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ABSTRACT 

 

UNDERSTANDING PROTEIN DYNAMICAL TRANSITION AND PROT EIN-

WATER INTERACTIONS FROM DIELECTRIC RELAXATION 

CALCULATIONS 

 

Dielectric properties of an aqueous lysozyme solution were calculated from 2 ns 

long MD simulations in the temperature range of 150-300 K and an 4 ns long simulation 

at 300 K. Static and frequency dependent dielectric constants of the system were 

calculated from auto- and cross-correlations of its three components (protein, water, 

ions). Cole-Cole plots for protein, water and the total solution were obtained. 

Emergence of an intense protein-water interaction above the dynamical transition 

between 190 K and 210 K was evidenced by the presence of protein effects in the water 

components of the Cole-Cole plots and frequency dependent dielectric constants at and 

above 210 K. Backbone and side chain torsion angle trajectories for surface loop 

residues within this range of temperatures were calculated. Also, water molecules 

around side chains were labeled and monitored individually, and radial distribution 

functions of water around the side chains and in the bulk water were obtained. These 

data were used to support a model that accounts for the interaction between surface 

water and protein components, resulting in high mobility of the side chains at the 

transition temperature range. The water molecules in the vicinity of the protein surface 

are then propelled into the bulk for a much different electrostatic effect than is 

immediately expected of the known properties of water alone. The functional protein, 

therefore, exists as an integral part of a larger protein-water system that cannot be 

decoupled. The water molecules may even be thought of as information carriers that 

make other nearby biological molecules aware of the presence of the protein.
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ÖZET 

 

D�ELEKTR �K GEV�EME HESAPLARINDAN PROTE �N D�NAM �K 

DE����M �N� VE PROTE�N-SU ETKLE��MLER �N� ANLAMAK 

 

Su içeren bir lizozom çözeltisinin dielektrik özellikleri, 150-300 K sıcaklık aralı�ı 

içinde 2 ns uzunlu�unda ve 300 K için 4 ns uzunlu�unda gerçekle�tirilen moleküler 

dinamik simulasyonlarından hesaplandı. Sistemin statik ve frekansa ba�lı dielektrik 

sabitleri, üç bile�enin (protein, su, iyonlar) kendileriyle ve birbirleriyle olan korelasyon 

fonksiyonlarından hesaplandı. Protein, su ve bütün çözelti için Cole-Cole grafikleri 

çizildi. 190 K – 210 K arasında gerçekle�en dinamik de�i�imden sonra kuvvetli bir 

protein-su etkile�imin ba�langıcı, su için çizilen Cole-Cole grafiklerinde ve frekansa 

ba�lı dielektrik sabitlerinde 210 K üzerinde görülen protein etkisiyle kanıtlandı. Yüzey 

aminoasitlerinin çatısal ve yan zincir dihedral açıları hesaplandı. Yan zincirlerin 

etrafındaki su molekülleri etiketlenip tek tek izlendi ve yüzeye yakın ve uzak suların 

radyal da�ılım fonksiyonları hesaplandı. Bu verilere dayanarak yüzey suları ve protein 

etkile�imine dair bir model geli�tirildi. Geçi� sıcaklı�ında bu etkile�imin yan zincirlere 

yüksek hareketlilik kazandırdı�ı, bu hareketin yüzey sularını dı�arıya iterek suların 

rotasyonunu sa�ladı�ı ve böylece suyun tamamına beklenmedik bir elektrostatik etki 

yükledi�i sonucuna varıldı. Buna göre i�levsel protein, daha büyük ve ayrılamaz bir 

protein-su sisteminin bir parçasıdır. Su molekülleri de etraftaki di�er biyolojik 

molekülleri proteinin varlı�ından haberdar eden bilgi ta�ıyıcaları olarak 

dü�ünülebilirler. 
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1. INTRODUCTION 

Dielectric properties of proteins are of equal interest to theoreticians and 

experimentalists. Dielectric constant and conductivity of protein solutions and their 

dependence on conductivity are crucial on themselves, which renders calculation of 

these properties from computer simulations necessary. Static dielectric constant is also 

important due to its role in the Poisson–Boltzmann equation [1]. A static dielectric 

constant for protein and the dielectric medium around the protein is required to solve 

this equation, which itself is needed in the calculation of the electric field generated by 

the protein. Therefore, calculation of static and frequency dependent dielectric constants 

are both a hot research topic and a necessity for predicting other properties of the 

proteins. Moreover, calculation of dielectric properties presents a whole set of tools for 

analysis. Similarities and dissimilarities of these properties at different regions and 

dielectric correlations between the medium and the protein provide grounds to draw 

conclusions about the protein, the solvent around it and their interaction. 

 

The dielectric reaction of a liquid to a frequency dependent external electrical 

field is well known [2, 3]. This theory, built on polarization and reorientation of 

individual molecules according to the external field, does not neatly apply to proteins 

[4]. Proteins include strongly polar and charged regions, which suggests that their 

reaction to an external field would be considerable. Yet, due to the long backbone and 

firm secondary and tertiary structures, reorientation of dipolar groups are limited and 

coupled. Thus, there are numerous theories regarding the dielectric response of proteins, 

and a large variety of static dielectric constant values have been reported [5-14]. 

Experimental verification of these values also present difficulties, since it is very hard to 

separate the response of the protein from the solvent around it. The dielectric properties 

of the protein itself and the whole solution containing it are two different parameters, 

and the former is not directly measurable. Furthermore, the counterions in the solution 

affect the outcome. Such difficulties have caused several different theories for 



 2 

estimation of dielectric properties to be born. These theories are explained in Chapter 2. 

Following is a short summary of important work done on the subject, involving the 

aforementioned theories. Reader is advised to examine the corresponding sections of 

Chapter 2 for each publication, since the details of the theories used in each paper are 

given there. 

 

In 1988, MD was not feasible yet; local static dielectric constants of BPTI were 

calculated from normal mode analysis in vacuo [5]. Inside the protein, local dielectric 

constants ranging from 1 to 20 were calculated from electronic polarization of atoms 

and orientational polarization of local dipoles. 

 

Later, when short MD simulations became applicable, 50 ps long MD  simulations 

were performed on trypsin in water [6]. The simulation used surface constrained all 

atom solvent model (SCAAS), the solvent around trypsin was divided into layers. 

According to the distance to the protein, the layers had unrestricted water molecules, 

then increasingly restricted water molecules and in the end an electrostatic continuum. 

The electrostatic interactions were not cut off. From these simulations, local static 

dielectric constant of different sites and static dielectric constant of water were 

calculated using two different approaches: a) Kirkwood-Fröhlich theory (see section 

2.3.1) and b) using average electric field and polarization calculated from the simulation 

trajectory (see section 2.3.2). The calculated local static dielectric constants ranged from 

3 to 20. Direct use of averaged field and polarization could not provide constants higher 

than 10. Kirkwood-Fröhlich theory led to constants above that value. The paper also 

includes dipole-autocorrelation functions for some of the sites. They have different 

characteristics, but share a common property: Decay to zero happens very fast, in about 

14 ps. 

 

Another paper was published the same year by another group [7]. This paper, too, 

investigates the local static dielectric constants, in the grounds that the biological 

function of a protein is highly dependent on the local variations in the dielectric 

properties. MD simulations of deca-alanine and cytochrome c were performed. Deca-

alanine simuation was 150 ps after equilibrium, cytochrome c was 90 ps after 

equilibrium. The proteins were in vacuo. The force field was CharmM 19. The 

calculations were based on Kirkwood-Fröhlich theory (see section 2.3.1). Static 
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dielectric constants were calculated to be 3.3 for deca-alanine and 3.5 for cytochrome c. 

The susceptibilities of different residues were investigated and found to be varying by a 

factor of 4. 

 

Two years later, MD simulations of length 1.4 ns for BPTI and 1 ns for lysozyme 

were carried out [8]. The proteins were in a solvent consisting of SPC/E or SPC model 

water. The force field was GROMOS. Electrostatic interactions were handled by a twin 

range method based on the Coulomb potential. Static and frequency-dependent 

dielectric constants were calculated for each protein. They applied the Neumann  

version of Kirkwood-Fröhlich theory (see section 2.3.1), which is based on one 

component (protein only), of the three component system (protein, water, ions). The 

main assumptions were that the protein is spherical and that the cross-correlation 

between protein and water is negligible. Prior to the calculations, the overall rotation 

(tumbling) of the protein was removed by a quaternionic fit, since 1 ns is not long 

enough to sample this rotation (see section 2.3.4). This removal of rotation and 

translation was done after the simulation was completed. Since the proteins were 

charged, the dipole moments depended on origin, the center of mass of the protein was 

chosen as the origin (see section 2.3.6.1). The static dielectric constants were calculated 

as 36 for BPTI and 10 for lysozyme. When the same calculations were carried out by 

leaving side-chains out of the dipole fluctuation considerations, the constants were 

found to be between 2 and 3. This is an expected outcome, since a protein has a low-

dielectric core and a high-dielectric surface (which interacts with water). 

