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Claims to Original Research 

1. Mesoscalc patterning of polymer surfaces was achieved by employing degradativc 
chemical processes whose surface kinetics followed reaction-diffusion principles 
and operated under spatiotemporal control. 

2. Prc-glass coatings along oxidized polypropylene surfaces were afforded, serving as 
a barrier material of the plastic and resisting the permeation of solvent. 

3. Pre-glass coatings along oxidized polypropylene surfaces were afforded that 
reversibly adsorbed protein & mRNA and introduced the concept of developing a 
minimal-step, surface-mediated, tube-based purification format. 

4. Low-surface-energy, non-adsorptive convenience plastics such as polypropylene 
tubes were conveniently animated by oxidation of the surface, followed by 
activation, deposition and curing of amino moiety-bearing organosilane reagents. 

5. Novel surfaces were rationally tailored directly onto plastic tubes and related 
convenience articles using the step-wise application of solution-phase reagents. 

6. In changing Ihe reaction-diffusion conditions of oxidation to afford 
correspondingly different mesoscopic surface topologies, the loading, non-
covalenl adsorption and retention of protein by oxidized polypropylene tubes was 
enhanced or weakened accordingly. 
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ABSTRACT 

Three stepwise chemical approaches were developed to transform commercially 
available isotactic polypropylene tubes into specialty' plastics for application in the life 
sciences: 

Oxidation. Ordinary polypropylene surfaces were oxidatively transformed inlo high-
surface plastics bearing reactive surface groups by reaction with aqueous persulfate. 
Attcnuated-Total-Refiectance (ATR) infrared spcctroscopic analysis indicated that 
ketone, carboxylic acid and hydroxyl groups were afforded within the plastic. Surface 
analyses using optical microscopy revealed the formation of macroscopic parallel 
cracks. More importantly, scanning electron microscopy indicated the reacted material 
had developed a mesoscopic topology remarkably similar in appearance to microvilli. 
Protein immobilization experiments conducted using (luorescently labeled albumin 
served to quantify the performance of oxidized surfaces. Facile detection by visual 
observation under OV light disclosed that adsorbed protein was released during 
sequential washings of the tubes in high salt, low salt and detergent solutions. 

TEOS deposition. Hydrolysis products of tetraethoxysilane were cured onto oxidized, 
high-surface polypropylenes, affording tubes coated with prc-glass layers on the walls. 
ATR infrared spcctroscopic analyses verified the glass-like end product. These 
modified surfaces possessed the appropriate physico-chemical trails to reversibly bind 
mRNA, thus establishing the concept of a tube-mediated approach to purify mRKA out 
of total RNA. Protein could also be reversibly bound to the surface 

Triaminopropylsilane deposition. Oxidized surfaces were transformed using Ihe 
hydrolysis products of irimcthoxysilylpropyldiethylenetriaminc to afford functional 
surfaces bearing surface-pendent amino groups. ATR infrared spectroscopy revealed 
that the network formed by triaminopropylsilyl moieties described a thin coating upon 
the surface. Ninhydrin coiorimctric analyses indicated that the surface amino group 
loading per unit frontal area had increased by an order of magnitude in comparison to 
commercially animated surfaces. As in the case of the TEOS tubes, the amino-modified 
tubes adsorbed protein reversibly. The amino moieties were subsequently transformed 
with glutaraldehyde solutions to afford surface-bound aldehyde functional groups. This 
time, immobilization studies using fluorescent albumin indicated that protein retention 
was remarkably resistant to washings with high salt, low salt and detergent solutions. In 
comparison to the aldehyde surfaces, native surfaces did not retain protein to any 
significant degree, and oxidized. TEOS, and triaminopropylsilylatcd surfaces showed 
merit in applications based upon a reversible association. Protein binding and retention 
was markedly influenced by mesoscale topology in the absence of covalent surface-
protein interactions. 
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Chapter 1: Introduction 

1.1 Definition and History of Polymers 

The word polymer is a combination of the classical Greek words poly mean i ng "many" 

and mere meaning "pans'\ Simply put, a polymer is a long-chain molecule that is 

composed of a large number of identical repeating units. Certain polymers can be found in 

nature, such as proteins, cellulose and silk, while many others are produced by synthetic 

routes. In modern times many naturally occurring polymers arc also produced synthetically 

as the demand of industry is so great that nature itself cannot fully supply these polymers. 

Different polymers feature their own unique set of properties. Polymers capable of 

high extension under ambient conditions find important applications as elastomers, like 

nilrile or butyl rubber. On the other hand, polymers which afford characteristics that permit 

their formation into long fibers are suitable for textile applications, such as nylon and 

polyesters. 

In contrast to the usage of the word polymer, those commercial materials, other than 

elastomers and fibers, that originate from synthetic polymers are caWcd plastics. Typical 

commercial plastic resins contain usually two or more polymers and additives, which are 

used to improve specific properties of the final product [I]. 

The birth of polymer science can be followed back to the mid-nineteenth century, to 

a scientist named Charles Goodycar. Goodyear developed in the 1830's the vulcanization 

process that transformed the sticky latex of natural rubber into a useful elastomer which 

formed the basis of the famous Goodyear™ lire company. I .ater in the 1860*s Christian F. 

Schonbein synthesized the first man-made thermoplastic, namely, celluloid. In 1907 Leo 

Backeland synthesized a phenol-formaldehyde resin known as Bakclii as well as an 

unsaturated polyester resin known as Glyptal. Both of his polymers were later used as 

protective coatings by General Electric. Until 1940 several polymeric compounds were 

synthesized by companies like Du Pont, Dow and IC1 including important examples like 
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nylon, Tcllon™ and polyethylene. Also polymers like polystyrene were produced in ion-

scale for the first time [If. World War II forced American and British scientists to develop 

new polymeric materials like synthetic rubber, as Asian allies cut (he supply of many 

naturally occurring materials like the 1 levea rubber, better known as natural rubber [2], In 

the 1950's polymer production was revolutionized by the introduction of new 

polymerization catalysis by Ziegler and Natta. These new polymcrization methods using 

stereospecific Iransiiion-meial catalysts afforded led the commercialization of 

polypropylene as a major commodity plastic. In the 1960'sand I970's a number of high-

performance polymers was developed which competed favorably with more traditional 

materials, such as metals, for automotive and aerospace applications / / / . 
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1.2 Importance of Polymers 

Today, polymeric materials arc used in nearly all areas of daily life. One of the 

most common polymers is polyethylene (PE) and its related products LDPE, HOPE, 

LLDPE and IJHW-HDPF are afforded by different polymerization methods and 

copolymerizalion. This polymer-family is generally applied to films, foils (LDPE, 

LLDPE), bottles, cans, cable isolation (HDPE) and high technology materials like artificial 

hip joints (UHW-HDPE). Another important polymer is polypropylene (PP) which is used 

in various applications like household gadgets, films, cans and bottle caps. A great benefit 

of polypropylene is also that it can be steam sterilised which introduces applications like 

medical packagings. disposable syringes and equipment for biochemical laboratories. Other 

important polymers arc polystyrene (PS; disposable cups and cutlery) polyvinyl chloride 

(PVC; pipes, cable isolation, lloor carpeting) polymcthylmcthacrylatc (PMMA; protective 

glass, casings) and polycthcnctcrcphihalatc (PET; fibers, films, food packing) [3j. 

The demand for polymers increased over the last years. Polymer production 

statistics show in particular that polypropylene (PP) is one of the polymers produced in 

highest amounts. Forecasts based on the production growth-rates between 1995 and 2002 

indicate that the production of polypropylene will increase more than the production of 

other polymers in the next following 10 years (4j. 

The high demand placed on polypropylene can be explained by the fact that 

polypropylene has developed over the recent years as the dominant polymer of the 

appliance industry. This industry can be divided in three main parts. The household 

appliances, "while" goods and "brown" goods. Household appliances include 'smaller, 

general appliances which can be usually found in the kitchen, house and garden. Examples 

of this kind of appliances are parts of coffee machines or water boiling kettles. While goods 

include larger appliances used in households, like washing, cooking and refrigeration 

equipment. In this field many applications have been developed for iniemal components 

replacing polymers like PVC and metals, polypropylene used in other consumer electrical 

goods, such as home computers, belongs lo the 'brown' goods. In these three appliance 
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fields polypropylene is usually used in modified versions lo offer enhanced properties of 

temperature stability, processability and stiffness. 

The laboratory-equipment industry describes another important part of the 

polypropylene market, polypropylene is used for various applications in research 

laboratories in modified as well as unmodified forms. Examples of polypropylene 

laboratory equipment include storage containers and racks, plastic beakers, reaction tubes, 

pipette tips, well-plates and selected parts of electrical laboratory equipment. Modification 

enhances the scope of applications for polypropylene, affording for example, fire hazard. 

anticorrosion, reinforced or microporous polypropylene [5]. These facts indicate that 

polypropylene is one of the most important polymers used in daily life. 
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1.3 Properties of Polypropylene 

Polypropylene can be used in various applications because of its good mechanical, 

thermal, physical and processing properties. Two noteworthy properties of polypropylene 

are the high impact strength and the good fatigue endurance (table 1). 

Mechanical Propert ies 

Elastic Modulus {MPa) 

Flexurai Modulus {MPa) 

Tensile Strength (MPa) 

Compressive Strength (MPa) 

at yield or break 

Flexurai Strength (MPa) 

at yield or break 

elongation at break (%) 

Hardness 

!20d Impact (J/cm of notch) 

1/8" thick specimen unless noted 

897 - 1242 

897 - 1380 

2?5 

207 

21 - 30 

2 8 - 38 

25 - 56 

35 . 49 

200 - 500 

6 5 - 96 

7 0 - 73 

0 . 6 - 7.1 

Condit ions 

State 1 

Tensile 

23 °C 

94 °C 

122 OQ 

at yield 

at break 

Rockwell R 

Shore D 

State 2 ASTM 

0638 

D790 

D790 

D790 

D53S 

IJii.ifi 

D695 

D790 

0638 

0635 

D638 

D256A 

Table I: Mechanical properties of polypropylene [6] 

The most important thermal properties of polypropylene arc high heat resistance and low 

thermal conductivity (table 2). 

Thermal Propert ies 

Coef of Thermal Expansion (10"''/°C) 

Deflection Temperature (°C) 

Thermal Conductivity (W/m-°C) 

£,S O', 

85 - 105 

5 5 - 60 

0.116 - 0.>"7 

Condi t ions 

Pressure 

0.^6 v,pa 

1.82 MPa 

Sta te ASTM 

0696 

D648 

D645 

C177 

Table 2: Thermal properties of polypropylene [6J. 
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Polypropylene is a convenient plastic for processing, as it displays a sharply-defined 

melting point, high shrinkage after molding and the ability to How in thin-walled sections 

(table 3). 

Processing Properties 

Melt Flow (gm/10 min) 

Melting Temperature (°C) 

Melting Temperature (°C) 

Processing Temperature <°C) 

Molding Pressure (MPa) 

Compression Ratio 

Linear Mold Shrinkage (cm/cm 1 

0.6 - 100 

-20 

ISO - 1 /':■ 

191 - 2 8 8 

205 - 2 6 0 

69 - 138 

2 - 2.4 

0.01 - 0.025 

Conditions 

Type 

Tg, amorphous 

T0 , crystalline 

Injection molding 

Extrusion 

ASTM 

D l 238 

D955 

Table 3: Processing properties ot"polypropylene /&/ 

Additional favorable properties of polypropylene are its high chemical resistance and low 

water absorbtivity (table 4). 

Physical & Electrical Propert ies 

Specific Gravity 

Water Absorption {% weight increase) 

Dielectric Strength (V/mit); 

1/8" thick specimen unless noted 

Conditions 

Stats; ASTM 

0.89 - 0.905 D792 

0.03 After 24 hrs 

600 

357C 

D149 

Table 4: Physical and electrical properties of poKpropylene [6j. 

These properties suggest that polypropylene is a suitable polymer for various applications 

of wide scope from construction products to high-technology lunctionalizcd, bioaetivc 

plastics. 
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1.4 Production of Polypropylene 

1.4.1 Polymerization 

Like most commercially produced unmodified polymers, polypropylene products 

arc produced in two steps. In the first step the polymer is polymerized out of its monomers 

affording polymer granules. In the second step these granules arc processed into their final 

application form by twin screw extruding, injection molding or calendering methods. 

The polymerization of propylene is normally carried out in the presence of a 

catalyst of the Ziegler-Natta-type. Under appropriate conditions, polymer of a certain 

molecular weight and narrow size distribution can be made (Figure I). Isotaciic, aiactic and 

syntactic formal, of polypropylene arc known. 

A ^ 

H 
M 

\ 

M-H = Zie 

M 

M 
CIL-W 

CH3 

Y I 
-(CH-CH2)n— CH-CHj 

CH3 CH3 

iler-Natta catalyst 

Figure 1: Polymerization mechanism using Ziegler-Natta catalysis. 

