
 

 

 

i 

 

 

 

 

 

 

 

BIPED ROBOT REFERENCE GENERATION WITH NATURAL ZMP 

TRAJECTORIES 

 

 

 

 

 

 

by 

OKAN KURT 

 

 

 

 

 

Submitted to the Graduate School of Engineering and Natural Sciences  

in partial fulfillment of the requirements for the degree of Master of Science 

 

 

 

Sabancı University 

February 2006 

 



 

 

 

ii 

 

 

 

 

BIPED ROBOT REFERENCE GENERATION WITH NATURAL ZMP 

TRAJECTORIES 

 

 

 

APPROVED BY: 

 

Assist. Prof. Dr. Kemalettin Erbatur …………………………. 

   (Thesis Advisor) 

 

Prof. Dr. Asif Şabanoviç  …………………………. 

 

 

Assoc. Prof. Dr. Mustafa Ünel …………………………. 

 

 

Assoc. Prof. Dr. Mahmut Akşit …………………………. 

 

 

Assist. Prof. Dr. Mujdat Cetin …………………………. 

 

 

 

 

DATE OF APPROVAL:   …………………………. 

 



 

 

 

iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Okan Kurt 

2005 

 

All Rights Reserved 

 



 

 

 

iv 

 
 
 
 
 
 

ABSTRACT 

 
 

 

 

Humanoid robotics attracted the attention of many researchers in the past 35 years. 

The motivation of research is the suitability of the biped structure for tasks in the human 

environment. The control of a humanoid robot is a challenging task due to the hard-to-

stabilize dynamics. 

Walking reference trajectory generation is a key problem. A criterion used for the 

reference generation is that the reference trajectory should be suitable to be followed by 

the robot with its natural dynamics with minimal control intervention. Reference 

generation techniques with the so-called Linear Inverted Pendulum Model (LIPM) are 

based on this idea. The Zero Moment Point (ZMP) Criterion is widely employed in the 

stability analysis of biped robot walk. Improved LIPM based reference generation 

methods obtained by applying the ZMP Criterion are reported too. In these methods, the 

ZMP during a stepping motion is kept fixed in the middle of the supporting foot sole, 

which lacks naturalness. In fact, the ZMP in the human walk does not stay fixed, but it 

moves forward, under the supporting foot.  

This thesis proposes a LIPM based reference generation algorithm that uses ZMP 

references which have not only double support phase but are also more natural since  

moving ZMP references for single support phase are used. The application of Fourier 

series approximation simplifies the solution and it generates a smooth ZMP reference. 

Trajectory and force control methods for locomotion are devised and applied too.  

The developed techniques are tested through simulation with a 12 DOF biped 

robot model. The results obtained are promising for implementations.  
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ÖZET 

 
 

 

 

İnsansı robotlar geçtiğimiz otuzbeş sene içerisinde pek çok araştırmacının ilgisini 

çekmiştir. Bu araştırmaların motivasyonu yürüyen robotların insanların yaşadığı 

ortamlara uygunluğundan ileri gelmektedir. Öte yandan böyle bir sistemin 

denetlenmesi, sistemin doğrusal olmayan dinamiği nedeniyle büyük zorluk teşkil 

etmektedir. 

Bu doğrultuda yürüyüş referans yörüngesi elde edimi önemli bir çözüm teşkil 

etmektedir. Böyle bir yörünge eldesi işlemi için gerekli şart elde edilen yörüngenin 

robotun doğal dinamiği ile takibe uygun olması ve minimum denetleme müdahaleleri ile 

gerçekleştirilebilmesidir. Inverted Pendulum Model (LIPM) referans yörünge eldesi 

metoduna dayanan teknikler bahsedilen bu şarta dayanmaktadır. Öte yandan Zero 

Moment Point (ZMP) kriteri robot yürüyüşünün kararlılık tahlili için geniş çaplı olarak 

kullanılmaktadır. Dahası, LIPM tabanlı yörünge referansı eldesi modellerin ZMP kriteri 

ile geliştirilmiş versiyonları da literatürde mevcuttur. Ancak bu metodlarda adım 

esnasında ZMP çoğunlukla destek ayak tabanının ortasında tutulmuştur. Nitekim böyle 

bir referans yörünge eldesi doğallıktan uzaktır, çünkü insan yürüyüş çevriminde ZMP 

ayak tabanı altında sabit kalmaktan ziyade destekleyici ayağın tabanında yürüyüş 

yönünde ilerlemektedir.  

Bu tezde LIPM referans yörünge eldesi metoduna ve destekleyici ayağın altında 

konumu değişen ZMP referans eğrilerine dayanan bir referans yörünge eldesi metodu 

ileri sürülmektedir. Fourier serileri yaklaşımı LIPM dinamiğinin çözümünü 

basitleştirmekle kalmayıp aynı zamanda yumuşak ZMP değişimlerinede olanak 

sağlamaktadır. Hareket sağlanımı için yörünge ve kuvvet denetleme metodları tertip 

edilmiş ve uygulanmıştır. 

 Geliştirilen bu teknikler bir simülasyon ortamında 12 Serbestlik Dereceli bir robot 

modeli üzerinde denenmiştir. Elde edilen sonuçlar gerçek denemeler için ümit vericidir.  
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Chapter 1 
 
 
 
 
 

1. INTRODUCTION 

 
 
 

 

Humanoid robotics attracted the attention of many researchers in the past 35 years. 

It is currently one of the most exciting topics in the field of robotics and there are many 

ongoing projects on this topic [1-7].  

The motivation of research is the suitability of the biped structure for tasks in the 

human environment and the goal of the studies in this area is to reach the human 

walking dexterity, efficiency, stability, effectiveness and flexibility.  

If robots with legged locomotion and wheeled locomotion were to be compared, 

first, some basis criteria have to be found. The first criterion that comes to mind would 

be the environment in which the robot will travel. According to this criterion legged 

robots offer better mobility then their wheeled counterparts. The main reason is that 

legged robots can use discrete footholds on the ground between which there may exist 

discontinuities or irregularities while wheeled robots, on the other hand, require a 

continuous type of landscape, in other words an unbroken path to travel. In fact, human 

environments generally do contain irregularities, which are not suitable for wheeled 

robots. In this context, although wheeled locomotion is much more efficient on smooth 

flat surfaces legged locomotion offers a better mobility and efficiency on irregular 

ground surfaces. A great proportion of the land animals, especially mammals use legged 

locomotion. The reason for this fact is probably the efficiency, mobility and adaptability 

that the legged locomotion brings. 

Presumably the best aspect of legged locomotion is its adaptability. Legged 

locomotion can either apply walking, running or even climbing if necessary. Therefore, 

it can be concluded that speaking of human oriented environments legged locomotion 

do offer the best solution. 

The hope is to use bipedal robots to complete tasks which are either too difficult 

or dangerous for humans, such as extreme environmental conditions (fire rescue 
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operations, space explorations or with explosives such as landmines or radioactive 

plants). Furthermore, the advantages can be broadened to domestic use such as daily 

house cleaning or helping elder people. Also, the research provides a good basis for 

prosthetic devices. 

The control of a biped humanoid is a challenging task due to the many degrees of 

freedom involved and the non-linear and hard to stabilize dynamics. 

Walking reference trajectory generation is a key problem. Methods ranging from 

trial and error to the use of optimization techniques with energy or control effort 

minimization constraints are applied as solutions.  

A very intuitive criterion used for the reference generation is that the reference 

trajectory should be suitable to be followed by the robot with its natural dynamics, 

without the use of extensive control intervention. Reference generation techniques with 

the so-called Linear Inverted Pendulum Model are based on this idea [8]. Simply stated, 

the walking cycle is then achieved by letting the robot start falling into the walking 

direction and to switch supporting legs to avoid the complete falling of the robot.  

Yet another intuitive demand for the biped robot reference generation is that the 

reference trajectory should be a stable one, in the sense that it should not lead to 

unrecoverable falling motion. The Zero Moment Point Criterion [9] introduced to the 

robotics literature in early 1970s is widely employed in the stability analysis of biped 

robot walk. Improved versions of the Linear Inverted Pendulum Model based reference 

generation, obtained by applying the Zero Moment Point Criterion in the design 

process, are reported too. Generally, in these approaches the Zero Moment Point during 

a stepping motion is kept fixed in the middle of the supporting foot sole for the stability, 

while the robot center of mass is following the Linear Inverted Pendulum path.  

Although reference generation with the Linear Inverted Pendulum Model and 

fixed Zero Moment Point reference positions is the technique employed for the most 

successful biped robots today, this kind of reference generation lacks naturalness at one 

point. Investigations revealed that the Zero Moment Point in the human walk does not 

stay fixed under the supporting foot. Rather, it moves forward from the heel to the toe 

direction [10, 11]. 

This thesis proposes a reference generation technique based on the Linear Inverted 

Pendulum Model and moving support foot Zero Moment Point references. With this, an 

improvement towards the naturalness of the human walk is aimed. The application of 
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Fourier series approximation to the solutions of the Linear Inverted Pendulum dynamics 

equations does not only simplify the solution, but it generates a smooth Zero Moment 

Point reference for the double feet support phase too. 