Autocorrelation functions of the protein dipole moments were fitted (not very well) to 

single exponential functions. From these fits, relaxation times of 1.8 ns for BPTI and 

3.4 ns for lysozyme were calculated. Frequency-dependent dielectric constants were 

also calculated from these fits, found to have decayed to zero at around 10 Mhz. Cole-

Cole plots were drawn. 

 

In 1994, pKa values of ionizable groups in proteins were calculated using the 

solution of Poisson-Boltzmann equation [9]. Static dielectric constants are a required 

input for this method. Although the convention is to input a low dielectric constant 

between 2 and 4 for the protein, this work reports that the best agreement with 

experiments is achieved when a much higher static dielectric constant, 20, is used. They 
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have concluded that this high constant is needed to incorporate conformational 

relaxation, which is not modeled elsewhere in this method. 

 

Taking a larger step from their previous work [7], Simonson and Perahia 

performed a 1ns long MD simulation of ferro- and ferricytochrome c in 1995 [10]. Each 

protein was in a spherical volume of water molecules. Kirkwood-Fröhlich theory was 

applied in the calculations (see section 2.3.1). The side chains were found to have a 

large effect on dipole fluctuations of the whole protein, due to their fast motions. Being 

at the surface of the protein, they interact strongly with the surrounding water. Including 

the side chains, the static dielectric constants were calculated to be varying between 16 

and 37. If the side chains are considered to be part of the solvent, the remaining core of 

the proteins appear to have the static dielectric constants of 4.7 for ferro- and 3.7 for 

ferricytochrome c. These findings are somewhat in accordance with the findings of 

Smith et al. in 1993 about the side chains and the core [8]. Commenting on these results, 

Simonson and Perahia argued that considering these side chains as part of the protein 

would be wrong, since this prevents the treatment of the protein as a homogenous 

dielectric material. The importance of local dielectric properties of the proteins was 

stated in the previous work. This paper also investigates variations in local static 

dielectric constants. The static dielectric constant in the inner half of the protein was 

found to be between 1.5 and 2. The suggestion about the Poisson-Boltzmann equation 

[1] in this work is to use these low dielectric constants for the proteins (the cores) and to 

consider the side chains as part of the solvent. This is in contradiction to the suggestion 

by Antosiewicz et al. in 1994 [9]. 

 

An MD simulation of the triple helical DNA strand d(CG.G)7 was performed in 

the same year [15]. The length of the simulation was 1.115 ns. The ionic solution 

included 837 water molecules, 37 sodium ions and 16 chloride ions. The SPC/E water 

model was used. The force field was CharmM22. Electrostatic interactions were 

handled by the Ewald summation method. The system was conceived as a five 

component system: base / sugar / phosphate / water / ions, these components were 

treated just as in three component cases (protein / water / ions). Phosphate and ions 

components were charged, therefore their dipole moments were dependent on the 

origin. Center of mass of the DNA was chosen as the origin (see section 2.3.6.1). This 

also eliminates the contribution of DNA to the conductivity of the system. The static 
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dielectric constant was calculated from dipole moment fluctuations for each of the 

components. Cross-terms were found to be small, therefore they were neglected at the 

calculation of static dielectric constants. Only the component’s own dipole moment 

fluctuations were considered for each part. The calculated static dielectric constants 

were 41.3 for water, 3.4 for bases, 2.0 for sugars, 33.0 for phosphate groups. The total 

static dielectric constant for the whole DNA was found to be 15.5.  Then the fifth 

component, the ions, was treated in the same way as the others, and also a static 

dielectric constant was calculated for the ions instead of conductivity.  The dipole 

relaxation time for SPC/E water was calculated as 9.7 ps. 

 

After two more years, even longer simulations were feasible, and an MD 

simulation that lasted for 13.1 ns after equilibration was carried out on zinc finger 

peptide, a small (18 residues), neutral protein [12]. The system consisted of the protein, 

one zinc ion, two chloride ions and 2872 water molecules. The simulation was 

performed under periodic boundary conditions (a box-shaped simulation system). 

SPC/E water model was chosen and the united-atom CharmM19 force-field was used 

for non-water-water interactions. Electrostatic interactions were calculated using the 

Ewald summation technique. The authors claimed that use of Kirkwood-Fröhlich theory 

was not acceptable, and also the simulations can only lead to correct results under 

certain conditions. These conditions were laid out as rules (see section 2.3). They used a 

combination of linear response theory, phenomenological equations of matter and a 

computer-adapted dielectric theory to calculate static and frequency-dependent 

dielectric constants of protein and water and the conductivity of the ions. They have 

found that the contribution from the cross-correlation between dipole moments of 

protein and water components has an important contribution to the dielectric constant of 

the protein. The static dielectric constant of the peptide was calculated to be 15. The 

contribution from the cross-correlation term was 3 (if protein-water cross-term was 

neglected, the constant would have been found as 12). The static dielectric constant of 

the water was found to be 45, while pure SPC/E water has the constant 71, this 

difference in values was connected to the reduced mobility of the water molecules at the 

protein surface. The relaxation times of the protein were higher that the ones reported 

by Smith et al. [8], the main difference is that tumbling of the protein is included in this 

study, which is a dominant slow dielectric relaxation mode. Also different from Smith 

et al. [8], this work uses biexponentional fits, which provide two distinct relaxation 
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times and fit considerably better to the correlation functions. The frequency-dependent 

dielectric constants were shown to vanish at around 10-3-10-2 ps-1. The authors point to 

one possible problem with the method involving decomposition of linear response 

theory: each component must behave as a dielectric matter. As granularity decreases, 

the results become less related to those of a macroscopic dielectric. 

 

In an extension to the work above, a new formalism called dielectric field 

equation (see section 2.3.3) is introduced, which allows combination of results from 

quantum mechanical, molecular dynamics and continuum electrostatics calculations that 

are executed on different parts of the system [13]. In addition to this, the zinc finger 

peptide trajectory from the earlier simulation [12] was re-analyzed, this time dividing 

the water molecules into three parts: first and second solvation shells, and bulk water. 

The separation was realized using Voronoi polyhedra. These were treated as different 

components and their behavior and contributions to the dielectric constant of the protein 

were investigated. The first shell was found to behave very differently indeed, but it was 

seen that the considerable contribution from the water component [12] was not mainly 

from the solvation shells, but bulk water had a serious contribution. This means that the 

coupling between the bulk water component (which consists of water molecules that are 

not immediately near the protein) and the protein is non-negligible. Table 1.1 shows the 

self- and cross-component susceptibilities, multiplied by 4π, so that each number 

corresponds to dielectric constant minus 1. 

 

Table 1.1 The static pair susceptibilities ijχ
 and component susceptibilities iχ  of HIV1 

zinc finger peptide in aquous solutiona  [13] 

ijχ  P b S1c S2d B e 
iχ f 

P 10.6 -0.3 0.3 2.8 13.4 

S1 -0.3 2.3 0.3 0.5 2.8 

S2 0.3 0.3 3.9 1.4 5.9 

B 2.8 0.5 1.4 32.5 37.2 

a All susceptibilities are multiplied by 4π to facilitate comparison to component DCs. 

b Protein,  c First shell,  d Second shell,  e Bulk Water 

f Obtained as the row sum of ij
χ

,  g Sum of all susceptibilities 
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A detailed analysis of the behavior of the three water partitions is presented, but 

the conclusion that stands out is that even though S1 and S2 behave differently, the 

main contribution of the protein-water cross-term comes from the bulk water and it 

heavily dominates the effect of S1 and S2. This shows that such a division of the water 

can provide a better understanding of the dielectric behaviour of the system, but does 

not offer a considerable improvement on the calculation of the dielectric constant of the 

protein. 

 

The same group performed a 5 ns (after equlibration) MD simulation of the small 

protein ubiquitin (76 amino acids) in a cubic box with periodic boundary conditions the 

next year, 2000 [14]. SANDER module from AMBER 4.1 suite of programs was used, 

the force field was the Cornell et al. all atom force field [16]. SHAKE algorithm was 

used for bond lengths, and Particle Mesh Ewald was the method for electrostatic 

interactions. As in a former study, water was divided into three parts (S1, S2 and bulk) 

using Voronoi polyhedra [13]. Same investigations as in [13] was carried out on this 

simulation, and similar findings regarding the protein-water cross term was found. 

