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ABSTRACT 

 

 

GLASSINESS AND COUPLING OF TIME-SCALES IN FUNCTIONAL PROTEINS  

 

Folded proteins are functional at relatively elevated temperatures. Below ca. 190–220 K, proteins 

may still display the same average structure, but lack function due to the absence of large size 

fluctuations that increase nonlinearly with temperature. In this state, proteins are similar to 

polymers displaying glassy behavior, with their disordered, amorphous character and 

heterogeneous dynamics. We provide evidence that the onset of the relevant fluctuations at 

physiological temperatures occurs with the residue-wise alteration of the slow –nanosecond time 

scale– motions due to the activity along the envelope of the energy surface defining the folded 

protein, and the fast –pico second time scale– motions of the activity along the pockets decorating 

the folded-state envelope. We investigate this time window with spectral analysis methods to map 

all the relevant modes of fluctuations. Moreover, the temperature dependence of molecular 

motions are treated within the context of Fractional Brownian Dynamics. The analysis is based on 

data describing the relaxation phenomena governing the backbone dynamics derived from 

molecular dynamics simulations of three proteins in the temperature region 140–330K. The shifts 

in the weights of fundamental dynamical processes are displayed. Implications on controllability 

of function are discussed. 
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ÖZET 

 

IŞLEVSEL PROTEİNLERDE CAMSI HAL VE ZAMAN ÖLÇEKLERİ ARASI 

ETKİLEŞİMLER 

 

Katlanmış proteinler görece yüksek sıcaklılarda da işlevseldir. 190-220 K altında ise, proteinler 

aynı ortalama yapılarını koruyabildikleri halde  yüksek sıcaklıklarda gözelenen doğrusal 

olmayan büyük ölçekli dalgalanmaların olmaması yüzünden işlevlerini yerine getiremezler. 

Böyle bir durumda proteinler düzensiz ve amorf özellikleri ve heterojen dinamikleri ile camsı 

polimerlere benzerler. Bu çalışmada, işlevle ilgili dalgalanmaların, nano ve pikosaniye 

ölçeğindeki moleküler hareketlerin fizyolojik sıcaklıklarda amino asit bazında farklılaşmasıyla 

ortaya çıktığı gösterilmektedir. Bu zaman pencerisinde fiziksel olarak işlevle ilgili tüm 

hareketler spektral metodlar kullanılarak incelenmektedir. Moleküler hareketlerin sıcaklığa 

bağlı değişimi de kesirli Brownian hareketi çerçevesinde çalışılmaktadır. Yapılan analizler, 

moleküler dinamik benzetişimleri sonucunda üç farklı protein için  140-330 K aralığında elde 

edilen protein ana omurgasının dinamigi ve yapısal hafıza kaybından gelen bulgulara 

dayanmaktadır. Temel moleküler hareketlerin, toplam dinamiğe olan katkılarındaki kaymalar 

gösterilmekte, bunların kontrol ve işlevle ilgili olası sonuçları tartışılmaktadır. 
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1. Introduction 

 

Temperature characteristics of internal motions and the structural relaxations in folded 

proteins are crucial for unveiling the nature of function at the molecular level. 

Moreover, a functional protein assumes the concerted motion of its residues, thanks to 

the structural flexibility at ambient temperatures. Therefore, the determination of time-

scales and pertinent frequency windows is of utmost importance before embarking 

upon devising plausible models for protein dynamics. Both experimental (Daniel et al., 

1998; Zaccai, 2000; Tsai et al., 2001; Fenimore et al., 2002; Pal et al., 2002) and 

theoretical (Vitkup et al., 2000; Dvorsky et al., 2000; Baysal and Atilgan, 2002; Tarek 

and Tobias, 2002; Tournier et al., 2003;  Baysal and Atilgan, 2005) effort which have 

been devoted to the glassiness, function and relaxation phenomena of those 

polypeptides are abound. Of particular interest is the coupling of time-scales approach, 

which conjectures that a functional protein at physiological temperatures owes its 

functionality to the coupling of concurrent structural changes occurring at different 

time-scales (Baysal and Atilgan, 2005). This coupling brings out the feature that the 

structural relaxation of a protein molecule has Kohlrausch-Williams-Watts (KWW) 

type (stretch exponential) dependency (Kohlrausch, 1874; Williams and Watts, 1970). 

This functional form can be seen as a manifestation of the superposition of single 

exponential decays with different characteristic decay times; 
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However, given a stretch exponential decay, the corresponding single exponential 

decomposition is prohibitively tedious for large n. Moreover, it is not possible to determine n 

precisely by just examining the stretch exponential function.  

 

Stretch exponential behavior is not the only function type that is ascribed to the complex 

physical processes that follow non-exponential trends as well. However, the basic question of 

how a folded protein loses its memory in the solvent entails a closer perusal of the energy 

landscape in the neighborhood of local minima and corresponding topographical features as 

shown in Figure 1.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Figure 1.1 Rugged topology decorating a hypothetical parabolic potential energy 
envelope (Generated with function U (r1, r2)  =  r1

2 
+ r2 

2+ random number, using Surfer 
8.0) 

                r1 
r2 

U(r1 , r2) 
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It has been shown that the protein dynamics about the folded state assume nonlinear 

motion on a multi-basin landscape (Garcia, 1997). An illustration of this model is depicted 

above in Figure 1.1. With this approach, it is possible to construct a direct analogy between a 

weakly adsorbed diffusing particle and a protein as monitored in the configurational space, 

while establishing a direct link to the Fractional Brownian Motion (FBM). Moreover, frequent 

hopping between the local minima  decorating the potential envelope is shown to be decisive 

in determining the time-scales of fluctuations around the equilibrium, which turns out to be 

occurring at picoseconds (ps) and nanosecond (ns) timescales. Resolving the individual 

modes of motion allows one to describe the relaxation of a physical quantity with simpler 

function prototypes (Equation 1.1 constitutes an example) as well as shedding light into the 

dynamics of the folded state. 

