Tracking

1 Introduction

Many problems in computer vision and image processing
can be posed as variational problems. Examples are im-
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age filtering, segmentation, registration, and tracking, which
have been extensively solved with variational methods and
nonlinear partial differential equations (PDEs). The solu-
tions of such problems generally take the form of images,
curves, surfaces, and vector fields, and are sought through
an evolution equation defined by a PDE. Usually, an ini-
tial estimate of the solution is deformed through a given
PDE, which in most cases is derived from optimization (typ-
ically minimization) of an energy functional, and occasion-
ally from local heuristics.

Deformation or displacement fields arise in registration,
segmentation, and tracking problems, particularly in the
case of multiple image data when a general coordinate trans-
formation is defined between the two image domains. This
mapping is usually described through a vector field that
transforms one of the image domains to another one. A par-
ticular application occurs when a target structure deforms
differently in various image volumes, and a joint registration
and segmentation approach would be useful if we would like
to utilize all the information coming from the multiple im-
ages that may be available. In this case, the segmentation and
registration processes operate in a coupled way to help each
other for an accurate content extraction goal. For instance,
in the simplest case, two image volumes consisting of bi-
nary regions are shown in Fig. 1 and the goal is to segment
the 3D shape from the given multiple image volumes and si-
multaneously capture the deformation among these volumes
as shown in (c).

In many medical imaging applications multiple image
volumes in which a structure of interest resides are avail-
able. Different modality images of the same region may also
be available in some applications. The challenge is then to
make use of and relate the existing extra information of a
particular organ or structure from several given image vol-
umes. An intuitive idea is to define a vector field that de-
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Fig. 1 (Color online) (a)–(b)
Two binary image volumes
which have a non-rigid
correspondence (visualized by
their zero level sets in 3D and a
2D cross-section shown at the
top). (c) The estimated surfaces
with the vector field on the
green surface correctly pointing
toward the red surface

scribes the deformation of the object in different image vol-
umes acquired in different scenarios such as intra-patient
(from the same patient at different times and or with dif-
ferent image modalities), and inter-patient image data. Sim-
ilarly, in dynamic image processing, the velocity of ob-
jects are estimated through vector fields that are computed
from a sequence of images using temporal and spatial ob-
ject brightness constraints such as the optical flow equa-
tion [18].

As a variational framework is utilized to find solutions to
such problems, in some cases, the subset of solutions may
be defined by a set of implicit constraints, for example by
nonlinear equality or inequality relations. This brings up the
question as how to solve variational problems that have con-
straints. In the case of differential equation constraints, for
instance, the solution space has to be confined locally over
the domain of the problem, and this turns out to be a non-
trivial task.

The popularity and usefulness of variational methods
support the efforts for bringing new mathematical tools to
the attention of the computer vision community. A general
tool that we believe will be useful in variational problems
in computer vision and related fields is constrained varia-
tional calculus tools for problems such as estimation of a de-
formation or displacement vector field with inequality con-
straints.

Motivating examples of inequality constrained problems
arise in medical image analysis, for instance the extraction
of the left ventricular myocardium from the magnetic res-
onance (MR) images (see Figs. 11(a) and 12(a)). The ob-
ject of interest in this case has an annular structure with
a change in its thickness during systole and diastole. Nor-
mally, the myocardium is segmented with two contours, one
inside and one outside, however the problem can be turned
into an inequality constrained scenario by utilizing a sin-
gle contour and its deformation field with certain inequality
constraints.

For solving variational problems that have constraints,
the method of direct substitution is the most straightforward

procedure, where the constraint equation, if possible, is sub-
stituted into the integrand; then the problem is converted into
an unconstrained problem. However, this is not possible for
the majority of the constrained problems.

Generally, a popular tool that arises is Lagrange multipli-
ers, which always simplify a difficult constrained problem.
It should be noted that in a more sophisticated approach, La-
grange multipliers take the form of functions, not the form
of constant numbers [21]. When the Lagrange multiplier
is a function of the independent variables, this brings an
added complication that was not encountered in the types
of constraints previously used in the computer vision com-
munity.

Constrained problems that are well studied in history of
mathematics are: geometrically constrained problems such
as the isoperimetric problem, geodesic problems, like the
brachistochrone problem, and control theory [11]. Differen-
tial forms arise in many constraints, such as the divergence
constraint for incompressibility of fluids, or divergence and
curl operators in electromagnetism.

1.1 Related Work

As a concrete example to variational problems with and
without inequalities, we choose to work with two examples
from vision problems: segmentation and registration. Re-
cently, there has been an interest in combining segmentation
and registration problems due to a strong interdependence
between these two challenging problems of medical image
analysis. The joint segmentation and registration idea first
introduced by Yezzi et al. [41, 42], estimates rigid registra-
tion parameters between two images and a segmentation in
a coupled way. An overall energy functional depending on
two image regions and registration parameters is minimized
resulting in PDEs of both the contour and the registrations
through a level set representation [26]. Many of the meth-
ods developed in this context used shape prior models in an
energy minimization framework [10]. For instance, in [28],
a shape model based on a level set representation is con-
structed and used in an energy to force the evolving interface
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to align rigidly with the prior shape. The segmentation en-
ergy is separately involved as a boundary and region based
energy model. In [37], similarly, a boundary based energy
or a Mumford-Shah energy is utilized in conjunction with
a distance to a shape prior to which the evolving contour is
transformed by a rigid motion. In the same work, the au-
thors also presented an intensity-based PDE which evolves
a source image towards a target image, and a coupling PDE
to solve for the coordinate transformation from source to the
target. This approach however involves a pre-segmentation
step, hence is not a joint segmentation and registration ap-
proach. Using different criteria for segmentation and rigid
registration, an iterative/sequential manner has been carried
out in a Bayesian framework in [40]. The same idea of si-
multaneous segmentation and rigid registration with a prior
shape model has been applied to time-varying data for mo-
tion estimation and segmentation of moving structures, par-
ticularly in cardiac imaging [15]. An active region model
based on classical snake nodal constraints with a displace-
ment field defined over the nodes is utilized for again a com-
bined segmentation and motion tracking goal in heart imag-
ing. Almost all of the methods listed above involve only
rigid registration as the transformation between two shapes
or images.

