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ABSTRACT 

 

This study focuses on the client-contractor bargaining problem in the context of multi- 

mode resource constrained project scheduling. The bargaining objective is to maximize the 

bargaining objective function comprised of the individual NPV maximizing objectives of both 

the client and the contractor.  

 

Although the well-known multi- mode resource constrained project scheduling 

problem has been under investigation from various dimensions in the literature, this thesis 

proposes a two-player setting to this problem. The solution procedure takes the objectives of 

both players into account. One other proposal we have in this thesis is the bargaining weights 

concept we have used in the model, which is used to determine the bargaining power of each 

player through the negotiation process. The effect of bargaining weights assigned to each 

player on the solution has also been analyzed.  

 

Different payment models have also been investigated in this thesis. We have used 

progress payments, payments at equal time intervals, and payments at activity completions in 

our tests.  

 

Simulated Annealing Algorithm and Genetic Algorithm are proposed as solution 

procedures. Also the solution set of the problem is investigated by further analyzing the non-

dominated solutions. We have conducted sensitivity analysis among different parameters we 

have used in the model. These parameters are profit margin, interest rate, and bargaining 

weights.  

 

The bargaining objective function we have used has been an important part of the 

model itself. We have investigated different solution approaches by using two different 

bargaining objective function formulations in our tests. 

 

 

 

 

 

 

 iv



ÖZET 

 

Bu çalışma, çok modlu kaynak kısıtlı proje planlama çerçevesinde müşteri-müteahhit 

pazarlık problemine odaklanmaktadır. Pazarlığın amacı, hem müşteri hem de müteahhit’in 

bugünkü net değeri ençoklamayı hedefleyen amaç işlevlerinden oluşan pazarlık işlevini 

ençoklamaktır.  

 

Bu problem yazında birçok açıdan incelenmiş olsa da, bu problem iyi tanınan modlu 

kaynak kısıtlı proje planlama problemine çok amaçlı bir bakış açısı önerir. Çözüm her iki 

oyuncunun da amacını dikkate alır. Bu tezdeki bir başka önerimiz de, modelde kullandığımız 

pazarlık ölçütü kavramıdır. Pazarlık ölçütleri, herbir oyuncunun pazarlık sürecindeki pazarlık 

gücünü belirlemek amacıyla kullanılırlar. Herbir oyuncuya atanan pazarlık ölçütlerinin çözüm 

üzerindeki etkisi de incelenmiştir. 

 

Bu çalışmada, farklı ödeme modelleri de incelenmiştir. Testlerde kullandığımız ödeme 

modelleri şunlardır: ilerleme odaklı ödeme modeli, eşit zaman aralıklarında ödeme modeli, ve 

faaliyet bitimlerinde ödeme modeli. 

 

Tavlama Benzetimi Algoritması, ve Genetik Algoritma çözüm yolları olarak 

önerilmiştir. Ayrıca, problemin çözüm kümesi baskın çözümler de tahlil edilerek 

incelenmiştir. Önerilen çözüm metodları kullanılarak birçok test uygulanmıştır. Modelde 

kullandığımız farklı değiştirgelerde hassasiyet taraması yapılmıştır. Bu değiştirgeler; kâr 

marjı, faiz oranı, ve pazarlık ölçütleridir. 

 

Kullandığımız amaç işlevinin kendisi modelin önemli bir parçasıdır. Testlerimizde iki 

farklı amaç işlevi kullanarak, modelde farklı çözüm yaklaşımlarını inceledik. 
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                        1 PROBLEM FORMULATION 

 

In this chapter we investigate the model by a literature survey followed by problem 

formulation and definition. Although, the literature provides a significant amount of study on 

relevant areas, the problem we investigate in this thesis differs by its objective definition. This 

chapter goes through the details of the introduced model. 

 

1.1 Introduction 

 

In this thesis, we consider the client-contractor bargaining problem in the context of 

multi-mode resource constrained project scheduling. The bargaining objective is to maximize 

the bargaining objective function comprised of the objectives of both the client and the 

contractor. The objective of the client is to minimize the net present value (NPV) of the 

payments to the contractor, whereas the objective of the contractor is to maximize the net 

return. The basic difficulty with this problem is that the individual objectives of both the 

client and the contractor are in conflict most of the times, and the bargaining objective should 

consider the incentives of both parties.  

 

1.2 Literature Survey 

 

In the literature, a number of exact and heuristic methods have been proposed for 

solving the single objective resource constrained project scheduling problem with discounted 

cash flows (see, e.g., Herroelen et. al. (1997), Kimms (2001a)). Russell (1970) introduced an 

initial version of the discounted cash flow problem in project scheduling with no resource 

constraints. Grinold (1972) extended the model of Russell by introducing a project deadline. 

The net present value criterion and its impact on project scheduling had been investigated by 

Bey et al. (1981). Baroum and Patterson (1996) had reviewed the development of cash flow 

weight procedures for the problem. Exact solution procedures for the resource constrained 

version of the problem are given among others by Doersch and Patterson (1977), Yang et. al. 

(1993), İçmeli and Erengüç (1996), Baroum and Patterson (1999), and Demeulemeester et. al. 

(2000). A relatively recent review on project scheduling in general is provided by Kolisch and 

Padman (2001). 
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However, exact methods become computationally impractical for problems of a 

realistic size, since the model grows too large quickly and hence, the solution procedures 

become intractable. This led to studies on a variety of heuristic procedures among others by 

Russell (1986), Smith-Daniels and Aquilano (1987), Padman and Smith-Daniels (1993), 

Padman et.al. (1997), and Kimms (2001b). Etgar et. al. (1996) present a simulated annealing 

algorithm solution approach in order to solve the problem of scheduling activities in a project 

to maximize its NPV for the case where the net cash flow magnitudes are independent of the 

time of realization. Ulusoy et al. (2001) investigated the multi-mode resource constrained 

project scheduling problem with discounted cash flows using genetic algorithm. They allowed 

both positive and negative cash flows. In their paper they distinguished among four types of 

payment scheduling models: 

 

• Lump-sum payment. Here, the client pays the total payment to the contractor upon 

successful completion of the project. 

• Payment at event occurrences. Payments are made at a set of event nodes. The 

problem is to determine the amount, location, and timing of these payments. Dayanand 

and Padman (1993, 1997) attacked the problem of simultaneously determining the 

amount, location, and timing of the payments by the client so as to maximize the 

contractor’s NPV. They have dealt with this problem further from the perspective of 

the client (Dayanand and Padman, 1998). Later, Dayanand and Padman (1999) 

investigated the problem in the context of client and contractor negotiation stressing 

the need for a joint view. Ulusoy and Cebelli (2000) extended this payment model so 

as to include both the client and the contractor in a joint model. They introduce the 

concept of ideal solution, where the ideal solution for the contractor would be to 

receive the whole payment at the start of the project and for the client it would be a 

single payment at the completion of the project. They search for a solution where the 

client and the contractor deviate from their respective ideal solutions by an equal 

percentage. They call such a solution an equitable solution. 

• Progress payment. The contractor receives payments at regular time intervals until the 

project is completed. The amount of payment is based on the amount of work 

accomplished since the last payment. Kazaz and Sepil (1996) presented a mixed-

integer formulation of the progress payment with the objective of maximizing the 

NPV of the cash flows for the contractor. Sepil and Ortaç (1997) tested the 

performance of some heuristic procedures for resource-constrained projects with 

 2



progress payments. They defined cash inflows occurring periodically as progress 

payments, and cash outflows as costs incurred whenever an activity is completed. 

• Payment at equal time intervals. In this payment model, payments are made at 

predetermined equal time intervals over the duration of the project, and the final 

payment is scheduled on project completion. The amounts of the payments are either 

predetermined and fixed or are based on the amount of work accomplished since the 

last payment. Note that the number of payments in this payment model is known and 

fixed in advance, whereas in progress payment model this is not the case. 

 

Mika et al. (2004) considered the multi-mode resource constrained project scheduling 

problem with discounted cash flows in the context of the above payment scheduling models 

using positive cash flows. As solution methods they employed Simulated Annealing and 

Genetic Algorithm. 

 

In the literature, there have been some examples of weight concept in bargaining 

problems, although none of them had the same bargaining weight definition we have used in 

this thesis. Köbberling and Peters (2002) have investigated the effect of decision weights in 

bargaining problems through the concept of probability weighting functions. In their 

approach, the solution to the bargaining problem depends exclusively on its image in utility 

space. Ervig and Haake (2005) view bargaining power as ordinary goods that can be traded in 

exchange economy involving two countries. The final solution they define satisfies two main 

properties. First, it should be Pareto optimal in the aggregate, i.e. there is no other package of 

subsidies and expenditures that makes both countries better off. This is the same property 

adopted in this study as well; that is our ultimate aim is finding the solution which ensures 

that there is no other point in the utility space that brings players to a better position at the 

aggregate level. The second property states that, if one compares the final solution with the 

scenario, in which both issues are treated separately, then neither of the players should be 

worse off in the final solution. So the favor exchange really should do a favor to both. In our 

study, the bargain between players doesn’t constitute a favor exchange, but instead a pure 

trade-off among benefit obtained. Marmol et al. (2005) propose a solution concept for multi-

criteria bargaining games, which is based on the distance to a utopian minimum level vector. 

The distance concept they introduce in their study is similar to the distance definition we have 

used in this study, in a way that both identify the distance from the minimum level point for 

both players. 
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1.3 Problem Definition 

 

The problem under investigation here is formulated as a progress payments model. 

Contractor receives payments at predetermined regular time intervals. The last payment is 

also received at one of the predetermined payment periods. The project is represented on an 

Activity-on-Node (AON) project network. Activity durations are assumed to be deterministic. 

The project duration is bounded from above by a deadline imposed by the client. The deadline 

imposed constitutes a hard constraint meaning that exceeding the deadline will violate 

feasibility. Thus, there is no need to specify a penalty for exceeding the deadline. There is no 

explicitly stated bonus for the contractor to finish the project earlier than the deadline agreed 

upon.  

 

Other than the progress payments model, we will also consider two other payment 

models; namely, payment at event occurrences and payment at equal time intervals. The 

reason for excluding lump-sum payment model is that such a model concentrates solely on 

finding the optimal schedule. Since the proposed bargaining model considers the amount and 

the time of cash flows along with the project schedule, starting with a predetermined total 

payment does not incorporate a bargaining objective.  