The reference generation techniques mentioned above generate reference 

trajectories for the center of mass of the robot, the timing of the steps and landing 

position references for the swung feet. They alone cannot provide swing foot 

trajectories. Additional foot trajectory generation methods for smooth swing foot 

trajectories are developed in this thesis too. 

Finally, in order to validate the applicability of the generated references their 

performance has to be tested on walking robot simulations or experiments. However, 

walking can only result from the harmonious use of suitable reference trajectories and a 

successful control method. This fact makes the solution of the biped robot control 

problem as a must to be fulfilled before the reference generation algorithms can be 

tested. Trajectory control methods for the center of mass of the robot and force control 

techniques for the landing foot are devised and applied in this thesis too.  

The reference generation and control techniques are simulated and animated in a 

3-D full dynamics simulation environment with a 12 DOF biped robot model. The 

results obtained are promising for implementations.  

The next Chapter gives an overview of the terminology used in the biped robotics 

field. Chapter 3 presents a literature survey on successful examples of biped robots, 

reference generation and control methods. Reference generation with natural moving 

ZMP trajectories and the control of locomotion are discussed in Chapters 4. Chapter 5 

presents the Coordination and Control discussions. The biped model and simulation 

results are presented in Chapter 6. Finally in Chapter 7 Conclusion and future work is 

discussed.  
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Chapter 2 
 

 
 
 
 

2. TERMINOLOGY on BIPEDAL WALK 

 

 

 

Humans are very accomplished bipedal walkers. In fact, human walking 

represents the most remarkable solution of the nature among the bipedal walking 

creatures. Therefore it is an advantage to examine the human body structure before 

taking a step for the design phase of an anthropomorphic walking robot. 

An introduction to some terminology used in bipedal research and human 

biomechanics is presented below. Furthermore some important aspects of human 

walking process are discussed. 

In bipedal research area it is a general approach to use reference frames and 

terminologies to discuss about set of motions. The reference frames used in this thesis is 

depicted in Fig. 2.1. 

                          

 

Figure 2.1. Reference frames for Human Body. 
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Before getting deeper into discussions it is found convenient to start with basic 

definitions since they are going to be used either in this chapter and the rest of the 

dissertation frequently. More detailed information can be found in [12].  

 

Center of Mass (CoM): A point at which the whole distributed mass of an object 

acts. 

Supporting Polygon: The polygon shaped over the ground by foot (feet) that is 

(are) in touch with the ground. 

Step length: Distance traveled by one foot 

Stride length: Distance traveled between two successive placements of the same 

foot. 

Single Support: The time interval in which only one foot supports the whole body. 

Double Support: The time interval in which both feet supports the whole body. 

Static Gait: The walking pattern during which the CoM must be over the 

supporting polygon at all times as shown in Fig. 2.2. 

              

 

Figure 2.2. Static gait type.  

 

Dynamic Gait: The walking pattern during which there are times when the CoM 

can be outside the supporting polygon as shown in Fig. 2.3. 

 

         

Figure 2.3. Dynamic gait type.  
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Gait, simply, is defined to be the pattern of footsteps at a particular speed, or a 

manner of walking or running. This cyclic motion can be broken into two phases: swing 

and stance (Support) phase. A leg is in its swing phase when it is freely (not touching 

the ground) moving in the space and it is in its stance phase when it touches the ground 

or, in other words, exactly when the other leg enters its swing phase. The stance phase 

can also be broken into two different phases: Single support and Double Support 

phases. Single support phase is the time interval when only one leg carries the body 

load. The double support phase, on the other hand, is the time interval when both feet 

support the whole body. Furthermore, if both feet are off the ground then this phase is 

called the ballistic phase or the flight phase which actually happens during running. 

Gait cycle, for zero initial speed, starts with the double support phase and 

proceeds. In Fig. 2.4, a typical human walking cycle is depicted. It has been measured 

that approximately %20 of a typical gait cycle is the double support phase. If this time 

increases the achievable maximum speed decreases as a result. In fact, running gaits 

consists of consecutive single support phases only. 

The analysis of walking process comprises two key subjects that need to be 

clarified to get a better insight: The gait cycle and the spatial displacements of the CoM. 

The displacement of the center of mass is a key concept in walking cycle due to the fact 

that it hosts the definition of stability in a sense. In other words, it can be regarded as a 

basis to understand stability in any type of gait.  

Static and dynamic locomotion are the two types of walking that are distinguished 

by the location of the center of mass in the gait cycle. In static walking the vertical 

projection of the center of mass of the robot lies inside the supporting polygon created 

by the foot/feet of the robot at all times (Fig. 2.2). Hence at any time the robot is 

statically stable or, in other words, if the gait cycle is paused at any time during the walk 

the robot wouldn’t fall down eventually. On the other hand, in dynamic walking the 

vertical projection of the center of mass can lie outside the supporting polygon 

sometimes (Fig. 2.3). Although this is an indication of instability, the overall gait is kept 

dynamically stable due to the inertial effects. In other words, a dynamically stable gait 

cycle contains local controlled instability regions in such a way that the overall stability 

is preserved. Thus this fact, eventually, brings the challenge to generate dynamically 

stable reference gaits in humanoid robotics. Although it is the case, actually, this 

challenge comes with a prize that does not exist in the static walking: speed. By the 
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correct regulation of speed the stability of the gait cycle is achieved. In fact, human 

walking patterns are considered to be dynamically stable in which there are consecutive 

fallings from one foot to the next.  

Generally static gait is slow by its nature. The reason for this fact is that in static 

gaits CoM has to lie within the region of the supporting polygon always. However, in 

dynamic gaits the opposite of this fact holds. Since the CoM spends less time within the 

supporting polygon higher speeds are achieved, in fact, dynamic walk becomes 

extremely hard to realize if the speed of the gait is too slow. Because at slow speeds the 

time spent in which the CoM lies outside the supporting polygon increases and hence 

the effect of gravity becomes more dramatic. Therefore the probability of falling down 

increases eventually.  

 

Figure 2.4. The human gait cycle [13]. 

 

These facts can also be seen in the following figures from human walking data. 

For the cases of gait initiation and gait termination CoM path is depicted in Fig. 2.5. 
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Figure 2.5. Gait initiation and termination [13]. 

 

Note that during the gait initiation and the gait termination the body speed is 

relatively slow, and hence CoM is inside the supporting polygon during this time. 

 

 

Figure 2.6. Foot steps and CoM trajectory of a human [13]. 

 

To point out the stability of the walk it is interesting to notice that during steady 

walk (at constant speed), the CoM trajectory does not run out of the supporting polygon, 

Fig. 2.6. In fact, the result of such a change would be falling. The reason behind 

dynamically stable walk is that either there are enough forces and moments generated to 

oppose the gravitational force to prevent the body from falling down, or the time for 
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single support phase is adjusted in such a way that it is not enough for the gravitational 

forces to lead for a tipping over. These two factors are often used in synthesizing or 

generating gaits for bipedal walking machines. 

 

Zero Moment Point (ZMP): The point, generally on the ground surface, around 

which the total applied torque is equal to zero. It is defined by Vukobratovic, M. [9] and 

it serves as a stability criterion for the dynamics of multi-body objects.  

 

ZMP can be regarded as a very important tool in reference gait generation for 

humanoid robotics. Therefore, it is crucial to have a good insight on what it is. The best 

way to understand ZMP and ZMP based stability would be to consider ourselves, in 

other words, how we react in certain postures. For instance, in Fig. 2.7, a human athlete 

in a running posture can be seen. In such a body posture, it is evident that if the person 

does not accelerate his body forward then, eventually, he will fall down. On the 

contrary, if he accelerates forward, then for some amount of time he can stabilize his 

body and keep his balance. In such a case the ZMP, which lies on the ground will be 

under the supporting polygon (the left foot in this case). 

 

 

 

Figure 2.7. A Person Who Starts Running.  
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Where [ ]Tzyx pppP ,,=  is the ZMP vector, and [ ]T
zyxCoM ,,=  is the center of 

mass vector of the athlete.  

In any type of gait it can be concluded that if the ZMP is inside the supporting 

polygon at all times then the gait is considered to be stable. Note that this definition 

encapsulates both statically and dynamically stable walking. Since the net applied 

torque around the ZMP is zero then the tipping moment eventually becomes zero, which 

means that there is no tipping moment acting on the body. On the other hand if ZMP is 

outside the supporting polygon then the net torque acting on the body is not zero, and as 

a matter of fact there exists a tipping moment acting on the body. Hence the gait is not 

stable and the body may fall down eventually, which is exactly what happens if the 

person does not accelerate forward in the previous example. 

 
Denavit-Hartenberg Axis Assignment: This is a common axis assignment 

convention which was originated by Denavit and Hartenberg [14]. The joint axis 

assignment with the Denavit-Hartenberg convention in [14] is shown in Fig. 2.8. 
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Figure 2.8. (a) Exploded view of the joints and their axes; (b) Joint axes and their 

placements. 
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Newton-Euler Dynamic Model:  This is a recursive kind of algorithm to model the 

dynamics of a rigid-body object. Due to its recursive nature it is suitable for online 

calculation and it is a quite common method to model the dynamics in robotics [14]. 

