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Abstract

Demand on high precision motion has been increasing in recent years. Since
performance of today’s many mechanical systems requires high stiffness and accurate
positioning capability, parallel manipulators gained popularity. Their superior
architecture provides better load capacity and positioning accuracy over the serial ones.
In this work, a popular parallel manipulator, Stewart Platform, has been studied. Stewart
Platform is a positioning system that consists of a top plate (moving platform), a bottom
plate (fixed base), and six extensible legs connecting the top plate to the bottom plate.
This work includes design, analysis, control and testing of a complete positioning
system. In order to achieve better accuracy over commonly used universal joints,
magnets and spherical joints have been employed in the architecture. Flexure joints
have been also analyzed to achieve higher precision levels. Because they eliminate
friction and backlash, flexure joints would give better results than universal and
spherical joints. Therefore, a parametric study for optimum hyperbolic flexure joints has
been also presented. Desired performance of the proposed platform is six degrees of
freedom with 500 nm minimum incremental motion. System uncertainties and inherent
nonlinearities have been eliminated using sliding mode control. This type of control
methodology allows stability in the presence of parametric uncertainties and external
disturbances. Although analyses indicate system capability of less than 1 nm resolution,
real performance is typically lower due to manufacturing imperfections and
measurements errors. The proposed model has been analyzed and tested through
simulations, and verified via experiments on a designed and constructed sample Stewart
Platform. Laser measurements have been used to measure positional accuracy. System
has demonstrated positional accuracy better than the desired 500 nm target performance
value.
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Ozet

Son wyillarda yiiksek hassasiyetli hareketli sistemlere olan talep hizla artmaktadir.
Bugiinkii bircok mekanik sistemin performansi yiiksek katilik ve hassas konumlama
yeterligi gerektirdiginden paralel manipiilatdrler popiilerlik kazanmistir. Paralel
manipilatorler seri manipiilatorlere gore daha saglam ve hassas konumlama kabiliyetine
sahiptir. Bu ¢alismada popiiler paralel manipiilatérlerden biri olan Stewart Platform ele
alinmaktadir. Stewart Platform iist plaka (hareket eden platform), alt plaka (sabit taban)
ve lst plakayr temele baglayan ve uzayip kisalabilen alti bacaktan olusan bir
konumlama sistemidir. Bu ¢aligmada biitiin bir sistemin tasarimi ve analizi yapilmas,
kontrol yontemi gelistirilmis ve sistem kurulup test edilerek dogrulanmistir. Daha
hassas bir performans elde etmek i¢in yaygin olan kardan mafsali yerine tasarlanan
platformun yapisinda miknatis ve kiiresel mafsallar kullanilmistir. Daha yiiksek
performans saglamak i¢in ayrica esneme mafsallar1 da calisilmistir. Siirtlinme, geri
tepme ve mafsal bosluklari olmadigindan esneme mafsallar1 kardan ve kiiresel
mafsallardan daha iyi sonuglar vermektedir. Bu nedenle en uygun hiperbolik esneme
mafsali parametrelerinin bulunmasi i¢in parametrik bir ¢alisma da sunulmustur. Bu
calismada minimum 500 nm ¢6ziiniirliikli hareket saglayan ve alt1 serbestlik derecesine
sahip bir Stewart Platform kurulmasi hedeflenmistir. Sistem belirsizlikleri, dogrusal
olmayan davraniglar, parametrik belirsizlikler ve dis etkenlerin oldugu durumlarda
kararlilik saglayabilen kayan kipli kontrol kullanilarak ortadan kaldirilmigtir. Yapilan
analiz sonucglar1 1 nm’den daha iyi bir hassasiyetin miimkiin oldugunu gosterse de,
genellikle Ttretim problemleri ve Ol¢iim hatalar1 nedeniyle gergek sistemlerde
performansin daha diisiik olacag1 aciktir. Onerilen model, simiilasyonlar ve tasarlanan
Stewart Platform iizerinde yapilan deneyler ile dogrulanmistir. Konumlama
hassasiyetinin Ol¢limii i¢in lazer sistemi kullanilmistir. Yapilan dogrulama deneyleri
sonunda tasarlanan sistemin hedeflenen 500 nm’den daha iyi bir hassasiyet degerini
basardig1 gosterilmistir.
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1 INTRODUCTION

Stewart Platform is one of the most popular parallel manipulators. It is a six
degrees-of-freedom positioning system that consists of a top plate, a bottom plate, and

six extensible legs connecting the top plate to the bottom plate. A general Stewart

Extensible
Leg

Y

Platform is shown in Figure 1.1.
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Figure 1.1. General Stewart Platform

The Stewart Platform was originally proposed and presented to academia in 1965
as a flight simulator by Stewart [1]. This structure consisted of three linear actuators in
parallel. Gough [2] had earlier suggested a structure similar to Stewart’s model as a tire-
testing machine. In his system there are six actuators in parallel resulting in a fully
parallel actuated mechanism as shown in Figure 1.3. Gough was the first one realizing
benefits of this kind of a manipulating structure; however, research on this subject
began with Stewart’s paper. Therefore, it is a tradition to call the structure as Stewart

Platform, or sometimes it is also referred as Stewart-Gough Platform [3].



Figure 1.2. Schematic of the original | Figure 1.3. The first octahedral hexapod
“Stewart Platform” by Stewart or the original Gough platform

From the time it was proposed, there had been no interest to this mechanism for
about 15 years until Hunt stated the advantages of using parallel manipulators. After
1983 researchers acknowledged its high load capacity and precise positioning
capabilities, and started to make detailed analysis of the structure. Today’s popular
parallel manipulator known as Stewart Platform reached its generalized form which
consists of six linear actuators that are connected to the base with spherical or universal
joints and to the moving platform with spherical joints [4]. From 1980’s onward,
Stewart Platform, gained popularity mainly because of the advantages offered by

parallel manipulators over the serial ones [3].

Figure 1.4. The first flight simulator based on an octahedral hexapod in mid 1960s
(courtesy of Klaus Cappel)



Parallel manipulators have been used since 1980’s when high load carrying and
precise positioning capability is needed. Since the time it was proposed, it has been used
as a flight simulator. Besides, a wide variety of applications have benefited from this
design. A few of the industries using Stewart Platform design include aerospace and
defense, automotive, transportation, machine tool technology, and recently the platform

is used in medical applications for its precise positioning capability.

1.1 Objective

The Stewart Platform is a widely accepted design as a motion control device. This
is largely because of the system's high load capacity and accurate positioning capability.
Stewart Platform provides a large amount of rigidity that enables the system to provide
a significant source of positional certainty.

This work aims to develop a Stewart Platform mechanism with the following
capabilities:

= Six degrees of freedom

*  Working in any orientation

* No moving cables, ease of setup and reduced friction
» Load capacity of 200 gr.

= Repeatability of £0.5 um

= Significantly smaller and stiffer package

1.2 Parallel versus Serial Manipulators

With developments in mechanical design and robotics area, researchers first tend
to build structures that can perform human tasks. Serial manipulators, open loop serial
chains, originated from this idea. Serial manipulators have advantages such as large

workspace and high maneuverability as human arm. However, they suffer from similar



disadvantages as the human arm as well. Human arm can not carry high loads since it
has a cantilever structure. It does not provide precise motion as a result of its large
workspace, bends under heavy load and vibrates at high speeds. Therefore, for high load
and precise motion tasks one had to look for another solution. Parallel manipulators,
which can also be observed in the nature, provide this solution. Load carrying animals
with multiple legs are more stable compared to human bi-ped structure. Since end-
effector is connected to the ground with multiple actuators in parallel, these structures
provide high rigidity, and used for high load carrying and precise positioning tasks [3].
Parallel manipulators may have serial manipulators in their parallel chains.
Stewart Platform has given a central status among parallel manipulators because it
clearly shows the duality with the serial manipulators. Having 6 DOF with simple serial

chains in parallel makes generalized Stewart Platform a popular parallel manipulator.

1.3 Kinematics

For serial manipulators typically direct kinematics problem is straightforward, but
inverse kinematics is challenging. On the contrary, for parallel manipulators reverse is
true. For the inverse kinematics problem, the position vector and the rotation matrix are
given, and the link lengths are to be solved. Since position of the connection points,
orientation and position of the moving platform are known; it is easy to find link lengths
of the platform. On the other hand, for the direct kinematics problem, the link lengths
are given, and the position vector and the rotation matrix of the moving platform are to
be determined. Direct kinematics of Stewart Platform is a challenging problem since it
requires solution of a series of non-linear equations. There are at least 8 real solutions.

In this thesis both direct and inverse kinematics solutions are presented.



1.4 Design Issues

1.4.1 Considerations for the Design

Parallel manipulators have some advantages and disadvantages over serial
manipulators. Parallel manipulators have high stiffness, and load capacity because load
is supported by all the legs. Because the load is only in axial direction there is no
bending stress in the legs. Because positioning error of the platform does not exceed
average of the position errors for the legs, positioning accuracy is high. Besides, they
are easily scalable. Platform can be used as a flight simulator or as a positioning device
that performs motion in the scale of nanometers. Nevertheless, they have smaller
workspace, and there are singular positions in their workspace. For the design of the
Stewart Platform, one has to consider drawbacks of the structure. Short link lengths
provide stiffness and small positioning error, but large workspace requires long links.
Platform has to have large base to provide stability; however, in order to avoid
singularities due to rotation about a horizontal axis, the platform must have small base.

Having these design matters in mind, a small size platform is designed and constructed.

1.4.2 Flexure Analysis and Optimization

The flexure joints are frequently used in micro-motion mechanisms because of
their significant advantages. The monolithic characteristics of the flexure joints help
avoid manufacturing errors. These characteristics result in an easy manufacturing
process, and yield a very compact design. Besides, the flexure joints have less friction
loss, and do not require lubrication. Because of these advantages, this work includes a
parametric study of flexure joints for optimum design parameters for the Stewart
Platform in consideration. Analyses also verified that flexure joints can provide better
accuracy. Construction and testing of a Stewart Platform with flexure joints are

suggested as a future work to this thesis.



1.5 Dynamic Analysis

A dynamic model can be used for any system without the need of the real system
to test various specified tasks. For the development of control strategies, it is possible to
achieve higher performance by incorporating more structural system information.
Accounting for the parallel configuration of the Stewart Platform, and the advantages of
both Newton—Euler method and Lagrange formulation, an explicit compact closed-form
dynamic equation set for the Stewart Platform can be derived. This work presents
detailed dynamic analyses of Stewart Platform as well as an ADAMS simulation to

illustrate the forces acting on the system.

1.6 Simulation

MATLAB visualization environment and SimMechanics are used to simulate the
designed platform. SimMechanics is a powerful commercially available tool used for
modeling and simulation of mechanical systems. This model is integrated with
MathWorks control design and code generation products [5]. The code for the
simulation of the Stewart Platform creates the geometry and dynamic information for
the platform in the home configuration. The platform consists of a top plate, a bottom
plate, and six extendable legs/links. These links are composed of two bodies with two
spherical joints and a prismatic joint connecting the two parts [6].

The entire model consists of link trajectory, controller and plant subsystems.
Trajectories can be given with a Magellan Space Mouse or with MATLAB source
blocks. Link trajectory subsystem computes link lengths of the platform for a given
trajectory reference. The output of the controller is fed through joint actuators as forces
for each link. Positions and velocities are sensed by joint sensors. Connections and
mates are defined with joints in SimMechanics. Top plate, base, links and their
dynamics are modeled in SimMechanics using a CAD translator which exports CAD

assemblies from SolidWorks design package.



1.7 Control

System uncertainties and inherent nonlinearities like uncertainty in friction
parameters due to time-varying friction characteristics, operating condition changes,
load changes, etc., make control a challenging problem. It is highly desired that with
nominal control settings, control specifications can be achieved. Therefore, it is
necessary to find a methodology that produces a robust controller which can be
designed by considering only nominal process parameters. This can be achieved with
variable structure control (VSC), which is frequently known as sliding mode control
(SMC). This work includes a detailed discussion on controller design for the Stewart

Platform using sliding mode control.



2 LITERATURE SURVEY

2.1 Forward Kinematics

The most challenging problem concerning the Stewart problem has been the
forward kinematics analysis since late 1980°s. The problem is to determine the
assembly configurations when base points, platform geometry and link lengths are
given. In other words, it is the problem of solving the following kinematics relation

lt+R*p,—b |=L> Vi=11t6 2.1)
where b, denotes the i, base point, p, the i, platform point, R the rotation, 7 the
translation matrices for the given link lengths, L.. Analytical solution for the general

case is quite difficult due to highly nonlinear equations with multiple solutions.
Therefore, researchers constructed Stewart Platforms with special geometries to

simplify the problem.