 

Most of the mathematical models of relaxations were launched with the intention of building 

more robust expressions that would capture the main features of dielectric polarization decays 

on the grounds that the latter have posed problems since the emergence of classical 

electrodynamics. Of the numerous attempts, the Cole-Davidson and Williams-Watt models 

have been two successful epitomes of generic functions to fit non-exponential decays 

comparison of which may be found elsewhere (Lindsey and Patterson, 1980). Reaction 

kinetics is another long studied field from which to borrow models and function types is 

lucrative. A model due to Frauenfelder is relevant for systems that bear rugged energy 

landscape (Frauenfelder, 1988). However, another example which has appeared more recently 

predicts a Lorentzian form for the Fourier-transformed time correlation of potential energy 

assuming a landscape with fractal properties for the case of plastocyanine (Carlini et al., 

2002). The latter result is shown to comply with FBM. 
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This work aims to elaborate on Equation 1.1 and the physical implications of KWW type 

dependency, along with a decomposition in terms of  single exponential functions. Biphasic 

nature of protein dynamics is explicitly shown through the β exponents which are obtained 

from a series of molecular dynamics simulations (MD) of three protein molecules at a wide 

temperature range (130K-340K). Spectral analysis of real space trajectories is carried out to 

reveal the underlying time-frequency windows and their interactions.    

 

This work partly aligns itself with the “residue network” approach (Atilgan et al., 2004; 

Haliloglu, 1997; Yilmaz and Atilgan, 2000) where the whole protein is treated as a network of 

interacting amino acids. Time and temperature characteristics of the network structure and the 

fluctuation modes is juxtaposed with the spectral properties to propose a roadmap for carrying 

out the expansion given by Equation 1.1 robustly.   

 

In what follows, Chapter 2 will give a layout of the theoretical background. Therein, section 

2.1 gives a reasonably detailed exposition of MD simulations. In section 2.2 Brownian motion 

and fluctuations are discussed along with the residue network approach. In the following 

section (2.3) Hurst exponent and FBM are briefly introduced. Calculational procedures for 

heat capacities from potential energy trajectories constitutes the section 2.4. Section 2.5 

describes the Fast Fourier Transform (FFT) and recapitulates the basic mathematical 

properties of it. In the concluding section of Chapter 2 autocorrelation functions are described 

within the context of  structural relaxations in proteins. Chapter 3 provides detailed 

information on the molecular systems modelled and the simulation details. Results and their 

interpretation are given in Chapter 4. It starts with the description of the “protein glass 

transition” as monitored through three physical parameters. In the section 4.2, fluctuations of 

dihedral angles pertaining to the surface residues are shown to  exhibit a fractional Brownian 
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nature which follows from the deviations in the Hurst exponents. In the subsequent section 

4.3, the origins of these deviations are investigated through the spectral analysis of the atomic 

displacements.  

 

In the last section, three-mode model for describing the stretch exponential behaviour as a 

superposition of single exponentials  is introduced and the physical implications are discussed 

within the context of protein structural relaxations. Chapter 5 is a recapitulation of the 

findings as well as the new directions that the results render necessary to follow. Protein glass 

transition and protein dynamics are put into a broader perspective with a novel way of looking 

at the weighted coupling of time-scales.  
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2. Theoretical Background 

 

2.1 Molecular Dynamics 

 

MD simulations uses Newton’s laws of motion to simulate the dynamics of many-body 

systems under force-fields. Force fields provide approximations for the forces on each atom. 

Newton’s second law is then explicitly solved for each atom i in the system for a given time 

step; 

 

 

ri describes the displacement (or position) vector while Fi gives the total force acting upon the 

i
th particle in the system. Equations of motions are time reversible and the atomic trajectories 

created are deterministic, while the forces on each atom satisfy the minus gradient law of 

potentials; 

                                                        

  

The very first MD simulation that originated from the work of Alder and Wainwright using a 

hard sphere model (Frenkel, 2001; Leach, 1996) did not employ a continous force field. The 

implementation of continous force-fields had to wait until 1964, when Rahman simulated the 

motion of Argon atoms (Frenkel, 2001; Leach, 1996). MD methods currently have a myriad 

of applications and are routinely used for the simulation of biological molecules. However, 

the focus is mainly on the simulation of folded structures which assume stable tertiary 

structures rather than modelling of the folding phase, small molecular systems being 

exception (Duan and Kollman,1998).  
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The integration of the equations of motions are carried out with a suitable finite difference 

scheme since there is no analytical solution in closed form for a many body problem. MD 

methods are deterministic; that is, by numerical integration one can go from acceleration to 

velocity and from velocity to positions and vice versa. All algorithms are based on the 

assumption that the dynamical variables are analytic functions which can be approximated by 

Taylor series expansions. The Verlet algorithm is worth mentioning on the grounds that its the 

adapted integration scheme for the MD simulations reported herein.  

 

Verlet scheme is a finite difference method that exploits the series expansion of 

displacements. We expand displacements backward and forward shifted by h in time and put 

together the resulting expression to solve for x(t+h) and x(t-h).  

 

 

 

    

 

Velocities and third order terms cancel out each other leaving accelerations and  4th order 

error terms behind. This implies that the Verlet algorithm which is apparently 2nd order is 

more precisely a 4th order algorithm (Eberly, 2004). The ability to solve x in both directions in 

time brings out the feature that the Verlet algorithm is suitable for modelling conservative 

systems. Combining this with the Newton’s second law, one ends up with; 
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half-step forward : 

                                             

 

   

 

On the other hand, a modified version, the so-called velocity-Verlet (Swope et al., 1982) 

algorithm, explicitly calculates the velocities as well as the positions and accelerations 

simultaneously. This is achieved through a three-step computation which involves;  

 

 

 

 

 

2.2. Viscoelasticity, Brownian Motion and Fluctuations  

 

Classical molecular theory of viscoelasticity describes the microscopic dynamics of a polymer 

network as a system of spherical Brownian particles connected by springs under incessant 

bombardment of solvent molecules (Doi and Edwards, 1986). The equilibrium dynamics of 

such a macromolecular system in solution might well be described by the Langevin equation, 

 

 

 

where Γ is the Kirchoff matrix and H stands for the inverse mobility matrix, whose diagonal 

accounts for the solvent friction coefficients due to Kirkwood (Kirkwood, 1949). The 

construction of Γ and H is such that the kij element is the stiffness of the harmonic potential 
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between beads i and j, whereas the hij element of matrix H gives the hydrodynamic interaction 

between these. Finally, the random forces are given by the F matrix and the solvent 

bombardment is assumed to be a Gaussian process with white noise (Johnson noise) 

satisfying; 

  

  

 

The main distinguishing trait of a white noise process is the delta function nature of the time 

autocorrelations.   

