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BILATERAL CONTROL - A SLIDING MODE CONTROL APPROACH

Cagdas Denizel Onal

Abstract

Bilateral control is bi-directional control of force-position between two systems

connected by a communication link. It is typically used for teleoperation with force

feedback, such that the master system is handled by an operator. Motions of the

operator are fed forward to the slave system, generally remote to the operator and

forces encountered are fed back to the master system, enabling a telepresence of

the operator in the remote environment. The necessity of bilateral control lies in

its applicability to the tasks that cannot be handled by autonomous manipulators

and/or reached by human beings.

Main issues of consideration for bilateral control, namely transparency, scaling

and time delay, are addressed and two discrete-time sliding-mode approaches are

presented as solutions to highly transparent bilateral controllers that support scal-

ing.

First approach has a force-hybrid architecture, where the cascaded sliding mode

hybrid force/position controller on the slave side reacts to the external forces directly.

Therefore, it provides a protection (reflex) mechanism on the slave side to large

external forces, that the operator cannot respond in time due to the time delay.

Second approach has a decentralized nature. Virtual systems are devised by

a linear transformation from the plant space to the task space and sliding mode

control has been applied to those virtual systems, hence sides of bilateral control

are interchangable. The decentralized structure of the controller makes it possible

to generalize the problem to a coordination and/or cooperation of more than two

plants.

High precision has been achieved on experiments for both approaches designed

and discussed in detail.
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ÇİFT TARAFLI KONTROL - BİR KAYAN KİPLİ KONTROL YAKLAŞIMI

Çağdaş Denizel Önal

Özet

Çift taraflı kontrol, iletişim ağıyla bağlı iki sistemin kuvvet ve pozisyonlarının çift

yönlü olarak kontrolü demektir. Tipik olarak kuvvet geribeslemeli uzaktan kumanda

için kullanılır. İki sistemden yakında olanı (efendi sistem) operatör tarafından

yönetilir ve hareketleri uzaktaki (köle) sisteme iletilir. Bu hareketlerden doğan

kuvvetler ise operatöre geri beslenir. Böylece operatörün uzak ortamda sanal varlığı

sağlanır. Çift taraflı kontrolün gerekliliği bağımsız robot kollarının tam olarak

çözemediği insanlarınsa erişemediği görevlerde ortaya çıkar.

Çift taraflı kontrol tasarım ve performansının ana etkenleri, şeffaflık, ölçekleme

ve gecikme olarak sayılabilir. Bu çalışmada, bahsedilen etkenler ve yol açtıkları

problemler hedeflenmiş, yüksek şeffaflığa sahip ve ölçeklemeyi mümkün kılan bir çift

taraflı denetleyici için iki kesikli-zaman kayan kipli yaklaşım çözümü getirilmiştir.

İlk yaklaşımın kuvvet-melez yapısı içinde köle sistemi yöneten basamaklı kayan

kipli melez kuvvet/pozisyon denetleyicisi dış kuvvetlere doğrudan tepki gösterir.

Böylece, uzak sistemde operatörün gecikme nedeniyle zamanında karşılık veremediği

yüksek dış kuvvetlere karşı bir korunma (refleks) mekanizması sağlanmaktadır.

İkinci yaklaşım dağıtılmış bir niteliktedir. Bu yaklaşımda sistem uzayından görev

uzayına düzlemsel bir dönüşüm ile sanal sistemler elde edilmiş be kayan kipli kontrol

sanal sistemler üzerinde yapılmıştır. Bu denetleyicinin önemi kontrol problemini,

görevleri sistemlere bölüştürerek merkezileştirmektense, doğrudan görev gereksin-

imlerini hedeflemesidir. Böylece çift taraflı kontrolün iki tarafı birbirinin yerine

geçebilir olmuştur. Denetleyicinin dağıtılmış yapısı problemi ikiden fazla sistem için

işbirliği ya da eşgüdüm gibi problemlere genellemeye imkan sağlamaktadır.

İki yaklaşım için de deneylerle yüksek hassasiyet sağlanmıştır. Tezde kullanılan

kesikli zaman kayan kipli denetleyiciler detaylı olarak tasarlanmış ve açıklanmıştır.
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Chapter 1

Introduction

There are many applications or tasks that cannot be done autonomously with robotic

systems and/or directly by human operators. Bilateral control, which is typically

used for teleoperation, offers a solution to these tasks since it enables the operator

to work somewhere without actually being there. That is, if actual presence of an

operator is not possible, inclusion of a bilateral control system between the operator

and the task would simply give a possibility to the so called telepresence of the

operator.

Some examples of these kinds of tasks involve

• delicate production or manipulation in scales human beings cannot operate

on, mostly due to the limitations in the precision of motion and feeling of the

forces (e.g. micro-component production),

• applications in hazardous working conditions, where human beings may not

survive (e.g. chemical applications),

• applications in remote and probably many distinct environments and that can

only be performed by qualified operators, who are unable to travel to each and

every one of them (e.g. medical operations (surgeries) with a high probability

of failure for the unexceptional operators).

As bilateral control enables skilled teleoperation on the tasks mentioned above, it

offers better safety, lower cost and high accuracy, if carefully designed.

1



1.1 Objective

In robotic applications, high precision motion control is not necessarily enough for

high system performance since automation, which generally mimicks human be-

haviour, has not been developed to maintain stability in their highly nonlinear,

random or unknown nature. These applications require the presence of an operator

due to the high adaptive capabilities of human beings for optimal performance if

they can even work otherwise at all. Nevertheless, in these kind of applications,

the environment or workspace make it hard and in many cases impossible for the

operator to be able to interact with the system directly.

One kind of the applications mentioned above mainly suffers from the scale.

Today, macro robotic automation has almost been excelled and extensive amount

of research is being made on small scales that human beings cannot feel, let alone

operate directly. Therefore, copying and developing human behaviour to create

autonomous systems is not an option anymore. Also, in micro/nano scales it is a

known fact that, surface forces become more effective and this creates an unfamiliar

and unfriendly environment unabling researchers to apply the same methods as the

macro scales. We should here note that manipulation under five nanometers might

even suffer from chemical effects as well, adding to the complication of the problem.

Not to mention, there are some other tasks that should take place in hazardous

environments for human beings such as some chemical experiments or that need

extra effort, attention and/or financial investment to have direct interaction of a

human being such as space explorations or medical operations. These tasks may

have disastrous effects without the supervision of human operators, and therefore

automation on them is yet an open problem.

The limitations in the actual presence of an operator can be solved with bilateral

control creating a “telepresence” of the operator and therefore achieving skilled

teleoperation. Bilateral control is defined as the control of two systems working

together on an actual or virtual task. Typically, it is used for teleoperation, in

which one system is called the “master” side and the other is called the “slave”

side of bilateral action. Slave subsystem is tracking the positions of the master

subsystem and master side provides the forces encountered by the slave side to the

operator and hence, teleoperation is achieved.
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However, more generally the two subsystems might be treated as “peers” creating

a decentralised nature to the bilateral controller, in which case the controller may be

further generalised to a “multilateral” structure. With this approach, all subsystems

contribute to the requirements of the task, creating a possibility to solve the more

general problem of cooperation and/or coordination.

The main objective of this thesis is to develop a model independent approach

that addresses main problems of bilateral control in high precison motion control

systems. To fulfill this objective, some additional solutions have been developed

such as a sliding mode cascaded hybrid force/position controller to be used at the

slave side of bilateral action, or a sliding mode model reference controller that essen-

tially compensates for the nonlinearities in one of the experimental setups (PEA).

The thesis focuses on theoretical development for fully actuated electromechanical

systems affine with respect to control and simple SISO actual implementation of the

ideas arised.

1.2 Bilateral Control

Figure 1.1: The general structure of the two subsystems of bilateral control

In some robotic applications there is a necessity of telepresence of an operator

due to hazardous working conditions and/or inefficient autonomous ability of the

manipulator as stated above. The method of using a master system handled by an

operator to control a slave system and therefore achieving skilled teleoperation is
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usually called bilateral control. More generally bilateral control is defined to be two

(hence the prefix ‘bi’) systems working together to realize one virtual or actual task.

Even though simpler structures do exist [1], the most convenient structure for

bilateral control is force-position architecture as shown in Fig. 1.2 such that the

position of the master side is sent to the slave side as position reference while the

additive inverse of the forces encountered by the slave side are fed back to the

master side as force reference, therefore causing a “feeling” of the environment

by the operator. The conformity of this feeling with the real forces is called the

“transparency” of the controller. In many cases transparency is crucial to any

bilateral controller as much as the stability of the overall system is.

Figure 1.2: The general classical force-position architecture of bilateral control

One other issue of bilateral control is the possible time delays of the commni-

cation link between the master and slave sides of architecture. Due to these time

delays it may be impossible for the operator to be able to react in time to an input.

There are numerous attempts to attack this problem such as [2–4].

Of the above performance criteria, Yokokohji and Yoshikawa defined the ideal re-

sponse of bilateral control systems in [5]. However, in practice, the system becomes

unstable if ideal response is attempted to be realized. There are many methods of

decoupling the control problem into several subproblems. Among them, Ohnishi et

al.’s [6] approach seems to be the most promising one; since it considers the two

sides of the operation to be essentially one combined system of connected sides with
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different configurations. Then it defines “functions” of the tasks (force and position

control) and transforms the inputs and outputs of the subsytems to the function

space. Decoupled controllers are running the differential (force) and common (posi-

tion) modes of the control.

1.3 Hybrid Force/Position Control

(a) (b)

(c) (d)

Figure 1.3: Hybrid Control in Two Degrees of Freedom (a)A 2D Manipulator

(b)Case 1: Motion Coordinates Parallel to Position, Force Subspaces (c)Case 2: Mo-

tion Coordinates Making an Angle to Position, Force Subspaces (d)Case 3: Real-life

Case

In many robotic applications, when the manipulator interacts with the external

environment, controlling both the tip position and the external force on the contact

surface is necessary, which is generally referred as hybrid control.

For Hybrid Control realization, Raibert and Craig [7, 8] developed a scheme

5



Figure 1.4: The classical approach to hybrid control

to decompose the task space into two orthogonal subspaces, namely position and

force as shown in Fig. 1.3 for two degrees of freedom. Their approach has been

the classical solution to the problem; however, it had flaws since they considered

switching between the two modes when necessary as depicted in Fig. 1.4, which was

problematic for two reasons. 1) Jumps occurred in the controller input (i.e. two

distinct controllers) to the plant as switching occurs, which was one of the reasons

of the kinematic instability problem [9] and so, a high frequency motion of the tip.

2) It is hard to determine and realize switching in practice due to disturbances and

non-linearities. Some other researchers (e.g. [10,11]) worked on and some improved

Raibert and Craigs idea and generated schemes, which decompose the redundant

robot system into force, position and redundant joint subspaces. Hogan [12] used

the impedance approach to solve hybrid control problem. Impedance controller

was generated to establish a desired dynamical relationship (impedance) between

the position of the tip and the force it exerts on the environment. The primary

advantage of the impedance approach was in simplicity, since a single controller was

running the plant in both the free and constrained motion of the tip. Therefore,

there is no need for control mode switching, which removes the main problems with

the discontinuous hybrid control approaches. He has experimentally demonstrated

in [13] that impedance controllers can perform stable contact tasks.

Some other researchers have been applying adaptive control methods to overcome

the kinematic instability problem as well as any nonlinearity such as parameter

variations the system might encounter [14].
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1.4 Motivation for using Sliding Mode Control

For high precision motion control problems, robustness of the control algorithm is

the most crucial element even if the system model is linear. Furthermore, when the

plant to be controlled has high nonlinearities such as internal hysteresis, which is

the case for the piezoactuator used in many experiments throughout this thesis, or

friction, the advantage of a robust controller, which is designed according to nominal

plant parameters and which rejects parameter uncertainties, would be simply less

effort on modeling the system and compensation methods. Moreover, it is a fact

that using more complicated models may not always lead to better compensation

results than just using a simple model (e.g. the model of Coulomb Friction), since

the quaility of the compensation depends not only on the model, but also on the

implementation constraints.