2.1.1 Analytical Solutions for Special Cases

Merging of base connection points and/or platform connection points can lead to
more simplified kinematics equations for a forward kinematics analysis. The platforms
with special geometries are characterized by their m base points and » platform points.
A 6-6 Stewart Platform is the general case, and 3-3 one is the simplest case.

Although 3-3 is the simplest case, the approach which is based on solution of the
input-output relations for the spherical joints makes the problem more difficult [7-9].
Another approach uses the idea that if the joint centers of the pairs of the adjacent limbs
are coincident, the hexagonal structure of the platform will be reduced to a triangle and

the platform can be put into a form which is isomorphic with those of triple arm



mechanism [10-16]. A third approach converts the platform to an equivalent serial
mechanism, and the constraints on the joint angles are utilized to derive the remaining
equations for the forward kinematics [17-20]. These approaches on specialized
platforms enabled closed form solutions for the simple 3-3 case and for more
complicated 5-5 and 6-4 cases. Beside the coincident connection points, some
researchers [21-23] proposed the use of angular constraints between six pairs of points,
lines, and/or planes in the base and the moving platform to obtain the solution of the
problem in closed form.

Apart from the above-mentioned approaches, a decomposition scheme was
proposed by Nair and Maddocks [24] for the forward kinematics problem. A linear
dependent part and a nonlinear independent part were suggested. Faugere and Lazard
[25] classified all the m-ncases according to the combinations of connection points,

and found out the existence of 35 different classes.

2.1.2 Numerical Schemes

As discussed above, a closed form solution of the problem is very difficult due to
highly nonlinear equations with multiple solutions. It is more advantageous to use
computational techniques for practical cases which need only a solution and if a good
initial estimate is available from a neighbor position [26-27]. Numerical approaches use
some algebraic and geometric elimination methods to simplify the kinematics equations
to obtain all the real solutions [28-30]. In order to find all the real roots, Innocenti and
Parenti-Castelli [31] used the analytical result of the 5-5 case by a unidimensional
search over the value of the removed fictitious leg length to obtain a numerical solution
for the 5-5 case. Dasgupta and Mruthyunjaya suggested an efficient 3 dimensional
search and verification algorithm based on pure geometric constraints [32].

Although numerical methods have computational advantages and can be utilized
to find the real solutions, they are not useful to predict total number of the roots in the
complex domain. Raghavan [33] was able to find all distinct solutions in a complex
domain by tracking 960 paths which suggest the upper bound for the number of

configurations for the Stewart Platform to be 40.



2.1.3 Analytical Methods for General 6-6 Case

In order to reduce the total degree of the final polynomial system to 64,
linearization of some equations, which include quadratic terms (that are obtained from
(2.7) by using a direction cosine matrix instead of Euler angles) is utilized [34-38].
However, the results which were published by Raghavan [33] contradict the validity of
this approach. Assuming the base plate as planar, the fundamental equations are reduced
to 40 degree univariate polynomial which is stated by Wen and Liang [39].

Geometry based analytical methods have some drawbacks. They cannot be
applied to obtain all real and complex solutions, and to determine the number of
solutions available for 6-6 Stewart Platform. Despite the fact that the closed form
relation based on geometrical considerations can provide some solutions, no analytical
solution is constructed for the general case. Hunt and Primrose [40] give geometrical
arguments to find the number of possible configurations in special cases. Possible
configurations for the general case were foreseen to be 40, 48, 54 or 64. The idea
suggested by Hunt and Primrose is expected to provide valuable insight for general
solution of the platform. Wampler [41] and Husty [42] utilized Euler angles, and studied
parameters to obtain a mapping of spatial kinematics to eight quadratic equations in
eight dimensional image space. The possible positions of the platform can be
represented as intersections of six constraint manifolds and the quadratic equations
which ultimately lead to 40th univariate polynomial. However, this approach cannot

constitute an answer to the number of solutions yet.

2.1.4 Other Approaches

The aforementioned methods are not suitable to obtain a real-time, reliable and
fast forward kinematics solution. A reliable and fast approach should satisfy the
question of selecting the actual one among all the obtained results, and whether the
solution is fast enough for the real time applications. In order to satisfy both needs,
Baron and Angeles [43-45] suggested a redundant sensing method to make the resulting
procedure fast and robust to measurement noise. This method produces estimates with

about the same accuracy as a nonlinear procedure. In this approach, the projection of the
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motion of hip-attachment points onto their subspaces enables conversion of the
underlying direct kinematics to a linear algebraic system to resolve the ambiguity. The
linearization procedure, a polar least square estimate, leads to a fast computation.
Implementation of neural networks by Geng and Haynes [46] constitutes yet another

research effort for the forward kinematics problem.

2.2 Dynamic Analysis

Dynamic analysis and derivation of dynamic formulation are quite complicated
due to the closed-loop structure and kinematics constraints of the Stewart Platform
manipulators. However, development and analysis of dynamic models are the important
trends in various study fields on Stewart Platform. The importance of the dynamic
model can be illustrated in several different ways. A dynamic model can be used for
computer simulation of a robotic system without the need of a real system to test
various specified tasks. It is possible to achieve higher performance by incorporating
more structural system information for the development of control strategies. Revealing
all the joint reaction forces and moments through the dynamic analysis is also necessary
for sizing the links, bearings, and actuators [47].

Several different methods have been studied to model the dynamics of the Stewart
Platform as a multi-body system, such as Newton—Euler method, the Lagrange
formulation, the principle of virtual work, and Kane’s method. Dasgupta and
Mruthyunjaya [48] derived the complete dynamic equations for the Stewart Platform
through the pure Newton—Euler approach. Nguyen and Pooran [49] and Lebret et al.
[50] developed Lagrange equations of motion, and the latter gave some insight into the
structure and properties of these equations. Lee and Geng [51] studied the dynamics of a
flexible Stewart Platform manipulator using Lagrange formulation assuming platform to
be rigid. The dynamic formulation was established by a combination of screw theory
with the principle of virtual work by Gallardo et al [52].

Principle of virtual work formulation is based on the computation of the energy of
the whole system with the adoption of a generalized coordinate framework [52]. To
simplify this approach, theory of screws, which is a way to express velocities and forces

in three dimensional space, combining both rotational and translational parts, was used.
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Wang and Gosselin [53] and Tsai [47] also used the principle of virtual work to perform
the dynamic analysis of the spatial six DOF parallel manipulators with prismatic
actuators.

Koekebakker et al. [54] provided the dynamic formulation of the Stewart Platform
through Kane’s method. As Liu et al. [55] mentioned, Kane’s equation analyses the
dynamics of a multibody system with N bodies using the relation

F+F* =0 (2.2)
where F denotes the generalized active force, and F* is projection of active and inertial
forces on the generalized velocities. The calculation of accelerations, partial velocities
of mass centers, and partial angular velocities of all links are required to apply the
method.

Nguyen’s equations, Lebret’s model, and Koekebakker’s formulation all assume
that origin of the coordinate system on the moving platform to be the centre of mass of
the moving platform. Furthermore, the mass moment of inertia matrix is assumed to be
diagonal. Liu et al. [55] also derived a dynamic analysis with constraint equations based
on Kane’s method. These constraints constitute a set of differential algebraic equations
which result in many numerical computational problems [56]. Additionally, Ji [57]
studied the effect of leg inertia on the dynamics of the Stewart Platform.

The application of Newton—Euler approach is straightforward. However, this
approach needs computation of all constraint forces and moments at all joints. In
addition, sometimes these computations are not necessary for the simulation and control
of the manipulator. Lagrange formulation provides an orderly structure which can be
expressed in closed form. However, derivation becomes quite tedious due to large
amount of symbolic computations needed. Principle of virtual work is an efficient
approach for dynamic analysis of a Stewart Platform manipulator. However, dynamic
structure formulation is not explicit [58]. In general, deriving the equations of motion
for a parallel manipulator results in a set of differential algebraic equations as
mentioned in [55]. In simulation and control, this formulation can cause difficulties.
Choosing the appropriate modeling method makes the dependent variables be explicit
functions of the integrable differential equations to avoid the difficulties mentioned
earlier. Accounting for the parallel configuration of the Stewart Platform, and
combining the advantages of both Newton—Euler method and Lagrange formulation, the
explicit compact closed-form dynamic equations of Stewart Platform can be derived in

the task space [58].
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2.3 Flexure Joints

In order to further improve accuracy of the system, rather than using spherical
joints, interactions at joints should be improved to provide the necessary motion in
nanometer accuracy. There are several ways to achieve this accuracy. One of them is to
prevent the backlash and friction in the joints. Flexure hinges is the best way to prevent
backlash and friction due to their characteristics. Today, flexure hinges are used in
many areas such as in accelerometers, gyroscopes, translation micro-positioning stages,
motion guides, piezoelectric actuators and motors, high-accuracy alignment devices for
optical fibers, high- precision cameras and robotic micro-displacement mechanisms.

Mechanically assembled joints such as universal or ball joints reduce the accuracy
due to manufacturing errors. The monolithic characteristics of the flexure joints help
avoid manufacturing errors. This characteristic brings easy manufacturing process and
implies a very compact design that can be used in the micro-assembly workstation
presented in [59-60]. From operation point of view, flexure joints clearly reduce
frictional losses. Therefore, they do not require lubrication, and inaccuracies due to
lubrication would be eliminated.

Flexure joints must be designed extremely carefully due to their very sensitive
force-displacement relationship. Because of this, high dimensional accuracy during the
fabrication and calibration after fabrication process are needed. Flexure may also be
sensitive to the working temperature [61].

Young et al. [61] presented a new design tool and analysis for parallel kinematics
manipulator with flexure joints. The main difference between flexure mechanisms and
conventional joints is the consideration of kinematics stability and the design issue.

Wei et al. [62] stated that the flexure hinges have a lot of advantages compared to
the others such as ball joints or universal ones. Because of the fact that they are
manufactured monolithically, they are very compact in structurally. Besides, they have
a lot of advantages like having no backlash, no friction, no lubrication and no error due
to lubrication. However, they have a limited range of motion as they have to flex

without sustaining any plastic deformation at the joints.
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Figure 2.1. Wide range flexure-hinge based parallel manipulator

2.3.1 Hybrid Flexure Hinges

Flexure hinges with single-axis can be divided into two main categories: leaf and
notch type hinges [63]. Due to relative low rotation precision and stress concentration,
leaf type hinge is seldomly adopted. In 1965, Paros and Weisbord [64] introduced the
first notch hinge and circular flexure hinge. The common feature of these two types is
ease of manufacture. Therefore, researchers turned their attention to other
configurations that could provide precision rotation in an even larger angular range.

Smith et al. [65] presented a flexure hinge of elliptic cross-section, the geometry
of which is determined by ratio of the major and minor axes. Likewise, Lobontiu et al.
[66] introduced an analytical model for corner-filleted flexure hinges that are
incorporated into planar amplification mechanisms. Later, they also introduced the
parabolic and hyperbolic hinges configurations [67]. Closed-form equations are
formulated to characterize their compliance both for the active rotation and all other in
and out-of-plane motions.

To sum up, Gui-Min et al. [63] represented the compliance model of the right
circular hybrid flexure hinges. The close-form solutions were provided to characterize
the flexibility and precision of rotation. The precision model with stress considerations
were verified with the finite element analysis. Their results show that the most suitable
solutions for large displacements and high accuracy are reached with the right circular
hybrid flexure hinges (Figure 2.2) rather than the right circular ones and corner filleted

hinges.
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Right circular flexure hinge Elliptical flexure hinge

RCE hybrid flexure hinge

Figure 2.2. Right circular hybrid flexure hinge

2.3.2 Two Axis Flexure Hinges with Axially Collocated Notches

According to Lobontiu and Garcia [68], the flexure needs to be compliant in the
bending direction and rigid for all other axes and deformations. Constructively, a
flexure hinge may have several (multiple) sensitive axes. These sensitive axes define the
rotations and motions. The flexure hinges configurations were defined in [68] with their

compliant/sensitive axis as illustrated in Figure 2.3.

Compliant/sensitive axis

(a)

Compliant/sensitive axis

(b)

Figure 2.3. Flexure hinges’ configurations with their compliant/sensitive axis

15



Apart from these, Paros and Weisbord [64] presented two-axis circular flexure

hinges which are designed in serial configuration.

