
MODELING AND CONTROL OF THE COORDINATED MOTION

OF A GROUP OF AUTONOMOUS MOBILE ROBOTS

by

NUSRETTIN GULEC

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabanci University

Spring 2005

MODELING AND CONTROL OF THE COORDINATED MOTION

OF A GROUP OF AUTONOMOUS MOBILE ROBOTS

Nusrettin GULEC

APPROVED BY

Assoc. Prof. Dr. Mustafa UNEL ..

(Thesis Advisor)

Prof. Dr. Asif SABANOVIC ..

(Thesis Co-Advisor)

Assist. Prof. Dr. Kemalettin ERBATUR ..

Assoc. Prof. Dr. Mahmut F. AKSIT ..

Assist. Prof. Dr. Husnu YENIGUN ..

DATE OF APPROVAL: ..

c©Nusrettin Gulec 2005

All Rights Reserved

iii

to my beloved sister

&

my father

&

my mother

Biricik Ablama

&

Babama

&

Anneme

Autobiography

Nusrettin Gulec was born in Izmir, Turkey in 1981. He received his B.S. degree

in Microelectronics Engineering from Sabanci University, Istanbul, Turkey in 2003.

His research interests include coordination of autonomous mobile robots, control of

nonholonomic mobile robots, sensor and data fusion, machine vision, visual servoing,

robotic applications with PLC-SCADA systems.

The following were published out of this thesis:

• N. Gulec, M. Unel, A Novel Coordination Scheme Applied to Nonholonomic

Mobile Robots, accepted for publication in the Proceedings of the Joint 44th

IEEE Conference on Decision and Control and European Control Conference

(CDC-ECC’05), Seville, Spain, December 12-15, 2005.

• N. Gulec, M. Unel, A Novel Algorithm for the Coordination of Multiple Mobile

Robots, to appear in LNCS, Springer-Verlag, 2005.

• N. Gulec, M. Unel, Coordinated Motion of Autonomous Mobile Robots Using

Nonholonomic Reference Trajectories, accepted for publication in the Proceed-

ings of the 31st Annual Conference of the IEEE Industrial Electronics Society

(IECON 2005), Raleigh, North Carolina, November 6-10, 2005.

• N. Gulec, M. Unel, Sanal Referans Yorungeler Kullanilarak Bir Grup Mobil

Robotun Koordinasyonu, TOK’05 Otomatik Kontrol Ulusal Toplantisi, 2-3

Haziran 2005.

v

Acknowledgments

I would like to express my deepest gratitude to Assoc. Prof. Dr. Mustafa Unel, who

literally helped me find my way when I was completely lost - with that admirable

research enthusiasm that has always enlightened me, specifically those eleven hours

in front of the monitor that thought me lots, that invaluable insight saving huge

time for my research - and on top of all, who had always been frank with me, which

is the best to receive.

I would also like to acknowledge Prof. Dr. Asif Sabanovic, for that trust he had

in me two years ago that made my way through today. Without him, neither would

this thesis be completed, nor my graduate study could get started.

Among all members of the Faculty of Engineering and Natural Sciences, I would

gratefully acknowledge Assist. Prof. Dr. Kemalettin Erbatur, Assoc. Prof. Dr.

Mahmut F. Aksit and Assist. Prof. Dr. Husnu Yenigun for spending their valuable

time to serve as my jurors.

I would also be glad to acknowledge Prof. Dr. Tosun Terzioglu, Prof. Dr. Alev

Topuzoglu, Zerrin Koyunsagan and Gulcin Atarer for their never-ending trust and

support against any difficulty I had throughout my life in Sabanci University.

Among my friends, who were always next to me whenever I needed, I would

happily single out the following names; Burak Yilmaz, who is essentially the most

caring person I know, Sakir Kabadayi, who has been the ‘Big Brother’ in my worst

times, Izzet Cokal, whose presence around was a great relief, Ozer Ulucay, who is

the purest person I ever met, Firuze Ilkoz, who has always supported me without

question, Eray Korkmaz, whose friendship was stronger than anything, Onur Ozcan,

who has been nothing but a sincere friend for more than three years now, Esranur

vi

Sahinoglu, without whom I could never work for the last three months, Arda of Café

Dorm for all supplies he provided, Khalid Abidi, who was ready to discuss anything

whenever I needed, Dogucan Bayraktar and Celal Ozturk, in the absence of whom

I could never conduct the experiments, Didem Yamak, the motivation of whom was

the best to receive for two years, Can Sumer, with whom I shared those late-night

talks and discussions, Borislav Hristov Petrinin, whose friendship and support is

one of the best I have ever seen or had, Cagdas Onal, who has always surprised

me with that amazing friendship, Mustafa Fazil Serincan, whose friendship always

made me smile, and all others I wish I had the space to acknowledge in person:

Kazim, Ertugrul, Ilker, Shahzad, Selim, Nevzat, . . .

Very special thanks go to Didem Yamak and Onur Bolukbas, for utilizing each

and every moment I looked for some tranquility during this thesis, especially Didem

for that confidential support she provided, beyond logic, for my academic career.

Finally, I would like to thank my family for all that patience and support they

provided through each and every step of my life.

vii

MODELING AND CONTROL OF THE COORDINATED MOTION

OF A GROUP OF AUTONOMOUS MOBILE ROBOTS

Nusrettin GULEC

Abstract

The coordinated motion of a group of autonomous mobile robots for the achieve-

ment of a coordinated task has received significant research interest in the last

decade. Avoiding the collisions of the robots with the obstacles and other mem-

bers of the group is one of the main problems in the area as previous studies have

revealed. Substantial amount of research effort has been concentrated on defining

virtual forces that will yield reference trajectories for a group of autonomous mobile

robots engaged in coordinated behavior. If the mobile robots are nonholonomic, this

approach fails to guarantee coordinated motion since the nonholonomic constraint

blocks sideway motions. Two novel approaches to the problem of modeling coordi-

nated motion of a group of autonomous nonholonomic mobile robots inclusive of a

new collision avoidance scheme are developed in this thesis. In the first approach, a

novel coordination method for a group of autonomous nonholonomic mobile robots

is developed by the introduction of a virtual reference system, which in turn implies

online collision-free trajectories and consists of virtual mass-spring-damper units.

In the latter, online generation of reference trajectories for the robots is enabled in

terms of their linear and angular velocities. Moreover, a novel collision avoidance

algorithm, that updates the velocities of the robots when a collision is predicted,

is developed in both of the proposed models. Along with the presentation of sev-

eral coordinated task examples, the proposed models are verified via simulations.

Experiments were conducted to verify the performance of the collision avoidance

algorithm.

BIR GRUP OTONOM MOBIL ROBOTUN

KOORDINELI HAREKETININ MODELLENMESI VE KONTROLU

Nusrettin GULEC

Ozet

Bir grup otonom mobil robotun, verilen bir gorevi basarmak icin koordineli

hareketi son on yilda onemli bir arastirma konusu olmustur. Robotlarin engellerle

ve grubun diger elemanlariyla carpismalarinin engellenmesi onceki calismalarin da

gosterdigi gibi, bu alandaki en temel problemlerden biridir. Onemli miktarda aras-

tirma cabasi koordineli davranis icindeki bir grup otonom mobil robot icin refer-

ans yorungeler ortaya koyacak sanal kuvvetler tanimlama yonunde yogunlasmistir.

Eger mobil robotlar holonom degillerse, holonom olmama kisitlamasi yanal yondeki

hareketi engelleyecegi icin, bu yaklasim koordineli hareketi kesin olarak saglamaya-

bilir. Bu tez calismasinda bir grup otonom holonom olmayan mobil robotun ko-

ordineli hareketini modelleme ve kontrol etme problemine, yeni bir carpisma en-

gelleme algoritmasi da iceren, iki yeni yaklasim gelistirilmistir. Birinci yaklasimda,

cevrimici carpismasiz yorungeler ortaya koyacak sanal kutle-yay-amortisor birim-

lerinden olusan bir sanal referans model kullanilarak, otonom holonom olmayan

mobil robotlar icin yeni bir koordinasyon metodu gelistirilmistir. Ikinci yaklasimda

ise, robotlar icin cevrimici referans yorungeler dogrusal ve acisal hizlari cinsinden

olusturulmustur. Ayrica, onerilen iki modelde de bir carpisma ongoruldugu zaman

robotlarin hizlarini guncelleyen yeni bir carpisma engelleme algoritmasi gelistirilmis-

tir. Bazi koordineli gorev orneklerinin sunulmasiyla birlikte, onerilen modeller ben-

zetimlerle dogrulanmistir. Carpisma engelleme algoritmasinin performansinin dog-

rulanmasi icin deneyler yapilmistir.

Table of Contents

Autobiography v

Acknowledgments vi

Abstract viii

Ozet ix

1 Introduction 1
1.1 Coordinated Motion and Coordinated Task Manipulation 2
1.2 Decentralized Systems . 3
1.3 Computer Vision for Mobile Robots 4
1.4 Formulation of Coordinated Task . 6

2 A Brief Survey on Coordination 10
2.1 Coordination Constraints . 11

2.1.1 Leader-Follower Configuration 11
2.1.2 Leader-Obstacle Configuration 12
2.1.3 Shape-Formation Configuration 13

2.2 Modeling Approaches . 14
2.2.1 Potential Fields . 14
2.2.2 Formation Vectors . 15
2.2.3 Nearest Neighbors Rule . 19

2.3 Sensory Bases . 19
2.3.1 Sensor Placement . 19
2.3.2 Ultrasonic Sensors . 21
2.3.3 Vision Sensors . 21

3 Nonholonomic Mobile Robots:

Modeling & Control 26
3.1 Modeling . 26
3.2 Control . 27

3.2.1 Trajectory Tracking Problem . 28
3.2.2 Parking Problem . 30

3.3 Simulations for Gain Adjustments . 31

x

3.3.1 Trajectory Tracking Simulations 31
3.3.2 Parking Simulations . 36

4 Dynamic Coordination Model 40
4.1 Virtual Reference System . 41

4.1.1 Virtual Masses . 42
4.1.2 Virtual Forces . 45

4.2 Adaptable Model Parameters . 46
4.3 Collision Avoidance by Velocity Update 49

4.3.1 Collision Prediction Algorithm 51
4.3.2 Velocity Update Algorithm . 52

4.4 Controller Switching . 53

5 Kinematic Coordination Model 55
5.1 Kinematic Reference Generation . 56

5.1.1 Discontinuous Linear Velocity Reference 58
5.1.2 Continuous Linear Velocity Reference 60

5.2 Desired Velocities . 62
5.2.1 Velocity due to Neighbors . 63
5.2.2 Velocity due to Target . 63
5.2.3 Linear Combination for Reference Velocity 64

5.3 Parameter Switching . 64
5.4 Velocity Update to Avoid Collisions 68
5.5 Reference Trajectory Generation . 68
5.6 Switching Between Controllers . 69

6 Simulations and Experiments 71
6.1 Dynamic Coordination Model Simulations 71

6.1.1 Collision Avoidance Simulations 72
6.1.2 Coordinated Motion Simulations 73

6.2 Kinematic Coordination Model Simulations 80
6.2.1 Collision Avoidance Simulations 81
6.2.2 Coordinated Motion Simulations 83

6.3 Experiments . 91
6.3.1 PseudoCode . 93
6.3.2 Results . 94
6.3.3 Static Obstacle Avoidance . 96
6.3.4 Head-to-Head Collision Avoidance 97

7 Conclusions 99

Appendix 101

xi

A Boe-Bot and Basic Stamp 101
A.1 Boe-Bot . 101

A.1.1 Parallax Servo Motors . 101
A.1.2 Board of Education and Basic Stamp II 102