 

Contractor’s cash outflows associated with an activity can occur anywhere throughout 

the activity. However, it is assumed here that they will be discounted to the starting time of 

the activity. The cash inflows for the contractor, which represent the cash outflows for the 

client, occur at predetermined equal time intervals. In this context, the earned value for the 

contractor corresponds to the payments regarding the activities completed within that specific 

period of time. If the project is completed earlier than the deadline, then the last payment 

occurs at the deadline. The payments are specified as the sum of the costs incurred for all 

activities completed until that payment point and multiplied with (1 + β), where β is the profit 

margin agreed upon by both parties. Note that activities in progress are not included in this 

sum. The problem is formulated under zero-lag finish-start precedence constraints and multi-

mode renewable resource constraints. 

 

Since we consider the client-contractor bargaining problem, the objective function 

should reflect the two-party nature of the problem environment. The objective function 
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represents a compromise solution for the client and the contractor. The fundamental metric 

proposed is the distance of the party involved from the worst possible solution it can face. The 

bargaining value, f'A is defined as the objective function value of the client at the solution 

point that maximizes the contractor’s objective function. Similarly, the bargaining value, f'B is 

the objective function value of the contractor at the solution point that maximizes the client’s 

objective function. The bargaining objective function tries to maximize the minimum of 

distances respectively from f'A and f'B. In other words, the bargaining function is meant to 

improve the worse-off party between the client and the contractor. The relative bargaining 

positions of the client and the contractor differ in general. To introduce the impact of this 

difference in relative bargaining positions, bargaining power parameters are defined for both 

the client and the contractor. A large bargaining power parameter implies a strong bargaining 

position. The bargaining values f"A and f"B denote the individual optimal objective function 

values for the client and the contractor, respectively. For each player, optimal solution is the 

result of the single objective problem solved by the commercial solver. These values are 

involved in the bargaining objective function for normalization. 

 

1.4 Mathematical Formulation 

 

The mathematical formulation for the resource constrained bargaining problem with 

progress payments is presented below. 

 

1.4.1 Notation 

 

fA(x) : objective function value of the client depending on the current schedule x 

fB(x) : objective function value of the contractor depending on the current schedule x 

f'A : the bargaining objective function value for the client at the optimal solution of the 

contractor 

f'B : the bargaining objective function value for the contractor at the optimal solution of the 

client 

f"A : optimal objective function value for the client 

f"B : optimal objective function value for the contractor 

w(A) : bargaining  power parameter for the client   

w(B) : bargaining  power parameter for the contractor  

 w(A) ε (0,1), w(B) ε (0,1)   and w(A)+ w(B)=1. 
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J : set of activities, j є J, j = 1,....,J 

i<j : indicates precedence relation that activity i precedes activity j 

Mj : number of modes for activity j 

m : index for mode type, m=1, …, Mj 

t :   period index,  t=1, 2, …, D.    

 

xjtm  : 1, if activity j is in mode m and completed in period t  

 0, otherwise 

 

djm : duration of activity j in mode m 

β : profit margin 

α : interest rate 

ct : continuous discount factor, exp(-αt) 

Cmax : makespan 

Njm : cost of activity j in mode m in real terms discounted to the starting time of activity j 

D : predetermined deadline  

T : set of predetermined payment times Tn, T = {T0, T1, ..., TN}, where T0 = 0 and TN = D 

PTn : client’s payment at predetermined period Tn

k : index for resource type, k = 1, ..., K 

Rk : availability limit of resource k 

rjkm  : consumption of resource k per unit time for activity j in mode m 

Ej : earliest finishing time of activity j  

Lj : latest finishing time of activity j 

 

Max min 
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xjtm  є {0,1}                           for all j ε J, m=1,…Mj  and t = 1, ..., Cmax  (1.11) 

 

 

Expressions (1.2) to (1.4) define respectively fA(x), fB(x), and PTn in terms of the 

decision variable and problem parameters. The constraint set (1.5) assures that each activity is 

assigned. The constraint set (1.6) makes sure that all precedence relations are satisfied. The 

constraint (1.7) secures that the project is completed on or before the deadline. The constraint 

set (1.8) makes sure that for every single resource the required amount does not exceed the 

corresponding resource constraint throughout the project duration. Finally, the constraints 

(1.9) and (1.10) ensure that the suboptimal solutions that yield negative numerators in the 

objective function are ignored. This guarantees that no adopted schedule can provide one of 

the players a solution worse than his/her worst case objective. The above mathematical 

programming formulation is a non-linear zero-one programming problem. Hence, one would 

expect that exact methods would fail even for moderate size problems.  

 

The conventional solution procedures for the resource constrained project scheduling 

problem with discounted cash flows adopt the perspective of either the client or the 
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contractor. Hence, these procedures developed for optimizing the benefit for one party only 

would not be expected to produce good solutions for the bargaining objective, which aims to 

merge the objectives of both the client and the contractor into a single function.  
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2 SOLUTION APPROACHES 

 

 

In this chapter, first we introduce the solution methodologies we have used. Here we 

define the methodology and share the test results. Then we investigate the contractual 

preferences of the players in differing payment model settings. 

 

2.1 Proposed Solution Methods 

 

The resource constrained problem with NPV maximization bargaining objective does 

not depend on structured rules like completing the costly activities earlier, or delaying the 

project. Instead the rules change depending on the interest rate, the activity costs indices, and 

the precedence relations. In this sense a stepwise construction heuristic does not give good 

solutions without considering alternative solutions through search methods. We will employ 

two different meta-heuristics, namely Simulated Annealing (SA) and Genetic Algorithm 

(GA).  

 

The test problems we have used are adopted from PSPLIB - A project scheduling 

problem library developed by Kolisch and Sprecher (1996). We have used their problem sets 

with activity numbers of 14, 20, and 32. All of the problem sets we have used has two 

nonrenewable resources and three modes for the activities. The first mode consists of the 

highest activity cost with the shortest duration, and the last mode consists of the lowest 

activity cost with the longest duration.  

 

2.1.1 Simulated Annealing Algorithm 1 (SA1) 

 

2.1.1.1 Solution Representation 

 

Each solution is represented by two serial lists: activity starting time list, and mode 

list. The first list represents the finishing time of the activities in increasing order of their 

index numbers, and the second list represents the mode of the activity which identifies 

duration, and resource consumption figures for that particular activity. An example for this 

solution representation is as follows:  
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Finishing Time List: 

1 3 6 9 8 4 13 10 13 19 25 30 21 30 

Mode List: 

1 2 2 3 1 2 3 1 2 3 1 2 3 1 
 

Figure 2.1 Solution representation for SA 1 for a 14 activity problem 

 

2.1.1.2 Neighborhood generation mechanism 

 

We use two types of alternative generating methods. The first one is sliding an 

activity’s starting time and the second one is swapping and sliding two activities’ starting 

times. 

 

a. Sliding an activity: Since we are looking for alternative solutions in the neighborhood 

of the current solution, sliding the considered activity’s starting point should not affect 

the starting points of other activities. In this sense we consider the slack time window 

for each considered activity. For a particular activity, this time window starts with the 

latest of the finishing times of its predecessors, and ends with the earliest of the 

starting times of its successors (see Figure 2.(a), the shaded cells indicate the time 

periods that the activity is in progress). If the activity has no predecessors, time 

window starts at time 0, and if the activity has no successors, time window ends with 

the project deadline. Once these intervals are determined for each activity, we need to 

find out the specific time periods that the activity can start at. First we remove the 

considered activity from the schedule and add its resources to the available resource 

amounts at the time periods that the activity is in process (see Figure 2.(b)). Then 

through the determined time window with the revised resources we look for intervals 

at the length of the activity duration in which activity’s resource requirement is 

satisfied in every single one of the consecutive time periods. Each of the starting times 

of these resource satisfied intervals, other than the original starting time of the activity, 

is considered as an alternative starting time and is included in the sliding 

neighborhood for the considered activity (see Figure 2.(c)). This procedure is repeated 

for each activity in the project and a complete set of sliding neighborhood is formed. 
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Figure 2.2 An alternative sub-schedule generated by sliding 

 

b. Swapping and sliding two activities: Resource constraint is a very restrictive factor 

for determining the sliding alternatives of a particular activity. So sometimes, 

interchanging the positions of two activities on the time schedule may create new 

alternatives to form complete intervals at the length of activity’s duration that cannot 

be reached by individual sliding operations. In this instance, we determine the 

independent activity pairs in the project which have intersecting time windows (see 

Figure 3.(a)). These independent pairs should not have a precedence relation of any 

kind. At least one period of in process time of either activity need to intersect with the 

time window of the other activity in order to have a difference in the possible 

alternative intervals. Consider a particular pair. We first remove both of the activities 

from the schedule and add their resources to the available resource amounts at the time 

periods that these activities are in process (see Figure 3.(b)). Then with the revised 

resource amounts on the existing schedule, we repeat the sliding procedure for each 

activity individually through their own time windows (see Figure 3.(c)). Among the 

set of pairs of activities and their starting times, the solutions that we can find by only 
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sliding should be disregarded. So, for each activity pair, at least one of the adopted 

starting times should be different from the sliding alternatives for that particular 

activity. For a particular pair, we figure out the possible alternatives in this way. This 

procedure is repeated for each independent pair in the project and a complete set of 

swapping and sliding neighborhood is formed. 

 

   
Figure 2.3 An alternative sub-schedule generated by swapping and sliding 

 

2.1.1.3 Cooling mechanism 

 

The cooling scheme we use was originally used by Baykasoğlu, Gindy and Cobb 

(2001), and adopted by Sivrikaya-Şerifoğlu and Tiryaki (2002). The details are given below: 
 

Tin=(fmin-fmax)/(ln PA
init)        (2.1) 

Tcurr = (ln PA
init

 / ln PA
f) 1/(maxIter-1)*Tcurr      (2.2) 
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where PA
init is the initial acceptance probability and is set at 0.95,  fmin is the minimum 

objective function value and is estimated  by the minimum of generated neighborhood 

solutions at each iteration,  fmax is maximum objective function value and is estimated  by the 

maximum of generated neighborhood solutions at each iteration, PA
f is the final acceptance 

probability set to be 0.001, and maxIter is the maximum number of temperature reduction 

cycles.  