Euler-Lagrange Dynamic Model: This is another method of deriving the dynamic 

model of a rigid-body object which gives closed form equations. This method is also 

common in robotics and it is again used in online calculation [14]. 

Tree Structure: It is the kinematic chain structure type used to define two legs of a 

bipedal walking robot. 

Biped Dynamic Model: The biped robot is modeled as a free-fall manipulator 

which is not fixed to the ground but has interaction with it. In order to formulate the 

dynamics of a free-fall manipulator, position and attitude variables of the base-link 

should be introduced. Let generalized coordinates x , generalized velocities v , and 

generalized forces u  be: 

 

NTT

B

T

B

T
RSOR ××∈= )3(],,[ 3

θApx  (2.1) 

NTT

B

T

B

T
RRR ××∈= 33],,[ wwvv  (2.2) 

NTT

B

T

B

T
RRR ××∈= 33],,[ τnfu  (2.3) 

where 

Bp  : 13×  vector specifying base-link position 

BA  : 33×  rotation matrix specifying base-link orientation with respect to a world 

frame 

θ  : 1×N  vector specifying joint angle 

Bv  : 13×  vector specifying base-link velocity 

Bw  : 13×  vector specifying angular velocity of base-link 

w  : 1×N  vector specifying joint angular velocity 

Bf  : 13×  force vector generated in base-link 

Bn  : 13×  torque vector generated in base-link 

τ  : 1×N  torque vector generated by actuator 

N  : Number of joints of the robot 
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The equation of motion of the robot is: 

Euuxgvvx,CvxH +=++ )()()( &  (2.4) 

where 

)(xH  : )6()6( +×+ NN  inertia matrix 

)( vx,C  : )6()6( +×+ NN  matrix specifying centrifugal and Corioli’s effects 

)(xg  : 1)6( ×+N  vector specifying gravity effect 

Eu  : 1)6( ×+N  vector specifying generalized forces generated by external 

forces 
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Chapter 3 
 

 
 
 
 

3. LITERATURE REVIEW 

 

 

         3.1. History of Biped Robotics 

 

The first recorded design of a humanoid robot was made by Leonardo da Vinci in 

1495. The robot is a knight, clad in German-Italian medieval armor, which is apparently 

able to make several human-like motions. These motions include standing up, moving 

its arms, neck and an anatomically correct jaw. It is partially the fruit of Leonardo's 

anatomical research in the Canon of Proportions as described in the Vitruvian man 1. 

This fact was rediscovered from Leonardo’s notebooks in the 1950s. 

In the 20th century the first computer controlled humanoid robot was designed and 

built at the Waseda University in 1967, which was called Wabot-1 [15]. At that time the 

technology of the robot was very impressive. The robot had a stable gait (it took 45 

seconds for the robot to take a step) as well as gripping hands with tactile sensors, and a 

vision system and a communication system. The realization of this first humanoid robot 

influenced lots of engineers and scientists around the world to orient their research to 

this subject.  

Afterwards, many other bipedal walking robots were developed in the 1980s like 

WHL-11 of Waseda, which was capable of static bipedal walking on a flat surface at 13 

seconds per step speed [16], or like Batelle’s Pacific Northwest Laboratories’ Manny 

[17]. Another interesting example of legged locomotion would be M. H. Raibert’s  

 

_____________________ 
1Vitruvian Man: The Vitruvian Man is a famous drawing with accompanying notes by 

Leonardo da Vinci made around the year 1490 in one of his journals. It depicts a naked 

male figure in two superimposed positions with his arms apart and simultaneously 

inscribed in a circle and square. Vitruvian Man is also referred as the “Canon of 

Proportions” or “The Proportions of Man”. 
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hopping machine [18] which introduced the ballistic flight phase to bipedal locomotion 

and demonstrated that the stability can be achieved by bouncing continuously. 

However, the ultimate turning point of the history of humanoid robotics would be 

the time when Honda announced its already existing project on humanoid walking 

robots (Fig.3.1). The years of experience on many trial and errors led Honda to its 

ultimate walking robot ASIMO [3]. ASIMO not only has the ability to walk 

dynamically and naturally but also it has many other features like dexterous 

manipulation of objects, posture, sound, gesture and face recognition abilities (Fig.3.2).  

 

 

 

Figure 3.1. All the robots from Honda’s humanoid project since 1986. 

 

 

 

Figure 3.2. Honda’s ASIMO. 
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Not long after Honda’s success, Sony introduced QRIO in 2004 [4, 5]. This robot 

also has a dynamically stable walk, and it is capable of adapting to uneven ground 

surface, detect obstacles and avoid them, recognize face, sound, words, even can have 

dialogs with people (Fig. 3.3). 

 

 

 

Figure 3.3. Sony’s QRIO. 

 

Expanding the examples further, University of Munich’s JOHNNIE is another 

bipedal robot that has a dynamically stable gait; the robot is able to walk on even and 

uneven ground and around curves. Furthermore, a jogging motion is planned for the 

robot. This is characterized by short ballistic phases where both feet are off the ground. 

The robot is autonomous in terms of actuators, sensors and computational power, just 

the energy is supplied by a cable [6]. The robot is able to achieve a dynamic gait and it 

can also walk up to 2.6 km/h. Also it has a vision system and arms to improve its 

stability (Fig. 3.4).  

Another remarkable example would be the HRP-2 by the Manufacturing Science 

and Technology Centre (MSTC), which is sponsored by the Ministry of Economy, 

Trade and Industry (METI), Japan. The robot has 30 degrees of freedom. The 

cantilevered crotch joint allows for walking in a confined area. Its highly compact 

electrical system packaging allows it to forgo the commonly used "backpack" used on 

other humanoid robots [7]. This robot also can achieve a dynamically stable gait; also it 

can lie down and get up, and carry objects together with people (Fig. 3.5). 
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Figure 3.4. Humanoid robot Johnnie of the University of Munich.  

 

 
 

Figure 3.5. The last prototype of Humanoid Research Project: HRP-2. 
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There are many humanoid projects that continue around the globe, although the 

trend inclines to eastern countries, like Korea or Japan. And it is natural to expect that 

humanoid technology will grow faster in proportion with the goal to develop more 

human-like robots, computer, actuator and sensor technology and, in a sense, help us to 

understand what it means to be human.  
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3.2. Literature Review on Pattern Generation for Bipedal Walking Robots 

 

Presumably in the future humanoid robots will be a new form of computer that 

acts and supports our daily activities in our environment. The reason behind this 

speculation lies in the nature of bipedal walking which has supreme characteristics in 

obstacle avoidance when compared with wheeled and multi-legged robots. However, 

the biped robot dynamics are highly nonlinear, complex and unstable by its nature. This 

eventually makes biped walking control a highly challenging task. Although there exist 

many successful accomplishments on bipedal walking and gait generation around the 

globe, this progress still lacks in many ways when compared to human walking in terms 

of flexibility, naturalness, stability and robustness. In this context bipedal walking robot 

research can be considered to be in its initial phases. 

There are many different approaches to form a solution to these expectations in 

literature. These approaches can be classified into two major categories. 

The first approach uses precise knowledge of dynamic parameters of a robot e.g. 

mass, location of mass and inertia of each link to prepare walking patterns. 

Furthermore, in this approach joint motion trajectory is prepared in advance and it is 

applied to the real robot with a little online modification. Now let’s have a closer and 

deeper look at some of the existing robot projects falling into this category. 

Presumably the most outstanding instance would be Honda’s P2 [1], shown in 

Fig. 3.6. They divided the walking control into three sub-control routines. These 

routines are Ground Reaction Force Control which shifts the actual ZMP point to an 

appropriate position by adjusting each foot’s desired position and orientation, Model 

ZMP Control which is used to control the shifting of the desired ZMP to an appropriate 

position in order to recover the robot posture, and lastly the Foot Landing Position 

Control which corrects the relative position of the upper body and the feet in 

conjunction with the model ZMP control. Simply this control scheme corrects the 

changing geometric arrangement due to possible accelerations of the upper body caused 

by other sub-control schemes. 
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Figure 3.6.   Honda’s P2. 

 

By having these three control routines working simultaneously Honda achieved a 

posture stabilizing control similar to a human with P2 (Fig.3.6).  

Furthermore, it is interesting to notice the lessons that Honda learned after many 

experiments they developed over walking robots they designed and implemented in 

their laboratories. After the walking experiments on robots with varying speed and pay 

loads, it was concluded that the robot system requires a body inclination sensor, and a 

ground interaction force sensor for each foot. And also it was seen that to absorb the 

landing-impact ground reaction force an impact absorption mechanism was required. 

Additionally to design the shape and dimensions of the robot Honda engineers 

considered the environment that the robot will work in. For instance the height and the 

width of the robot is designed for it to be able to fit through a door easily. Its fingers 

were designed to hold simple objects easily. Furthermore, the angle variations of the 

joints were kept sufficient enough for the robot to be able to work efficiently and climb 

average size stairs. Harmonic gear drives and dc motors are used for joints. 