Furthermore, using a model based controller could have disatrous effects since

in that case, how accurately the states could be measured or estimated become a

direct key factor in the performance of the control action. Such a controller requires

special attention and effort to define the system with a complete and so, complicated

model with assistive and preferably online identification methods, if possible. Not

to mention that the model based controller designed for one plant would simply

not fit other plants even for the same type of series manufactured machines due

to parameter uncertainties and variations because of time-varying characteristics,

operating condition changes, load changes, etc.

To avoid the difficulties mentioned above and concentrate on the main issues

of the control problem, one needs to find a methodology that produces a robust

controller designed according to the nominal parameters and has fine disturbance

rejection, to realize high precision motion control with minimum effort.

The theory of variable structure systems (VSS) opened up a wide new area of

development for control designers. Variable structure control (VSC) with sliding

modes, which is frequently known as sliding mode control (SMC) is characterized

by a discontinuous control action which changes structure upon reaching a set of

predetermined switching surfaces. This kind of control may result in a very robust

system with its built-in disturbance rejection, which in turn implicitly compensates

for the unmodeled dynamics, and thus provides a possibility for achieving the pre-
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viously stated goals. Interested reader may refer to Chapter 2 for a brief survey on

Sliding Mode Variable Structure Control.

1.5 High Precision in Motion Control

For any measurement, precision means the fineness of the measured values, which

becomes an issue of consideration in the discretization of analog signals, hence an

analog measurement would have infinite precision. The fineness of some measured

value implies the size of the unit measurement (i.e. the smallest measurable value),

which is infinitely small for the analog case. Therefore, the smaller the size of the unit

measurement, the higher the precision achieved, that is an instrument that measures

parts per million is more precise than one which measures parts per hundred.

Precision and accuracy are two distinct concepts, however precision in effect de-

fines the best accuracy any measurement can achieve. Also, for a motion controller,

since the quantities are measured or observed from measured quantities, the smallest

error one can respond to is directly related to the measurement device. Assuming

that the measurement accuracy is defined as its precision, the smallest error (after

zero) would be the precision of the measurement, hence using high precision devices

would be beneficial to a motion controller to improve its error efficiency. Note that,

the precision for motion control tasks is not only related to the sensory device, but

also to the minimum amount of motion an actuator can provide. That is, even if the

precision of the sensory device is high enough for motion control on small scales, the

actuator might be unable to respond to the respective control action due to static

friction (stiction), etc.

Traditionally, the angle measurement device for rotational actuators is the en-

coder. An encoder can typically be absolute or incremental. Absolute encoders

produce a specifically coded value for each shaft position, while incremental en-

coders work by summing up electrical pulses (hence the name incremental) and

deliver relative position values according to a reference point (the initial value) by

means of a specific number of signals (pulses) per shaft rotation.

Focusing on the incremental encoder for precision analysis, the relation between

the number of ticks on the encoder to the precision is straightforward. For instance,

an incremental encoder with N ticks, produces 4N pulses per revolution. Therefore
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its precision is
2π

4N
rad, (1.1)

which also demonstrates the minimum observable error by the motion controller.

Today, and it will be shown in Chapter 3 that the precision in (1.1) could be

achieved. However, there are many applications such as micro/nanomanipulation,

some MEMS, NEMS applications, applications in the optoelectronics area, med-

ical robotics, etc. that need controlled motion in smaller scales and as a direct

result, higher precision than traditional actuators can deliver. For these kinds of

motion needs, many kinds of actuators have been and are being designed to trans-

form energy into motion using many methods some of which are listed down [15].

• Electromagnetic

• Thermomechanical

• Piezoelectric

• Magnetostrictive

• Electrohydrodynamic

• Electrostatic

• Phase Change

• Shape Memory

• Electrorheological

• Diamagnetism

as well as magnetohydrodynamic, shape changing polymers, and biological methods

(living tissues, muscle cells, etc.)

One of the most promising actuators that can deliver motion in micro/nanometer

levels is the piezoelectric actuator(PEA) or piezoactuator for short. The main prin-

ciple under its operation is the piezoelectric effect, further explained in the next

section.

1.5.1 Piezoelectric Effect

Piezoelectric effect, discovered by Jacques and Pierre Curie in the 1880’s during ex-

periments on quartz, is a property of certain materials to produce an electrical charge

when mechanically deformed. Conversely, to physically deform in the presence of an

electric field is called “inverse piezoelectiric effect”. The amount of electrical charge

produced under pressure (or mechanical deformation) is called “piezoelectricity”.
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The word piezo is Greek for “push”, hence the effect is summarized in the name.

Note that, “piezoelectricity” could also be used in the literature for the “piezoelec-

tric effect” and “piezoelectric effect” could also denote “inverse piezoelectric effect”,

since typically the two exist together in piezoelectric materials.

There is a magnetic analogy to the effect where ferromagnetic materials respond

mechanically to magnetic fields. This effect is called “magnetostriction”. However,

unlike ferroelectric materials, piezoelectric materials do not store charge after the

force is removed.

Many crystalline materials exhibit piezoelectric behavior. A few materials ex-

hibit the phenomenon strongly enough to be used in applications that take advantage

of their properties. These include quartz, Rochelle salt, lead titanate zirconate ce-

ramics (e.g. PZT-4, PZT-5A, etc.), barium titanate, and polyvinylidene flouride (a

polymer film).

This effect is put to use in several ways, the most common of which is in quartz

crystal oscillators. When these are incorporated into the proper circuitry, they res-

onate at precise frequencies, depending on their size and on the way in which they are

cut. Every computer has at least one clock frequency which is generated by a quartz

crystal. Also, many modern accelerometers and pressure sensors use piezoelectric

crystals. More exotic compounds are used in ultrasonic technology; different com-

pounds of barium titanate are common. When used for sonar, where long-distance

transmission of sound is required, the crystals become large to generate low frequen-

cies, and are usually driven with high voltages to produce higher-amplitude pulses.

The same crystal is connected to appropriate circuitry to receive the weaker return

pulses.

Also, piezoelectric ceramic materials have found use in producing motions on

the order of nanometers (e.g. in the control of scanning tunneling microscopes or

atomic force microscopes) and this application is the main concern of usage for PZT

in this work, namely “piezoelectric actuation” and the PZT used as an actuator is

typically called a “piezoelectric actuator(PEA)”.

In naturally occurring piezoelectric materials, such as quartz, the (inverse) piezo-

electric effect is too small to be of practical use. Man-made piezoelectric polycrys-

talline ceramics are much more suitable for actuator purposes because the useful
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properties, such as maximum elongation, can be influenced by the proper mixture

of ingredients. A disadvantage of man-made piezoelectric ceramics is that a hystere-

sis effect is encountered between electrical voltage and electrical charge (or position

in effect) as shown in Figure A.8. The piezoelectric effect (or the piezo effect for

short) and the hysteresis effect play an important role in the dynamical behavior of

these actuators.

The fundamental component of a PZT stack actuator is a wafer of piezoelec-

tric material sandwiched between two electrodes. Prior to fabrication, the wafer is

polarized uniaxially along its thickness, and thus exhibits significant piezoelectric

effect in this direction only. A typical PZT stack actuator is formed by assembling

several of the wafer elements in series mechanically and connecting the electrodes

so that the wafers are parallel electrically, as illustrated in Figure 1.5. The nominal

quasi-static behavior of a PZT stack actuator is a steady-state output displacement

that is monotonically related to the voltage input.

Figure 1.5: Illustration of a PZT Stack Actuator, Image Courtesy of PI Gmbh

There are many manipulators based on PEA components following the novel

trends in the mechatronics system technology in the development of standalone

micromechatronic systems and/or controlled motion in small (e.g. micro, nano,

sub-nano) scales for the aforementioned applications. Some examples of these ma-

nipulators are given in the following images. For instance, the system shown in

Figure 1.6 provides motion in 3D cartesian coordinates with 1 nm resolution.
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Figure 1.6: 3-Axis nanopositioning system (Nanocube), PI Gmbh

Figure 1.7: Custom 3-Axis XYZ Stage, DSM
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Figure 1.8: Microscope Turret NanoPositioner, PI Gmbh

Figure 1.9: Microscope Objective NanoPositioners, PI Gmbh
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Chapter 2

Sliding Mode Variable Structure Control

2.1 Introduction

Variable structure control (VSC) appeared in the Soviet Union in late fifties to solve

control problems of second order systems initially. The idea of the pioneers of the

field was to switch among two or more controls to obtain improved, mathematically

stable control system performance [28, 29]. Switching among control inputs to the

plant leads to a system defined with a differential equation with a discontinuous

right-hand side, hence the name “Variable Structure System (VSS)”. Note that, in

some fields such as power electronics, switching is a “way of life” and the systems

treated there are discontinuous by themselves without any artificial introduction of

switching, therefore it may be argued that they are the original VSS’s.

Typically, as developed in a second phase commenced in the sixties by Emelyanov

[30–32], VSC is designed in such a way that it satisfies the existence conditions of the

so-called “sliding mode”, in which case it gains some distinguished and advantageous

features. VSC with sliding modes is simply called as Sliding Mode Variable Structure

Control or Sliding Mode Control (SMC) for short. The basic idea of SMC is to define

a “sliding manifold” (switching curve) on the state space phase plane and enforce

the system to reach this manifold in finite time and confine it on the manifold

afterwards. Therefore, the manifold should be designed in such a way that the

motion on the manifold satisfies control objectives.

Note that, even though it is expressed as the plant motion is confined on the

manifold, in reality it is confined in a boundary layer around the manifold due to

the infamous “chattering” phenomenon of SMC. Many efforts have been given to

reduce the effects of chattering since the first discovery of SMC until now, since
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it remains to be the single obstacle for sliding mode to become one of the most

significant discoveries of the modern control theory with its promising potential.

The theory has since been continually developed and extended by Utkin and other

researchers [19,33,34].

In a third development phase started in the seventies, VSC’s based on a principle

that precluded sliding modes were devised by the pioneering works of Kiendl [35]

and Kiendl&Schneider [36]. After the development of SMC, VSC and SMC have

been used interchangebly. However, VSC is a more general control methodology

that also involves control approaches lacking sliding modes [37] as stated above.

Therefore, since the controllers in this thesis are VSC’s with sliding modes, they are

simply called SMC to avoid confusion.

The most distinguished property of SMC is that the closed loop system is com-

pletely insensitive to parametric variations and external disturbances, therefore it

has the ability to result in very robust and in many cases ‘invariant’ control sys-

tems. However, it wasn’t until the survey paper in 1977 by Utkin [19], VSC and

SMC have received wide acceptance and interest of the control research community

worldwide. Until then, significant research and work have been done on the field by

many researchers since robustness has been the most crucial feature for modern con-

trol problems especially for high precision motion control. In the last two decades,

SMC has been applied to a wide variety of engineering systems such as nonlinear

systems, multi input multi output (MIMO) systems, discrete time models, large

scale and infinite dimensional systems, and sthocastic systems.

2.2 Sliding Mode in Variable Structure Systems

SMC is characterized by a discontinuous control action, which changes structure

upon reaching a set of predetermined switching surfaces. This kind of control may

result in a very robust system and thus provides a possibility for achieving the goals

of high-precision and fast response. It has been stated in Section 2.1 that SMC has

some advantageous features, these features are listed below:

• The order of the motion can be reduced

• The motion equation of the sliding mode can be designed linear and homoge-
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nous, despite that the original system may be governed by nonlinear equations.

• The sliding mode does not depend on the process dynamics, but is determined

by parameters selected by the designer.

• Once the sliding motion occurs, the system has invariant properties which

make the motion independent of certain system parameter variations and dis-

turbances. Thus the system performance can be completely determined by

the dynamics of the sliding manifold.

Consider the system, affine with respect to control u ∈ <m:

ẋ = F (x, t) + B(x, t)u (2.1)

where x ∈ <n is the state vector of the system, generally written in controllable

canonical form

F (x, t) : <n × <+ → <n is a continuous and bounded linear or nonlinear function

defining the uncontrolled dynamics of the system

B(x, t) : <n × <+ → <n×m is a continuous and bounded matrix with rank(B) = m

for every x, t couple, yielding the system to be linear according to control input

t ∈ <+ denotes the independent variable time.