 

Throughout the SA1 search with this cooling scheme, modifying the plateau length L 

was also tested, but no significant improvement regarding the solution has been observed. 

 

2.1.1.4 The Algorithm 

 

STEP1: Find an initial solution. Determine the starting times for each activity. Since 

preemption is not allowed, the other information that we require in the following steps, like 

the activities in process at each time period, or the completed activities by a specified time 

period may easily be reached only by knowing the starting times. 

STEP2: Determine the alternative solutions in the neighborhood.  

STEP3: Among the complete set of all alternatives, we randomly pick one. If the selected 

alternative brings a better solution in terms of the bargaining objective, then it is adopted. If it 

is an inferior solution, i.e. its NPV is less than the existing NPV, then we determine whether 

to accept it or not according to the probability of acceptance PA.  

 

2.1.1.5 Stopping Criterion 

 

A fixed iteration count (maxIter) is adopted as the stopping criterion. The number of 

carried iterations for each problem strictly depends on the number of activities. As the number 

of activities increase, iteration count increases. One other tested method is observing the 

improvement in the objective function. According to this method, process ends if there is not 

a significant improvement in the objective function. Test results show that this is not a 

convenient method for the tested objective function, and hence, has not been adopted as a 

stopping criterion for this study. Since objective function is in max min format, same 

objective function value may be observed at different solution points. For this reason, 
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sometimes it is observed that a superior solution may be reached after several solutions with 

the same objective function value.  

 

2.1.1.6 Tests  

 

The tests conducted with SA1 gave satisfactory results (given in Table 2.1) when 

compared to the optimal solutions for small sized problems.  

 

Table 2.1 Test results for SA1 

  
14 activity 
network 

20 activity 
network 

32 activity 
network 

Progress payments at 10 time periods 92% 88% 82% 
Progress payments at 5 time periods 95% 90% 84% 
Payments at activity completion 97% 93% 87% 
 

 

2.1.2 Simulated Annealing Algorithm 2 (SA2) 

 

2.1.2.1 Solution Representation 

Each solution is represented by three serial lists: activity list, mode list, and idle time list. The 

structure and feasibility status of these lists are explained as follows: 

 

1. Activity List: 

Activity list is a string that includes all activities in a row. For example, for a network 

of 10 activities, an activity list may be as the following: 1-3-6-8-2-4-5-9-7-10. Since 

the source and the sink nodes are dummy activities, we place them at the start and the 

end as default. The list represents the starting priority ordering for the activities. That 

is, once an activity appears earlier in the list, it should start at the same time or at an 

earlier time than its immediate follower. For example, in our provided list, the starting 

time of activity 3 should be less than or equal to the starting time of activity 6. In other 

words, the list must be precedence feasible. 

 

2. Mode List:  

The mode list shows the assigned modes for each activity in the list. 
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3. Idle Time List:  

The idle time value represents the exact idle time to be inserted before the 

corresponding activity starts.  

 

Each feasible group of triple lists (namely activity list, mode list, and idle time list) is 

considered as a complete solution. An example for a 14 activity network is as given in Figure 

2.4.  

 

Activity List:  

1 3 2 5 6 4 9 10 8 7 13 11 12 14 

Mode List: 

1 2 2 3 1 2 3 1 2 3 1 2 3 1 

Idle Time List: 

1 4 5 3 1 3 0 4 1 2 3 0 1 1 
 

Figure 2.4 Solution representation for SA1 for a 14 activity problem 

 

2.1.2.2 Initial Solution Generation Mechanism 

 

We find the initial solution by generating a set of random feasible solutions, and then 

selecting the best point among them. Our initial solution set construction method for all lists is 

as follows: 

 

a. Activity List:  

The method we use to generate an activity list is a common method where we keep a 

list of eligible activities, which at the beginning is composed of activities with no 

predecessors. Randomly we choose one of the activities from this set to insert into the 

next position on the chromosome. Then we update the set by deleting the activity 

chosen and by inserting activities, predecessors of which are all inserted into the 

chromosome.     

 

b. Mode List and Idle Time List:    

For each feasible activity list we have, we generate mode lists and idle time lists 

randomly. For a network with 14 activities we generate 100 mode and idle time lists 

 15



among which we again search for a feasible combination. For each group of activity 

list, mode list, and idle time list we have, we check the feasibility according to both 

the resource limitations, and the deadline. The schedule is, of course, constructed 

considering the precedence relations, an activity cannot be started until all its 

predecessors have been finished. The percentage of feasibility at this level is 11%.  

 

2.1.2.3 Neighborhood Generation Mechanism 

 

We use three types of alternative generating methods. The first one is replacement, the 

second one is mode change, and the third one is idle time change. Neighbors are created by 

one of these methods. 

a. Replacement: In this method, for a selected activity from the activity list, an 

alternative location on the activity list is found. The activity together with its 

corresponding mode and idle time assignments is moved to each one of the feasible 

alternative locations one by one. If the new solution satisfies the deadline constraint, it 

is included into the neighborhood. This way, all feasible neighboring solutions are 

generated by applying the replacement operator.  

b. Mode change: By keeping the activity list and the idle time list constant, mode 

changes are applied among the list, one mode at a time, and feasible solutions are 

included into the neighborhood. In this generation method, all possible solutions are 

searched in two dimensions: list length, and mode alternatives.  

c. Idle Time change: By keeping the activity list and the mode list constant, idle time 

changes are applied among the list, one idle time at a time, and feasible solutions are 

included into the neighborhood. In this generation method, all possible solutions are 

searched in two dimensions: list length, and idle time alternatives. 

 

2.1.2.4 Cooling mechanism 

 

In SA2 studies we have used the same cooling scheme we have used in SA1. 

Throughout the SA2 search with this cooling scheme, modifying the plateau length was also 

tested, but again like SA1 no significant improvement regarding the solution has been 

observed. 
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2.1.2.5 The Algorithm 

 

In SA2 we use exactly the same algorithm we have used in SA1. 

 

2.1.2.6 Stopping Criterion 

 

In SA2 we use exactly the same stopping criterion we have used in SA1. 

 

2.1.2.7 Tests  

 

The tests conducted with SA2 gave better results (given in Table 2.2) than SA1.  

 

Table 2.2 Test results for SA2 

  
14 activity 
network 

20 activity 
network 

32 activity 
network 

Progress payments at 10 time periods 94% 90% 84% 
Progress payments at 5 time periods 96% 92% 86% 
Payments at activity completion 99% 94% 88% 
 

 

2.1.3 Genetic Algorithm  

 

2.1.3.1 Solution Representation 

 

Each solution is represented by three serial lists: activity list, mode list, and idle time 

list. The structure and feasibility status of these lists are explained as follows: 

 

1. Activity List: 

A precedence-feasible permutation is kept as the activity list. 

 

2. Mode List:  

The mode list shows the assigned modes for each box in the list.  

   

3. Idle Time List:  
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The idle time value represents the exact time frame that an activity should spend when 

its turn on the list comes after all its predecessors are completed.  

 

Each feasible group of triple lists (namely activity list, mode list, and idle time list) is 

considered as a complete chromosome. Figure 4 represents a chromosome example for a 

network of 14 activities. 

 

2.1.3.2 Generating Feasible Chromosomes 

 

The most important thing is to maintain the feasibility of the constructed solutions. In 

this sense we use a stepwise feasibility test through the algorithm. We first maintain the 

feasibility test through the activity list, and only feasible lists pass for the next level 

representations, i.e. mode list and the idle time list. The construction method for all list types 

is the same as we used in SA2. 

 

2.1.3.3 Fitness Value 

 

For each chromosome, the fitness value is determined by the original objective 

function value. 

 

2.1.3.4 Selection 

 

We use roulette wheel selection operator. With this approach the probability of 

selection is proportional to an individual’s fitness. Goldberg (1989) explains that the analogy 

with a roulette wheel arises because one can imagine the whole population forming a roulette 

wheel with the size of any individual’s slot proportional to its fitness. The wheel is then spun 

and the figurative “ball” thrown in. The probability of the ball coming to rest in any particular 

slot is proportional to the arc of the slot and thus to the fitness of the corresponding 

individual. The algorithm is summarized below: 

STEP1. Sum the fitness of all the population members. Call this sum fsum. 

STEP2. Choose a random number, Rs, between 0 and fsum. 

STEP3. Add together the fitness of the population members (one at a time) stopping 

immediately when the sum is greater than Rs. The last individual added becomes the selected 

individual and a copy is passed to the next generation. 
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2.1.3.5 Crossover Operator 

 

The most challenging problem we face when applying GA is to reproduce feasible off-

springs. There are three strict constraints we need to deal with: precedence constraints, the 

deadline and resource constraints. When working on an activity list, taking these constraints 

into consideration has crucial importance for the next iterations. It is safer to continue with 

feasible solutions instead of dealing with infeasibility. In this sense, working with the 

following operator preserves feasibility in the activity list.  

  

• Multi Component Uniform Order Based Crossover (MCUOX): By this recombination 

operator, which was proposed by Sivrikaya Şerifoğlu (1997), from a couple, we select 

one of the parents randomly. We find the activity on that parent not assigned to the 

child yet. Then we find the mode assignment of that activity on each of the parents, 

select one randomly. Finally we find the idle time assignment of that activity on each 

of the parents, select one randomly. We repeat it until the activity list of the child is 

completed. The offspring construction process continues until the number of feasible 

offspring reaches 1/3rd of the original population. 1/3rd is a design choice which 

enables highest improvement at each iteration when compared with other tested ratios: 

1/6th, 1/4th, and 1/2. 

 

2.1.3.6 Mutation Operators 

 

• Replacement: Replacement operator is applied to randomly selected individuals until 

the number of feasible individuals reaches the 1/6th of the population. Here 1/6th is a 

design choice which enables highest improvement at each iteration when compared 

with other tested ratios: 1/4th, and 1/3rd. We select a parent chromosome randomly. 

Then we select an activity from the activity list of that chromosome. Next we change 

the position of that particular activity on the activity list. Activity’s replacement 

window is determined according to the precedence relations. Once the activity is 

moved, whole list is adjusted accordingly. The corresponding mode list, and idle time 

list are also moved together with the activity list replacement. Then the feasibility of 

the whole new list is explored, and new solution is accepted as a child chromosome if 

it satisfies all feasibility constraints. The offspring construction process continues until 

the number of feasible offspring reaches 1/6th of the original population.  
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• Bit mutation: We define bit mutation in our three list model by changing mode or idle 

time for a specific activity on the list. Bit mutation is applied to the whole population 

in the pool other than the elitists, as the last step of new generation creation process. 