Defining constraints on the movement of joints and using iterative computation is 

another technique used in [19] by Kaneko, K. et. al. They use a method where they 

generate hip and foot trajectories to determine the rest of the joint trajectories to 
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generate a walking gait. First they formulate the constraints of a foot trajectory and 

generate this trajectory by a 3rd order spline interpolation. Or in other words they decide 

on the points where each foot will be at certain times and use interpolation to fit a curve 

that includes those points in the working space of the leg. Afterwards, they formulate a 

hip trajectory using 3rd order periodic spline functions, and derive the hip trajectory with 

high stability by means of an iterative ZMP calculation. Namely, a hip trajectory is 

defined according to a given leg trajectory by means of satisfying the ZMP criterion 

such that the reference ZMP should always lie inside the supporting polygon at all 

times.  

Another interesting approach is in [20] where the authors use kernel of arbitrary 

stepping motions designed a priori to generate desired dynamically stable motions. The 

stepping motion to an arbitrary position is done in two stages. The first stage is the 

construction of kernel motions by means of genetic algorithm. The second is the real-

time mixture of pre-designed motions to generate a desired dynamically stable stepping 

motion.  

In [21] a more global approach is taken. The authors consider the robot as a whole 

when modeling it and generate trajectories for not only its hip and feet but also for its 

waist joints and arms as well. With this technique they are able to generate a 

dynamically stable gait. 

With the above mentioned approaches, researchers are able to generate 

dynamically stable gaits. However, as mentioned before these solutions mainly rely on 

the precise knowledge of the parameters of the humanoid robot being used, moreover 

there are strict assumptions that may, in fact, lead to possible failures in real life 

experiments when they are changed, such as the slope of the ground or the weight of the 

robot. In other words, the method used in these solutions leads them to be inflexible and 

cumbersome. Instead a humanoid robot must be adaptive and robust to changing 

parameters in its environment. We believe that the second approach provides a better 

potential for such an aim. 

The second approach uses the limited knowledge of dynamics e.g. location of 

total angular momentum, total center of mass etc. Since the controller knows little about 

the system this approach mainly relies on a feedback control. 

One of the most effective and hence popular techniques belonging to this group is 

the linear inverted pendulum mode approach which was introduced by Kajita, S. and 
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Tani, K. in [22]. In this approach authors aim to extract a dominant feature of biped 

dynamics and simplify its’ non-linear and high-order dynamics by only considering this 

dominant feature. We believe that their intuition lies in the fact that the dynamics 

governing the actual human walking sometimes behaves like the dynamics of a falling 

pendulum at certain times. In this context the authors derive the equations that are 

governing the dynamics of an inverted pendulum. But these equations were also non-

linear and hard to solve. To have linear equations they eliminate the vertical movement 

by fixing the height of the pendulum. When the motion of a 3D inverted pendulum is 

constrained to move on an arbitrary plane the dynamics governing the pendulum 

becomes linear and this, eventually, uncouples the motion to saggital and frontal planes. 

And they realize that these linear equations are not only easy to manipulate but they are 

also more or less sufficient enough to describe the actual dynamics of a walking robot. 

Such an inverted pendulum is shown in Fig. (3.7). 

 

 

 

Figure 3.7. An inverted pendulum with constant height.  
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This method is being used by many researchers around the world [6, 7] since it provides 

a practical and relatively easy solution which allows for real-time computation of 

dynamically stable bipedal walking gait. 

Looking for a dominant index which will be able to represent the whole system 

idea is apparently not restricted with the linear inverted pendulum mode approach.  

In [23] Sono, A. and Furusho, A. aim to develop a control method which allows the 

robot to walk in a natural manner without resisting the field of gravity. As a quantity to 

represent the whole state of the system they select the angular momentum and they 

support their choice by the law of the conservation of the total angular momentum. 

While employing angular momentum index for the control in the saggital plane they 

regard the motion in the frontal plane to be an ordinary regulator problem with two 

equilibrium states. Furthermore, they test their proposed method on their robot BLR-G2 

and achieve a walking speed of 0.35cm/sec.  

Couple of years after Kajita, S. and Tani, K. introduced the linear inverted 

pendulum model Park, J.H. et. al came up with the Gravity-Compensated linear inverted 

pendulum approach [24]. Their intuition stems from the assumption in linear inverted 

pendulum mode approach that the robot has legs with zero mass. They claim that this 

assumption, in fact, leads the swinging of each leg to act as a disturbance to the 3D 

LIPM model. Experiments show that the heavier the legs are when compared to the 

trunk the higher the disturbance becomes. This was because the inertia effects of those 

robots which were not negligible. As a solution to this problem, Park, J.H. et. al model 

the inverted pendulum to be composes of two different masses one of which represents 

the swinging leg and the other the rest of the body, which can be seen in Fig. 3.8. 

Having a defined trajectory for the swinging leg they calculate the resulting acceleration 

and hence the moment effect of the swinging leg and add it to the existing inverted 

pendulum model after some simplification assumptions. The resulting model actually is 

nothing but the linear inverted pendulum model when the swinging leg effect is equal to 

zero. Moreover they design a servo controller for both the swinging leg and center of 

gravity. Their simulation results indeed show that the swinging leg affects the trajectory 

of the center of mass dramatically when the mass of the swinging leg is increased.  

As an implementation for their previously mentioned idea, Kajita, S. et. al [25] 

developed a new bipedal walking machine with telescopic legs which were driven by 

brushless DC servomotors and ball screws. In their studies they develop a solution to 
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the differential equations, which govern the dynamics of the bipedal robot, in terms of 

the initial position and velocity. Furthermore, from this solution they derive equations 

which give the correlation between the cycle and the geometry of the stepping motion 

 

 

 

Figure 3.8. Gravity compensated inverted pendulum.  

 

that helps to get an intuition on how the model parameters affect each other. 

Additionally they develop a double support phase to cope with the disturbances due to 

leg exchanges. In this implementation Kajita et. al were able to generate trajectories in 

real-time. 

In later approaches it can be observed that the zero moment point stability 

criterion is starting to come in to the picture by the linear inverted pendulum mode 

based models. In [26] Inoue, H. et. al develop a real-time motion generation method 

which controls the center of gravity by indirect manipulation of the ZMP. The indirect 

term here refers to the fact that ZMP is a resulting value of the system’s dynamics 

which therefore can not be controlled directly. The origin of their idea lies in the 

dynamical relationship between the ZMP and the center of gravity. Again they assume 

the legged system to have similar dynamics to the inverted pendulum, whose supporting 
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point is located at the ZMP point lying on the ground. Thereafter they propose the 

method that controls the COG of the whole humanoid body in real-time through ZMP 

manipulation. They use simple linear inverted pendulum equations to derive the strict 

referential COG trajectory. Although the approach is pragmatic in the sense that it 

assumes the inertial forces other than the gravitation are zero, they claim that its 

effectiveness was remarkable. Lastly they decompose the referential COG velocity to 

joints and apply local controllers for each joint actuator to generate the whole-body 

motion of the robot. 

 Although the ZMPs position can be controlled indirectly by giving acceleration 

references to center of body of the robot this , eventually, will lead to the necessity of 

modification of the walking pattern designed a priori. But this may not be desirable 

because the landing points of the free leg will be altered and may touch the ground at 

undesirable positions. However, these positions are generally determined by the 

exogenous environmental needs. Kajita, S. et. al brings a solution to this problem in 

[27]. They handle the problem as follows: ZMP should always lie inside the supporting 

polygon in order the robot to be stable. Thus any given ZMP trajectory must also define 

the foot stepping positions. And these ZMP trajectories must be somehow obtained as a 

result of a suitable biped gait. The core of their solution to the problem is the preview 

controller that uses the future information of the reference ZMP trajectories in order to 

control the acceleration of the CoM. Then the resulting (measured) ZMP of the moving 

CoM fed back to the control loop. Thus, in a sense, the ZMP is controlled indirectly by 

means of CoM motions and the reference ZMP is tracked. Finally they use the obtained 

CoM trajectory with the foot stepping positions obtained from the given ZMP 

trajectories as references for the actual robot.  

 Another approach was developed by Okumura, Y. et. al to the same problem in 

[28]. What they propose is such an algorithm that preserves the pre-assigned landing 

positions of the swinging leg. Their approach to achieve this result is as follows; The 

spatial trajectory of a joint in 3D is traversed at different speeds depending on the 

necessary acceleration to stabilize the gait according to the ZMP formulas. And the 

difference in speed is nothing but the difference in sampling time. Hence, by varying the 

sampling time they can achieve different accelerations. Thus, the acceleration required 

for ZMP compensation can be exerted without disturbing the pre-computed spatial leg 

trajectory. In other words they are able to keep the pre-specified stepping positions 
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while they stabilize the robots gait dynamically. Furthermore, they test this algorithm on 

the robot “Morph3” which was created at their laboratories, Fig. (3.9).  

 

 

 

Figure 3.9. MORPH 3. 