SMC dictates a discontinuous control, which changes structure according to σ(x)

such that

ui =





u+

i for σi(x) > 0

u−
i for σi(x) < 0



 (2.2)

for i = 1, 2, . . . ,m, σ(x) = Gx, σ ∈ <m whose components are m smooth functions

and G ∈ <m×n, yielding

σ(x) =
[

σ1(x) σ2(x) · · · σm(x)
]T

(2.3)

here u+

i , u−
i , and σi(x) are continuous functions with u+

i 6= u−
i . Sliding mode may

appear on the manifold σ(x) = 0, which is the intersection of m hyperplanes defined

by the m components of σ(x) as σi(x) = 0, i = 1, 2, . . . ,m. Sliding mode may or

may not arise on the individual surfaces σi(x) = 0. Both cases are shown in Figure

2.1. Note that σ(x) is called the “switching function” and if sliding mode exists,

σ(x) = 0 is called the “sliding manifold” or “sliding hyperplane” of m dimensions,

16



(a) (b)

Figure 2.1: Sliding Mode Possibilities (s = σ) (a) Sliding Mode in Discontinuity

Surfaces and Their Intersection (b) Sliding Mode only in the Intersection of Discon-

tinuity Surfaces

since ith control ui faces discontinuities on the ith surface σi(x) in terms of switching

according to (2.2), i = 1, 2, . . . ,m.

If, for any initial condition xo, there exists a time to such that x(t) is on the

manifold σ(x) = 0 for t ≥ to, then x(t) is a “sliding mode” of the system, in

which the motion is determined by the manifold equation only and therefore, note

that motion order is reduced to the order of control inputs, namely m. The order

reduction means that system model of the nth order is decomposed into two modes,

one is the so-called “reaching mode” which is defined by a motion of (n−m)th order

and the other is the sliding mode defined by the motion on the sliding manifold of

mth order. Decoupled motion equations of the system could be written as

ẋ1 = f1(x1, σ1(x1)) (2.4)

x2 = σ1(x1) (2.5)

for x1, f1 ∈ <n−m and x2 ∈ <m. If σ(x) = x2 − σ1(x1) = 0 is smartly designed in

such a way that it satisfies the control objectives (e.g. x follows xref ), then SMC is

realized.

An SMC implementation basically consists of two phases; “reaching phase”

where system is forced to move towards the sliding manifold and which occurs for

t < to and “sliding phase” where system motion is governed by the sliding manifold

equation. According to this discussion, stability could be guaranteed only if there

exists a reaching phase, which is also called the “reaching condition”, where state
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trajectory points towards the sliding manifold and system motion approaches the

manifold at least asymptotically for a set of points around the manifold, which is

called the “region of attraction” of the controller. From geometrical considerations,

if the deviation from the switching surface σ and its time derivative have opposite

signs (i.e. σ(x) ˙σ(x) < 0) in the region of attraction of the controller, existence of

sliding mode is enforced in that region. Note that, if the region of attraction is

infinite, the closed loop system becomes globally stable if (2.4,2.5) are stable.

In the above discussion, the sliding mode is defined to be the part of the VSC,

where the system motion is confined to a manifold in the state space. However, this

definition is incomplete since this method of system order reduction without problem

may be only realized with discontinuous control switching at infinite frequency. In

real life implementations, since infinite frequency switching is not possible, this effect

could not be optimally realized. Modern control systems are based on discrete-time

microprocessor implementation with a sampling time, which happens to define the

maximum switching frequency and this limited frequency in the control switching

results in oscillations at finite frequency around the manifold σ(x) = 0 referred to

as “chattering”. In addition, in the case of neglected small time constants in plant

models, sensors and actuators, discrepancy occurs in the dynamics. In discontinuous

control systems, the switching of the control excites these unmodelled dynamics,

which leads to oscillations in the state vector at a high frequency, usually referred

to as “chattering”. Chattering is known to result in low control accuracy, high heat

losses, and high wear of mechanically moving parts.

There are some attempts to remove or decrease the effect of chattering. One

of the attempts to remove chattering caused by unmodelled dynamics involve the

usage of asymptotic (Luenberger) observers, which serves as a bypass to the high

frequency component of the control input, therefore the unmodeled dynamics of the

system are not excited, and ideal sliding arises. One other way implies replacing the

discontinuous control with its continuous approximation in a boundary layer [38].

If the gain in the boundary layer is reduced such that the unmodelled dynamics are

not excited chattering-free motion could be achieved. However, as a direct result,

the disturbance rejection properties of discontinuous (or high gain) control are not

utilised to the full extent, which means controller robustness degradation. The

18



discrete-time implementations of sliding-mode involves control to be a continuous

function of the state, which eliminates the chattering phenomenon in effect. Since all

the work in this thesis has been done with a dSpace 1103 card on a digital computer,

next section elaborates on the discrete-time implementation of SMC.

2.3 Sliding Mode Control in Discrete Time

SMC theory was originally developed from a continuous time perspective. It has

been realized that directly applying the continuous-time SMC algorithms to discrete-

time systems will lead to some unconquerable problems, such as the limited sam-

pling frequency, sample/hold effects and discretization errors. Since the switching

frequency in sampled-data systems can not exceed the sampling frequency, a dis-

continuous control does not enable generation of motion in an arbitrary manifold in

discrete-time systems. This leads to chattering at the sampling frequency along the

designed sliding surface, or even instability in case of a too large switching gain.

The discontinuous sliding-mode controller involves a continuous plant model with

a discontinuous right-hand-side due to the switching control function as mentioned

above. Due to the problems with the discrete implementation of this discontinuous

approach, Drakunov and Utkin [39] introduced a continuous approach to SMC for

an arbitrary finite dimensional discrete-time system. This approach implies that

for a sampled-data controller, as the system becomes discrete, the controller should

be continuous to overcome the sampling frequency limitations of the discontinuous

approach. For such continuous implementation of SMC, plant motion is proven to

reach the sliding manifold of predefined state trajectory in finite time.

Derivation of the control law starts with the selection of a positive definite Lya-

punov function candidate, ν(σ) to satisfy Lyapunov stability criterion as the reaching

condition, namely

ν̇(σ)ν(σ) < 0. (2.6)

For a Lyapunov function of the form

ν(σ) =
σT σ

2
, (2.7)

the derivative of the function is

ν̇(σ) = σT σ̇. (2.8)
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If the control function is designed such that

σ̇ + Dσ = 0, (2.9)

Lyapunov function derivative becomes a negative-definite function as

ν̇(σ) = −σT Dσ, (2.10)

which satisfies the Lyapunov stability criterion, for D ∈ <m×m being a positive-

definite symmetric matrix. For simplicity and without loss of generality, D could

be taken as a diagonal matrix with positive elements in the form,

D =




D11 0 . . . 0

0 D22 0
...

... 0
. . . 0

0 . . . 0 Dmm




(2.11)

which essentially defines the slope of the sliding-manifold at each dimension, there-

fore providing some sort of a control decoupling of the m dimensions. Note that, the

Lyapunov function and its derivative having opposite signs with the aid of control

enforces the system to move to ν̇(σ) = ν(σ) = 0 and hence, ensures stability.

For the discrete-time sliding mode development, the continuous motion equation

in (2.1) should be replaced by its discrete-time equivalent

xk+1 = Fk(xk) + Bk(xk)uk, (2.12)

for xi = x(i∆t) and xi ∈ <n; Fi = ∆tF (xi, i∆t) + xi and Fi : <n → <n; Bi =

∆tB(xi, i∆t) and Bi : <n → <n×m; ui = u(i∆t) and ui ∈ <m; i ∈ Z+ and ∆t is the

sample time.

For a state tracking error ex = xref−x, σ is selected as σ(x) = Gex for G ∈ <m×n

such that det(GBk)6= 0 to satisfy control objectives on the sliding manifold σ(x) = 0.

Also (2.9) should be converted to its discrete time equivalent for further development

of the controller as
σk+1 − σk

∆t
+ Dσk = 0, (2.13)

which becomes

σk+1 + (D∆t − Im×m)︸ ︷︷ ︸
Dd

σk = 0 (2.14)
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after simple manipulations, where ∆t is the sample time, Im×m is the identity matrix

of dimensions m × m and Dd ∈ <m×m. As σk+1 = G(xref
k+1

− xk+1), putting (2.12)

in yields

σk+1 = G(xref
k+1

− Fk − Bkuk). (2.15)

Defining equivalent control, ueq as the amount of control that puts the motion of

the plant on the sliding manifold i.e. σk+1 = σk = 0 [19], (2.15) above could be

written as

σk+1 = GBk(ueqk
− uk). (2.16)

Solving for ueqk
in (2.16) gives

ueqk
= uk + [GBk]

−1σk+1. (2.17)

Putting (2.16) in (2.14) gives

GBk(ueqk
− uk) + Ddσk = 0. (2.18)

The only unknown here is ueqk
, however it may be approximated with a low-pass

filter on the control u since it happens to be the low frequency component of the

control or in this implementation, as ueq is a smooth function, an approximation

could be made using (2.17) and replacing uk with uk−1 such that

ûeqk
≈ uk−1 + [GBk]

−1σk+1. (2.19)

Putting (2.19) in (2.18) and solving for uk gives

uk = uk−1 + [GBk]
−1(σk+1 + Ddσk), (2.20)

which could be written like

uk = uk−1 + [GB]−1(σ̇ + Dσ)|
t−∆t

(2.21)

as well.

For a discrete-time system, the discrete sliding mode can be interpreted as that

the states are only required to be kept on the sliding surface at each sampling

instant. Between the samples, the states are allowed to deviate from the surface

within a boundary layer.
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Note that the control defined by (2.21) is continuous unlike the case for continuous-

time. Thus chattering is no longer a matter of concern. This is the most striking

contrast between discrete-time sliding mode and continuous-time sliding mode. Fur-

thermore, in continuous-time systems with continuous control, the sliding manifold

of state trajectories can be reached only asymptotically, while in discrete time sys-

tems with continuous control, sliding motion with state trajectories in some manifold

may be reached within a finite time interval, [19].

2.4 Disturbance Compensation based on Sliding Mode Control

When the motion control problem suffers from nonlinearities such as:

• Hysteresis, dead zone, saturation, backlash, etc of the actuators and/or sensing

devices

• High parameter variations and drifts according to different conditions of op-

eration

• Time delay

it might be possible to combine all the effects of these different kind of disturbances

on the plant response (i.e. observe their force/torque equivalent) and provide a

compensation for them as an addition to the controller output and use this sum as

the plant input. This kind of compensation is called “disturbance compensation”

and the observer used is called “disturbance observer”.

As electromechanical motion systems could be described by a second order dif-

ferential equation, consider the following model:

mp̈ + g(ṗ,p, t) = Kfu + Fext, (2.22)

where p ∈ <l is the displacement (position) output of the system,

u ∈ <m is the current/voltage (control) input to the system,

m ∈ <l×l is the mass/inertia matrix of the system,

g : <l ×<l ×<+ → <l is a nonlinear function defining the dynamics of the system,

Kf ∈ <l×m is the force/torque constant matrix of the input to the plant.

This plant model has the aforementioned nonlinearities in g with uncertainties in
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the parameters m and Kf . Focusing on the fully actuated (i.e. m = l) mechanical

systems affine with respect to control, which is an interconnection of l SISO systems,

Kf matrix has a diagonal structure, each component being the force/torque constant

of each dimension.