Wang and Vemuri in [38], also proposed a joint non-
rigid registration and segmentation, however, this technique
is different from ours in that the registration and segmen-
tation terms in the energy are separate but the coupling be-
tween these two operations is only introduced by a third term
that checks the distance between the evolved curve and the
curve transformed with the deformation field.

Nonetheless, our work is also distantly related to a multi-
tude of tracking techniques, such as [2, 4] that used a region
matching through an optical flow constraint, [13, 27] that
used a parametric motion model, [43] that matched the dis-
tribution of a region with a prior model distribution, or [32]
that performed region matching through segmented contours
as boundary constraints for registration. On the other hand,
it is worth mentioning approaches developed solely for the
purpose of nonrigid registration, a popular class of which are
variational as well, and solve PDEs for the purpose of non-
rigid matching between two image volumes [2, 3, 8]. These
techniques are aimed at globally registering image volumes
and therefore estimate the deformation field over the whole
image. Our technique also solves for a deformation field,
however the field is only over the surface. In addition, we
also solve for the segmentation in multiple images jointly
with the registration.

Analysis and decomposition of vector fields, which are
useful functions in many applications, have been studied ex-
tensively. For smooth vector fields, Helmholtz-Hodge de-
composition [1] provides an intuitive decomposition of a
vector field into its components: a rotation-free compo-
nent, a divergence-free component, and the residuals that

are sometimes called the harmonic component. Projection
operators were introduced to restore vector field proper-
ties such as divergence, curl, and hyperbolic components
in [34]. A variational approach was taken in [30] where
vector fields on triangulated surfaces were decomposed
into a rotation-free, divergence-free and a harmonic com-
ponent. A multi-scale extension for discrete vector fields
was done in [35]. A discrete exterior calculus theory specif-
ically to work with discrete vector fields and operations
such as a discrete Hodge decomposition was developed
in [14].

Related recent work on constrained variational problems
include widely used constraints on vector fields that are
referred to as smoothness constraints [2, 8], which only
serve the purpose of regularization of the flow. Chefd’hotel
et al. utilized matrix constraints such as unit-normness, or-
thogonality and positive-definiteness in their work that ex-
tends and generalizes the variational framework in com-
puter vision from scalar-valued functions to matrix-valued
functions [9]. A global constraint on the magnitude of the
vector field is utilized in [29] to prevent the vector field
from having unnecessarily large amplitudes. In [19], optical
flow fields were estimated with a penalty of departure from
rigidity, however, without any local inequality constraints
like we present here. For myocardium segmentation, image
edge and velocity measurements from MR intensity and MR
phase contrast images are used to constrain the curve propa-
gation in [39], however this method does not involve a vari-
ational constraint approach. An excellent text on image reg-
istration, regularization and its numerical solutions can be
found in [23].

We also note that equality and inequality constraints us-
ing Kuhn-Tucker theorem were utilized in the area of image
restoration [5], mainly for setting a nonnegativity constraint
for the function which is being restored [20, 25, 31].

1.2 Our Contributions

We present and examine some important mathematical con-
cepts in local equality and inequality constrained variational
problems that can be used in problems of computer vi-
sion. One contribution of this paper is that we utilize the
Kuhn-Tucker theorem to solve for inequality constrained
problems in computer vision. Specifically, the solutions to
these problems involve locally constrained minimizations
with a Lagrange multiplier function that varies with respect
to the independent variables. We investigate new avenues
with inequality constrained variational formulations which
involve spatially varying Lagrange multipliers that may lead
to improved solutions for the estimation of vector fields
in problems such as segmentation, registration, and track-
ing.

A second contribution is the generalization of the joint
segmentation and registration work of Yezzi et al. [42],



J Math Imaging Vis

which involved only finite dimensional registrations, but had
not foreseen an extension to infinite dimensions. However, a
best rigid fit among image volumes will not result in a cor-
rect registration in various imaging applications. Therefore,
we start with the same joint segmentation and registration
idea however improve it to account for more general prob-
lems of registration among anatomical structures defined by
a deformation field between target regions. The applications
are vast such as structures in different MR image sequences
(for instance T1 and T2 weighted) or pre and post contrast
agent MR images or images of a patient at different time
points or images of different patients as well as images of
different modalities.

The organization of the paper is as follows. In Sect. 2, we
give the fundamentals of the constrained problems in opti-
mization. Section 3 presents the application of constrained
calculus of variations problems in computer vision and de-
rives the specific PDEs in Sect. 4. Section 5 presents the
experimental results and conclusions.

2 Constrained Problems in the Calculus of Variations

2.1 Fundamentals

Given a bounded region � of R
n, we search for a vector

function u : X = � −→ R
n assigning to each point x in �

a displacement vector u(x) ∈ R
n. The set U on which an

extremum problem is defined is called the admissible set.
Generally, the set U is assumed to be a linear subspace of
a Hilbert space H , the inner product of which is denoted
by 〈·, ·〉H .

The vector field u ∈ Y = C2(�,R
n) is searched in a set

U of admissible functions such that it minimizes an energy
functional I : U −→ R of the form:

F(u) =
∫

�

f (x,u,Du)dx (1)

subject to the functional constraints

�(x,u,Du) = 0, (2)

�(x,u,Du) ≤ 0, (3)

where D denotes the Jacobian of u.

Definition A function u that satisfies all the functional con-
straints is said to be feasible.

Definition A point at which the Gateaux differential of a
functional F vanishes, i.e., δF (u∗;h) = 0 for all the admis-
sible variations h, is called a stationary point.1

1If F is a functional on a vector space X, the Gateaux differential
of F , if it exists, is δF (x;h) = d

dt
F (x + th)|t=0, and for each fixed

From the above definition, it is clear that the extrema of
a functional F occur at stationary points. When the vector
space X is normed, a more satisfactory definition of a dif-
ferential is given by the Fréchet differential.