A.2 Basic Stamp . 103

B Parallel Port 104

C OpenCV 106
C.1 Installation . 106
C.2 Template Code for Beginners . 106

D Perspective Projection and Camera Model 112

Bibliography 115

xii

List of Figures

1.1 Decentralized natural groupings . 3

1.2 Possible sensors for mobile platforms 5

1.3 The specified coordinated task scenario 8

2.1 Leader-follower configuration . 11

2.2 V-shaped formation of flocking birds 12

2.3 Leader-obstacle configuration . 13

2.4 Shape-formation configuration . 13

2.5 A simulation result using potential fields 16

2.6 Simulation results using formation vectors 18

2.7 Sensor placement techniques . 20

2.8 Sample image from an omnidirectional camera 22

2.9 Catadioptric omnidirectional vision system 23

2.10 Visual perception instincts . 24

3.1 A unicycle robot . 28

3.2 Simulink model for control laws . 32

3.3 Trajectory tracking scenario . 33

3.4 Parking scenario . 37

4.1 Hierarchical approach of dynamic coordination model 41

4.2 Possibilities for virtual reference systems 43

4.3 Analogy to a molecule . 43

4.4 Possible virtual masses . 44

4.5 Closest two neighbors . 45

4.6 Uniform distribution of masses . 48

4.7 Adaptive spring coefficient, kcoord . 49

xiii

4.8 Virtual collision prediction region(VCPR) 50

4.9 Ri’s coordinate frame . 51

4.10 Collision avoidance examples . 54

5.1 Hierarchical approach of kinematic coordination model 56

5.2 Scenario for analysis . 57

5.3 Discontinuous linear velocity final poses 59

5.4 Discontinuous reference velocities with low tolerance 59

5.5 Discontinuous reference velocities with high tolerance 60

5.6 Continuous linear velocity final pose 61

5.7 Continuous reference velocities . 62

5.8 Adaptive neighbor interaction coefficient, kcoord 66

5.9 Adaptive target attraction coefficient, ktarg 67

5.10 Adaptive coordination distance, dcoord 67

6.1 Simulink model for Dynamic Coordination Model 72

6.2 Dynamic coordination model, Head-to-Head Collision Avoidance . . . 73

6.3 Dynamic coordination model, Single-Robot Collision Avoidance . . . 73

6.4 Dynamic coordination model, Scenario-1 75

6.5 Dynamic coordination model, Scenario-2 76

6.6 Dynamic coordination model, Scenario-3 77

6.7 Dynamic coordination model, Scenario-4 79

6.8 Simulink model for Kinematic Coordination Model 80

6.9 Kinematic coordination model, Head-to-Head Collision Avoidance . . 81

6.10 Kinematic coordination model, Single-Robot Collision Avoidance . . . 82

6.11 Kinematic coordination model, Three-Robots Simultaneous Collision

Avoidance . 82

6.12 Kinematic coordination model, Scenario-1 84

6.13 Kinematic coordination model, Scenario-2 85

6.14 Kinematic coordination model, Scenario-3 86

6.15 Kinematic coordination model, Scenario-4 87

6.16 Kinematic coordination model, Scenario-5 88

6.17 Kinematic coordination model, Scenario-6 90

xiv

6.18 Autonomous robot prepared for experiment 91

6.19 Components of experimental setup 92

6.20 Sample runs of the generated C++ code 95

6.21 Static obstacle avoidance experiment 96

6.22 Head to head collision avoidance experiment 97

A.1 Parallax Servos . 102

A.2 Board of Education and Basic Stamp II 103

B.1 Parallel Port Pins . 104

D.1 Pinhole camera model . 113

xv

List of Tables

3.1 Average tracking errors for different values of control gains 34

3.2 Final parking errors for different values of control gains 38

6.1 Dynamic coordination model parameters for simulations 74

6.2 Kinematic coordination model parameters for simulations 83

xvi

Chapter 1

Introduction

Science today is essentially about establishing models that mimic the behavior of

real-life systems to be able to predict the outcome of certain events encountered

in nature. Models for technical issues like electrical, mechanic, pneumatic and hy-

draulic systems as well as social issues like economic growth of countries and popu-

lation growth of communities have been well-established and developed. However,

subjects related to intelligent behavior observed in nature such as coordinated mo-

tion and coordinated task handling of social groupings along with the autonomous

behavior of individual agents in those groups are still in the phase of research. Many

studies have been directed towards understanding and modeling the way of biolog-

ical systems, particularly humans and animals performing certain tasks together.

A variety of scientific disciplines - such as artificial intelligence, mechatronics, ro-

botics, computer science and telecommunications - deal with these problems from

different aspects. For example, artificial intelligence researchers work on establish-

ing a framework for the algorithms to be followed by each autonomous individual

in the group to achieve coordinated motion of the entire group, while researchers

in the area of telecommunications are interested in developing methods for efficient

transfer of necessary data between the autonomous elements of the group.

The research effort towards modeling the coordinated behavior of natural group-

ings has triggered the studies on several other areas such as decentralized systems,

distributed sensing, data fusion and mobile robot vision.

The following sections outline the basic concepts regarding the coordinated mo-

tion of a group of autonomous mobile robots. The last section of the chapter is

devoted to the formulation of the problem that will be attacked in this thesis.

1

1.1 Coordinated Motion and Coordinated Task Manipulation

Modeling groups of autonomous mobile robots engaged in coordinated behavior has

been of increasing interest in the last years [1] - [19], [23] - [27], [49]. The applications

of such a research field include tasks such as exploration, surveillance, search and

rescue, mapping of unknown or partially known environments, distributed manip-

ulation and transportation of large objects, reconnaissance, remote sensing, hazard

identification and hazard removal [2], [6]. In particular, robotic soccer has been an

important application area and eventually became a diverse and specific problem

towards which many studies have been carried out [20] - [22].

The term coordinated motion generally denotes the motion of systems, which

consist of more than one robot where the motion of each is dependent on the motion

of the others in the group, mostly to accomplish a coordinated task. Coordinated

task manipulation by a group of mobile robots, on the other hand, is defined as the

accomplishment of a specified task together in certain formations. The necessary

formation may vary based on the specifications of the coordinated task [10]. A

rectangular formation could be better to carry a heavy rectangular object whereas

circular formations might be better for capturing and enclosing the invader to pro-

vide security in surveillance areas [12], [13].

Robotics has made great steps forward, triggering the development of individual

autonomous mobile robots, while multi-robot systems research lags behind. The rea-

son for this lagging lies in the fact that coordinated motion of a group of autonomous

mobile robots is a very complicated problem. At the highest level, the overall group

motion might be dealt with by viewing such a collection as an ensemble. On the

other hand, at the lowest level distributed controls must be implemented which

ensure that the robots maintain safe spacings and do not collide. The following

problems are fundamental to multi-robot researchers [15]:

• Multi-robot system design is inherently harder than design of single robots.

• Multiple robots may distract activities of each other, in the extreme precluding

the team from achieving the goal of the mission.

• A team may have problems with recognizing the case when one or more team

members, or the team as a whole, becomes unproductive.

2

• The communication among the robots is a nontrivial issue.

• The “appropriate” level of individualism and cooperation within a team is

problem-dependent.

The autonomous robots forming the group must avoid collisions with other mem-

bers of the group and any other static or dynamic obstacles. Collision turns out

to be one of the most essential problems in the context of coordinated motion [19].

Moreover, collision avoidance is the premier factor in generation of the reference

trajectories to yield coordinated motion; i.e. the robots should change their path

to avoid collisions even if this will introduce some delay for the achievement of the

specified coordinated task.

1.2 Decentralized Systems

Computer science encountered a serious bottleneck with the increasing computa-

tional demand of applications such as databases and networks due to limited com-

putational power. The idea of decentralized systems emerged in computer science

society to fulfill such demands [23].

Flocking birds, schooling fish (see Fig. 1.1(a)) and bees building a honeycomb

in the beehive (see Fig. 1.1(b)) are examples of decentralized groupings in nature,

where each member works in coordination with the others [3]. In effect, coordinated

motion of multiple autonomous mobile robots is an important application area for

decentralized systems. In particular, multi-robot systems are different from other

(a) (b)

Figure 1.1: Decentralized natural groupings: (a)Schooling fish (b)Honey bees

3

decentralized systems because of their implicit “real world” environment, which is

presumably more difficult to model compared to traditional components of decen-

tralized system environments like computers, databases and networks. As a result

of the wide application areas, the research efforts towards developing such systems

has been monotonically increasing in the last decade [24] - [30].

The research efforts towards the development of decentralized robotic systems

revealed the fact that, there are several tasks that can be performed more effi-

ciently and robustly using distributed multiple robots [10]. The classical example

of decentralized robotic systems is space exploration [15]. Another example is the

exploration and preservation of the oceanic environments, the interest in which has

gained momentum in recent years [25]. Following are the most appealing advantages

of decentralized systems over centralized systems for robotics applications:

• Failure of a single robot in centralized systems results in system failure, whereas

this will not necessarily jeopardize the whole mission assigned to a team in

decentralized systems.

• Economic cost of a decentralized robotic system is usually lower than that of

a centralized system that could carry out the same task, especially in the case

when component failure is encountered [27].

• A huge single robot, no matter how powerful it is, will be spatially limited

while smaller robots could achieve the same goal more efficiently.

• Decentralized systems outclass centralized systems in tasks such as exploration

of an area for search and rescue activities [23].

1.3 Computer Vision for Mobile Robots

Sensing of the environment and subsequent control are important features of the

navigation of an autonomous mobile robot. Hence, each member in a decentralized

robotic system should gather information about its environment via some sensor

during the manipulation of a specified coordinated task. This is crucial for a variety

of tasks during navigation such as target detection and collision avoidance, which

are common in most coordination scenarios. Although numerous types of sensors

4

exist in the market, two main types have been widely used in the context of co-

ordinated motion. Ultrasonic range sensors mounted around the mobile robot as

seen in Fig. 1.2(a) have been used to obtain distance information between the robot

and any physical existence in its environment. Onboard camera(s) mounted on the

mobile robot as depicted in Fig. 1.2(b) have been applied together with techniques

from computer vision for autonomous sensing of the robot’s environment.

There has been a significant research interest on vision-based sensing algorithms

for the mobile robot navigation task [19], [27], [31] - [46]. In particular, some re-

search was dedicated on the application of vision systems as the sensor basis of the

autonomous mobile robots engaged in coordinated behavior [2], [47] - [50]. It has

been shown that there are provable visual sensing strategies advantageous over any

other sensing techniques for mobile robot navigation [31]. In spite of these accu-

mulated studies on autonomous mobile robots with visual capabilities, there is still

great challenge for computer vision systems in the area since such systems require

skills for the solution of complex image understanding problems. Existing algo-

rithms are not designed with real-time performance and are too luxurious from the

aspect of time consumption. The development of a vision system which can satisfy

the needs of both robustness and efficiency is still very difficult [45]. Concentration

of computer vision society has been accumulated on estimation of the state of the

robot in the environment and the structure of the environment [46].

(a) (b)

Figure 1.2: Possible sensors for mobile platforms: (a)Ultrasonic sensors (b)Onboard

camera

5

1.4 Formulation of Coordinated Task

Coordinated behavior among a group of autonomous mobile robots is a hot research

area in various disciplines - mechatronics, computer science, robotics, etc - due to

various application areas of decentralized robotic systems such as exploration, sur-

veillance, search and rescue, mapping of unknown or partially known environments,

distributed manipulation and transportation of large objects, reconnaissance, remote

sensing, hazard identification and hazard removal as mentioned at the beginning of

this chapter.

In this work, a generic coordinated task explained below will be used as a test

bed to verify the validity of the proposed models for the coordinated motion of a

group of autonomous mobile robots. The mobile robots engaged in coordinated

behavior will be assumed to be nonholonomic, because autonomous nonholonomic

mobile robots are low-cost, off-the-shelf and easy to find test beds in the market.

A vehicle is nonholonomic if it has a certain constraint on its velocity in moving

certain directions. For example, two-wheeled mobile robots are nonholonomic since

they can not move sideways unless there is slip between their wheels and the ground.

Two-wheeled robots and car-like vehicles are the most appealing examples.

A group of n autonomous nonholonomic mobile robots, namely R1, R2, . . . , Rn−1,

Rn, and an object, T , that will serve as a target for the group, are considered. In

the sequel, Ri denotes the ith robot in the group.

The coordinated task scenario and the required formations for the coordinated

motion in this work can be summarized as follows:

• Starting from any initial setting of the robots and the target, R1, R2, . . . , Rn−1,

Rn should form a circle of certain radius dtarg, with T being at the center.

• The robots should move in a coordinated manner maintaining certain mutual

distances; i.e. they should approach T as a group.

• The robots should be uniformly distributed on the formation circle, with each

robot maintaining a certain distance dnear from its closest neighbor.

• Each Ri should orient itself towards T once it achieves the requirements stated

in the previous items.

6

A possible initial configuration for the above defined coordinated task is depicted

in Fig. 1.3(a) for a group of n autonomous mobile robots. Fig. 1.3(b) on the other

hand, shows the desired state of a group of five robots after the coordinated task is

accomplished.