For disturbance compensation, first the linear model of the same system is writ-

ten, which defines the ideal response of the actual plant. mn, bn and kn ∈ <l×l are

the nominal parameter matrices for mass, damper, spring coefficients respectively

and Kfn
is the nominal force/torque constant for estimation of p̂, ˆ̇p, and ˆ̈p,

mn
ˆ̈p + bn

ˆ̇p + knp̂ = Kfn
u + Fext. (2.23)

All the changes of the parameters from this model in the actual plant being

considered as disturbances and adding an additional disturbance function d ∈ <l as

well as the compensation in the plant input udis ∈ <m, (2.22) becomes

mnp̈+bnṗ+knp = Kfn
(u−udis)+Fext+d(p̈, ṗ,p, t) + ∆mp̈ + ∆bṗ + ∆kp︸ ︷︷ ︸

Fd

. (2.24)

For fully actuated electomechanical systems, combination of all sources of distur-

bances could be denoted as Fd ∈ <l and if Kfn
udis = Fd the plant would behave

like the linear model. Therefore, if the errors from the plant output to the linear

model output could be diminished the system could be enforced to behave like a

linear model.

Calculating the position estimation errors ê ∈ <l and so, the disturbance esti-

mation error edis ∈ <l by subtracting (2.23) from (2.24), one gets,

mn
ˆ̈e + bn

ˆ̇e + knê = Fd − Kfn
udis = edis (2.25)

for ê = p − p̂.

To find the necessary udis, two approaches could be brought in the selection of

the sliding mode variable σdis:

1. σdis = Gdis(mn
ˆ̈e + bn

ˆ̇e + knê) = Gdisedis

2. σdis = Gdis(ˆ̇e + Cdisê),

for positive definite Gdis ∈ <m×l. First approach tries to diminish the disturbance

error edis = Fd − Kfn
udis directly, while the second one tries to diminish ê for
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positive definite Cdis ∈ <l×l, which in consequence diminishes the disturbance error

edis. After the selection of σdis, stability is ensured for

˙σdis + Ddisσdis = 0 (2.26)

according to Lyapunov Stability Criterion for positive definite Ddis ∈ <m×m as

mentioned above.

Using the first σdis above, the iterative sliding mode disturbance compensator is

derived as follows, the same scheme could be applied to the second σdis definition

as well. Note that the external force should be measured or observed to use in the

linear model of estimation (2.23).

σdis = GdisFd︸ ︷︷ ︸
GdisKfnudiseq

−GdisKfn
udis (2.27)

σdis = GdisKfn
(udiseq

− udis) (2.28)

solving for equivalent control, udiseq
in (2.28)

udiseq
(t) = [GdisKfn

]−1σdis + udis(t), (2.29)

putting (2.28) into (2.26), we achieve

˙σdis + DdisGdisKfn
(udiseq

(t) − udis(t)) = 0. (2.30)

In this equation, one needs to know udiseq
to calculate the control input of the current

time step udisk
, however it is difficult to calculate udiseq

. One possibility is to use an

approximation of udiseq
such that in (2.29), udis(t) is replaced by udis(t − ∆t) i.e.

udiseq
(t) ≈ [GdisKfn

]−1σdis + udis(t − ∆t), (2.31)

wher ∆t is the sample time of the controller. Note that this approach would yield

efficient results since udiseq
is a continuous function and if the step time is sufficiently

small. Putting the approximated udiseq
(t) shown in (2.31) into (2.30) and solving

for udis(t), the iteration scheme for the disturbance compensation is found as

udis(t) = udis(t − ∆t) + [DdisGdisKfn
]−1( ˙σdis + Ddisσdis)|t−∆t

, (2.32)

or in discrete-time

udisk
= udisk−1

+ [DdisGdisKfn
]−1( ˙σdis + Ddisσdis)|k−1

. (2.33)
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On the disturbance observer sliding manifold (i.e. σ̇dis = σdis = 0),

udis = udiseq
= [GdisKfn

]−1GdisFd. (2.34)

Putting (2.34) in (2.24) and rearranging yields,

mnp̈ + bnṗ + knp = Kfn
u + Fext + Fd − Kfn

[GdisKfn
]−1GdisFd. (2.35)

As Kfn
[GdisKfn

]−1Gdis = I, on the sliding mode the system behaves as the nominal

model

mnp̈ + bnṗ + knp = Kfn
u + Fext. (2.36)
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Chapter 3

Implementation of a Discrete Sliding Mode Approach to

High Precision Motion Control

In Section 2.3, a general system affine with control input u was considered in (2.1) to

derive an iterative discrete SMC scheme. Here, the implementation of that discus-

sion on various control objectives for real-life mechanical systems affine with respect

to control will be shown.

Most generally, l DOF mechanical systems could be described by a second order

nonlinear equation as follows:

p̈ = h(ṗ,p,u, t), (3.1)

where p ∈ <l is the displacement, output of the system,

h(ṗ,p,u, t) : <l × <l × <m × <+ → <l is a continuous and bounded linear or

nonlinear function defining the dynamics of the system,

u ∈ <m is the control input to the system, generally taken as force/torque or

current/voltage, with a simple linear relation to force/torque like Fin = KFu, KF

being the so-called force/torque constant,

t ∈ < denotes the independent variable time.

If the system in (3.1) is affine with respect to control, which is a specific (but broad in

terms of physical relevance) class of all systems, the function h could be decomposed

into two parts as:

p̈ = f(ṗ,p, t) + b(ṗ,p, t)u(p, t), (3.2)

for f : <l × <l × <+ → <l is the linear or nonlinear bounded function defining

the dynamics of the system and b : <l × <l × <+ → <l×m is the control related

function such that rank(b) = m for all p, t pairs. This work focuses on fully actuated
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electromechanical systems (i.e. m = l), which is essentially an interconnection of l

SISO systems, and hence b matrix has a diagonal structure with full rank.

Defining the state vector x = [ p ṗ ]T , the model given in (3.2) could be

rewritten as:

ẋ = F (x, t) + B(x, t)u, (3.3)

such that x ∈ <2l, F : <2l×<+ → <2l and B : <2l×<+ → <2l×m with rank(B) = m.

Therefore, for n = 2l, the equation given in (2.1) has been achieved and the same

kind of control designation could be applied to the mechanical systems linear with

control.

Next, a similar form of the environmental external force model will be derived.

The general model for the external force when the system is in contact with the

environment can be written by the following spring damper equation:

Fext = Kext∆p + bext∆̇p, (3.4)

∆p = p − penv (3.5)

where Fext ∈ <l is the external force on all l dimensions, ∆p ∈ <l is the amount

of deflection of the tip into the environment (hand or obstacle), p is the position

of the tip and penv is the position of the obstacle in l dimensions, Kext, bext ∈ <l×l

are the environmental spring and damper matrices, essentially defining the stiffness

and damping elements of each dimension.

Plant state vector was defined as x = [ p ṗ ]T , defining an environment state

vector likewise gives xenv = [ penv ṗenv
]T . For an environmental matrix Aext =

[ Kext bext ], (3.4) could be converted to:

Fext = Aext(x − xenv), (3.6)

with Aext ∈ <l×2l and xenv ∈ <2l.

3.1 Position Control

In Section 2.3, a continuous SMC scheme was derived based on the discrete-time

model (2.12) for a state trajectory reference tracking problem. This section will

elaborate on the same problem, since it implies controlling position for mechanical
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systems, however based on the continuous model shown in (3.3), directly. Taking

the system written in (3.3) into consideration, assume a control problem for the

system state vector x to track some reference xref . Then the state error ex ∈ <n

becomes

ex = xref − x. (3.7)

For the given error, σx ∈ <n is selected as

σx = Gxex, (3.8)

for Gx ∈ <m×n is a positive definite matrix with rank(Gx) = m, such that det(GxB) 6=

0 to satisfy control objectives on the sliding manifold σ(x) = 0. Therefore, for σx = 0

state error is forced to diminish according to the elements of Gx. Note that for a

1-dof fully actuated system (i.e. l = m = 1), Gx is a row vector of two positive

elements like:

Gx = Kx

[
Cx 1

]
(3.9)

with Kx considered as a tuning factor. For a positive definite Lyapunov function of

the form

νx(σx) =
σT

x σx

2
, (3.10)

the derivative of the function is

ν̇x(σx) = σT
x σ̇x. (3.11)

If the control function is designed such that

σ̇x + Dxσx = 0, (3.12)

for positive-definite symmetric matrix Dx. Note that, Dx could be considered as

a diagonal matrix with elements defining the slope of the sliding manifold for each

dimension of σx, Lyapunov function derivative becomes a negative-definite function

as

ν̇x(σx) = −σT
x Dσx, (3.13)

which satisfies the Lyapunov stability criterion, for Dx ∈ <m×m. Using (3.3) and

(3.7), projection of system motion onto the sliding manifold is

σ̇x = Gx( ˙xref − F︸ ︷︷ ︸
Bu

p
eq

−Bup) (3.14)
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σ̇x = GxB(up
eq − up). (3.15)

Here the superscript p denotes that the designed up is a position control input. As

defined in Section 2.3, equivalent position control is the amount of control input

that makes σ̇x = σx = 0 [19]. Solving for the equivalent control in (3.15) yields:

up
eq = up + [GxB]−1σ̇x. (3.16)

If (3.15) is put in (3.12),

GxB(up
eq − up) + Dxσx = 0 (3.17)

is achieved. In this equation, the only obstacle to calculate up is that up
eq is unknown,

however, since it is a smooth function, an approximation could be made by replacing

up in (3.16) with its value in the previous time step. Putting that approximation in

(3.17) and solving for the current control input up(t) gives:

up(t) = up(t − ∆t) + [GxB]−1(σ̇x + Dxσx)|t−∆t
, (3.18)

where ∆t is the step time. Here, since the controller will be implemented in discrete

time, subscripts are added to the control input like

up
k = up

k−1
+ [GxB]−1(σ̇x + Dxσx)|k−1

. (3.19)

The resulting position controller has been tested on a PEA with a sinusoidal position

reference. The reuslts are given in Figure 3.1.

Figure 3.1: PEA Position Controller Results
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3.2 Force Control

Let the external force to the system be modeled by (3.6), where Aext matrix consists

of the environmental parameters for spring and damping coefficients; x is the state

vector, xenv is the obstacle (environment) state vector and Fext is the external force

exerted on the system. For a reference Fref ∈ <l for the external force to be

controlled according to, the force error ef ∈ <l is simply

ef = Fref − Fext. (3.20)

The sliding mode variable σf ∈ <m should be chosen such that force control is

realized on σf = 0, hence taking

σf = Gfef , (3.21)

would satisfy this condition for the positive definite Gf ∈ <m×l. For stability, a

positive definite Lyapunov function of the form

νf (σf ) =
σT

f σf

2
, (3.22)

is used, and the derivative of the function is

ν̇f (σf ) = σT
f σ̇f . (3.23)

If the control function is designed such that

σ̇f + Dfσf = 0, (3.24)

for positive definite symmetric matrix Df ∈ <m×m, Lyapunov function derivative

becomes a negative-definite function as

ν̇f (σf ) = −σT
f Dfσf , (3.25)

which satisfies the Lyapunov stability criterion. Using (3.6) and (3.3), sliding mode

variable derivative becomes

σ̇f = Gf (Ḟref + Aextẋenv − AextF )︸ ︷︷ ︸
Gf AextBu

f
eq

−GfAextBuf (3.26)

σ̇f = GfAextB(uf
eq − uf ) (3.27)
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where uf is the output of the force controller, (hence the superscript f) and afore-

mentioned equivalent control uf
eq(t) can be stated as:

uf
eq(t) = uf (t) + [GfAextB]−1σ̇f . (3.28)

Putting (3.27) in (3.24), one achieves

GfAextB(uf
eq(t) − uf (t)) + Dfσf = 0. (3.29)

In this equation, the only unknown is the so-called equivalent control, uf
eq, which is

difficult to calculate. There are many methods to estimate its value such as using a

low pass filter on the control function u(t). However, approximating it using (3.28),

by replacing the unknown uf (t) with uf (t − ∆t) such that

uf
eq(t) ≈ uf (t − ∆t) + [GfAextB]−1σ̇f . (3.30)

Putting this approximation in (3.29) and solving for the current control input yields:

uf (t) = uf (t − ∆t) + [GfAextB]−1(σ̇f + Dfσf )|t−∆t
, (3.31)

where ∆t is the step time. Here, since the controller will be implemented in discrete

time, subscripts are added to the control input like

uf
k = uf

k−1
+ [GfAextB]−1(σ̇f + Dfσf )|k−1

. (3.32)

The performance of the derived controller is demonstrated on experiments with both

measured (by load cell) and observed external forces/torques as shown in Figures

3.2, 3.3, 3.4 for measured data on the PEA setup and Figures 3.5 and 3.6 for observed

data on the Maxon RE-40 setup.
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Figure 3.2: PEA: External Force (measured by load cell) Control for a Step Refer-

ence
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Figure 3.3: PEA: External Force Control for a Step Reference Magnified for 3.1 <

t < 3.5
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3.3 External Force Observer

In most cases, the structure of the setup makes it difficult to attach a force sen-

sor, therefore measuring the external force becomes nearly impossible. However, a

possibility is to make use of a disturbance observer based external force observer to

estimate these values instead of directly measuring them. Pros of using this observer

could be:

• low cost

• avoidance from the noise of sensing devices

• possibility to estimate all the external forces unlike the sensors, which have a

frequency bandwidth for accurate sensing,

while cons are:

• the noise in the state readings and system input (current/voltage) measure-

ments
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• the fact that an accurate model of the system is crucial to be able to estimate

the external forces accurately.