Ziegler-Natta-type polymerization was introduced in 1954 by G. Nat la, who 

moditid the Zicglcr-catalyst and revolutionized petrochemistry, introducing a catalyst that 

has since known as Ziegler-Natta catalyst. These catalysts consisted of 6-TiClj with 
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aluminum diethyIchloridc as activator. Over the next 20 years these catalysts were farther 

refined resulting in the fourth generation of polymerization catalysts. The most significant 

advantage of the new generation catalysts was their high stcrcospecifity. This fact and ihc 

ease of the removal of the new catalysts simplified polymerization, as the washing-out step 

of the catalyst and the purification step of the polymer was eliminated [5]. 

Recently this fourth generation material as well as mctallocene catalysts arc being 

used in the polymerization of PP. Liquid or gaseous propylcne or a solution in inert 

hydrocarbon diluent such as hcxanc is used. The production of polypropylene by inert 

hydrocarbon slurry processes decreased recently, as most modern plants have adopted bulk 

or gas polymerization processes. By far the most commonly used bulk PP-proeess is the 

Monlell's 'Spheripol Process'. During the polymerization process, the liquid propylcne is 

polymerized at temperatures of 60-80°C and pressures of 35-40bar. The most common gas 

phase polymerization process is the 'Amoco-Chisso* process. The benefit of this method is 

the good economics, as it is a continuous process [5f. 

1.4.2 Processing 

The discussed polymerization methods afford polymer pellets, which arc further 

processed by extruding or injection molding. 

Extrusion is a typical method used to continuous products like pipes, sheets, films 

and coatings. In other words, the extruder (Figure 2) is in principle a melt or viscosity 

pump. During the twin screw extruding process, polymer material filled in a hopper, is 

melted and the melt is pumped using a twin screw system into a die, which forces the 

melted polymer into the final form. Different types of twin screw extruders are used in 

industry. These types differ usually in the rotating direction and orientation of the screws 

(Figure 3) [7], 
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Figure 2: Schematics ol an extruder. 

Figure 3: Different screw systems of extruders. 

While extruding offers basically continuous products, injection molding is 

nowadays the most popular method lo produce 3-dimensional products. Injection 

molding is a production method for large series and is almost not limited by factors of 

part shape or product size. The polymer melting and transport process is basically 

identically with the extruding process. Polymer is melted and transported by a screw 

system to the injection unit of the injection molding machine {Figure 4). 
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Figure 4: Schematics of an injection molding machine (left) and a mold (right). 

Polymer mck is delivered into the mole by injection (Figure 4) This injection describes 

the start of a cycle that is basically divided in seven steps (Figure 5). 

Cycle ends CYC&SI&IS 

I M o l d c los ing 
- Injection win moving loruard 
} Injection • mold filling 
-i llnlJinir |>ICV*MIC 
5 in ject ion unil mov ing hack 
6 l*U)stica(inu. [woven 
7. Mold opening, product ejection 

Coci-io 

Figure 5: Injection molding cycle process. 

As the injection molding procedure is a cycling process and the molds can be used 

immediately again after product ejection, the injection molding process offers a rapid 

method for polymer processing [?}. 

Other processing methods for polymeric materials arc compression, transfer and 

blow molding, calendering and thcrmoforming [5,7]. 
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1.5 Modification of Polypropylene 

Specialized applications of polymers often require enhanced properties. In the 

case of polypropylene, changes in physical or chemical properties may be realized. These 

modifications can be performed before, during or after the processing step. 

1.5.1 Modification Methods During Polymerization and Processing 

Copolymerization is frequently used to change the physical and chemical 

characteristics of polymers by combining a second kind of monomer during the 

polymerization process. The addition of a second type of monomer usually changes the 

physico-chemical properties of the resultant product. Catalysts influence the 

copolymerization significantly. 

In the ease of polypropylene, a commercially produced eopolymer is the so-called 

Impact Polypropylene. Impact polypropylene is produced by copolymerization of 

propylene with small amounts of cthylene as the eopolymer. I'or this kind of 

copolymerization MgClj-supported TiCU catalyst with tricthyl aluminum as coeatalyst 

are used [8J. Impact polypropylene features enhanced impact strength and dimensional 

stability compared with normal polypropylene. 

Another possibility to modify polypropylene is to crosslink the macromolecular 

chains during production. Various procedures may be used to initiate erosslinking. 

Common ways of erosslinking consists of macroradical formation via thermal 

decomposition of organic peroxides, high energy irradiation (gamma or electron beam) 

and ultraviolet radiation in the presence of ultraviolct-scnsitizers [9J. The formation of 

polypropylene macroradicals is easily initiated by more or less any radical initiator, 

except non-methyl alky] radicals, as they arc not reactive enough to initiate an efficient 

macroradical formation in polypropylene. 
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Oxyl radicals, formed by thermal decomposition of peroxides, arc the most convenient 

radical species for polypropylene crosslink initiation. The maeroradicals can decay by 

several ways (Figure 6) [10]. Polypropylene afforded by erosslinking show an 

—CHj-CH-CH2-CH— 

CH3 CHj 

2 —CHj-C*—CHj-CH— 
CHj CHj 

—CH2-C*-CH2-CH— 

C-H3 CHS 

2 — CH2-C*— CH3-CH— 

CH3 CH3 

RO*. R*. hv 

—̂̂  

—CH2-C*—CH2-CH— 
! 1 
CHj CHy 

CM, CHj 

-CH2— C—Clti-CU— 

—Clh-C—CHj-CIl— 
CEIa Clli 

—ciij-c—cn2 HC* 
ciu + U 

CIU CH-, 

—CN2-C=Cfl—CM— 

—CH2-CH—CH2-CH— 

CH; CHj 

macroradkal 
formation 

recombination 

fragmentation 

disproportionate 

Figure 6: Radical mechanisms during erosslinking of polypropylene. 

improvement in the impact resistance at low temperature and a decreased brittle-ductile 

transition temperature. Also the heat resistance of crosslinkcd polypropylene is increased 

significantly. Various applications are amenable to crosslinkcd polypropylene. For 

example, erosslinking to a gel content of 55% proved to be beneficial for cable insulation. 

Further polypropylene can be modified during extruding or injection molding by 

including additives. Additives influence many physico-chemical properties. Those 

influencing the physical properties of polypropylene are generally called fillers. Fillers 

such as glass fibers, talc and calcium carbonate are added during processing to improve 

the stiffness, the heat deflection temperature (111)1) or the heat conductivity/5/. 
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In contrast, additives like fatly acids, unsaturatcd dicarboxylic acids, surfactants, 

organic peroxides and kctoncs are added lo influence the chemical properties of modified 

polypropylene. Using these additives, more polar polypropylene surfaces arc created, 

affording higher wcttability, adhesion and dycability / / / / . 

I.S.2 Modification Methods After Processing 

Polymers such as polypropylene have low surface energies and therefore lend lo be 

very inert. Thus it is helpful to modify ihc surfaces of polypropylene prior lo processes like 

bonding, coating, printing or metallization. Frequently used surface treatments after 

forming-processing of polypropylene include plasma, corona and flame treatment. 

Plasma treatment of polypropylene is an attractive process lo produce the required 

surface modification by using different types of gas, introducing various chemical 

functionalities on the surface. A plasma can be broadly defined as a gas containing one ore 

more charged and neutral species of electrons, positive ions, negative ions, radicals, atoms 

or molecules. Cold plasmas are formed, as a volume of gas is exposed to an electric field 

under low pressures. To produce plasma conventional frequencies, radio waves or 

microwaves may be used. The basic plasma reactor includes a vacuum chamber equipped 

with a gas source and electrodes (Figure 7). Reactions may occur between gas-phase 
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figure 7: Schematic diagram of a laboratory scale plasma unit with a vacuum chamber (A), 

a RF-clcctrodc (B) and a grounded electrode (C) [12j. 

and surface species to afford reactive functional groups or alternatively, may occur solely 

among surface species, affording crosslinks. Example reactions include plasma treatment 

by argon, ammonia, oxygen and water. Oxygen containing plasmas react with 

polypropylene, affording various functional groups including alcohols, kctoncs and 

carboxylic acids. Excellent results in plasma-treated polypropylene can be achieved using 

water/air (80:20) plasmas. However, plasma treatment has not been used as extensively as 

corona or flame treatment in industry, as plasmas arc formed under vacuum conditions, 

which introduce higher expenses. Corona and flame treatments arc used commonly because 

of their speed and ease of processing to improve bondability and printability of polyolcfin 

films and large-sized objects. 

A corona treatment system consists of an electrode connected to a high-voltage 

source and a electrically grounded roll usually covered with insulating material like 
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Figure 8: Schematic diagram of a corona discharge apparatus. 

polyester (Figure 8).The corona is afforded when a high voltage is applied across the 

electrodes to cause ionization of air. '['his atmospheric pressure plasma is called a corona 

discharge. The insulating material, covering the grounded roll, prevents arcing between the 

two electrodes. As the corona is in contact with a polymer surface, it can cause the surface 

to oxidize. Electrons, ions, excited neutrals and photons which are present in a discharge-

can react with a polymer surface to form radicals. These radicals react rapidly with 

atmospheric oxygen (Figure 9). These reactions cause possible crosslinking and 

O: 

products wilh scission 

RO2 - R 0 2 H 

products without scission 

cross I inking 

Figure 9: Reaction scheme of corona discharge introduced surface reactions. 
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functionalization of the polymer surface with and without concomitant chain scission. The 

decomposition of the hydropcroxidc groups produces oxygen functional groups on the 

surface including alcohols, ketones and carboxylic acids. 

Flames have been used in various industries for surface treatment of plastic. This 

technique has been proven convenient for specialized applications as the torches are 

portable. Flame treatment has also been employed to enhance ink performance of polymer 

surfaces. A flame treatment apparatus generally consists of a torch, a cooled backing roll 

and a nip roll to deliver the polymer film (Figure 10). 

Figure 10: Schematic diagram of a flame treating apparatus. 

Important variables for flame treatment are the air-to-gas ratio, air and gas flow 

rates, the distance between the tip of the flame and the surface, the nature of the gas and the 

treatment time. Oxidation at the polymer surface caused by flame treatment can be 

attributed to the high flame temperature (1000-2000°C) or reactions with many excited 

species in the flame. These reactions afford surfaces bearing alcohols, aldehydes, esters and 
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carboxylic acid groups pendant on methyl group of polypropylene (Figure 11) (13/. 

Figure 11: Reaction scheme of flame-treatment-mediated surface reactions, 

Corona and flame treatments are very effective in oxidizing PP. Flame treated 

surfaces show the lowest advancing contact angle and the highest wcttabiiity. 



1.6 Novel Modifications of* Polypropylene 

In light of this discussion, polypropylene appears to show great potential. However, 

the technology to implement its use in even larger scope has not been fully developed. It 

follows that a logical step in the development of polypropylene as a lucrative material is to 

find ways to introduce its use in the high-technology sector. The work covered in this thesis 

investigates potential and merit of surface engineering as a tool to adept the use of prc-

manufacturcd polypropylene articles in life-science applications. 

Chapter 2 discusses various oxidation routes to afford surface-active polypropylene. 

Chapter 3 discussed the use of pseudo-glass coatings on oxidized polypropylene as a means 

of purifying mRNA. Chapter 4 generalizes the concept of coating oxidized polypropylene 

by extending the study to irimcthoxysilylpropyldiethylcneiriamine. In addition, all chapters 

examine to binding of protein to the engineered surfaces. 
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Chapter 2: First Generation Surface: Oxidation of Polypropylene using Persulfatc 

2.1 Introduction 

The importance of polymers in life science applications had grown over the last 

years to the point where polymers arc used in every kind of application from simple storage 

purposes to highly engineered intelligent plastics. For general-use applications as reaction 

lubes, pipette lips, work surfaces and stands, standard polymers like polystyrene, 

polypropylene and polyester are used lo produce unbreakable, lighi, convenient and 

practical laboratory equipment. These articles arc generally intended for single-use. 

More specialized polymers are normally used in specialized applications, often 

featuring attended and tailored physico-chemical surface properties. Examples include 

high-area surfaces, antimicrobial surfaces, biologically active surfaces for Enzyme-Linked 

Immunosorbent Assay (HI,ISA) applications and bio-passivated coatings for implants. In 

realizing these applications, the polymers have to be modified because the unmodified 

polymers arc simply inadequate and do not give the desired effects. The production route of 

these surfaces was described previously and often requires specialized equipment. 