Complicated coordinated tasks can be dealt with in terms of simpler coordi-

nated tasks that are manipulated sequentially. The instant implication of this idea

is that the above scenario might serve as a general basis for more complicated co-

ordinated tasks. For example, consider the manipulation of a heavy object, T , by

a nonholonomic mobile robot group as the coordinated task. To accomplish such

a coordinated task, the robots should first approach the object and grasp it in a

formation as uniform as possible for mechanical equilibrium that will provide ease

in lifting. Once the robots achieve the desired formation described in the above

scenario, they can grasp, lift and move the object to any desired pose (location and

orientation) in a coordinated manner. Another example is enclosing and catching a

prisoner, T , in a surveillance area by such a nonholonomic mobile robot group. To

achieve this goal, the distances dtarg and dnear should be decreased after the above

explained coordinated task has been finalized.

Dealing with coordinated tasks as a sequence of simpler tasks, each of which

can be considered as a “phase” of the whole task, the phenomenon of initiation of

phases arises. In the first example given above, each Ri should check if the others

have taken hold of the object before trying to lift it. On the contrary, the other

robots can start attacking the prisoner without checking the state of the other robots

in the latter scenario.

In the generic coordinated task investigated in this work, a stationary target,

T , the position of which is a priori known by all autonomous nonholonomic mobile

robots, is assumed for the sake of simplicity. The final assumption to specify the

coordinated task is that the robots communicate their positions and velocities, out

of which orientations can be extracted using the nonholonomic constraint, to each

other by some communication protocol. This is not trivial, but the design of such

communication protocols is out of the scope of this work. Instead, the research

effort is more concentrated on establishing models and designing methods to supply

coordinated motion of the autonomous nonholonomic mobile robot group.

7

R
1

R
nR

i

T

.

d
targ

(a)

T

d
near

(b)

Figure 1.3: The specified coordinated task scenario: (a)A possible initial configura-

tion for n robots (b)Desired final configuration for 5 robots

8

In this thesis, two novel approaches to the problem of modeling coordinated

motion of a group of autonomous nonholonomic mobile robots will be developed.

An online collision avoidance algorithm, that will be explained in later chapters,

will be inherent in both approaches. Chapter 2 gives a brief literature survey on

the issues related to coordinated motion of a group of autonomous mobile robots

and outlines the previous studies along with the presentation of the previous results

in the area. Chapter 3 is on modeling and control of nonholonomic mobile robots.

The first approach developed in this thesis is presented in detail in Chapter 4. In

Chapter 5, the details of the second model developed in this thesis are given. The

results of the simulations and experiments are given in Chapter 6. In Chapter 7, the

thesis is concluded with some remarks on the developed models and some possible

future work is presented.

9

Chapter 2

A Brief Survey on Coordination

Essential aspects of modeling the coordinated motion of a group of autonomous

mobile robots have been outlined in Chapter 1. The problem can be summarized as

follows: A group of autonomous mobile robots should move in a coordinated fashion

for the achievement of a specified task, each member avoiding possible collisions

with the other members of the group and the obstacles around. The development

of models describing the motion of each autonomous member in the group - hence

the motion of the entire group - is an important and nontrivial problem.

The research effort in modeling groups of autonomous mobile robots engaged in

coordinated behavior has been growing recently [1] - [19], [23] - [27], [49]. This chap-

ter outlines some methods in the literature that researchers from diverse disciplines

have developed to attack this challenging problem; i.e. their interpretation of the

problem, approaches developed to end up with good models, etc.

There are several ways in which researchers in different areas interpret coordina-

tion. For instance, computer scientists dealing with networks think of coordination

as the communication of the computers through a network; i.e. multi-agent systems

in computer science jargon. A coordinated task in their sense is either a compu-

tation requiring very high computational power that can be provided by multiple

computers or shared use of a specific hardware among the agents. On the other

side of the coin, studies in robotics consider coordination generally among a group

of robots, often mobile, that is designed to achieve a predefined coordinated task

as described in Section 1.1. Researchers in telecommunications society on the other

hand, deal with the problem of data transfer between the autonomous robots in a

group of mobile robots performing a coordinated task.

10

The rest of this chapter introduces the most common approaches to the following

three main aspects of the problem:

• Coordination Constraint

• Modeling Approach

• Sensory Base

2.1 Coordination Constraints

The coordinated motion of a group of autonomous mobile robots is defined as the

motion of the group maintaining certain formations. There are a variety of different

approaches to this maintenance problem in the literature [15].

2.1.1 Leader-Follower Configuration

In this configuration, the group has one or more leader(s) and the motion of the

so-called followers is dependent on the motion of the leader(s). In that sense, the

system becomes centralized - a direct disadvantage of which is the risk in case of

the failure of a leader. Leader-follower configuration is compared with decentralized

schemes in [2], [14], [15] and [27].

The simple leader-follower configuration is depicted in Fig. 2.1. In this scenario,

Rj follows Ri with a predefined separation lij and a predefined orientation ψij; which

is the relative orientation of the follower with respect to the leader as shown.

Figure 2.1: Leader-follower configuration

11

This two-robot system can be modeled if a suitable transformation to a new set

of coordinates where leader’s state is treated as an exogenous input is carried out.

The stability of this system was proven using input-output feedback linearization

under suitable assumptions in [2].

For flocking birds, V-shaped formation was shown to be advantageous for aero-

dynamic and visual reasons [11]. Such a formation depicted in Fig. 2.2 seems as

a good example of leader-follower configuration. However, investigations revealed

that there’s actually no leader and the members are shifted from the leader position

to the very back of the V-shape periodically since the members closer to the leader

position spend more power. This switching behavior motivates the studies towards

decentralized systems.

2.1.2 Leader-Obstacle Configuration

This configuration allows a follower robot to avoid the nearest obstacle within its

sensing region while keeping a desired distance from the leader. This is a nice and

reasonable property for many practical outdoor applications.

The simple leader-obstacle configuration is depicted in Fig. 2.3. In this scenario,

the outputs of interest are lij and the distance δ between the reference point Pj on

the follower, and the closest point O on the object.

A virtual robot Ro moving on the obstacle’s boundary is defined with heading θo

tangent to the obstacle’s boundary for modeling purposes. This system was shown

to be stable under suitable assumptions by input-output feedback linearization in [2].

This configuration might be considered as a centralized system due to the de-

pendency of the path of the follower on that of the leader. On the other hand, the

autonomous behavior of the follower robot in the presence of obstacles introduces

some level of decentralization in this system.

Figure 2.2: V-shaped formation of flocking birds

12

Figure 2.3: Leader-obstacle configuration

2.1.3 Shape-Formation Configuration

When there are three or more robots in the group, two consecutive leader-follower

configurations might be used with a random selection of the leaders and followers

for each pair. Instead, a shape formation configuration that will enable interaction

between all robots may be used to implement a decentralized system.

This configuration is depicted in Fig. 2.4 for a group of three robots. In this

scenario, each robot follows the others with desired separations. e.g. Rk follows Ri

and Rj with desired distances lik and ljk respectively as seen in the figure.

This system was also proved to be stable under suitable assumptions by input-

output feedback linearization in [2]. The proof is done by the aid of suitable coor-

dinate transformations.

Figure 2.4: Shape-formation configuration

13

An important property of this configuration is that it allows explicit control of

all separation distances; hence minimizes the risk of collisions. This property makes

this configuration preferable especially when the distances between the robots are

small.

2.2 Modeling Approaches

The mathematical model of a group of autonomous mobile robots has been derived

using a variety of different ideas in the literature. In other words, there are diverse

approaches to the derivation of mathematical representation of the rules dictating

the motions of the robots [30]. Note that a hybrid system that is constructed as

a combination of the ideas presented in the following subsections might be used to

model coordinated motion of a group of autonomous mobile robots; i.e. the ideas

in the following subsections do not fully contradict with each other.

2.2.1 Potential Fields

In this approach, the robot is assumed as a single point and a generally circular

virtual potential field is considered around it. The idea of defining navigation path

of a robot on the basis of potential fields has been used extensively in the litera-

ture [16], [29].

Baras et. al. constructed a potential function for each robot consisting of several

terms, each term reflecting a goal or a constraint [29]. In that work, the position

of the robot i at time t is denoted as pi(t) = (xi(t), yi(t)). The potential function

Ji,t(pi) for the robot i at time t is then given as:

Ji,t(pi) = λgJ
g(pi(t)) + λnJ

n
i,t(pi(t))

+ λoJ
o(pi(t)) + λsJ

s(pi(t)) + λmJm
t (pi(t)) ,

(2.1)

where Jg, Jn
i,t, Jo, Js, Jm

t are the components of the potential function while and

λg, λn, λo, λs, λm ≥ 0 are the corresponding weighting coefficients due to the target

(goal), neighboring robots, obstacles, stationary threats and moving threats, respec-

tively. The velocity ṗi that will be used as the reference signal by a low-level velocity

controller is calculated by:

14

ṗi(t) = −∂Ji,t(pi)

∂pi

. (2.2)

The components of the potential function are described as follows:

• The target potential Jg(pi) = fg(ri) where ri is the distance of the ith robot to

the target, and fg(·) a suitably defined function satisfying fn(r) → 0 as r → 0.

Most researchers in the area defined this function as fg(r) = r2 motivated by

Newton’s gravitational force;

• The neighboring potential Jn
i,t(pi) = fn(|pi − pj|) where pj denotes the posi-

tion of an effective neighbor, and fn(·) is an appropriately defined function

satisfying fn(r) →∞ as r → 0.

• The obstacle potential Jo(pi) = fo(|pi−Oj|) where Oj denotes the position of

the obstacle, and fo(·) is an appropriately defined function satisfying fo(r) →
∞ as r → 0.

• The potential Js due to stationary threats. This can be modeled similarly as

the obstacle potential.

• The potential Jm(pi) = fm(|pi − qj|) due to moving threats where qj denotes

the position of the threat, and fm(·) is an appropriately defined function sat-

isfying fm(r) →∞ as r → 0. fm(·) might be a piecewise continuous function

depending on the sensing range of the robot.

A sliding mode controller was used in [16] to track similarly obtained references

to provide collision-free trajectories for the autonomous mobile robots. In that

work, the notion of “behavior arbitration” is introduced for the adjustment of the

weighting coefficients of the potentials due to the target and the obstacle. A result

of the algorithm developed in that work is depicted in Fig. 2.5.

2.2.2 Formation Vectors

Yamaguchi introduced “formation vectors” to model coordinated motion of mobile

robot troops aimed for hunting invaders in surveillance areas in [12]. In that work,

15

Figure 2.5: A simulation result using potential fields; the robot moves inwards

each robot in the group controls its motion autonomously and there’s no centralized

controller. To make formations enclosing the target, each robot especially has a

vector called “formation vector” and formations are controlled by these vectors.

These vectors are determined by a reactive control framework heuristically designed

for the desired hunting behavior of the group.

Under the assumption of n mobile robots forming a strongly connected configu-

ration initially - i.e. each robot senses at least one neighboring robot - each robot

at the start of an arrow keeps a certain relative position to the robot at the end of

the arrow to form formations. The velocity controller of the ith robot in the troop,

Ri, implements the control strategy:


 ẋi

ẏi


 =

∑
jεLi

τij






 xj

yj


−


 xi

yi






 + τi






 xt

yt


−


 xi

yi








+


 dxi

dyi


 +

∑
jεOBJECTS δij





 xj

yj


−


 xi

yi







+
∑

jεOBJECTS δijD









 xj

yj


−


 xi

yi






 /

∣∣∣∣∣∣


 xj

yj


−


 xi

yi




∣∣∣∣∣∣


 ,

(2.3)

16

with:

δij =





δ, if

∣∣∣∣∣∣


 xj

yj


−


 xi

yi




∣∣∣∣∣∣
≤ D

0, if

∣∣∣∣∣∣


 xj

yj


−


 xi

yi




∣∣∣∣∣∣
> D

,

jεOBJECTS = Li ∪Mi ∪Ni ∪ TARGET ,

where [ẋi, ẏi]
t is the velocity of Ri, Li is the set of robots that are considered as

neighbors by Ri, Mi is the set of robots and Ni is the set of obstacles that are sensed

by Ri for collision avoidance, [ẋj, ẏj]
t is the position of the jth robot in the group,

Rj, [ẋt, ẏt]
t is the position of the TARGET , τij is the attraction coefficient of Ri to

Rj, τi is the attraction coefficient of Ri to TARGET , δij is the repulsion coefficient

of Ri from the obstacles and [dxi, dyi]
t is the formation vector associated with Ri.