Primary
compliant/sensitive axis

,-’J

-

Secondary
compliant/sensitive axis

Figure 2.4. Two-axis circular flexure hinges designed in serial configuration

The serial design preserves the convenience of having each flexure hinge
designed according to the standard single-axis geometry. However, it also requires the
extra-length that is necessary to locate the two flexures in a serial manner.

Two-axis flexure hinges with symmetric and axially-collocated notches are
presented in [68]. The compliance based formulation is solved with an emphasis on the
capacity of rotation. Stress, precision of rotation and efficiency in terms of strain energy
are calculated. Later, all the calculations are performed again for the two axis flexure
hinges with parabolic notches. The parabolic-profiled two-axis flexure is also compared
with its constant rectangular cross-section counterpart in terms of several performance
criteria. Based on the analytical model the results show that parabolic-profiled two-axis

flexures give better performance than their rectangular cross-section counterparts.

2.3.3 Design of Symmetric Conic-Section Flexure Hinges Based on Closed-form
Compliance Equations

The most widely used formulation for flexure hinge design was proposed by

Lobontiu et al. [69]. They derived closed form equations of compliance for conic

section (circular, elliptic, parabolic and hyperbolic) flexure hinges.

16



Circle

Ellipse

Figure 2.5. Conic section flexure hinges

The analysis was performed in terms of two non dimensional parameters. This
allows performance comparison of elliptic, parabolic and hyperbolic flexure hinges
relative to circular flexure hinges. The elliptic, parabolic and hyperbolic flexure hinges
are more compliant (in stated order) than the circular ones for large length to thickness
ratios. Hyperbolic flexures perform best in terms of preserving the center of rotation

position.

2.4 Workspace and Singularity Analysis

The aspect of the parallel manipulators make Stewart Platforms superior
compared to the serial manipulators due to their rigidity. However, mechanism’s
number of degrees of freedom instantaneously changes at some configurations which
are referred as singularities in kinematics. For parallel manipulators, one or more
degrees of freedom are gained at singular configurations. This causes loss in the rigidity
of the structure, and the mechanism cannot support force or movement in certain
directions [70]. Therefore, singularities must be avoided or excluded from the
workspace in order to improve the performance. There has been ongoing research to
find the singularities of Stewart Platform, and many different solutions have been
proposed.

When Hunt stated the advantages of such parallel manipulators in 1978, he also
mentioned a singular configuration when the moving plate rotates about a line
intersected by all six legs [71]. In 1986, Fitcher [72] found another singular
configuration which occurs when the moving plate is kept parallel to the base, and

rotated 90 degrees about z-axis. In 1988, Merlet [73] used Grassmann Geometry to find
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possible singular configurations. He found other possible singular configurations in
addition to the ones stated by Hunt and Fichter. All of these approaches use geometric
information; however, it is hard to provide a unified relation this way. Singular
configurations can be found case by case if a modified or new Stewart Platform is
designed. A singularity equation is needed to create a unified relation [74]. In 1993,
Sefrioui and Gosselin [75] derived an analytic expression of the singularity loci for a
planar three DOF parallel manipulator. Until 1996 there had not been a deep study on
the analytic expression of singular configurations in six DOF parallel manipulators. In
1996, St-Onge and Gosselin [76] derived an analytic equation directly from the property
of the determinant, which is a fourth-degree polynomial of the position variables.

In addition to the research on the singular configurations, characteristics of the
singular configurations have been studied [74]. In 1990, Gosselin and Angeles [77]
classified the singularities of the closed-loop kinematics chain mechanisms into three
categories in general form. In 1991, Ma and Angeles [78] suggested another
classification of the singular configurations, and derived conditions for the architecture
singularity.

Other studies on singularity includes the work by Kim et al. [74] who used extra
sensors on Stewart Platform to reduce the complexity of the position kinematics
problem, and to find singular configurations. In 1999, they used extra sensors to
simplify velocity equation as it was done in the forward position kinematics case, and
derived the singularity equation directly from the velocity equation. Singular
configurations can also be found by forming the Jacobian symbolically. If determinant
of the Jacobian is set equaled to zero, singular configurations can be extracted from this
equation. However, since each Jacobian element is quite complicated, Su et al. [79]
proposed a simple singularity analysis for Stewart Platform using Genetic Algorithm
(GA). In this method, the square of the determinant of Jacobian matrix is selected as the
object function, and the minimal value of the objective function is found in the
trajectory workspace using GA. If the minimum of this objective function is zero, then
there are certain singularities. Otherwise, there is no singularity position for that Stewart

Platform.
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Figure 2.6. Hunt’s singular configuration (Legs’ vectors cross the same line in space)
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Figure 2.7. Fitcher’s singular configuration (rotation £90° in z axis)
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3 KINEMATICS OF STEWART PLATFORM

A Stewart Platform has six degrees of freedom, which are controlled by changing
the heights of six actuators. The mechanism should be designed so that the joints that
connect the actuators, links and the moving platform have enough freedom to achieve
the desired motion. A general form of the DOF equation for both planar and spatial

mechanism can be written as follows [80]:
N=A(l-j-D+> f -1, (3.1
i=1

where N denotes the effective DOF of the mechanism, A the DOF of the space in
which the mechanism operates, / number of links, j number of joints, f, DOF of the
joints, and /, denotes passive DOF of the mechanism.

The designed platform uses 12 spherical joints and 6 prismatic joints that connect
14 links. Each leg consists of two parts (12 links) that are connected to moving (13th
link) and base (14™ link) plates with prismatic joints. Besides, spherical joints have 3
DOF and prismatic joints have 1 DOF, and there are 6 passive DOF associated with the
six SPS legs. Hence the number of DOF of the mechanism is

N=6[14-18-1]+[6+(3*12)]-6=6 (3.2)

The following sections present inverse and forward kinematics solutions.
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3.1 Inverse Kinematics

For the inverse kinematics problem, the position vector and the rotation matrix of
the upper plate frame (U) with respect to base frame (L) are given, and the limb lengths

are to be found.

Spherical jaint

Figure 3.1. Schematic of Stewart Platform

For analyzing the inverse kinematics of the Stewart Platform, it is needed to have

two cartesian coordinate systems. As it is shown in the schematic of the platform, base
has the coordinate system (xw, yw,zw) which is also the world coordinate system, and
moving platform has the coordinate system(u p,vp,wp). To define the place of the
moving platform, its coordinates must be transformed into world coordinate frame.
Therefore, position vector p of the centroid P and the rotation matrix "R, are used to

describe position and orientation of the moving platform in fixed base frame. Then the

u)( VJC WX

. . L
transformation matrix of the platform becomes "R, =|u, v, w,
uZ VZ WZ

According to Figure 3.1, 4, = 4, 4 4 " and YB = [B, B B 1" are
chosen as the position vectors, and the vector calculation is given by
AB =p+"R,"B,~ 4 (3.3)
By taking the dot product of the two vectors, leg/link lengths can be calculated from
d} =[p+'"Ry"B - AT [p+"R,"B - 4] (3.4)
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3.1.1 Inverse Kinematics Solution of Designed Stewart Platform

For inverse kinematics problem, position and orientation of the designed platform
is defined by a position vector and a rotation matrix. Using rotation about fixed axis,

rotation matrix is constructed as

R=R.($R,(O)R,(v) (3.5)

cos@pcosf -singcosy +cosgsinfsiny  sin@dsiny +cos@sin b cosy
R=|singcos@ cos@cosy +singsin@dsiny -cos@siny +singsinfcosy | (3.6)

-sin@ cos@siny cos@cosy

As an example, given position vector p = [17.517.5 231.5156] that includes x,

y and z positions of the centre of the upper plate in the given order as well as the

identity matrix for rotation, the leg lengths of the platform are calculated from (3.4) as

L1=2.326466081954836¢+002 L2 =2.374630714334958¢+002
L3 =2.399554919298858e+002 L4 =2.334214926787315e¢+002
L5 =2.402842826444521e+002 L6 =2.420027176689111e+002

3.1.2 Workspace of the Platform

In order to find maximum position that platform can reach, references in x, y and
z axes are given to inverse kinematics code. If for a given desired position, one of the
legs can not extend to its reference length, desired position is not recorded. For given
range of desired positionsx=0:0.5:50, y=0:0.5:50, z=-10:0.5:15, workspace of
the platform is determined (see

Figure 3.2). From the results, maximum relative position is found as:

x:46 mm y:44.5 mm z :-5.5 (218.7491) mm

Therefore, maximum relative distance from home configuration is 6.4237839¢+001 mm.

for the platform design in consideration.
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Figure 3.3. Maximum relative distance platform can reach

Apart from translational workspace of the platform, the mechanism’s orientation

limits are also calculated. The platform can rotate 11 degrees in x direction (¥ ), 14.5

degrees in y direction (@), and 49 degrees in z direction (¢ ).

250 250 250

200 200 200

160 150 150
~ M ~

100 100 100

a0 50 a0

a i} a
100 100 100

v 100100 -0 100 -100 100
&l X

Figure 3.4. Maximum rotations in X, y and z axes
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3.2 Forward (Direct) Kinematics

For the direct kinematics problem, the leg lengths are given, position vector and
the rotation matrix of the moving platform are to be found. Direct kinematics of Stewart
Platform is a difficult problem since position vector contains three scalar unknowns and
rotation matrix contains nine scalar unknowns. The forward kinematics problem
requires the solution of a set of non-linear equations which has at least 8 real solutions.
In this work a general solution is not provided; however, two numerical solutions are
presented. The first one uses Newton-Raphson method. Actual position and orientation
is obtained from the estimation of position vector and rotation angles. Even though this
approach is not suitable for a theoretical investigation aiming at determining all the
possible solutions, it is easier to find the actual configuration if a good starting point is
available in the form of a neighboring configuration. The second approach uses
geometric constraints, and under these constraints all link and joint positions are
identified. This approach uses direction cosines of the first leg and an angle as a starting
point to determine the position of the second leg upper platform connection point. A
search within upper and lower bounds of these parameters gives tentative solutions that
satisfy user defined permissible error. After solutions are predicted, correction
algorithm is used to correct the errors and all the real closures of the platform are

identified [32].

3.2.1 Direct Kinematics Solution Using Newton-Raphson Method

First direct kinematics solution presented in this work is estimate correction with
Newton-Raphson method. Using Newton-Raphson method, the error between the
estimated and actual leg lengths is decreased to zero iteratively which leads to the actual
configuration of the platform. Leg lengths depend on x, y,z translation parameters and
Euler angles. A function ‘ X’ is defined which depends on leg lengths and describes the
configuration of the platform. Leg lengths can be estimated by making function

X(leg lengths (xyzeuler))linear around xyzeuler vector’s initial values. The error is

(leg lengths — estimated leglengths) which is determined by given estimated
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xyzeuler vector. Therefore, finding function X ’s derivative with respect to xyzeuler

leads to calculation of Axyzeuler [81].

3.2.1.1 Solution for the Designed Platform

Tolerance value for the solution is given as ‘ tolerance = mean(leg_lengths)/1e7’

and output of the program is shown in Table 3.1. The first row gives the error of the
estimated values. (Translational parameters’ units are mm and rotational parameters’

units are radian.)

Actual translational parameters :|18.5 12.5 231.5156
10 10 211.0156

Estimate values :

Actual Euler angles : {174.5329251996-003 174.532925199e-003 174.5329251996—003:|

Estimate values :10.00000000000e-003  0.00000000000e-003  0.00000000000e-003

error = 32.0235987755983

Actual xyz: {18.5000000000(%000 12.5000000000e+000 231.5156000006+000:|

Result xyz: | 18.5000001036e+000 12.4999999485e+000 231.515600032¢+000

Actual ¢@y: | 174.532925199e-003  174.532925199¢-003  174.532925199¢-003
Result ¢y | 174.532924820e-003  174.532924983e-003  174.532924198e-003

error =189.151083240802¢-009

Table 3.1. Parameters for forward kinematics solution using Newton - Raphson method

The second row of Table 3.1 presents an example with a total error of ~189e-9.
When the parameters’ errors are acceptable as in this example, the program gives the
actual configuration. Detailed information on calculations using this method is given in

Appendix B.

3.2.1.2 Home, Estimated and Actual Configurations

In Figure 3.5, the Stewart Platform is shown at its home position. In this

configuration, platform’s height is 214.0156 mm, and x and y of the centre position of
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the moving platform is 0. From the results acquired in the previous section, estimated
and actual configurations of the platform are drawn. Figure 3.6 shows the platform with
estimated translation and orientation. Actual configuration which is also the result of the

solution is shown in Figure 3.7.