 

With elastic network models, one modifies the Γ matrix such that the Hookean springs are 

assumed between each residue as long as the two are in their close proximity below a certain 

cut-off distance. This is based on the assumption that the time evolution of the inter-atomic 

distances around their equilibrium position follows a Gaussian distribution (Bahar et al., 

1997).  

 

All residues are described by a generic bead and force constant in calculating the interactions 

irrespective of molecular weight and chemical composition. The elastic network, as 

established by the Γ matrix is totally isotropic, thus reducing the number of eigenmodes from 

3N-6 to N-1. This allows the construction of single harmonic potential based residue networks. 

Figure 2.2.1 is an illustration of the residue network generation by spatial proximity; 
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2.3. Hurst Exponents 

 

The trajectory of a particle in a liquid undergoing random collisions of the solvent molecules 

was termed as the Brownian motion in the previous section. The main characteristic of such a 

random walk is the 0.5 exponent which relates the elapsed time to the distance covered;  

 

                                                                R = kT
0.5

 

Where R is the range and k is a multiplicative factor. Hurst exponent is a natural 

generalization of  H = 0.5 exponent to cover the interval [0,1], leaving 0.5 as a special case. 

However, it is validated by rescaling the range with the standard deviation S (Steeb, 2002).  

                                                            

 

Figure 2.2.1. Nonbonded close contacts and the 
formation of residue network with generic 
potentials 

   (2.3.2) HkT
S

R
=

       (2.3.1) 
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Moreover, it describes a generalized Brownian motion bearing a fractal distribution with 

inherent scaling and self-similarity. FBM is a Gaussian process, the prefix of which follows 

from the fractal dimensionality that stems from an Hurst exponent H ≠ 0.5. Since 0.5 

corresponds to the mid-point of  the [0,1] interval we may identify two more cases of 

Fractional Brownian Motion.  

i. 0 < H < 0.5 (Antipersistency): This H range is described as the pink-noise and the 

dominant characteristic of such a process is the mean-reverting tendency. Any time series 

assuming H within this interval is more volatile than a random walk and is ergodic. 

ii.  H  =  0.5 (Independency): Classical Brownian motion with derivative giving rise to  

white-noise. This value of H defines the random walk and the pertinent statistical parameters 

of the time-series are time invariant. 

iii.       0.5 < H < 1 (Persistency):  Such a process is indicative of long-memory effects such 

that the distance covered within time t is longer than it is for a pure Brownian motion. It 

immediately follows that the persistency favors trend formation; i.e. onset of a decrease is 

more likely to be followed by a decreasing trend, and vice versa. The noise for a persistent 

time series is named as black-noise. When H lies within this range, we expect to see positive 

correlations across time-scales. 

 What Hurst exponent provides is therefore a unitless measure to distinguish between random 

phenomena and deterministic processes exposed to random perturbations. Moreover, it is a 

means to assess the volatility of a data set. The apparent nonstationarity of FBM processes 

require a careful consideration for spectral decomposition. Although time-frequency analysis 

is still possible, unveiling the scaled stationarity lurking within time scales provides a more 

robust means to quantify FBM trajectories. 
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Relation of the Hurst exponent to the  spectral methods and ergodicity is  clearly deduced 

from the two identities ; 

   

Here, Dfps gives the dimension of the probability space whereas Dfts is the fractal dimension of 

the time series. It is clear that the probability space is two dimensional for a random walk thus 

allowing the phase space to be fully spanned. However, for trajectories which assume H > 0.5 

a portion of the phase space is not accessible at any time. Hurst exponents also give clues to 

the convergence and the power spectrum of the Fourier decomposition of the time series via 

the well established expression which gives the decay rate of the Fourier coefficients  as; 

    

 

As the Hurst exponent converges to zero, the Fourier components tend to decay in a slower 

fashion, crowding the power spectrum. 

Synthesis of FBM and the inverse problem of determining H from a given trajectory is now 

computationally well established, thanks to the exploitation of wavelet methods. Detailed 

coverage of such methods is beyond the scope of this work. For more details one can resort to 

Abry and Sellan’s excellent paper (Abry and Sellan, 1996). 
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2.4 The Fast Fourier Transform (FFT) 

 

Fourier transform, other than being a mathematical curiosity, provides the necessary link 

between the two facets of the same physical phenomenon that is; the time domain and the 

frequency domain. Moreover, Fourier tansform is an invertible linear mapping that allows one 

to switch between the two domains back and forth. Using frequency representation, the 

continous Fourier transform and its inverse are defined as; 
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Owing to the properties of the plane-wave kernel, there might be certain symmetries inherent 

in both domains. A list of the symmetry and domain dependent properties as adopted from 

Numerical Recipes (Press et al., 1992) is given below: 

 

Time Domain Frequency Domain 

Real F(t) H(-f)  =  [H(f)]* 

Complex F(t) H(-f)  =  -[H(f)]* 

Even F(t) H(-f) = H(f) (even) 

Odd F(t) H(-f) = -H(f) (odd) 

Real and Even F(t) H(f) is real and even 

Real and Odd F(t) H(f) is complex and odd 

Complex and Even F(t) H(f) is complex and even 

Complex and Odd F(t) H(f) is real and odd 

  
Table 2.4.1 Properties of the Fourier Transform 

                    (2.4.1) 
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However, very few scientific problems yield closed form analytical expressions as solutions  

rendering the use of discrete FT (DFT) inevitable. DFT, by definition takes N points and maps 

them into N new points in the transform domain. The number of independent points (which in 

turn corresponds to the eigenfrequencies) in the transformed domain is equal to the number of 

sampled points. Thus, for transforming complicated signals, larger trajectories are needed to 

extract the information content with the least amount of loss. The discrete transformation 

could be represented in closed form as; 

 

 

 

We can also explicitly write the above approximations in matrix form. The matrice obtained 

thereby is a special kind of Vandermonde matrix whose columns are orthogonal to each other 

ensuring the unitarity of the transformation (Meyer, 2004). From this point of vantage, the 

requirement for matrix multiplication entails DFT to be an O (n2) algorithm with 

multiplication operations carried over complex numbers. However, it was judiciously shown 

by Danielson and Lanczos that with two N/2 point transform it is possible to replicate the 

original N point transform (Press et al., 1992). Unless the subsequent divisions of N ends up 

in an odd number, one can go on dividing the function domain until all sub-domains are 

grouped as odd and even single points, which brings DFT back to the family of O (n log(n)) 

algorithms. FFT is actually an alias for transform algorithms which operate with O (n log(n)) 

floating point operations and could be implemented in both recursive and non-recursive 

fashion. The total number of points sampled therefore is chosen as integer powers of 2. 