As implied by (2.3), each robot, Ri, is repelled by its neighbors when they are

considered as obstacles (the distance between Ri and that robot is below D); hence

collisions are avoided.

The formation vector associated with Ri is determined according to the relative

position of Ri to the TARGET and its neighbors, i.e. robots in Li. Examples

explaining the determination of the formation vector are given in [12].

A simulation result from [12] is given in Fig. 2.6(a). In this scenario, eight

holonomic(omnidirectional) robots successfully avoid collisions with static obstacles,

O1 and O2, as well as the other members of the group, and form a circular formation

around the invader, TARGET .

Similar ideas could be extended for multiple nonholonomic mobile robots by

adding an extra term to (2.3) due to the nonholonomic constraint on the velocity of

the mobile robot [13]. A simulation result given by Yamaguchi for the case of eight

nonholonomic mobile robots can be seen in Fig. 2.6(b)

17

(a)

(b)

Figure 2.6: Simulation results using formation vectors: (a)Eight holonomic mobile

robots (b)Eight nonholonomic mobile robots

18

2.2.3 Nearest Neighbors Rule

In 1995, Vicsek et. al. proposed the simple “nearest neighbors” method in order to

investigate the emergence of autonomous motions in systems of particles with bio-

logically motivated interaction in a Physical Review Letters article [59]. The model

can be summarized as follows: Particles are driven with a constant absolute velocity

and at each time step they assume the average direction of motion of the particles

in their neighborhood with some random perturbation added. The developed model

was able to mimic the motion of bacteria that exhibit coordination motion in or-

der to survive under unfavorable conditions with a good approximation. This idea

has then been widely used in the literature to attack the problem of modeling the

coordinated motion of a group of autonomous mobile robots [13], [14], [17], [6].

Jadbabaie et. al. provided a theoretical explanation for the observed behavior

of such a system moving according to nearest neighbors rule both for a leaderless

configuration and a leader-following configuration [14]. In that work, they showed

that Vicsek model is a graphic example of a switched linear system which is stable,

but for which a common quadratic Lyapunov function doesn’t exist.

In [18], it has been qualitatively shown that a group of autonomous mobile robots

will always break into several separated groups and all robots from each of those

groups will go in the same direction. However, this proof was done in the absence

of a global attraction to some direction, e.g. attraction to a possible target.

2.3 Sensory Bases

The information about the robot’s environment might be based on different sensors

as explained in Section 1.3. The following sections introduce some of the possible

problems and their solutions encountered in the literature.

2.3.1 Sensor Placement

Placement of a number of sensors on a mobile robot is crucial for the gathering

of maximum information about the environment, which in turn utilizes the imple-

mentation of developed coordination models. This problem has been addressed in

several studies such as [2], [47] - [50].

19

A new method that uses Christofides algorithm along with graphical methods

to determine the shortest necessary path between the viewpoints for planning the

viewpoints for 3D modeling of the environment has been developed in [47].

Salomon developed a force model for the appropriate placement of sensors on

the robots in [4]. In that work, dynamically evolvable hardware is used; i.e. the

poses of the sensors are functions of interest areas that might be time-variant. The

idea is illustrated in Fig. 2.7 and the algorithm is summarized as follows:

• The sensing mechanism of the robot consists of n sensors among which the

first and the last are rigidly connected to the robot’s body.

• A robot has some interest regions which might be considered as attraction

forces. Due to these forces, n− 2 sensors evolve to their final poses.

• The final poses of the sensors are decided by a simple network of springs

connected between the sensors.

Salomon’s model draws from some biological observations. The insertion of a

new cell into a bunch of cells at some particular place would have a strong effect in

its vicinity but a rather small effect globally. Similarly, a particular force Fi twice

as strong as before due to the placement of an object of high interest in the area

sensed by the sensors i and i + 1 would almost double the angle between those

sensors, whereas it would decrease the other angles by a small amount dependent

on the number of sensors.

(a) (b)

Figure 2.7: Sensor placement techniques: (a)Conventional (b)Salomon’s force model

20

2.3.2 Ultrasonic Sensors

Ultrasonic sensors are mostly used for the measurement of distances that will be uti-

lized for self-localization of the robot or collision avoidance algorithms. Compared

with other detection modes, ultrasonic sensing is a favorable distance measurement

mode due to its robustness against changes in environmental factors such as tem-

perature, color, etc. Most ultrasonic sensors have the transmitter and receiver on

the same side. For continuous distance measurements using such sensors, ultrasonic

pulse echo technique is widely used. The working principle is: the sender sends an

ultrasonic pulse - a sound wave transmits in the medium - that is reflected when

it hits physical objects. Recording the duration between sending and receiving, the

distance from the sensor to reflection point is calculated based on the velocity of

sound wave in the medium.

An ultrasonic sensor ring attached to the robot base is used to sense the distance

to the physical objects in the environment to avoid the collisions of the robots with

the walls and other robots in the robotic soccer examples of [20] - [22].

2.3.3 Vision Sensors

Onboard cameras mounted on the basis of the robots have been widely used as

the sensory base for mobile robots in the literature. Many researchers proposed

diverse methods for the problems that arise when a camera is used on a mobile

platform such as self-localization of the robots, vision-based control of mobile ro-

bots, 3D modeling of the environment, collision avoidance, etc for the last two

decades [8], [19] - [22], [32] - [39], [41], [43] - [46]. The reason behind this high

interest in using cameras as sensors is the fact that they are cheap and off-the-shelf

components, which can be used for various goals.

The characters of integration of traffic control systems and dynamic route guid-

ance systems based on visual sensing are analyzed and a two kind agent model is

developed [8]. In that work, route guidance and traffic control are addressed sepa-

rately and the mobile robots are assigned as route guidance agents or traffic control

agents dynamically according to the circumstances.

A new geometric method for the estimation of the camera angular and linear

velocities with respect to a planar scene was developed by Shakernia et. al. [34].

21

In that article, the problem of controlling the landing of an unmanned air vehicle

via computer vision was presented. Differential flatness of the planar surface in the

image was utilized in the control loop of the vehicle.

Hai-bo et. al. developed a fast and robust vision system for autonomous mobile

robots equipped with a pan-tilt camera [45]. The performance of the system in terms

of its speed and robustness is increased through appropriate choice of color space,

algorithms of mathematical morphology and active adjustment of parameters. In

that work, preprocessing of images and intelligent subsampling are used to facilitate

high sampling rates of around 25Hz.

Most of these studies attack the problem of developing a robust model for a single

pan-tilt camera attached to the base of the mobile robot. The following sections

present other possibilities commonly encountered in literature.

Omnidirectional Cameras

An omnidirectional camera captures images of the environment in a radial form.

Actually, the lens is mounted pointing upwards on the robot and captures the image

of a circle of certain radius around the robot with the help of a mirror fixed across

the lens. A sample image captured by such a camera is shown in Fig. 2.8.

Omnidirectional cameras were used as sensors for mobile robots in a group per-

forming coordinated tasks in [20], [27], [44], and [48]. The use of such cameras

is advantageous for some tasks such as 3D modeling of the ground plane and self-

localization of the robots. Spletzer et. al. developed a framework for the coordina-

Figure 2.8: Sample image from an omnidirectional camera

22

tion of multiple mobile robots, which use vision for extracting the relative position

and orientation information [27]. In that work, a centralized localization method is

used although every robot has its own onboard camera. A group of three mobile ro-

bots in a box-pushing task was demonstrated using “shape-formation configuration”

described in Section 2.1.3.

Similar ideas were applied for a catadioptric (using refracted and reflected light)

omnidirectional camera system, depicted in Fig. 2.9 for a robotic soccer team in [20].

In that work, ultrasonic sensors are used together with the omnidirectional camera

to avoid collisions with the other members of the group and the walls of the soccer

field.

Multiple Vision Agents

Robotic applications often need simultaneous execution of different tasks using dif-

ferent camera motions. Most common tasks in such a mobile robot navigation are

following the road, finding moving obstacles and possible traffic signs, viewing and

memorizing interesting patterns along the route to create a model of the environ-

ment, etc. Robots that are equipped with a single camera allocate their camera and

computational power for these tasks sequentially; hence the sampling rate for the

control algorithm of the robot is decreased.

Figure 2.9: Catadioptric omnidirectional vision system mounted on a robot

23

The concept of Multiple Vision Agents (MVA) were introduced to attack this

problem in [40]. In that work, a system with 4 cameras moving independently of

each other was developed. Each agent analyzes the image data and controls the

motion of the camera it is connected to. The various visual functions are assigned

to the agents for the achievement of the task in the real world. The following three

properties are common to each agent of the MVA:

• Each agent corresponds to a camera and controls the motion of that camera

independently.

• Each agent has a computing resource of its own and processes the image taken

by its camera using that resource.

• Each agent behaves according to three instincts of visual perception:

– Moving obstacle tracking.

– Goal searching.

– Free region detection.

These instincts are activated in the assigned order according to the priority of

the instinct given in Fig. 2.10.

Figure 2.10: Visual perception instincts in a hierarchical design

24

The idea was extended in [35] for panoramic sensing of mobile robots. In that

work, the robot builds up an outline structure of the environment, as a reference

frame for gathering the details and acquiring the qualitative model of the environ-

ment, before moving.

25

Chapter 3

Nonholonomic Mobile Robots:

Modeling & Control

A vehicle is nonholonomic if it has a certain constraint on its velocity in moving

certain directions. For example, two-wheeled mobile robots are nonholonomic since

they can not move sideways unless there is slip between their wheels and the ground.

Two-wheeled robots and car-like vehicles are the most appealing examples in daily

life. The nonholonomic constraint complicates the development of mathematical

representations and control laws for such robots.

Systems with nonholonomic constraints - and consequently chained systems -

have received significant research interest in robotics society, especially in the last

two decades. Results of studies in the area can be found in [51] - [58].

In this work, the coordinated motion of a group of nonholonomic mobile robots

is investigated. Two-wheeled robots, often referred as “unicycle”, are used as test

beds to test the performance of the developed methods. The following sections

outline the basics of mathematical modeling and control laws for these specific type

of nonholonomic mobile robots.

3.1 Modeling

The model of a physical system can be dynamic or kinematic. However, the non-

holonomy of a unicycle type mobile robot introduces the following constraint on the

velocity of the robot: the robot can’t perform any sideways motion. Due to this fact,

dynamic modeling of unicycle robots is very complicated; e.g. an attractive force

acting on the robot will not be able to move the robot if its orientation coincides

with the axis of wheels. Instead, nonholonomic mobile robots are represented by

26

their kinematic models. It’s widely known that the kinematic model for unicycle

robot is given by the equation:




ẋ

ẏ

θ̇


 =




u1 cos θ

u1 sin θ

u2


 , (3.1)

where x and y are the Cartesian coordinates of the center of mass of the robot, θ

is its orientation with respect to the horizontal axis, u1 and u2 are its linear and

angular velocities, respectively.

The pose of a robot in cartesian coordinates is represented by the three variables

x, y and θ. In the above equation, these variables can be treated as outputs while

u1 and u2 can be utilized as inputs. In other words, the linear and angular velocities

of the robot should be designed appropriately for the robot to achieve a specified

pose. The mathematical representation of the system can be rewritten for such an

approach as:




ẋ

ẏ

θ̇


 =




cos θ

sin θ

0


 u1 +




0

0

1


 u2 . (3.2)

The velocities u1 and u2 in the above equations are related to the linear velocities

of the centers of the right and left wheels with:


 u1

u2


 =


 (uR + uL)/2

(uR − uL)/(2λ)


 , (3.3)

where λ is the half length of the wheel axis as shown in Fig. 3.1.

3.2 Control

The difficulty of the control problem for nonholonomic mobile robots originates

from the nature of (3.2). In that system, only two controls, the linear and angular

velocities of the robot, are used to control three outputs for the pose of the robot.

27

Figure 3.1: A unicycle robot and its variables of interest

Nonholonomic mobile robots cannot be stabilized to a desired pose by using

smooth state-feedback control although they are completely controllable in their

configuration space [52]. However, feedback stabilization of a point on a nonholo-

nomic mobile robot was shown to be possible in [53]. In that work, C. Samson and

K.Ait-Abderrahim proved that feedback stabilization of the robot’s pose around

the pose of a “virtual reference robot” is possible provided the reference robot keeps

moving. Consequently, tracking of time-variant reference trajectories and parking

should be considered as different control problems as pointed out in [54].