 

Although the linear inverted pendulum approach provides both a simple and real-

time computable solution, another drawback of this method is that the governing 

equations are unstable. Of course this is a natural outcome since an inverted pendulum 

is unstable itself. In [29] Choi, Y. and his co-workers derive equations for the center of 

gravity of the robot which they assume to be a rolling sphere on a virtual arbitrary plane 

with the height of the robot’s COG from the ground. Later by introducing the ZMP 

definitions to these equations they derive the ZMP equations in the state space and get 

the exact solution by using reference ZMP curves which also define the footstep 

positions in time. However, they claim that the solution is not robustly applicable for 

real biped walking system since they are composed of unbounded cosh(.) functions, and 

that those solutions happen to be very sensitive to the variation of the height of the 

COG. As a solution to this matter they plan an approximate solution composed of 

bounded cosine and sine functions by means of Fourier series. Lastly they come up with 

approximated simple bounded functions to serve for COF trajectory which also satisfies 

the reference ZMP curves. Lastly, to cope with the possible disturbances in the real 

implementation they develop an indirect control for the ZMP.  
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In gait planning and control of biped walking, most of the above mentioned 

methods use fixed ZMP references. In other words, they assume discrete points for 

ZMP reference which are actually in the middle of the sole of the foot. On the other 

hand, in human walk ZMP does not just stay fixed at a point but it travels on the ground 

as the gait cycle proceeds. In [30] Kawamura et. al proposes this idea of using variable 

ZMP to generate a dynamically stable gait in terms of linear inverted pendulum 

approach. Their claim is that using a fixed ZMP not only leads to the biped walking 

rigid but also leads the walking to lack of flexibility. So in order to make the biped 

walking more human like and more agile it is necessary and important to investigate the 

biped walking with variable ZMP. They use 3rd order spline curves for ZMP references 

and consider it to move from the heel to toe of the foot in single support phase by line 

functions. Furthermore they investigate the stable biped walking condition from ZMP 

concept, frictional constraint, and inverted pendulum model. Lastly they compare the 

aspects of fixed and variable ZMP according to their simulation results. 
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Chapter 4 
 

 
 
 
 

4. REFERENCE GENERATION with NATURAL ZMP TRAJECTORIES 

 
 
 
 
LIPM mode approach is based on such ordinary differential equations that the 

solutions are both hard to be solved and they are composed of numerically unbounded 

cosh(.) functions. In addition they are sensitive to the height variation of the pendulum 

and they are difficult to be used robustly. Furthermore, since only the acceleration of the 

body is considered in LIPM approach the foot stepping positions may vary as a result. 

However, the stepping positions in real implementations are generally determined by 

exogenous environmental needs. For instance a robot should determine its foot stepping 

positions in order to avoid obstacles in real experiments. As a result the robot should 

have such a gait that follows the pre-determined stepping positions and preserve the 

overall stability.  

As a solution to such problems Choi, Y. et. al [29] introduce an alternative robust 

CoM trajectory planning method by using the approximate solution composed of 

bounded functions. Having pre-determined ZMP reference trajectories Choi, Y. et. al 

find the exact solutions of LIPM equations that are derived according to ZMP criterion. 

Finally they derive the approximated closed form equations that give the time trajectory 

of the CoM.  

However in their studies Choi, Y. et. al use fixed ZMP trajectories. This actually 

leads the robot walking both to be rigid and unnatural. Furthermore, in their 

approximated solutions they do not consider double support phases which, eventually, 

may bring problems in real implementations [6,30]. 

In this chapter the approximation to the solution of the dynamics of LIPM, which 

is done by Choi, Y. et. al, is shown and the main contribution of this thesis, that is, the 

introduction of Natural ZMP references with double support phase to this method is 

discussed. 
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4.1. Linear Inverted Pendulum Model 

 

Linear Inverted Pendulum Model was first introduced by Kajita and Tani in 1991 

[22]. The main idea of this approach is to extract a dominant feature of biped dynamics, 

which is high-order and non-linear, and to use this dominant factor to explain the 

governing dynamics of the system. In this model the robots mass is assumed to be 

lumped at the center of mass of the robot and the legs of the robot are assumed to be 

massless. Further, for simplicity, the height of the pendulum is assumed to be constant 

in this model. This lets the dynamics of the model to be linear. Such an inverted 

pendulum with a massless rod can be seen in Fig. 4.1. 

 

 

 

Figure 4.1. Inverted pendulum. 
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The ZMP equations for yx −  plane are as follows.  
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(4.2) 

Where, [ ]TzmpzmpzmpZMP zyxP ,,= shows the ZMP vector of any kinematic chain, the 

gravity vector is [ ]Tzyx gggg ,,=  and gg z −= , [ ]T

iii zyx ,,  and im  is the position 

vector and  the mass of each link, respectively. 

Now, let the ZMP of coordinates of this pendulum to be [ ]Tzyx pppP ,,= , the 

mass of the pendulum to be m . The gravity vector is [ ]Tzyx gggg ,,= , gg z −= , and 

[ ]Tzyx cccC ,,=  is the CoM vector. Using the ZMP equations (4.1) and (4.2) the 

dynamics equations of the inverted pendulum can be derived as follows. 
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However equations (4.3) and (4.4) are non-linear. To attain linear equations 

assume the z-coordinates of the inverted pendulum is assumed to be constant. Let 

cz zc = . Thus the equations (4.3) and (4.4) turn into linear equations as follows. 
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Henceforth, (4.5) and (4.6) are going to be referred as ZMP equations. Note that 

given the CoM coordinates of the pendulum [ ]T
zyx cccC ,,=  at any time it is 

straightforward to calculate the ZMP coordinates of the pendulum by (4.5) and (4.6). 

On the other hand walking trajectory generation is the inverse problem. That is, given a 

ZMP trajectory a CoM trajectory should be found. Thus, this trajectory of CoM could 

be used as a reference for the CoM of the actual biped walking robot. Further the legs 

should be in such coordination that this CoM is tracked accurately. Since the goal is to 

achieve a dynamically stable gait the ZMP trajectory should always lie inside the 

supporting polygon. And this actually determines the location of the footprints of the 

biped robot. Finally by knowing the footprints and the CoM trajectory by inverse 

kinematics relations a possible gait could be achieved. 

A good example in order to have a better insight and intuition on LIPM model is 

the Table-Cart model which is used by Kajita in [27]. Such a Table-Cart model can be 

seen in Fig. 4.2. Actually the governing dynamics of the LIPM is exactly analogous to 

the Table-Cart model since the height of the pendulum is assumed to be constant.  

 

 

 

Figure 4.2. The Table-Cart model. 
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As depicted in the picture, assume the cart to be at the position showed by dashed 

lines. If the cart is not moving then, since the foot of the table is not long enough to 

equalize the torque generated by the cart, the table would fall eventually. However, if 

the cart has a proper acceleration, the table can remain upright for a while. At the 

moment, ZMP lies inside the table foot. Notice that this example is similar to the one 

which is given in Chapter 2 (Fig. 2.7). Since the moment around the ZMP must be zero 

the following condition holds. 

 

( ) 0=−−= cxZMP zxmpxmg &&τ  (4.7) 

 

A similar Cart-Table model can also be considered for the y-axis, and same result 

can obtained from (4.1). 

 

4.2. Natural ZMP Trajectories 

 

Bipedal walking robots are instable structures by their nature and can tip over 

easily. Since biped robots are unactuated at the base link these stability problems 

emerge eventually and bring the challenging problems of gait generation and control of 

biped robots for dynamically stable walking into front. A commonly known concept 

that serves as a stability criterion for biped robot systems is the so-called ZMP, which 

was originally introduced by Vukobratovic, M. [9]. 

A kinematic chain is depicted in Fig. 4.3. The ZMP for such a system can either 

be measured by means of force sensors or it can be computed. The ZMP of the robot 

should be always in the supporting polygon for it to be in a stable condition. This 

implies that the robot is continuously recovering from unbalanced conditions to a stable 

posture. Stable ZMP references can be employed to design stable walking patterns.  

Usually in many reported studies [26-29], the ZMP reference in the single foot 

support phase is in the form of a point under the sole of the supporting foot. However, 

experiments with walking humans show that the ZMP does not stay at a fixed point in 



 

 

 

32 

the single support phase, [10, 11, 30]. It rather passes the sole of the supporting foot, 

from the heel to the toe. 

 

Figure 4.3.  Kinematic Chain for Center of Mass. 

A natural ZMP trajectory during the human walk cycle is illustrated in Fig. 4.4. 

We believe that using natural ZMP reference trajectories for gait generation will result 

in a more natural and energy efficient CoM trajectory. In fact, already reported results 

also show that -since the resulting CoM trajectory oscillations are smoother- using 

variable ZMP trajectories result in more energy efficient trajectories [30].  