The advantage of the method developed herein for polypropylene modification is 

exemplified by the case which novel materials may be processed. As a source of 

polypropylene, Fppcndorf reaction lubes were chosen, because these or similar 

polypropylene tubes arc available in every standard laboratory. Based solely on aqueous 

reactions mediated by persulfate, there is no need for special laboratory equipment or 

knowledge of special reaction procedures. Simply put, the performed modification is 

adoptable to every kind of research laboratory and can be performed by any laboratory staff 

member. When considering the expense of commercially available analogs, the cost-

efficiency is also an added benefit. 
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2.2MatcriaIs and Methods 

Tubes, Chemicals and Proteins 

Polypropylene Safe-Lock Tubes (2ml capacity) were obtained from Kppcndorf AG. 

Ammonium peroxodisulfatc (98%) was purchased from Laehema. A. S.. NERATOVILE. 

Standard grade isotaclic polypropylene powder, bovine serum albumin and 

5-dimethylamino-1 -naphthalcncsulfonyl chloride (dansyl chloride) were purchased from 

Sigma-Aldrich Laborchemikalien GmbH. Dialysis bags (3500 molecular weight cut-off) 

were obtained from Pharmacia. Dcionized water (18Mfl/cm" ) was produced in-house using 

a Milliporc Academic system. 

2.2.1 General Methods (CM): 

(i) Preparation of Persulfate and Control Solutions 

Ammonium peroxodisulfatc solutions (APS) were prepared by dissolving the 

required amount of APS in water with the help of an ultrasonic bath and a VELP Vortex 

model Scientifica. In preparing control solutions, APS was replaced with the appropriate 

amount of ammonium sulfatc, to remove the active agent, while still the maintaining 

counterinons and comparability. The solutions were freshly prepared before each 

experiment for the sake of maintaining consistency. 
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(ii) Reaction Method 

The reactions were performed using a standard laboratory oven, a Savant Speedvac 

with the vacuum accessory disabled and an Eppendorf brand ihermomixer. The chosen 

reaction temperature (70°C) was suitable for the activation of APS but not so high as to 

potentially alter the morphological properties of PP. 

(iii) Washing and Drying Method for Modified Eppendorf Tubes 

At pre-selected time points, samples were removed from the heating device and 

allowed to cool to room temperature. The remaining solutions were withdrawn and the 

emptied tubes were transferred into a glass bottle (Figure 12). This bottle was filled with 

deionized water and agitated to wash the tubes along the inner and outer sides. The wash 

procedure was applied three times to ever)' lot of tubes, before they were dried in vacua 

(70aC, 16h) in a NUVE brand vacuum oven. 

Figure 12: Typical set-up to perform washings during oxidation. 
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(iv) Preparation and ATR-FTIR Analysis of Eppendorf Tubes 

Eppendorf Tubes were prepared in a way dial would permit effective analysis using 

the attenuated total reflectance (ATR) accessor)" of the I T1R instrument. As excessive 

bending of samples during the sample preparation yielded poor ATR-FflR spectra, this 

modification to the method was introduced to protect the crystal structure of the polymer. A 

cylindrical piece with an approximate height of 3mm was cut from a region just above the 

hemispherical base of the lube using a razor blade heated in a Bunsen burner. The 

cylindrical ring was frozen in liquid nitrogen and shattered into small pieces with 

approximate dimensions of 2x3mm (Figure 13). 

Figure 13: Sample preparation for ATR-FTIR measurements (cutting steps). 

These pieces were then in vacua (40°C, 2h). Samples prepared in this way had little or no 

damage to the crystal structure but nevertheless some bore thick edges, which arose from 

the cutting action of the hot blade. These regions were carefully exercised with a flat-edged 

razor blade. The samples were lightly fixed over the measurement window of the ATR 

accessory of a Broker model Equinox 55 infrared speelrophotometcr. Twenty scans were 

averaged and displayed using rubber-band correction at 70 points in the Broker OPUS V'3.1 

software of the system. 

(v) Preparation and Optical Microscope Characterization of Tubes 

For the optical microscope analyses no special sample preparation like cutting or 

breaking of the Uibes was required, so the inner wall of the tubes could be observed In

appropriately focusing the microscope. In fact, by varying the focal length accordingly, 

different depths of penetration can be easily examined. Samples were analyzed using an 
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Olympus brand CH40 lighl microscope Titled wilh an Ikcgami model CCD camera using a 

magnification of 100X. Photos were taken directly from the monitor of the CCD camera 

using a Sony Cybershot DSC-F505 digital camera (2.1 megapixels). The quality of the 

pictures is limited by the resolution of the screen. As well, the interlace of the monitor was 

necessarily captured using digital photography and proved slightly inconvenient. 

(vi) Preparation and Scanning Electron Spectroscopy (SEM) 

Sample tubes were prepared analogous to the method used for the ATR-ITIR 

analysis. These samples were cleaned and coated by gold inside an Agar brand sputter 

coatcr (25s), affording a coaling wilh an approximate thickness of 20nm. Scanning electron 

micrographs were obtained using a JEOL model JSM-6500F microscope with beam energy 

of 10 to 20kV. At least four areas were examined per sample at magnifications up to 

50000X. Images were displayed and processed using windows-based imaging software. 

Subsequent analyses were achieved using iridium as coaling material (5nm) and a beam 

strength of 2kV. 

(vii) Trace Dansylation of Bovine Serum Albumin (BSA) 

Heat-shock fractionated BSA (lOOmg) was dissolved in water (lOml) and the pi I 

value was adjusted to 9 using sodium hydroxide solution (I VI). 5-l)imethylamino-i-

naphthalenesulfonyl chloride (Dansyl chloride, 5mg) was dissolved in acctontrile (K)Opl) 

and slowly added to the gently stirring BSA solution maintaining the pi I value between 8 

and 9 using sodium hydroxide solution. After 1 h, the solution was delivered into a dialysis 

bag and dialyzcd (25°C) against 3x4L water. Ninhydrin color analysis of native albumin 

and dansylatcd albumin indicated that at most 10% of the amino groups had been 

transformed into the sulfonamidc fluorophorc. The dansylatcd proicin was stored ai 4°C. 
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Figure 14: UV-pholograph of native (left) and dansylated BSA (right) 

(viii) Immobilization Method for Trace Dansylated Protein I V Analyses 

A portion of the dansylated BSA stock was added to excess salt solution (1M NaOl) 

in order to afford a dilute stock (0.3mg protein/ml, pi I 7) that would be appropriate for 

immobilization studies. This solution was transferred in the modified tubes and incubated 

(37°C, l.5h). The solution was withdrawn, and the residing liquid was pooled by 

cemrifugation and collected using a pipette. Photographs were obtained using an Uvitcc 

UV-box quipped with an (hi CCD camera. The lubes were filled with aqueous sodium 

chloride solution (IM, Iml) and agitated (2min). The washing solution was withdrawn and 

the tubes were again photographed. Next, the tubes were washed with water and similarly 

documenialcd. After that, the same washings were performed with 10% Triton X100 and 

10% NP-40 solutions. Photographs were taken after every washing. 
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2.2.2 Analyses of Starting Polymer: Eppendorf Safe-Lock Tubes 

(i) Scanning Electron Microscopic (SEM) Analyses of Native Surfaces 

Native samples were treated the as described before (GM) except, the native 

samples were coaled using silver. The results show good image contrast between the 

surface and the air. No differences between gold and silver coating were observed. 

(ii) X-ray Powder Diffraction Analysis of Native Eppendorf Tubes 

Tubes (-20mg) were dried under vacuum (70°C) and fragmented using a standard 

coffee grinder. Again, to minimize anomalies introduced by deformation during the sample 

preparation, the tubes were first fro/.en in liquid nitrogen. The collected fragments were 

sieved, using mechanical sieves, to obtain samples of I -2mm and less than I mm particle 

size. Samples with a particle size of 1 -2mm (1 -2g) were analyzed using a Bniker AXS 

Advance powder diffractometer, equipped with a Siemens X-ray gun. The measurement 

was performed with a rotation speed ofl5rpm through an angle of 20 - 10 - 90s using the 

default parameters set by the Broker AXS Diffrac PI .US software. An X-ray generator 

setting of 40k V and 40mA was employed. 

(iii) Differential Scanning Calorimetry (DSC) of Native Eppendorf Tubes 

Samples intended for DSC analyses were prepared in the same way as samples 

examined by X-ray. Both obtained samples sizes were analyzed under nitrogen atmosphere 

in a Nelzsch brand model 204 DSC system equipped with a DSC 204 cell and a Nctzsch 

TASC 414/4 controller unit. The temperature was ramped from - 80°C to 2I0°C at a rate of 

l0°C/min. Data was collected using Net/sen TA4 software, 
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(iv) ATR-FTIR Analysis of Native Eppendorf Tubes 

Native Eppendorf Tubes were prepared for ATR-FTIR analyses as described 

previously (GM). Spectra of these samples and of commercially obtained isotactic 

polypropylene powder were compared against the Aldrich l-TIR I .ibrary. 

2..2.3 Oxidation Experiments 

To achieve the optimum concentration and reaction time for the oxidation of the 

polypropylene surfaces a concentration course and a time course of the reaction was 

performed in the beginning. 

(i) Concentration Course 

Different concentrations of aqueous ammonium pcroxodisulfaie (APS) were 

prepared (0.5, 1, 1.5, 2,2.5 and 3 M). An equal volume of each solution (1.5ml) was 

transferred into a native f-ppendorf Tube using an Eppendorf Multipelle Plus. These tubes 

were then placed in a tube rack and incubated in a standard oven. The tubes were 

appropriately restrained (Figure 15) to prevent caps from opening by the accumulation of 

pressure during reaction (70°C, 24h). 



Figure 15: Set-up used lo restrain caps during the course of oxidation. 

Alter the reaction the tubes were washed, dried (GM) and lested visually using the loading 

of trace-dansylated BSA (GM) as an arbitrary indicator of the extent of reaction. On the 

basis of fluorescence intensity, the best "oxidation" was assigned to 1M persulfate and all 

subsequent reactions were carried out at this concentration. Native and oxidized tubes were 

also examined visually as control tubes. ATR-ITIR analyses were not performed, as these 

experiments were the most preliminary of all studies and the protocol to prepare samples 

for ATR-FTIR analysis had not been developed by thai time. 

(ii) Time Course 

In light of the results of the concentration course, IM solutions of Al'S were used. 

APS (11.82g) was dissolved in deionized water (50ml) giving a clear solution. This 

solution (28.5ml) was equally divided into Eppendorf Tubes (19). The tubes were fixed in 

an oven (Figure 15) and incubated (70°O, 24h). During the first 18h of reaction, a tube was 

removed every hour. The last tube was removed after 24h. The tubes were immediately 

washed, dried, prepared and analyzed by ATR-FTIR using the previously described 

methods (GM). 
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After interpreting the results ofthe concentration and time course experiments, the 

optimum reactions conditions were ascertained (1M, 70°C, 16h) and applied to all 

subsequent experiments. 

(Hi) Oxidation of Tubes under Static Conditions 

Persulfalc and sulfate standard solutions were administered (1,5ml) to tubes as 

discussed previously (GM). The tubes were fixed in a rack in the oven. The reaction was 

performed using optimum parameters (1M APS. 70°C, 16h). The reaction tubes were 

rinsed and prepared for the Optical microscopy, ATR-I'TIR and SEM analyses using 

standard procedures (GM). Protein immobilization tests using dansylatcd BSA were carried 

out as an arbitrary measure of the performance ofthe new surfaces. 

To estimate the penetration depth of oxidation, a sample was prepared using 

standard methods for ATR-FTIR sample preparation (GM). Scries of adjacent layers 

comprising the plastic wall was incrementally removed from this sample using Egeli brand 

fine gauge (1200c) sandpaper. Commencing at the reacted surface and working inwards. 

the composition of underlying functional groups after every successive removal of 8-

12mierons of material was assessed directly using ATR-IR spcetroscopy. The 

corresponding reduction in sample wall thickness, and by inference, the depth of each 

measurement, was quantified using a Mitutoyo brand digital call per. 

(iv) Oxidation of Tubes in a Rotating Speedvac Concentrator 

As the modification using a standard oven proved inconvenient because ofthe need 

to fix the tubes as well as several incidents in w;hich tubes popped under pressure, another 

method was developed to oxidize the native tubes. For this purpose, a Savant brand 

speedvac, with its vacuum accessor)- disabled was used. APS and sulfate-control solutions 

were prepared as noted previously (GM). Tubes were loaded into the speedvac rotor and 

filled to capacity with the reaction solutions. The speedvac was preheated (70°C) and water 
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(-150ml) was added into ihe rotor chamber (Figure 16). In this humid atmosphere the tube-

loaded rotor was fastened and spun, while the lids of the tubes remained open. The delivery 

of the samples into the speedvae, during which time the lid was opened, was rapid to 

minimize the loss of humidity in the atmosphere. 

Figure 16: Preheated speedvae showing humid atmosphere used to minimize evaporation 

f rom tubes. 

Reaction (70"C, I6h), washing and drying procedures, optical microscopy. ATR-FTIR and 

SEM analyses, and protein immobilization studies were all performed as noted previously 

(GM). 