The well known problem of switching between controllers arises here. For most

tasks about nonholonomic mobile robots, the designed controllers switch between

the proposed solutions for trajectory tracking and parking. If a high frequency

switching occurs, this might risk the stability of the system. However, there’s no

better solution as of today in the literature, so similar switching of controllers will

be used in this work.

3.2.1 Trajectory Tracking Problem

For time-variant reference trajectory tracking, the reference trajectory must be se-

lected to satisfy the nonholonomic constraint. This is ensured by tracking a virtual

reference robot which moves according to the model:

28




ẋr

ẏr

θ̇r


 =




cos θr

sin θr

0


 u1r +




0

0

1


 u2r . (3.4)

where xr and yr are the Cartesian coordinates of the center of mass of the virtual

reference robot, θr is its orientation with respect to the horizontal axis, u1r and u2r

are its linear and angular velocities, respectively.

If xr, yr and θr are continuously differentiable and bounded as t → ∞ one can

easily show that




u1r

u2r

θr


 =




ẋr cos θr + ẏr sin θr

(ÿrẋr − ẍrẏr) /
(
ẋr

2 + ẏr
2
)

arctan (ẏr/ẋr)


 . (3.5)

The tracking errors x̃, ỹ and θ̃ are defined as the difference between the actual

robot’s pose,
[

x y θ
]t

, and pose of the virtual reference robot as follows:




x̃

ỹ

θ̃


 =




x

y

θ


−




xr

yr

θr


 . (3.6)

To facilitate the generation of a control law, the transformed tracking errors (e1,

e2 and e3) are obtained using an invertible transformation as follows:




e1

e2

e3


 =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1







x̃

ỹ

θ̃


 . (3.7)

Based on the inverse transformation of (3.7), it is clear that
[

x̃ ỹ θ̃
]t

→ 0 if
[

e1 e2 e3

]t

→ 0 as t →∞ as seen below:




x̃

ỹ

θ̃


 =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1







e1

e2

e3


 . (3.8)

29

It is shown in [58] that the following controls, u1 and u2, with proper selection

of constant control gains, k1 > 0 and k2 > 0, regulate all tracking errors to zero for

time-variant reference trajectories:


 u1

u2


 =


 −k1e1 + u1r cos e3

−u1r (sin e3/e3)− k2e3 + u2r


 . (3.9)

[57] provides an overview of trajectory tracking problems for nonholonomic

vehicles. Several control objectives for such a system are discussed and reviewed

from the aspects of robotics and control in that article. This would work as a good

reference for further information about the time-variant trajectory tracking problem

and the proposed solutions both for unicycle and car-like vehicles.

3.2.2 Parking Problem

Parking the robot at a fixed reference position,
[

xp yp

]t

, with a fixed reference

orientation, θp, is a different problem for nonholonomic vehicles from the control

point of view, as explained above. The control law given by (3.9) doesn’t regulate

all of the three errors to zero in this case. In other words, there’s no stabilizing

time-invariant feedback law for fixed-point references.

When smooth state-feedback fails to stabilize the system in a control problem,

it is common to search for a stabilizing discontinuous feedback. However, another

approach might be to use a time-varying feedback law to have a smooth response [52].

For this problem, the parking errors x̃p, ỹp and θ̃p are defined as the difference

between the actual robot’s pose,
[

x y θ
]t

, and the desired fixed pose as follows:




x̃p

ỹp

θ̃p


 =




x

y

θ


−




xp

yp

θp


 . (3.10)

A similar transformation as given in (3.7) can be applied to obtain transformed

parking errors (e1p, e2p and e3p) for easier construction of the control law as follows:

30




e1p

e2p

e3p


 =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1







x̃p

ỹp

θ̃p


 . (3.11)

It is clear that
[

x̃p ỹp θ̃p

]t

→ 0 if
[

e1p e2p e3p

]t

→ 0 as t →∞ based on

the inverse transformation of (3.11).

It is shown in [58] that the following smooth time-varying feedback controls,

u1p and u2p, with proper selection of constant control gains, k1p > 0 and k2p > 0,

regulate all tracking errors to zero for fixed-point references:


 u1p

u2p


 =


 −k1pe1p

−k2pe3p + e2
2p sin(t)


 . (3.12)

Note that there are other approaches to this problem. For example, Lee et. al.

proposed a new method for the parking problem of nonholonomic mobile robots

in 2004 [51]. In that work, the problem of switching between the two controllers

given above by (3.9) and (3.12) is addressed. The proposed idea is to add a virtual

trajectory to the original trajectory to create a reference trajectory for the parking

problem and applying a smooth, time-invariant control that is derived by lineariza-

tion and pole-placement techniques. Despite the fact that this is a solution for the

controller-switching problem, the performance of switched controllers is still better.

3.3 Simulations for Gain Adjustments

The performance of the control laws presented above were investigated by simu-

lations that were run in Simulink 6.1 and MATLAB 7.0.1. The block diagram

generated for these simulations in Simulink is depicted in Fig. 3.2.

A single nonholonomic mobile robot, with a maximum linear speed of 1.0m/sec

and a maximum angular speed of (π/2)rad/sec was used in the simulations.

3.3.1 Trajectory Tracking Simulations

A circle of radius r = 2.0m to be followed by ω = (π/6)rad/sec was used as a sample

time-varying reference trajectory to investigate the performance of (3.9).

31

Figure 3.2: Simulink block diagram for the simulations of control laws

A variety of values for the control gains k1 and k2 in that control law were

simulated and the average tracking errors were recorded for each case.

The simulations were run only for the upper-left quarter of the circle for time-

consumption considerations. The initial and final poses of the nonholonomic mobile

robot along with the reference circular trajectory are shown in Fig. 3.3. The little

circle inside the rectangle depicting the robot is the reference position input to the

robot; i.e. the position of the virtual reference robot.

The average tracking errors for each value of the control gains, k1 and k2, are

given in Table 3.1.

32

(a)

(b)

Figure 3.3: Trajectory tracking scenario: (a)Initial pose (b)Final pose

33

Table 3.1: Average tracking errors for different values of

control gains

k1 k2 x̃(m) ỹ(m) θ̃(rad)

3 3 0.025740 0.048942 0.00508680

3 6 0.025007 0.049741 0.00315590

3 9 0.024658 0.050110 0.00228530

3 12 0.024454 0.050321 0.00179090

3 15 0.024321 0.050458 0.00147210

3 18 0.024227 0.050554 0.00124970

3 21 0.024157 0.050625 0.00108560

3 24 0.024103 0.050679 0.00095963

6 3 0.025740 0.048942 0.00508680

6 6 0.025007 0.049741 0.00315590

6 9 0.024658 0.050110 0.00228530

6 12 0.024454 0.050321 0.00179090

6 15 0.024321 0.050458 0.00147210

6 18 0.024227 0.050554 0.00124970

6 21 0.024157 0.050625 0.00108560

6 24 0.024103 0.050679 0.00095963

9 3 0.025740 0.048942 0.00508680

9 6 0.025007 0.049741 0.00315590

9 9 0.024658 0.050110 0.00228530

9 12 0.024454 0.050321 0.00179090

9 15 0.024321 0.050458 0.00147210

9 18 0.024227 0.050554 0.00124970

9 21 0.024157 0.050625 0.00108560

9 24 0.024103 0.050679 0.00095963

12 3 0.025740 0.048942 0.00508680

12 6 0.025007 0.049741 0.00315590

Continued on next page

34

Table 3.1 – continued from previous page

k1 k2 x̃(m) ỹ(m) θ̃(rad)

12 9 0.024658 0.050110 0.00228530

12 12 0.024454 0.050321 0.00179090

12 15 0.024321 0.050458 0.00147210

12 18 0.024227 0.050554 0.00124970

12 21 0.024157 0.050625 0.00108560

12 24 0.024103 0.050679 0.00095963

15 3 0.025740 0.048942 0.00508680

15 6 0.025007 0.049741 0.00315590

15 9 0.024658 0.050110 0.00228530

15 12 0.024454 0.050321 0.00179090

15 15 0.024321 0.050458 0.00147210

15 18 0.024227 0.050554 0.00124970

15 21 0.024157 0.050625 0.00108560

15 24 0.024103 0.050679 0.00095963

18 3 0.025740 0.048942 0.00508680

18 6 0.025007 0.049741 0.00315590

18 9 0.024658 0.050110 0.00228530

18 12 0.024454 0.050321 0.00179090

18 15 0.024321 0.050458 0.00147210

18 18 0.024227 0.050554 0.00124970

18 21 0.024157 0.050625 0.00108560

18 24 0.024103 0.050679 0.00095963

21 3 0.025740 0.048942 0.00508680

21 6 0.025007 0.049741 0.00315590

21 9 0.024658 0.050110 0.00228530

21 12 0.024454 0.050321 0.00179090

21 15 0.024321 0.050458 0.00147210

21 18 0.024227 0.050554 0.00124970

Continued on next page

35

Table 3.1 – continued from previous page

k1 k2 x̃(m) ỹ(m) θ̃(rad)

21 21 0.024157 0.050625 0.00108560

21 24 0.024103 0.050679 0.00095963

24 3 0.025740 0.048942 0.00508680

24 6 0.025007 0.049741 0.00315590

24 9 0.024658 0.050110 0.00228530

24 12 0.024454 0.050321 0.00179090

24 15 0.024321 0.050458 0.00147210

24 18 0.024227 0.050554 0.00124970

24 21 0.024157 0.050625 0.00108560

24 24 0.024103 0.050679 0.00095963

3.3.2 Parking Simulations

A sample fixed point reference to investigate the performance of the control law

given by (3.12) was used in these simulations. A variety of values for the control

gains k1p and k2p in that control law were simulated and the final parking errors

were recorded for each case.

The initial and final poses of the nonholonomic mobile robot along with the fixed

point reference are shown in Fig. 3.4. The little circle is the reference fixed position

input to the robot.

The final parking errors for each value of the control gains, k1p and k2p, are given

in Table 3.2.

36

(a)

(b)

Figure 3.4: Parking scenario: (a)Initial pose (b)Desired final pose

37

Table 3.2: Final parking errors for different values of con-

trol gains

k1p k2p x̃p(m) ỹp(m) θ̃p(rad)

1 1 0.019550 0.002290 0.00120000

1 6 0.394650 0.000440 0.01341800

1 11 0.402980 0.001440 0.00861600

1 16 0.403520 0.001730 0.00618200

1 21 0.403260 0.001860 0.00479900

1 26 0.402920 0.001920 0.00391600

1 31 0.402620 0.001960 0.00330500

6 1 0.045049 0.000079 0.00128000

6 6 0.394560 0.003760 0.01341500

6 11 0.404750 0.002630 0.00869200

6 16 0.405080 0.001920 0.00623000

6 21 0.404550 0.001500 0.00483000

6 26 0.404000 0.001230 0.00393700

6 31 0.403540 0.001040 0.00332000

11 1 0.046686 0.000072 0.00129000

11 6 0.394630 0.004480 0.01342000

11 11 0.404810 0.003050 0.00869500

11 16 0.405120 0.002210 0.00623200

11 21 0.404580 0.001720 0.00483000

11 26 0.404030 0.001400 0.00393700

11 31 0.403560 0.001180 0.00332000

16 1 0.047077 0.000069 0.00129000

16 6 0.394650 0.004740 0.01342200

16 11 0.404820 0.003200 0.00869600

16 16 0.405130 0.002310 0.00623200

16 21 0.404590 0.001790 0.00483000

Continued on next page

38

Table 3.2 – continued from previous page

k1p k2p x̃p(m) ỹp(m) θ̃p(rad)

16 26 0.404030 0.001460 0.00393700

16 31 0.403560 0.001230 0.00332000

21 1 0.047230 0.000067 0.00129000

21 6 0.394660 0.004880 0.01342200

21 11 0.404830 0.003280 0.00869600

21 16 0.405130 0.002360 0.00623200

21 21 0.404590 0.001830 0.00483100

21 26 0.404030 0.001490 0.00393700

21 31 0.403560 0.001260 0.00332000

26 1 0.047305 0.000066 0.00129000

26 6 0.394660 0.004960 0.01342300

26 11 0.404830 0.003330 0.00869600

26 16 0.405130 0.002390 0.00623200

26 21 0.404590 0.001860 0.00483100

26 26 0.404030 0.001510 0.00393700

26 31 0.403560 0.001280 0.00332000

31 1 0.047349 0.000065 0.00129000

31 6 0.394670 0.005020 0.01342300

31 11 0.404830 0.003360 0.00869600

31 16 0.405130 0.002420 0.00623200

31 21 0.404590 0.001870 0.00481300

31 26 0.404030 0.001530 0.00393700

31 31 0.400356 0.001290 0.00332000

Since this thesis is essentially on modeling and control of coordinated motion, the

control problems of nonholonomic mobile robots will not be discussed any further.