Considering the effect of external forces in the model (3.2) with a minor change

converting all the elements of the equation to forces,

mp̈ + g(ṗ,p, t) = Kfu + Fext, (3.33)

where m ∈ <l×l is the mass/inertia matrix of the system, g : <l × <l × <+ → <l is

a linear or nonlinear function defining the model of the system, Kf ∈ <l×m is the

force/torque constant matrix of the input to the plant, u is the current/voltage input

and Fext ∈ <l is the external force/torque vector to be estimated on all l dimensions.

Using accurate values for all the parameters in the model (3.33), theoretically all

one needs to do is solve for the external force vector and use it as the force to be

controlled, i.e.

Fext = mp̈ + g(ṗ,p, t) − Kfu. (3.34)

for the p, ṗ, p̈ values coming from the sensor and the control input u to the plant.

However, in reality the above equation yields noisy data since it involves deriva-

tives of the state readings, which include sensor noises amplified with derivation.

As Ohnishi points [40], this noise could be reduced with the addition of a low-pass

filter to the estimation such that:

F̂ext = Fext

d

s + d
. (3.35)

Therefore, the estimation would be less sensitive to noise (with higher frequency

than d) and provide more reliable results. In the thesis work, this estimation was

used for the external forces for Maxon RE-40 motor experiments since it has a linear

model and the structure of the setup makes it hard to attach a torque sensor on

the motor shaft. The external force control results using the observer discussed in

this section are given in Figures 3.5 and 3.6, for stationary and mobile obstacles,

respectively.
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Figure 3.5: Maxon RE-40: External Torque Control based on Observed Data with

Stationary Obstacle
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Figure 3.6: Maxon RE-40: External Torque Control based on Observed Data with

Moving Obstacle
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3.4 Disturbance Compensation and Plant Behaviour Dictation using

a Sliding Mode Model Reference Controller(SMMRC)

Figure 3.7: Traditional Model Reference Controller

Model Reference Control (MRC), or sometimes referred as Model Following Con-

trol, is a strong tool to compensate for the effect of disturbances due to the afore-

mentioned nonlinearities in Section 2.4. The traditional approach to MRC is to use

the output of the desired plant model (generally the linearized model of the plant

with nominal parameters) as a reference for the control on the actual plant, which

serves as a dictation on the plant motion equation essentially. This approach is

shown in Figure 3.7.

In this section, a different approach is brought to MRC, exploting the features

of SMC. SMC, as mentioned in Chapter 2, works by constraining the motion equa-

tion of the plant in a predefined manifold σ = 0. The gist of SMC is selecting a

manifold such that control objectives are realized on or with the help of it and using

a reaching condition such as Lyapunov Stability Criterion to confine the motion on

the manifold.

From the above discussion, it is obvious that any SMC for systems affine with

respect to control and represented in controllable canonical form (which is the case

for fully actuated mechanical systems this thesis focuses on)is actually an MRC.

Therefore, if one selects the manifold in such a way that, the motion on the manifold

is the desired plant model, the objectives of MRC would be fulfilled. The resultant
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controller shown in Figure 3.8 is called SMMRC in this thesis. Note that, the

desired model doesn’t need to be the one with the nominal parameters, but any

model within the reachability of the plant is possible with the proposed method.

Hereafter, the experiments on PEA will be made using this dictated plant.

Figure 3.8: Sliding Mode Model Reference Controller

The compensation designed will be in terms of an additional umr ∈ <m to the

plant input uin ∈ <m such that u in (3.3) is

u = uin + umr (3.36)

as seen in the Figure 3.8.

Derivation of the controller typically starts with the proper model reference error

function emr ∈ <n definition:

emr = ẋ − Adx − Bduin (3.37)

such that, for emr = 0, the plant moves with the desired motion equation i.e.

ẋ = Adx + Bduin, (3.38)

where Ad ∈ <n×n and Bd ∈ <n×m are the desired linear plant model parameters.

σmr ∈ <m is chosen to be

σmr = Gmremr, (3.39)

for positive definite Gmr ∈ <m×n and detGmrBd 6= 0 . For stability, a positive

definite Lyapunov function of the form

νmr(σmr) =
σT

mrσmr

2
, (3.40)
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is used, and the derivative of the function is

ν̇mr(σmr) = σT
mr ˙σmr. (3.41)

If the control function is designed such that

˙σmr + Dmrσmr = 0, (3.42)

for positive definite symmetric matrix Dmr ∈ <m×m, Lyapunov function derivative

becomes a negative-definite function as

ν̇mr(σmr) = −σT
mrDmrσmr, (3.43)

which satisfies the Lyapunov stability criterion.

Using (3.39), (3.37) and (3.3), the sliding mode variable becomes

σmr = Gmr(F + Bu − Adx − Bduin), (3.44)

which can be written more clearly as

σmr = Gmr(F + ∆Buin − Adx︸ ︷︷ ︸
−Bumreq

+Bumr) (3.45)

σmr = GmrB(−umreq
+ umr). (3.46)

Here umreq
∈ <m is the equivalent control defined in Section 2.3, which makes

σmr = 0 and ∆B = B − Bd. Solving (3.46) for umreq
yields

umreq
(t) = umr(t) − [GmrB]−1σmr. (3.47)

Putting (3.46) in (3.42),

˙σmr + DmrGmrB(umr(t) − umreq
(t)) = 0, (3.48)

the only unknown that prevents the calculation of umr is umreq
, which is hard to

calculate. However, since it is a smooth function, an approximation could be made

by using the previous time step value of the umr in (3.47) such that

umreq
(t) ≈ umr(t − ∆t) + [GmrB]−1σmr. (3.49)

Using this approximation in (3.48) and solving for current umr gives

umr(t) = umr(t − ∆t) + [DmrGmrB]−1( ˙σmr + Dmrσmr)|t−∆t
, (3.50)
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or in discrete-time

umrk
= umrk−1

+ [DmrGmrB]−1( ˙σmr + Dmrσmr)|k−1
. (3.51)

For analysis of the effect of the SMMRC on plant behaviour consider (3.45).

From the selection of σmr, it is clear that emr → 0 on sliding mode, where

umr = umreq
= [GmrB]−1Gmr(F + ∆Buin − Adx). (3.52)

Using this control input and (3.36) in (3.3),

ẋ = F (x, t) + Bx, t)(uin + B[GmrB]−1Gmr(F + ∆Buin − Adx). (3.53)

As B[GmrB]−1Gmr = I, on the sliding mode the system behaves as the desired

motion equation in (3.38)

Below, open loop position control results of a PEA are given using the SMMRC

designed above to demonstrate the performance of plant behaviour dictation. The

open loop control input is given with an inverse desired plant model as shown in

Figure 3.9.

Figure 3.9: Open Loop Control using SMMRC
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Figure 3.10: PEA: SMMRC Open Loop Position Control Model Response for a 1

um Step
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3.5 Controller Parameter Adaptation

As mentioned before in Chapter 2, Sliding Mode is a robust control technique.

However, since it doesn’t have an adaptation scheme, it may not yield sufficient

dynamics for different magnitudes of errors. In this section, an adaptation to the

sliding manifold is described according to the error magnitude.

For the sliding manifold in the form

σ̇ + Dσ = 0 (3.54)

since D is the only parameter one can manipulate, there are generally two kinds

of adaptations possible, where Dii is one of the diagonal elements of the diagonal

matrix D:

1. When the plant has high mass/inertia, the manifold should be steeper for small

errors to overcome stiction and should have a lower slope for larger errors to

overcome overshoot like Dii = D0 + D1

1+D2|e|
as shown in Fig 3.17.

0 20 40 60 80 100
0 

Do

Do+D1

e

D
ii

Figure 3.17: First Kind of Adaptation Scheme on the Sliding Manifold Slope

2. When the plant has low mass/inertia, the vice versa should be applied (i.e.

steeper manifold for larger errors to overcome the underdamped dynamics

and should have a lower slope for small errors) like Dii = D0 − D1

1+D2|e|
or

Dii = D0 + D1 |e| as shown in Fig 3.18.
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Figure 3.18: Second Kind of Adaptation Scheme on the Sliding Manifold Slope

(a)Slope Has an Upper Bound for Large Errors and (b)Slope Grows without Bound

Following figures are results of position control experiments on the Maxon RE-40

DC motor setup, with the second kind of adaptation scheme shown in Figure 3.18b.

Figures 3.19, 3.20 are showing the results of a square wave trajectory with magnitude

of a single step of the incremental encoder attached to the motor, namely 2π
2000

=

0.0031416. Note that there is about 7.5 msec delay on the response of the actuator to

the reference in Figure 3.20, which stems from the fact that the incremental encoder

is blind until one increment motion is finalized and hence the actual response and

rise time of tracking can not be seen. Figure 3.21 shows the result of the adaptive

sliding mode position control with a sinusoidal position reference. As shown in this

figure, the errors never exceed one increment of the incremental encoder, therefore

the control has achieved the best precision possible, for both small and large errors.
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Figure 3.19: Maxon RE-40: Position Control for One Increment Pulse Reference

with Adaptive Sliding Manifold

7.02 7.025 7.03 7.035 7.04 7.045 7.05 7.055 7.06
0

1

2

3

x 10
−3 Position, Position reference

sec

ra
d

Position of the Tip
Position Reference

7.02 7.025 7.03 7.035 7.04 7.045 7.05 7.055 7.06
−1

0

1

2

3

x 10
−3 Position Error

sec

ra
d

Figure 3.20: Maxon RE-40: Magnified Position Error of Position Control for One

Increment Pulse Reference with Adaptive Sliding Manifold
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Chapter 4

A Cascaded Sliding Mode Hybrid Force/Position

Controller

As stated in Section 1.3, the objective of a hybrid controller is to control position of

the tip and external force for unconstrained and constrained motions of the plant,

respectively. Traditional approach and its predecessors mainly suffer from the kine-

matic instability problem due to the jump of control input at the switching of modes.

Also, first contact forces are relatively high, causing a possible damage to the plant

or the environment at this first (blind) contact.

Proposed in this thesis is to solve both problems at the core of any hybrid

force/position control task by using a single position controller (SMPC) to run the

plant, whose input (state error ex) is altered by means of a sliding mode position

error estimator (SMPEE) -further explained in the next section- with respect to the

external force error as shown in Figure 4.1. The cascaded force controller achieved

provides good force tracking as shown for PEA in Figure 4.2.

Figure 4.1: Cascaded Force Controller
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4.1 Position Error Estimator with respect to External Force Error

Now that, a Sliding Mode Position Controller (SMPC) formulated in Section 3.1

runs the plant, the combined system (of SMPC and the plant) could be considered

to be running in position control mode. Given the necessary xref or ex, one can be

certain that the controller will force the plant to track that reference or reduce that

error.

This gives an opportunity to combine the hybrid motion controller (consisting of

position tracking and the force control) with sliding mode technique. For this, the

corresponding state error (ex) should be determined, such that the desired force as

a result of the interaction with unknown environment is achieved. In the following

lines of equations, the same scheme for position control is followed, for this objective.