Definition If for each variation h ∈ X there exists F ′(h)

such that lim||h||→0 ||F(u+h)−F(u)−F ′(h)h||/||h|| = 0,
then F is said to be Fréchet differentiable and F ′ is said to
be the Fréchet differential of F (see [21] for more details).
In the special case, which corresponds to our case, where
the transformation F is simply a functional on the space X,
F ′ is called the gradient of F , also denoted by ∇F .

2.2 Equality Constrained Problems

Theorem 1 (Lagrange Multiplier) If the continuously Fréchet
differentiable functional F in (1) has a local extremum un-
der the equality constraint (2), �(x,u,Du) = 0, at the reg-
ular point u∗, then there exists a function μ ∈ C2(�,R

n)

such that the Lagrangian functional

F(x,u,Du) + μ(x)�(x,u,Du) (4)

is stationary at u∗, i.e., F ′(u∗) + μ� ′(u∗) = 0.
The intuition with this result is that F ′(u∗), the gradient

of F , must be orthogonal to the null space of � ′(u∗), that is
orthogonal to the tangent space.

2.3 Inequality Constrained Problem

A fundamental concept that provides much insight and sim-
plifies the required theoretical development for inequality
constrained problems is that of an active constraint. An in-
equality constraint �(x,u,Du) is said to be active at a fea-
sible solution u if �(u) = 0 and inactive at u if �(u) < 0.
By convention, any equality constraint �(u) = 0 is active at
any feasible point. The constraints active at a feasible point
u in the set of admissible functions restrict the domain of
feasibility in neighborhoods of u. On the other hand, inac-
tive constraints, have no influence in neighborhoods of u.
Inequalities are treated by determining which of them are ac-
tive at a solution. An active inequality then acts just like an
equality except that its associated Lagrange multiplier can
never be negative.

Definition A point u∗ is a regular point if the gradients of
the active constraints are linearly independent.

Theorem 2 (Kuhn-Tucker) Let u∗ be a relative minimum
point for the problem of minimizing (1) subject to the

x ∈ X, δF (x;h) is a functional with respect to the variable h ∈ X. The
Gateaux differential generalizes the concept of directional derivative
familiar in finite-dimensional space [21].
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constraint (3), and suppose u∗ is a regular point for the
constraints. Then, there is a function λ ∈ C2(�,R

n) with
λ(x) ≥ 0 such that the Lagrangian

F(x,u,Du) + 〈λ(x),�(x,u,Du)〉 (5)

is stationary at u∗. Furthermore,

〈λ(x),�(x,u∗,Du∗)〉 = 0. (6)

Note that now there are two unknown functions to be es-
timated: the function u(x) and the Lagrange multiplier λ(x)

that both vary over the domain �. The second necessary
condition (6) in the Kuhn-Tucker theorem in addition to the
first necessary condition (5) are enough to solve for the two
unknowns.

Kuhn-Tucker reformulations for converting the con-
strained problems into unconstrained problems are pre-
sented in [6, 16]. In addition, an interesting approach is
presented in [17] with new numerical solutions to the inte-
gral forms of the Euler-Lagrange equations for constrained
problems.

Types of Constraints There are multitude of different con-
straint functions that can be used in constraining a cost func-
tional. There is no clear classification, but the ones we came
across are as follows. Local constraints are also called as
“algebraic constraints”, i.e. G(x) = 0 (in mechanics called
“holonomic constraints”). There are “differential equation
constraints”, which we are interested in, G(x,u,u′) = 0 are
local constraints (in mechanics called “non-holonomic con-
straints”), and result in a Lagrange multiplier, which is a
function of the independent variable, like λ(x). On the other
hand, the “integral constraints” are global constraints, and
result in a single constant Lagrange multiplier number λ.

3 Applications

For specific applications of the above theorems, we will
show in the framework of the calculus of variations, spe-
cific examples that will be useful in various computer vision
scenarios. Because the case of equality constraints is a spe-
cial case for the inequality constraints, we opted to study
inequality constrained problems as applied to problems in
segmentation, registration, and tracking.

In the framework of calculus of variations with inequality
constraints, our problem is to minimize

F(u) =
∫

�

f (x,u,Du)dx (7)

subject to �(x,u,Du) ≤ 0 (8)

where both f and � are real-valued, and are assumed to
have continuous partial derivatives of second order. Directly

from the Kuhn-Tucker Theorem 2, we will derive the neces-
sary conditions for the minimizer. The first necessary condi-
tion is obtained as follows:

∂

∂t
{F(x,u + th,D(u + th))

+ 〈λ(x),�(x,u + th,D(u + th))〉}|t=0 = 0. (9)

Hence, we look for the differential of the new Lagrangian
J = F + 〈λ,�〉:
δJ (u;h)

= ∂

∂t

∫
�

f (x,u + th,D(u + th))dx

+ ∂

∂t

∫
�

�(x,u + th,D(u + th))λ(x)dx. (10)

By the chain rule, the differential δJ (u;h) can be obtained
as the first necessary condition when equated to zero:

δJ (u;h) =
∫

�

fu(x,u,Du)hdx

+
∫

�

fDu(x,u,Du)Dhdx

+
∫

�

�u(x,u,Du)hλ(x)dx

+
∫

�

�Du(x,u,Du)Dhλ(x)dx. (11)

In this equation, u and Du in the subscripts denote the vari-
ation of a functional, e.g. of f and � with respect to the
functions u and Du. Integrating (11) by parts,
∫

�

{∫
�

fudx − fDu

+
∫

�

�udλ(x) − �Dudλ

}
Dhdx = 0 (12)

for all variations h vanishing at the boundary of the bounded
domain �. The resulting Euler-Lagrange equation in its in-
tegral form is thus∫