The simulation results presented above are promising. In the developed models of

Chapter 4 and Chapter 5, the control laws given by (3.9) and (3.12) will be used

appropriately.

39

Chapter 4

Dynamic Coordination Model

Coordinated motion of a group of autonomous mobile robots requires each member

of the group to follow specific trajectories that are dependent on the motions of the

other members of the group. Hence, coordinated motion of a group of autonomous

mobile robots will be modeled by the generation of a reference trajectory for each

member in the group, that is dependent on the positions and orientations of some

or all of the others. Besides, the generated reference trajectories should enable

achievement of a possible goal defined for the group. A direct result of the definition

of such a goal is the fact that; the generated models of coordinated motion and

coordinated task manipulation are scenario dependent; i.e. models for different

coordinated tasks will be different.

Throughout the rest of this thesis, models for the coordinated motion of a group

of autonomous nonholonomic mobile robots will be developed. Since the generated

model is scenario dependent, the scenario described in Section 1.4 will be used.

However, the developed model will be easy to modify for other coordinated tasks.

In this chapter, coordinated motion of a group of autonomous nonholonomic

mobile robots is defined and modeled by the definition of forces; hence the title of

the chapter. However, the control of a nonholonomic mobile robot is based on its

kinematic model as described in Chapter 3. To achieve coordinated motion using

forces and dynamics, a virtual reference model that in turn implies online collision-

free trajectories for the autonomous robots is introduced. The model consists of

virtual references - which move under the effect of coordination forces between the

robot and the others in the group, and an attraction force between the robot and

the target - for each autonomous nonholonomic mobile robot. Then, actual non-

40

holonomic mobile robot is forced to track the reference trajectory generated by the

virtual reference model by implementing the controllers described in Chapter 3.

The problem of modeling the coordinated motion of a group of autonomous non-

holonomic mobile robots is attacked by the hierarchical approach depicted in Fig. 4.1.

Note that there’s a feedback path to compensate for any disturbance such as weak

performance of the low-level controller, any variations in the parameters of the ro-

bot’s models, etc. between the actual poses of the autonomous mobile robots and

the virtual reference system, implying online generation of reference trajectories for

the robots.

The rest of the chapter describes the components of the virtual reference model

and essential factors contributing to the generation of reference trajectories.

4.1 Virtual Reference System

There are several possibilities to model the virtual reference system for the robots.

However, the generated virtual reference system should be kept as simple as possible

for easier design and manipulation of the inner dynamics.

Figure 4.1: Hierarchical approach of dynamic coordination model for the group

41

Electrical charges can be used as virtual references for the autonomous robots

along with electrostatic forces that model the forces responsible for coordination and

target attraction. In such a case, the mutual forces between two charged objects i

and j are given by:

Fij = ke
qiqj

d2
ij

rij , (4.1)

where ke > 0 is a constant, qi and qj are the signed charges of i and j, dij is the

absolute distance between i and j, whereas rij is the vector from i to j, and Fij

is the force exerted on j by i. The virtual reference system generated for a group

of three autonomous mobile robots using electrical charges and forces is depicted

in Fig. 4.2(a).

Gravitational forces can also be used to model such forces whereas masses are

used as the virtual references for the autonomous robots and the target. In such a

case, the forces between two virtual reference objects i and j are given by:

Fij = Gg
MiMj

d2
ij

rij , (4.2)

where Gg > 0 is a constant, Mi > 0 and Mj > 0 are the masses of the virtual

references, dij is the absolute distance between i and j, whereas rij is the vector from

i to j, while Fij is the force exerted by j on i. Note that Fij acts only as an attractive

force. The virtual reference system generated for a group of three autonomous

mobile robots using gravitational attraction forces is depicted in Fig. 4.2(b).

4.1.1 Virtual Masses

The virtual reference model proposed in this work consists of virtual masses that are

interconnected via virtual springs and dampers; i.e. virtual bonds. The well-known

dynamics of such a system facilitates the generation of reference trajectories.

The virtual mass-spring-damper model proposed in this work is analogous to

the molecules formed by atoms that are tied by chemical bonds (see Fig. 4.3).

The relative positions and orientations of the atoms in such a molecule are almost

constant when the molecule is moving. Similarly, the reference virtual masses should

42

(a) (b)

Figure 4.2: Possibilities for virtual reference systems: (a)Electrostatic

(b)Gravitational

be at certain positions with respect to each other when the entire system is moving

towards a target.

The forces generated on the virtual bonds are responsible for the coordinated

motion of the virtual masses. The attraction of the masses to the target, T , is

defined on the basis of a virtual bond between each virtual mass and T . Positions

and velocities of the virtual masses moving under the effect of these forces are then

input as references to the low level controllers of the autonomous robots as illustrated

in Fig. 4.1. Virtual masses in the virtual reference system can be modeled either as

point particles or as finite size geometric shells, depending on the requirements.

Figure 4.3: Analogy to a molecule where atoms are tied by chemical bonds

43

Point Particles

A point particle of finite mass that is connected to other members of the group and

the target via virtual bonds as described above can be used to generate a reference

trajectory for each of the nonholonomic mobile robots.

Since a point particle is holonomic, this approach relaxes the nonholonomic con-

straint. In other words, forces can cause point particles to move in any direction.

On the other hand, orientation is not defined for point particles. Instead, the orien-

tation reference will be obtained from the velocity of the point particle. A virtual

reference system generated for a group of three autonomous nonholonomic mobile

robots is shown in Fig. 4.4(a).

Geometric Shells

Geometric shells, i.e. circular or elliptical in 2D and spherical or ellipsoidal in 3D,

of finite size and mass can also be used as references for the robots. In this case,

the system becomes more complicated. However, the reference orientations exist in

the model since orientations of finite-size shells can be defined. This approach is

depicted in Fig. 4.4(b) for a group of three robots.

In this work, point masses are used to create virtual references for the robots.

Since there are n robots, n virtual masses, (m1,m2, ..., mn−1,mn), are generated

on the computer. The dynamics of each mi will be dictated by the virtual forces

exerted on it by the virtual bonds connected between itself and other masses or the

target.

(a) (b)

Figure 4.4: Possible virtual masses: (a)Point particles (b)Geometric shells

44

4.1.2 Virtual Forces

A biologically inspired coordination scheme where virtual bonds are constructed

between each mi and its two closest neighbors as depicted in Fig. 4.5 is used in this

work. In such a scenario, virtual bonds are not constructed between mi and mp, for

the calculation of forces that generate the dynamics of mi.

The closest two neighbors of mi exert a force on it via the virtual bonds to

keep a certain distance between themselves and mi. Physically, this distance can be

interpreted as the equilibrium length of the springs that form the virtual bonds.

Let mj be the closest and mk be the second closest neighbors of mi. Then, the

coordination force exerted on mi by mj and mk, is defined as:

Fcoord = −
[
kcoord(di2j − dcoord) + ccoord((Ẋi − Ẋj) • ni2j)

]
ni2j

−
[
kcoord(di2k − dcoord) + ccoord((Ẋi − Ẋk) • ni2k)

]
ni2k

, (4.3)

where • denotes vector dot product, kcoord and ccoord are the coefficients of the spring

and damper, respectively, di2j is the signed distance between mi and mj, ni2j is the

unit vector from mj to mi, Ẋi =
[

ẋi ẏi

]t

is the velocity vector of virtual mass mi,

Ẋj =
[

ẋj ẏj

]t

is the velocity vector of virtual mass mj, di2k is the signed distance

between mi and mk, ni2k is the unit vector from mk to mi, Ẋk =
[

ẋk ẏk

]t

is the

velocity vector of virtual mass mk, and dcoord is the coordination distance to be

maintained among the masses.

Figure 4.5: Closest two neighbors under interest for definition of coordination force

45

Similarly, the force exerted on each mi by the target, T , is modeled as the sum

of a spring force with constant ktarg and a damping force with constant ctarg. In

other words, virtual bonds are also constructed between the target and the virtual

masses.

The force exerted by T on mi, to keep mi at distance dtarg from T , is defined as:

Ftarg = −
[
ktarg(di2T − dtarg) + ctarg(Ẋi • ni2T)

]
ni2T , (4.4)

where • denotes vector dot product, ktarg and ctarg are the coefficients of the spring

and damper, respectively, di2T is the signed distance between mi and T , Ẋi =[
ẋi ẏi

]t

is the velocity vector of virtual mass mi, ni2T is the unit vector from

mcl2 to mi, and dtarg is the distance to be maintained to T .

The total force on mi is the sum of Fcoord in (4.3) and Ftarg in (4.4). Conse-

quently, the dynamics of the virtual mass mi is given by:

mi


 ẍi

ÿi


 = Fcoord + Ftarg . (4.5)

The position vector of mi, Xi =
[

xi yi

]t

that is obtained from the solution

of (4.5) is used as the reference position for the actual robot, Ri. On the other hand,

the reference orientation for Ri is extracted from Ẋi =
[

ẋi ẏi

]t

, the velocity vec-

tor of mi, which is also obtained from the solution of (4.5) as follows:

θi = arctan (ẏi/ẋi) . (4.6)

4.2 Adaptable Model Parameters

Coordinated task manipulation by a group of mobile robots is defined as the accom-

plishment of a specified task together in certain formations. The necessary formation

may vary based on the specifications of the coordinated task.

To achieve coordinated tasks by the achievement of certain formations, adaptable

springs and dampers between virtual masses might be required. For example, the

46

equilibrium lengths of the virtual springs should be changed when the robots are

near the target to achieve a uniform distribution on the final formation. In the

specified scenario of this work, the coordinated task is split into two main phases:

• (1) Approaching T starting from an initial setting.

• (2) Achieving a uniform circular formation with radius dtarg with T at the

center, towards which all robots headed.

In Phase (1), i.e. the virtual masses approach the target from some initial

formation, the priority is given to the coordinated motion of the virtual masses.

Ftarg acts on the virtual masses and attracts all of them towards T . However, Fcoord

in this phase is dominant so they move together. As long as the distance between

mi and T remains greater than a certain value dbreak, below which the achievement

of final formation will be of higher interest, kcoord is set to kfar, which is higher than

ktarg to maintain this dominance. ccoord > 0 in this phase so that the virtual masses

are forced to move in the same direction.

When the distance between the virtual mass mi and T is lower than dbreak,

it enters Phase (2). Constants of coordination forces are decreased in this phase.

Moreover, kcoord is decreased to knear, a lower value than ktarg; hence the dominance

of Ftarg and achievement of the final formation are enabled. Since the main property

of the final formation is to keep mi at distance dtarg from T for all virtual masses,

the constraint dictated by Fcoord should be relaxed. For example, ccoord is reduced

to zero so that mi need not move in the same direction with its neighbors in this

phase. The equilibrium length of the spring between the masses is changed from

the initial value of dfar to the final value of dnear.

It follows from Law of Cosines that, dnear is given as in (4.7) for a uniform place-

ment of n masses on a circle of radius dtarg as illustrated in Fig. 4.6.

dnear = dtarg

√
2(1− cos(2π/n)) . (4.7)

When mi is closer than dbreak to T , it performs circular motion because Ftarg

acts on it in the radial direction. kcoord is reduced to some finite value, knear, rather

than zero so that the virtual masses are forced to distribute on the formation circle

47

Figure 4.6: Uniform distribution of masses on the formation circle around T

uniformly. Otherwise, mi would stop when it achieves its distance from T equal to

dtarg. For Ftarg to be the dominant force, knear must be less than ktarg in this phase.

kcoord has to be reduced as a smooth continuous function of the distance of mi

to T . This results in a smooth change in Fcoord and discontinuity is avoided. Oth-

erwise the discontinuity in Fcoord might yield a big jump in the velocity of mi, and

Ri may not be able to follow such a change due to its nonholonomic nature. To en-

able a smooth change in Fcoord , kcoord is modeled by the sigmoid function defined by:

kcoord = knear +
kfar − knear

1 + exp(µ(dbreak − di2T + φ))
, (4.8)

where µ and φ are positive constants of the sigmoid function, di2T is the signed

distance between mi and T , kfar and knear are the spring coefficients used in Phase 1

and Phase 2, respectively. The change of kcoord versus di2T is depicted in Fig. 4.7.