Consider the general environmental model (3.6), for which control of force will be

designed. Let a relationship between the force reference and state reference vector

be defined as:

Fref = Âext(xref − xenv), (4.1)

where Fref ∈ <l is the reference external force in all l dimensions, Âext ∈ Rl×n, for

n = 2l, is the estimate environmental matrix of the system consisting of estimate

spring and damping coefficients such that Âext = [K̂ext b̂ext]. xref ∈ <n is the

reference state vector and xenv ∈ <n is the environment (obstacle) state vector.

Subtracting (3.6) from (4.1), force error is obtained as

ef = Âextex + ∆Aext∆x, (4.2)

for ∆x = x − xenv and ∆Aext = Âext − Aext. Defining the sliding mode variable as

σf = Gfef = Gf (Fref − Fext), (4.3)

for positive definite Gf ∈ <m×l. For stability, a positive definite Lyapunov function

of the form

νf (σf ) =
σT

f σf

2
, (4.4)

is used, and the derivative of the function is

ν̇f (σf ) = σT
f σ̇f . (4.5)
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If the position error is used as the control and designed such that

σ̇f + Dfσf = 0, (4.6)

for positive definite symmetric matrix Df ∈ <m×m, Lyapunov function derivative

becomes a negative-definite function as

ν̇f (σf ) = −σT
f Dfσf , (4.7)

which satisfies the Lyapunov stability criterion.

Putting (4.1) and (3.6) for the plant into (4.3), sliding mode variable becomes

σf = Gf Âextex − Gf [∆Kext ∆bext](x − xenv)︸ ︷︷ ︸
Âextexeq

(4.8)

σf = Gf Âext(ex − exeq
) (4.9)

where ∆Kext and ∆bext are the differences between the real and estimate values for

environmental coefficients. Here, note that ex is used as the control input to the

combined sytem of position controller and plant. From here, equivalent state error

becomes

exeq
= ex − [Gf Âext]

−1σf . (4.10)

Putting (4.9) in (4.6), one gets

σ̇f + DfGf Âext(ex − exeq
) = 0. (4.11)

To calculate ex, exeq
is necessary , but difficult to find. However, it may be

approximated by using the ex of the previous time step in (4.10). Putting the

approximation in (4.11) and solving for the current ex yields,

exk
= exk−1

− [DfGf Âext]
−1(σ̇f + Dfσf ) (4.12)

The performance of the resultant cascaded force controller is demonstrated with

an experiment on the PEA as shown in Figure 4.2.

4.2 Force Controller Stability Analysis

The force controller is constructed in terms of a position error estimator with respect

to force error keeping in mind that the system is controlled using the SMPC. At this
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Figure 4.2: PEA Cascaded Force Controller Results

point, the estimated position error’s capability to remove the force error should be

investigated. In section 4.1, it is shown that, the error estimates reduce force error

to zero, in this section, the direct effect of the control input u to the plant on force

error is examined.

In (4.2), a relationship between force error and state error is shown. Using (4.9),

and solving for state error:

ex = exeq
+ [Gf Âext]

−1(σf ) (4.13)

and its derivative:

ėx = ėxeq
+ [Gf Âext]

−1(σ̇f ). (4.14)

Remember from (3.12) that Gxėx + DxGxex = 0, so derivative of the state error

becomes

Gxėx = −DxGx

[
exeq

+ [Gf Âext]
−1(σf )

]
. (4.15)

Equating Gx times (4.14) and (4.15),

Gxėxeq
+ Gx[Gf Âext]

−1(σ̇f ) + DxGx

[
exeq

+ [Gf Âext]
−1(σf )

]
= 0. (4.16)
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Rearranging (4.16) and putting (4.3) in

Gxėxeq
+ DxGxexeq︸ ︷︷ ︸

0

+

Kf︷ ︸︸ ︷
Gx[Gf Âext]

−1Gf ėf + Dx

Kf︷ ︸︸ ︷
Gx[Gf Âext]

−1Gf ef︸ ︷︷ ︸
0

= 0. (4.17)

Therefore, supplying the position error estimate for force error, to the SMPC, a

dynamical relationship Kf ėf + DxKfef = 0, between force error and its derivative

is enforced, which is the sliding manifold for force error and satisfies Lyapunov

Stability Criterion. Here Kf is a matrix used to clear up the view to the forced

dynamical relationship.

4.3 Error Selection for Hybrid Control

Figure 4.3: Estimated and Actual Position Errors on Both Sides

Now that two position errors are found for force and position control, respec-

tively. Calling the two as the actual position error ep
p and the estimated position

error ef
p , what one needs to do is feed the most reasonable one to the position

controller at each time step for ideal hybrid control. This switching between the

position errors differs from controller switching since it doesn’t cause a jump in the

control input to the plant (output of the position controller) and so, doesn’t cause

the classical kinematic instability problem [9], controller switching may cause.

Reasonable position error would be the one that wouldn’t position the tip such

that the external force exceeds the force reference in magnitude. Since force can be

applied from both sides of the tip, positive and negative reference values are used to

cover each possibility. So, for positive external force, the positive force reference and
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for negative external force, the negative force reference is used and the corresponding

position error for that force error is estimated. Then the estimated position error

that causes the force error is compared with the actual position error and the one

minimum in magnitude between the two is fed to the position controller.

A visual representation of the mentioned position errors could be found in Figure

4.3. Note that this figure is a simplified drawing to provide a visual understanding

of the ideas behind position error estimation with respect to force error and position

error selection. To make a clear representation of the errors, it is actually unrealistic

since it assumes that the position errors with respect to the force errors could be

estimated even when the plant is not in contact with the obstacles, which is not the

case if no visual feedback is available. However, as it will be shown on experimental

results, the force controller (position error estimator) is fast enough to converge to

the respective position error as soon as there is a contact with an obstacle and could

therefore remove the large forces encountered at the first blind contact with the

obstacle.

The resulting sliding mode hybrid controller (SMHC) is shown in Fig. 4.4.

Figure 4.4: Cascaded Hybrid Force/Position Controller

4.4 Experimental Results

The experiment on Maxon RE-40 DC motor involves a sinusoidal position reference

with constant positive and negative force references with the same magnitude, which

can be considered as the maximum amount of force the actuator is allowed to exert

on the environment due to the nature of the controller that doesn’t create any
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overshoot (i.e. first contact force mentioned above).

First experiment on PEA had both sinusoidal references for position and force, in

the second experiment force reference is a square wave and in the third experiment

force reference is changed to a triangular wave. As shown in the respective figures,

hybrid control performs well in all the mentioned scenarios. For the triangular force

reference, the position errors at the transition of modes look large in Figures 4.25

and 4.26. However this is because the magnification in these figures is larger than

that of the previous experiments. The position errors in the position mode never

exceeds 0.05 µm. Note that the PEA plant is dictated to behave with its nominal

values under SMMRC mentioned in Section 3.4.
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Figure 4.5: Maxon RE-40: Position and Position Reference; Position Error Graphs
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Figure 4.10: PEA - Experiment 1: Magnified Position Error for 0 < t < 20
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Figure 4.13: PEA - Experiment 1: Magnified Position at the Transition from Posi-

tion to Force Mode
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Figure 4.14: PEA - Experiment 1: Magnified Position at the Transition from Force

to Position Mode
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Figure 4.16: PEA - Experiment 2: Magnified Position Error for 15 < t < 35
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Figure 4.19: PEA - Experiment 2: Magnified Position at the Transition from Posi-

tion to Force Mode
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Figure 4.20: PEA - Experiment 2: Magnified Position at the Transition from Force

to Position Mode
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Figure 4.22: PEA - Experiment 3: Magnified Position Error for 55 < t < 75
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Figure 4.24: PEA - Experiment 3: Magnified Force Error for 20 < t < 50
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Figure 4.25: PEA - Experiment 3: Magnified Position at the Transition from Posi-

tion to Force Mode
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Chapter 5

Bilateral Control

Bilateral control is bi-directional control of force and position between two systems

connected by a communication link, as shown in Figure 1.1. Conventionally these

(sub)systems constitute the master and slave sides of the overall bilateral action.

Master subsystem is the system controlled by the operator to teleoperate the slave

system. Therefore, bilateral control is generally used interchangably with teleoper-

ation. However, this is a bit incomplete since teleoperation is one (large) subset of

bilateral control, which may be generalized with a decentralized approach by treat-

ing the subsystems as peers and defining bilateral control as a coordination between

the peers to perform an actual or virtual task.

The necessity of bilateral control and teleoperation has been discussed with ex-

amples in Section 1.2. In this chapter, first, traditional bilateral control will be

addressed and an approach will be brought to maximize transparency using high

precision controllers and methods discussed in Chapter 4, as well as to reduce the

dangerous effect of time-delay by means of a reflex mechanism (hybrid force/position

controller) discussed in Chapter 5 on the slave subsystem. In section 5.5, the de-

centralized structure will be further explained. Note that, the necessary conditions

for bilateral control remain unchanged between the two approaches and the rea-

son to bring the decentralized approach is the possibility to generalize it for some

coordination of more than two systems, sometimes referred to as multilateral control.

To realize bilateral control without scaling, the operator on the master side

should feel the forces encountered by the slave side, while the slave side should

follow the positions of the master side i.e.

xs = xm, (5.1)
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Fext
m = −Fext

s . (5.2)

Error of force tracking is defined as the sum of two external forces since the external

forces encountered by the slave side (the additive inverse of the force slave side

exerts on the environment) should be transferred to the operator by the master side.

Therefore, if no scaling is present, a perfect bilateral controller could be visualized

as a rigid coupling between the two subsystems as shown in Figure 5.1.

Figure 5.1: Visualisation of Bilateral Control for the 1D Rotational Case

Below, the main issues to be kept in mind for the bilateral controller designation

are discussed.

5.1 Transparency

Shortly, transparency, as the name implies, is defined as the ability of the bilateral

controller to be invisible to the operator. That is, the more accurately the objectives

of bilateral action given in (5.1) and (5.2) are realized, the better transparency is

achieved. This can be stated more clearly with the impedence point of view, looking

at the two-port model of the bilateral controller [23] shown in Figure 5.2. When in

contact with the task, the slave velocities Ve and forces Fe are dependent, related
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Figure 5.2: General Two-port Model of a Bilateral Teleoperation System

with the slave environment impedence Ze such as

Fe = Ze(Ve). (5.3)

If the operator should feel as if s/he is directly touching the task, then the operator’s

force on the master side Fh and the master’s velocity Vh (which are the forces and

velocities of the operator hand, hence the subscript h) should have the same values

i.e. Fh = Fe, Vh = Ve. This requires that the transmitted impedence to the operator

Zt such that

Fh = Zt(Vh), (5.4)

should be equal to the environmental impedence on the slave side Ze.

This result winds the discussion back to the fact that a perfect bilateral controller

is a virtual rigid coupling between the two subsystems. The transparency is generally

shown with the H matrices such as

 Fm

ṗm


 =


 H11 H12

H21 H22





 ṗs

Fs


 . (5.5)

Many works related to bilateral control use the H matrix representation of trans-

parency to check the amount of transparency achieved with the proposed controller.

However, in this work, the perfect transparency condition i.e.

H =


 0 −1

1 0


 , (5.6)

is used as a means for the derivation of controller, shown in the respective sections.
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5.2 Time Delay

Since bilateral control maintains a communication link between the two sides, it

inherently has an unavoidable time-delay. There are many attempts to resolve the

problems time delay brings to the overall structure such as [41–43]. One approach

brought in the derivation of bilateral control explained in section 5.4 is to reduce

the dangerous effects of time delay for a safe teleoperation with a reflex mechanism

(spinal cord) on the slave side, which tries to control the external forces, the master

side (brain) cannot react to in time.

Note that, with this approach, even though time-delay is not compensated with

a predictive scheme as some researchers apply [44–46], the most dangerous effect of

it is removed, which enables implementations in many fields such as medical robotics

to become much safer and applicable.