�

fudx − fDu +
∫

�

�udλ(x) − �Dudλ = 0. (13)

In its more familiar differential form, the Euler-Lagrange
equations reduce to:

fu − ∇fDu + �uλ(x) − �Du∇λ(x) = 0. (14)

The second necessary condition from the Kuhn-Tucker
theorem (6) is given by the equation:
∫

�

�(x,u,Du)λ(x)dx = 0, (15)

where λ(x) is continuous and of bounded variation over the
domain �. The intuition behind this condition comes from
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the idea of active and inactive constraints. The Lagrange
multiplier function λ(x) becomes active over the domain �

only when the equality is satisfied, and vanishes when the
strict inequality is satisfied, that is:

�(x,u,Du) < 0 (inactive constraint) → λ(x) = 0, (16)

�(x,u,Du) = 0 (active constraint) → λ(x) > 0. (17)

3.1 Algorithm

We summarize the proposed algorithm for clarity. The cou-
pled equations consisting of (14) with the auxiliary equation
(15) forms a complete set of equations to solve for the un-
knowns u(x) and λ(x) over the domain �. The specifics of
the cost functional f will be given in the next subsections.
To set up the iterations for the PDEs, an artificial time vari-
able t is introduced, and the PDE from (14) to be solved
is

∂u(x, t)

∂t
= −fu +∇fDu −�uλ(x, t)+�Du∇λ(x, t). (18)

Using the time as a new variable, the auxiliary equation in
(15) becomes
∫

�

�(x,u(x, t),Du(x, t))λ(x, t)dx = 0. (19)

Without the specifics of the functionals f and �, the gen-
eral algorithm proceeds as follows:

(1) At time t0 = 0, start with a fixed initial value u0 = u(t0)

that satisfies �(x,u(x, t0),Du(x, t0)) < 0. Then initial
value of λ(x, t) is automatically fixed λ0 = λ(x, t0) = 0.

(2) At time step, tk = k�t , solve for uk = u(x, tk) from
(18) using uk−1 and λk−1.

(3) Solve for λk from (19) using uk .
(4) Repeat the steps 2–3 until convergence.

3.2 Solving (19)

To solve for λ(x) from (19), we chose to work with the most
straightforward case when this equation is satisfied, that is
when λ(x) is a delta function, which is nonzero only when
the constraint function �(x) is non-zero. Of course, we re-
quire the gradient of λ over the space in our PDE (18), and
the delta function is differentiable only when it is viewed
as a generalized function. For simplifying the problem, we
replace the delta function by a regularized delta function

λ(x) = Kδ(�(x) ≥ 0(x)) ≈ Kξ(r), (20)

where K is a strength factor, and the above yields a well-
defined and differentiable Lagrange multiplier function λ(x)

as we require. The ξ(·) is a regularized distribution that is
supported by a finite cross-sectional area in R

n. It can also

be thought as n − dim blobs around each point x in space,
where r = |x − x0|, is the distance from the center of the
blob x0. The distribution function ξ(x) = π

σ 2 g( r
σ
) is a reg-

ularization of the delta function, normalized so that its inte-
gral over the space is equal to unity. Here, σ is the radius of
the blob, which is a measure of the extent of the spread of
the blob, and g is a dimensionless distribution that vanishes
at ∞. Note that in the limit as σ → 0, ξ reduces to the delta
function.

A choice for the g function is given by g(w) = 1
π2 e−w2

.
For n = 2, for instance, the 2D delta function is separable,
and will be computed from δ(x, y) = δ(x)δ(y). In addition,
we smooth the final λ(x) function by a Gaussian filter to
ensure that its gradient is regular.

4 Specifics of the Constrained PDE (18)

Generally speaking, the functional f in (18) consists of two
types of terms:

f = f i + f r (21)

where f i is an image- and data-driven term, and f r is a
regularizing term on the unknown function, here u.

In the next subsections, we explain the specifics of
the three functionals: the regularizers f r , inequality con-
straints �, and the image-dependent functionals f i .

4.1 Regularizer

The simplest choice of a regularizer functional f r is the
Dirichlet integral:

f r =
∫

�

||Trace(DuDuT )||dx (22)

that yields a pure diffusion operator in the PDE, i.e.,
div (Du), and hence assumes a smoothly varying vector
field over the whole � domain. More sophisticated regu-
larizing integrals that respect the discontinuity over the high
image gradients are proposed such as the anisotropic dif-
fusion term in [2]. Other forms of regularizers and more
general matrix-valued functions can be found in [8, 12]. We
will utilize the regularization operator:

div (Du) (23)

in our specific PDEs.

4.2 Image-Dependent Functionals

The data-driven term of the cost functional is chosen de-
pending on the vision application.
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Fig. 2 Non-rigid mapping between two images defined through the
coordinate transformation: T (x) = x + u

A joint non-rigid registration and segmentation approach
For segmentation of a structure appearing in multiple do-
mains, Unal et al. [36] presented a joint non-rigid regis-
tration and segmentation technique that utilized an infinite-
dimensional transform x̂ = T (x) where each point in do-
main � can move freely to a point in domain �̂ as depicted
in Fig. 2.

We briefly summarize this technique as follows. Given
two image volumes, I : � ∈ R

n → R and Î : �̂ ∈ R
n → R,

we denote the transformation that deforms one of the images
to the other one by: x̂ = T (x) = x + u(x), where u(x) is
the displacement vector field defined as u : � → R

n (n = 2
or 3). The goal is to find a surface S ∈ � that deforms on the
first image I whereas a surface Ŝ ∈ �̂ corresponding to the
mapping Ŝ = T (S) deforms on the second image Î . Both
surfaces move according to a generic image region-based
energy functional defined over both image domains depend-
ing on region descriptors for the unknown foreground re-
gion, f i,f , and the background region, f i,b:

E(u,S) =
∫

�

f i,f (x)χf (x)dx

+
∫

�

f i,b(x)(1 − χf (x))dx

+
∫

�̂

f̂ i,f (x̂)χf (x̂)dx̂

+
∫

�̂

f̂ i,b(x̂)(1 − χf (x̂))dx̂ (24)

where χf denotes an indicator function for the foreground
region over an image domain, f̂ i,f and f̂ i,b are the region
descriptors for the foreground and the background in the
transformed domain �̂. Note that in this case there is an ad-
ditional unknown, the boundaries between the foreground
and the background regions, i.e. the surface S for segmenta-
tion, and a proper regularizer on S is also introduced through
the surface area integral

∫
S dA that induces a curvature term

in the resulting segmentation PDE.
The solutions to the minimization problems are given by:

S̃ = arg min
S

E(S,u), and

(25)
ũ = arg min

u
E(S,u).