48

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

55

Distance from Target, d
i2T

S
pr

in
g

C
oe

ffi
ci

en
t,

k co
or

d

Switching k
coord

k
coord

k
far

k
near

d
break

Figure 4.7: Adaptive spring coefficient, kcoord vs distance from T , di2T

4.3 Collision Avoidance by Velocity Update

As discussed in Chapter 1, collision avoidance is one of the essential problems in

modeling coordinated motion of a group of autonomous mobile robots. If the robots

are nonholonomic, avoiding collisions is even more complicated, since they cannot

arbitrarily change their orientations. In this section, a simple algorithm to avoid

collisions is proposed. In this work, neither static obstacles are considered nor T

is considered as an obstacle since Ftarg keeps the robot at distance dtarg from T in

Phase (2), when Ri is around T .

The developed algorithm uses sensory information coming from the robots to

predict collisions ahead of time, updates the velocities of the virtual masses to avoid

the possible collisions online. For each Ri, we define a virtual collision prediction

region(VCPR), Ωi, given by a circular arc of radius rcoll and angle θcoll, symmetric

with respect to its velocity as depicted in Fig. 4.8.

Ri, detects a collision risk when any of the other members of the group touches its

virtual region, Ωi. In case of such a collision prediction, the velocity of mi is updated

49

Figure 4.8: Virtual collision prediction region(VCPR), Ωi, for the robot, Ri

to safely avoid the collision. After the velocity of mi is updated, it moves with that

constant velocity for a user-defined short period of time. The forces described above

start to act on mi after this time delay. This delay enables avoidance of the collision

with the robot sensed as an obstacle.

The final velocity of mi after the velocity update is designed based on the relative

velocity of the sensed robot, Rj, with respect to Ri. The coordinate frame attached

to Ri and two parts, R and L, as shown in Fig. 4.9 are generated for the collision

avoidance algorithm. Ri checks if any of the sensed robots touches Ωi; i.e. if there’s a

collision risk, at each computational step. If a collision risk is detected, the following

algorithm is run:

1. Calculate the component of the velocity of Rj projected on the axis yi.

2. Rotate counter-clockwise if that component is positive.

3. Rotate clockwise if that component is negative.

4. If that component is zero:

• Rotate counter-clockwise if Rj touches the region R.

• Rotate clockwise if Rj touches the region L.

50

Figure 4.9: Ri’s coordinate frame and parts of V CPR

The collision avoidance algorithm described above was implemented as two se-

quential functions:

1. Collision prediction if Ri senses another robot, Rj.

2. If a collision with Rj is predicted, update the velocity to avoid collisions.

Note that the second function is run if and only if the result of the first function

is positive; i.e. Ri predicts a collision with Rj. The details of these functions are

explained in the following subsections.

4.3.1 Collision Prediction Algorithm

If Ri with position vector Xi =
[

xi yi

]t

and orientation 0 < θi < 2π senses

another robot Rj, it runs the following algorithm to predict any possible collision:

1. Extract the position vector and orientation of the sensed robot, Rj, from the

sensory information.

⇒ Xj =
[

xj yj

]t

and θj.

2. Calculate the coordinates of a specific number of points on the edges of Rj.

⇒ Points of the form ej =
[

ejx ejy

]t

.

51

3. For each of the calculated edge points; ej :

• Calculate the vector from the center of mass of Ri to ej .

⇒ ri2j = ej −Xi .

• If Rj is close enough for a collision risk; |ri2j | ≤ rcoll:

– Calculate the limiting angles of Ωi.

⇒ θmin = θi − (rcoll/2) ,

⇒ θmax = θi + (rcoll/2) .

– Calculate the angle of ri2j .

⇒ θi2j = arctan ((ejy − yi) / (ejx − xi)).

– If ri2j is inside Ωi; θmin < θi2j < θmax:

∗ A collision risk with Rj exists.

∗ Run the velocity update algorithm.

4.3.2 Velocity Update Algorithm

If a collision is predicted by the collision prediction algorithm, run the following

algorithm to decide direction of velocity update to avoid the possible collision:

1. Calculate the angular distances to the limits of Ωi.

⇒ αmax = |θi2j − θmax| ,
⇒ αmin = |θi2j − θmin| .

2. Decide the default velocity update direction.

• If the angle to θmin is smaller; αmin < αmax:

– The default direction is a counter-clockwise rotation of the velocity

of mi by an angle of αmin.

• If the angle to θmax is smaller; αmin ≥ αmax:

– The default direction is a clockwise rotation of the velocity of mi by

an angle of αmax.

3. Check the direction of Rj for the final decision.

• If Rj moves towards the default direction of velocity update obtained in

step 2:

52

– The direction of velocity update is opposite to the default direction.

• If Rj moves in the opposite direction to the default direction of velocity

update in step 2:

– The direction of velocity update is the default direction.

In the light of the above described algorithms, the following examples illustrate

the dependence of the velocity update direction on the velocity of Rj.

Example-1

Since RB hits the virtual arc, ΩA, RA predicts a collision in Fig. 4.9(a). In this case,

disregarding the dynamics given by (4.5), the velocity of mA - hence the reference

for RA - is updated depending on the relative velocity of RB with respect to RA.

The shortest rotational path to avoid the predicted collision in this case is to change

the orientation of RA in counter-clockwise direction until RB loses contact with ΩA.

However, the velocity of RB should also be considered. Since RB is moving to the

right, the counter-clockwise rotation avoids the predicted collision and the path of

RA for the time delay described above is free of collisions with RB. The velocity of

mB is not changed since RB doesn’t predict a collision.

Example-2

Since RB hits the virtual arc, ΩA, RA predicts a collision in Fig. 4.9(b). The easiest

way of avoiding the predicted collision in this case is to change the orientation of RA

in counter-clockwise direction until RB loses contact with ΩA. This would be useful

if RB were stationary. However, since RB is moving to the left, it will be hitting

ΩA again just after the predicted collision is avoided. To avoid this occurrence, the

orientation of RA is changed in clockwise direction, taking the relative velocity of

RB with respect to RA into account. The velocity of mB is not changed since RB

doesn’t predict a collision at the shown instant.

4.4 Controller Switching

When the virtual masses and therefore robots are uniformly distributed around T

on a circle of radius dtarg based on the framework given above, the last maneuver

53

(a)

(b)

Figure 4.10: Collision avoidance examples explaining relative velocity dependence:

(a)Example-1 (b)Example-2

that robots should do is to orient themselves towards the target.

The reference trajectories generated by the positions of the virtual masses are

tracked by the control law given by (3.9). After the virtual masses are fully dis-

tributed on the circle of radius dtarg around T , the control law of (3.12) is used to

park the robots on the circle with necessary orientations so that they head towards

T . The fixed-point reference position for Ri to park at is used as the position of

mi on the circle, whereas the reference orientation for Ri to be headed towards T is

calculated artificially for that specific reference position.

54

Chapter 5

Kinematic Coordination Model

Coordinated motion of a group of autonomous nonholonomic mobile robots is usually

modeled and controlled on the basis of virtual forces. In this approach, the reference

linear and angular velocities are derived from the reference position and orientation

obtained by solving the dynamic equations of the system. The desired kinematics

of a “virtual reference robot” so obtained is given as a reference to the actual robot.

This method fails to take the nonholonomic constraint into consideration during the

generation of reference trajectories for a group of autonomous nonholonomic mobile

robots aimed for a specific task. The actual robot might not be able to follow the

virtual reference robot if abrupt changes in the reference position and orientation

occur.

In this chapter, coordinated motion of a group of autonomous nonholonomic

mobile robots is modeled and controlled by proper selection of the linear and an-

gular velocities of the virtual reference robot; hence the title of the chapter. The

nonholonomic constraint is taken into consideration from the beginning; so the gen-

erated reference trajectories are named nonholonomic. Consequently, the regulation

of the errors between the virtual reference robot’s pose and the actual robot’s pose

to zero are guaranteed with an appropriate feedback controller. Once the reference

velocities that will yield coordinated motion are obtained, they are integrated to

get the reference positions and orientations of the robots. The first section of the

chapter is devoted to explain the details of such a trajectory generation.

The hierarchical approach, depicted in Fig. 5.1 for a single robot, is used in this

model. Note that a closed loop is formed between the virtual reference robots and

the actual robots, implying the online nature of reference velocity generation.

55

Figure 5.1: Hierarchical approach of kinematic coordination model for a single robot

5.1 Kinematic Reference Generation

The proposed model generates kinematic references instead of dynamic references;

i.e. reference linear and angular velocities instead of reference trajectories. For the

sake of simplicity in analysis, possibilities about the generation of such references

will be investigated for a single robot in this section. Coordinated motion and coor-

dinated task manipulation by a group of autonomous nonholonomic mobile robots

requires each member in the group to achieve certain poses so that the necessary

formations can be maintained by the entire group. The desired pose of each Ri is

dependent on the specified scenario.

In this section, the scenario depicted in Fig. 5.2(a) is used as a test bed to

investigate the performance of different approaches to the problem of generating

reference velocities. The desired final configuration is shown in Fig. 5.2(b).

The pose errors, ex, ey and eθ, are defined as:




ex

ey

eθ


 =




xf

yf

θf


−




xi

yi

θi


 , (5.1)

56

R
i

(x
i
 , y

i
 , θ

i
)

T

d
targ

(a)

R
i

(x
f
 , y

f
 , θ

f
)

T

d
targ

(b)

Figure 5.2: Scenario for analysis: (a)Initial pose (b)Desired pose

where Xi =
[

xi yi θi

]t

is the current pose of Ri, and Xf =
[

xf yf θf

]t

is

the desired final pose with distance dtarg to T and orientation equal to the angle of

the vector from Ri to T makes with the axis of abscissas.

The reference velocities are then generated as functions of the errors in position

and orientation of the robot. The approach is similar to the proportional velocity

controllers in control theory in the sense that reference angular velocity is mod-

eled proportional to the error in orientation and reference linear velocity is defined

57

proportional to the error in position. The reference velocities may be generated in

a variety of ways. Two essential examples of these possibilities are explained and

compared in the sequel.

5.1.1 Discontinuous Linear Velocity Reference

For the given scenario, Ri should correct its orientation to head towards T , and

maintain distance dtarg from T . This can be achieved by the introduction of a

discontinuity in the linear velocity. In this approach, Ri corrects its orientation

to some limiting value, θtol, before it starts moving towards T . After the error

in orientation falls below θtol, it starts moving towards T with a linear velocity

proportional to its distance to T , namely di2T .

To achieve the correct orientation, the reference angular velocity, u2r, is always

calculated as:

u2r = k1eθ , (5.2)

where k1 > 0 is the proportionality constant and eθ is the error in orientation.

On the other hand, the linear velocity reference, u1r, is given by:

u1r =





0, if |eθ| ≥ θtol

k2 (di2T − dtarg) , if |eθ| < θtol

, (5.3)

where k2 > 0 is the proportionality constant, θtol is the limiting orientation error

below which Ri moves towards T , di2T is the signed distance between Ri and T , and

dtarg is the distance to be maintained from T .

The system was simulated for two different values of θtol. Proper selection of the

constants k1 and k2 results in achievement of the specified task as seen in Fig. 5.3(a)

and Fig. 5.3(b). The final configurations is not the same in these two cases as

expected. Despite the fact that the generated reference velocities suffice to achieve

the desired configuration in the simulations, the discontinuity introduced by the

piecewise definition of u1r is problematic. Due to this discontinuity, the reference

linear velocity exhibits high-frequency switching behavior. The reference velocities

generated for these cases are plotted in Fig. 5.4 and Fig. 5.5.