For each chromosome, other than the elitists, the bit mutation probability is 50%, that 

is we bit mutate either the mode or idle time assignment of a chromosome with 

probability of 0.5.  

 

2.1.3.7 Population Management (Population Replacement Strategy) 

 

Elitist strategy is used, such that two percent of the original population is carried in 

tact to the next generation in order to preserve the elites in the population. Then bit mutation 

is applied to the set of newly generated off-springs together with the selected chromosomes 

from the original population. Those chromosomes with a higher fitness value are more likely 

to be carried to the next generation. Mutation is applied to randomly selected chromosomes.  

 

 2% Elitists    

    

 
48% 

selected 

individuals  Bit mutation  

    

 
33% 

MCUOX  

off-springs    

    

 

 

 

OLD 

POOL 

 
17% 

Replacement 

off-springs    

NEW 
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Figure 2.5 GA pool management scheme 

 

2.1.3.8 Solution Generation  

 

The whole cycle is repeated for 50-100 times. At each cycle, the chromosome with the 

highest fitness value ever is kept in memory. The final solution is the best fitness value 

reached ever after the last cycle.  

2.1.3.9 Tests  

The tests conducted with GA gave better results (given in Table 2.3) than both SA1 

and SA2.  
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Table 2.3 Test results for GA 

  
14 activity 
network 

20 activity 
network 

32 activity 
network 

Progress payments at 10 time periods 95% 91% 85% 
Progress payments at 5 time periods 97% 93% 87% 
Payments at activity completion 99% 95% 88% 
 

 

2.1.3.10 Payment Model Studies with Genetic Algorithm 

 

In order to increase the amount of testing carried over different payment models, we 

need to have the solutions for the single objective problems. But unfortunately the 

commercial optimizer we use (GAMS 20.0) couldn’t find the solution for all the payment 

models we consider. In this sense, we used our activity list solution representation and GA in 

order to reach a solution for the single objective problems defined using different payment 

models. By this way we were able to find solutions for the bargaining objective of occupied 

with various other payment models. This enabled us being able to test payments at equal time 

intervals model as well as other models we have been testing and comparing with the optimal 

solutions. In this model although we didn’t have the opportunity to compare with the optimal 

solution, we were able to distinguish the relation and differences with other payment models. 

We figured out that, once we have relaxed the timing of the last payment, and set it as the 

project finish time rather than the deadline, we had more chance for the project to be finished 

earlier. Main issue is that, once the contractor receives the last payment at the deadline no 

matter what, he may not have any motive to start the activities earlier. 

 

2.1.4 Non-Dominated Solutions Set 

 

Within the solution space we generate in both search methods we use, there exist some 

specific solutions which are dominant over others. Through the search methods we have 

incorporated, namely SA and GA, at each step we most likely eliminate inferior solutions. In 

this sense, identifying the non-dominant solutions prior to our search may provide ease in 

computation and even improvement in the generated solution space. Thus we have generated 

and analyzed non-dominated solution sets for specific problems. We have constructed tests 

for problem sets with 14 activities. The generation method we have used is summarized as 

given below: 
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2.1.4.1 Solution Representation 

 

Each solution is represented by the exact same three serial lists we have used in GA: 

activity list, mode list, and idle time list. 

 

2.1.4.2 Solution Space Generation 

 

We use an adapted version of chromosome generation mechanics we have used in GA. 

We again use the exact same stepwise approach we have used in GA in order to generate 

feasible solutions. We first generate the Activity List, then generate the Mode List and Idle 

Time List.  

 

2.1.4.3 Selection of Non-Dominated Solutions 

 

Within the feasible solutions set we have, we identify the non-dominated solutions 

regarding the objective function values of the players. In this context, we could also be taking 

absolute objective function values of the players into consideration, but that way graphical 

scaling would be a problem since the absolute objective function values of the players are not 

normalized. We eliminate solutions, which have both players’ objective functions inferior to 

another solution. 

 

2.1.4.4 Neighborhood Search 

 

Once we identify the initial non-dominated solutions set, we search the neighborhood 

in order to be able to extend the set we have. At this step we use two kinds of neighborhood 

generation operators: 

 

1. Replacement: Replacement operator is applied to each individual in the set. We select 

a solution from the non-dominated set. Then we select an activity from the activity list 

of that solution. Next we change the position of that particular activity on the activity 

list. Activity’s replacement window is determined according to the precedence 

relations. Once the activity is moved, whole list is adjusted accordingly. The solution 

construction process lasts when we incorporate each possible activity move for all 

solutions.  
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2. Swap: This operator is applied to mode list and idle-time list of the randomly selected 

individuals from the solution set. We select a solution randomly then select two cells 

again randomly from either the mode list or the idle-time list. We swap these two 

cells, and then check the feasibility of the generated solution. 

 

2.1.4.5 Stopping Criterion 

 

Once the neighborhood is generated, we again identify the non-dominated solutions 

within the whole solution set. We continue this generation cycle until no change occurs within 

the list for two cycles in a row. Here, we do not base the decision on the number of non-

dominated solutions in the set, since an improvement not necessarily brings an increase in the 

number of non-dominated solutions. Improvements may occur as introducing new non-

dominated solutions that may eliminate some already existing solutions. 

 

Through the tests we have conducted, we observed that the set of non-dominated 

solutions appear as a polynomial curve on the border of the overall solution set. Figure 2.6 

shows the non-dominant solutions set regarding objective function values of the contractor 

and the client. When we search for the best solution among non-dominated solutions set, we 

come up with a solution which is comparable with the solutions we have generated with 

metaheuristic search algorithms. This may lead us to a conclusion that if we choose our 

starting point from non-dominated solutions in other metaheuristic search algorithms we may 

improve the results we deliver. This dimension may be analyzed in further study. 
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Figure 2.6 Non-dominated solutions curve 
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In these tests, once we fix a curve on the solution points we observe that the R2 value 

of the curve is always higher than 0,9. This indicates a good fit of the curve. Hence, we may 

use this curve to identify acting-optimal solutions for the problem sets that we don’t have any 

optimal solutions to compare the solutions we have generated with our metaheuristic 

algorithms. For example, in bargaining weight tests with higher activity numbers commercial 

solvers hadn’t delivered optimal solutions, so that we may use this curve’s equation to 

generate acting-optimal solutions. 

 

2.1.2.7 Tests  

The tests conducted with non-dominated solutions set gave comparable results (given 

in Table 2.4) with SA1 and SA2.  

 

Table 2.4 Test results for non-dominated solutions set 

  
14 activity 
network 

20 activity 
network 

32 activity 
network 

Progress payments at 10 time periods 94% 90% 84% 
Progress payments at 5 time periods 96% 92% 86% 
Payments at activity completion 98% 94% 87% 
 

2.1.5 Test Results 

 

Tables 2.6-2.8 summarize the test results for four different methods studied; namely, 

SA1, SA2, GA, and Non-dominated Solutions Set. In these tests we have w(A) = w(B) = 0,5. 

The legend for abbreviations used when reporting on the test results in Tables 2.6, 2.7, and 2.8 

is provided in Table 2.5. 

 

Table 2.5 Legend for abbreviations 

n=14 problem network with 14 activities 
n=20 problem network with 20 activities 
n=32 problem network with 32 activities 
SA_1 Simulated Annealing 1 
SA_2 Simulated Annealing 2 
GA Genetic Algorithm 
ND Non-dominated Solution Set 
pp10 progress payments at 10 time periods 
pp5 progress payments at 5 time periods 
ac 

refers to 

payments at activity completion 
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T-Tests we have conducted gave us the results summarized in Tables 2.6, 2.7, and 2.8. 

In this analysis, risk level indicates the probability of two sets belonging to equivalent 

populations. And likewise, significance level indicates the probability of belonging to 

equivalent populations and being incomparable. 

 

Table 2.6 Comparison of different payment models  

pp5 delivers higher OFV than pp10 with a risk level of 0,1% SA_1 tests 

show that ac delivers higher OFV than pp5 with a risk level of 0% 

pp5 delivers higher OFV than pp10 with a risk level of 0,1% SA_2 tests 

show that ac delivers higher OFV than pp5 with a risk level of 0% 

pp5 delivers higher OFV than pp10 with a risk level of 0,3% GA tests 

show that ac delivers higher OFV than pp5 with a risk level of 0,1% 

pp5 delivers higher OFV than pp10 with a risk level of 8% 

Among a 

problem set 

with 14 

activities 

ND tests 

show that ac delivers higher OFV than pp5 with a risk level of 10% 

pp5 delivers higher OFV than pp10 with a risk level of 0,2% SA_1 tests 

show that ac delivers higher OFV than pp5 with a risk level of 0% 

pp5 delivers higher OFV than pp10 with a risk level of 0,1% SA_2 tests 

show that ac delivers higher OFV than pp5 with a risk level of 0% 

pp5 delivers higher OFV than pp10 with a risk level of 0,3% GA tests 

show that ac delivers higher OFV than pp5 with a risk level of 0% 

pp5 delivers higher OFV than pp10 with a risk level of 8% 

Among a 

problem set 

with 20 

activities 

ND tests 

show that ac delivers higher OFV than pp5 with a risk level of 10% 

pp5 delivers higher OFV than pp10 with a risk level of 0,1% SA_1 tests 

show that ac delivers higher OFV than pp5 with a risk level of 0% 

pp5 delivers higher OFV than pp10 with a risk level of 0,1% SA_2 tests 

show that ac delivers higher OFV than pp5 with a risk level of 0% 

pp5 delivers higher OFV than pp10 with a risk level of 0,3% GA tests 

show that ac delivers higher OFV than pp5 with a risk level of 0% 

pp5 delivers higher OFV than pp10 with a risk level of 8% 

Among a 

problem set 

with 32 

activities 

ND tests 

show that ac delivers higher OFV than pp5 with a risk level of 10% 
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Table 2.7 Comparison of the solution methods 