The surface evolution is given by:

∂S

∂t
= f i(x)N + f̂ i (x + u(x))N̂ + κN . (26)

Note that f i = f i,f − f i,b , and f̂ i = f̂ i,f − f̂ i,b , N is the
normal vector to the surface S, and N̂ is the normal vector
to the transformed surface Ŝ, and κ is the curvature function
for the surface S.

For registration evolution, the only part of the energy
functional in (24) that is taken into account is:

E(u) =
∫

�

f̂ i,f (x + u(x))χf (x + u(x))︸ ︷︷ ︸
Ff (x+u(x))

dx

+
∫

�

f̂ i,b(x + u(x))(1 − χf (x + u(x)))︸ ︷︷ ︸
Fb(x+u(x))

dx. (27)

The gradient of E w.r.t. u is ∂E
∂u = ∇uFf (u)+∇uFb(u),

where ∇u denotes the functional gradient w.r.t. u. We derive
the PDE (over domain �) whose steady state solution gives
the minimizer displacement field u which varies over space.
The contributing term to our constrained PDE (18) from the
image functional is then:

∂u(x, t)

∂t
= ∇uf̂ i,f (x + u(x))χf (x + u(x))

+ ∇uf̂ i,b(x + u(x))(1 − χf (x + u(x)))

+ f̂ i (x + u(x))∇u(χf (x + u(x))),

u(x,0) = uo(x).

(28)

For the third term above, the derivative of the indicator func-
tion χ with respect to u is intuitively a delta function over
the boundaries between the foreground and the background
region, and is defined in the sense of distributions. In prac-
tice regularized versions of a Heaviside function H and a
delta function δ are used, particularly within a level set im-
plementation φ : � −→ R which represents S as its zero
level set [7]:

∂u(x, t)

∂t
= ∇uf̂ i,f (x + u(x))H(φ̂(x + u(x)))

+ ∇uf̂ i,b(x + u(x))(1 − H (φ̂(x + u(x))))

+ f̂ i (x + u(x))δ(φ̂(x + u(x)))

× ∇φ̂(x + u(x)),

u(x,0) = uo(x).

(29)

A special case for the image dependent functional f i can
be chosen as a simplified Mumford-Shah model [24], that is
the piecewise constant model by Chan-Vese [7] that approx-
imates the target regions in a given image I by the mean
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Fig. 3 (Color online) A 2D MR image pair at different slice levels (a, b). The structure’s deformation is recovered by the (30), (26) depicted with
the vector field whose direction goes from red to blue (c, d), i.e., green contour to yellow contour. The second image is deformed by the estimated
vector field (e)

statistics. For instance, for a foreground region with a sta-
tistic mf , and a background region with a statistic mb , the
specific form of f i becomes

f i(x,u) = (I (x + u) − mf )2χf (x)

+ (I (x + u) − mb)
2(1 − χf )(x).

With the piecewise (p-w) constant model for the target re-
gions that are to be segmented and registered in images I

and Î , the region-based term in the energy, and the gradient
terms are given by:

f̂ = f̂ i,f − f̂ i,b = 2(m̂f − m̂b)

×
(

m̂f + m̂b

2
− Î (x + u(x))

)
,

∇uf̂ i,f = 2(Î (x + u(x)) − m̂f )∇ Î (x + u(x)),

∇uf̂ i,b = 2(Î (x + u(x)) − m̂b)∇ Î (x + u(x)),

where m̂f and m̂b are the mean of the image intensities in-
side and outside the surface mapped onto the second image
volume domain respectively. These expressions can be in-
serted into (28) to obtain the PDE, which flows in the gradi-
ent descent direction, for evolution of non-rigid registration
field for the p-w constant region model:

∂u(x,t)
∂t

= −(m̂f − m̂b)

[
(m̂f +m̂b)

2 − Î (x + u(x))

]

× δ(φ̂(x + u(x)))∇φ̂(x + u(x))

− (Î (x + u(x)) − m̂f )∇ Î (x + u(x))

× H(φ̂(x + u(x)))

− (Î (x + u(x)) − m̂b)∇ Î (x + u(x))

× (1 − H(φ̂(x + u(x))))

u(x,0) = uo(x) = 0,

(30)

where a zero vector field initialization is adequate in solv-
ing the PDE without any prior knowledge of the true vector
field u.

In Fig. 3, two different slices of an MR image sequence
depict a dark structure in the middle, and which is jointly
registered and segmented by the PDEs (30), (26), and (23).
The result of deforming the second image region of interest
(that is around and inside the contour) with the estimated
vector field towards the first image particularly shows the
success of the estimation.