Symbolic mathematics languages such as Matlab and Mahematica bears functions which 

automatically completes the number of points to the next power of 2 such that N < 2n. 

However this trick has to be incorporated into the subroutines in compiler level languages.    
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Fourier transform of MD trajectories constitute complex arrays, which does not leave much 

room for physical interpretation. However, it is well known that the modulus squared FTs are 

related to the power spectral density (PSD) or the power spectrum. One of the simpler ways of  

extracting the power spectrum from FT is the periodogram method which is defined as; 

 

                                        

 

 

 

However, one immediate problem is the assesment of the goodness of  signal reconstruction 

with finite data points, which in turn imposes limitations on the frequency content. Shannon 

sampling frequency or the Nyquist frequency is a pertinent mathematical measure for the 

sampling rate to achieve an uncompromised recovery of the Fourier components. It is defined 

as; 

 

                                                              

For a bandwidth limited signal, sampling more than what the Nyquist frequency implies is a 

futile effort, since above that rate all components have zero power density in the power 

spectrum. However, sparser sampling is also troublesome on the grounds that is gives rise to 

information lost and the aliasing phenomenon. With sparser sampling, we mean any signal 

which is not bandwidth limited up to the Nyquist frequency. Aliasing is also termed as false 

translation since the higher frequency components fold back into the [-fc, fc] closed interval, 

distorting the final waveform. From a computational point of view, the ideal case is to 
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transform a discretized sample whose highest frequency component is in the close proximity 

of the critical frequency. 

 

There is, unfortunately, no panacea to remedy the disadvantages accompanying aliasing, 

leakage and related signal processing problems simultaneously, but one might still choose to 

apply low-pass filtering techniques before implementing a transformation. From the 

perspective of MD simulations, our current knowledge of the molecular modes whose 

frequency based classification is readily acccessible by spectroscopy science provides 

important benchmarks to choose the optimum sampling rate for simulations. 

 

Of course, not every trajectory is Fourier transformed and the computational intensity of 

equation of motion integrations usually establish themselves as the most decisive factor for 

choosing the density of sampling.  However, from a spectroscopic point of vantage, the 

highest wavenumber which is physically important is about 4000 cm.-1  

 

For a protein, the residue-wise modal distribution is obtained via a discrete Fourier transform 

of the coordinate trajectories of each Cα atom. The finite time of the simulations imposes 

certain limitations on the Fourier transforms, such as the insertion of higher frequency 

artificial terms and peak broadining, both of which scale inversely with the total duration of 

simulation time. 

 

2.5 Heat Capacities 

 

Heat capacity is a fundamental thermodynamical entity which exhibits discontinuity at the 

transition temperature for a second order transition (for a first order transition it diverges to 
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infinity). Fortunately, statistical mechanics provides means to exploit the variance of energy 

throughout a  MD trajectory so as to  calculate C;  

 

 

 

Proof of this identity is quite straightforward and is given at Appendix 1. However, using the 

rightmost identity is a more robust way from a computational point due to the possibility of 

round-off errors in calculating <E
2> and <E>2  first hand. 

 

Heat capacity can also be calculated with pure thermodynamics by differentiating the energy 

function once we fit a differentiable function to the time evolution of the energy data with a 

reasonably small lack of fit. However, the length of  the trajectories renders the possibility of 

identifying and best-fitting functions like polynomials  of order n  to the simulation data as 

prohibitively difficult.  

 

2.6.  Relaxation and Autocorrelation Functions   

 

The autocorrelation function is a measure of how the memory is retained in time for a specific 

quantity. In general, an autocorrelation function is a monotonically decreasing function which  

starts from one at time t  =  0 and converges to zero. The characteristic time for a system to 

loose the significant part of its memory is called the relaxation time. There is no universal 

procedure for the calculation of relaxation times and they are generally obtained by a 

substitution that cancels out the explicit time unit.   
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The resulting set of points in an autocorrelation function may also assume different shape 

characteristics, limiting the options for fitting functions. This work centers around the stretch 

exponential behavior, which is described by a Kohlrausch-Williams-Watt function 

(Kohlrausch, 1874; Williams and Watts, 1970); 

 

 

 

What is presented in this work is the correlation of a fluctuation vector, evaluation of which is 

quite tedious and requires conscientiousness. The structural relaxations are studied through 

the time- and temperature-dependent properties of the fluctuation vector ∆R of Cα atoms of a 

given protein from its mean structure. For obtaining the mean structure we first remove the 

overall tumbling embedded in the MD trajectories; that is rigid body rotation and translation. 

This is achieved as follows: For any given t´ ps sub-trajectory, one starts with a best-fit 

superposition of the recorded structures to the initial structure by minimizing the root mean  

 

 

 

 

 

 

 

 

 

square deviations of the Cα atoms via quaternionic rotations and center of mass back-

translation (Heisterberg, 1990). The use of quaternions renders the implementation of 

Figure 2.6.1 Two molecules at different times t1 and t2 along a trajectory is overlapped with the 
quaternonic molecule fit. 

[ ][ ]β
τttC −= exp)(      (2.6.1) 
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composite rotations extremely simple and reliable. Rather than multiplying rotation matrices 

for each rotation, we multiply the quaternions whose arithmetic is very simple. After 

multiplying quaternions corresponding to each rotation in the quaternion space, we move back 

into the rotation matrix representation to modify the coordinates of each atom. One such fit of 

two structures is shown in fig. 2.4.1. 