SA_2 delivers higher OFV than SA_1 with a risk level of 0,2% 

GA delivers higher OFV than SA_2 with a risk level of 0,9% 

GA delivers higher OFV than ND with a risk level of 8% 

ND delivers higher OFV than SA_1 with a risk level of 0,9% 

Among a 

problem 

set with 14 

activities 
OFVs of ND and SA_2 are incomparable with a significance level of 84%

SA_2 delivers higher OFV than SA_1 with a risk level of 0,3% 

GA delivers higher OFV than SA_2 with a risk level of 0,9% 

GA delivers higher OFV than ND with a risk level of 8% 

ND delivers higher OFV than SA_1 with a risk level of 0,9% 

Among a 

problem 

set with 20 

activities 
OFVs of ND and SA_2 are incomparable with a significance level of 84%

SA_2 delivers higher OFV than SA_1 with a risk level of 0,2% 

GA delivers higher OFV than SA_2 with a risk level of 0,9% 

GA delivers higher OFV than ND with a risk level of 8% 

ND delivers higher OFV than SA_1 with a risk level of 0,9% 

Among a 

problem 

set with 32 

activities 
OFVs of ND and SA_2 are incomparable with a significance level of 84%

 

 

Table 2.8 Comparison of the problem sets with different activity numbers 

A network with 20 activities delivers higher OFV than a network with 14 activities 

with a risk level of 0% 

A network with 32 activities delivers higher OFV than a network with 20 activities 

with a risk level of 0% 

 

These results show that as the frequency of the payments increases and the number of 

activities decrease, the likelihood of finding near optimal solutions increase, no matter which 

method we use. Moreover, GA provided us with better results than SA 1 and SA 2 did. On the 

other hand, ND provided solutions which were compatible with SA algorithms. The success 

of ND stands from the strength of its initial population at each iteration. The major weakness 

of ND is that, the standard deviation of its results is significantly higher when compared with 

the standard deviation of the results of other solution methods.  
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2.2 The Contractual Preferences of the Players 

 

We have enriched the experiments with two further payment structures, on top of the 

basic model which suggests a profit margin for the contractor on top of the total cost. In the 

model that we have used through the tests, we used three payment models:  

• First one consists of a profit margin over the total cost paid by the client to the 

contractor at the predetermined payment points,  

• Second one consists of a constant fee paid by the client to the contractor at the 

beginning of the project as an advance payment,  

• Third one incorporates a benefit for the client as a function of early completion time.  

 

Within these payment models, there are sub models we have tested, which are more 

likely to deal with the frequency and timing of the interim payments: payments at event 

occurrences, progress payments, and payments at equal time intervals. We conducted 

these tests by using commercial solver which delivers optimal solutions. The test results 

we have observed for each of these models may be summarized as given below: 

 

1. Cost + Profit over cost: In this model the client pays a profit percentage (β) over the 

total cost at the predetermined payment points For example, if we consider fA(X) as 

the objective function of the client, and β as the profit margin of the contractor, the 

mathematical model would be shown as follows: 
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The number and amount of each payment (PT) depends on the payment frequency, 

which is another parameter of the whole model. In this sense we have included sub-

payment structures into the model:  

a. Payments at event occurrences 

b. Progress payments 

c. Payments at equal time intervals 
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Each of these sub models has been included into our tests. Results show that the 

metaheuristic algorithms we propose deliver better results as we move to more 

frequent payments from bulk payments. This is due to the fact that as the frequency of 

the payments increase over the whole network, there is less room for activities to 

move in order to create more alternative solutions.    

 

2. Cost + Constant Fee: In this model the client pays a constant fee for the services of the 

contractor at the end of the project in addition to the activity costs paid at each 

predetermined payment periods. This model puts pressure on the contractor to finish 

the project as soon as possible so as to receive the constant fee early.  
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Notation: 

F: Constant fee 

 

One important outcome of this model is that the individual objectives of both the client 

and the contractor over the adopted schedule are equal.  

 

This proves that although the objective function we use tends to equate both objective 

functions by maximizing the minimum of them, the discrete nature of the model doesn’t 

allow this happen most of the time. Recall that the objective function we used in our tests 

is: 
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In this function, we have two buckets, one for the client and one for the contractor. 

Since we are looking for maximizing the minimum of these two, and there is a trade-off 

between these two objectives, having these two equal at the optimum point is an expected 

result. However, the predetermined mode structures and all types of limitations prevent 

the model to equate two individual objectives. By giving an advance payment to the 

contractor, and leaving the amount of this advance payment to negotiations, we let the two 

objectives to have a continuous trade-off of benefits. 

 

In Table 2.9, objective function split by each player is shown with the results of 6 tests 

for each payment type.  

 

Table 2.9 Objective functions of the client and the contractor at two payment models 
  1 2 3 4 5 6 

Bargaining Objectives Contractor Client Contractor Client Contractor Client Contractor Client Contractor Client Contractor Client

Cost+Constant fee 0,674 0,674 0,727 0,727 0,722 0,722 0,709 0,709 0,709 0,709 0,718 0,718 

Cost+Profit over Cost 0,556 0,647 0,525 0,606 0,556 0,508 0,561 0,558 0,532 0,535 0,526 0,534 

 

Table 2.9 clearly shows that the objective function tends to equate the individual 

objective functions of each player when there is room for it. On the other hand, when 

there is a continuous benefit subject to negotiation, balance between objective functions is 

maintained. 

 

One important point concerning the constant fee model is that the bargaining powers 

of the players have significant effect on the decision process to determine the amount of 

constant fee within predetermined ranges. In the tests we conduct, we find out that the 

client favors the lower level of the constant fee, and the contractor favors the higher level 

of the constant fee, where their negotiation point differs within this range directed by their 

bargaining power. Since the constant fee is a marginal amount that effects both sides at 

the same marginal level, its absolute effect on both sides of the objective function differs 

depending on the f ”A, f ”B, f’A, and f’B values. 

 

Results show that in the constant fee model, where the contractor doesn’t get a profit 

margin over activity costs, both of the players favor longer and less costly schedules 

within the deadline. Thus, neither the client pays more, nor the contractor. Since we 

haven’t defined any benefit for the client to be obtained when the project finishes earlier 
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than the set deadline, the client itself favors cheaper modes of the activities. In this context 

the preferred schedules of the client and the contractor doesn’t differ much. They both 

target the deadline at the lowest possible cost. This leads the negotiations to slide towards 

the fee rather than the schedule, since both have agreed on the scheduling rules. 

 

Only if we include a profit margin for the contractor, which is higher than the interest 

rate (since client pays the cost at the beginning of the activities, and receives the payment 

earliest at the end of the activity), the contractor begins favoring more expensive modes 

for activities that results in much shorter schedules. This model, which includes both a 

constant fee, and a profit margin over the activity costs, lets negotiations include both the 

scheduling problem and distribution of the benefit which appears as the constant fee. 

Here, the bargaining power strongly affects both the schedule and the amount of constant 

fee, if it is subject to negotiation.   

 

We have conducted several tests on this model to be able to identify the time-cost 

trade off relationship in the model: 

a. In the first set of tests we have fixed the deadline at several levels and found 

the negotiated amount of the constant fee. The graph below shows the results 

for several of these tests. In these tests we have conducted, the lower limit for 

the constant fee was 0 and the higher limit was 300. As shown, once the 

deadline is relaxed over a negotiated schedule, the constant fee doesn’t differ 

much over the negotiations. It only increases slightly. 20 is the minimum 

possible deadline on this problem set, hence the increased costs forces the 

constant fee down to zero in order to be able to balance the objective function 

ratios for both sides. Although the adopted network models and the mode 

selections doesn’t differ much at higher deadline levels, a quantified benefit 

difference appears between the client and the contractor due to interest rate 

which affect both the client and the contractor, but at different levels. One 

other point is that as the deadline increases, the bargaining objective increases 

as well. This is due to increased flexibility on the schedule which lets the 

players to be able to choose cheaper activity modes. 
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Figure 2.7 Constant deadline – negotiable fee 

 

Figure 2.8 represents schedule examples for three different deadline settings. 

 

activity list 1 4 3 2 5 6 10 8 7 13 11 9 12 14
mode list 1 1 1 1 1 2 1 3 1 1 2 1 1 1 D=40 
idle time list 0 2 1 0 5 2 1 2 0 4 3 1 2 0 

                
activity list 1 4 3 2 5 6 10 8 7 13 11 9 12 14
mode list 1 1 1 1 1 2 1 3 1 1 2 1 1 1 D=50 
idle time list 0 12 1 0 5 2 1 2 0 4 3 1 2 0 

                
activity list 1 4 3 2 5 6 10 8 7 13 11 9 12 14
mode list 1 1 1 1 1 2 1 3 1 1 2 1 1 1 D=60 
idle time list 0 21 2 0 5 2 1 2 0 4 3 1 2 0 

Figure 2.8 Schedule examples for different deadline settings 

 

b. In the second set of tests we have fixed the constant fee and run the bargaining 

model to observe the trade-off on the deadline. Once we fixed the constant fee, 

through the negotiation process it became a given on the function, and 

appeared having no effect over the bargaining. Neither the schedule, nor the 

bargaining objective value changed as we changed the amount of the constant 

fee. The only thing it affected was the marginal increase in each player’s NPV. 

And since this marginal change was the same in all the current schedule’s 

objective function value, f’’s and f’s, no difference appeared in the final 

bargaining objective function value where only ratios are taken into account. 

The finish of the project has been postponed as much as possible, since by this 

way the NPV hurt of the activity costs are minimized. Once we include a profit 

margin for the contractor, schedule is shortened depending on the amount of β 
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and α. If β provides a significant return on investment, the contractor tries to 

shorten the project time relying on its bargaining power. 

  

c. In the third model, neither of the deadline and the constant fee were fixed; they 

were both negotiable, within certain ranges. This model also appeared to 

postpone the completion time of the project, as well as proposing activity 

modes which are much cheaper. By defining both the deadline and the constant 

fee as negotiable parameters, we kind of relaxed the problem and this brought 

better objective function values. In fact, the bargaining objective we get from 

this model is better than the previous ones. This is because we let more room 

for both the client and the contractor to look after their own benefits.  