5.3 Scaling

Generally, bilateral control is used for teleoperation on environments not reachable

by human beings otherwise as discussed in section 1.2 before. One of these applica-

tions is on small scales. Therefore, a general bilateral controller should be able to

scale the motions and forces between the two sides for extensive applicability.

With scaling in mind, the objectives of bilateral control are altered a bit such

as:

xs = αxm, (5.7)

Fext
m = −βFext

s . (5.8)

and the respective H matrix becomes:

H =


 0 −β

α 0


 . (5.9)

5.4 Safe Teleoperation with a Reflex Mechanism on the Slave Side

The conventional approach to bilateral control is the so-called force-position archi-

tecture shown in Figure 1.2, which essentially decomposes the task into two subtasks

such as the slave side is under position control tracking the positions (or states) of
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the master side (i.e. xref
s = xm) and similarly master side is under force control

tracking the additive inverse of the forces slave side exerts on the environment (i.e.

Fref
m = −Fext

s ).

Even though this approach seems to be the most reasonable one, it implicitly

assumes no or small time delay for stability and/or for safety of the slave subsystem

and its environment, which is as crucial as stability for some applications such as

medical robotics. Since the reaction time of the operator on the master side to a

motion creating large forces is at least 2Tmin
d (for Tmin

d being the minimum time

delay in the communication link), it might be difficult if not impossible to protect

the slave system and its environment.

Figure 5.3: Proposed Force-Hybrid Architecture of Bilateral Control

Proposed in this thesis is an approach to add a reflex mechanism on the slave

side, which would react directly on location without time delay as the spinal cord

does in biological organisms. Note that the operator could be referred to as the

brain with the same analogy. This reflex mechanism is consisting of the cascaded

hybrid force/position controller designed in Chapter 4, which has the ability to

control external forces and positions when necessary and could be able to remove

the large forces at the first contact with the environment, which is a crucial property

for safety since most of the damage occurs in this first blind contact. Furthermore,

with the aid of this property a limit value could be defined as the force reference
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on the slave side that ensures safe teleoperation in effect. Note that more generally,

any force reference could be given to the hybrid controller as shown on experiments

in Chapter 4, however for safety, a limit value would often be enough. The block

diagram of the proposed force-hybrid architecture is given in Figure 5.3.

5.4.1 Experimental Results

Two Maxon RE-40 DC Motors

0 5 10 15 20
−0.5

0

0.5

1

1.5
Master and Slave Positions

sec

ra
d

Slave Position
Master Position

0 5 10 15 20
−0.4

−0.2

0

0.2

0.4

0.6
Position Error between Master and Slave

sec

ra
d

Figure 5.4: Two RE-40’s: Master and Slave Positions and Position Error Graphs
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for 9 < t < 12

70



0 5 10 15 20
−4

−2

0

2

4
x 10

−4 Master and Slave Torques

sec

N
m

Master Torque
Slave Torque

0 5 10 15 20
−2

−1

0

1

2
x 10

−5 Torque Error between Master and Slave

sec

N
m

Figure 5.6: Two RE-40’s: Master and Slave Torques and Torque Error Graphs
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Scaled Teleoperation with a Maxon RE-40 DC Motor as the Master and

a Piezoactuator as the Slave

In the first and second experiments, scaling factors of α = 1 × 10−3 µm

rad
and β =

1×10−4 Nm

N
are used, that is an angular displacement of 1 rad on the master side cor-

responds to a linear displacement of 1 nm on the slave side and a force of 1 N on the

slave side corresponds to a torque of 1 × 10−4. The objective of these experiments

is to provide very fine motion on the slave side for a relatively larger displacement

on the master side, hence α is selected according to this objective. Then the cor-

responding forces/torques for each amount of displacement were compared for the

selection of /beta, keeping in mind that the DC motor on the master side has low

torques as mentioned in Section A.1.

First experiment is for the unconstrained case where force mode of hybrid con-

trol on the slave side doesn’t interfere and therefore the controller reduces to the

simpler force-position architecture mentioned above. The results for position and

force tracking are shown in Figures 5.11 and 5.12 respectively.
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Figure 5.11: Scaled Safe Teleoperation Ex 1: Master (Scaled) and Slave Positions

and Position Error Graphs
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Figure 5.12: Scaled Safe Teleoperation Ex 1: Master and Slave (Scaled) External

Torques and Torque Error Graphs
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Second experiment is for demonstration of the effect of hybrid control. Note that,

large position errors occur in this experiment due to two reasons. First, the motor

on the master side has low torques such that the operator could easily overcome and

move further. Second, and more importantly, when the external force curve touches

the reference force curve on the slave side, hybrid controller switches to force mode

and tries to track the force reference as long as position reference implies larger

external forces. This second effect is the main reason the proposed controller could

be used as a safety mechanism for the slave side. That is, even for larger motors with

higher torques, if the scaling factors are designed such that the scaled torques on

the master side are not higher than the operator can handle and force reference on

the slave side is given such that the task could be accomplished while no dangerous

force is exerted on the environment, both the slave subsystem, its environment and

the operator are protected from large external forces. The results for position and

force tracking are shown in Figures 5.13 and 5.14 respectively and the results for

the force control of SMHC on the slave side is shown in Figure 5.15.
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Figure 5.13: Scaled Safe Teleoperation Ex 2: Master (Scaled) and Slave Positions

and Position Error Graphs
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5.5 Decentralized Bilateral Control

Considering the general vector plant model in (3.3) and environment model in (3.6)

for fully actuated l dimensional (i.e. m = l) electromechanical master and slave

systems affine with respect to control, denoted as subscripts m and s respectively

as follows,

ẋm = Fm(xm, t) + Bmum, (5.10)

ẋs = Fs(xs, t) + Bsus. (5.11)

Writing the unified overall plant consisting of the master and slave sides together

in one vector equation would let one to treat the two subsystems as ‘peers’ (i.e.

interchangable master and slave sides) as:

ẋ = F (x, t) + Bu, (5.12)

if a general state vector x ∈ <2n and the general control input u ∈ <2m are defined

as x = [ xm xs ]T and u = [um us]
T

respectively for

F = [ Fm Fs ]T (5.13)

B =


 Bm 0

0 Bs


 (5.14)

if F ∈ <2n and B ∈ <2n×2m.

The requirements for bilateral action can be expressed as xs − αxm = 0 for

position tracking and Fext
m + βFext

s = 0 for force tracking where α and β are the

scaling coefficients among actuators. Defining the errors, ex ∈ <2n and ef ∈ <2l,

from the desired behaviour as

ex = xs − αxm, (5.15)

eF = Fext
m + βFext

s (5.16)

both systems can contribute to the task requirements using two virtual plants (“func-

tions”) with a transformation from plant space to the “function” space as shown

in [47] and in Fig 5.16, whose positions and external forces are essentially regulated.

The derivation of the virtual plants are explained in the following sections.
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Figure 5.16: The general structure of Task Based Control with a Transformation to

Task Space

5.5.1 Virtual Plant for Position Tracking

Defining the position tracking task function as

σx = Gxex (5.17)

for σx ∈ <m and Gx ∈ <m×2n, which realizes tracking of states between the two

‘peers’ of bilateral action on the sliding manifold σx = 0 for Gx being a positive

definite matrix in the form

Gx = Kx

[
Cx 1

]
(5.18)

for l = 1, Kx and Cx ∈ <+.

Inserting (5.15) into (5.17), the derivative of the position tracking task function

could be expressed as

σ̇x = Gxẋs − αGxẋm. (5.19)

If a state vector x ∈ <2n is defined as x = [ xm xs ]T , then a transformation

matrix Tx ∈ <m×2n could be designated such as

Tx =
[
−αGx Gx

]
(5.20)

which becomes

Tx =
[
−αKxCx −αKx KxCx Kx

]
(5.21)
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for l = 1. Then the position tracking task function derivative can be restated as

σ̇x = Txẋ. (5.22)

Putting (5.12) into (5.22) the task function dynamics is written as:

σ̇x = TxF (xm,xs, t) + TxB(xm,xs, t)u (5.23)

yielding

σ̇x = Fx(xm,xs, t) + Bx(xm,xs, t)u. (5.24)

for Fx = TxF and Bx = TxB, with Fx ∈ <m and Bx ∈ <m×2m. Note that the final

virtual plant whose output is to be regulated, which has two control inputs, has the

same structure as (3.3).

5.5.2 Virtual Plant for Force Tracking

Selecting the force tracking task function as

σf = ef , (5.25)

from (5.16), its derivative is

σ̇f = ˙Fext
m + β ˙Fext

s . (5.26)

Putting (3.6) into (5.26)

σ̇f = Aext
m (ẋm − ẋenv

m ) + βAext
s (ẋs − ẋenv

s ). (5.27)

Defining a transformation matrix Tf ∈ <m×2n as

Tf =
[

Aext
m βAext

s

]
(5.28)

which becomes

Tf =
[

Kext
m bext

m βKext
s βbext

s

]
(5.29)

for l = 1, external force error derivative can be restated as

σ̇f = TfF (xm,xs, t) + TfB(xm,xs, t)u − Tf ẋ
env (5.30)

with the integration of (3.3), for xenv = [ xenv
m xenv

s
]T , xenv ∈ <2n yielding

σ̇f = Ff (xm,xenv
m ,xs,x

env
s , t) + Bf (xm,xs, t)u, Ff ∈ <m, Bf ∈ <m×2m. (5.31)

for Ff = TfF + Rf , Rf = −Tf ẋ
env and Bf = TfB. Note that the final virtual

plant whose output is to be regulated, which has two control inputs, has the same

structure as (3.3).
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5.5.3 Task-Based Bilateral Control

Since a transformation scheme for the two tasks of bilateral control has been de-

vised in sections 5.5.1 and 5.5.2, in this section a unification of the transformation

from plant space to task (“function”) space of bilateral action will be explained. A

graphical representation of this discussion is shown in Fig 5.17.

Figure 5.17: Task Based Bilateral Control

Note that, the amount of tasks a system can handle without problem is equal to

the amount of control inputs to the plant, which is equal to 2m according to (5.12).

Therefore a unification of l = m position tracking and l = m force tracking tasks

could be possible.

If

T =


 Tx

Tf


, R =


 Rx

Rf


 and σt =


 σx

σf




are defined as the general Transformation Matrix T ∈ <2m×2n, translation matrix

R ∈ <2m and task error σt ∈ <2m respectively, note that Rx = 0 for position tracking

task, then the transformation from plant space to the task space is defined as

σ̇t = TF (xm,xs, t) + TB(xm,xs, t)u + R (5.32)
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according to the generalized plant equation in (5.12). Defining

Ft = TF + R (5.33)

and

Bt = TB, (5.34)

for Ft ∈ <2m and Bt ∈ <2m×2m the unified bilateral task error dynamics could be

written as

σ̇t = Ft(x,xenv, t) + Bt(x, t)u (5.35)

and the controller could be designed in the same way as for the general fully actuated

systems described as (3.3). Next, an iterative sliding mode controller will be derived

for this plant in task space.

5.5.4 Sliding Mode Controller Derivation for Task Based Bilateral

Control

The transformation to task space enables one to write the most general dynamical

relationship between the two control inputs um,us and the task error functions

σx, σf in the combined system (5.35). Therefore, realizing bilateral control means

to regulate σt with u.