In some segmentation applications, the basic approach of
thresholding has proven to be useful. Instead of using means
inside and outside the surface, one can convert such a ba-
sic “Chan-Vese” flow to a “thresholding” flow. This is also
equivalent to region growing to separate the intensity inside
the growing surface from the outside by the given threshold.
For this purpose we use the following speed function:

f̂ = (m̂f − m̂b)(T − Î (x + u(x))) (31)

where the
m̂f +m̂b

2 quantity in “Chan-Vese” flow is replaced
by an arbitrary threshold T . For this speed function we use
the image terms on right hand side of the following PDE for
updating the vector field:

∂u(x, t)

∂t
= −(m̂f − m̂b)(T − Î (x + u(x)))

× δ(φ̂(x + u(x)))∇φ̂(x + u(x)), (32)

u(x,0) = uo(x) = 0,

applied to the boundary term only.
For a tracking application, the image-based functional

term can also be chosen as an image matching penalty∫
(I (x) − Î (x + u(x)))2dx, as in the popular optical flow

equation. Then the image matching term becomes:

∂u(x, t)

∂t
= −(I (x) − Î (x + u(x))) ∇(Î (x + u(x))). (33)

One can note that although the flows are presented for
between two image domains, this idea can be extended to
multiple coordinate spaces to non-rigidly register a single
common contour with multiple target objects.
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4.3 Divergence Inequality Constraints

A natural constraint on the displacement vector field u is
a constraint on the its divergence div u. The divergence of
a 2-dimensional vector field u = (ux,uy) is defined as the
trace of its Jacobian matrix

Du =
⎡
⎣

∂ux

∂x
∂ux

∂y

∂uy

∂x
∂uy

∂y

⎤
⎦ . (34)

Let us suppose we want to constrain the divergence of a
vector field by a constant, say c, then the constraint function
becomes

�(x,u,Du) = Trace(Du) − c (35)

where c is a constant scalar function. To obtain the con-
strained PDE in this specific case, we write the differentials
of � to find

�Du = ∂

∂Du
(Trace(Du) − c) = Id (36)

where Id denotes the identity matrix. Therefore, for the goal
of constraining divergence of the vector field from below,
say by a given constant c1, and from above, say by a given
constant c2 in a given variational vision problem, we set up
two constraint functions:

�1(x,Du) = c1 − div u(x) ≤ 0, (37)

�2(x,Du) = div u(x) − c2 ≤ 0. (38)

Then we define two Lagrange multiplier functions, λ1(x)

and λ2(x), which contribute to the specific form of our con-
strained PDE (18) as the operators

�1
Du∇λ1(x) + �2

Du∇λ2(x) = −∇λ1(x) + ∇λ2(x). (39)

Figure 4 depicts an application of the divergence con-
straints (37–38) on a vector field estimation. Here, as com-
pared to joint registration and segmentation application, the
idea is to use one contour and a vector field on the same im-
age I . The vector field that defines the mapping between
the inner boundary around the black circular region and

the outer boundary can be easily estimated using the PDE
terms in (30) and regularizer term in (23). The resulting seg-
mentation (contour) and the vector field are shown in (b).
To demonstrate the effect of the inequality constraints on
the divergence of the vector field, we apply the constraints
c1 ≤ divu ≤ c2, with c1 = 0.1 and c2 = 0.3. The initialized
vector field that satisfies the constraint divu = c1 is shown
in (c). Figure 4(d) shows the result of the evolution of the
PDE (39) with the auxiliary equation (19) to solve for the
Lagrange multiplier functions λ1 and λ2.

We will show applications of the divergence inequality
constraints to a segmentation problem in Sect. 5.

4.4 Curl Inequality Constraints

A complementary idea to the divergence constraint is the
usage of a curl constraint on a vector field. In fluid dynamics,
curl of a vector field is defined as the vorticity. The intuition
then in a tracking application is to put vorticity constraints
on the vector field.

The curl constraint function can be written as

�(x,u,Du) = TraceJ (Du) − v ≤ 0 (40)

where J denotes a 90 degree rotation on the Jacobian ma-
trix, and v denotes a given vorticity of the vector field. Tak-
ing derivative of � w.r.t. u in this case yields:

�Du = ∂

∂Du
(Trace J (Du) − v) = J . (41)

Similar to the divergence constraints in the previous section,
vorticity of a vector field can be limited from both below and
above with two values of vorticity v1 and v2

�1(x,Du) = v1 − curlu(x) ≤ 0, (42)

�2(x,Du) = curlu(x) − v2 ≤ 0. (43)

Then we define two Lagrange multiplier functions, λ1(x)

and λ2(x), which contribute to our constrained PDE (18) in

Fig. 4 The divergence inequality constraint on the vector field that
maps the inner boundary towards the utter boundary demonstrated on
the image in (a) (negative of the vector field is depicted). (b) Evolution

without any constraint. (c) Initialized vector field with a divergence
inequality constraint. (d) Resulting vector field with divergence con-
strained evolution
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Fig. 5 Two synthetically generated spirals, where the white spiral is
deformed by a vector field with only vorticity (= 0.3) to form the gray
spiral in (a). Without any vector field constraints, the estimated vec-
tor field through PDEs (30) and (23) produce incorrect results in (c)

(zoomed section shown in (d) and (b) shows the two contours only).
The estimated vector field is correct when the vorticity constraint terms
(44) are added to the PDEs with v1 = 0.13 and v2 = 0.33, shown in (f)
(zoomed section in (g)) and the two contours in (e)

the specific form of the operators

�1
Du∇λ1(x) + �2

Du∇λ2(x)

= −J∇λ1(x) + J∇λ2(x). (44)

Figure 5 shows two synthetically created spirals and es-
timation of the vector field mapping the gray spiral to the
white spiral correctly estimated in presence of the con-
strained PDEs with the terms (44).