 

 

 

Figure 4.4. A Natural ZMP trajectory. 
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4.3. Exact Solution of Linear Inverted Pendulum Model for Fixed ZMP  

 

In this Section the exact solution of the LIPM equations (with given fixed ZMP 

trajectories), which is done in [29], is shown. Recall the ZMP equations (4.5) and (4.6). 
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In order to get an intuition about these equations  

Rearranging these equations, 
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From the equations (4.8) and (4.9) applying Laplace transform, 
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(4.11) 

 

In  (4.10) and (4.11) the following fixed ZMP trajectories are going to be used for 

the exact solution calculation. In Fig. 4.5. the x-axis (for saggital plane) reference for 

ZMP trajectory, in Fig. 4.6, the y-axis (for frontal plane) reference for ZMP trajectory, 

and in Fig. 4.7, the resulting ZMP trajectory in the  yx −  plane can be seen. Note that 

Fig. 4.6 also indicates the foot placement positions in the yx −  plane. 
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Figure 4.5. 
ref

xp , x-axis ZMP reference trajectory 

 

 

 

Figure 4.6. 
ref

yp , y-axis ZMP reference trajectory 
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Figure 4.7 
ref

x

ref

y pp − on yx −  plane ZMP reference trajectory / Step Positions 

 

The ZMP reference trajectories in Fig. 4.4 and Fig. 4.5 can be expressed as 

follows. 
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Taking the Laplace transform of (4.12) and (4.13) and substituting it to (4.10) and 

(4.11) with zero initial conditions the following equations can be derived. 
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 (4.14) and (4.15) can be rearranged to derive the following transfer functions. 
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(4.17) 

 

Finally, the exact reference trajectories of the CoM can be obtained by applying 

inverse Laplace transformations to (4.16) and (4.17) as follows. 
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(4.19) 

 

Although (4.18) and (4.19) are the exact solutions for the ordinary differential 

equations (4.5) and (4.6), in practice they are difficult to be used robustly for a real 

biped walking robot since they are composed of numerically unbounded cosh(.) 

functions. Furthermore, they are unstable and very sensitive to the variation of nω . 

Therefore, an approximated solution composed of bounded sin(.) functions is suggested 

to serve as a robust CoM trajectory in the following section. 
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4.4. Planning an Approximate Solution 

 

In this section the approximate solution for LIPM equations done in [29] is shown. 

First an odd function with period 0T  is introduced from the x-directional reference ZMP  

ref

xp  of (4.12) as follows.  
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Then assuming that the x-directional reference trajectory of CoM has the 

following form by using Fourier series, 
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Then applying (4.21) to the ZMP differential equation (4.5) the following relation 

can be found. 

)(
2

)( 0

0

tp
T

t
T

B
tp x

ref

x
′+








−=  

 

(4.22) 

where 

∑
∞

= 


























++
















+=′

1 0
22

0

22

0
22

0

22

sin1cos1)(
n n

n

n

nx t
T

n

T

n
bt

T

n

T

n
atp

π

ω

ππ

ω

π
 

 

(4.23) 

 

Here in (4.22) the form of the odd function )(tpx
′  can be seen in Fig. 4.8. Since )(tpx

′  is 

an odd function with period 0T , the coefficients 0=na  and nb  can be found by solving 

the following equation. 
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Figure 4.8. )(tpx
′  Introduced odd Function. 
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Finally, nb  can be found as follows. 
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As a result, the x-directional reference trajectory of CoM can be found by 

substituting (4.25) to (4.21) as follows. 
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On the other hand, since the y-directional reference ZMP )(tp y
′  of (4.13) is an 

odd function with period 0T the y-directional reference can be found in a similar manner 

as follows. 
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The resulting CoM trajectories for x and y axes can be seen in Fig. 4.9 and  

from Fig. 4.10. 
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Figure 4.9.  xC  Reference trajectory for x-axis (Saggital Plane, B=0.5, 0T =1). 

 

 

Figure 4.10. yC  Reference Trajectory for y-axis (Frontal Plane, A=0.5). 

 

In Fig. 4.9 it can be observed that the CoM is passing through acceleration and 

deceleration phases in such a way that the given ZMP reference is achieved. Similarly 

in Fig. 4.10 the CoM is forming a sine-like curve to satisfy the ZMP reference. 
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4.5. Introduction of Natural ZMP Reference Trajectories by Fourier 

Approximation to Obtain CoM Trajectories 

 

As discussed in the previous sections the ZMP trajectory in a human walking 

cycle is not fixed at a point at certain periods but it travels under the supporting 

polygon. In the single support phase the ZMP travels from heel to the toe of the foot and 

in the double support phase it travels from the toe of the supporting foot to the heel of 

the swinging foot [10, 11]. In this context the x-directional reference ZMP trajectory 

ref

xp  (Fig. 4.11) is introduced, which is an improvement to Choi, Y. et. al’s work in 

[29].  

 

 

 

Figure 4.11. Natural ZMP reference trajectory. 

 

Here b is the half length of the foot sole. It can be observed that in this trajectory 

ZMP travels starts from zero and advances in time under the sole of the foot in the 

initial single support phase and from heel to the toe of the foot in the further single 

support phases. By the same procedure followed in the previous sections the following 

odd function xp′ with period 0T  from the x-directional reference ZMP ref

xp  is 

introduced, Fig.4.12. 
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Figure 4.12. )(tpx
′  New introduced odd function. 

 

Applying the same procedure from (4.20) to (4.25) the new nb  coefficient can be 

found as follows. 
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Hence the natural CoM trajectory is found as follows. 
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(4.30) 

The resulting xC  trajectory can be seen in Fig. 4.13. Note that the resulting 

xC trajectory is smoother (showed in dashed line) than the conventional xC trajectory 

with fixed ZMP, which was introduced by Choi, Y. et. al [29]. The smoothness of the 

resulting trajectory implies that the acceleration differences are less when compared 

with the conventional xC trajectory with fixed ZMP. This also implies that less energy 

is necessary to track the xC  trajectory with variable ZMP. 
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Figure 4.13. xC  Trajectory w/ variable ZMP (Solid line) and w fixed ZMP 

(dashed line) 

 

4.6. Introducing Double Support Phase to ZMP Reference Trajectories. 

 

In this section the introduction of double support phases to previously used 

reference ZMP trajectories will be addressed which is also an improved version to 

method at [29]. Adding double support phase to reference ZMP trajectories in both x 

and y axes by the previously used method in Section 4.3, which is to blend lines with 

different slopes, makes it impossible to overcome such a problem. Instead to overcome 

this problem the so-called Lanczos Sigma Factor is used for such a task. 

The non-uniform convergence of the Fourier series for discontinuous functions is 

known as Gibbs Phenomenon in the literature. There are complex methods to smooth 

the Gibbs Phenomenon. One method is the so-called Lanczos Sigma Factor. In this 

approximation a function is multiplied by the coefficients in the Fourier partial sums. 

This function is a complex sine function involving the period of the original function. 

Fourier series by the Lanczos Sigma Factor can be rewritten as follows. 



 

 

 

43 

( ) ( )[ ]∑
−

=

++=
1

1

0 sincos)(sin
2

)(
m

n

nn nbna
m

n
c

a
f θθ

π
θ  

 

(4.31) 

The resulting effect of the Lanczos Sigma Factor can be seen in Fig. 4.14 and  

Fig. 4.15. 

 

 

 

Figure 4.14. Fourier approximation w/o Lanczos sigma factor. 

 

 

Figure 4.15. Fourier approximation w/ Lanczos sigma factor. 
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In this example the Double Support Parameter DSP  of the Lanczos Sigma Factor 

( )(sin
DSP

n
c

π
) is used to attain double support phases in the reference ZMP trajectory. 

Notice that in Fig. 4.15 the duration of the double support phase is tuned by setting 

appropriate values to the DSP   parameter. Also observe the variations of the CoM 

trajectory corresponding to different double support phase durations.  

Further the found Natural CoM trajectories for yx −  axes are as follows. 
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In addition the Natural ZMP trajectories for yx −  axes are as follows. 
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In Fig. 4.16 and Fig. 4.17 it can be observed that the new ref

xC  is smoother than 

both of the previous versions. This, in fact, is an outcome of the novel approach of 

embedding both the varying ZMP reference and the double support phases in to Fourier 

approximation to LIPM equations. Also it can be observed that the Gibbs Phenomenon 

effect is almost disappeared and a smoother ZMP reference approximation is achieved. 

Moreover, by varying the parameters different types of gaits can be generated. 
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As an example, trajectory for the walking parameters close to a human’s is given 

in Fig. 4.16, and in Fig. 4.17 (A=.15[m], B=.6[m], b=[.14] and  0T =1 [s]). 

 

 

Figure 4.16.  Natural XC  reference with parameters close to human walk. 

 

 

 

Figure 4.17.  Natural YC  reference with parameters close to human walk. 
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Chapter 5 

 

 

 

 

 

5. COORDINATION and CONTROL of LOCOMOTION 

 

 

 

 

The discussion previous chapter develops how a CoM reference can be obtained 

from a given ZMP reference trajectory. This chapter firstly discusses how swing foot 

position references are obtained from the Fourier series approximation of the ZMP 

reference trajectory and the generated CoM reference trajectory. Secondly, the control 

algorithm, which consists of five lower level position and force controller building 

blocks, is explained.  

As shown in Fig. 5.1, the swing foot position references are obtained from the 

ZMP and the CoM reference curves. Fig. 5.2 shows the directions of the world frame. 

The origin of the world frame is at the ground level. The reference trajectories are 

described in the fixed world coordinate frame. The robot trunk (or body) coordinate 

frame is initially positioned just over the world coordinate frame.  