 

Table 1.2 The static pair susceptibilities ijχ
 and component susceptibilities iχ  of an 

aquous Ubiquitin solutiona  [13] 

ijχ  P b S1c S2d B e 
iχ f 

P 29.4 ± 1.1 -2.8 ± 0.4 1.0 ± 0.3 11.4 ± 1.2 39.0 

S1 -2.8 ± 0.4 3.9 ± 0.1 1.4 ± 0.1 0.8 ± 0.4 3.3 

S2 1.0 ± 0.3 1.4 ± 0.1 5.5 ± 0.1 5.1 ± 0.5 13.0 

B 11.4 ± 1.2 0.8 ± 0.4 5.1 ± 0.5 65.8 ± 2.1 83.1 

a All susceptibilities are multiplied by 4π to facilitate comparison to component DCs.  

b Protein,  c First shell,  d Second shell,  e Bulk Water 

f Obtained as the row sum of ij
χ

 

 

In this paper, the following explanation to this phenomenon of anticorrelation in 

P-S1 and a higher than expected number as the P-B susceptibility term was presented by 

the authors: In this work and many of the other works in this field, a single solute with a 
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large dipole moment (protein or DNA, etc) interacts with the water molecules. To avoid 

artifical directing influences of this single solute, a simulation trajectory should include 

all possible orientations of the large solute. Therefore 5 ns is not enough as a simulation 

length and causes artifacts. This orientational diversity is realized by the presence of 

multiple, orientationally non-equivalent solutes. This explanation is a repetition of the 

last element of the list of rules the same group has established at 1997 (see section 2.3) 

[12]. In this paper these authors claim that the insufficient simulation length and the 

lack of sampling all of the rotations causes the protein-bulk cross-term to be this high. 

They support their reasoning by showing the distance-dependent Kirkwood g-factor for 

two different orientations of the protein, and concluding that the P-W crossterm depends 

strongly on the orientation. Neither the protein term nor the water term depend near as 

much on the orientation. The authors claim that with such short simulations, relaxation 

times (found from a bi-exponential fit) can be approximated, but the contribution of the 

protein-water cross-term contribution to the solution (and protein) dielectric constant 

cannot be determined. 

 

This study focuses on the changes in the dielectric properties with temperature; 

therefore it is also necessary to present a background on the transition of the protein in 

the studied temperature region. The glassy relaxation phenomenon is the subject of 

active research. It has been shown that proteins experience a dynamical transition in the 

range ~190 – 220 K [17]. The protein is functional above the temperature of this 

transition. The temperature dependence of mechanical fluctuations has been 

investigated both experimentally by measuring average fluctuations of hydrogens under 

neutron scattering [17-21] and theoretically [22-27]. The transition is not observed in 

absence of water [28, 29] and the system experiencing the transition has been identified 

as both the protein and the solvent shell around it. Protein systems with hydrophilic 

solvents other than water, like glycerol, have been shown to experience transition as 

well [30]. Since the dynamical transition is dependent on the existence of a solvent, the 

protein – solvent interaction before, during and after the transition has been a point of 

focus [21, 27, 31, 32]. These works, together with the outcomes of previous studies on 

the systems without solvent, are proposing that the transition is triggered by the solvent.  

Until now, the dynamical transition of proteins had been only investigated using 

mechanical properties. Therefore the findings of these studies on the protein-solvent 

interaction were limited to the immediate surface of the protein. By using dielectric 



 9 

properties, which are related to electrostatic forces with much longer ranges than 

mechanical interactions, as a tool to investigate, it is possible to better understand the 

phenomenon of dynamical transition in terms of the interaction between the protein and 

the solvent around it. This approach permits investigation of not only the interaction of 

the surface solvent molecules and the protein, but also the effect of this interaction on 

the whole solvent. 

 

The scope of this work is calculation of dielectric properties of an aqueous 

lysozyme solution from an MD simulation, as in the summarized works in literature. 

Static and frequency dependent dielectric constants of the solution and its components 

will be obtained. As a novel approach, these properties will be calculated over a range 

of temperatures, which gives the opportunity to see how these parameters change with 

temperature and observe and analyze the dynamical transition using dielectric 

properties. Dependence of the dielectric parameters on temperature will also be used as 

a tool to analyze protein-water interaction and the dynamical transition of protein, 

which was shown to be around 195 K by mechanical analysis [22, 33-35]. The electrical 

analysis will be supported by further mechanical analysis such as torsion angles and 

radial distribution functions. 
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2. THEORETICAL BACKGROUND 

2.1 Molecular Dynamics 

Molecular Dynamics is a computational technique to simulate motions of many-

body systems by integration of their equations of motion [36]. The trajectory of a 

system of particles allows calculation of its structural and dynamical properties. These 

motions in space and time are calculated using Newton’s second law: 

 

 
2

2

dr

rd
mF i

ii =  (2.1) 

 

where Fi is the force acting on the atom, mi is the atom mass, and ri is the position 

vector of the atom. The force is the gradient of the potential energy U: 

 

 UF ri −∇=  (2.2) 

 

U is a function of the positions of all atoms, and accounts for the sum of all interactions. 

This potential is calculated from a forcefield [37]. The forcefield used by NAMD, and 

therefore in the reported simulations, is the CHARMM forcefield [38]. It includes 2-, 3-, 

4-body interactions, electrostatic interactions, and van der Waals interactions [39]. 

 

Trajectories of all particles in the system can be calculated from the derivative of 

the forcefield, according to Newton’s second law of physics, which allows calculation 

of acceleration from the force. By numerical integration, velocities can be acquired from 

accelerations, and displacements can be acquired from velocities. A numerical 

approximation is necessary here, since there is no analytical solution to the equations of 

motion due to the complexity of the potential. This numerical integration is based on 

approximating the dynamical parameters by Taylor series expansions. 
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The numerical method of integration used in the reported simulations is the Verlet 

algorithm [40]. Acceleration is known from Newton’s second law. One integration is 

needed for velocity and another one for position. Verlet algorithm updates the position, 

and then uses old and new positions to update the velocity. Position is written shifted 

forwards and backwards in time for equal amounts, h, and used together to solve for 

x(t+h) and x(t-h). 
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which leads to 
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1
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2.2 General Theory of Dielectrics, Susceptibility and Permittivity 

When an electric field is applied to a dielectric medium, current flows in this 

medium. The current can be separated into two parts: a conduction part, which accords 

to an actual current; and a displacement current part, which can be perceived as the 

elastic response of the medium to the applied field. Figure 2.1 explains this elastic 

response over an example relevant to the object of this study. 

 

Polar molecules in a dielectric medium are oriented randomly without an applied 

electric field. When an external field is applied, the material is polarized; the dipole 

moments of the polar molecules will be oriented towards the applied electric field. This 

polarization creates an electric field opposing the applied field, therefore decreasing the 

effective electric field and increasing the capacitance of the parallel plates in the 

example of Figure 2.1. 
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Figure 2.1 Response of a dielectric medium containing polar molecules to an applied 

electric field between parallel plates [41] 

 

Here, two important terms, susceptibility and permittivity come up. Permittivity is 

the general quantity that describes how an electric field affects a dielectric medium and 

how that medium is affected by the electric field. It is a measurement of how easily the 

medium can polarize and reduce the effective electric field, when an external electric 

field is applied; therefore it is a measurement of how much of the external field is 

permitted through the dielectric medium. The electric susceptibility is directly related to 

the permittivity and is defined as the ability of a medium to be polarized by an external 

electric field. The very close definitions of the two parameters can be better explained 

by equations. 

 

As mentioned above, the effect of an applied electric field E can be in two ways: 

Charge migration and dipole reorientation. Both these effects on the electrical charge 

distribution of the medium are accounted by D, electric displacement field. Permittivity 

is defined as the constant of proportionality relating the electric field to the electric 

displacement field: 

 

 ED  ε=  (2.6) 

 

where ε  is permittivity. It is a scalar if the medium is isotropic and a 3x3 matrix if this 

is not the case. 
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Electric susceptibility relates the electric field to the dielectric polarization density 

P of the medium. 

 

 EP eχε 0=  (2.7) 

 

Here,  0ε  is the permittivity of free space (vacuum) and eχ  is electric susceptibility. It 

should also be noted that polarization is directly related to the dipole moment M  as: 
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1
ir
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P  (2.8) 

 

In this equation, V is the volume. 