250
200
150
100 .
50
R
100
100
¥ ’ L
-100 -100 *
Figure 3.5. Stewart Platform in home configuration
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Figure 3.7. Actual configuration of the platform
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3.2.2 Numerical Solution Based on Geometric Constraints

Presented solution is an implementation of Dasgupta and Mruthyunjaya’s
‘constructive predictor-corrector algorithm’ [32]. The direct position kinematics
problem is to determine the leg vectors for given leg lengths. For that reason, once the
joint variables of the legs are known, the configuration of the platform can be
calculated. When two variables of the first leg are determined by a close arbitrary
estimate, the second platform connection point is constrained to move in a circle and the
third leg can be solved using geometric constraints. Then, the configuration of the
system is fully determined, and remaining leg vectors are solved. Once the tentative
solutions are close enough, solutions can be predicted by a three dimensional search.
The results can be corrected by any locally efficient optimization technique. Newton-

Raphson method is used for the optimization technique in the presented solution.

3.2.2.1 Calculations for the Designed Platform

For three dimensional search, x and y direction cosines’ values are constrained
between -0.15 and 0.15, and theta value is searched for all possible values (0-2*pi).
Increment values are 0.005 for direction cosines and 0.002 for theta leading to 2*10"7
iterations. The program finds 7934 tentative solutions for given parameter values. These
values converge to 8 real possible configurations of the platform. Histograms of

tentative solutions’ X, y and z positions are shown in Figures 3.8, 3.9 and 3.10.
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Figure 3.8. Histogram of possible solutions for platform’s x position
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Figure 3.9. Histogram of possible solutions for platform’s y position
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Figure 3.10. Histogram of possible solutions for platform height

[-4.6624233¢-001
8.8247205e-001
| 6.2138384¢-002

8.8247205e-001
4.5900837e-001
1.0273461e-001

6.2138382e-002
1.0273461e-001
-9.9276605¢e-001

5.7402468e+001
9.3615182e+001
1.8825470e+002

[-9.8482046¢-001
1.6445966¢-002
| 1.7279522e-001

1.6445677e-002
-9.8218226¢-001
1.8720990e-001

1.7279524e-001
1.8720987e-001
9.6700272¢-001

1.7613816e+001
1.8918530e+001
2.0068875e+002

-6.1798109¢-001
3.8664776e-007
7.8619296¢-001

4.7376212e-007
1.0000000e+000
-1.1940037e-007

-7.8619296¢-001
2.9868127e-007
-6.1798109¢-001

8.7277252e+001
1.7500044e+001
2.0218058e+002

[-3.4873785e-001
-9.3524663¢-001
| 6.0791855e-002

-9.3524663e-001
3.4306326e-001
-8.7300295e-002

6.0791855e-002
-8.7300295e-002
-9.9432540e-001

4.7334694¢+001 |
-6.3167107¢+001
2.0315816e+002 |

[ 5.8066944¢-001
7.2630183¢e-001
| -3.6784326¢-001

7.2630182e-001
-2.5799164¢e-001
6.3712320e-001

3.6784326e-001
-6.3712320e-001
-6.7732220e-001

-1.8668194¢+001 |
8.0145152e+001
2.0452466¢+002 |
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[ 9.8618220e-001
-1.2791251e-001
| -1.0527613¢-001

-1.2791251e-001
-9.9176228e-001
6.7799027e-003

-1.0527613e-001
6.7799142e-003
-9.9441992¢-001

-6.7801061e+001 |
6.4672608e+000
2.0703961¢+002 |

[ 5.4377732e-001
-7.9020067e-001
| -2.8264665¢-001

-7.9020065¢e-001
-3.6866734¢e-001
-4.8955830e-001

2.8264671e-001
4.8955827¢-001
-8.2489002¢-001

-2.1850196¢+001 |
-5.0656575e+001
2.1228523e+002 |

-2.7843626e-013  1.7500000e+001
-5.4251173e-014 1.7500000e+001
1.0000000e+000 2.3151560e+002

1.0000000e+000
6.7563220e-014
2.7843626¢-013

-6.7563220e-014
1.0000000e+000
5.4251173e-014

Table 3.2. Configurations of the platform from forward kinematics solution

First three columns in Table 3.2 show rotation matrices and fourth columns show
position of the platform. For given leg lengths

L1=2.326466065312008e+002

L2 =2.374630694983699¢+002

L3 =2.399554899469744e+002

L4 =2.334214905853267¢+002

L5 =2.402842806155509¢+002

L6 =2.420027160063402¢+002
solutions that are given in Table 3.2 are obtained. To check the solutions, inverse
kinematics is used to verify that these solutions give the same leg lengths. (Last
configuration found with forward kinematics solution is the example given in Chapter 3

to find the leg lengths with inverse kinematics for x= 17.5y=17.5z=231.5156 and
no rotation). Detailed information on calculations using this method is given in

Appendix C.
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In Table 3.3, all solutions found from forward kinematics solution are presented in

the order given in Table 3.2.
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Table 3.3. Example of a forward kinematics solution based on geometrical constraints

3.2.2.2 Remarks

This algorithm mainly focuses on predicting tentative solutions for all the real
assembly configurations of the Stewart Platform by considering pure geometrical
constraints. After the tentative solutions are found, some geometric checks are needed
to economize the computation. When the tolerances are very strict, the algorithm works
fine by tracing all the neighborhoods of the solution. However, fine adjustments lead to
lots of redundant computations in order to find the solutions within permissible
tolerance. Because, the values of the increments should be in micro scale for the
designed Stewart Platform, obtaining fine solutions requires lots of computation which
results in merging large number of predictions to the same configuration. Although this
algorithm can not be used for real time applications, it provides high accuracy with

reasonable increment values.
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4 DYNAMIC ANALYSIS

4.1 Dynamic Equations of the Stewart Platform

Dynamic analysis presented in this section follows from the work by Guo et al.
[58]. In order to derive a dynamic model, the system is separated into two parts which

are the moving platform (upper plate) and the six actuators with the base platform. The

constraint forces f, at the top plate joints are derived using Lagrange formulation.

Figure 4.1. Force analysis diagram | Figure 4.2. Position analysis of a leg

Considering q, and ¢, as the corresponding generalized coordinates and
velocities with the kinetic energy, T (q,,q, ), the Lagrange equations of the system are
given by

L) -=0 (4.1)

where O denotes the generalized forces projected along the variation of the generalized

coordinates (, .
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The kinetic energy can be given by

1 1
T =§vtTmtvt +EW1T(11 +1,)w,

1. Lii* 1 i
=34 (2P md )
(4.2)
HI,+ 1A 1,
l. )
= Equ(Ml +M2)qp
where equations
nxq, nq,
=——Lt =7 4.3
W / ; (4.3)
(angular velocity of the actuator)
v, =q,+w, L (4.4)

and (velocity of the center of gravity for the moving parts of the actuator) have been

employed.
~2
Y ,(1+lf’; )
(I, +1,)i"7 (42
. 787
M, :—12”
Considering equations (4.1) and (4.2), the following relations can be derived:
d oT
—(—)=—((M +M,)q,)
dt oq,
(4.6)
dM,+M,
% +(M +M )qp
a, 2mlt(n Aha+n'g na+nag n')
dt P q, q q
m12
ltt (2nqnn+nq A+ nq ,n ) 4.7)
dgz = L 71}’ (2¢, ni" i+ 0" iig,n" +nq," i
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oT o 1. .
AT MM
aqp aqp (2 qp ( 1 Z)qp)
.0 1o 4,14,
=ml(-q' )+ L__p
mtt( qp qP aqp (l) aq ( l3

p

.0 1
q,,aqp(lz)

[

)
1 (4.8)
+E(mzlzz +Iz +Ib)(qp

To simplify equation (4.8), the following expressions of the partial derivatives are used.
9
aq,

o 1 n
e ()=2%
oq, 1 /

1 n
(7)—-1—2

ST . T (4.9)
o 41 _d, ,m'd,
aq, I? I? I?
o 4,0q," 1 1 .o
p
Then, equation (4.8) can be rewritten as
oT m,l, T T . . T T
L0 4,200,308, )
mtltz . T . .. T 7. - T
—l—3(nqp q,+4,9, n—2nn"q,q, n) (4.10)
I, +

L ... s
3 b(n"q,q,+nq,"q,—2ng,nn"q,)

As shown in Figure 4.1, there are several external forces acting on the leg, such as

the gravitational forces due to the mass of the actuator (m, and m, ), the driving force f

generated by the actuator, and the constraint force at the upper gimbal acting on the leg.
On the basis of the principle of virtual work, two systems of forces are equivalent if

they do the same virtual work in dynamics sense. Therefore, the generalized force Q,

which is projected along the variation of the generalized coordinates (q,) can be

derived as follows
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W =0,"6q,=f6l= fn'5q,=(nf) 6q, (4.11)
where equation
F=na, =[n" n'pJa 4.12)
=[n" (pm)'1g=[n" (Rpxn)']q
(the velocity of the length of the leg) has been employed.
Q,=nf (4.13)

Similarly, the generalized forces due to the gravitational effects can be derived by

72
szg l
i T e (4.14)
meg ( l ) ( )mbg
where equation (5.4) and the equation
~T ~
v, =wxlyn= (4.15)

(velocity of the center of gravity for the rotating parts of the actuator) (4.15) have been
applied. Therefore, the generalized force projected along the variation of the generalized

coordinates q, can be derived by using equations (4.13) and (4.14) as

0=0,+0g+0n 1y (4.16)
Using equations (4.1), (4.6), (4.7), (4.10), and (4.16), the constraint force f at a

joint at the top of the leg can be given by
fp :(M1+M2)Qp+caq.p_(Qf+Qm,g+meg) (4.17)

where

m,l - T~T~ T: ~T~ | ~T~: T
C = l;’(nqp na+ng,nn+nng,n )

a

mtllz
13
2(1 +1)

(anpﬁTﬁ+ﬁTﬁq'pnT) (4.18)
(g ,n")
Equation (4.17) can be rewritten as

S, =M +M)[I Rp"R"1j+C,[I Rp"R"]q

_, (4.19)
+(M1 +M2)W Rp—(Qf +Qm[g +meg)
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where equations

qp =i+wxRp=i+(p,) w=i+Rp'R"w

{ (4.20)
= Rp'R"]| |=[ Rp'R"1¢
w
(velocity of the upper gimbal point q) and
G,=[I RpR"1§j+WRp (4.21)

(acceleration of the upper gimbal point q, ) have been used.

4.2 Dynamic Analysis using ADAMS

The reaction forces are derived through dynamic analysis. The basis of derivation
of the forces is the equations presented in the proceeding section, In this work
commercially available dynamics program, ADAMS, is used to perform the dynamic

analysis of the platform.

4.2.1 Simulation Steps in ADAMS

» First, the solid model of the Stewart Platform is generated in SolidWorks.

* Then this model is imported in parasolid format to ADAMS.

= Later, inertia and mass values for each part is entered as part property and
center of mass and joint connection markers are attached to each part.

* Fixed joints are attached to the parts which had to be fixed, translational
joints are attached to the actuators of the struts, and rotational joints are
attached to the spherical joints. Friction is defined for every joint.

= After defining the joints, motion for each joint is defined. Translational

joints are constrained to move along leg vectors.

37



Figure 4.3. Stewart Platform model used in ADAMS

= The step before deriving the forces is to define trajectory for the moving
upper plate. Reference trajectory points (see section 4.2.2) are created from
output of a C++ code for each translational joint. These points are used to
define a cubic spline as the trajectory of the translational joints. These points
are the displacement of the translational joints at each step. After defining
splines for each translational joint at each strut of the platform, the
translational motion for each joint is acquired.

= The last step is the simulation of the platform with defined motion and
constraints. After the simulations, the maximum forces at the struts for

different trajectories are acquired.