(v) Oxidation of Tubes in a Rotating Ther mo mixer 

While the previously performed reactions were performed under static conditions or 

under the influence of minor vibrations, a novel method was introduced to perform 

oxidations with efficient mixing. 
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For this purpose Eppcndorf Tubes were mounted in the rack of an Hppendorf 

"riicrmomixer. The lubes were filled with freshly prepared APS (1M) or sulfaie-control 

solutions (1.5ml). The oxidation reaction was performed using mixing (500rpm) and 

standard parameters (70"C\ 16h). After reaction, tubes were rinsed and dried as previously 

described (GM). Following standard sample preparations (GM), optical microscopy. ATR-

FTIR and SEM analyses were performed. 

To compare the performance of these surfaces with the previous ones, fluorescent 

BSA was incubated on theses surfaces and optical UV-analyses were performed. 



2.3 Results and Discussion 

(i) Analyses of Native Eppendorf Tubes 

All Save-Lock brand Eppendorf Tubes are injection-molded plastics purported to 

be composed of crystalline, non-crosslinkcd and non-reacted isotactic polypropylene. To 

validate this information, initial efforts of this study were invested in assessing the starting 

material. 

Scanning electron microscopic analysis of the native samples showed typical 

characteristics of injection molded polymers. In particular, inner and outer regions of the 

wall cross-sect ions showed skin layers of an approximate 15-20um thickness. Skin layers 

caused by the rapid cooling of the melt during injection-molding procedures and display 

high smectic content. Underlying the skin layers, a shear layer and core region could be 

detected. These morphologies arc typical for injection-molding processed PP. / / . 2] 

Powder X-ray diffraction spectra of the tubes (Figure 17) were compared to 

standard polymorphs of isotactic PP. These indicated that the dominant crystal structure by 

volume was the alpha-form of which the majority presumably lay in the core region of the 

tube walls. Also a small but characteristic signal of the bcta-morph form of isotactic 

polypropylene could be observed. In light of the established properties of PP. the [i-

polymorph is likely located in the thin shear layer between the skin layer and the core 

region// -4J. 

Gamma and smectic polymorphs could not be detected by diffraction studies, but 

this outcome was not surprising, as both polymorphs have usually a low content in material 

produced by injection-molding. [1] 
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Figure 17: X-ray spectrum of native Eppendorf polypropylene lube fragments {& = l-

2min). 

DSC analyses validated the diffraction results in that the spectrum showed for the 

alpha polymorph an cndothcnn fusion peak at 1680C, while the beta endotherm. which 

describes usually a variable shoulder centered at I46°C, was in this example likely 

submerged under the alpha endotherm. DSC' analyses also indicated a glass transition 

temperature inflecting at -5°C, which is typical for non crosslinkcd of isotactic 

polypropylene (Figure 18). [5, 6] 

Comparisons of the reported enthalpy of 138J/g for isotactic polypropylene with the 

measured value of 88J/g results indicated that the crystalline content in the measured 

isotactic polypropylene was approximately 64%, which is a normal value for non-

cro.sslinked, injection-molded polypropylencs [I]. 
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Figure 18: DSC spectrum of native Eppendorf polypropylene lube fragments (o - l-2mm). 

ATR-FTIR spectra of Eppendorf Tubes were cross-referenced against 

commercially available isotactic polypropylene powder (Figure 19). Both samples afforded 

comparable spectra and could be validated against spectral libraries (not shown) of isotactic 

polypropylene. The presence of significant amounts incipicnts or degradation products 

could not be observed during the analyses. 
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Figure 19: ATR-IT1R spectra of native Eppendorf Tubes (blue) and isotactie 
polypropylene powder (red) 

The outcome of all analyses used to examine the Eppendorf $afe-I.ock Tubes indicated that 

the starting material of consisted out of high-quality, injection-molded isotactie 

polypropylene. [?] 
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(ii) Concentration Course 

Visual analysis (Figure 20) and U V-analysis of fluorescent protein immobilized on 

Ihe oxidized surfaces during Ihc lime-course experiment indicated, that APS solutions 

prepared in one molar concentrations offered the optimum reaction performance. No 

significant difference in the apparent immobilization of fluorescent protein could be 

observed using APS solutions of one or higher molarities. Concentrations of 0.5 molar APS 

solutions seemed not to be suitable for the reactions, because oxidized surfaces showed 

decreased protein binding compared to the higher concentration oxidized surfaces. 

Considering these results. 1M A PS was arbitrarily chosen to be the best 

concentration to perform an effective oxidation in a convenient time-frame. 

Figure 20: Photograph showing the optical effect of the oxidation caused by different 

concentrations of persulfates during the concentration course 

(Sets of lubes from left to right and top to bottom: 0.5M APS: IM APS; 1.5M APS: 2M 

APS: 2.5M APS; and 3M APS). 
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(iii) Time Course 

The ATR-FT1R spectra of the oxidation as a function of time illustrate the 

development of carbonyl absorptions with increased oxidation limes. In particular, three 

absorbances of three major populations of carbonyl compounds (vc o~ 1705, 1735 and 

1770cm-1) were noted, indicating the accumulation of oxidation products during the 

reaction (figure 21) [8, 9f. Absorbances in (he carbonyl region were chosen to quantify the 

reaction, as they showed the most significant changes during the course of reaction. 

Figure 21: ATR-FTIR spectra of the time-course experiment. Grey lines indicate early 

stages of reaction (2-4h) and green lines indicate intermediate stages (6-l2h). Blue depicts 

the optimum time (16h) and red suggests that product loss has begun (24h). Black is the 

control (native PI'). 

The accumulation of signal was gradual during the early and intermediate stages of the 

time course, suggesting a steady rate of overall reaction. More importantly, the consistent 

line shape at different time points appeared to suggest a steady accumulation of different 

products. The I6h profile denotes the time of maximum yield. At 24h. a decrease of signal 
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was in fact noted. This finding suggested that within the penetration range of the 

instrument, a highly oxidized fraction of material detached from the polymer, resulting in a 

net loss of signal. These results suggested that the optimum reaction time of the performed 

oxidation reaction was 16h. 

(iv) The Nature of the Oxidation Reactions 

All oxidation experiments herein {oven, speedvac. thennomixer) were analyzed and 

discussed on the basis of FTIR data and various additional chemical tests (results not 

shown). 

ATR-FTIR spectra taken of samples afforded by the three modification protocols 

were very comparable in functionalization. This finding indicates that the modification 

method apparently has no influence on the chemical processes during incubation. In 

particular, no influence of stationary reaction, slight vibration or mixing conditions, could 

be noted on product distribution. 

ATR-FTIR spectral profiles following treatment with APS solution differed in the 

functional group region (4000- 1300cm" ), the fingerprint region (BOO-QOOcnVVndthe 

remaining low-frequency region (900-6OOcm'') (Figure 22). 

•1-1 



Figure 22: ATR-ITIR spectra of native (black) and oxidized (red) lubes. 

The chemistry employed and spectral profile obtained was consistent with a number of 

functional groups. Ruling out candidates such as vinyl, peraeid, peroxide, hydroperoxide 

and aldehyde, the products most likely formed alcohol (vfj,V|i-o ~ 3640-361 Ocm' ;vm*ndaiH-

o = 3420-3250cml; \WC-OH - 1440-1260cm"1: v<.<, - 1160-1030cm"1), kelone (v r o = 

1725-1705cm-1). carboxylic acid (vrreeHO = 3550-3500cm "'; vUbomied u.0= 3300-2500cm"1; 

vc=(hmnomcr = 1780-1740cm'': ve-ou«icr = 1710-1690cm'1: v\.-.,, ■ ,> 1320-1210cm"1: Vbendo 

on - 1440-1400em"!). ether (vc.0 = 1140-1110cm ')and ester (v, o " 1765-1720cm'' ; 

vc-oaad- 1280-1150cm"1 ;v ( M ^ o h n ,= 1150- 1000cm'1 )/<¥- I3J. 

The immediate goal was to summarize by means of an overly simplified 

mechanism that the products slated above could in fact be afforded. The oxidation 
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is initiated by homolytk decomposition of pcrsuliate 11»- Hydrogen absiraction from water 

by the sulfate radical anion follows, affording a hydroxyl radical as major initiator (I) [12j. 

The hydroxyl radical may then abstract a surface-pendent hydrogen atom, typically from a 

tertiary carbon, to afford an alk\l radical (2) [12. 13/. Rapid addition of oxygen, followed 

b\ peroxyl-radical-mediated hydroperoxidation. is a'ahzed in the propagation ph. 

118, 23/. Propagation can lead to either isolated or clustered hydroperoxides. The extent of 

clustering is influenced by the efficiency of an intramolecular backbiting reaction that leads 

to the generation of new tertiary, secondary and prirnan radicals, of which 

secondary radicals describe the majority. Hydroperoxidc decomposition may be ach -

by homolytic thermal breakdown (4, 5). acid catalyzed transformation (7.8). and radical 

abstraction of the u-carbon hydrogen (9, 10). Monomolecular thermolysis (4) and 
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bimolccular thermolysis (5) arc boih plausible in ihis system and lead to chain branching 

[18, 22; 13, 20, 22], I lydropcroxidc thermolysis (4, 5) can induce main-chain scission, 

affording an end-chain kctonc fragment and carbon radical (6), side-chain scission, 

affording an in-chain kctonc and methyl radical (6) /7,15, 16, 13, 19] , and dehydration in 

the case of secondary hydroperoxides, affording an in-chain kctonc (18). 1 Ictcrolytic bond 

cleavage via acid catalysis affords chain scission, an end-chain kctonc fragment and end-

chain alcohol fragment (7), or dehydration, with in-chain ketonc formation (8) /15, 21; 15/. 

Carboxylic acids may also catalyze homolytic bond cleavage via a 6-mcmbcrcd cyclic 

transition state. a-Hydrogen abstraction by pcroxyl radical leads to spontaneous 

hydropcroxide breakdown and ketone formation (9) [15]. It follows that a similar reaction 

mediated by hydroxyl radical (or even alkoxyl radical) may occur in selected regions of 

polypropylene under the experimental conditions employed {10) [19. 24]. As hydroxyl 

radical and ketonc are co-produced (8,9), their juxtapositioning could promote the 

formation of carboxylic acid (11) [13, 17]. The effectiveness of this transformation is 

anticipated, as the two components may be unable to separate quickly and therefore mimic 

the cage effect that is known for viscous polymer melts. The production of esters by a 

similar radical transfer process (12) has been discussed ft 3. 17]. In addition to ketonc and 

ester formation, the alkoxyl radical contributes to alcohol formation via hydrogen 

abstraction and radical transfer (13) [IS, 19, 20, 22]. Related hydroxyl-mcdiated transfer 

reactions, identical to initiation (2). also occur. Termination is governed by the homolytic 

recombination of hydroxyl, alkyl, alkoxyl andperoxyl radicals (14-18). Alkyl radicals arc 

typically short lived, rccombining with alkoxyl radicals to afford ethers (14) or hydroxyl 

radicals to form alcohols (15) [11; 13, 14]. Secondary and tertiary pcroxyl radicals may co-

tcrminatc, affording alcohol and kctonc (16) [24, 25]. intcrmolecuiar hydrogen abstraction 

by alkoxyl radical at the p-carbon of a secondary- hydropcroxide a fiords alcohol, kctonc 

and aldehyde, with concomitant chain scission (17) /13, 26]'. Secondary alkoxyl radicals in 

particular can also terminate via hydroxyl radical-assisted dehydration (18) [II, 26/. 
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The oxidalion may be generally viewed as a partially ordered, weigh I-averaged 

summation of radical-mediated propagation, transfer, scission, and termination pathways, 

as well as radical, thermal and acid-caialy/ed peroxide decomposition pathways. The 

observed yields arc of course subject to variation by any number of alternate pathways. 

Alcohol, for example, may be transformed by oxidation to carbonyl and even to carboxylic 

acid. Short-lived aldehydes arc known to easily proceed to the carboxylic acid. Esters can 

also be produced by reaction of aldehyde and hydroperoxide precursors. Persulfate 

concentration, local oxygen availability, pH. temperature and polymer structure are some 

parameters that can influence the absolute and regional distribution of the four radical types 

and the final product distribution. 

In interpreting the results of reaction with persulfate, another matter to point out is 

that attenuated total reflectance describes the state of sub-surface groups. With respect to 

achieving good surface bonding, however, only the nature of surface-exposed groups bears 

primary importance, as only those functional groups will define the choice of reagent used 

in the subsequent synthetic step. On the basis of the above discussion and the fact that 

reactions were initiated at the surface, the groups positioned thereon likely bear similarities 

to those noted in the immediate underlying layers. Surface-positioned carboxylic acid, 

kctonc and hydroxyl groups in particular arc very strong candidates. The longevity of ester 

groups in particular was questionable in light of acidic and hydrolytic conditions at the 

surface, which could afford additional acid and alcohol groups. Similarly, ethers were not 

considered, as they offered little advantage for synthetic purposes. 
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(v) Extent of Penetration of Oxidation 

The penetration depth of the oven-mediated oxidation reaction was investigated 

using ATR-ITIR methods. The carbonyl region in particular was pre-selected as it bore the 

most notable changes. The ATR-ITIR spectra show a decrease of the complex carbonyl 

signal intensity with every successive removal of the topmost surface layer (Figure 23). 