 

 One then computes the average structure, <R(T)>, from the t´ best-fitted structures. Here <·> 

refers to time averaging. In the last step of the fit, quaternionic superposition of the recorded 

structures to this average structure is carried out. After subtracting rotational and translational 

degrees of freedom, the trajectory is reduced to a time series of internal motions for a given 

protein.  Each structure of this final trajectory is denoted by R(t, T) and the coordinates of the 

i
th residue are denoted by Ri(t, T). The fluctuation vector for a given residue i at a given time t 

for a given protein at temperature T, ∆Ri(t, T)  is thus the difference between the position 

vectors for the ith residue of the best-fitted and the average structures.  The autocorrelation of 

the fluctuation vector is given as; 
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3. Molecular Systems 

 

3.1 Biomolecular Systems 

 

The initial structures for the three proteins were retrieved from Protein Data Bank (PDB) 

(Berman et al., 2000). Along with their PDB abbreviations these are namely; the Bovine 

Pancreatic Trypsin Inhibitor (PDB code: 5PTI) (Vlodawer, 1984), the Hen Egg White 

Lysozyme (PDB code: 193L) (Vaney, 1996), and the Cold Shock Protein from the 

Hyperthermophilic Bacterium Thermotoga Maritima (PDB code: 1G6P) (Kremer et al., 2001)  

Molecular visualizations  of the three proteins are given below at the secondary structure level. 

 

 

 

 

 

 

 

 

 

 

Molecular dynamics (MD) simulations were carried out with InsightII 2000 (Accelerys, 2001) 

commercial licence. The two proteins, 193L and 1G6P were soaked in a 7 Å thick water shell 

whereas 5PTI assumed a 6Å thick hydration layer in vacuo. Together with the structural water 

molecules reported in the PDB structure, this treatment leads to a total of 703 solvent 

   Figure 3.1.1. CA wire representation of a) 5PTI  b) 193L  c) 1G6P. Color coded in secondary  
   structure and Van der Waals surface superimposed. 
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molecules for 5PTI, whereas for 193L and 1G6P the number of solvent molecules are 2490 

and 1842, respectively. All atoms are treated explicitly during the simulations. Before the 

equilibriation runs, the corresponding energy of each system is minimized with a multi-

method minimization procedure due to the unphysical values of the energy derivative 

stemming from the close contacts formed by the packing algorithm and the uncertainities 

imposed by the X-ray diffraction, from which the atomic positions are obtained. For 5PTI, 

minimization is comprised of  subsequent conjugate-gradients iterations until the energy-

derivate reaches down to 7.5 kcal/mol. For the cases of  193L and 1G6P, minimization runs 

start with the steepest-descent method until the energy-derivative is reduced below 1000 

kcal/mol and switches to conjugate-gradients until it reaches below 50 kcal/mol. Futher 

refinement is achieved through the Newton-Raphson scheme until the derivative is brought 

below 0.5 kcal/mol. 

 

3.2.  Equilibration and Simulations 

 

All equilibration runs are of 200 ps in duration. Equilibration phases assume the simulation 

temperature of corresponding MD trajectories without resorting to thermal annealing. 

Adapted velocity control mechanism is chosen to be Andersen which assigns velocities to the 

molecules picked at random in accordance with the Maxwell-Boltzmann distribution. 

 

For the cases of 193L and 1G6P all simulation are of 2 ns duration irrespective of the 

simulation temperature. The CVFF (Dauber-Osguthorpe et al., 1988) force field implemented 

within the Accelerys InsightII 2000 (San Diego, CA) software package is used throughout  

structure refinement and the subsequent MD runs of all three proteins. A modified version of 

the single point charge model is adopted for describing water molecules in the system 
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(Berendsen et al., 1987). Group-based cutoffs are set to 10Å. A switching function is used, 

with the spline and buffer widths set to 1.0 and 0.5Å, respectively. Integration algorithm is the 

velocity-Verlet method implemented with velocity and bond constraints from the RATTLE 

scheme (Andersen, 1983). Integration step is taken to be 1 fs  for 5PTI and 2 fs for the 

remaining two. Data are recorded every 2 ps for all runs. Temperature control is achieved by 

the extended system method of Nose (Nose, 1984). The MD runs for 5PTI are of length 2.0–

2.8 ns, depending on the temperature: 2.0 ns for T < 230 K, 2.4 ns for 230 < T < 290 K, and 

2.8 ns for T > 290 K. Also, second independent MD runs of duration 2.0 ns are carried out for 

T > 290 K. This yields trajectories of length 2.0–4.8 ns depending on the temperature. For 

193L and 1G6P all runs are carried out for 2 ns with 20 K increments in the range 138 K- 338 

K and 158 K-358 K respectively. After all runs have been completed, the trajectories are 

parsed into portions with 200 ps temporal window size so as to obtain multiple data sets.  
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4. Results and Discussion 

 

4.1. Phase Transitions  

 

The phenomenon of dynamical phase transitions in proteins has first manifested itself in 

neutron scattering studies. Those studies are significant, since they clearly show the effect of 

water as solvent in dampening of the molecular flexibility and fluctuations below a 

temperature regime of 190-220 K (Zaccai, 2000; Tsai et al., 2001, Gabel et al., 2004). When 

the mean squared fluctuations are plotted against temperature one observes a change in the 

slope when the protein is hydrated in water. However, for completely dehydrated powders, 

such a transformation is absent (Figure 4.1.1 (a)). This is in accordance with our findings for 

each protein. Residue fluctuations versus temperature from our simulations are shown in 

Figure 4.1.1 (b). The transition temperature is extracted via the extrapolation of the two 

regimes marked by a change in the slope of residue fluctuations to find the intersection point. 