 

An illustration of the bargaining objective’s move over the finishing time is as 

follows for three of these models: 
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Figure 2.9 Bargaining objectives vs. finishing time 

 

3.  Benefit for the client: In this model, client receives a constant amount of benefit per 

each time period that the project is completed earlier than the deadline. In this model, 

contractor doesn’t have any cost in benefit payments to the client. In a sense, this 

model proposes an additional benefit injected into the system regardless of any value 

trade off. In this model, we modify the base mathematical model by replacing client’s 

objective function value that depends on the adopted schedule (fA(X)) with the 

following function: 
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Notation: 

σ: Client’s benefit per time period 

 

One of the most important outputs of this model is on adopted schedule. We have 

observed that as we increase the amount of benefit client receives the adopted schedule 

changes in a way that the project tends to finish earlier. This is due to the fact that, as the 

project is finished earlier the amount of extra value injected into the system increases, and 

both of the players gain benefit from this. We may observe in Table 2.10 the schedules for 

different benefit amounts per time period (σ). 

 

Table 2.10 Schedules for different benefit amounts 

 Activity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Finishing Time 0 14 15 24 20 20 20 24 25 25 30 30 30 30 
σ = 0 

Mode 3 3 1 3 1 3 1 2 1 1 1 1 2 3 

Finishing Time 0 10 5 20 15 15 20 24 24 20 30 30 30 30 
σ = 10 

Mode 3 3 1 3 1 3 1 3 1 1 1 1 2 3 

Finishing Time 0 10 5 10 15 14 19 20 20 24 24 24 24 24 
σ = 25 

Mode 3 3 1 3 1 3 1 2 1 1 1 1 2 2 

Finishing Time 0 5 10 19 15 15 19 20 20 20 24 24 24 24 
σ = 50 

Mode 3 1 1 3 1 3 1 2 1 1 1 1 2 2 

Finishing Time 0 5 9 19 15 14 19 20 20 20 23 24 24 24 
σ = 75 

Mode 3 1 1 3 2 2 1 2 1 1 1 1 2 2 

Finishing Time 0 3 6 14 11 10 15 16 16 16 20 20 20 20 σ = 

100 Mode 3 1 1 2 1 3 1 2 1 1 1 1 1 1 

Finishing Time 0 3 6 5 11 10 15 16 16 16 20 20 20 20 σ = 

200 Mode 3 1 1 2 2 2 2 2 1 1 1 1 1 1 

Finishing Time 0 3 6 5 11 10 15 16 16 16 20 20 20 20 σ = 

300 Mode 3 1 2 1 1 1 1 2 1 1 1 1 1 1 

Finishing Time 0 3 6 15 11 10 15 16 16 16 19 20 20 20 σ = 

400 Mode 3 1 1 2 1 1 1 2 1 1 1 1 1 1 

Finishing Time 0 3 6 15 11 10 15 16 16 16 19 20 20 20 σ = 

500 Mode 3 1 1 1 1 1 1 2 1 1 1 1 1 1 
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In the model we use, there are two parametric values for each player that defines the 

best and the worst possible solutions for the players. With benefit injection, the best 

possible absolute objective function value of the client has significant change although 

other parametric absolute objective function values are not affected. The amount of 

change is illustrated in Figure 2.10. 
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Figure 2.10 Best absolute OFV for the client 

 

The key point we have concluded on these benefit tests is that both of the players gain 

quantitative value out of the benefit paid to the client. This leads increase in the final 

objective function as a result of with increased absolute objective values for both of the 

players. In Figures 2.11-2.15 we observe the amount of increase in objective function 

values of both players as the proposed benefit increases.  
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Figure 2.11 Client’s objective vs. client’s benefit 
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Figure 2.12 Contractor’s objective vs. client’s benefit 
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Figure 2.13 Bargaining objectives vs. client’s benefit 
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Figure 2.14 Client’s absolute OFV vs. client’s benefit 
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Figure 2.15 Contractor’s absolute OFV vs. client’s benefit 

 

2.2.1 Structural Modifications That Would Be Proposed By the Client 

 

In the model that we have used through the tests, the client pays either (cost + constant 

fee) or (cost + profit over cost). Since no specific benefit has been quantified for the client at 

the completion of the project, the client always has a negative NPV at the end. Therefore, 

objective of the client is to minimize the total cost and making sure that the project is 

completed by the deadline. 

 

In the “cost + profit over cost” model, the client pays a profit percentage (β) over the 

total cost at the predetermined payment points. The number and amount of each payment (PT) 

depends on the payment frequency, which is another parameter of the whole model. In this 

sense, the client prefers less frequent payments, which leads to bulk payments. By this way 

the payment for each specific activity may be deferred. In this model, the tests show that as 

the profit margin (β) is increased, the total amount client pays increases anyway. And since 

the model takes into account the ratio of difference between the adopted schedule and worst 

considered schedule, rather than the marginal difference, increase in β does not bring any 

additional bargaining power to the client. On the other hand, the NPV of the contractor is 

increased and the NPV of the client is decreased as if the client’s bargaining power had been 

decreased. However, this realization in the NPVs does not affect the individual bargaining 

objectives of the players. 

 

In the “cost + constant fee” model client pays a constant amount at the beginning of 

the project together with the activity costs paid at each predetermined payment periods. Since 
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the ultimate objective of the client is to decrease its own costs, its preference is not having a 

constant fee at all, but once it is given, it doesn’t affect client’s decisions at all. That is a 

constant fee, free from its amount, doesn’t change client’s bargaining decision on the final 

schedule. The reason is that, once the fee is set as a cost for the client, the client adopts that 

cost both in its best and worst solutions. This lets all sets being even in terms of ratio.  

 

In the model which incorporates an additional “benefit to the client”, client always 

prefers increased benefits since he/she directly increases his/her objective function value as 

the benefit amount increases. One important point about this increase is that it is not linear on 

the benefit since client needs to share this value increase with the contractor up to an extent. 

  

Among the sub payment models, client prefers the one which is more like a bulk 

payment. This tendency lets client promoting less payment frequencies. By this way, the 

client is able to postpone the payments for activities which have been already concluded.  

 

One other preference of the client is to put activities on cheaper modes as much as 

possible. Once the deadline is met, client doesn’t care much about the early finish of the 

project since it doesn’t receive a benefit at the end of the project, which affects its NPV. This 

situation leads client to push the finish of the project towards the deadline. By this way, the 

client also postpones the payments. Once we include a quantified benefit for the client, for 

finishing the project earlier than the deadline, the client pushes the schedule by putting 

pressure on activities with smaller duration. This effort of the client totally depends on the 

amount of the benefit and its own bargaining power.  

 

2.2.2 Structural Modifications That Would Be Proposed By the Contractor 

 

There are two items in the contractor’s balance sheet. One is the costs of the activities 

and the other one is the payments received from the client. The costs of the activities are paid 

at the beginning of the activities by default. On the other hand, the payments from the client 

may be received in several ways, either it comes as a “cost + constant fee” at the beginning of 

the project as an advance payment, or it comes as activity payments at predetermined payment 

points. If there is a profit margin defined for the contractor, it receives its payment at 

predetermined payment points as “cost + profit over cost”.  
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In the “cost + profit over cost” model, contrary to the client, contractor prefers higher 

β values. By this way it can get more return on the costs it pays at the beginning of each 

activity. At payment periods, the contractor receives a payment which corresponds to the cost 

of the activities finished in that particular period plus a profit amount which is calculated over 

the total cost. In this sense, the contractor prefers more frequent payments, in order to be able 

to receive its return on investment as soon as possible. This leads the contractor to promote 

payments at activity completions. By this way, it may get its revenue without a long wait. 

This brings a trade-off between the profit margin (β) and the frequency of the payments. Tests 

show that, depending on both β and α, since increasing the profit margin or the payment 

frequency both bring an NPV change on the same direction, at a constant NPV point there is a 

trade-off between them. Although all these changes affect NPVs of the players, they don’t 

have an affect on the bargaining powers of either side. The reason is that, once a specific 

parameter is defined in the model, it is pursued as given in all individual calculations (f ”A, f 

”B, f’A, and f’B values), so even if we see the significant effect on the NPVs, we don’t see any 

bargaining power effect in the decision making process. 

 

In the “cost + constant fee” model, the contractor always prefers the maximum 

possible amount of the advance payment it receives from the client. When it is subject to 

negotiation over constant deadline, contractor shares the same preferences on the schedule 

with the client, which is deferring the project as soon as possible so that they both minimize 

their costs and pushing the negotiation over this constant fee. This situation brings that once a 

relaxed model at the cheapest activity modes is reached, the constant fee negotiation is 

directly linked with the α value and the deadline. And once the constant fee is fixed, the 

negotiated schedule is not affected by changes in the constant fee. The reason is that once it is 

defined as given, the individual calculations (f”A, f”B, f’A, and f’B values) are held 

accordingly, and this doesn’t bring any difference in the bargaining objective function which 

fully relies on ratios. On the other hand, NPVs of both players are directly related with this 

constant fee.  

 

In the model which incorporates an additional “benefit to the client”, contractor also 

prefers increased benefit amounts as well as the client. This is due to the fact that as long as 

the additional value proposed in the whole system increases, bargaining dynamics enable 

contractor gain value from client’s benefit increase. 
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If the contractor receives payments both as a constant fee and a predetermined amount 

of profit margin over total cost (β) there appears to be a clear negotiation over the constant fee 

and the schedule. That is, since there is a profit amount contractor may increase its NPV over 

the activity costs, the contractor prefers more costly activities. And at the same time the 

contractor always prefers a higher constant fee. However, the client’s preferences are just the 

opposite. This brings a clear cut bargaining exchange over these two items. The tests show 

that once different profit margins are defined together with a constant fee, the negotiated 

project schedule is directly related to both of these parameters. Once the profit margin is 

decreased, contractor either pushes higher amounts of constant fee, or a much shorter 

schedule which consists of more expensive activities.   
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3 SENSITIVITY ANALYSES OF THE RESULTS 

 

Three important parameters we have used in our base model are the profit margin, 

payment interest rate, and the bargaining power. We conduct several tests for several different 

models in order to be able to measure the absolute effect on the final result. The results we 

present here belong to a single model, which enables us to be able to compare the parameters 

with each other in different dimensions. For profit margin and interest rate tests, we have used 

exact optimals that we deliver by using commercial solver. For bargaining weight tests, we 

have used GA. 