4.2.2 Trajectory Generation for Translational Joints

Trajectory generation code generates required leg lengths of the Stewart Platform

at every time increment to move it in desired path. The center of the top plate should
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trace the path with desired orientation. During the motion orientation may also be
changed. Motion trajectories corresponding to trapezoidal velocity references are
generated. However, for given acceleration, motors may not reach maximum velocity

and in that case triangular velocity references are applied.

led lengths (mm)

F000

# of time increments

Figure 4.4. Example of legs’ motion graphs according to trapezoid velocity reference

4.2.3 Forces at Spherical Joints
Forces at the joints are calculated for different translation and orientation of the

platform. In latter subsections, for reference trajectory 20 mm in x axis, 10 mm in y axis

and 5 mm in z axis, forces acquired at upper and lower spherical joints are given.
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4.2.3.1 Upper Spherical Joints
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e Magnitude
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4.2.3.2 Lower Spherical Joints
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4.2.4 Overview of the Maximum Forces Acquired During Simulations

Upper Spherical Joints Lower Spherical Joints
e X-axis: 0.113 Newton e X-axis: 2.85 Newton
e Y-axis: 0.32 Newton e Y-axis: 10.04 Newton
e Z-axis: 0.217 Newton e Z-axis: 2.95 Newton

e Magnitude: 0.27 Newton e Magnitude: 10.26 Newton
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S SIMULATION

Apart from the kinematics and dynamic analyses presented before, a series of
detailed simulation of the platform has been performed. Although computer-aided
design (CAD) tools allow modeling of machines as geometric assemblies, they are not
suitable to incorporate controllers and to perform dynamic simulations. Commercially
available packages Simulink and SimMechanics use a block diagram approach to model
control systems and simulate their dynamics. Once the assembly is modeled in a CAD
platform, it can be exported into a XML physical modeling file which can be converted
into a SimMechanics model in Simulink. For the simulation of the Stewart Platform, the
structure is first modeled with SolidWorks, and then the model is translated to

SimMechanics model.

5.1 SimMechanics

“SimMechanics is a block diagram modeling environment for the engineering
design and simulation of rigid body machines and their motions, using the standard
Newtonian dynamics of forces and torques” [5]. In the SimMechanics, it is possible to
model and simulate mechanical systems by specifying bodies, their mass properties,
their possible motions, kinematics constraints, and coordinate systems. The code allows
user to initiate and measure rigid body motions.

SimMechanics provides modeling and simulation of mechanical systems.
Distinctively, the code has blocks which directly represent physical components and

relations in addition to mathematical operations.
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5.2 Characteristics of Stewart Platform

The Stewart Platform contains six linear actuated legs, a stationary rigid base and
top plate. The legs are connected to the base and top plates via spherical joints which
are defined by coincident central points at the holes and the joints. Each leg has an
upper and a lower part connected by a prismatic joint. Therefore, the platform has 13
mobile bodies and 18 joints. The platform model translated from CAD model is

modified and corrected with the help of the model created by Smith and Wendlandt [6].

5.3 Modeling Stewart Platform in SimMechanics

The entire model of the Stewart Platform could be divided into five tasks:

Modeling Physical Plant
Reference Trajectory Generation
Controller Design

Initialization of the Platform
Visualization of the Platform

Nk W=

Force Fos J
I—*

position
£ Vel
p| S Force
> Plant
len F— P ref_pos
ﬁﬂ A Body
Leg Controller '5 Position
Trajectory Sensor

+ >

Scope

Figure 5.1. Stewart Platform simulation model
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5.4 Modeling Physical Plant
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Figure 5.2. SimMechanics plant model of SP

The physical plant subsystem contains six moving legs and top plate. Base
is connected to the ground. The points where legs’ upper parts and top plates are

connected are defined as CS1, CS2, CS3, CS4, CS5, and CS6.
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Figure 5.3. Leg subsystem

A leg subsystem is shown in Figure 5.3. The upper and lower parts are
connected by a prismatic joint. The prismatic joint is actuated by a given force that is
output of the controller. Moreover, in order to observe the errors, a joint sensor is
attached to prismatic joint. There are also two spherical joints which connect the leg to

the base and top plates.
= The spherical joints connecting legs’ lower parts to the base plate impose

three constraints:

- Three positional constraints, requiring two points to be collocated.
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» The prismatic joints connecting legs’ upper parts to the lower ones impose
five constraints:
- Two positional constraints, allowing the two parts to slide along the leg
axis but not translate in the other two directions.
- Three rotational constraints.
= The spherical joints connecting legs’ upper parts to the moving plate impose

three constraints:

- Three positional constraints, requiring two points to be collocated.

For simplicity, the spherical joints which connect lower parts to the base could be
replaced with universal joints. Each spherical joint adds three degrees of freedom
whereas each universal joint adds only two degrees of freedom. Although there is no
mechanism constraining rotation along the leg axis, the legs are unable to rotate in this
direction due to the fact that the prismatic joints are actuated only in the leg axis

direction. Therefore, universal joints can also be used instead of the spherical joints.

5.5 Reference Trajectory Generation

Before designing a controller for the platform, computation of motion errors, i.e.

the difference between the desired and the actual trajectory, is required.
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Figure 5.4. Reference trajectory generation for SP simulation
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Figure 5.5. Translation and orientation reference blocks

The provided reference uses sinusoidal functions to define the rotational and
translational degrees of freedom. It is possible to implement another reference trajectory
by replacing these references with other functions or blocks. The saturations calculated
in section 3.1.2 are given to the system. The trajectory generation block takes 6 DOF,
computes the equivalent rotation and position matrices, and calculates the length vectors
for the six legs.

Moreover, it is possible to use space mouse to generate reference trajectory. In
other words, it is possible to make the platform track user controlled trajectory in real

time. Its block diagram is presented in Figure 5.6.
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Figure 5.6. References from Magellan space mouse
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Space mouse used for the simulation is a high performance motion controller
which has advanced 6 DOF optical sensor, and device sensitivity is adjustable to

preference [82].

Figure 5.7. Magellan space mouse used for simulation

The actuating force is a function of motion error. Therefore, the input for the

control block is the difference between the desired and actual length of the leg.

Leg attachment poimts
Legr

Base plate

Figure 5.8. Vectors used for reference generation

Control error for each leg length is calculated by:
1 (R* p, +p)=p, |-,
where R is the rotation matrix for the top plate, p is the position of the origin of the

top plate, p, is the leg attachment point at the top plate, p, is the leg attachment point
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at the base, and / is the nominal (reference) distance between the top and base

attachment points.
In order to compute the control error for each leg, the desired Euler angles are

used to generate rotation matrix. p, and p, are called back from the m script as

‘platform connection points’ and ‘base connection points’ respectively. The difference
between the attachment points at base and top plates gives the leg vectors. The lengths
of the legs are computed by calculating norm of these vectors. (Detailed information on

this subject can be found in Chapter 3 where inverse kinematics solution is explained.)

5.6 Controller Design

The controller is used to control the platform for a predetermined performance.
The controller block takes the difference between the desired and actual leg lengths as
controller inputs, and generates a response to this leg length error with the force output
to actuate the prismatic joints between the lower and upper legs. The controller block
accepts leg trajectory, and imposes force on the physical plant by actuating the
prismatic joints.

One of the important issues in platform controller design is the selection of the
control law. Several models such as proportional, proportional-integral and
proportional-integral-derivative controls are considered to select the optimal one.

The proportional control action has very small time constant, and responds to the
error instantaneously; however, it has some shortcomings. The main disadvantage of
proportional control action is that it results in steady state errors. It can be used only
when the gain can be made large enough to reduce errors, and time constant does not
require very large actuator output.

The integral control action is used to eliminate the offset error that occurs with
proportional control. However, proportional-integral control alone does not give a
characteristic equation with enough flexibility to achieve acceptable transient behavior.

Integral action tends to produce a control signal even after the error has vanished.
Therefore, the controller should be made aware that the error is approaching zero. One

way to accomplish this is to design the controller to react to the rate of change of error
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which is derivative action. As a result, PID control and a joint sensor are used in control

part of the simulation.
! .
F,=K,E +K,[E +K,E,
0
If E_ is positive, the length of leg is short and F. is positive (extends)
If E_ is negative, the length of leg is long and F is negative (shortens)

If E_ is zero, the length of leg is desired and F. is zero.

The output of the controller F, is applied to the physical plant as actuating forces.
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Figure 5.9. PID controller for the Stewart Platform simulation

In the PID controller, there is no derivative block. Instead, the velocity of the leg
vectors is used to avoid negative effects of the derivative action. The velocity of the leg
vectors are measured directly from the sensors which are connected at two ends of the

prismatic joints.
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Figure 5.10. Force applied to prismatic joints for simulation (xref: 15, yref: 15, zref: 5,
no rotation)

5.7 Initialization of the Platform

When creating physical plant and controller, parameters are defined in the
building blocks. Moreover, the geometry, mass properties and inertias are used as
variables in these blocks which are defined in m file script. Running this script calls the
geometric and mass properties of the initial state. In other words, the model uses this m
file as a preload function to initialize with correct values.

The script firstly defines the world coordinate system and basic units. After
locating the world coordinate frame to the center of base (stationary) plate, connection
points on base and top plates are defined. Moreover, the radii of the base and top plate,
their initial position and vectors along the legs are also defined. In other words, the
script defines thirteen moving objects’ center of gravity and their position vectors.

On the other hand, the script also calculates the mass properties for moving parts

of the platform. It computes the inertia tensor, masses of the plates and legs for the
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given density, their thickness and radii. The other parameters defined in the script are

controller parameters. Parameters of the controllerK,, K, and K, can be modified for

desired characteristics.

5.8 Visualization of the Stewart Platform

The SimMechanics visualization features make it possible to see motion of the

platform from different view angles. xz, yz and xy planes are default view options for

the visualization window. The window uses the mass and geometric properties which
are already defined in m script. The centers of gravity are showed as black circles with a
plus inside. As can be seen in Figure 5.11, lower and upper parts of the legs and the
upper mobile plate are visualized. The bodies in the platform are shown in red with end

points in green-blue color.

Z-axis

Y-axis

Heanis

Figure 5.11. 3D view of the simulation
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Figure 5.12. View from XY plane

Figure 5.13. View from XZ plane
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Figure 5.14. View from YZ plane
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6 DESIGN

6.1 Overall Design of the Manipulator

In the design of the Stewart Platform PI M-227.25 high resolution DC Mike
actuators are used. Travel range of these motors is 25 mm with 0.0035 um resolution.
The motors can handle 40 N push/pull force. As micro level small motion is a desired
characteristic, this motor’s accuracy would be sufficient with high precision and robust

control algorithm. Technical data of selected motors is given in Appendix A [83].

Figure 6.1. PI M-227.25 DC Motors

o 125,25 (M-227.10) 10...20
.-
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9
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S
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o 187,25 (M-227.50) 147" 2,5.52,5
S

Figure 6.2. Motor drawings
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In order to avoid complexities in the design while providing required motion for

the system, spherical joints are used to connect the plates with the motors, and magnets
are used to provide forces to hold the pieces together.

Llagnets are placed with 0.2 mm Jdisplacement

above and under spherical joints

T

/)
ll'r i ¥ II__-"‘I

5
b <

Figure 6.3. Magnet positions in design
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-
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Figure 6.4. Spherical joint used in the design

Joints and motors’ connection sections are dimensionally not compatible, and they

can not be directly assembled. Therefore, connecting parts between the spherical joints

and the motors are needed. Consequently, a ring like part (illustrated in Figure 6.5) is

designed for the connection of the motor at the moving platform end.
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However, for the motor connection at the base plate end, the coupling part must
be able to hold the motor in a stable configuration. Therefore, the part is fixed on the
motor and does not constraint the spherical joints’ movement. There are many problems
faced during the design of this part. Due to the motors’
vulnerability, utmost care must be given in placing them without sustaining any
damage. Therefore, the base that is used to mount the motors is designed very carefully

and manufactured with close tolerances. This design provides low weight system with
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Figure 6.5. Upper connection part

small design using these PI motors.
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Figure 6.6. Lower connection part
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Figure 6.8. Designed Platform
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6.2 Flexure Joint Design

For the analysis and optimization of the flexures, COMSOL's FEMLAB

Mathematical Modeling Package is used. “COMSOL is a modeling package for

simulation of physical processes that can be described with partial differential

equations.” [84] The flexure geometry is designed using a hyperbolic surface of

revolution. Then, it is modeled in COMSOL, the FEM analysis tool. Bezier curves are

used to construct hyperbolas. Number of curves used to construct hyperbola is set to 10.

A standard form for the equation of a hyperbola with its center at the origin is

given as [85]

Figure 6.9. Standard hyperbola equation

From (6.1), y can be written as:
b
y= i—\/x2 —-a’
a
b=+a*-c?

c=a*e

where

Q

the point where hyperbola intersects x axis
b : semi minor axis
c : foci of the hyperbola

e . eccentricity
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Figure 6.10. Hyperbola used to construct flexure hinge

The shape of the flexure is given in Figure 6.10. However, to construct the flexure
as desired, x and y axes have to be exchanged. Besides, parameter ‘a’ in Equation 6.2 is

defined by ‘t” which denotes thickness. Therefore, after some calculations Equation 6.2

~ /x2+t2(e2—1)
y_ (€2 _1) (65)

After drawing the hyperbola and connecting the lines to x axis to create an

is rearranged as

enclosed section area, revolving this section around x axis gives the flexure solid model.