Transition temperatures calculated via this method is listed in Table 4.1.1 

 

 

 

 

 

 

 

 

 

                    (a)                                                              (b) 

Figure 4.1.1 (a) Neutron scattering experiments on Rnase A powders (Tsai et al., 2001)  
(b) Temperature (B)-factors( >∆⋅∆<= ji RR38 2π )  for the three proteins studied in this 

work 
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Structural relaxations, as defined by the autocorrelation functions are indicative of a universal 

 feature of proteins. Our results show that the β exponents in stretch exponential decays vary  

between 0.2 and 0.4 irrespective of the sequence information. This is quite remarkable 

considering the algebraic simplicity of the model employed. Moreover, this unique property 

of relaxations imply that the concertion of molecular fluctuations with different time scales 

could well be decisive for putting the protein function in dynamical perspective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is obvious that the sigmoidal curves obtained from the temperature dependency of β might 

be fitted with an analytic function to locate the inflection point at which the transition occurs. 

Figure 4.1.2. Temperature dependence of β exponents for three proteins 
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This gives an estimate for the glass transition temperature. It has been shown that the 

Boltzmann-sigmoidal curve is a perfect candidate for fitting transitions of this shape (Baysal 

and Atilgan, 2005). For our case  it is given by the formula;  

   

                    

 

Heat capacities as shown in Figure 4.1.2 also exhibit a similar trend with broader transition 

region. However the onset of transition is in accordance with the transitions in the β 

exponents. In fact, fits to these data are also made with a Boltzmann-sigmoidal curve using 

the formula; 

 

 

 

and the estimated transition temperatures are also listed in Table 4.1.1.  
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Figure 4.1.3.Temperature dependence of heat capacities 
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A comparison of the results obtained from the three methodologies reveals that the transition 

temperatures predicted from three physical parameters with temperature, all point to the same  

value for a given protein. Of particular interest is the ca. 10 K higher transition of temperature 

obtained for 1G6P. This is a hyperthermophilic member of the cold shock protein family, 

which displays a remarkably high melting point of 360 K (Kremer et al., 2001), which is 

reflected to the protein glass transition temperature as well.  

 

4.2 Deviating From Random Walk: Dihedral Fluctuations of Surface Residues  

 

Characterizing the transitory dynamics of structural relaxations, we also monitor the 

fluctuations of side chain and backbone dihedral angles. Residues whose dihedral fluctuations 

are monitored are chosen from the solvent protein interface so that the solvent effects are fully 

accounted for. For the case of 193L, dihedral trajectories pertaining to four surface residues 

are chosen.The location of the 73th residue is illustrated below in Figure 4.2.1. Full trajectories 

for Arg-73 and pertinent Hurst exponents averaged over four residues are given in Figure 

4.2.2 and Table 4.2.1 respectively. 

 

 5PTI 193L 1G6P 

From Residue Fluctuations 190 K 193 K 198 K 

From Stretch Exponentials 191 K ± 5 202 K ± 3 210 K ± 6 

From Heat Capacity 191 K ± 4 187 K ± 5 197 K ± 4 

Average       191 K ± 9 194 K ± 8 202 K ± 10 

Table 4.1.1 Transition temperatures obtained from three methods 

 



 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fluctuations of side chain and backbone dihedral angles, show an increasing trend in 

amplitude as the temperature increases. However, multiphase behavior is more pronounced 

for the dihedral fluctuations pertaining to side chains, which is indicative of a hopping 

behavior between local minima that becomes dominant, as the portion of phase space spanned 

gets larger. Hurst exponents of the dihedral trajectories show that  both backbone and side-

chain relaxations do form impersistent time-series with exponents H < 0.5  However as 

temperature increases there emerges an apparent trend that the exponent approaches to 0.5   

 

Figure 4.2.1 73th residue of 193L is shown along with the sidechain and backbone dihedrals 
that are plotted in Figure 4.2.2 
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4.3 Spectral Analysis of Trajectories 

 

The eigenvalue spectrum is provided in Figure 4.3.1 for the case of 193L protein at three 

different temperatures. Eigenvalue spectrum of the inverse of Kirchoff matrix reveals that the 

eigenmodes are quite stationary both in terms of magnitudes and distribution in time for a 

given temperature. This result also supports our findings with packing density and implies 

Temperature Side Chain Backbone 

208 K 0.03 0.01 

248 K 0.08 0.07 

288 K 0.14 0.12 

328 K 0.22 0.15 

Backbone Sidechain 

258K 
318318328 K 

288 K 

248 K 

208K 

328 K 

288K 

248K 

208K 

   time (ps)                                                                    time (ps) 

Figure 4.2.2 Dihedral fluctuations for Arg-73 residue of 193L 1) Backbone  2) Side Chain 

 Table 4.2.1 Hurst Exponents averaged over four surface residues of 193L at different 
temperatures 
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that the network structure largely preserves its connectivity. At higher temperatures modal 

distribution of fluctuations. loosen its stationarity in time concurrent with the changes in 

packing density. However, one does not observe the emergence of new modes as the 

temperature is increased. This indicates that at the middle temperature range, the eigenmodes 

remain stationary, whereas new collective modes arise as the weights of each process start to 

show residue-wise changes. Thus the energy surface of  a protein does not change with 

temperature. This picture is expected to change with the onset of unfolding. In fact, the 

spectrum at 330 K for 193L is clustured at higher values. 
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Figure 4.3.1. Evolution of the eigenvalue spectrum of 193L at different 
temperatures.Color coded for real eigenvalues(Red (Smaller) to White (Bigger)) with 
0.1 increment in contours.   
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A close inspection of Figure 4.3.1 shows that below the transition temperature, the 

eigenvalues are clustered at higher values so there is a thicker band at the corresponding color 

coded region. At intermediate temperatures however, eigenvalues are seemingly more 

uniformly distributed. This is more clearly monitored in the evolution of packing density of 

each residue, exemplified by 193L at different points in time as well as at different 

temperatures (Figure 4.3.2).  
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Figure 4.3.2 : Evolution of packing density in  time and temperature domains for 193L 
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A network with a generic interaction term shall only allow new eigenmodes to emerge if and 

only if new connections are established. Therefore, residue-wise power spectrums, shown in 

Figure 4.4.3 as obtained from the displacements of Cα atoms are rich in information within the 

context of resolving time-scales. One immediate finding is that at lower temperatures all 

residues assume same Fourier components throughout their spectrum. 