 

3.1 Sensitivity Analysis for Profit Margin (β) 

 

Within the model profit margin (β) directly affects the amount of money the client 

pays to the contractor at each payment point.  
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With the same schedule, increasing profit margin (β) would definitely increase the 

objective function of the contractor, and decrease the objective function of the client. And 

vice versa, decreasing the profit margin (β) would decrease the objective function of the 

contractor, and increase the objective function of the client within the same adopted schedule. 

But since schedule itself is also a variable in our model, we ran the model with different profit 

margin values in order to be able to observe the reaction of objective functions. 

 

In Figures 3.1 – 3.3, examples can be found from a series of tests that show final 

objective function results for increasing profit margin (β). 
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Figure 3.1 Bargaining objective at different profit margin levels (α=0,01) 
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Figure 3.2 Bargaining objective at different profit margin levels (α=0,005) 
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Figure 3.3 Bargaining objective at different profit margin levels (α=0,1) 
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Here we see that there is no correlation between the profit margin (β) and the final 

objective function value. The main reason for this is the direct effect of profit margin (β) on 

payments at each time module. Since variations of the payments in-between payment periods 

have significant effect on the adopted schedule, profit margin (β) has major effects on the 

final schedule. 

 

Hence, contractor can not always keep his advantage on increased profit margin (β). 

We can observe this result from Table 3.1, which shows the owner of each final objective 

function. Since our model has a max min objective function, we can clearly say that the player 

who owns the final objective function is the one who had the inferior results in that specific 

game. Thus, the Table 3.1 shows the non-advantageous players for each case. 

 

Table 3.1 Players who own the minimum objective function 

(Interest Rate=0,01) β =0,1 β =0,15 β =0,2 β =0,25 β =0,30 β =0,35 β =0,40 

Minimum objective 

function belongs to: 
Contractor Contractor Client Client Contractor Contractor Client 

 

Here we see that, there is not a specific rule among players on determining the 

objective function. This solely results by client offsetting contractor’s profit margin advantage 

by having major changes in the overall schedule. 

 

Contrary to that, we see direct relation between profit margin and absolute objective 

function values of the players. Namely, as the profit margin increases, absolute objective 

function value of the client decreases and that of the contractor increases. For the problem set 

where interest rate is taken as 0,1, which is fairly high when compared to other tests, the 

beginning absolute values for both of the players (at Profit Margin=0,1) are close to each 

other, which indicates a trade-off between the profit rate and the interest rate. The details of 

the progression of absolute values for both players are shown in Figures 3.4-3.6 below: 
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Figure 3.4 Absolute objective function values at different profit margin levels (α=0,01) 
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Figure 3.5 Absolute objective function values at different profit margin levels (α=0,005) 

 

-500

-400

-300

-200

-100

0

100

B=0,1 B=0,25 B=0,5

B (Profit Margin)

client
contractor

 
Figure 3.6 Absolute objective function values at different profit margin levels (α=0,1) 
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3.2 Sensitivity Analysis for Interest Rate (α) 

 

Within the model Interest Rate (α) is used in NPV calculations within objective values 

of each player. 
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Interest Rate (α) may affect schedule preferences of the players due to different 

payment amounts at each payment point, and due to the fact that contractor pays activity costs 

in advance although he receives payments only at upcoming payment point. This shows that 

amount of Interest Rate (α) affects the contractor in two dimensions whereas it affects the 

client only in one. This brings the result that schedule manipulations due to Interest Rate (α)  

changes has more effect on the contractor’s objective value than it has on the client’s. Test 

results are presented in Figures 3.7-3.9. 
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Figure 3.7 Bargaining objective at different interest rate levels (β=0,1) 

 

 44



0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

a=0,005 a=0,01 a=0,02 a=0,05 a=0,1

a (interest rate)

client
contractor
OBJECTIVE

 
Figure 3.8 Bargaining objective at different interest rate levels (β=0,25) 
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Figure 3.9 Bargaining objective at different interest rate levels (β=0,5) 

 

Here, it is clearly seen that increasing interest rate had led to improved objective 

functions in most of the cases. Only in the last case where profit margin is set at high, we 

couldn’t observe a monotonic increase in the objective function since the client does not have 

much room to improve since the highest possible absolute objective function value for 

him/her is equal to zero. The main reason for improved objective function in most of the cases 

is that as the interest rate increased in the model, individual objective function values for each 

player had been decreased due to decreased net realization. This led the model to introduce 

schedule improvements that both players benefit at the same time, to decrease the effects of 

the interest rate. Although these changes still brought inferior objective function values when 

compared with the results of models with higher interest rates, the percentage increase within 

the model itself had been higher for both players since they were looking for the same 

direction. 
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Increasing interest rate is a source of absolute objective function value increases for 

the client and just the opposite for the contractor. The details are given in Figures 3.10-3.12. 
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Figure 3.10 Absolute objective function values at different interest rate levels (β=0,1) 
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Figure 3.11 Absolute objective function values at different interest rate levels (β=0,25) 
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Figure 3.12 Absolute objective function values at different interest rate levels (β=0,5) 
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3.3 Sensitivity Analysis for Bargaining Power (w(A), w(B)) 

 

Within the model Bargaining Power for each player is used in the final step of 

objective function evaluation in order to set the exact realized value for the players: 
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      (3.3) 

 

In our tests we have used bargaining powers that add up to 1, by this way we manage 

trade-off between power changes. As the bargaining power of a player increases, the actual 

objective value, which is the outcome of the adopted schedule, also increases. The summary 

of the weight tests we have conducted are given in Table 3.2: 

 

Table 3.2 Summary of the weight tests 

      Value Objective FV 

Realized Objective Value 

for Parties Absolute OFV 

client w(A) 0,1 0,186 0,845 -2478 
w1 

contractor w(B) 0,9 0,830 0,846 144 

client w(A) 0,2 0,306 0,789 -2314 
w2 

contractor w(B) 0,8 0,761 0,803 136 

client w(A) 0,3 0,410 0,765 -2173 
w3 

contractor w(B) 0,7 0,677 0,761 126 

client w(A) 0,4 0,442 0,721 -2129 
w4 

contractor w(B) 0,6 0,581 0,722 115 

client w(A) 0,5 0,515 0,718 -2030 
w5 

contractor w(B) 0,5 0,526 0,725 109 

client w(A) 0,6 0,578 0,720 -1943 
w6 

contractor w(B) 0,4 0,456 0,731 101 

client w(A) 0,7 0,672 0,757 -1815 
w7 

contractor w(B) 0,3 0,391 0,755 93 

client w(A) 0,8 0,708 0,759 -1766 
w8 

contractor w(B) 0,2 0,238 0,751 76 

client w(A) 0,9 0,810 0,827 -1628 
w9 

contractor w(B) 0,1 0,100 0,794 60 
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Here, for the first five weight couples, client has smaller actual objective than the 

contractor, and for the last four weight couples situation is vice versa. This is solely led by the 

bargaining powers players have. Here the mechanism is that, for the player who has smaller 

bargaining power, the realized objective increases as we are taking power of a number which 

is <1 and >0, so that the other player who has higher bargaining power increases its objective 

by modifying the adopted schedule. Table 3.3 represents schedule examples at different 

weight points. 

 

Table 3.3 Schedules at different weight points 

activity list 1 2 3 6 4 7 5 9 8 10 13 11 12 14 

mode list 1 1 1 1 1 1 1 1 1 2 1 2 1 1 w1 

idle time list 0 2 0 4 3 2 0 0 3 1 2 0 2 0 

activity list 1 2 3 6 4 5 7 9 8 10 13 11 12 14 

mode list 1 1 1 1 1 1 1 1 1 2 2 2 1 1 w2 

idle time list 0 2 0 4 3 2 0 0 3 1 0 0 2 0 

activity list 1 2 3 6 4 5 7 8 9 10 13 11 12 14 

mode list 1 1 1 1 1 2 1 1 1 2 2 2 1 1 w3 

idle time list 0 2 0 4 3 1 0 0 3 1 0 0 2 0 

activity list 1 3 2 5 6 7 4 8 9 10 13 11 12 14 

mode list 1 1 1 2 1 2 3 1 1 1 2 1 1 1 w4 

idle time list 0 0 2 1 4 0 0 0 3 2 0 0 2 0 

activity list 1 2 3 6 5 7 4 8 10 9 11 12 13 14 

mode list 1 1 1 1 2 1 3 1 1 2 2 1 2 1 w5 

idle time list 0 2 0 4 1 0 0 0 2 1 0 2 0 0 

activity list 1 3 2 4 6 5 7 9 8 10 11 12 13 14 

mode list 1 1 1 3 3 1 1 2 2 1 1 1 1 1 w6 

idle time list 0 0 2 0 1 2 0 1 0 1 2 1 1 0 

activity list 1 4 2 3 6 5 7 9 8 10 11 13 12 14 

mode list 1 1 1 3 1 3 2 1 1 3 1 1 1 1 w7 

idle time list 0 3 1 0 4 0 0 3 1 0 1 1 0 0 

activity list 1 2 3 6 5 4 10 7 8 9 11 13 12 14 

mode list 1 1 2 3 1 3 1 2 3 2 2 2 3 1 w8 

idle time list 0 1 1 1 2 0 1 0 0 1 0 0 0 0 

activity list 1 3 2 6 5 4 10 7 11 9 8 13 12 14 

mode list 1 2 2 3 1 3 1 2 3 2 3 2 3 1 w9 

idle time list 0 0 0 1 2 0 1 0 0 1 0 0 0 0 
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In Figure 3.13 we observe the net realized bargaining objectives for each player at 

different weight couples. Here we see that, once the gap between bargaining powers of the 

parties increase, the realized objective values increase for both of the players. This due to the 

fact that, if one of the players has a small bargaining power, his/her realized objectives 

increases a lot, that the other party tries to catch this increase by schedule changes.   
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Figure 3.13 Bargaining objectives vs. bargaining power 

 

When we look at the progression of actual objectives of the players in Figure 3.14, we 

observe the direct relationship between the bargaining power and the actual objective. 
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Figure 3.14 Actual objectives of the players vs. bargaining power 

 

Absolute objective function value for the players follow a similar trend as the actual 

objective does with respect to bargaining power. In Figure 3.15, we clearly observe this trend, 

but since the range is defined with the absolute gap between the worst and best solutions of 

the players, in this figure it seems like that the client has a sharper trend than the contractor 
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has. But this difference is totally driven by the gap between the worst and best case solutions, 

which are 1363 for the client and 114 for the client in this case. 
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Figure 3.15 Absolute objective function values of the players vs. bargaining power 

 

In terms of absolute objective function values of the players, we have observed six key 

conclusions (ceterus paribus): 

• Absolute OFV of the client decreases as the profit margin increases  

• Absolute OFV of the contractor increases as the profit margin increases  

• Absolute OFV of the client increases as the Interest Rate increases  

• Absolute OFV of the contractor decreases as the Interest Rate increases  

• Absolute OFV of the client increases as his/her Bargaining Power increases  

• Absolute OFV of the contractor increases as his/her Bargaining Power increases  

 

This brings us to the conclusion that, during problem solving stage, which appears as 

the bargaining stage, the variables may substitute each other. For example, an agreement on 

increasing the profit margin may correspond to increasing the bargaining power of the 

contractor, or vice versa. 
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4 EXTENSION OF THE MODEL 

 

 

In addition to the max min objective function, we also accomplished some tests with a 

second objective function formulation. We used GA in these tests. 