For stability, a non-negative Lyapunov Function is typically selected as

νt =
σT

t σt

2
, (5.36)

whose derivative is nothing but

ν̇t = σT
t σ̇t. (5.37)

If the sliding manifold is chosen to be

σ̇t + Dtσt = 0 (5.38)

stability is ensured on this sliding manifold for positive definite Dt ∈ R2m×2m yield-

ing the Lyapunov Function derivative

ν̇t = −σT
t Dtσt, (5.39)
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which is non-positive. As equivalent control ueq is defined as the amount of control

input u that enforces the system to remain on the manifold, (5.35) can be restated

with the inclusion of ueq as,

σ̇t = Bt(x, t)(−ueq + u). (5.40)

Solving for ueq in (5.40) reveals

ueq = u − B−1

t σ̇t. (5.41)

if B−1
t exists. For the sliding manifold to be reached and motion on it to be main-

tained, one has to calculate the necessary control input u according to (5.38). When

(5.40) is placed in (5.38) to solve for u

Bt(x, t)(−ueq(t) + u(t)) + Dtσt = 0, (5.42)

the only unknown is ueq(t). However, since ueq(t) is a continuous and bounded

function, it can be considered almost constant for the sample time, making it possible

to use the equivalent control of the previous time step, namely, ueq(t−∆t) calculated

according to (5.41). Putting ueq(t − ∆t) for ueq(t) and solving for u yields the

iterative controller as

u(t) = u(t − ∆t) − B−1

t (σ̇t + Dtσt). (5.43)

for rank(Bt) = 2m.
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5.5.5 Experimental Results

Two Maxon RE-40 DC Motors
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Figure 5.18: Task Based Bilateral Control Ex 1 (Two RE-40’s): Master and Slave

Positions and Position Error Graphs
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Figure 5.19: Task Based Bilateral Control Ex 1 (Two RE-40’s): Magnified Position

Error between Master and Slave Sides for 16 < t < 18
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Figure 5.20: Task Based Bilateral Control Ex 1 (Two RE-40’s): Master and Slave

Torques and Torque Error Graphs

Scaled Teleoperation with a Maxon RE-40 DC Motor as the Master and

a Piezoactuator as the Slave

In this experiment, scaling factors of α = 1 × 10−2 µm

rad
and β = 1 × 10−3 Nm

N
are

used, that is an angular displacement of 1 rad on the master side corresponds to

a linear displacement of 10 nm on the slave side and a force of 1 N on the slave

side corresponds to a torque of 1 × 10−3. The objective of this experiment is to

provide fine motion on the slave side for a relatively larger displacement on the

master side, hence α is selected according to this objective. Then the corresponding

forces/torques for each amount of displacement were compared for the selection of β,

keeping in mind that the DC motor on the master side has low torques as mentioned

in Section A.1.

The obstacle is not stationary in this experiment, in fact it hits the PEA at t = 22

and moves back at t = 48. Therefore, the capabilities of task based bilateral control

to reflect sudden external forces to the operator are demonstrated. The results for

position and force tracking are shown in Figures 5.21 and 5.22 respectively.
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Figure 5.21: Task Based Bilateral Control Ex 2 (Scaled): Master (Scaled) and Slave

Positions and Position Error Graphs
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Figure 5.22: Task Based Bilateral Control Ex 2 (Scaled): Master and Slave (Scaled)

Torques and Torque Error Graphs
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Chapter 6

Conclusions

In this thesis, bilateral control has been adressed with two main approaches. In

both approaches, discrete time sliding mode controllers were used to achieve high

transparency since these controllers are invariant to nonlinearities and hence offer

high precision in force and position tracking. The plants considered for the master

and slave sides are taken to be fully actuated electromechanical systems affine with

respect to control. For simplicity, experiments are held on 1D actuators (SISO

sytems) to demostrate the practical application of the theories.

First approach proposes a force-hybrid structure for master-slave sides of the

controller. The hybrid force/position controller on the slave side is handled by a

novel cascaded sliding mode hybrid force/position controller. The controller de-

signed with this approach has achieved high transparency. Scaling is also possible

with the approach. Also, the external forces could be controlled, which means that

slave side is able to protect itself from large external forces, which otherwise may

not be reacted in time by the operator, due to possible time delay. Therefore, this

approach provides a safety mechanism, which could be extended to applications on

medical applications such as teleoperated minimally invasive surgery.

Second approach focuses on the tasks instead of plants to result in a decentralized

structure. With this approach, the controllers are designed to regulate a sliding

mode variable that defines the task at hand. As shown in respective sections, task

variables of bilateral control are essentially linear transformations from plant space

to task space. High transparency has been achieved and scaling is possible with this

approach, too. The important property of the approach is that it can be generalized

to a coordination or cooperation scheme of more than two systems, which then
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could be referred to as multilateral control. A typical example is the coordination

of mobile robots.

In addition to the bilateral control problem, some solutions were achieved for

other problems. For instance, since the slave subsystem is run by a hybrid con-

troller, a cascaded hybrid controller was designed. Some other problems arose on

applications, such as the hysteresis nonlinearity of PEA or the different control input

needs of Maxon DC Motor for small and large errors for best tracking performance.

The first problem was solved by a sliding mode model reference controller, that

essentially linearizes the system to a desired model by taking all the differences of

actual plant from the desired model as disturbances and adding a compensation to

the control input for them. The solution to second problem was handled in terms of

a simple adaptation mechanism that changes the slope (gain) of sliding manifold for

each dimension according to the error (hence, small control input for small errors

and large control input for large errors has been obtained).

The work could be extended to teleoperation of robotic manipulators from a

distance. Micromanipulation and nanomanipulation could be realized by human

operators with the aid of the two approaches to bilateral control, proposed in this

thesis.
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Appendix A

Experimental Setup

A.1 Maxon RE-40 DC Motor

RE-40 DC motors produced by Maxon have 150 Watts assigned power rating with

nominal parameters shown in Table A.1. These motors are known to have little

torque as opposed to being able to reach high velocities. Therefore, using them for

bilateral, hybrid and force control realization would be a challenge. ADS E 50/10

drivers and incremental encoders with 500 ticks per revolution, yielding a precision

of 2π
2000

= 0.0031416 rad for positioning are used with the motors. The controllers

are implemented using a dSpace DS1103 board with a step time of 0.1 msec. The

experimental setup structure is shown in Figure A.1.

Figure A.1: Structure of the Maxon RE-40 Setup

The general model for the DC motors can be written as

Jq̈ + Kmq̇ = Kti + τext. (A.1.1)

88



Parameter Value
Assigned Power Rating 150 W

Rotor Inertia (J) 135.1 gcm2

Torque Constant (Kt) 16.45 mNm/A
Dynamical Friction Torque (Km) 2.7 × 10−4 mNm/rpm

Max Continuous Torque 98.687 mNm

Table A.1: Maxon RE-40 DC Motor Parameters

Here, J , Km and Kt are the nominal values of the inertia, mechanical friction and

torque coefficients of the motor shown in Table A.1 and i is the current or control

input to the plant. q is the angle in radians and τext is the external torque applied

to the motor shaft by the environment (i.e. obstacle, operator hand, etc.).

A.2 Piezomechanik PSt150/5/60 Piezoelectric actuator

Micromanipulator applications require control actuators that can provide accurate

position tracking performance in addition to robustly stable force control. These

objectives are significantly compromised by the presence of backlash and Coulomb

friction in the control plant, the effects of which are exaggerated in small scales.

Since PZT stack actuators are monolithic and have no sliding or rolling parts, they

exhibit no significant mechanical stiction or backlash. Additionally, a typical PZT

stack actuator can perform step movements in nanometer resolutions with band-

widths on the order of a kilohertz. Consequently, PEA’s are well suited for use as

precision microactuators for micropositioning devices. In Figure A.2, the actuators

used in the experiments are shown.

Figure A.2: Piezostack Actuators Used in the PEA Experiments
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Figure A.3: Structure of the PEA Setup

Figure A.4: Simplified Structure of the PEA Setup

An inherent nonlinearity in especially man-made piezoceramic actuators is hys-

teresis. This hysteresis nonlinearity is usually about 15-20% of the output thereby

greatly reducing the performance of the actuators. Additionally, many attempts of

modeling this behavior have been fruitless due to its peculiarities. In [26] and [27] at-

tempts were made to model the voltage-to-displacement behavior of PZT actuators

using Bond-Graph and Priesach models. These models proved effective, however,

they failed to explain the physical behavior of the actuators. In [24] and [25] mod-

els were made based on the physics of the actuators and these models proved to

be effective in modeling the behavior of these actuators under different excitations.

Additionally, they claim that the hysteresis behavior exists in the electrical domain
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of the actuator and is between voltage and charge. In [25], a simple differential equa-

tion was used to model the voltage-charge hysteresis behavior. This model proved

simple to implement in real-time applications due to the simplicity of the equation

representing the hysteresis. However in this work, a simpler linear motion equation

with nominal parameters is used as a model of the PEA instead of a more accurate

model involving the hysteresis function to demonstrate the efficiency of SMC in case

of highly nonlinear plants to be controlled.

The experimental setup consists of a PSt150/5/60 stack actuator (pmax = 60µm,

Fmax = 800N, Vmax = 150 V) produced by Piezomechanik connected to a LE150HYB

/020 Hybrid (Voltage/Current) Amplifier, with a voltage range of 20 V through 150

V and a voltage gain of 50, produced by Piezomechanik. The piezoelectric actuator

has built-in strain-gages for position measurement. Force measurement is accom-

plished with the help of a load cell that is placed against the actuator as shown in

Figure A.3 and Figure A.4 presents a simplified version. Any motion on the tip of

the actuator will exert a force on the load cell which is equal and opposite of the

force on the actuator. Hence, the force measured by the load cell is nothing but the

force acting on the actuator.

Figure A.5: Electromechanical Model of PEA

The piezoelectric ceramic has elasticity modulus E, viscosity η, and mass density

ρ. The geometrical properties of the PEA are length L and cross-sectional area Ap.
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The mechanical parameters, mass mp, stiffness kp, and damping coefficient cp can

be calculated from these material and geometrical properties as (A.2.2 - A.2.4).

mp = ρApL, (A.2.2)

cp =
ηAp

L
, (A.2.3)

kp =
EAp

L
. (A.2.4)

Though, it will be safer to experimentally measure those using FRF analysis, since,

some of the parameters needed above are not easily available.

As shown in [25] and referring to the model shown in Figure A.5, the complete

set up electromechanical equations are written as (A.2.5 - A.2.10).

uin = uh − up, (A.2.5)

q = H(uh), (A.2.6)

q = Ceup + qh, (A.2.7)

qp = Temp, (A.2.8)

Fp = Temup, (A.2.9)

mpp̈ + cpṗ + kpp = Fp − Fext. (A.2.10)

In these equations, uin,uh and up are the total applied voltage, the voltage spent by

the hysteresis and the effective voltage applied to the PEA, respectively. q denotes

the charge, Ce is the effective capacitance of the dielectric (piezo) material and

Tem is the force constant of the electromechanical model. In this work, the motion

equation is incompletely defined as

mpp̈ + cpṗ + kpp = Temuin − Fext, (A.2.11)

assuming that uin = up, disregarding the hysteresis behaviour to be compensated

later by a sliding mode model reference controller (SMMRC). The parameters of

this nominal linear motion model, (A.2.11) are given in Table A.2.

Parameter Value
Mass (mp) 9.24 × 10−4 kg

Damping Coefficient (cp) 685 Ns/m
Dynamical Friction Coefficient (kp) 8.0 × 106 N/m

Force Constant (Tem) 3.9 N/V

Table A.2: Nominal Parameters of the PEA Model
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To test and demonstrate the hysteresis behaviour of the used model (A.2.11), a

varying amplitude 1 Hz sinusoidal voltage input is given to the plant to yield the

Figures A.6, A.7, and A.8.
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Figure A.6: 1 Hz Sinusoidal Voltage Input with Varying Amplitude for Hysteresis
Analysis of PEA
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Figure A.7: Position Output of PEA for 1 Hz Sinusoidal Voltage Input with Varying
Amplitude
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Figure A.8: PEA Position Voltage (Hysteresis) Curve for 1 Hz Sinusoidal Voltage
Input with Varying Amplitude

A.3 Unscaled Bilateral Control Experimental Setup

In the bilateral control experiments, for the unscaled case (i.e. α = β = 1), the

experimental setup shown in Figure A.9 was used. In this setup, master and slave

sides are identical Maxon RE-40 DC motors, hence no scaling is performed.

A.4 Scaled Bilateral Control Experimental Setup

In the bilateral control experiments, for the scaled case, the experimental setup

shown in Figure A.10 was used. In this setup master side is the Maxon RE-40 DC

motor and the slave side is the PEA, which enables scaled teleoperation experiments.

94



Figure A.9: The Experimental Setup for Unscaled Bilateral Control
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Figure A.10: The Experimental Setup for Scaled Bilateral Control
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