 

The permittivity of a medium relative to the permittivity of free space is called 

relative permittivity, or dielectric constant, and is denoted byrε . 

 

 0εεε r=  (2.9) 

 

The susceptibility is related to the relative permittivity by 

 

 1−= re εχ  (2.10) 

 

From this equation follows that the electric susceptibility of vacuum is zero. The 

dielectric displacement D is related to the polarization density P as: 

 

 ( ) EEPED  100 εχεε =+=+= e  (2.11) 

 

Unlike vacuum, polarization of a dielectric medium depends on the frequency of 

the applied field, since the material cannot polarize instantly. 

 

 ( ) ( ) ( )ωωχεω EP e0=  (2.12) 
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with ω  being the frequency of the electric field. This frequency dependence of the 

response is due to causality, which also makes permittivity a frequency dependent 

complex function. 

 

 ( ) titi ee ωω ωε 00 ED =  (2.13) 

 

where D0 and E0 are the amplitudes of dielectric displacement and applied electric field. 

The static dielectric constant ε  is defined as 

 

 ( )ωεε
ω 0
lim

→
=  (2.14) 

 

The high frequency limit is often denoted as∞ε . The real and imaginary parts of the 

complex permittivity can be written as 

 

 ( ) ( ) ( )ωεωεωε ′′+′= i  (2.15) 

 

ε ′  is the real part and ε ′′ is the imaginary part related to the rate at which energy is 

absorbed by the medium. 

2.3 Dielectric Theories on Solutions of Macromolecules 

2.3.1 Kirkwood-Fröhlich Teory 

 

This theory, originally developed by Kirkwood and Fröhlich [2, 42], and 

improved by others in time [43-46], calculates the dielectric constant of a dielectric 

sphere, surrounded by a continuum of uniform dielectric constant. The assumption is 

included in this critical step: 
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R is the radius of the sphere, RFε  is the dielectric constant of the environment. 
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The following is valid if the medium is isotropic: 
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Using equations 2.16 and 2.17 together results in: 
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This method can be accepted for homogenous solvents, but for macromolecules, its 

assumptions do not hold. Therefore the suitibility of this theory to dielectric constant 

calculations is very questionable, despite the fact that most of the earlier works on 

dielectric constants used this theory. Also, some of these early works neglect the effect 

of the surrounding water and use the theory as if the protein sphere is in vacuum (RFε  = 

1), which contributes further to the unreliability of the results. 

 

2.3.2 Direct Approach 

 

The static dielectric constant can be calculated directly from the average electric 

field and average polarization that result from the simulation [6]. To avoid the sphere in 

the continuum approach of Kirkwood-Fröhlich theory, <E> of the investigated region is 

calculated directly by numerical averaging and put into 
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<P>, the polarization vector is also averaged directly: 
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This approach can also be used to look at specific local sites for their static 

dielectric constant, but the results from these calculations appear to cover a large range 
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and give very low values of dielectric constants, even lower than Kirkwood-Fröhlich 

theory, which shows that this is not a very reliable approach.  

 

2.3.3 Dielectric Field Equation (DFE) 

 

DFE is used to unify the results of quantum mechanical (QM) / molecular 

mechanics (MM) / continuum electrostatics (CE) calculations. It provides a means to 

integrate findings from these different methods to one meaningful conclusion [13]. In 

this approach, the core or a specific site of the protein can be examined by QM, all of it 

by MM and the surrounding water by CE, while still being capable of combining their 

outputs for an overall result. 

 

 ( ) ( ) ( ) ( ){ }rPrrTrrrrrE ′′−+′′−∇−′= � ρϕV
d)(  (2.21) 

 

Equation 2.21 is the dielectric field equation. ( )rρ  is charge density, P(r ) is dipole 

density, )(rϕ is defined by 

 

 )(
1

)( rr S
r

=ϕ  (2.22) 

 

where S(r ) is a screening function present in computer simulations modifying the 

electrostatic potential. This )(rϕ  can be viewed as Coulomb interaction. T(r ) is the 

dipole-dipole tensor, the double gradient of the respective interaction potential. 

 

 )()( rrT ϕ∇∇=  (2.23) 

 

For each region (QM, MM and CE), the charge density and the dipole density are 

calculated differently. But the DFE (Eq. 3 above) is valid everywhere. The total electric 

field is given by the sum of the electric field of each region, calculated by DFE using 

the related charge density and dipole density equation, in addition to the homogenous 

contribution from the boundary conditions, and the external field (if there is any). 
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For MM, 

 

 � −=
j

jjMM q )()( rrr δρ  (2.24) 

 

 � −=
j

jjMM )()( rr�r� δ  (2.25) 

 

 �=
A jAAj q r�  (2.26) 

 

2.3.4 Adjustment of Dielectric Boundary Conditions 

 

The calibration of dielectric boundary conditions (different from geometric 

boundary conditions such as transparent boundary conditions, TBC) can be done 

according to references [13, 47]. The standard implementation of the Ewald sum takes 

EWλ  = 1 and therefore 
EWε  = � which corresponds to a conducting medium (infinite 

DC). This is called tinfoil boundary conditions or conducting boundary conditions. By 

changing the cutoff radius rc and the parameter �, as shown in the references, one can 

set eff
EWε = 0ε , which means that the dielectric constant of the boundary region is the 

same as that of the simulated system (and not infinite). There are also cases that the 

boundary constant is set equal to the water dielectric constant, again closer to reality, 

but not as close as the described method. Although these settings provide a more 

physical calibration, tinfoil boundary conditions are acceptable as well. 

 

 

 

2.3.5 Linear Response Theory 

 

In general, linear response theory [12, 14, 44, 48-52] states that the expectation 

values <Õ(�)> of the frequency-components of an observable O are directly 

proportional to the frequency-components <0E
~

(�)> of the external field: 
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Here, the susceptibility depends on the coupling of O to the entire polarization P of the 

system (as defined in section 2.2). 
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The observable O can be one of the three components that exist in a protein solution: 

Protein, water, or ions (if there are ions in the solution, which do exist to neutralize the 

total charge if the protein is not neutral). Since the dielectric constant of the protein is 

seeked, O will be Pp (the sub P is for protein, W for water, I for ions). Since total 

polarization P includes all the three components, the susceptibility of the observed 

component, which is directly related to its dielectric constant, is affected by the 

autocorrelation of the observable, and its correlations with the other two components. 
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According to this, derivation of polarization of the protein follows as: 
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Here, Jı is the current due to ions, 

 

 II JM =&  (2.32) 
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The use of this theory in obtaining dielectric constants is as follows: The relation 

between the internal electric field and the external field is 
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Applying this to the linear response theory above, the following equation is obtained: 
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and 
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where 
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The dielectric constant equation for water and conductivity equation for ions are 

similar to this. f(�) = 1 if
RFε = � and this is true in an ideal implementation of Ewald 

sum (see section 2.3.4). In this case, 

 

 ( ) ( ) 14 += ωπχωε PPP P
 (2.37) 

 

So, calculation of the susceptibility, which results from the calculation of correlation 

functions between the three components, directly leads to the dielectric constant. 

 

2.3.6 Handling Charged Proteins 
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For any of these calculations, it must be noted that the whole system must be 

neutral. This poses no problems as Molecular Dynamics simulations also work under 

this restriction. 

 

Also, the dipole moments of the systems are independent of the origin only if each 

of them are neutral. This creates a problem in the case of charged proteins. Then, the 

components P and I are not neutral. Ions have the total opposite charge of the protein to 

obtain neutrality of the whole system, but since their current JI, the derivative of M I, is 

in the calculations, they don't present any problem of origin. The charged protein 

however, does. There are two possible ways to act in this case. 

 

In the center of mass method, the dipole moment of the charged protein is 

calculated by choosing its center of mass as the origin of the system [8, 11]. For each 

timestep, the dipole moment is calculated from the center of mass of the protein at that 

timestep. 

 

Loèffler, Schreiber and Steinhauser have developed an alternative method [12]. 

This method involves reducing the net charge of the protein to zero by subtracting an 

equal amount of small charge from the partial charge of each atom. To compensate this 

subtracted charge, a pseudo-ion with a charge equal to the total subtracted charge 

(which is the net charge of the protein) is added as a new ion to the list of ions. To keep 

the total dipole moment of the system, the position of this ion has to be the geometric 

center of the protein. This way, both protein and ions components become neutral and 

the dipole moments are independent of the origin. Since the subtracted charge is very 

small for each atom, the calculations are not affected. 