 

As the temperature increases juxtaposed power spectrums gain residue-wise asymmetry along 

with a more even distribution of  intensities in the power spectra. This result is quite intuitive 

since it complies with the well established fact that the protein function is domain specific. At 

even higher temperatures some domains in the protein start to exhibit strong localization in 

the power density which favors the dominance of certain low frequency modes. Starting from 

the transition temperature the Fourier components become residue specific.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.3 Power spectrum of the displacements of Cα atoms pertaining to 
Lysozyme at 158 K (a) and 298 K (b)  
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4.4 A Three-Mode Model for Stretch Exponential Decays 

 

Our findings of the previous section point that the distribution of the characteristic frequencies 

are maintained throughout the temperature range studied, irrespective of the protein’s size, 

type or function. The intensities at these frequencies, however, change with temperature. In 

fact we find that they also become residue specific above the protein transition temperature. 

We would thus like to test the idea that a strong change in the stretch exponent may be 

obtained (as implied by the stretch exponential fits of  figure 4.1.2) with shifts in the 

intensities of the modes, while maintaining the frequencies of the modes. 

  

Based on the assumption that each mode is governed by a simple exponential decay in the 

time window studied (2 ps – 2ns), we make a simple three-mode model to see the effect of the 

weight with which each mode contributes to the overall decay behavior of a correlation 

function. The generalized model is given by; 
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In this model Ai are treated as thermodynamical entities which do not change with 

temperature whereas the τi are treated as kinetic parameters, both the number and values of 

which are modified with temperature. We assume that the three modes have well seperated 

time scales, e.g. each of them may be one order of magnitude apart. We also assume that the 

weights Ai of the modes change. We thus make three models whose parameters are listed in 

Table 4.4.1.  
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 Mode weights (τ1 = 1 ps, τ2 = 10 ps, τ3 = 100 ps) KWW best-fit parameters 

 A1 A2 A3 τ (ps) β 

Model 1 1/3 1/3 1/3 10.9 0.44 
Model 2 0.4 0.3 0.3 14.1 0.40 

Model 3 0.1 0.2 0.7 31.4 0.48 

Table 4.4.1. Three models according to the first equality in equation 4.4.1, and the best-fitted 
KWW parameters to these models due to the second equality in equation 4.4.1.  
 

In these models, pre-assigned τi s are taken to be 1,10 and 100 ps, whereas the weights,  Ai, are 

assigned such that they add up to 1. In model 1, all the weights are taken to be equal. In 

models 2 and 3, larger weights are added to the high and low-frequency processes 

respectively. With only three paramaters under control, it is not possible to sample all 

combinations of  β and  τ  pairs, however it still provides a means to build a simple model 

which validates the claim that a range of stretch exponentials can be approximated by the 

superposition of single exponentials with varying weights. Stretch exponential decays as 

obtained from three different combinations of  Ai  are illustrated below in Figure 4.4.1; 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.1 Stretch exponential functions as described in Table 
4.4.1 are drawn together 
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Recently, a similar model was proposed (Baysal and Atilgan 2005) whereby, the transition in 

β exponents is ascribed to the insertion of an intermediate time scale, or mathematically, 

adding new terms to the decomposition given by Equation 4.4.1. 

  

The previous model is not contradictory to the current one, in that the former is a specialized 

case where some of the mode weights approach zero. It is, however, important to realize that 

significant modifications in the stretch exponent are made possible (eg. from 0.4 to 0.48 in 

Table 4.4.1) by changes in the pre-exponential factors. 

 

In the application of these ideas to the data originating from the MD simulations, the τi are to 

be assigned from the inverse of the frequencies, and the pre-exponential factors are to be best-

fitted to give the original relaxation data. Note, however, that the number of modes in the 

actual data are much larger than three, rendering the best-fit rather complicated. The 

relationship between the computed intensity values and the pre-exponential factors is also of 

great scientific interest. 
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5. Conclusions and Future Prospects 

 

We investigate the temperature dependent fluctuation characteristics of three proteins in their 

folded state using extensive MD simulations. The studied temperature range is ca. 130 – 330 

K, where the lower limit corresponds to temperatures that are well below the so-called 

“protein glass transition” occurring at ca. 190 – 220 K, and the upper limit spans temperatures 

where the protein is still functional. The main variable that we monitor is ∆R that measures 

the fluctuations of the Cα atoms of the proteins around an averaged structure, where the 

average structure is calculated after the overall translational modes and tumbling of the 

proteins are eliminated.  

We find that, although the relative values of the residue-by-residue fluctuations are the same 

throughout the temperature range studied (see figure 1 of Baysal and Atilgan, 2005), the 

average size of the fluctuations show a linear increase in two different regimes, depending on 

temperature (figure 4.1.1 b). This finding is in agreement with the experimental findings on 

hydrated protein samples. Such a two-regime behavior is not expected of proteins that are not 

in water (e.g. compare the neutron scattering experiment results on partially hydrated and 

dehydrated samples in figure 4.1.1 a). The region where the change in slope between the two 

regimes occurs is attributed to the protein glass transition. It is also the temperature region 

above which the protein becomes functional. 

All three proteins are shown to exhibit this universal character of structural relaxation which 

is also marked by a phase transition manifested in the change in heat capacities (figure 4.1.2) 

and the stretch exponential relaxation model (equation 1.1 and figure 4.1.3). Of particular 

interest is the cold shock protein 1G6P as an extreme case of functional proteins, which 
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exhibits the universal behaviour described above with an apparent temperature up-shift (Table 

4.1.1). This protein is known to have a melting point ca. 20 K above many proteins that 

operate under mild conditions. Yet, it is interesting to see that this up-shift in the first order 

phase transition at the high temperatures is reflected to the higher order transition that 

determines the functionality of the protein, and calls for deeper investigation in future work 

dedicated to different cold shock proteins. 

Meanwhile, the change in the flexibility of the protein is expected to find its roots in the way 

the landscape is sampled. Such a change may be due to two scenarios: (i) the landscape itself 

might be changing upon the transition, or (ii) the landscape remains the same, but there might 

be shifts in the way it is being sampled. Scenario (i) is unlikely, due to the fact that the 

residue-by-residue fluctuations show the same trend throughout the temperature window 

studied, suggesting that the landscape of the folded protein remains the same with increasing 

temperature. To completely rule out scenario (i), we further study the eigenvalue spectra of 

the Cα fluctuations (figures 4.3.1 and 4.3.3). The spectral analysis of the atomic coordinates 

reveals that, around their folded state, proteins fluctuate with a finite number of eigenmodes. 