 

 

Figure 5.1. The swing foot position references are obtained from ZMP and CoM 

references. 
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For simplicity, the generated CoM position reference is used as a reference for 

the center of mass of the trunk (which is not necessarily at the trunk coordinate frame 

origin). It is assumed that the position of the center of mass of the trunk is known as 

expressed in the trunk coordinate frame. 

 

 

 

 

Figure 5.2.  World frame directions. 
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Fig. 5.3 shows the y-component of a typical ZMP curve after Fourier series 

approximation together with the generated CoM reference in this direction. It should be 

noted that the ZMP position reference is not defined before the end of a certain 

initialization phase shown in Fig. 5.4. In this phase the robot trunk CoM follows an 

initialization trajectory in the y-direction. The initialization reference trajectory followed 

is a smooth one avoiding unnecessary oscillations before the periodic stepping motion 

begins. The curve is in the form of a shifted cosine function over an half period, 

climbing from zero to the amplitude of the CoM reference y-component. The 

configurations of the robot before and after the initialization phase are shown in        

Fig. 5.5. 

 

 

 

Figure 5.3. The ZMP and CoM (dashed) position reference y-components. 

 

 

Initialization 

phase 

 

 

Figure 5.4. The CoM reference y-component (dashed) in the initialization phase. 
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Figure 5.5. Robot configurations at the beginning (left) and at the end (right) of the 

configuration phase. 

 

The flat regions of the of the typical ZMP curve y-component indicate the single 

support phases. The corners of this curve can easily be detected in software 

implementation. In Fig. 5.6 the beginning of right and left support phases are indicated 

by “o” and “+” signs respectively. When one of the feet is in the single support phase 

the other one is in the swing phase and therefore the timing information for the support 

phases contains the timing information for the swing phases too. The duration of the 

swing is measured as the width of the flat regions.  

The height of the step is a design variable in the order of few centimeters for a 

human sized biped. The up and down motion of the swing foot is planned as a shifted 

cosine curve with an amplitude equal to the half of the step height and period equal to 

the swing duration. Typical swing reference positions of the right and left legs in the z 

direction are shown in Fig. 5.7, together with the y-component of the ZMP position 

reference.  
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Figure 5.6. Typical ZMP reference position in the y-direction and swing timing 

detection. 

 

 

 

 

 

Figure 5.7. Typical swing foot z-direction position references (dashed) and their timing 

with respect to the ZMP references (solid curve). 
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 The x-components of the ZMP and CoM references are displayed in figures 5.8 

and 5.9. The locomotion is achieved by applying z-direction references to the swing feet 

in their respective swing periods. The x-direction foot position references are shown in 

figures 5.10 and 5.11. These references are constant in the support periods, and they rise 

smoothly to keep up with the CoM position reference in the swing periods. The smooth 

step increment is realized again in the form of a shifted cosine function. The amplitude 

of the cosine function is half of the step size, which is a design parameter. The period of 

the cosine function is twice the swing period, and the function is applied over its half 

period as the x-reference. The offset between the initial CoM x-position and the foot 

positions is due to the fact that the foot coordinate frame centers are behind the CoM for 

a stable static configuration of the robot. 

 

 

 

Figure 5.8. The ZMP (solid) and CoM (dashed) reference x-components. 
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Figure 5.9. The ZMP (solid) and CoM (dashed) reference x-components, a closer view. 
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Figure 5.10. CoM reference and swing foot x-components. 
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Left foot x-reference 

Right foot x-reference 
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Figure 5.11. CoM reference and swing foot x-components, a closer view. 

 

 

 

As mentioned above, the control algorithm consists of five lower level position 

and force controller building blocks (Fig. 5.12). Swing foot references, or alternatively, 

the swing timing is determines the timing for switching between control structures. 

However, swing reference timing is not the only criterion to switch from one control 

mode to the other. Switching from swing to support controller before actually reaching 

the ground level and establishing stable contact with the ground can cause a sudden loss 

of the robot balance. Therefore, ground interaction force information is used and 

controller mode switching is not allowed before the z-direction component of the 

contact force exceeds a certain threshold value. The force threshold value is a design 

parameter. The support to swing switching times obey the swing timing without 

additional feedback from ground interaction forces. The CoM and swing foot references 

are employed in different modes of the control as shown in Fig. 5.13.  
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Figure 5.12. The switching between control modes is realized by processing the ground 

interaction force and swing foot reference timing. 

 

 

 

 

 

Figure 5.13. The position references used in different control modes. 
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 The double support controller regards the biped robot as a trunk manipulated by 

two six-DOF arms with their bases positioned on the ground level (Fig. 5.14). The CoM 

position reference discussed above and fixed orientation reference with respect to the 

world coordinate frame are applied in a position control schemes for both manipulators. 

The position controllers running for the two manipulators (legs) are identical. Cartesian 

position and orientation errors are computed from the reference and actual position and 

orientations. These errors are reflected to the joint space errors by the use of inverse 

Jacobian relations. Independent joint controllers are employed for the joint space 

position control. The controllers for the two legs work almost independently. However, 

the Cartesian errors are scaled with different gains for the two legs before corresponding 

joint errors are computed (Fig. 5.15). The scaling factor for the right leg is proportional 

to the horizontal distance of the left foot coordinate center from the CoM and similarly, 

the scaling factor for the left leg is proportional to the horizontal distance of the right 

foot from the CoM. This rule is obtained experimentally and it performed well for the 

coordination of the two legs in the double support phase. 
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Figure 5.14. The robot in the double support phase can be regarded as a trunk 

manipulated by two six-DOF manipulators based on the ground. 

 

 

 

 

Figure 5.15. The double support phase controller structure. 
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The robot in swing phases can be seen as a ground based manipulator 

controlling the CoM position and trunk orientation and a second manipulator based at 

the hip controlling the swing foot position and orientation, as shown in Fig. 5.16. The 

right support (Fig. 5.17) and left swing (Fig. 5.18) controllers are activated 

simultaneously. The single support controller applies the position control scheme 

described above for the double support phase (without using the scaling factors). The 

swing leg controller is a stiffness controller for the foot position and orientation. For 

soft landing purposes, a Cartesian stiffness matrix with low stiffness against in 

orientation errors and position errors in the z-direction is employed. The horizontal 

directions are penalized with higher stiffness coefficients. These choices enable crisp 

landing positions with minimal impact disturbance.  

As shown in figures 5.19 and 5.20 the controllers in the left support and right 

swing phase are identical to the controllers in the right support and left swing phase. 

Chapter 7 presents simulation results with the references and controller 

structures outlined in this chapter. 

 

  

 

Figure 5.16. The robot in swing phases can be seen as a ground based manipulator and a 

second manipulator based at the hip.
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Figure 5.17. The single support controller for the right foot. 

 

 

 

 

 

Figure 5.18. The swing controller for the left foot. 
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Figure 5.19. The single support controller for the left foot. 

 

 

 

 

Figure 5.20. The swing controller for the right foot. 
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Chapter 6 

 

 

 

 

6. THE BIPED MODEL and SIMULATION RESULTS 

 

 

 

6.1 The Biped Model as the Simulation Test Bed 

 

The biped model used in this work as a simulation test bed is called “Mari-2”, one 

of the biped robots of Yokohama National University, Japan [11] (Fig. 6.1). 

This model is selected since it is an experimentally tested model and suitable for 

our simulations. The test bed consists of two 6-DOF legs and a trunk connecting them. 

Three joint axes are positioned at the hip. Two joints are en the ankle and one at the 

knee. Approximate link sizes and the masses of the biped are given in Table 6.1.  

 

 

  
 

Figure 6.1. Some pictures of the used test bed robot, Mari-2. 
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Table 6.1. Masses and dimensions of the biped robot links. 

 

Link Dimensions (LxWxH) [m] Mass [kg] 

Trunk 0.2 x 0.4 x 0.5 50 

Thigh 0.1 x 0.1 x 0.1 12 

Calf 0.22 x 0.05 x 0.1 0.5 

Foot 0.1 x 0.12 x 0.25 5.5 

 

The joint axis assignment with the Denavit-Hartenberg convention in [14] is 

shown in Chapter 2, Fig. 2.8, and the Denavit-Hartenberg parameters of the legs are 

listed at Table 6.2.  

 

Table 6.2. D-H Parameters of the biped leg. 

Link ai iα  di 
i
θ  

1 0 
2

π
 0 *

1θ  

2 0 
2

π
−  0 *

2θ  

3 L3 

2

π
 0 *

3θ  

4 L4 0 0 *
4θ  

5 0 
2

π
−  0 *

5θ  

6 L6 0 0 *
6θ  

 

 

The general form of the dynamic model used for the bipedal robot is as shown in 

(2.4). The simulation scheme is similar to the one in [31,32], which generalize the 

recursive Newton-Euler dynamic modeling method in [33,34] to the tree structure. The 

details of the simulation algorithm and contact modeling can be found in [35]. 
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The simulations are implemented in Simulink with sampling time of 0.5 

milliseconds with Euler integration. In order to visualize the walking, simulation results 

are animated using an OpenGL based animation environment. A snapshot of the 

animation is shown in Fig. 6.2. 

 

 

 

Figure 6.2. A screen shot from the Biped Animation. 