 

The charge of the protein contributes to the current, as the geometric center slowly 

moves. This is acceptable, since a protein with a net charge is a giant ion, but it's 

dielectric relaxation dominantly consists of oriental relaxation and not transformation, 

therefore its real relaxation is governed by the dielectric constant and not conductivity, 

so that this redistribution of charges between protein and ions is suitable to the 

calculations. 
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As an example, the protein in this study, lysozyme, has 1968 atoms and has a 

charge of +8, so 8/1968 is subtracted from the partial charge of each protein atom, and a 

pseudo ion with the charge +8 is created at the geometric center of the protein. This is 

done for each timestep. 

 

The pseudo ion is included in the ions component and the protein component is 

the -now neutral- protein. 

 

2.3.7 Simulation Rules for Dielectric Calculations 

 

A set of rules for simulations with the purpose of dielectric relaxation calculations 

are determined by Loèffler, Schreiber and Steinhauser [12]. If these conditions are not 

satisfied, the reliability of the results are questionable. It is also imperative to state that 

these rules were set at 1997, and some of these may become obsolete in time (i.e. a 

theory better suited than linear response theory may take its place), but they keep their 

validity to this day. 

 

(i) Boundary Conditions: Since dielectric properties are macroscopic, 

periodic boundary conditions are necesary: Box-shaped simulation 

systems (toroidal/periodic boundary conditions) or a hypersphere are 

acceptable only. 

 

(ii)  Treatment of Electrostatic Interactions: Neither Coulomb potential with 

cutoff (neither switched nor gradual), nor full Coulomb potential (without 

cutoff) are acceptable for treatment of electrostatic interactions. The 

following methods are acceptable: Ewald summation, other lattice 

summation methods, equivalent methods (such as Particle Mesh Ewald or 

Particle-Particle Particle Mash Ewald) and reaction field methods. 

 

(iii)  Theory: The combination of (i) linear response theory (see section 2.3.5), 

(ii) macroscopic definiton of dielectric properties (see section 2.2) and (iii) 

a computer adapted version of dielectric theory (see section 2.3.5) gives 



 22 

the most successful results in three component systems. Kirkwood-

Fröhlich theory is not reliable. 

 

(iv) Simulation Length: All dielectric relaxation modes of a protein have to be 

sampled for truly meaningful results, including overall rotation. The 

simulation has to be long enough to sample tumbling. This length depends 

on the size of the protein, but at least 15 ns are required for even small 

proteins. 

 

2.3.8 Calculation of Susceptibility Using Computer Adaptive Linear 

Response Theory 

 

This section explains the details of calculating dielectric susceptibility (and 

dielectric constant, since the two are closely related by equation 2.10) based on the 

linear response theory. The susceptibility ( )ωχ  of an object is obtained from the time 

correlation function ( )tΦ  of that object, according to equation 2.39. This equation is 

valid for tinfoil boundary conditions, which are used in the reported simulations. 

 

 ( ) ( ) ( )0MM ⋅=Φ tt  (2.38) 
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T is the temperature, kB is the Boltzmann constant. [ ]f∠  is the Fourier-Laplace 

transform function given as 
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The notation ( )tΦ&  corresponds to the first derivative of the time correlation function 

with respect to time. 

 



 23 

As equations 2.15 and 2.40 suggest, susceptibility is a complex parameter. 

 

 ( ) ( ) ( )ωχωχωχ ′′+′= i  (2.41) 

 

It is possible to write the real and imaginary parts of the susceptibility from 

equation 2.40 as 
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For ω =0, 
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Total susceptibility is the sum of susceptibilities of all components. It should be 

noted that the ions component corresponds to conductivity instead of a dielectric 

constant. The way to calculate the susceptibility of each component is given in equation 

2.31. 

 

Due to the noise involved in correlation functions gathered from simulations, a 

curve fit has to be done on the acquired Φ  functions to be able to apply equation 2.39. 

A biexponential fit and a stretch exponential fit are the best options considering 

wellness of fit and least loss of information. Biexponential fit has been shown to be 

sufficient for protein solutions and easier to calculate. 
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Robustness of fitting was increased by adding an extra constraint: 

 

 102 AA −= χ  (2.46) 

 

This normalizes the fitted correlation function to 0χ . Using this fit, the Fourier-Laplace 

transform can be completed to obtain 
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The fit aims to remove the noise from the simulation to make it possible to 

analytically carry out the Fourier-Laplace transform. Since individual components are 

directly accessible, a simple ansatz such as biexponential decay is enough to convey all 

information. More complex functional forms do not present a higher level of 

illumination. 
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3. SIMULATION DETAILS 

In this study, the dielectric properties of an aqueous Hen Egg White Lysozyme 

solution were examined. 2 ns long MD simulations were run at 150 K, 170 K, 190 K, 

210 K, 230 K, 250 K, 270 K, 290 K and 300 K. The simulation at 300 K was prolonged 

to reach 4 ns. These simulations were prepared and realized using NAMD, Not Another 

Molecular Dynamics. NAMD was developed by the Theoretical and Computational 

Biophysics Group in the Beckman Institute for Advanced Science and Technology at 

the University of Illinois at Urbana-Champaign [39]. The initial structure of the protein 

was taken from the Protein Data Bank (PDB) with code 6lyz.pdb [53]. Hydrogen atoms 

are not included in the PDB file, because they are not resolved in X-Ray 

crystallography. These missing hydrogens were added and the protein was put in a box 

filled with 2769 TIP3 water molecules. TIP3 model was chosen for it is better suited to 

the forcefield used. In Visual Molecular Dynamics software (VMD), a 54 Å x 54 Å x 54 

Å box was created. The thinnest layer of water was fixed at 5 Å. To neutralize the 

solution, eight chloride ions were added into the solvent. Periodic boundary conditions 

were set. Electrostatic interactions were handled by Particle-Mesh Ewald method 

(PWE). Tinfoil dielectric boundary conditions were used. 

 

The system was energy minimized by 5000 conjugate gradient iterations. All 

bonds of protein and water molecules were constrained by RATTLE algorithm. 

Integration algorithm was velocity Verlet. The systems were equilibrated for 500 ps 

with a timestep of 2 fs. Temperature was kept constant by direct velocity scaling during 

this equilibration. For the data collection part of the simulation, temperature was 

controlled by a temperature coupling method. Data were recorded every 2 ps. 
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4. RESULTS AND DISCUSSION 

In this work, protein-water interactions at different temperatures were studied via 

dielectric properties. The rules pointed out in section 2.3.8 were followed. Linear 

response theory (see sections 2.3.5 and 2.3.9) was adopted in calculations and Pseudo-

ion method (see section 2.3.6) was implemented to handle the charges on the protein. 

 

4.1 Dielectric Relaxation: Correlation Functions 

The most important terms in the calculation of frequency dependent dielectric 

constants are the time correlation functions �. There are three components in the 

solution: Protein, water and ions. Total dipole moment autocorrelations of these 

components ( PPΦ , WWΦ  and JJΦ ) and cross-correlations between them are all 

contributing to the dielectric constant of the solution. Dielectric constant of one 

component includes its autocorrelation and its cross-correlations with other components 

according to the equation 2.31. Among these, the highest contribution comes from the 

autocorrelation function.  