4.5 Translational Inequality Constraints

In case of translational constraints on a vector field, one in-
tuitive idea is to constrain the amount of change on the first
variation of the vector field, that is its Jacobian matrix. We
limit the amount of change in the direction of the vector field
by limiting the change in the norm of the Jacobian matrix,
hence penalizing too much directional change. This can be
done, for instance, by devising an inequality constraint in-
volving the Frobenius norm of the Jacobian matrix of the
vector field:

�(x,u,Du) = ||(Du)||2F ≤ ε, (45)

where ||A||F =
√

Trace(AT A), and ε is a given small num-
ber that determines the amount of change allowed on the first
variation of the vector field u. This again leads to two con-
straint functions:

�1(x,Du) = ε − Trace(DuT Du) ≤ 0, (46)

�2(x,Du) = Trace(DuT Du) − ε ≤ 0. (47)

In this case, the differential of � is obtained using

�Du = ∂

∂Du
(Trace(DuT Du) − ε) = DuT , (48)

and the two Lagrange multiplier functions, λ1(x) and λ2(x),
contribute to the specific form of our constrained PDE (18)
as the operators

�1
Du∇λ1(x) + �2

Du∇λ2(x)

= −DuT ∇λ1(x) + DuT ∇λ2(x). (49)

4.6 Magnitude of Vector Field Inequality Constraints

Another idea in constrained problems of vector fields is to
restrict the amount of change on the magnitude of the vec-
tor field. This would be required if one wants to keep the
vector field magnitude more or less within some bounds. As
done in previous subsections, we write the corresponding in-
equality constraint involving the pointwise L2 norm squared
of the vector field:

�(x,u,Du) = ||u||22 ≤ ε, (50)

where ||u||22 = uT u, and ε is a given small number that
determines the amount of change allowed on the norm of
the vector field u. In this case the two constraint func-
tions:

�1(x,u) = ε − uT u ≤ 0, (51)
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Fig. 6 (Color online) (a) Known spatially varying synthetic motion
field. MR image segment including a lymph node without (b) and with
the converged contour (d); Deformed image with the known vector

field without (c) and with the converged contour (e). Zoomed section
in (f) showing the ground truth (GT) vector field (blue) and the esti-
mated vector field (red)

�2(x,u) = uT u − ε ≤ 0 (52)

with the differential of � simply:

�u = ∂

∂u
(uT u − ε) = 2uT , (53)

lead to the constrained PDEs

∂u(x)

∂t
= �1

uλ1(x) − �2
uλ2(x)

= 2uT (x)λ1(x) − 2uT (x) λ2(x). (54)

5 Experiments and Conclusions

For the numerical implementation of the contours, we uti-
lized a level set representation [26, 33] for convenience. Due
to a narrowband level set implementation, we will most ef-
fectively be solving for u(x) on a band around the surface.
We present the application of the technique in both 2D and
3D spaces. For the volumetric images, such as in brain MRI
and the abdomen CT examples, the implementation is in 3D
space, and the resulting surfaces along with the 3D vector
field and contours from each slice are shown in 2D. For the
remaining 2D images presented below, the method is applied
in 2D space.

5.1 Experiments in Coupled Non-Rigid Registration and
Segmentation Without Constraints

We simulated a non-rigid deformation by creating a com-
pletely arbitrary spatially varying motion field using nonlin-
ear functions and a modified normal vector field, as shown in
Fig. 6(a) around the structure of interest only. We deformed
with this known motion field the real input image data in (b)
showing an image segment with a lymph node in an MR im-
age sequence, and this resulted in the image depicted in (c).

Table 1 The average and standard deviation of the angle between GT
and the estimated vector field, and the mean-squared error

Distortion Measure Error

Average Angle (uGT − uEST ) 0.07π (13°)

Standard Deviation Angle (uGT − uEST ) 0.04π (7°)

MSE (uGT − uEST ) 1.65

The comparison is done using the angle between the ground
truth deformation field and the estimated deformation field
obtained with (30). The results displayed in the Table 1 show
an average angle difference of 13° with a standard devia-
tion of 7°. The mean squared error between these two vector
fields is found to be 1.65.

The computational complexity of the algorithm in 3D is
as follows. Since we are computing the PDEs in (26) and
(30) over a narrow-band around the zero level set of the sur-
face in R

3 (usually radius of the band is chosen as 5), the
general complexity is O(N2). For the computation of the
means inside and outside the image volume for Eq. (26),
the complexity is O(N2) except at initialization it is O(N3)

(going through all the image volume). For the computation
of the means inside and outside the second image volume
for (30) or (32), the second band (surface) is initialized after
the first band (surface) is updated every time, therefore with
the current implementation the complexity is O(N3), but it
is possible to compute it at O(N2).

When the target structures in the two image domains do
not overlap, either automated pre-processing using Dicom
header information for physical coordinates to initialize the
vector field, or first jointly executing a rigid registration flow,
or an interactive registration to roughly align the two vol-
umes are possible solutions.

Next we show an example for segmentation and registra-
tion of corpus callosum from MR brain image volumes. In
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neurology and neurocognitive science, the size and shape
of the corpus callosum in human brain has shown to be
correlated to different factors of humans and the human
brain [22]. Therefore, inter-patient studies of corpus callo-
sum(cc) characteristics is an important problem and requires
estimation of transformations among cc shapes in a popula-
tion of patients. We jointly segment and estimate a vector
field between two different patients cc shapes as demon-
strated in Fig. 7 which shows evolution of the surface and the
final estimated deformation field between the cc of the two
patients. For inter-patient studies, such a vector field may be
used to obtain a measure of shape and size differences be-
tween surfaces of cc’s of two patients and thus proves to be
useful.

Figure 8 shows the T1 MRI volumes of the same brain
example from two patients (only one slice from the MRI
volume is shown). In this experiment, the “Chan-Vese” flow
easily leaks to surrounding regions during the evolutions,
therefore does not perform successfully. Instead the “thresh-
olding” flow in (32) along with the corresponding surface
evolution flow (26) are used with a threshold of T = 60

Fig. 7 (Color online) Evolution of the surface over the corpus callo-
sum (top row and bottom left) along with the estimated vector field
from the first patient’s corpus callosum (shown in green) towards the
second one (shown in red)

whereas the image volumes has the intensity range (0,255).
Therefore, with a simple modification to the simplest piece-
wise constant model and with a quickly obtained prior infor-
mation from the intensity in the initialized seed surface, we
could obtain a reasonable segmentation and registration re-
sult as the initial and final contours can be observed in Fig. 8.