Those modes and their location remain intact against changes in temperature. At lower 

temperatures, certain modes dominate the spectra, but all the residues exhibit very similar 

frequency distribution in their power spectra. The mode intensities, however, change with 

temperature, supporting scenario (ii). Moreover, at higher temperatures, the residue-wise 

symmetry of the power spectra is broken, such that some modes show different intensities for 

different residues. Note that all these observations are made while the three dimensional 

network structure is largely preserved in time and across a temperature range spanning the 

interval 140 K – 310 K (Figure 4.4.2). 

We thus attribute the change in the flexibility of folded proteins to the onset of coupled 
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dynamics between solvent molecules and the protein surface. In fact, above the transition 

temperature, conformational jumps between the minima of the dihedral angles are observed 

for the side-chain torsional angles of surface residues, whereas their backbone angles do not 

visit different minima during the 2 ns trajectories. This change in the dynamics of the side 

chains is expected to be directly reflected to the relaxation behavior of the Cα atoms that they 

are attached to. The fact that the best-fitted stretch exponent of these relaxations is much less 

than 1 suggests a fractional Brownian dynamics character for the chain. In fact, inspection of 

the Hurst exponents of the dihedral angles belonging to the side-chain and the backbone of the 

solvent exposed surface residues implies a large deviation from classical Brownian motion, 

and at high temperatures the exponents are larger for the side chains than they are for the 

backbone. Note that, as the temperature is increased, dihedral fluctuations start to loose their 

mean reverting tendency (Table 4.2.1), although they are still very far from the random walk 

character that would be expected from a random coil. 

Finally, we make a simple model to show that the changes in the relative weight of the modes 

can, by themselves, modify the stretch exponent considerably, while their frequencies remain 

the same.  Our findings show that, starting with the same distribution of relaxation times, one 

can update β via changing the weights of the low frequency and higher frequency components 

(Table 4.4.1). 

Future work shall involve carrying out the decomposition proposed in (1.1) via a robust way. 

Rather than carrying out the optimization for the best-fit of the relaxation functions C(t) 

computed from the trajectories, for both τi’s and front factors Ai, one can use the power 

spectra data to estimate where the series shall be truncated and the values of τi’s in that range. 

This immensely reduces the dimensionality of the space of objective function parameters, thus 

allowing a nonlinear constrained optimization to be performed. The relationship between the 
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best-fitted pre-exponential factors and the intensities computed directly from the trajectories 

may, along with interesting physics, also reveal the modes that become more pronounced with 

temperature, letting us pinpoint the actual source of the transition. 

Finally, the effect of solvent is definitely worthwhile to ponder on, especially considering the 

peculiar properties of the solvent used: water. Carrying out simulations with different solvents 

will test the validity of the universality of the protein glass transition. Owing to its molecular 

structure that allows hydrogen bonding and crystal-like phases, water may dampen the 

structural relaxations considerably. Therefore, it is much required to trace out the water 

dependency of protein dynamics so that the true relationship between stretch exponential 

decay and the protein function is revealed. 
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Appendix A: Relationship Between Heat Capacity at Constant Temperature and the 

Variance of Energy  

 

                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      By collecting all terms together we relate the energetic fluctuations to heat capactiy as; 

 (A.3) 
 
 
 
 
 (A.4) 
 
 
 
 
 
 
 
 (A.5) 

       (A.1) 
 
 
 
 
 
       (A.2) 

2

2

2

2

222 2
)()( 









∂

∂
−

∂

∂
+

∂

∂
=

∂

∂

∂

∂
=

∂

∂
=

T

Z

Z

Tk

T

Z

Z

Tk

T

Z

Z

Tk

T

Z

Z

Tk

TT

U
C BBB

V

B

Vv

T

Z

Z

Tk
EU B

∂

∂
>==<

2


















∂

∂

∂

∂
=






 ><

∂

∂

T

Z

ZTTk

E

T
B

1
2 









∂

∂

∂

∂
+

∂

∂
=






 ><
−

ZTT

Z

T

Z

ZTk

E

B

11
2

2

3

2

22

2

2

42

2

3
2 )(

2
2

Tk

EE

Tk

E

T

E

Tk

E

Tk

E
TkC

BBBB

Bv

><−><
=

><
−

><
+






 ><
+

><−
=

  
Given the statistical mechanical relationship; 

and using  the well known expression for Cv, we obtain; 

 After differentiation, the first term on the left hand side becomes the only one that  require 

 more effort to write explicitly in <E>, so we make use of another identity ;  
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(Adapted from Molecular Modelling by A. R. Leach (Leach, 1996)) 



 40 

   198 K 

Figure B.1.1 Eigenvalue Spectrum for 5PTI at five different temperatures. Color coded 
for real eigenvalues(Red (Smaller) to White (Bigger with 0.2 increment in contour levels.   
 
 

Appendix B : Fourier and Eigenvalue Spectrums of 5PTI, 193L and 1G6P over Different 

Temeperatures of Interest 
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Figure B.2 Eigenvalue Spectrum for 193L at five different temperatures. Color coded for 
real eigenvalues(Red (Smaller) to White (Bigger)) with 0.2 increment in contour levels.   
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Figure B.3 Eigenvalue Spectrum for 1G6P at five different temperatures. Color coded 
for real eigenvalues(Red (Smaller) to White (Bigger)) with 0.2 increment in contour 
levels.   
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Figure B.4 Eigenvalue Spectrum for 5PTI at five different temperatures. 
Color coded for real eigenvalues(Green (Smaller) to White (Bigger)) with 
0.03 increment in contour levels.   
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Figure B.5 Eigenvalue Spectrum for 193L at five different temperatures. Color coded 
for real eigenvalues(Red (Smaller) to White (Bigger)) with 0.03 increment in contour 
levels.   
.   
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Figure B.6 Eigenvalue Spectrum for 1G6P at five different temperatures. Color 
coded for real eigenvalues(Red (Smaller) to White (Bigger)) with 0.03 increment in 
contour levels.   
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