Figure 23: ATR-ITIR sptjctra of carbonyl region (vt- <> - ' 725-1705cm' ) illustrating the 

loss of carbonyl signal with increasing penetration deplh 

Each layer removed was approximately lOmicrons in thickness, implying thai the extent of 

oxidation had penetrated fat deeper into the plastic than could be measured using the AIR 

accessory. The sequential debridement/ATR strategy therefore described a convenient 

method to assess the regional stale of functional groups. By extrapolating to zero signal, the 

depth of oxidation was estimated at lOOmicrons penetration. Signals lo the right of the 

carbonyl region were attributed to increasing amounts of sand paper residue impregnated in 

the plastic. 
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(vi) Microscopic Analyses 

The oxidation reactions afforded tubes which showed not only a change in Ihcir 

chemical properties, bul also a change of their physical surface properties. This change was 

readily apparent, because the tubes showed an optical effect after oxidation best described 

as slight whitening (figure 24). Ammonium sulfate reacted controls did not afford this 

physico-chemical change. 

Figure 24; Opacity noted following oxidation 

(left: control, right: modified). 

Optical microscopic results pointed out, that this effect was caused by macroscopic 

paral lei cracks in the skin layer, densely arranged and running horizontally along the walls 

of an upright tube (figure 25). Such cracks were only \ icwed in persulfalc treated tubes and 
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Figure 25: Macroscopic cracks seen in treated surfaces (left) and the cracking border 

between oxidized and unreacted surfaces (right) observed by optical microscopy. 

more specifically were restricted to the areas having had direct contact with solution. 

precluding the effects of heat as a sole cause. Identical material above the solution line 

appeared normal. These densely clustered cracks measured on the tens of microns scale. 

Apart from the appearance of cracks, the overall integrity of the wall had not changed 

significantly. Less cracks wore noted in tubes that were incubated lor less time, indicating 

that crack formation was cumulative and additional cracking upon drying of the tubes was 

not observed, ruling out the likelihood of a significant drying effect [27,28]'. 

The macroscopic pattern obtained was rationalized as stress-related cracking, given 

the physico-chemical nature of injection-molded polypropylene and Ihe shape and 

orientation of the cracks. The cracking appeared to require chemical initiation and was 

likely governed by the micromorphology of the skin layer ami associated anisotropic 

stresses. Similar patterning had been observed in healed, weathered and laboratory 

irradiated samples [29, 30J. 

All tubes modified using the different oxidation methods showed the same 

macroscopic cracking effect, lubes which were modified under mixing conditions showed 

slightly less cracking. 
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Further investigations were made using scanning electron mieroscopy (SEM) 

methods to examine the lopological properties of the reacted surfaces. By this method, the 

depth of crack formation was observed along the broken edges of a sample. The crack 

depth was variable and estimated to be in the order of 20um (Figure 26). 

Figure 26: SKM micrograph of APS-treated, oven-healed lube taken from the cross-

sectional viewpoint but tilled slightly towards die inner face. 

Using higher magnifications, a spaghetti-like mesoscopic topology was noted that was 

reminiscent of the microvilli in brush border membranes (Figure 27). 
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Figure 27: SEM micrograph of APS-treated, oven-healed surface showing mesoscopic 

spaghetti-patterning on Ihc inner lace. 

In contrast, the sulfate-treated control surface remained smooth (Figure 29). Also, a gain of 

surface area of an order of magnitude was estimated by contrasting the image following 

oxidation (Figure 30) against that of an untreated control surface (figure 28). 

C.V M.'iqn Exp 
.00 kV 6000x 1 

Figure 28: SEM micrograph of native Bppendorf Tube surface. 
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I igure 29 SEM micrograph of sulfaie-mcdiatcd surface treated in oven 

Figure ; n SEM micrograph of \PS treated surface modified in oven 

('ross-sectional views obtained at higher power resolution (results nut shown) could not 

-TI the base position of the spaghetti pattern, but the depth of penetration was estimate 

from the image to be on the order <»l KiOnm 



The seemingly chaotic patterning in fact displayed elements of regularity. Tor 

example, the individual tentacles or "spaghetti" pieces had the same approximate diameter 

and separation. This appearance initially suggested that the persulfate reagent had 

commenced attack preferentially at amorphous regions of the polymer residing within the 

topmost regions of the skin layer. Upon reconsideration, however, it appeared that a 

patterning of this regularity may have been created by oscillation of oxidation reaction. 

Oscillation may occur whenever the equilibrium of individual steps of an overall chemical 

process is shifted, usually by temperature. The shift can be more dramatic if the supply and 

removal of chemical species is diffusion limited because diffusion coefficients arc less 

sensitive to temperature effects than are those of typical chemical processes. It follows that 

under the appropriate experimental conditions, reagent access to a surface site and product 

removal from that site could spatially and temporally mediate a process, thereby affording a 

pattern [31]. 

With respect to the free radical-promoted oxidation of polypropylene, the 

possibility of a chemical oscillation and consequential pattering of the surface was 

considered in view of the fact that stirring was not employed during the oven modification 

and a diffusional constraint, namely, a surface, described pan of the reaction system. BET 

surface area estimates were attempted of crushed tubes pooled together, however, the 

samples prepared nevertheless demanded detection at threshold levels and their 

measurements proved irreproduciblc, 

Spccdvac modified surfaces showed the same topologieal properties like the oven 

modified surfaces with respect to a slight decrease of the density of the mesoscopic 

patterning (Figure 31). This decrease is based on vibrations of the speedvae during the 

modification caused by mild centrifugation. This vibration was interpreted as a kind of 

mild mixing, which disturbs the diffusion system of the reaction and the chemical 

oscillation, resulting in a less patterned surface [31J. In contrast, micrographs of the 
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Figure 31: SFM micrographs of APS treated surfaces modified in speedvac. 

surfaces modified by thermomixer oxidation methods indicated thai the mesoscopic 

patterning was lost. During this kind of modification tubes were constantly mixed, resulting 

in a drastic loss of the chemical oscillation of the system. With the loss of this reaction-

diffusion system, no chemical oscillation could take place and no mesoscopic patterning 

was noted (Figure 32). Current efforts are focused on validating the basis of the patterning, 

cv Magn Exp 
00 KV 5000* 1 

Aoc.V Magn EJ?I I 1 1 m 
2 00 *V 20000* 1 PCR APS TR 

Figure 32: SUM micrographs of APS treated surfaces modified in thermomixer. 

elucidating any variations in functional group composition along the surface, and 

exploiting any regional differences of physico-chemical features, such as wettability. 
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Figure 34; Possible modes of protein binding to oxidized polypropylene. 

an assortment of hydroxyl caboxylic acid and Icetone functions The hydroxyi and 

carboxylic acid groups intend with polar residues on the protein and achiexe binding via 

ll-bonding and dipole-dipole interaclions. Carboxylic acid groups in addiion can form sail 

bridges with protein amino groups (Figure 34:A) [33-35]. Further, protein amino groups 

can form imincs with ketoncs, In this ease presumably, iminc formation with protein 

ammino groups leads to protein immobilization, although the imine formation i\ revere 

We/36/. 

While the increase of binding was undeniable due in part to an increase of surface 

area, the chemical nature of the surface-protein interaction ilso important to consider 

In case of native tubes, the binding process is due to tmlrophohic-hydrophobic interactions 

In the case of oxidi/ed tubes, however, the binding process presumably dominated b> 

|K)lar interactions [33-35/. 

\\ ashing of the surfaces showed that the proteins were not adsorbed permanently 

and were able to leach off during the washing procedures. Proteins were usualk retained 

during the high-salt washings nut could be removed during the low-salt washings 

(Figure 35). 



Figure 35: Photograph series illustrating three tubes incubated »i th protein 

(leftmost protein incubated with shaking; center protein incubated without shaking: 

rightmost: oxidized tube not applied to protein incubation) and washed in parallel fashion 

< left picture; after remo\ ing excess protein solution: center picture: washing briefly with 

water, right picture after u n more w ith w 

Differences in protein adsorption between oxidized surfaces thai were modified 

using different methods could be noted Oxidized surfaces a Horded b> the speedvac 

modification released adsorbed protein slightly faster (not shown) than surfaces modified in 

the oven. Surfaces modified by thennomixer methods released the adsorbed proteins most 

rapidly, within the first washing. Ihcse results strong!) - t thai the mesos 

patterning ofthe surfaces had a great influence M I protein adsorption Surfaces with 

undulating patterns hound and retained protein in higher yields than surtSM es w ith little or 

no mesoscopic patterning. 
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2.4 Conclusion 

Oxidation of Eppendorf Safe-Lock tubes :!i?cd using three methods in which 

concentration and reaction-diffusion parameters were varied < ontrasting topologies were 

alTordcd as a result. In each case, inert surfaces were chemically activated to bear Surface-

pendant functional groups and the surface area was increased to different extents by a 

macroscopic and mesoscopic patterning. These ne . . ; properties introduced the 

possibility of enhanced protein immobilization on the surfaces. While macroscopic 

patterning was consistent, the mesoscopic patterning and degree of protein binding could 

be controlled using different methods of modification 
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Chapter 3: Second (Generation Surfaces: ()\idi/cd PP C oated I sin« TEA >N 

3.1 Intrciduclinn 

I he Surface chemistry of polypropylene oxidation was developed in the prc\ ious 

chapter. In particular, results therein indicated that oxidized surfaces were conveniently 

realized Also, results indicated the tubes bound more protein in proceeding Irom native 10 

oxidized state This increase in binding was presumably afforded by surlaee-pendant 

functional groups, which included alcohols. carbo> ds and possibly ethers and c 

as well as by an increased overall surface area. More importantly, the modification afforded 

activated surfaces lor potential use in various applications. That being said, the strategy 

using persulfaie oxidation was limited in the number of different surl -pendant 

functional groups tliat would be alTorded. Considering this fact, the strategy of the 

oxidation was not only used to produce reactive surfaces in this study, but also to lorm an 

intermediate foundation w ith the ability to readily-bond other chemical components, 

resulting in coatings of much greater diversity. The advantage ol realizing diversity in 

coatings is that it introduces the ability to address a multitude of possible applications based 

in rational choice ol"surface groups, compared with the finite functionalities available in 

oxidized surfaces. 

To test the potential of the oxidized surfaces, the condensation products ol 

tetraethoxysilanc (TEOS) were coated thereon, affording high area, pre-class-like surfaces. 

Surfaces featuring silicon dioxide glasses arc generally used in the form of silica 

beads or well-plates for achieving D V \ and mRNA purification in the life-sciences. These 

commercially available surfaces are usually sold exclusively in kits, combined with the 

necessary chemicals. The surfaces are usually difficult to purchase sCparatcl) and are 

offered like the kits, at considerable expense. presumably due to patent constraints. 

The advantage of the herein introduced "silica" coated tubes is that they offer the 

same abilities like the commercial analogs, but can be t ;n any laboratory 

without using any special chemicals or high expense equipment. Another advantage is. that 
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the coated tubes can be prepared on demand or be stored for extended periods. Considering 

these facts, namely, that the surfaces are coated on the inside of standard tubcs,casily 

handled, and precluding of the need of additional laboratory equipment, the concept 

examined in this chapter bears noteworthy advantages compared to commercial glass-based 

packing materials. Most importantly, the technology presented herein is patcntable, as 

current patents cover designs and packing materials, but not any "coatcd-rube" 

technologies. 
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3.2 Materials and Methods 

Silanes, Chemicals, Proteins and Kits 

Tctraethoxysilane (TEOS) was purchased from United Chemical Technologies 

(UCT) Inc. Bovine serum albumin (BSA) and 5-dimethylamino-1 -naphthalenesulphonyl 

chloride (dansyl chloride) were obtained from Sigma-Aldrich Laborchemikalicn Gmbll. 

Dialysis bags (3500 molecular weight cut-off) were obtained from Pharmacia. Total 

mRNA-cxtraction and mRNA-purification kits were supplied from QIAGEN. Deionizcd 

water (18Mii/cm ) was produced in-housc using a Millipore Academic system. Reagent 

grade solvents were obtained from commercial suppliers. 

3.2.1 General Methods (CM) 

(i) Preparation of Silane Solutions 

Solutions of tctraethoxysilane (TEOS) of the composition organosilanc/j'-propanol 

(1:94) were prepared in Falcon Tubes (50ml). After the mixture was agitated well using a 

VBLP brand vortex, water (5%) was added to initiate the condensation reaction. These 

solutions were incubated (15min, RT) affording the intermediate condensation products of 

TEOS. The TEOS solutions were freshly prepared before each experiment to maintain 

consistency of the condensed products. 