 

4.1 Maximizing the Minimum Model 

 

In this model, the objective function we use is: 
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Our ultimate aim is for each player, to maximize the distance from their worst solution 

point. In this first objective function equation; we get to achieve this by maximizing the 

minimum of these distance rates. For each player, we take the distance rates into 

consideration, not the absolute distance, since we need to find out the improvement rate, not 

the absolute gap between the current point and the worst point.  

 

4.2 Maximizing the Multiplication Model 

 

In this model, the objective function we use is: 
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For this objective function, test results show that, the objective function values for 

each player is close to each other when we are working with low interest rates. This is inline 

with the fact that in low interest rate environments schedule changes in our model correspond 

to benefit exchange among players. Here we can refer to the common square rule, which tells 

that if we are trying to maximize the multiplication of two numbers those add up to a constant 

value, we better choose these two equal to each other. In this sense, this objective function 

does exactly the same: In order to be able to maximize the multiplication of distance rates, it’s 
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wise to choose the distance rates close to each other. On the other hand, if the interest rate is 

high, schedule changes not necessarily lead to benefit exchange among players.  

 

We observe the progression in two dimensions: one is by taking the interest rate as 

constant and gradually increasing the profit margin, and the other one is by taking the profit 

margin as constant, and gradually increasing the interest rate. 

 

For each player and for each objective function we test progression of individual 

distance rate, which is a component of each objective function equation. In Figures 4.1 and 

4.2, you may observe the individual objective function values for each player obtained at 

constant interest rate. 
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Figure 4.1 Client’s OFV at different profit margin levels (α=0,01) 
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Figure 4.2 Contractor’s OFV at different profit margin levels (α=0,01) 
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For the first objective function equation, although the client seems to start at a higher 

level than the contractor at high profit margin levels, actually for this first equation both of the 

players end up with similar objective function values. In the second objective function 

equation; we observe a similar reaction, only this time contractor seems to have inferior 

objective functions when compared to the client at lower profit margin levels. As the profit 

margin level increases, this gap erodes, and both contractor and client adopt similar objective 

function values. The main reason for this is that at lower profit margin levels, schedule 

changes have greater effect on distance rate for both the contractor and the client. Hence, 

same schedule changes may have greater effects on distance rates on lower profit margin 

levels. One other point we observe is that for both the client and the contractor, the distance 

rates which we quantify as objective function values stabilize in higher profit margin levels in 

both first and second objective functions equations.  

 

The absolute value progression with respect to increasing profit margin for both of the 

players at various interest rate amounts is shown in Figures 4.3 – 4.10. Here we clearly 

observe that for both of the objective functions, the absolute value for the client decreases and 

the absolute value for the contractor increases as the profit margin increases. This comes as 

the trivial result of the fact that as the profit margin increases the net cost of the client 

increases, and the net profit of the contractor increases, free from the interest rate. 
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Figure 4.3 Client’s absolute OFV at different profit margin levels (α=0,01) 
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Figure 4.4 Client’s absolute OFV at different profit margin levels (α=0,005) 
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Figure 4.5 Client’s absolute OFV at different profit margin levels (α=0,05) 
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Figure 4.6 Client’s absolute OFV at different profit margin levels (α=0,1) 
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Figure 4.7 Contractor’s absolute OFV at different profit margin levels (α=0,01) 
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Figure 4.8 Contractor’s absolute OFV at different profit margin levels (α=0,005) 
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Figure 4.9 Contractor’s absolute OFV at different profit margin levels (α=0,05) 
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Figure 4.10 Contractor’s absolute OFV at different profit margin levels (α=0,1) 

 

The second set of graphs we examine consists of the progression of the individual 

objective function values for both the client and the contractor under constant profit margin 

and varying interest rate: 
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Figure 4.11 Client’s OFV at different interest rate levels (β=0,1) 
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Figure 4.12 Client’s OFV at different interest rate levels (β=0,25) 
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Figure 4.13 Client’s OFV at different interest rate levels (β=0,5) 
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Figure 4.14 Contractor’s OFV at different interest rate levels (β=0,1) 
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Figure 4.15 Contractor’s OFV at different interest rate levels (β=0,25) 
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Figure 4.16 Contractor’s OFV at different interest rate levels (β=0,5) 

 

In Figures 4.11-4.16 we observe that for the first objective function equation, both the 

client and the contractor increase their objective function values as the interest rate increases. 

The reason for this progression is that since the interest rate increases, schedule changes has 

more dramatic effects on objective improvements, hence the distance rate improves for each 

player. On the other hand, in the second objective function we observe that as the interest rate 

increases, the objective function value for the contractor and the objective function value for 

the client doesn’t necessarily follow a trend. This is totally driven by the equation dynamics 

of that specific equation. That is, since the objective function aims maximizing the 

multiplication of both objective functions, it does not create fair player values. This may lead 

to an optimal solution which builds a gap between player’s realized benefits.  

 

When we look at the progression of absolute objective function values of the players at 

different interest rate amounts in Figures 4.17 – 4.22, we clearly see that, for both objective 

functions, as the interest rate increases, the absolute value for the client increases and the 

absolute value for the contractor decreases. This results from the fact that increasing interest 

rate decreases the NPV of the contractor’s profit as well as the NPV of the client’s cost. 
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Figure 4.17 Client’s absolute OFV at different interest rate levels (β=0,1) 
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Figure 4.18 Client’s absolute OFV at different interest rate levels (β=0,25) 
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Figure 4.19 Client’s absolute OFV at different interest rate levels (β=0,5) 
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Figure 4.20 Contractor’s absolute OFV at different interest rate levels (β=0,1) 
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Figure 4.21 Contractor’s absolute OFV at different interest rate levels (β=0,25) 
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Figure 4.22 Contractor’s absolute OFV at different interest rate levels (β=0,5) 
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5 CONCLUSION 

 

 

In this thesis, we have investigated the client-contractor bargaining problem in the 

context of multi-mode resource constrained project scheduling. The bargaining objective is to 

maximize the bargaining function comprised of the individual NPV maximizing objectives of 

both the client and the contractor.  

 

In this context, we have proposed two main solution methods, namely Simulated 

Annealing Algorithm, and Genetic Algorithm. We have defined two different application 

methods for the Simulated Annealing, and on top of these we have introduced a solution 

search method by using non-dominated solutions set among the feasible set. Among these 

four solution methods, Genetic Algorithm had provided the best results when compared with 

the optimal results obtained by using a commercial solver (GAMS 20.0). 

 

One important point in the solution procedure is that the representation of the model in 

the solution algorithm has significant effect on the solution. The activity list solution 

representation provides improved results in Simulated Annealing when compared with the 

activity finishing time list. 

 

We have tested two main payment models to set the payment structure of the client to 

the contractor, cost + profit over cost, and cost + constant fee. Among these models, cost + 

constant fee model provided continuity in the problem and enabled both of the parties to end 

up with the same objective function value. In both of the models we have observed that 

although variations in the contractor benefits have effects on the absolute objective function 

values of both players, it does not have dramatic effects on the normalized objective functions 

and the schedule, since same changes are effective on reference values we use in the 

normalization. 

 

When we introduce a benefit for the client for each time period the project is 

completed before deadline, we observe a significant increase on the absolute objective 

function values of both players. Bargaining objective improvements are also observed with 

increased benefit amounts. This indicates that this introduced extra benefit is negotiated 

within the system and hence both parties take share from it.  
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Sensitivity analyses results show that profit margin increase doesn’t cause significant 

changes in the bargaining objective function, but it has huge effect on absolute objective 

functions of the players. As expected absolute objective function value of the contractor is 

increased with increased profit margin, and the absolute objective function value of the client 

is decreased. The tests we have conducted on interest rate showed that, although an increase 

in the bargaining objective function is observed with increasing interest rate, this is not a 

monotonic increase. However, interest rate variance has significant impact on the absolute 

objective functions of the players; the absolute objective function value of the contractor is 

decreased with increased profit margin, and the absolute objective function value of the client 

is increased. Weight tests we have implemented showed that bargaining weights have 

significant impact on the solution, not only on the absolute values of the players but also on 

the objective functions of the players.  

 

We have also tested a second objective function formulation besides our basic 

formulation, which is a max min function. The second formulation introduced is a 

maximization of a multiplication function. The test results showed that although the results 

were compatible for both of the objective functions, the first objective function provided 

better results at extremes. 

 

5.1 Further Research 

 

Although various analyses with the parameters have been conducted with the solution 

parameters, still a series of combinations is open for research through the proposed model. 

The effect of bargaining weights on different payment models may be an important source of 

analyses through further investigation of the problem. Different payment models may also be 

investigated more thoroughly with different solution procedures. On top of these combining 

the non-dominated solutions set procedure with metaheuristic algorithms may provide a 

source of further research. Also, the non-dominated solutions curve may be used to identify 

acting-optimal solutions for the problem sets that we don’t have any optimal solutions to 

compare the solutions we have generated with our metaheuristic algorithms. For example, in 

bargaining weight tests with higher activity numbers commercial solver we have used 

(GAMS 20.0) hadn’t delivered optimal solutions, so that we may use this curve’s equation to 
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generate acting-optimal solutions. By this way, a benchmark may be set by using the curve fit 

to the non-dominated solutions set.  
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