  

6.2 The Simulation Results 

 

Simulations studies are carried out with the robot model described in Chapter 2, 

references generated in Chapter 4 and the coordination and control mechanism 

discussed in Chapter 5. Various parameters used for reference generation and control 

are presented in tables 6.3-6.5. 
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Table 6.3. Some of the important simulation parameters. 

Parameter Value 

x-reference foot-CoM offset -0.06 m 

Step height 0.02 m 

Step period 3 s 

Step size 0.2 m 

Foot to foot y-direction distance  0.08 m 

Foot to foot y-direction ZMP reference distance 0.1 m 

Ground interaction threshold force 100 N 

. 

 

Table 6.4. PID controller gains for support leg joints. 

Joint Number Kp Kd Ki 

1 (Hip) 6000 1 40 

2 20000 1 40 

3 20000 1 40 

4 30000 1 40 

5 30000 1 40 

6 (Ankle) 6000 1 40 

 

 

Table 6.5. Stiffness Control Gains for Swing Leg Controllers. 

Cartesian Error Direction Cartesian Stiffness Gain Cartesian Damping Gain 

x 5000 5 

y 5000 5 

z 20000 20 

Roll 100 1 

Pitch 100 1 

Yaw 100 1 
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Fig. 6.3 shows the y-direction CoM and CoM reference for a 8 seconds walk. It 

can be observed that the CoM reference in this direction is closely tracked except in the 

single support phases. The y-direction ZMP and ZMP reference curves displayed in Fig. 

6.4 also a deviation from the reference curve in the swing phases. This suggests that the 

simple LIMP model, concentrating on the robot trunk, and ignoring the effects of the 

swing foot on the CoM of the whole robot, may encounter problems when the leg 

weight is not very low. The MARI–2 legs weigh 15 kg. Although much less than the 50 

kg trunk weight, this weight affects the y-direction CoM and ZMP curves significantly. 

Apart from the swing phases, the tracking performance is quite acceptable. 

 The x-direction CoM and ZMP curves together with their references are 

presented in figures 6.5 and 6.6, respectively. These curves, too, display oscillations and 

deviations from reference curves mainly due to the trunk dominated LIMP model. Still, 

in the average, the reference curves are tracked. 

 Figures 6.7 and 6.8 show the x-y-plane trajectories of the CoM and ZMP, 

respectively. The reference curves are displayed in these figures too. The tracking 

behavior seen in Fig. 6.7 is an acceptable one, whereas the ZMP curve in Fig 6.8 shows 

high amplitude oscillations in both directions. The more oscillatory behavior of the 

ZMP can be due to the ground force modeling which is based on an adaptive spring 

penalty approach [35]. Again, the worsening effect of the swing foot dynamics not 

modeled in the reference generation algorithm can be observed in Fig. 6.8. It can also be 

seen that the actual ZMP is frequently concentrated at the foot edges. This is an 

expected result for support legs under position control. They are controlled as they are 

bolted down to the ground. However actually they are free to move and the incline to 

some extend, pushing the ZMP to the foot edges.  

 In the average, the ZMP curve moves forward even in the single support phases. 

However, the transient behavior does not indicate that the naturalness of the human 

walk is achieved completely.  

Although there are some tracking problems as discussed above, the reference 

generation and control algorithms are generally successful, keeping the ZMP in the 

support polygon and enabling the robot move forward with an almost constant speed of 

7 cm per second. This is achieved without the need for the elaborate trial and error steps 

common to many other reference generation approaches. 

  



 

 

 

65 

 

Figure 6.3. CoM and CoM reference y-direction components. 

 

 

Figure 6.4. ZMP and ZMP reference y-direction components. 
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Figure 6.5. CoM and CoM reference x-direction components. 

 

 

Figure 6.6. ZMP and ZMP reference x-direction components. 
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Figure 6.7. CoM and CoM reference on the x-y-plane. 

 

 

Figure 6.8. ZMP and ZMP reference on the x-y-plane. 
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7. CONCLUSION and FUTURE WORK 

 
 
 
 

A trajectory generation, coordination and control approach for biped walking 

robots is presented in this thesis. The reference generation part is based on the Linear 

Inverted Pendulum Model. As a novel approach, human-like ZMP reference trajectories 

with double support phases are used with existing Fourier series approximation 

techniques for the solution of Linear Inverted Pendulum Model. The approximated 

solution to LIPM dynamics equations are employed in order to achieve naturalness in 

the walk. A control structure consisting of different modes and position and force 

control techniques is developed too.  

Simulation and animation studies have shown that the reference generation 

without considering the effects of the swing foot on robot ZMP can lead to significant 

deviations from reference trajectories. ZMP trajectories concentrating at the inside 

edges of the swing feet suggest that there is room for improvement at the controller side 

too.  

The next step would be to develop online indirect ZMP controller algorithms to 

modify the dynamics of the robot to compensate for the disturbance of each swinging 

leg and preserve a dynamically stable walk. Such an algorithm should force the 

measured ZMP to follow the reference natural ZMP by doing several modifications in 

the motion of, say CoM, the walking robot. These modifications can also regard 

changes in the parameters of the walking algorithm such as changing the stride distance 

or foot-to-foot distance. Furthermore, the robustness of the contact modeling can be 

considered and revisions can be made to get better results. Experiments show that small 

impacts that occur at each stepping movement effects the quality of the walking 

algorithm since the force at each foot is a parameter for the walking algorithm. Yet the 

walk, however, is stable and this is a very promising result making the whole algorithm 

a candidate for implementation.  
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8. APPENDIX 
 

The following Matlab code is the reference generation algorithm 

that is used for CoM.  

 

% naturalCoMtrajectory.m 

%_____________________________________________ 

close all 

clear all 

A=.2;          %Stride Length 

B=.8;          %Foot-to-Foot Distance 

wn=sqrt(10);    

T0=1;    %Stepping Period 

b=.14;         %Foot Sole length 

t=0:0.001:10; 

DSparam=20  % DSparam is the double support phase parameter that            

            % defines the double support time 

 

% % NATURAL CX   calculation 

 

c1=0; 

for n=1:24     

    c1 = c1 + [[(B-2*b)*sinc(n*pi/DSparam)*T0^2*wn^2*(1+ 

cos(n*pi))] / [n*pi*(T0^2*wn^2 + n^2*pi^2)]]*sin(n*pi*t/T0); 

end 

 

cx_new= (B/T0)*(t-T0/2)  + c1; 

 

hold on 

plot(t,cx_new,'r') 

 

%----------------------------------------- 

%  NATURAL  PX   calculation 

 

p11=0; 

p12=0; 

 

for n=1:24 
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    p11 = p11 +[[(B2*b)*sinc(n*pi/DSparam)*T0^2*wn^2*(1+cos(n*pi))] 

/ [n*pi*(T0^2*wn^2 + n^2*pi^2)]]*sin(n*pi*t/T0)*(1+n^2*pi^2/ 

(T0^2*wn^2)); 

end 

f=p11 ; 

px_new = f  - B*(1/2 - t/T0); 

 

plot(t,px_new,'b') 

%------------------------------------------- 

% Line wise ZMP reference 

c = (B-2*b)*floor(t/T0).*st(t-T0)/T0; 

y = 2*b*(t)/T0 + c -b;%Linewise ZMP(without double support phase)     

 

hold on 

plot (t,y,'k') 

 

%------------------------------------------- 

%      OLD CX       calculation 

cx_old=0; 

 

for n=1:24 

    cx_old = cx_old + [[B*T0^2*wn^2*(1+ cos(n*pi))] / 

[n*pi*(T0^2*wn^2 + n^2*pi^2)]]*sin(n*pi*t/T0); 

end 

 

cx_old= (B/T0)*(t-T0/2)+ cx_old; 

hold on 

plot(t,cx_old,'b') 

%----------------------------------------------------------------- 

%      OLD CY       calculation 

 

cy_old=0; 

 

for n=1:24 

    cy_old = cy_old + [[2*A*T0^2*wn^2*(1- cos(n*pi))] / 

[n*pi*(T0^2*wn^2 + n^2*pi^2)]]*sin(n*pi*t/T0); 

end 

hold on 

plot(t,cy_old,'b') 
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%----------------------------------- 

%     NATURAL PY  calculation 

 

p2=0; 

 

for n=1:24   

    p2 = p2 + [[2*A*sinc(n*pi/DSparam)*T0^2*wn^2*(1-cos(n*pi))] / 

[n*pi*(T0^2*wn^2 + n^2*pi^2)]]*sin(n*pi*t/T0)*(1+n^2*pi^2/(T0^2*wn^2)); 

end 

 

py_new=p2; 

 

hold on 

plot(t,py_new,'r') 

 

%    NATURAL  CY  calculation 

 

cy_new=0; 

 

for n=1:24 

     

    cy_new = cy_new + [[2*A*sinc(n*pi/DSparam)*T0^2*wn^2*(1- 

cos(n*pi))] / [n*pi*(T0^2*wn^2 + n^2*pi^2)]]*sin(n*pi*t/T0); 

end 

 

 

hold on 

 

plot(t,cy_new,'r') 
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