(ii) Washing and Drying of Coated Surfaces 

Following incubation, the reaction solutions were removed from the tubes using a 

pipstte. Residing solutions were eenlrifugcd using an Hppendorf brand micro-centrifuge 

(13200rpm, 1 min) and subsequently removed. To wash the inner surfaces, the tubes were 
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filled with /-propanol. After withdrawing the washing solutions the tubes were dried in 

vacuo (70°C, 2h). To remove adsorbed but not immobilized reagent, as well as to assure 

the total hydrolysis of residual ethoxysilanol bonds leading to maximum crosslinking of 

immobilized reagent, the tubes were onee filled with water to the top. After the water was 

removed with the aid of a pipette, the tubes were dried again in vacuo (70°C, 2h). 

(Hi) Preparation and ATR-FTIR Analysis of Kppcndorf Tubes 

Eppcndorf Tubes were prepared in a way that would permit effective analysis using 

the attenuated total reflectance (ATR) accessory of the FTIR instrument. As excessive 

bending of samples during the sample preparation yielded poor ATR-FTIR spectra, this 

modification to the method was introduced to protect the crystal structure of the polymer. A 

cylindrical piece with an approximate height of 3mm was cut from a region just above the 

hemispherical base of the tube using a razor blade heated in a Bunsen burner. The 

cylindrical ring was frozen in liquid nitrogen and shattered into small pieces with 

approximate dimensions of 2x3mm. These pieces were then in vacuo (40°C, 2h). Samples 

prepared in this way had little or no damage to the crystal structure but nevertheless some 

bore thick edges, which arose from the cutting action of the hot blade. These regions were 

carefully exercised with a flat-edged razor blade. The samples were tightly fixed over the 

measurement window of the ATR accessory of a Brukcr model Equinox 55 infrared 

spectrophotometer. Twenty scans were averaged and displayed using rubber-band 

correction at 70 points in the Bruker OPUS V3.1 software of the system. 

(iv) Trace Dansylation of Bovine Serum Albumin (BSA) 

Heat-shock fractionated BSA (lOOmg) was dissolved in water (10ml) and the pi 1 

value was adjusted to 9 using sodium hydroxide solution (1M). 5-Dimcthylamino-1 -

naphthalenesulfonyl chloride (Dansyl chloride, 5nig) was dissolved in aeeiontrilc (100j.il) 

and slowly added to the gently stirring BSA solution maintaining the pH value between 8 

and 9 using sodium hydroxide solution. After 1 h, the solution was delivered into a dialysis 
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bag and dialyzed (25°C) against 3x4L water. Ninhydrin color analysis of native albumin 

and dansylatcd albumin indicated that at most 10% of the amino groups had been 

transformed into the sulfonamitie fluorophore. The dansylatcd protein was stored at 4°C. 

(v) Immobilization Method for Trace Dansylatcd Protein UV Analyses 

A portion of the dansylated BSA slock was added to excess salt solution (1M NraCl) 

in order to afford a dilute stock (0.3mg protein/ml, pH 7) that would be appropriate for 

immobilization studies. This solution was transferred in the modified tubes and incubated 

(37°C, 1 -5h). The solution was withdrawn, and the residing liquid was pooled by 

centrifugation and collected using a pipette. Photographs were obtained using an Uvitec 

UV-box with an Ihi CCD camera mounted. The tubes were filled with aqueous sodium 

chloride solution (1M, 1ml) and agitated (2min). The washing solution was withdrawn and 

the tubes were again photographed. Next, the tubes were washed with water and similarly 

documentaied. After that, the same washings were performed with 10% Triton X100 and 

10% NP-40 solutions. Photographs were taken after every washing. 

3.2.2 Second Generation TF.OS Coating Procedure 

Previously oxidized Eppendorf Tubes were incubated (RT, 1 .5h) with freshly 

prepared activated TEOS solutions (1.5ml). After reaction, the tubes were washed and 

dried as described previously (GM). Samples were prepared using standard procedures 

(GM) and examined using ATR-FTIR analysis. Additionally, the swelling properties of 

TEOS-coatcd tubes w:ere crosschecked against native tubes by incubating toluene in native 

and coated tubes (1ml, 70°C, 2h). To examine the ability of the silica coated surfaces to 

bind protein, immobilization studies using trace dansylated BSA were carried out. 
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3.2.3 Life-Science Application of TEOS-Coalcd Surfaces: inRN \ Purification 

I ppendorf Tubes were oxidized and coated using Ti t )S with the intention to 

perform mRNA purification out of total RNA. Two different coating methods were tested. 

The purification was carried oui using established QIAdEN protocols and QIAGI \ 

_:ion solutions. The mRNA purification using TOi S-coaicd rubes was validated and 

quality-checked against a parallel purification using the QIAOEN Otigotex Spin Column. 

(i) Preparation of Oxidized Surfaces lor mRNA Purification 

F ppendorf Tubes filled with APS solutions 11\1. 1.5ml) were fixed in an oven as 

discussed before and incubated (70°C, 24h). Following reaction, the solutions were 

discarded, and tubes were rinsed with water and dried (70°(\ I6h). 

(ii) TKOS Coating Procedures for mRNA Purification 

TEOS solutions (A and II) were freshly prepared. Solution A had a composition of 

TKOSH :0/-propanol(l:10:lX9)andsoluuonBhadacomrK>sitionofTl(»s 1 : \ 11 0 i-

propanol (1:2:10:! 87). These stocks were pfcactivatcd iRT. lOmin) and delivered into the 

previously oxidized F.ppendorlTubes. Following incubation | Iml. RT, 30mm), solutions 

were withdrawn and the tubes were agitated with /-propanol <2.5ml>. The solvent was 

removed using a pipette, and the lubes were imcrtcd (4mm) and dried as such in an oven 

(40°C\ 28h). A final rinse with water and drying step (40CC, 20h) was performed. 

(iii) Isolation of Total RNA 

Plant material iTriticum dumm. lOOmg) was pulverized in an RNase-free, liquid-

nitrogen cooled mortar. The material was immediately transferred into an RNase-free, 
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liquid-nitrogen cooled 2ml capacity Eppendorf Tube. RLT Buffer (450ul) was added 

onto the plani powder and Ihc Suspension was vortc - mplc was incubated (3min. 

56 C) lo ensure better tissue disruption. The lysate was transferred into a QIA Shredder 

Spin Column placed in a 2ml capacil) collection tube and centrifuged I I4,000rpm, 

2min). Supernatant was carefully transferred into a fresh RNase-lVee tube without 

disturbing the cell debris at the bottom of the hppendorf lube. One half \olumc oi 

ethanol was added to the clear solution. The liquid was mixed by the gentle, oscillating 

push-release action of a pipette. A sample was delivered into an RNeas) Mini Column 

placed in ■ 2ml capacity collection tube. The column was centrifuged ( lO.OOOrpm. 30s) 

and the flow-through was discarded. The remaindc .• sample was applied into the 

same column and the centrilugation procedure was repealed. RWI Buffer (700ul» was 

added to the RNeasy Column and cenirifugcd < lO.OOOrpm, 30s) I'he now-through and 

the collection tube were discarded. I he column was transferred into a collection lube. 

RPE Buffer (500MI) w a s added into the column. The column was cenirifugcd 

(lO.OOOrpm, 30s). The flow-ihrough was discarded. I he prc\ ions step using RIM buffer 

-epcated but this time centrifugal ion was extended 2min i I o elutc the total RNA. 

the contents of the column were placed into a new RNasc-frcc 1.5ml capacity F.ppendort 

Tube. RNase-free water (>0ul) was placed directly onto the silica membrane and 

incubated (Imin. RT). The column then was centrifuged (lO.OOOrpm. Imin) to clute total 

RNA. The collected total RNA sample was quantified spectroscopically ( \ 

1 »40ug. ml) and visualized and validated on an agarosc gel. 

(iv) mRNA Isolation from Total RNA 

The Total RNA solution was divided equally and one half was processed in the 

QIAGFN Oligotcx Spin Column while the other was processed in the surface-modified. 

2ml capacity Eppendorf Tubes. 
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Purification Following Established QIAGEN Protocol 

Oligotex suspension was ramped to 37::C in a heating block, vortexed and stored 

(RT). In the meanwhile, the sample was topped off with RNase-free water to ihc 250ul 

mark and an equal volume ofOBB BufTcr (250,ul) was added. The Oligotex suspension 

(15ul) was carefully delivered into the tube. The contents were mixed by gently flicking 

the tube. The sample was incubated (3min, 70°C) to impede/disrupt any possible RNA 

secondary structures. The sample was incubated (lOmin, RT) to permit hybridization. 

The sample and Oligotex was centrifuged (I4,000rpm, 2min) and the supernatant was 

carefully removed. The pellet was resuspended in OW2 Buffer (400ul) by the gentle, 

oscillating push-release action of a pipette and the contents were transferred into a small 

spin column. Following centrifugalion (14,000rpm, lmin), the column was placed into an 

RNasc-frcc 1.5ml Kppendorf lube, and OW2 buffer was added (400(ul). The sample was 

centrifuged (14,000rpm, lmin) and the flow-through was discarded. The spin column was 

transferred into a new RNase-free 1.5 ml Hppendorf tube. Hot OEB Buffer (50ul, 70°C) 

was added to the column and the resin was resuspended by the gentle, oscillating push-

release action of a pipette. The column was centrifuged (I4.000rpm, lmin). Hot OEB 

buffer was added twice again to maximize the yield of mRNA. 

Purification Using TEOS-Coated Tubes 

The sample was transferred into a TEOS-coatcd tube and topped off with sterile, 

RNase-free distilled water up to the 250j.il mark. An equal volume of buffer (250ul) was 

delivered into the column. The sample was incubated (3min, 70°C) to impede/disrupt any 

possible RNA secondary structures. The sample was incubated (20min, RT) in a shaker 

to permit hybridization. The tube was washed with OW2Buffcr (500ul). mRNA was 

clutcd by exposing all accessible surfaces with OEB Buffer (I OOul). Water was also used 

successfully in place of clution buffer. 
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(v) Amplification and Analysis of Purified mKNA 

The target mRNA was amplified using standard revcrse-lranscriptase polymcrasc-

chain reactions in an Kppendorf brand Thcrmocyclcr. Withdrawn samples were migrated 

in an agarose gel (1.5wt%, 100V, 45min) inoculated with ethidium bromide. The gel was 

photographed using an Uvitec model Biolab CCD earner equipped UV-box (254nm, 

320ms integration time). 
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3.3 Results and Discussion 

(i) TEOS Coating 

Previously oxidized Eppcndorf Tubes were reacted with solutions of TEOS, 

affording the 2nii generation TEOS coating. The coating reaction was monitored using 

ATR-FTIR spectroscopy. The discussion herein is based on the results of these 

measurements and on basic organo-silanc chemistry. 

The TEOS coating is presumed to occur by a multistep-reaction (Figure 36). The 

first step of the reaction, initiation, was performed by adding water to the TEOS-/-

propanol solution. TEOS was hydrolyzod, affording the hydrolysis products and ethanol 

(A). The hydrolysis products rapidly followed a dimerization pathway via intramolecular 

condensation, wilh concomitant loss of water, affording on oligomcric network between 

the hydrolyzed TEOS molecules (B). It is noteworthy that hydrolysis and condensation of 

TEOS overlap. By the principle of chemisorption, dimcrs shown in the diagram dock 

onto surface-pendant hydroxyl groups via hydrogen-bonding interactions (C). 
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Figure 36: Hydrolysis, dimerization and chemisorption of TEOS 
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Finally the hydrogen bonds transform into covalent bonds via condensation induced by 

heat (Figure 37:D)/V, 2], 

OH OH 
HO-Si-O Si OH 

6 o 
11 ii i i i i 

.. ° ±™ 
1) 

Figure 37: Condensation of TEOS hydrolysis products 

This process normally docs not a monolaycr coating. By repetition of the first reaction 

steps (A-C), multilayers of silanes can build up, typically forming 5-15 layers in typical 

deposition protocols. Curing (D) accordingly afford a multilayer coating of TEOS on the 

surface of the oxidized tubes [3J. 