 

4.1.1 Autocorrelations 

 

Figures 4.1 and 4.2 show the normalized autocorrelation functions of protein and 

water components as temperature is increased. The first noticeable difference is that the 

relaxation of the total dipole moment of the protein component is much slower 

compared to the relaxation of water. This is clearly expected, as the protein, huge 

compared to water molecules, cannot reorient nearly as fast as water molecules. The 

autocorrelation functions of the ion component are even faster. For the ion component, 

the effective contribution comes as currents, as shown in equations 2.31 and 2.32. The 



 27 

autocorrelation of currents are very fast compared to the other autocorrelation functions 

of the solution, and their cross-correlations have a negligible contribution to the 

calculation of dielectric constants. A current autocorrelation function (from the 290 K 

simulation) is given in Figure 4.3 to exemplify to their fast decay. 
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Figure 4.1 Protein component total dipole moment autocorrelation functions 
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Figure 4.2 Water component total dipole moment autocorrelation functions 
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These correlation functions are shown up to 50 ps, since this short time behavior 

samples the decay best. At longer time intervals, noise increases and discussion 

becomes less meaningful. A longer time behavior for protein autocorrelation obtained 

from the 8 ns MD runs at 300 K is provided in Figure 4.4. 
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Figure 4.3 Current autocorrelation function at 290 K 

 

Water autocorrelation shows increasingly faster decay as expected. With 

increasing temperature, mobility of the water molecules increase and the dipole 

moments of the water molecules can reorient much faster. The protein autocorrelation 

functions present interesting results. The 150 K, 170 K and 190 K group shows almost 

no relaxation at all. At higher temperatures than that, a trend of faster decay with 

increasing temperature is seen. It is essential to note that the mentioned trend is not as 

clear and neat as in the water component, since water dipole moment is the total 

moment of thousands of identical small molecules and therefore perturbations are 

averaged out, whereas the protein dipole moment belongs to one large macromolecule 

with different residues and partial charges at every contributing location. The 

observations point out to a transition around that temperature, but are not enough solely 

to prove it. Previous MD simulations on lysozyme showed a protein dynamical 

transition temperature of ca. 195 K from three different methodologies [34, 35]: (i) 

average fluctuations of C� atoms in space, (ii) the stretch exponents of fits to the 

relaxation of displacement vectors of C� atoms and (iii) heat capacity data [22, 33]. Note 
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that these findings are based on the mechanical properties of the system as opposed to 

the electrical properties studied in the current work. 
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Figure 4.4 Protein autocorrelation function at 300 K, long time behavior 

 

4.1.2 Cross-Correlations 

 

Cross-correlations have very small contributions to the dielectric constants of each 

component [12-14]. Nevertheless, examination of these functions could give insight to 

the protein-water interaction. Cross-correlations of the ion component are completely 

insignificant and negligible. Though still having a very small contribution, the most 

significant cross-correlation function is protein-water cross-correlation, PWΦ , which is 

shown for a number of temperatures in Figure 4.5. Only few temperatures are shown, 

since there are not significant differences between cross-correlations of different 

temperatures. Over all temperatures, the general trend of PWΦ  is fluctuation about 1. It 

is expected to experience a very slow decay, but the high levels of noise obstruct 

retrieval of this information. As stated before in literature [14], simulations of length on 

the order of the simulations reported in this work cannot sample the extremely slow 

tumbling mode of the protein, and therefore the contribution of PWΦ  to the dielectric 

constant values cannot be calculated correctly. However, even if it was possible, the 
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contribution is very small, at ca. 3. This value is most probably smaller than the noise 

present in the dielectric constant values over the temperatures.  
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Figure 4.5 Protein-water cross-correlation functions 

 

 

4.1.3 Double Exponential Fit 

 

The time correlation functions are fit to a biexponential function with three 

independent variables (see section 2.3.9). The fit parameters for protein and water 

autocorrelation functions are given in Tables 4.1 and 4.2. In these tables, the first 

column shows how many timesteps were taken for the fit, which is different for some of 

the temperatures, since the low temperature cases proved harder to fit. This is expected, 

since the relaxation is extremely slow, even almost nonexistent at these temperatures. 

τavr is found by adding A1 times �1 and A2 times �2. It is the area below the correlation 

function graph – the average relaxation time. R2 shows wellness of fit. These fits 

analyze the decay of these functions in two modes with different relaxation times, �1 and 

�2. �1 is the fast mode and is the dominant mode in water autocorrelation function as the 

ratio of A1s to the according A2s show. �2 is the slow mode and is dominant in protein. 

Figures 4.6 and 4.7 show change of the average relaxation times with temperature.  
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Table 4.1 Fit Parameters for PPΦ . A1 + A2 normalization is rescaled to 1 for 

easier comparison. First column shows the number of timesteps used in fit. 

Protein       
timesteps T A1 �1 A2 �2 �avr R2 

10 170 0.0037 0.03 0.9963 22061 21979.4 0.9989 
14 190 0.0037 0.75 0.9962 11120 11078.1 0.9989 
14 210 0.0083 0.93 0.9917 3740 3708.9 0.9978 
50 230 0.0131 1.96 0.9869 2564 2530.4 0.9965 
50 250 0.0133 3.20 0.9867 3323 3278.9 0.9928 
50 270 0.0178 2.15 0.9822 2640 2593.1 0.984 
50 290 0.0162 3.09 0.9839 2039 2006.1 0.9967 
50 300 0.0204 3.51 0.9796 2568 2515.7 0.9897 
 

Table 4.2 Fit Parameters for WWΦ . A1 + A2 normalization is rescaled to 1 for 

easier comparison. First column shows the number of timesteps used in fit. 

Water       
timesteps T A1 �1 A2 �2 �avr R2 

20 170 0.0113 0.98 0.9887 772.8 764.10 0.9994 
50 190 0.0330 3.90 0.9671 346.2 334.92 0.9993 
50 210 0.7571 66.90 0.2429 2508 659.84 0.9973 
50 230 0.7709 27.89 0.2291 2565 609.14 0.9991 
50 250 0.8260 15.52 0.1740 2568 459.65 0.9986 
50 270 0.8730 10.33 0.1270 2568 335.15 0.9992 
50 290 0.8461 6.35 0.1539 2576 401.82 0.9893 
50 300 0.9430 6.31 0.0570 2566 152.21 0.9876 

 

Following points are interesting to discuss. Protein average relaxation time makes 

a steep dive until 210 K, and starts fluctuating around 3000 ps above that. This is in 

accordance with the virtual lack of relaxation seen in the autocorrelation functions 

under 210 K. Decay in 150 K data is almost nonexistent so that it could not be fit to a 

biexponential decay. The others allow a fit, but only from a smaller set of timesteps. It 

is clear that the double exponential fit model does not describe the frozen states at the 

glassy region. The relaxation times are near values reported in literature for simulations 

of lysozyme [8]. At temperatures below 210 K, fits to water data are also hard and show 

a �2 dominance. Whereas these �2s are faster than protein’s, they are still long compared 

to �1 from water at higher temperatures. This is due to hardness of fitting where the 

decay is very slow. The average relaxation times of water show a noisy, but more or 

less linear decay trend, with the most significant departure at 190 K. Perhaps the most 

interesting result is that the relaxation times of fast mode (�1) in protein at higher 

temperatures (around and above 250 K) are very close to the (dominant) fast mode 
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relaxation times of the water component. The slow mode of the protein must be 

including the overall rotation, or tumbling, of the protein. It is possible that the fast 

mode is mostly due to side chains, which heavily interact and move with water 

molecules at these temperatures, as will be shown in section 4.3. This proposed 

explanation, as given before in literature [12], fits to the matching �1 values as the 

relaxation times of water molecules and side chains could be close, and in is agreement 

with further results that will be presented. These interpretations of fit parameters only 

give a qualitative general picture. The real information these fits carry is exposed when 

the complex dielectric constants are calculated. 
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Figure 4.6 �avr of PPΦ  fits 
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Figure 4.7 �avr of WWΦ  fits 
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4.2 Dielectric Constants 

4.2.1 Static Dielectric Constants 

 

The static dielectric constants of the protein from different temperatures is given 

in table 4.3. As expected, the static dielectric constant does not change much with 

temperature, except noise fluctuations. These noise fluctuations are bigger than the 

contributions of the crossterms, therefore the cross-terms were not included in the 

calculation of static and frequency dependent dielectric constants. 

 

Table 4.4 lists static dielectric constants of water at different temperatures. The 

expected decay in accordance with theoretical and experimental data [54] is seen. This 

lowering of static DC is due to higher fluctuations in water molecules at higher 

temperatures, which reduces their effectiveness to stay polarized under a static electric 

field. The larger values for water in comparison to protein is also expected. The 

constants are smaller than that of TIP3 water, which is around 80. This is due to their 

slower relaxation, which is natural because of the large protein included in the solution. 