In the example in Fig. 9, two CT image volumes of the
same patient taken at different time points are segmented
and registered using (26)–(30) for delineating the bladder
volume at different time periods.

For a multi-modality application, for instance, a post-
contrast T2-weighted MR image and a T2* echo weighted
MR image, are shown in Fig. 10, where the regions and
boundaries of a target structure, a malignant node, exhibit
different characteristics. We utilize the piecewise constant
model with a non-unit variance term f i =
(Î (x+u)−m̂f )2

σ̂ 2
f

χf + (Î (x+u)−m̂b)
2

σ̂ 2
b

(1 − χf ) to obtain the

Fig. 8 Sagittal T1 MRI volumes from different patients (a slice
shown in a–b) with in-plane resolution 0.44 mm and another patient
(a slice shown in c–d) with in-plane resolution 0.97 mm: here note the
mis-alignment between the corpus callosum of the two patients; after
the non-rigid registration and segmentation has been applied, the re-
sulting corpus callosum surfaces are shown in (b) and (d)

Fig. 9 (Color online) CT image
slices of a patient at different
times shown on rows 1 and 2.
A seed is given in the bladder
(left) and the resulting
segmentation and registration on
the bladder (middle). The
surface shows the deformation
of the first surface towards the
second (right)
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Fig. 10 (Color online) Using a non-unit variance flow, the node on the
T2 image (green) is morphed onto the node on the T2* echo image
(yellow) on the right

deformation field between the nodes in T2 and T2* echo im-
ages. However, in multi-modality applications like this one,
it is expected that utilizing more features to explain and ac-
count for a variety of region and boundary characteristics is
desirable. One possible extension of our work includes in-
corporation of boundary-based information in deriving the
non-rigid registration PDE or using piecewise-smooth re-
gion models.

5.2 Experiments in Constrained Problems

The divergence inequality constraints are applied to segmen-
tation of myocardium in MR images. Figure 11 shows an
end-systole phase of the heart beat in (a). Without the di-
vergence constraint terms (39) in our vector field evolution
PDE, the image terms can not guarantee a vector field evolu-
tion that would keep the solution away from the trivial one,

Fig. 11 Myocardium image
shown at end-systole phase
in (a). When there are no
constraints on the vector field
estimation, the result of
segmentation of the
myocardium through the
estimated vector field fails
because it converges to the
trivial solution of zero vector
field (b) (zoomed in (c)). The
vector field estimation is
successful in case the inequality
constraints in (39) are activated
initially in (d) and finally in (e)
(zoomed in (f))

Fig. 12 Myocardium image shown at end-diastole phase in (a). The
initial vector field shown in (b) is evolved without any divergence in-
equality constraints in (c), and fails. A better estimation is obtained

when the divergence inequality constraints (39) are activated, and re-
sults in a better segmentation of the myocardium through the estimated
vector field in (d)
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Fig. 13 Two frames in (a) and (e) from the taxi image sequence
(downloaded from KOGS/IAKS Universitat Karlsruhe) demonstrate
the constraint on the norm of the Jacobian of the vector field plus
the constraint on the vector field norm itself. (b) and (c) show the
resulting segmentations and vector field estimates when the vector

field is evolved without any inequality constraints, hence fails (zoomed
section in (d)). The vector field estimation is successful in case the
inequality constraints (54) are activated as depicted in (f) and (g)
(zoomed section in (h))

Fig. 14 Two frames in (a) and (d) from the hurricane Katrina image
sequence demonstrate the constraint on the curl of the vector field.
(b) and (e) show the resulting segmentations (white contour represents
the segmentation on the first frame, and black contour on the second
frame, both are shown as superimposed on the second image frame)
and vector field estimates when the vector field is evolved without

any inequality constraints, which evolves towards the initial contour
without strong features from the image. The vector field estimation
is more likely to be considered as successful in case the inequality
constraints of the PDE (44) are activated (c) and (f), although there is
no ground truth knowledge for this example
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that is a zero vector field as shown in (b) with which the
energy of the contour is minimized. Instead, the PDE with
divergence constraints leads to the correct solution as shown
initially in (d) and result in (e) (zoomed in (f)). In this ex-
periment, the divergence constraint from below (divu ≥ c)
helps the flow correctly propagate to the solution.

In the next experiment, for the myocardium image at end-
diastole in Fig. 12(a), the divergence constraint from above
(divu ≤ c) steps up to drive the vector field evolution to a
better solution in (d) in contrast to the unconstrained PDE
result in (c), where both evolutions were initialized with the
vector field in (b).

We show the effect of translation and norm constraints
on the vector fields in Fig. 13 for the taxi sequence. The op-
tical flow is estimated between the two frames of the taxi
sequence shown in (a) and (e). When the vector field is esti-
mated without any inequality constraints, the resulting regis-
tration was not successful as depicted in (b)-segmentations,
i.e. the contours, and (c)–(d)-the vector field estimate. The
vector field estimation was successful in case the inequality
constraints (54) are activated as shown in (f)–(h).

We show the effect of curl constraint on the vector fields
in Fig. 14 for the hurricane Katrina sequence (downloaded
from National Oceanic and Atmospheric Administration
www.noaa.gov). The hurricane is winding outwards from
the center in this sequence. The constrained solution is bet-
ter than the unconstrained solution, as expected. However,
the data terms, which we use, do not exactly model this dif-
ficult image scenario. If in addition to the constrained PDE
terms, one can incorporate good image features that model
the image better than piecewise constant mean image, to the
data term of the PDEs, the results can be expected to im-
prove.

5.3 Conclusions

In this paper, we described utilization of local inequality
constraints via Kuhn-Tucker theorem in interesting varia-
tional problems of computer vision, which require estima-
tion of vector fields that model deformations between ob-
jects in multiple images. We showed applications in coupled
registration and segmentation problems in medical imaging
and tracking problems in vision. We believe that our work
will stir up new questions and lead to developments in the
utilization of inequality constrained variational problems in
the computer vision community.
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