The ATR-FTIR spectra pointed out, that the lubes reacted with TEOS solutions 

showed a low, but significant change in the lower fingerprint region (1200-KOOcm*1) 

(Figurc38) that was consistent with the Si-0 stretch of siloxancs. In light of the threshold 

sensitivity of the ATR unit, it followed that a multilayer must have been formed as 

anticipated. Therefore this spectral data validates a successful coating. Changes in 
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Figure 38: ATR-F1IR spectra of oxidized (blue) and TEOS-coated (red) polypropylene 

surfaces 

surface bonding were only observed in the lower fingerprint region. The result was 

encouraging, as ketones and carboxylic acids should not have reacted with the silanes 

during the coating process. Only surface hydroxyl groups should have reacted with the 

silancs, however, no change was anticipated nor observed in the high-frequency region 

(4500-3000em-1) as the silanc-surface offered the same equivalent of silanc-bound 

hydroxyl groups like the oxidized surface. Upon further consideration it was noted at any 

rate that the ATR accessory was incapable of examining only the surface-pendant 

hydroxyl groups due to sensitivity considerations. A peak for the Si-O-C stretching, 

centered at 1115cm"1 and the peak at 889cm*1 which corresponded to non-binding oxygen 

sites in the silica network confirmed a successful coating [4 - 6j. 

Swelling experiments implemented by incubation of toluene in the TEOS-coated 

tubes validated the presence of silica multilayers coating the inner surface of oxidized 

Eppendorf Tubes. While native and oxidized tubes afforded longitudinal expansion 

during the toluene incubation. TEOS-coated oxidi/cd lubes afforded no significant 

.'n 



changes in the dimensional properties. This observation suggested, that the surfaces of 

the oxidized lubes were completely coated with a pre-glass layer, which was 

impermeable to solvent. 

(ii) Protein Immobilization 

Trace-dansylated BSA was immobilized on the ILOS-coated surfaces during the 

studies. Like the organic surfaces, protein adsorbed during the incubation was retained in 

the beginning on the coated surfaces. I lowever, washing experiments pointed out that the 

protein was not permanently bond. Adsorbed protein was able to be washed off during 

(he first washing using high-salt solution. Last remains of fluorescent protein were totally 

removed by the second washing using water (Figure 39). fluorescence remaining on the 

coaled surface corresponded to self-fluorescence. 

Protein binding studies on porous glass have shown that optimal retention occurs 

when the protein size is a little under the pore size of the matrix /?/. This finding 

suggests that the TEOS coating filled the grooves of the mesoscopic topology, possibly 

affording a much flatter surface. 

Figure 39: UV-photographs of protein immobilized on native surfaces (left) and TEOS-

coated surfaces (right). 

(right: unwashed: center: agitated with high salt: right: agitated with water) 
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TEOS-coatcd surfaces retained protein less effectively than the oxidized surfaces. 

Clearly, the coating affected the chemistry and the physico-chemical properties of the 

surface. In contrast to the oxidized surfaces, TEOS-coatcd surfaces bear only hydroxyl 

groups, pendant to the silica coating, as moieties available for protein binding. Surface-

pendant alcohols, carboxylic acids and ketones were not chemically attended during the 

coaling procedures. These reactive groups were no longer accessible for protein binding 

interactions, as they were covered by the silica multilayer. Considering this fact, protein 

binding in the example of TCOS-coated tubes was only governed by hydrogen-bonding 

(Figure 41 :A) and adsorption effects Along the new surface (Figure 40:B) / / , 2, 8J. 
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Figure 40: Plausible protein binding modes for TEOS-coatcd surfaces 

Protein immobilization results indicated that TUOS-coated surfaces could not be used to 

bind protein permanently, but showed potential for possible application as temporary* 

carrier material for biomolcculcs. 
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(iii) mRNA Purification 

Following established QIAGEN protocols, mRNA purification was performed 

using TEOS-eoated surfaces afforded by two different coating procedures. One coating of 

the oxidized tubes was performed using the standard coating procedures, the second 

coating was performed with 1% using triethylamine added as catalyst. 

While the purification using a standard QIAGEN Spin Column (control) proved 

»o be a complex five-step procedure, the mRNA was purified using a simplified two-step 

procedure based on TEOS-coated tubes. The liV-analyscs point out that organic material 

with an approximate size of 250 base pairs, was extracted out of the Total RNA 

(figure 41). The result matched the base pair sizes of the material extracted by the 

QIAGEN Spin Column (result not shown), which indicated that mRNA was successful 

purified out of Total mRNA using TEOS-coated surfaces. 

Figure 41: Elect rophorcsis results of the mRNA purification visualized under (JV-lighl 
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While the ATR-FTIR spectral data from the two TEOS methods differed (results 

not shown) no effect of this difference between the surfaces was reflected in the 

purification. This indicated that catalyst-activation need not to be used during the chemical 

coaling reactions, in contrast to typical sol-gel processes (9j. Quantitative experiments 

using Real-Time-PCR procedures were not performed in this study, but will form the basis 

of continuing investigations. Considering the fact thai modified tubes of 2.0ml capacity had 

proven slightly inconvenient for applications on the micro liter-scale, parallel investigations 

using Eppendorf PCR Tubes of 0.2ml capacity and Eppendorf polypropylene pipette tips 

are being conducted. Results of these investigations will be presented elsewhere. 

3.4 Conclusion 

Second generation, TEOS-bascd coatings were realized on previously oxidized 

surfaces, introducing new chemical and topological properties, and applications to the 

material. Tubes coated with TEOS were relatively impermeable to toluene, introducing the 

idea that pre-glass coalings could be used to render polypropylene gas-irnpcrmcablc. The 

idea is currently being tested using oxygen. A significant application made possible by the 

TEOS coating was the realization of mRNA purification. Initial steps in the patenting 

process for this method have been taken, as this method seems to be not only a convenient 

method for in-house production of surfaces for mRNA purification, but also could be 

feasible for industrial-scale production. 
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Chapter 4: Second (.cm-ration Surfaces: Oxidized PP Coaled Using TMPDT 

4.1 Introduction 

The results of the 2nd generation TEOS-coating experiments indicated that coatings can 

be used subsequently to increase the functionality of oxidized surfaces (Chapter 2). 

Indeed, the results indicated that silanes can be used to coat oxidized surfaces in a 

convenient way using simple reaction procedures. The advantage of using silanes as 

coating materials is such that hundreds of different silanes arc available and can be 

purchased from commercial suppliers. This fact offers immense possibilities for surface 

coatings affording different functional groups. To give some examples, surfaces bearing 

alcohol, amino, bromide, carboxylie acid, chloride, ester, ciher groups in different 

aliphatic and aromatic variations can be produced easily using simple incubation 

methods. The surfaces afforded offer exceptional flexibility in life-science and chemistry 

applications, as the functional groups themselves may also serve as intermediates. 

allowing the formation of 3 rc generation coatings using non-silanc reagents. For example, 

silane-coatcd surfaces can be reacted with linker-reagents, affording protein-specific 

binding. Like other reactions discussed in this study, such modifications arc very likely 

cost and time efficient and benefit of their ease. 

While the TEOS method afforded a simple coating bearing surface pendant 

hydroxyl groups, further investigations were made lo yield amino functionalized surfaces. 

The rationale for coating surface-pendant amino groups was to afford surfaces with the 

ability to bind proteins. For this purpose oxidized surfaces were coated with 

trimethox>^ilylpropyldiethylenetriaminc (TMPDT). Like other reactions in this study the 

coating method improved facility and cost efficiency, while the tube format featured easy-

handling. 
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4.2 Materials and Methods 

Silanes. Chemicals, Proteins 

Trimcthoxysilylpropyldicthylenelriaminc (TMPDT) was purchased from United 

Chemical Technologies (L'CT) Inc. Ninhydrin (99%). bovine serum albumin (BSA) and 5-

dimcihylamino-l-naphthalcnesulphonyl chloride (dansyl chloride) were obtained from 

Sigma-Aldrich Laborchcmikalicn (JmbH. Glutaraldchydc was purchased from Merck 

KGaA. Dialysis bags (3500 molecular weight cut-off) were obtained from Pharmacia. 

Deioni/cd water (I8M£lcm') was produced in-house using a Milliporc Academic system. 

Reagent grade solvents were obtained from commercial suppliers. 

4.2.1 General Methods (GM) 

(i) Preparation of Aminosilunc Solutions 

Solutions of trimcthoxysilylpropyldicthylcnc-triaminc (TMPDT) of the 

composition organosilanc'V-propanol (1:94) were prepared in Falcon Tubes (50ml). Alter 

the components were mixed using a VELP brand vortex, water (5%) was added to initiate 

the condensation reaction. This solution was incubated (15min. RT) affording ihc 

intermediate condensation products of TMPDT. TMPDT solutions were freshly prepared 

before each experiment to maintain consistency of the condensed products. 

(ii) Washing and Drying of the Coated Surfaces 

Following incubation, the reaction solutions were removed from the tubes using a 

pipette. Residing solutions were ccntrifuged using an Eppcndorf brand micro-centrifuge 

(I3200rpm, lmin)and subsequently removed. To wash the inner surfaces, the tubes were 
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filled wilh f-propanol. Alter withdrawing the washing solutions the tubes were dried in 

vacua (70°C, 2h). To remove adsorbed but not immobilized reagent, as well as to assure 

the total hydrolysis of residual mcihoxysilanol bonds leading to maximum crosslinking of 

immobilized reagent, the tubes were once filled with water to the top. After the water was 

removed with the aid of a pipette, the tubes were dried again in vacua (70CC, 2h). 

(iii) Preparation and .Ninhydrin Analyses of Coated surfaees 

Ninhydrin solutions were prepared in Faleon Tubes (50ml) of the composition 

ninhydrin.'7-propanol (99:1) using a VELP brand vortex and a Bandelin Ultrasonic Bath 

model SONOREX. 

Accessible surface-pendant amino groups were verified by incubating the tubes 

(70°C, 40min) wilh ninhydrin solution (1 %, 1.5ml). After the reaction, in which color was 

afforded, ninhydrin solutions were withdrawn and the tubes were washed extensively with 

water and dried (RT). Ninhydrin analyses were performed directly in the coated tubes. 

Ninhydrin solutions were freshly prepared before each experiment. 

(iv) Preparation and Glutaraldehyde Analyses of Coated Surfaces 

Aqueous glutaraldehyde solutions (5%) were prepared using falcon tubes (50ml) 

and a VELP brand vortex. 

As with the ninhydrin analyses, no sample preparation was necessary. Rcagent-

acccssiblc amino groups were crosslinkcd using these glutaraldehyde solutions (1.5ml, 

40°C, 2h). Afterwards the reaction tubes were rinsed well wilh water and dried (RT). 

Glutaraldehyde solutions were freshly prepared before each experiment. 
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(v) Preparation and ATR-I-TIR Analysis of Eppcndorf Tubes 

F.ppendorf Tubes were prepared in a way that would permit effective analysis usinji 

the attenuated total reflectance (ATR) accessory of the FTIR instrument. As excessive 

bending of samples during the sample preparation yielded poor ATR-FTER spectra, this 

modification to the method was introduced to protect the crystal structure of the polymer. A 

cylindrical piece with an approximate height of 3mm was cut from a region just above the 

hemispherical base of the tube using a razor blade heated in a Bunscn burner. The 

cylindrical ring was frozen in liquid nitrogen and shattered into small pieces with 

approximate dimensions of 2x3mm. These pieces were then in vacua (AO°Ct 2h). Samples 

prepared in this way had little or no damage to the crystal structure but nevertheless some 

bore thick edges, which arose from the cutting action of the hot blade. These regions were 

carefully exercised with a flat-edged razor blade. The samples were tightly fixed over the 

measurement window of the ATR accessory of a Brukcr model Equinox 55 infrared 

specirophotomctcr. Twenty scans were averaged and displayed using rubber-band 

correction at 70 points in the Brukcr OPUS V3.1 software of the system. 

(vi) Trace Oansylation of Bovine Scrum Albumin (BSA) 

Heat-shock fractionated BSA (lOOmg) was dissolved in water (10ml) and the pH 

value was adjusted to 9 using sodium hydroxide solution (1M). 5-Dimethylamino-l-

naphthalenesulfonyl chloride (Dansyl chloride, 5mg) was dissolved in acetonlrile (lOOul) 

and slowly added to the gently stirring BSA solution maintaining the pi 1 value between 8 

and 9 using sodium hydroxide solution. After Ih, the solution was delivered into a dialysis 

bag and dialyzed (25°C) against 3x4L water. Ninhydrin color analysis of native albumin 

and dansylated albumin indicated that at most 10% of the amino groups had been 

transformed into the sulfonamide fluorophore. The dansylated protein was stored at 4aC. 
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(vii) Immobilization Method for Trace Dansylated Protein UV Analyses 

A portion of the dansylated BSA slock was added to excess salt solution (1M NaCl) 

in order to afford a dilute stock (0.3mg protein/ml, pit 7) that would be appropriate for 

immobilization studies. This solution was transferred in the modified lubes and incubated 

(37°C, 1,5h). The solution was withdrawn, and the residing liquid was pooled by 

ccntrifugation and collected using a pipette. Photographs were obtained using an Uvitec 

UV-box with an Ihi CCD camera mounted. The tubes were tilled with aqueous sodium 

chloride solution (IM, I ml) and agitated (2min). The washing solution was withdrawn and 

the tubes were again photographed. Next, the tubes were washed with water and similarly 

documenlatcd. After that, the same washings were performed with 10% Triton X100 and 

10% NP-40 solutions. Photographs were taken after every washing. 