 

Table 4.3 Protein static dielectric constants 

T / K DC 
150 30.2 
170 25.3 
190 27.9 
210 16.6 
230 14.6 
250 20.7 
270 15.7 
290 23.0 
300 21.5 

 

Table 4.4 Water static dielectric constants 

T / K DC 
150 150.3 
170 110.1 
190 90.3 
210 93.5 
230 81.9 
250 63.4 
270 61.5 
290 51.1 
300 51.5 
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4.2.2 Frequency Dependent Complex Dielectric Constants 

 

The frequency dependent dielectric constants of the protein, with their real and 

imaginary parts drawn separately, are shown in Figure 4.8. The shapes of the curves are 

not changed over the temperatures, but the decay of the real part (and the peak of the 

imaginary part) is shifted to higher frequencies, which is expected, since at higher 

temperatures, fluctuations are larger and the increased mobility allows to respond to 

higher frequencies. Figure 4.8 also shows the frequency dependent dielectric constants 

of water and total frequency dependent dielectric constants of the solution, both of 

which again show the slight shift in the peaks. Total dielectric constants carry both 

transitions of protein and water, which is normal, since they are the these two term were 

terms added to reach it. The terms from cross-correlations are insignificant and do not 

truly change the shape of the curves. The most important feature in these graphs is the 

nick on the water curves at the frequency of protein transition. The two step decay in the 

real part (or the two peaks in the imaginary part) in the total dielectric constant is 

obvious, since both protein and water terms are added in the process of calculating this 

constant. However, the dielectric constants of water are solely calculated from water 

molecules, yet at some temperatures they show a small nick in the real part and a small 

peak in the imaginary part at the frequency of protein transition. Moreover, this nick 

starts to appear only after 190 K, which suggests that there is a transition between 190 

and 210 K, after which an interaction starts between the protein and water molecules. 

This can be seen better in the Cole-Cole plots drawn from these curves. 



 35 

0.00001 0.0001 0.001 0.01 0.1
0

10

20

30

χ'

χ''

Ia) Prot. 170 K

0.00001 0.0001 0.001 0.01 0.1
0

10

20

30

χ'

χ''

ωωωω / ps -1

Ie) Prot. 300 K

0.00001 0.0001 0.001 0.01 0.1
0

10

20

30 χ'

χ''

Ib) Prot. 190 K

0.00001 0.0001 0.001 0.01 0.1
0

10

20

30

χ'

χ''

Ic) Prot. 210 K

0.00001 0.0001 0.001 0.01 0.1
0

10

20

30

χ'

χ''

Id) Prot. 250 K

0.00001 0.0001 0.001 0.01 0.1 1 10
0

50

100 χ'

χ''

IIa) Water 170 K

0.00001 0.0001 0.001 0.01 0.1 1 10
0

25

50

75

100 χ'

χ''

IIb) Water 190 K

0.00001 0.0001 0.001 0.01 0.1 1 10
0

25

50

75

100
χ'

χ''

IIc) Water 210 K

0.00001 0.0001 0.001 0.01 0.1 1 10
0

25

50

75

100

χ'

χ''

IId) Water 250 K

0.00001 0.0001 0.001 0.01 0.1 1 10
0

25

50

75

100

χ'

χ''

IIe) Water 300 K

ωωωω / ps -1

0.00001 0.0001 0.001 0.01 0.1 1 10
0

50

100

150

χ'

χ''

IIIa) Total 170 K

0.00001 0.0001 0.001 0.01 0.1 1 10
0

50

100

150

χ'

χ''

IIIb) Total 190 K

0.00001 0.0001 0.001 0.01 0.1 1 10
0

50

100

150

χ'

χ''

IIIc) Total 210 K

0.00001 0.0001 0.001 0.01 0.1 1 10
0

50

100

150

χ'

χ''

IIId) Total 250 K

0.00001 0.0001 0.001 0.01 0.1 1 10
0

50

100

150

χ'

χ''

IIIe) Total 300 K

ωωωω / ps -1

 

Figure 4.8 Frequency dependent complex dielectric constants. Protein dielectric 

constants at Ia) 170 K, Ib) 190 K, Ic) 210 K,  Id) 250 K and Ie) 300 K;  Water dielectric 

constants at IIa) 170 K, IIb) 190 K, IIc) 210 K,  IId) 250 K and IIe) 300 K; Dielectric 

constants of the total solution at IIIa) 170 K, IIIb) 190 K, IIIc) 210 K,  IIId) 250 K and 

IIIe) 300 K 
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4.2.3 Cole-Cole plots 

 

The real and complex parts of the dielectric constant correspond to energy gained 

and energy lost by the system respectively. Cole-Cole plots are obtained by plotting the 

imaginary part of the complex dielectric constants against its real part. These curves 

present a better opportunity to see the transition mentioned in the previous sections. 

Figure 4.9 shows the Cole-Cole plots drawn for protein, water and the total system. The 

nicks in Figure 4.8 water dielectric constants can be seen clearer in Figure 4.9b. Starting 

at 210 K, the half circles of water component start to have an addition of a smaller lobe 

with the diameter of the half-circle of the protein at the same temperature. The presence 

of two merged lobes is trivial at the total solution Cole-Cole plot, since both protein and 

water components are included in it, but this appearance of protein lobes in water 

component definitely points out that the water component is affected by the protein, but 

only at and after 210 K. Moreover, the total system contains not three but two of these 

lobes. The lobes of the water behavior merge with that of the protein on such a way 
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Figure 4.9 Cole-Cole plots for a) protein, b) water, c) total system 

 

Figure 4.9b is clear evidence that there is a transition at around 200 K, after which 

an active protein-water interaction starts. This can be tied with the protein’s lack of 

function below these temperatures. At these low temperatures, proteins show glassy 

behavior as discussed earlier. Figures 4.8 and 4.9b suggest that this transition from non-
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functional to functional protein is connected with the onset of interaction with the water 

molecules surrounding the protein. This interaction is related to the side chains, which 

start to move by changing their torsion angles, as previously exemplified for BPTI [33]. 

To investigate closely on this, several residues with side chains at the surface of the 

protein were chosen and their interactions with water molecules around them were 

examined. 

 

4.3 Side Chains and Water Molecules 

4.3.1 Mobility of Side Chains 

 

In an effort to show how the mobility of the side chains change with temperature, 

backbone and side chain torsion angles were calculated. Figure 4.10 shows residue 75, 

which exemplifies a surface side chain. Torsional angle trajectories at different 

temperatures for this residue are reported in Figure 4.11. The � angle is the torsion 

angle on the backbone, representing local fluctuations. At temperatures below unfolding 

process, there are no jumps in this angle, as the average structure of the protein is intact. 

The fluctuations around the mean, however, increase as temperature increases. 

 

 

Figure 4.10 Residue 75 of lysozyme. The protein is shown in blue cartoon 

presentation, only the side chain of residue 75 is presented among all residues, colored 

yellow 
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 2χ  angles (torsion angle between C� and C�) are not fixed, since a rotametric 

jump on a 2χ  angle means a change in the orientation of the side chain, which is not 

restricted by the firm tertiary structure of the protein. Below the transition temperatures 

around 200 K, no jumps are observed. First short-lived jump attempts are seen at 210 K, 

at around 500 ps and 900 ps. At temperatures well above the transition range, such as 

250 K and 300 K, conformational jumps on the side chains occur regularly. Such jumps 

mean moves of the side chain. This observation is in accordance with the results 

presented in section 4.2.3: After the dynamical transition, protein-water interaction 

reaches high levels, whereas it is negligibly small at temperatures below the transition. 

The movements of side chains, which start in the range of transition temperatures, are 

directly connected to this onset of interaction. 

 

 

Figure 4.11 Torsional angle trajectories � (backbone) and 2χ (side chain) for 

residue 75 
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4.3.2 Radial Distribution Functions 

 

It has been shown that the protein-water interaction starting at the dynamical 

transition results in the high mobility of side chains at this temperature. The obtained 

data is not sufficient however to conclude if the side chains mobilize water molecules 

around them, or the increasingly mobile water molecules allow side chains to reach this 

level of mobility. Since these chains are the location of the total interaction, 

examination of processes including side chains and water molecules at specific sites can 

illuminate the basics of the dynamical transition. Labeling and tracking water molecules 

around specific residues shows that these water molecules switch places during the 

course of simulations at all temperatures, albeit with different rates, and other molecules 

from bulk water take their place with similar orientations. A better idea about this 

process can be presented by radial distribution functions. Figure 4.12 shows water radial 

distribution functions g(r) between OH2
O  and C� of residue 75, the mobility of which 

was investigated in section 4.3.1. These functions, plotted by averaging over all 

timesteps, show the average density of water molecules at a distance r from the C� of 

the residue. The graph is scaled by the average water density of the whole solution. In 

other words, g(r) is proportional to the probability of finding a water molecule in a shell 

with distance r to the residue C�. At temperatures below the dynamical transition 

temperature, a first coordination shell forming in the range of 5.5 Å around the C�  

atom, which has a maximum at 4.5 Å. A second coordination shell in the range 5.5 – 7.5 

Å is also observed peaking at ca. 6.5 Å are seen. At longer distances, there seem to be 

another cluster of water molecules at 9 Å. This third shell is wider at 170 K, and it is a 

sharper peak at 150 K (data not shown). Although noise is present, the order of three 

groups of water at same distances is evident before the transition. Radial distribution 

function at 210 K and above still have the first coordination shell, but second and third 

shells are blended to bulk water. Though a hint of the second cluster is still present, it 

cannot be labeled as a coordination shell. The first shell also widens and starts to meld 

into bulk water part as temperature rises from 210 K to 300 K. The loss of order in 

water molecules around the side chain after 190 K can again be attributed to the 

dynamical transition and the start of sharp movements in the chain. It is only natural 

that the water molecules are not ordered into coordination shells as the side chain 

experiences discrete motions. 
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After the transition, the entire water component is affected by the protein as seen 

on Figures 4.8 and 4.9. As all side chains start to move, water molecules around them 

interact with these chains, and they interact with other waters. Also, since water 

molecules have a high mobility, molecules from the midst of bulk water travel near side 

chains and interact with them by replacing water molecules located there. This rotation 

also contributes to the fact that the entire bulk water feels the effect of moving side 

chains. To support these findings with a similar comparison to the functions given in 

Figure 4.12, radial distribution functions for bulk water are produced. Figure 4.13 

consists of these functions. This time, the center atom is not the C� of a residue, but O of 

a water molecule. In fact, the data was obtained by averaging radial distribution 

functions of 5 random bulk water molecules. 