6.2.1 Parametric study on optimum flexure design

The parametric search is performed by changing the thickness (T), the length of
the flexure (A) and the eccentricity (E) that defines the foci of the hyperbola. There are
three boundary sets in the structure. First boundary set, which is surface of the flexure

connected to the base of the platform, is fixed in translation and rotation.
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First boundary set Third boundary set

Figure 6.11. First and third boundary sets

Force is applied along x direction on the third boundary set which is connected to
the motors. Calculated maximum stress should not exceed the yield strength of the
material. During the search for optimal parameters, while keeping stresses less than the
yield strength, deflection that provides maximum allowable motion of the platform
should be obtained. Therefore, maximum stress on second boundary set, i.e. the surface
of the flexure, deflection in x direction, and angle of the top plane are taken as the

output of the search code.

Figure 6.12. Second boundary set

After defining the parameters for search, stress dependence on these parameters

are determined as shown in Figure 6.13, 6.14 and 6.15.
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Figure 6.13. Stress dependence on A & E for constant thickness
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Figure 6.14. Stress dependence on T & A for constant eccentricity
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Figure 6.15. Stress dependence on T & E for constant length

6.2.2 Material Selection

Material is selected based on the yield strengths that materials can withstand

without permanent deformation. A typical stress-strain curve is shown in Figure 6.16.

Stress

—_— _x

Fracture

Elastic region

Strain

Figure 6.16. Stress-strain curve
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Stress vs. Strain curve:

1. Elastic Region
2. Plastic Region
3. Fracture

For stresses below yield strength, all deformation is recoverable, and the material
will relax back to its initial shape when the load is removed. For stresses above the yield
strength, a portion of the deformation is not recoverable, and the material will not return

to its initial shape. This unrecoverable deformation is known as plastic deformation.

Yield strength  Ultimate strength |Modulus of Elasticity
Material
(MPa) (MPa) (GPa)
Structural (1020) 207 400 207
Steel (Stainless 201) 301 760 207
Titanium 830 900 105

Table 6.1. Yield/ultimate strengths and elastic modulus of steel and titanium

For many applications plastic deformation is unacceptable, and the yield strength
is used as the design limitation [86]. In Table 6.1, it is shown that titanium alloy has
high yield strength while its elastic modulus is lower than steel. Titanium has a modulus
of elasticity of 105e9 Pa. compared to steel at 207e9 Pa. Therefore, titanium is selected
as material for flexures since titanium and its alloys have a high strength to weight ratio
as well.

Since titanium has lower modulus of elasticity compared to steel, it has a
significantly higher deflection than steel under the same load. Titanium alloys are
generally divided into three groups (Alpha, Alpha-Beta and Beta). In analysis, titanium
beta-218S is used. The beta alloys have good hardenability. They are slightly denser than
other titanium alloys, having densities ranging from 4800 to 5050 kg/m’, and more

importantly, they have yield strength values up to 1345 x 10° Pa. [87].
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6.2.3 Results

Parametric search and optimization is performed to achieve maximum motion that
platform can perform, and at the same time for minimal stress that should not exceed
the yield strength of the material selected. From inverse kinematics, maximum angle
change between legs’ vectors and base plane is calculated as approximately 13.9
degrees. Therefore, the third boundary’s orientation allows sufficient change to provide
necessary motion for the platform. Besides, stress on second boundary does not exceed
1.345¢9 Pa. Maximum stress occurs at z=0, y=0 and x=-t/2 or +t/2. There is a slight
stress difference at points x=-t/2 and +t/2. Therefore, stresses at both points are checked
and maximum value is considered in the calculations. Parameters’ lower and upper
boundaries are selected as 1.01 and 25 for eccentricity, 1.5 mm. and 4 mm. for
thickness, and 2 cm and 15 cm. for length of the flexure respectively. There are some
solutions that satisfy mentioned requirements; however, three of them are worth
consideration for their compatibility in the design.

1. T/2=1.25mm 2A=6.916 cm. E=12
Maximum stress: 1.0125¢9 Pa.

2. T/2=1.5mm. 2A=10 cm. E=14.6
Maximum stress: 8.5403e8 Pa.

3. T/2=2mm. 2A=15 cm. E=24.32
Maximum stress: 5.3371e8 Pa.

‘Subcmain: von Mises sres [Pa]  Subdamain marker: v Miss sres [Pa] Defomation: Dispiacement [m]

Nz

Figure 6.17. T/2 =125 mm 2A =6.916 cm E =12, 3D view
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Figure 6.18. T/2 =1.25 mm 2A =6.916 cm E = 12, XZ view

Since length scale of the first solution is most suitable one for the design, this
solution is applied to the joints of the platform. However, if titanium with high yield
strength can not be obtained, other two solutions can be considered. Second and third

solutions are given in Figure 6.19 and 6.20.

Figure 6.19. T/2=1.5mm 2A =10cm E = 14.6
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Figure 6.20. T/2 =2mm 2A =15 cm E =24.32
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7 CONTROL

Even among the systems which are manufactured for an identical design,
differences due to manufacturing processes and tolerances can not be avoided. These
parameter variations present uncertainties such as the uncertainty in friction parameters
due to time-varying friction characteristics, operating condition changes, load changes,
etc. It is highly desired that the same control settings should meet the control
specification for all machines of the same type, i.e., without individual tuning.
Therefore, it is necessary to find a methodology that produces a robust controller that
can be designed by considering only nominal process parameters.

Variable structure control (VSC), which is frequently known as sliding mode
control (SMC), is characterized by a discontinuous control action which changes
structure upon reaching a set of predetermined switching surfaces. This kind of control
may result in a very robust system therefore provides a possibility for achieving the
goals of high-precision and fast response.

The most distinctive property of VSS is that the closed loop system is completely
insensitive to system uncertainties and external disturbances. However, VSS did not
receive wide acceptance among engineering professionals until the first survey paper by
Utkin [88]. Since then, and especially during later 80’s, the control research community
has shown significant interest in VSS. This increased interest is explained by the fact
that robustness has become a major requirement in modern control applications.

Due to its excellent invariance and robustness properties, variable structure
control has been developed into a general design methodology, and extended to a wide
range of systems including multivariable, large-scale, infinite dimensional and
stochastic systems. The applications include control of aircraft and spacecraft flight,
control of flexible structures, robot manipulators, electrical drives, electrical power

converters and chemical engineering systems.
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7.1 Sliding-Mode in Variable Structure Systems

Some promising features of SMC are listed below:

= The order of the motion can be reduced.

= The motion equation of the sliding mode can be designed linear and
homogenous, despite that the original system may be governed by non-linear
equations.

= The sliding mode does not depend on the process dynamics, but is determined
by parameters selected by the designer.

= Once the sliding motion occurs, the system has invariant properties which make
the motion independent of certain system parameter variations and disturbances.
Therefore, the system performance can be completely determined by the

dynamics of the sliding manifold.

Consider the system defined below:
x =f(x,t) + B(x,t) u(x,t) ,x € R",ueR"
where f(x,t) and B(x,t) are assumed continuous and bounded, and the rank of B(x,t) is m.

The discontinuous control is given by

- {w (x,0) if o(x)>0 o
u (x,t) if o(x)<0
o(x) = {0'1 (x),0,(x),...,0, (x)} ,o(x)=G(x" —Xx) (7.2)

whereu” (x,7), u (x,f)and o(x) are continuous functions. Since u(x,t) undergoes
discontinuity on the surfaceso,(x) =0, o,(x) =0 is called the switching surface or the
switching hyper plane.

Let S =x|, -, be aswitching surface that includes the originx = 0. If, for any x,
in S, x(t)is in S fort > ¢,, then x(¢)is sliding mode of the system in which the motion is

determined by the manifold equation only. Therefore, motion order is reduced to the
order of control inputs, namely m. The order reduction means that system model of the

n,, order is decomposed into two modes, one is the so-called “reaching mode” which is

defined by a motion of (n—m), order, and the other is the sliding mode defined by the

th
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motion on the sliding manifold of m, order. Decoupled motion equations of the system

could be written as:

X = £(x,0(x))

x, =o(x)

(7.3)

for x,, f, e R"™ and x, e R". If o(x)=0 is appropriately designed in such a way that

it satisfies the control objectives (e.g. x follows x’? ), then SMC is realized.

(Xo.70) ——-....___\
N

(leﬂ

Figure 7.1. Two intersecting switching surfaces

Existence of a sliding mode requires stability of the state trajectory towards the

sliding surface S=x| ., at least in the neighborhood of S, i.e., the representative

o(x)=
point must approach the sliding surface at least asymptotically. This sufficient condition
for sliding mode is called the reaching mode or reaching phase. The largest
neighborhood of S for which the reaching condition is satisfied is called the region of
attraction.

In order to guarantee the desired behavior of the closed-loop system, the sliding
mode controller requires infinitely fast switching mechanism. However, due to physical
limitations in real-world systems, directly applying the above mentioned control will
always lead to some oscillations in some vicinity of the sliding surface, i.e., the so
called chattering problem. Since modern controllers are most likely implemented in

digital computers, SMC design in discrete-time should be implemented.
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7.2 Sliding-Mode Controller Design and Realization of Discrete-Time Control

The VSS theory was originally developed from a continuous time perspective. It
has been realized that directly applying the continuous-time SMC algorithms to
discrete-time systems will lead to some unconquerable problems, such as the limited
sampling frequency, sample/hold effects and discretization errors. Since the switching
frequency in sampled-data systems can not exceed the sampling frequency, a
discontinuous control does not enable generation of motion in an arbitrary manifold in
discrete-time systems. This leads to chattering along the designed sliding surface, or

even instability in case of a too large switching gain.

state trajectory

6(x)=0 N~ ~ ~

Figure 7.2. Discrete-time system with discontinuous control

The discontinuous sliding-mode controller involves a continuous plant model with
a discontinuous right-hand-side due to the switching control function as mentioned
above. Due to the problems with the discrete implementation of this discontinuous
approach, Drakunov and Utkin [89] introduced a continuous approach to SMC for an
arbitrary finite dimensional discrete-time system. This approach implies that for a
sampled-data controller, as the system becomes discrete, the controller should be
continuous to overcome the sampling frequency limitations of the discontinuous
approach. For such continuous implementation of SMC, plant motion is proven to reach

the sliding manifold of predefined state trajectory in finite time.

Derivation of the control law starts with the selection of a positive definite

Lyapunov function candidate V(o) to satisfy Lyapunov stability criterion as the

reaching condition.
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V(o)W (c)<0 (7.4)
Lyapunov function is selected such that it is positive definite.

T
O O

V(o)= 5 (7.5)
Hence the derivative of the Lyapunov function is
V(io)=c"c (7.6)
The derivative of the Lyapunov function is selected to be
V(o)=-c"Do (7.7)

where D € R™ being positive definite symmetrical matrix. The Lyapunov function and

its derivative having opposite signs with the aid of control, enforce the system to move
to V(o) =V (o) = 0and hence, ensure stability.
If (7.6) and (7.7) are combined, the following result is obtained:
o' (6+Doc)=0 (7.8)
A solution for (7.8) is as follows
6+Do=0 (7.9)
The derivative of the sliding function combined with (10.2) leads to

6 =6 -0)+2% = v —Gr + 2% _ GBu(r) (7.10)
ot ot
Rewriting (7.10) gives
. e oo
o= (Gx 7 - Gf+5] —GBu(t) = GBu,, — GBu(t) = GB(u,, —u(1)) (7.11)
If (7.11) is inserted in (7.9), and the result is solved for the control
u(t) =u,, +(GB)"' Do (7.12)
It can be seen from (7.11) thatu,, is difficult to calculate if information about f(x) is not

available. Using the fact that u, is a smooth function, then (7.11) can be written as [90],

U, ;u(t‘)+(GB)‘1o":ﬁeq (7.13)

where
t=t—-AA>0 (7.14)
and u,,is the estimate of the equivalent control. If (7.13) is inserted back into (7.12), an

approximation of the control is obtained.
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u(t)=u(t")+(GB) (Do + &) |._.- (7.15)
Therefore, the term (GB)™' (Do + &) - 18 used in updating the control in a

recursive formula. Note that once on the sliding manifold, u(z”) becomes the same as
the equivalent control.