4.2.2 Second Generation TMPDT Coating Procedure. 

Previously oxidized Eppcndorf Tubes were incubated (RT, 1,5h) with solutions of 

freshly prepared, half-condensed TMPDT (1.5ml). After reaction, the tubes were washed 

and dried as described previously (OM). TMPDT-coatcd samples were prepared using 

standard procedures (GM) and examined using ATR-FTIR methods. 

Ninhydrin color analysis and glutaraldehyde-mediated surface transformations were 

performed directly after achieving the coating. Once more, visual and ATR-FTIR analyses 

were carried out after applying the standard sample preparation method for these analyses 

(GM). The protein binding performance of the aminated and glutaraldehyde-reactcd tubes 

were investigated by incubating fluorescent BSA on these surfaces. 
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4 3 Results and Discussion 

(i) TMPDT Coating 

Previously oxidized surfaces, bearing carboxylic acid, ketonc and hydroxyl groups. 

were coated wilh layers of TMPDT-silane during ihc performed experiments. The coaling 

procedures were monilored using ATR-FTIR methods. The discussion is based on ihese 

spectral data and on basic organo-silane chemistry'. 

In the coating procedure, TMPDT can presumably bond to the oxidized surface by 

mainly four different reactions.. One possible mode is that the aminosilanes bound to the 

surface in a manner similar to the coating with TROS. A major difference between TMPDT 

and TEOS, however, is lhat the former contains amino groups and as such, the hydrolysis 

and condensation process is auto-catalytic, in a typical reaction. TMPDT should hydrolyze, 

hydrolysis-products of TMPDT dimcrizc, bind to the surface via hydrogen-bonding and 

these hydrogen-bonds finally condense to covalent bonds during the curing procedure / / -

Another possibility is that partially hydrolyzed silanol groups of TMPDT react 

directly with surface-pendant hydroxyl groups without dimerization (Figure 42) [1. 2j. 

L°*Si V Z ^ NH? 
(OR>.. 

h>H R'o'6R<- f° \ ~H ^ -H 

VOR') 
I OH - 11H2O .11+x+y = 3 ji = 1-3 |_o 

\ 
R, R. R"=Mci,H). H 01 Si f 0 - ^ ' >-*H-

Z = C H 2 C H 2 N H C H 2 C H 2 N H C H 2 K>" 

Figure 42: Reaction of TMPDT hydrolysis products and surface-pendant hydroxyl groups 

Aside from the coating reactions initiated by the silanol-icrminatcd ends of TMPDT, the 

aminosilanc moieties could have also bonded to the surface, particularly at the amino-
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terminated end. For example, ihe primary amino group of TMPDT could react with the 

carboxylic acid groups located on the oxidized surface, affording salt bridges (Figure 43) 

[3]. This mode of binding is also available to the two secondary amino groups. Primary 

R'O OR" 
j-cooH — ;:iR 

I R. R\ R" =Me(H). H 01 Si "H3N " "Z ' %\" 
* - „ „ , , „ . „ „ , „ , „ . , . , , . , ? OR" Z= CH2< 'H;NH< 'H^/HbNHCr^ 

Figure 43: Reaction of TMPDT aniino groups and surface-pendant carboxylic acids 

amino groups of the TMPDT could also have anchored through the ketone groups located 

on the oxidized surfaces, affording iminc bonds in the process (Figure 44) [3j. Both modes 

available to the amino groups in principle would leave the si lane portion available for 

subsequent silanc-silanc self-condensation reactions. Reactions of secondary aniino groups 

R ' ° b R " i 
OR" 

R. R ' .R"=Me(H) . H or Si 

Z = CH2CH2NHCH2CH2NHCH2 

Figure 44: Reaction of TMPDT amino groups and surface-pendant kctoncs 

of the TMPDT molecules with surface-pendant kctoncs to form encamtnes also seemed 

possible, but their potential contribution was not investigated further [3J. 

With due consideration to the possible modes of bonding, it follows that the coating 

afforded describes a complicated network of TMPDT surface adduces, self-condcnsaics, 

and physisorbed groupings intertwined in the matrix of the polypropylene (Figure 45). 



/ nU'M.\HnU"Tl'M-K"ll 

Figure 45: Model depicting the resultant coating of oxidized polypropylene by "I'M I'l > 

ATR-FTIR spectral data supported the discussed mechanism (Figure 46). 

Figure 46: ATR-FTIR spectra of the oxidized (blue) and the TMPDT-eoated (red) surfaces 
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Apparent imine formations were consistent with the results in that the intensity of carbony 

groups (vy- o~ 1715cm' ) was reduced approximately by 80% following the reaction. 

implying that the accessible surface-pendant carbonyl groups were attacked by primary 

ammo groups of the TMPDT. The condensation mechanisms were supported by the 

appearance of a strong N-H scissoring signal (VK-H = 1550cm'1} indicating the presence of 

immobilized free amino groups on the surface. Like the spectral data of the TEOS coating, 

the spectra of the TMPDT coating also afforded Si-O-C stretching frequencies 

(vsMM-=ni5cm- ,)/4-67. 

Ninhvdrin tests validated the claim that TMPDT was successfully bound to the 

oxidized surfaces yet bore accessible amino groups (}j. In particular, ninhydrin-reacted 

tubes afforded significant violet-colored surfaces. No color change of the control surfaces 

could be noted during the ninhvdrin reaction (figure 47), consistent with the fact that 

amino groups were absent. Color in the tubes was permanently fixed, characteristic of 

Figure 47: A TMPDT-coated tube followed ninhydrin reaction 

entrapped chromophores from primary amino groups and covalently fixed chromophores 

originating from secondary amino groups. Quantitative ninhydrin analyses of the I MPDT-

90 



coaled tubes indicated thai the loading of amino groups was approximately 

200nmole/frontal cm". 

(ii) Glutaraldchydc Crosslinking 

Following the coaling ofTMPDT, free accessible amino groups were incubated 

with glutaraldchydc. Glutaraldchydc reacted by this procedure aldehyde groups bound to 

the TMPDT-coatcd surface (Figure 48) [7, Sj. Following reaction with glutaraldchydc, 

Figure 48: Reaction scheme for linking of glutaraldchydc to TMPDT-coatcd surfaces 

tubes showed slightly yellow colored surfaces. Glutaraldchydc addition to the surface was 

validated by ATR-FTIR spectral data (Figure 49). In particular, spectroscopy indicated that 
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Figure 49: ATR-ITIR spectra of TMPDT-coated (blue) and glutaraldchyde 

adduei surfaces (red) 

surface-pendant amino groups had reacted with glutaraldchyde solutions, as the N-H 

scissoring frequency (vN.H - 1550cm"1) was eliminated while the carbonyl stretching region 

(v, 0 - 1720-1700cm"') was increased [4 6, 9J. 

(Hi) Protein Immobilisation 

Trace -dan sylated BSA was immobilized onto TMPDT-coated surfaces as well as 

glutaraldchyde crosslinked TMPDT surfaces. UV-analyses thai documented binding on 

TMPDT-coated surfaces pointed out. that protein was retained oil the aminoslilylaled 

surfaces during the incubation protocol Compared to TliOS-eoated surfaces. TMPDT-

coated surfaces retained protein in higher yield. This fact could be explained by the binding 

mechanisms of protein to the surfaces (Figure 50). While proteins bound to the TEOS 

surfaces mainly on the basis of hydro gen-bonding (A) and high surface area ( B) TMPDT-

coated surfaces allowed other modes of protein binding. Primary and secondary amines 
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located on the surface possible reacted with carboxylic acid groups oflhe protein affording 

salt bridges (C)f/0, 11). During the wash procedure, in which high salt solutions and water 

Protein 
OH Oil 

A B 

_ ^Prolcin 

NH3
4 'O 

< 
z 

( 

c 
Z - CH2CH2NHCH2CH2NHCH2 

Figure 50: Protein binding schemes for TMPDT-coatcd surfaces 

were used, the proteins were washed off the TMPDT-coatcd surfaces (not shown), attesting 

to the fact thai proteins were bound by reversible interaction. 

Glutaraldchyde-mediated TMPDT surfaces showed remarkably good performance 

in protein binding. In fact, protein was irreversibly bound to the glutaraldehyde-treated 

surfaces, presumably via iminc formation between primary amino groups of the protein and 

the surface-pendant aldehyde groups (Figure 51 :D) [3. 7, / . In principle cneamines. formed 

H 

Z 

* W A W * N V & 

— Y " 
N 

/ Pro 
\ 

ein 

> 

D 
Z = CH2CH2NHCH2CI [NMCH2 

Figure 51: Protein binding schemes on glutaraldehydc-trcatcd TMPDT surfaces 
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by Ihc addition of secondary amino groups and surface-pendant aldehydes, may also have 

contributed to the irreversibility of the binding process [3J. 

In case of glutaraldehyde-treated TMPDT surfaces protein immobilization was not 

monitored by fluorescence, as previous experience showed that intercalated, unreacted 

glutaraldehyde could quench the fluorescence of dansylated USA. The immobilization 

phenomena was analyzed using ATR-1TIR spectrometric methods. The obtained spectral 

data pointed out that protein, once retained by glutaraldehyde-crosslinking. could not be 

washed off by water or high salt solutions (Figure 52). In particular, spectral data validated 

Figure 52: ATR-FTIR spectra of glularaldehyde-ircatcd surface before incubation with 

protein (black), after incubation with protein (blue), and following high salt washings (red). 

the presence of protein, as signals in the N-H stretching range frequencies (VN-H >3200em ) 

and the amide bond range (v\-.n = 1600-1550cm I) increased significant after protein was 

retained, while stretching signals in the aldehyde carbonyl region (vy o - ' 720-l 700cm"1) 

decreased [4 6. II]. Data obtained after the washing procedures showed no significant 

changes in the spectral profile. It follows that protein was permanently bound to the 

glularaldehyde-ircatcd TMPDT surfaces. 
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4.4 Conclusion 

Oxidized surfaces were successfully coated with solutions of TMPDT to afford 

funelionalized, reactive surfaces highly loaded with primary and secondary ami no groups. 

The TMPDT-coated surfaces didn't retain immobilized proteins permanently, but offered 

possibilities for temporary protein adsorption. Linking of glutaraldehydc tp TMPDT-coated 

surfaces afforded funclionalized surfaces bearing aldehyde groups. With these surfaces, 

protein was irreversibly bound to the modified polypropylene tubes. The results indicated 

that glutaraldchyde-mediatcd TMPDT-coated surfaces showed possible potential for use as 

protein-carriers in biochemistry and life-science applications. 
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General Conclusion 

This investigation was based on the concept of using surface engineering lo better 

integrate ordinary Eppcndorf Sale-Lock Tubes in specialized areas of the life sciences. The 

results summarize that Eppcndorf Tubes were modified easily to afford functionalized 

surfaces. The increase of surface area in particular was a significant development and 

merits continued investigation, as high-capacity plasticwares bearing functional groups will 

likely fulfill the needs of upcoming technologies. In this study, modified surfaces proved 

convenient to achieve mRNA purification and protein immobilization. Syntheses and 

analyses methods exemplified the ease by which researchers can customize and 

characterize their own surfaces. The prospect that a simple method can transform ordinary 

polypropylene tubes into convenience plastics for enzymic processing of substrates in 

analysis and synthesis laboratories should encourage continuing developments in this area. 

Modes of exploiting both the macroscopic and mesoscopie patterning arc currently under 

investigation. 
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APPENDIX 

I. Specifications of Analytical Equipment 

(i) Attenuated Total Reflectance Infrared Spectrometer (FT) 

Broker HQUINOX 55 
IR Spedrophotometer 

Freq. Range: 7500-370 em"1 

Beam splitter: multilayer coating on Kllr 
Detector: D1.ATGS with KBr window 
Inferomctcr: mechanical inferometer with 
ROCKSOMO alignment 
Additional equipment: DTGS, IR-ATR 
(SensIR technologies). TGA-IR 
Software: OPUS V3.1 

(ii) X-Ray Powder Diffractometer 

Broker AXS D8 ADVANCE 

X-ray Diffractometer 

Measuring circles: 435, 5(H). 600mm 
Angular range: 360° 
Max usable angle range: -110° < 2Theta < 168° 
Angular positioning: stepper motor with optical 
encoders 
Smallest step size: 0,0001° 
Reproducibility: ± 0.0001° 
Max. speed: 25°/sec 
SoRware: DIFFRAC Plus 2.0 
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r(DSC) 

NETZSCH DSC 204 Phoenix 

Temp, range:-170 700%* 
Reproducibiliiy: < 0,1k 
Sensitivity: 3-4.5 jiV/mW 
Combined with: TASC 414/4 system controller, 
CC 200C cooling eoniroller 
Software: NETZSCH Measurement 4.1.1 
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