 



 41 

0 2 4 6 8 10
-0.5

0.0

0.5

1.0

1.5

2.0

g(
r)

a) 170 K

0 2 4 6 8 10
-0.5

0.0

0.5

1.0

1.5

2.0

g(
r)

b) 190 K

0 2 4 6 8 10
-0.5

0.0

0.5

1.0

1.5

2.0
g(

r)
c) 210 K

0 2 4 6 8 10
-0.5

0.0

0.5

1.0

1.5

2.0

g(
r)

d) 250 K

0 2 4 6 8 10
-0.5

0.0

0.5

1.0

1.5

2.0

r

g(
r)

e) 300 K

 

Figure 4.12 Water radial distribution functions around residue 75 at a) 170 K, b) 

190 K, c) 210 K, d) 250 K and e) 300 K 
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Figure 4.13 Bulk water radial distribution functions at a) 170 K, b) 190 K, c) 210 

K, d) 250 K and e) 300 K 

 

Bulk water radial distribution functions support the aforementioned conclusions. 

Functions below the transition temperature show a three coordination shell order, 

second and third of which completely disappear at higher temperatures. The first 

coordination shell never diminishes due to the ever-present short range order in water. 

The whole water component is experiencing the effect of the rotating and fluctuating 

side chains, as these observations agree.  
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5. CONCLUSIONS AND FUTURE WORK 

In this work, dielectric properties of a protein solution consisting of lysozyme, 

water and chloride ions were calculated from MD simulations at different temperatures.  

At the temperature range studied, the protein remains folded, but the fluctuation 

behavior around that folded structure changes. In particular, at around 200 K, the 

protein goes through a dynamical transition or the “protein glass transition” and is 

functional only above this temperature, although it keeps the template overall structure 

well below this temperature. 2 ns long MD simulations in the range 150-300 were run 

with the exception of the 8 ns long 300 K simulation. The dielectric properties were 

used as analysis tools to investigate this protein dynamical transition, protein-water 

interaction and temperature dependence of this interaction, especially just below and 

right above the transition temperature. Mechanical analysis tools such as torsional angle 

trajectories and radial distribution functions of water molecules around the flexible 

protein surface residues were used to support the interpretation of the results provided 

by dielectric properties. 

 

Auto- and cross-correlation functions of three components of the solution 

(protein, water, ions) were calculated. These correlations were fit to biexponential decay 

functions to enable analytical calculation of frequency dependent dielectric constants. A 

slow mode with a ca. 3000 ps relaxation time was found to be dominant in the protein 

dipole moment autocorrelation and a fast mode with ca. 7 ps was found to be dominant 

in the total water dipole moment autocorrelation. 

 

Static and frequency dependent dielectric constants for protein and water 

components and the total solution were obtained for a range of temperatures using 

computations based on linear response theory. Static dielectric constants for lysozyme 

were found to fluctuate about 20 at different temperatures. This constant is close to 

those reported in literature for lysozyme and other proteins were found [8, 12, 14]. It 
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should be noted that the protein static dielectric constant does not change very much 

with temperature. If there is a slight trend, it remains below noise levels, so that it is 

impossible to capture. Water static dielectric constants showed a decay with increasing 

temperature as expected and they are smaller with respect to pure water molecules. 

 

At temperatures below the dynamical transition, the frequency dependent water 

dielectric constants have a monotonic behavior. During the transition, this measurable 

shows a nick at the frequency of decay of the protein, which indicates that the entire 

water component is affected by the protein. This sign of protein-water interaction grows 

with increasing temperature. Cole-Cole plots were drawn for protein and water 

components and the total solution at different temperatures. These plots showed the 

same effect of interaction in the water component at and above 210 K, pointing to an 

onset of interaction at the dynamical transition temperature range. 

 

Backbone and side chain torsional angle trajectories of several surface residues 

for the analyzed temperatures were obtained. While the backbone stays fluctuating 

about the same angular conformation, side chains begin to make conformational jumps 

after the transition. The start of interactions between protein and water molecules was 

tied to this emergence of enhanced mobility. Water molecules were labeled and 

monitored to find that different water molecules from bulk water replace the ones 

around the side chains continuously. It was observed that such a mobility exists even in 

the glassy regime, but the time scale of the diffusion process dramatically increases with 

the onset of the side-chain dihedral angle jumps. 

  

As a more global quantification of the protein surface – water interactions, radial 

distribution functions of water molecules around the previously mentioned side chain 

residues and radial distribution functions of bulk water were plotted. Both sets showed a 

loss of order at the transition temperature. The model that we put forth thus suggests 

that the side chains gather sufficient energy to fluctuate vigorously enough to sample all 

the energy minima of the side chain torsional angles, while interacting with the 

immediate water around them; the surface water is also mobile enough to allow these 

conformational transitions. This effect then propagates to the entire bulk water by the  

continuous tumbling and diffusion of the surface water molecules into the bulk. The 

total volume of the water around the side chains in the simulations is very small 
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compared to the bulk, yet the effects of interaction with the protein are seen not only in 

these restricted regions, but in the entire water component. 

 

The suggested model is involving protein-water interactions at side chains starting 

with the dynamical transition of the protein. Then the effect around side chains spreads 

to bulk water. Yet it must be stressed that the transition should not be seen solely as 

flowing from protein side chains to nearby water molecules to bulk water. In the 

absence of water molecules surrounding the side chains, it would not be possible for the 

side chains to gain the mobility they do at the transition. Without water molecules (or, 

in fact, any type of solvent that favorably interacts with their hydrophillic structure [30]) 

around them, the side chains would “stick” to the bulk of the protein instead of 

acquiring an open conformation that permits them to freely sample all the allowed 

conformational states. Thus, without the correct side-chain orientation, the mobility 

effects that propagate into the bulk water would not be observed. Water molecules do 

not only provide a medium for this transition, but are also actively a part of it. It is 

known that in absence of water the fluctuations in the torsion angle of side chains 

increase, but the dynamical transition is not observed [28, 29]. Therefore, it is possible 

to state that presence of water is necessary for this transition, but it is not sufficient. 

Temperature is also important both for protein fluctuations and mobility of water 

molecules around the side chains. As temperature increases, both fluctuations in the 

protein increase and water molecules become more mobile, allowing the side chains to 

experience rotational jumps. When the transition temperatures are reached, both effects 

are strong enough to start mobilization of the side chains. After that, the proposed 

mechanism of interaction spreading from side chains over near water molecules to the 

entire water component takes lead. It should also be stressed that in this study the 

interactions were analyzed by investigating electrical properties. Electrostatic 

interactions, especially for proteins in water, are long range interactions, the effects 

propagating into distances as large as 80 nm [54]. The propagation of the discussed 

dielectric effects to bulk water is therefore easier to track than it is for mechanical 

effects. 

 

In future work, one possible study that would support these findings is to compute 

the dielectric relaxation behavior of a hypothetical protein-water system where the 

protein and the solvent are maintained at well-separated temperatures. Such simulations 
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were previously conducted by Vitkup et al. to study the fluctuations of the heavy atoms 

in the protein, a mechanical property [27]. Therein, the need for water to be at high 

enough temperatures was stated for the protein to gain large fluctuations neccessary for 

function. Tracking the actual water-protein interactions over large distances using the 

methodology of the current work is essential, however, to make conclusive statements 

about the overall functioning of the system. 
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