Although (7.15) is an approximation of (7.11) in discrete-time, it can be used to
push o to zero such that (7.9) is satisfied, and stability is reached. During
implementation, the control defined by (7.15) is used with a nominal value of B instead

of its exact value since it is difficult to obtain. When actual implementation is done, a

tuning term K is introduced before (GB)™'(Do + &) |, such that the control becomes
[91]
u(t)=u(t")+K(GB) (Do + ) |- (7.16)

For a general system K is a positive diagonal matrix. It is possible to rewrite (7.16) for

discrete-time implementation as follows:
u((k+1T,) =u(kT,)+ K(GB) (Do +5) - (7.17)
where 7, is the sampling time of the controller. The derivative of the sliding surface is

obtained from the backward difference.

o(kT,) —o((k=DT))
T,

N

G(kT) ~ (7.18)

state trajectory

o(x)=0

Figure 7.3. Discrete-time sliding mode in sampled-data systems

For a discrete-time system, the discrete sliding mode can be interpreted as that the
states are only required to be kept on the sliding surface at each sampling instant.
Between the samples, the states are allowed to deviate from the surface within a
boundary layer. Note that the control defined by (7.17) is continuous; therefore,
chattering is no longer a matter of concern. This is the most striking contrast between

discrete-time sliding mode and continuous-time sliding mode. Furthermore, in
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continuous-time systems with continuous control, the sliding manifold of state
trajectories can be reached only asymptotically, while in discrete time systems with
continuous control, sliding motion with state trajectories in some manifold may be

reached within a finite time interval [92].

7.3 Control Structure of the System

The control model of the mechanism consists of ‘Set Position’, ‘Trajectory
Generation” and ‘Strut’ subsystems. Trajectory generation subsystem calculates
reference leg lengths from position and orientation reference for the center of the
moving platform. For controller, position of each leg is obtained from encoders, and
error is calculated. Controller subsystem is in leg subsystem. It takes position error
value in the leg lengths, and gives current as output. This current value is given to the

controller board, and then fed to the motors from the controller.
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Figure 7.4. Position set subsystem
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Trajectory generation of the system is the same as presented in the simulation.

Detailed calculations are explained in section 3.1.
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Figure 7.7. Reference trajectory
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Figure 7.8. Strut subsystem

Strut subsystem reads position of the motor and by taking reference position; it
defines the error that is input of the strut controller. The output of the controller is
current that satisfies required motion to make the error zero. In order to control the

system from dSPACE layout, switch block is used. When the check in the layout is not
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set, the controller output is zero. When check button is pressed, controller gives

calculated current as output in the strut subsystem.

7.3.1 PID Model

I

arrarl PID

durdt
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erroriPID in nm
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errorl PIDinmm

Figure 7.9. PID control model

7.3.2 Sliding Mode Control Structure
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Figure 7.10. SMC model

u((k+DT,) =u(kT,)+ K(GB) (Do +0)| _. (7.17)

Equation (7.17) is used to control position of the struts in the system. The input is

error as in PID control, and output is current that is fed to the controller board.
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8 EXPERIMENTS & RESULTS

8.1 Experimental Setup

To control the overall system, the DS1005 board and dSPACE Control Desk
Program are used. The DS1005 PPC board is the core of dSPACE's modular real-time
systems via the on-board 32-bit PHS-bus interface. All available dSPACE I/O boards
can be connected to the DS1005. One processor board can handle up to 16 I/O boards
simultaneously [93]. This system allows controlling 6 motors at the same time. This
board is equipped with encoder readers, DACs, ADCs etc. It is running on a real time
operating system whose frequency can be set by the user. In all of the conducted

experiments, sampling interval is set to be 0.001 seconds.

1.1![!!!

¢ =

Figure 8.1. DS1005 board

Additionally, to control the motors precisely a special low cost high resolution
controller board is used [94]. An amplifier is used in a classical op-amp mode to control
the output current on a resistor by measuring the voltage. By setting the suitable

resistance, the problem of resolution loss can be avoided.
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Figure 8.4. Designed Platform
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The designed platform and experimental setup is shown in Figure 8.5.

=

LG

|

!

Figure 8.5. Overall system

8.2 PID experiments

After the system setup is completed, PID & sliding mode controllers are used to
control the motors. In order to control the system, initial positions of the legs have to be
set to 10 mm. since home configuration is defined when all leg lengths are 219.25 mm.
Layout of the control is constructed as shown in Figure 8.6. First column of layout
represents reference positions of the legs; second one represents positions of the legs

read from the encoders.
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Figure 8.7. Set position for initial configuration
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home configuration. As a result of this operation Figure 8.7 is obtained. Zero error can
not be obtained since there is a constant error which is 0.706425 nm due to encoder

resolution.
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Figure 8.8. 10 mm x reference

Then reference values can be given to the system. When 10 mm. reference in x
direction is given to the system, required leg lengths are calculated (see Figure 8.8)

from inverse kinematics. Third column represents the error values for each leg in

nanometer scale.
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Figure 8.9. Errors at target position, xref : 10 mm (PID)
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To initiate control, check value has to be set with a value larger than 1. When
check value is set to 2, control gives required current to each motor to make the position
error Zero.

For PID control, even though same type of motors are used; different control
parameters for each motor have to be found to get the desired result from the system.
With PID control, approximately 37.83 nm error is acquired which is presented in

Figure 8.9, 8.10 and 8.11.
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Figure 8.10. Error graphs for each leg for 10 mm xref
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Figure 8.11. Steady-state errors at target position
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Figure 8.12. Errors at home configuration

When the system reaches desired position, home configuration is given as

reference to the system to turn it back to its initial position. Errors at the home

configuration are given in Figure 8.12 and Figure 8.13. The average error is 30.25 nm in

the leg lengths
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Figure 8.13. Error graphs for each leg for home configuration reference
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Layout of the sliding mode control is the same as PID control. Only controller
subsystems are changed in the leg subsystems. With sliding mode control the same
control settings satisfy the control specification for all motors in the system without
individual tuning. Therefore, considering nominal process parameters provides robust

control. 10 mm x reference is applied to the system. The layout and error graphs before

8.3 SMC Experiments

applying SMC are shown in Figure 8.14 and Figure 8.15.
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Figure 8.16. Errors at target position, xref : 10 mm

When platform reaches desired position, it has 1 nm. average error value in the leg
lengths (Figure 8.16).
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Figure 8.17. Errors when returned to home configuration

Finally, when platform reference is set to initial configuration, it gives minimum
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possible error value for the leg lengths (Figure 8.17, 8.18 and 8.19).
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Figure 8.18. Error graphs for each leg for home configuration reference
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Figure 8.19. Steady-state errors at home configuration

8.4 Laser Measurement

The laser measurement system used in experiments is a Renishaw ML-10 Gold
Standard Laser Measurement System. This is one of the most accurate systems available

in the market. The system has +0.7 ppm linear accuracy over its full range [95].

Figure 8.20. The ML-10 gold standard laser measurement system
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Figure 8.22. Platform apparatus used for laser measurement

After controlling each motor and verifying that desired position can be obtained

with nanometer accuracy, overall system behavior is observed using laser
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measurements. However, due to misalignment, friction and backlash in the assembly, as
well as the fact that the desired tolerances could not be obtained in the manufacturing
process, centre position of the upper plate could not be controlled with nanometer
accuracy. Laser measurements are applied only in x axis. Error in the system is shown
in Figure 8.23 for different reference values.
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Figure 8.23. Errors for given x references
Error depends on the references almost linearly with some offset value. This

linearity of the error can be explained by misalignment of the laser beam direction and

platform’s x axis (cosine error).
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Figure 8.24. Misalignment error
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When initial position is given as reference to the platform from the target position;
it is expected to get zero error since error is set to zero at initial configuration. Even
though, zero error in the leg lengths is read from encoders, laser measurement system
measures some errors. This indicates that this error may be due to manufacturing errors,
backlash and friction in the system. Even though friction and tolerance errors can not be
avoided, backlash can be reduced by applying load to the moving platform since
connection parts in the assembly can be modeled as mass-spring-damper systems. In
Figure 8.25, for different target positions when load is increased in the system to reduce
backlash, errors mainly due to misalignment, friction and manufacturing imperfections

are presented.
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Figure 8.25. Error with reduced backlash for different reference values

Finally, actual performance of the system can be determined by also removing
misalignment error from the result presented above. Experiment results (see Figure
8.26) show that the error bound is reduced below 500 nm which is better than the target

performance value.
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9 CONCLUSION

Stewart Platform manipulators have better precision, stiffness, and smaller overall
dimensions than equivalent conventional serial-link manipulators. In this work, a
Stewart Platform utilizing spherical joints with magnets has been developed. The
analysis results have demonstrated the superior performance of a Stewart Platform as
micro-nano positioning mechanism. Relations for the inverse kinematics and methods to
obtain forward kinematics have been presented. Since the subject problems are in the
order of micro and nanometer scales, typical small workspace of the Stewart Platform is
sufficient to carry out any required motion. The simplicity of its inverse kinematics
makes it well suited for real time trajectory calculations. Simulations have shown that
the calculated dimensions are valid for the required workspace. In addition, practical
aspects of building such a challenging system have been addressed. It has been shown
that the required 500 nm motion can be achieved using readily available actuators. A
discussion on experimental setup errors has also been included.

Analytical results indicate that use of flexure hinges and other promising features
will allow better performance. To increase performance of the manipulator through
reduction of errors due to nonlinear friction behavior and the backlash, further flexure
joint analysis and measurements are needed. Positional measurement accuracy can be
increased by overcoming cosine error (misalignment of the laser beam and platform x
axis). Although singularities of the platform behavior have been studied, and
precautions have been embedded in the software, free path planning can be used to
avoid singularities that exist in the manipulator workspace. Finally, as a future work, it
is worthwhile to consider the manipulator motion control using the feedback from laser

measurement.
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APPENDIX A. SPECIFICATIONS OF MOTORS AND LASER SYSTEM

Specifications of PI M-227.25

Travel range (mm)

Design resolution (pm)

Min. incremental motion (pm)
Unidirectional repeatability (pm)
Backlash (pm)

Max. velocity (mm/s)

Max. push/pull force (N)

Max. lateral force (N) at tip
Encoder resolution (counts/rev.)
Drivescrew pitch (mm/rev.)
Gear ratio

Nominal motor power (W)

Motor voltage (V)

Weight (kg)

25
0.0035
0.05
0.1

2

1

40

0.1
2048
0.5
69.12:1

12
0.22

Specifications of Renishaw ML-10 Gold Standard Laser Measurement System

Length (mm)

Width (mm)

Height (mm)
Weight (g)

Range

Laser Source

Laser Power
Vacuum Wavelength
Laser Frequency Accuracy
Outputs

Power Supply

Operating Temperature
Operating Humidity

335

176

75

4500

40m (1600 in)

Helium Neon (HeNe) laser tube (CLASS II)
<l mw

632.990577 nm (nominal)

+/- 0.05ppm (parts per million)

RS485 from 5 pin 'Datalink’

Nominal voltage rating is 100-240 VAC, 50/60 Hz, autosensing
(limit rating 85-265 VAC)

0-40°C (32-104 °F)
0-95% non condensing
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APPENDIX B. FORWARD KINEMATICS SOLUTION USING NEWTON-
RAPHSON METHOD

Base (lower plate) and platform (upper plate) points have to be given in base and
platform coordinates respectively to construct the model of the Stewart Platform.
Designed platform’s base plate radius is 74 mm. and moving platform radius is 59 mm.
and with these radius values and offset angles that define angle between connection
point pairs, the connection points in the plates are calculated.

(Offset angles: Theta, = 20*180/ pi and Theta, = 20*180/ pi )

base angles=7*[0 0 1/2 1/2 3/2 3/2]

platform _angles =7*[3/2 1/2 1/2 1 1 3/2]

offset _base=Theta, *[-1/2 1/2 1 2 -2 -1]

offset _ platform =Theta,*[2 -2 -1 -1/2 1/2 1]

Table B.1. Connection points’ main and offset angles

In order to calculate connection angles, base and platform angles are added to

their corresponding offset values:

Lambda, = base _angles + offset _base

Lambda,, = platform _angles + offset _ platform

Table B.2. Connection points’ angles

connection angles | | 2 3 4 5 6

Lambda, 350° | 10° | 110° | 130" | 230° | 250°

Lambda,, 310° | 50° | 70° | 170° | 190° | 290°

Table B.3. Connection angles of the base and moving platform in degrees
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Base and platform points’ calculation is given in Table B.4

R, *cos(Lambda,) R, *cos(Lambda,)
base=| R, *sin(Lambda,) | | platform=| R,*sin(Lambda,)
zeros(1,6) zeros(1,6)

Table B.4. Base and platform points’ calculation

where R, and R, are base and platform radii.

Base points

72.8758 72.8758 -25.3095 -47.5663 -47.5663 -25.3095
-12.85 12.85  69.5373  56.6873 —-56.6873 —69.5373
0 0 0 0 0 0

Platform points

37.9245 37.9245 20.1792 -58.1037 -58.1037 20.1792
—45.1966 45.1966 55.4419 -10.2452 10.2452 -55.4419
0 0 0 0 0 0

Table B.5. Base and platform points’ coordinates of designed platform

Third rows in Table B.5 are zero because the connection points of the designed
platform are given in their coordinate frame.

After defining point coordinates and model of the platform, estimated solution
(guess) is given for forward kinematics solution of the platform. Using inverse
kinematics, leg lengths of estimated configuration of the platform are calculated. Then
homogenous transformation matrix is constructed for the given translation and rotations.

From error found from estimated leg lengths and actual ones, using Newton-
Raphson method, error is decreased to zero iteratively and actual configuration of the
platform is obtained. Leg lengths depend on x, y, z translation parameters and Euler
angles. A function X is defined that depends on leg lengths and describes the
configuration of the platform. Leg lengths can be estimated by making function

X(leg lengths (xyzeuler)) linear around initial value of the leg lengths. The error is

difference between the actual leg lengths and estimated leg lengths that are found from

given estimated xyzeuler vector. Therefore finding function X ’s derivative with

respect to xyzeuler vector provides to calculate Axyzeuler .
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Figure B.1. Numerical forward kinematics solution

Leg actual = Leg estimated + (dX /| dxyzeuler ) Axyzeuler (B.1)
(B.1) can be written in another form using chain rule.

Leg actual = Leg estimated + (dX / d leg lengths) (d leg lengths | dxyzeuler ) Axyzeuler
(B.2)

From estimated transformation matrix, estimated leg lengths are found:

Leg estimated =Hestimated* p - b (B.3)
where Hestimated is estimated transformation matrix, and p and b are platform and

base connection points respectively.

cosgcosd —singcosy +cosgsinfsiny  sin@gsiny +cosg@sin fcosy

X
= singcos@ cosgcosy +singsin@siny  —cosgsiny +singsinfcosy  y
—siné cos@siny cos@cosy z

0 0 0 1

The homogeneous transformation matrix / is obtained by rotation y angle in x
axis (yaw), 6@ angle in y axis (pitch) and ¢ angle in z axis (roll) performed in given
order. (Rotation about fixed axes is used.) After rotation, translation is performed and

resulting homogeneous transformation matrix is obtained from the estimate values.
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(B.3) can also be expressed as:
leg lengths = H(xyzeuler)* platform points - base points (B.4)
Since

(d leg lengths | dxyzeuler ) = dH /| dxyzeuler (B.5)

Therefore (B.2) can be written as:

Leg actual = Leg estimated + (dX /| d leg lengths) (dH /| d xyzeuler ) Axyzeuler
(B.6)

from which error is calculated as:

error = (dX /| d leg lengths) (dH | d xyzeuler ) Axyzeuler = leg lengths - estleglength
(B.7)

where ‘leg lengths’ describes actual leg lengths and ‘estleglength’ describes

estimated leg lengths calculated at each iteration until error is smaller than user defined
permissible error that satisfies nanometer error in translation and orientation to achieve

mentioned specifications in section 1.1.
estleglength = sqrt(sum(Leg _estimated”)) (B.8)
After error is calculated, Axyzeuler has to be found. After findingAxyzeuler
Leg actual can be calculated with the following equation:
Leg actual = Leg estimated + G*Axyzeuler => Axyzeuler = inv(G)* (error)
(B.9)
where G =( dX /d leg lengths) ( dH / dxyzeuler) .
In order to calculate Axyzeuler, dH /dxyzeuler has to be calculated first.
dH / dxyzeuler is constructed by taking derivative of the transformation matrix with

respectto X, y, z,iv, € and ¢@.

000 1 0000 0000
0000 000 1 0000
dH | dx = dH | dy = dH | dz =
0000 0000 000 1
0000 0000 0000

—singgcos@d —cos@cosy —singsinfsiny cos@siny —sin@sinfcosy

dH | dg= cosgcosd —singcosy +cosgsinfsiny  sin@siny +cos@sin @ cosy
0 0
0 0 0

99



—cos@sinf cos@cosfsiny  cosgcosfcosy 0O

JH | 46— —singsin@ sin ¢‘cosH‘sinly sin ¢‘cochosV/ 0
—cos @ —sin@siny —sinfcosy 0

0 0 0 0

0 singsiny +cosgsinfdcosy  singcosy —cos@sinfsiny 0

dH | dy = 0 —cosgsiny +singsinfdcosyy —cos@gcosy —singsinfdsiny 0
cos @ cosy —cos@siny 0

0 0 0 0

Aim is to make the error zero by changing translation and Euler angle values
iteratively. If error is not small enough Newton - Raphson method is used to find actual
result from estimation. For that purpose, derivative of a transformation matrix with
respect to translation and roll-pitch-yaw angles is calculated.

dR = Hderiv(xyzeuler) (B.10)
dqg = dR*p (B.11)
(B.11) gives change of the pose of the platform, and besides this, dX / d leg lengths

has to be calculated which determines the change of the directions of the platform
points.

dX | dleg lengths = leg estimated ./ | estleglength; estleglength; estleglength; estleglength)

(B.12)
From (B.9)
G = (dX /| d leg lengths) * dq (B.13)
As the last step, parameters have to be corrected.
d xyzeuler = G \ error where d xyzeuler = inv(G) * error (B.14)
xyzeuler = xyzeuler + d xyzeuler
(Since G*d xyzeuler = error, left matrix divide is used to find d xyzeuler ).
From calculated xyzeuler vector, new transformation matrix is calculated.
Hestimated = transEuler H(xyzeuler) (B.15)

If error is still not smaller than given tolerance value, this procedure is repeated

until actual configuration is found. At each iteration error becomes close to zero.
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APPENDIX C. FORWARD KINEMATICS SOLUTION BASED ON
GEOMETRIC CONSTRAINTS

Starting with an initial estimate for the first two direction cosinesd,, and d, , third

d, =+ 1-d,’d, > (C.1)

Only positive solution is considered because the mirror images are not required.

one can be calculated from

Then the location of the first platform point is given by

blx dlx

p,'=b+S, = bly +5, dly (C.2)
. d,.
\

Figure C.1. Second platform point calculation

Now, a triangle BII§ZP1 can be constructed since all the edges are known.
B,F = p,'=b, |
~ (C.3)
B,P, =5,
B, P, is constraining the platform point P, to rotate in a circle (Figure C.1).

Let 1 be the radius of this circle with center O, and O, P, =7 which can be found from

the equations:
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B,R’ +B,P’ - RP’

cos = (C4)
2B,R*B,P,
B,O, = B,P, cos 0{1 (C.5)
rn=0/P, =B,P,sina,
The position vector of the center O, can be obtained by (C.6) and (C.7).
l?;{ = unit vector of B,F, (C.6)
0, =b,+B,0, =b,+ B,O,B,P (C.7)

To determine the rotation of the 7 and P, in the circle, a triad is needed. The direction
O,FP, and the direction parallel to the base plane can be taken as Z and X axis
respectively for the triad. Since X and Z axes are known, Y could be derived from the
cross product of these two vectors.

3=[kxB,P, B,P,x(kxB,B) B,P] (C.8)

In the case of parallel B,F, to the base Z axis, the rotation matrix will be an identity

matrix.
The platform point p,' can be found after a rotation of &, about its Z axis:

p,'=0,+3[r cosb, rsing 0] C.9
2 1 1 1 1 1

The direction of cosines for the second leg can be determined from the difference

between the platform and base point:

de 1 pr - b2x

d,, :S— P2 = by, (C.10)
2 '

d22 p22

Now, there exists a second triangle FP, P, which rotates about BP,. P, becomes an

intersection point of a circle and a sphere.
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Figure C.2. Third platform point calculation

a, (}ﬁ) can be obtained from law of cosines

BP’+RP'-PRP’
2RPxRP
RO, = FP,cosa, (C.11)
r,=0,P, =P sina,
0, =p,'+ RO,RP,

cosa, =

<

A similar triad 3' can be constructed for determining the rotation of P,
around o, . There are two possible positions for the location of £ . X axis can be taken in
the direction of O,P, and 6, is rotation angle about the Z axis of the triad.

3'=[kxRP, BP,x(kxRP,) RP)] (C.12)

After fitting a triad for the rotation, P, could be found from the following
equations:

p;'=0,+3'[r,cos6, rsingd, 0]

p;'—by =5,
~ -~ = (C.13)
Ip;'=b; = S32

which gives the leg length S,. However, 6, is an unknown that can be obtained from

b

the orthogonality of the rotation matrix 3

~ ~ e~ _

I, +3,+3 =1

~1 2 ~1 2 (o] 2_

S +3, +3, =1 (C.14)
o~ N o~ Y o~ o~ —_
‘511‘512+‘521‘522+‘531‘532—0
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where
2 2 2, 2 2
(0,, =) +(02y _bSy) +0,, +1 =8,

+2r,[3"), (05, =3 )+ 3, (0,, —by,) + 35, 0,,]cos 6,

‘ (C.15)
+2n,[3",(0,, = by, )+ 3", (Ozy - b3y) +3'5,0,,]sin6, =0
Using trigonometric equations
2
cosd, = ltanz—(Hz/Z) and sind, = M (C.16)
1+tan~(6,/2) 1+tan"(6,/2)
a univariate quadratic equation is obtained
C, tan’(6,/2)+C, tan(6,/2)+C, =0 (C.17)

with the coefficients:
C =[(0,, — b3x)2 + (02y - b3y)2 + 0222 + 722 - S32]
=2n[3",(0,, =b;, )+ 3"y (02y _bSy) +3%,0,.]
C, =4n[3',(0,, =D, )+ 3", (02y _bSy) +3%,0,.] (C.18)
C; =[(o,, _b3x)2 +(02y _b3y)2 "‘0222 +r22 _S32]
+2r,[3'),(0,, —b;, )+ 3, (02y _b3y) +3%,0,.]

There are two roots for the solution of this quadratic equation. Therefore, both
solutions for the position of P3 should be considered. During iterative steps, in the case
of complex roots, current set of the given values will be eliminated and the algorithm
will start with new values of d,,d, ,0,.

Once the third platform point is found, the platform is fully determined. From
these points, the transformations between base frame and platform frame can be

determined as follows

p;'=t+Rp, (C.19)

Let R rotation matrix maps the matrix V' to the matrix . In order to find these

V' and W frames, p, and p,’ can be taken as origins; (p,—p,) and (p,'-p,') as X

axes; perpendicular to (p,—p,), (p;—p,) and to (p,'-p,"), (p;'—p,) as Z axes

respectively.

V=[p,—p, (P,—p)*(P;— P, )*(P,—pP) (P,—P)*x(p;—p,)]
- - 7T - T T T C.20
W=[p2'—p~1' ((pf'—pi')X(pj'—gl'))><(1?>~2'—131') (qz'—gl')X(gg'—gl')] (€20)
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W =RV
R=wy'=wv’
I=p —Rp, (C.22)

(C.21)

After the rotation and translation matrices are found, the remaining platform
points could be obtained and the error between the given and obtained leg lengths could

be calculated:

das,] [s,-S,

E=|dS; |=| 5,5, (C.23)
s, | |S,-S,
E=E| (C.24)

The norm of the error is used as a feedback to find the number of positions in

allowed tolerance. After some sets of d,, and d,, are offered to the algorithm, a number

of predictions are chosen within a predetermined tolerance. In order to find all the

solutions, in the ranges ofd, ,d, ,6,, a three dimensional scan is executed. Although the

1x>™1y»

absolute range for d,, andd,, is-1to 1 and 0 to 27 ford,, it is not possible in the real

case due to physical constraints. Therefore some validity checks are needed to continue
the search.

One of the validity checks is to eliminate the mirror images about the base plane
because the assembly configurations of the Stewart Platform occur in pairs over and
below the base plate. Therefore, negative signed direction cosines along the Z axis are
pre-eliminated for economizing the computation.

The other check is introduced to see whether the distances satisfy the closure

requirements for the triangles P, PB, :
P,B <P,B,+B.P, and P,B, >|P,B, - B,P| (C.25)
for i=1,3,4,5,6

If the conditions do not satisfy the closure, the corresponding set is rejected before

the error estimation.
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