58

(a) (b)

Figure 5.3: Discontinuous linear velocity final poses: (a)Low tolerance, θtol = 0.0873

(b)High tolerance, θtol = 0.5236

Figure 5.4: Discontinuous reference velocities with low tolerance, θtol = 0.0873

59

Figure 5.5: Discontinuous reference velocities with high tolerance, θtol = 0.5236

A direct comparison between these results reveals that a higher value of θtol

causes earlier start of linear motion. However, the time for the overall motion to be

completed is the same in both cases. In other words, a higher θtol causes Ri to reach

the neighborhood of T earlier.

Note that the above explained generation of reference trajectories might be prob-

lematic for real-time applications due to high-frequency switching of the references;

e.g. the low-level controller might fail to follow such references, power consumption

would be higher, etc. Inspired by this fact, a continuous linear velocity reference is

proposed for faster achievement of the goal in the next approach.

5.1.2 Continuous Linear Velocity Reference

The linear velocity reference is initialized with a low value and is increased as the

error in orientation decreases. The aim is to have a smoother response and reach

60

the neighborhood of T earlier. A low limiting value of the orientation error, θtol,

is specified to saturate the linear velocity reference since they are inversely propor-

tional.

In this approach, the correct orientation is achieved in the same manner as the

discontinuous case, i.e. the model for generation of angular velocity is (5.2).

On the other hand, the linear velocity reference, u1r, is given by:

u1r =





(1/ |eθ|) k2 (di2T − dtarg) , if |eθ| ≥ θtol

(1/θtol) k2 (di2T − dtarg) , if |eθ| < θtol

, (5.4)

where k2 > 0 is the proportionality constant, θtol > 0 is the saturating value for

the orientation error, di2T is the signed distance between Ri and T , and dtarg is the

distance to be maintained from T .

Appropriate selection of the constants k1 and k2 results in achievement of the

specified task as seen in Fig. 5.6. The final configurations is not the same in these

two cases as expected.

The generated reference velocities suffice to achieve the desired configuration in

the simulations. Moreover, the velocity references are changing smoothly in time;

hence, a desirable property in any control system is satisfied. Note that u1r decreases

although orientation error is below the specified value of 0.01. The reason is the

fact that u1r is dependent on di2T .

Figure 5.6: Continuous linear velocity final pose, θtol = 0.01

61

The smooth reference velocities generated using (5.4) is plotted in Fig. 5.7.

In this chapter, coordinated motion of a group of autonomous nonholonomic

mobile robots is modeled based on the proper selection of the linear and angular

velocities of the virtual reference robot for each Ri. In this case, the nonholonomic

constraint is automatically satisfied. Hence, the regulation of the errors between

the virtual reference robot’s pose and the pose of the actual robot are guaranteed.

Once the velocities to yield coordinated motion are defined, they are integrated to

generate the reference pose for the robot.

5.2 Desired Velocities

Coordinated motion of a group of autonomous nonholonomic mobile robots to ac-

complish the coordinated task described in this thesis is achieved by the definition

of desired velocities due to closest neighbors of Ri and due to T as explained below.

Figure 5.7: Continuous reference velocities with tolerance, θtol = 0.01

62

5.2.1 Velocity due to Neighbors

A biologically inspired coordination method where Ri is in interaction only with its

closest two neighbors is used as in the Dynamic Coordination Model. In this model,

the second closest neighbor has no effect on the desired velocity of Ri, as long as the

distance between Ri and T is below a predefined value drelax; i.e. Ri is around T .

Coordinated motion of a group of autonomous nonholonomic mobile robots is de-

fined in terms of maintaining certain mutual distances between the robots. In other

words, each Ri should maintain a certain distance dcoord from its closest neighbors

to achieve coordinated motion as a group. The desired velocity vector of Ri due to

its closest neighbors, vcoord , that forces the maintenance of distance dcoord between

Ri and its neighbors is given as follows:

vcoord = vcl1 + vcl2 ,

vcl1 = klin(di2cl1 − dcoord)ni2cl1 ,

vcl2 =





klin(di2cl2 − dcoord)ni2cl2 , if di2T ≥ drelax

0, if di2T < drelax

,

(5.5)

where klin > 0 is the constant of proportionality, dcoord is the coordination distance

Ri should maintain between itself and its closest neighbors, vcl1 and vcl2 are the

velocities due to the closest and second closest neighbors respectively, di2cl1 and

di2cl2 are the distances between Ri and its closest and second closest neighbors, di2T

is the distance between Ri and T , ni2cl1 and ni2cl2 are the unit vectors from Ri to

its closest neighbors, and drelax is the critical distance of Ri to T below which the

second closest neighbor loses effect.

5.2.2 Velocity due to Target

Each robot, Ri, in a group of autonomous nonholonomic mobile robots aimed to

accomplish the specified coordinated task should move towards T from any initial

pose as explained in the requirements of the task.

For each robot, Ri, a desired velocity vector due to T , vtarg is introduced, so

that it maintains the specified distance dtarg between itself and T :

63

vtarg = klin(di2T − dtarg)ni2T , (5.6)

where klin > 0 is a proportionality constant used in (5.1), di2T is the distance between

Ri and T , and ni2T is the unit vector in the direction of the vector from Ri to T .

5.2.3 Linear Combination for Reference Velocity

The reference velocity vector for Ri, namely vref , is obtained as a linear combination

of the desired velocities vcoord from (5.5) and vtarg from (5.6) multiplied by appro-

priate coefficients as follows:

vref = kcoordvcoord + ktargvtarg , (5.7)

where kcoord is the weight of the velocity due to the closest neighbors of Ri, and ktarg

is the weight of the velocity due to T .

The coefficients, kcoord and ktarg , define the dependence of the generated reference

velocity, vref , on the neighbors and T throughout the coordinated motion. The

reference velocity so obtained is then integrated to generate an appropriate reference

trajectory for Ri.

5.3 Parameter Switching

Coordinated task manipulation by a group of mobile robots is defined as the accom-

plishment of a specified task together in certain formations. The necessary formation

may vary based on the specifications of the coordinated task.

Successful manipulation of coordinated tasks by certain formations might require

the parameters of the above equations to be changed dependent on the existence of

specific conditions as described below.

In this chapter, the specified scenario of this work is split into two main phases:

• (A) Approaching T starting from an initial setting.

• (B) Achieving a circular formation with radius dtarg with T at the center to

which all robots head towards.

64

In Phase (A), i.e. when Ri is approaching T from its initial position, the priority

is given to coordination. In other words, vcoord is dominant in this case so that the

robots move as a group. However, vtarg still contributes to the desired velocity so

the group approaches T . To achieve the dominance of vcoord on vtarg , the coefficients

of the linear combination given by (5.7) are chosen to satisfy: kcoord > ktarg. In this

phase, dcoord in (5.5) is set to the initially defined value dfar while kcoord is set to the

predefined value kfar. Ri remains in this phase as long as di2T ≥ drelax; i.e. Ri is far

from T .

If di2T is below drelax, Ri is in Phase (B). In this phase, the priority is given

to maintaining the distance dtarg from T . Hence, vtarg is dominant on vcoord . To

achieve this, ktarg > kcoord in (5.7) should be satisfied. In this phase, kcoord is set

to a new value, knear. To achieve a uniform distribution on the formation circle,

dcoord in (5.5) should also be changed to a new value, dnear, possibly different from

the initial coordination distance, namely dfar. The required value of dnear is given

by (5.8) as explained in Section 4.2.

dnear = dtarg

√
2(1− cos(2π/n)) . (5.8)

The last parameter that affects the generation of the reference velocity for Ri is

ktarg in (5.7), which defines the dependency of vref on vtarg . Since kcoord is switched

from kfar to knear when Ri enters Phase (B) from Phase (A), a constant ktarg might

be used as long as the condition kfar > ktarg > knear is satisfied. However, for the

dominance in each phase to be more significant, ktarg is also switched to a new value

in this model.

The coefficient of the velocity due to the neighbor interactions in (5.7), kcoord,

is switched as a continuous function of the distance of Ri to T , namely di2T . This

parameter switching is modeled by the following sigmoid function:

kcoord = knear +
kfar − knear

1 + exp(µ(drelax − di2T + φ))
, (5.9)

where µ > 0 and φ > 0 are constants defining the characteristics of the curve,

kfar and knear are the coefficients of vcoord in (5.7) in Phase (A) and Phase (B),

65

respectively. Fig. 5.8 depicts the obtained switching behavior of kcoord.

Instead of computing ktarg with a similar sigmoid function, ktarg is defined as a

function of kcoord as follows:

ktarg = 1− kcoord . (5.10)

It is important to note that, the choice of knear and kfar in (5.9) should satisfy:

0 ≤ kcoord ≤ 1 for (5.10) to yield proper values. Fig. 5.9 depicts the obtained

continuous switching of ktarg using (5.10).

Similarly, dcoord is switched as a continuous function of di2T , again modeled by a

sigmoid function defined as:

dcoord = dnear +
dfar − dnear

1 + exp(µ(drelax − di2T + φ))
. (5.11)

where µ > 0 and φ > 0 are constants defining the characteristics of the curve, dfar

and dnear are the distances to be maintained between the robots for di2T ≥ drelax and

di2T < drelax in (5.5), respectively. Fig. 5.10 depicts so obtained switching behavior

of dcoord.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Switching k
coord

Distance from Target, d
i2T

W
ei

gh
t o

f n
ei

gh
bo

r
in

te
ra

ct
io

n,
 k

co
or

d

k
coord

Phase(A)
Phase(B)

d
relax

Figure 5.8: Adaptive neighbor interaction coefficient, kcoord vs distance from T , di2T

66

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Switching k
targ

Distance from Target, d
i2T

W
ei

gh
t o

f t
ar

ge
t a

ttr
ac

tio
n,

 k
ta

rg k
targ

Phase(A)
Phase(B)

d
relax

Figure 5.9: Adaptive target attraction coefficient, ktarg vs distance from T , di2T

0 1 2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Switching d
coord

Distance from Target, d
i2T

N
ei

gh
bo

rin
g

co
or

di
na

tio
n

di
st

an
ce

, d
co

or
d

d
coord

Phase(A)
Phase(B)

d
relax

Figure 5.10: Adaptive coordination distance, dcoord vs distance from T , di2T

67

5.4 Velocity Update to Avoid Collisions

As discussed in Chapter 1, collision avoidance is one of the essential problems in

modeling coordinated motion of a group of autonomous mobile robots. The algo-

rithm to avoid the collisions in this method is the same with the algorithm given

in Section 4.3. In this work, neither static obstacles are considered nor T is consid-

ered as an obstacle since vtarg is dominant in Phase (B), and it keeps the robot at

distance dtarg from T .

When Ri detects a collision risk, the reference velocity of Ri is updated conve-

niently as described in the previous chapter and vref is disregarded for some specific

time delay. During this delay, the priority is to avoid the predicted collision so Ri

moves in the direction that will yield a collision-free trajectory. After the avoidance,

Ri is oriented back towards T , under the effect of vref .

5.5 Reference Trajectory Generation

The reference linear and angular velocities, u1r and u2r, of the robots are derived

from the calculated reference velocity, vref =
[

vxref vyref

]t

, given by (5.7).

The first approach to generate of discontinuous reference linear velocities might

be used for the generation of velocities. However, the discontinuous reference signals

might be problematic in real-time applications as already discussed in Section 5.1.1.

In the developed method of this chapter, the second approach described in Sec-

tion 5.1.2 is used. Hence, smooth and continuous references, that can be tracked

by the control laws presented in Chapter 3, are generated for the autonomous non-

holonomic mobile robots.

The reference velocity for a unicycle type mobile robot can be expressed in terms

of a reference speed and a reference orientation due to the nonholonomic constraint.

Such an expression of the reference facilitates the generation of linear and angular

velocities.

The reference speed, |vref |, and reference orientation, θref , are obtained from the

calculated reference velocity as follows:

68

|vref | =
√

v2
xcoord + v2

ycoord ,

θref = arctan(vyref/vxref) .

(5.12)

The angular velocity reference for Ri, u2ref , is designed in terms of the orienta-

tion error, eθ, between the reference orientation, θref , and the actual orientation, θi,

by a proportional gain of krot > 0 as follows:

eθ = θref − θi ,

u2ref = kroteθ .

(5.13)

On the other hand, the linear velocity reference for Ri, u1ref , is designed as a

piecewise linear function to enable saturation of the linear velocity as in:

u1ref =





(1/ |eθ|) |vref | , if |eθ| ≥ θlim

(1/θlim) |vref | , if |eθ| < θlim

, (5.14)

where θlim > 0 is a limiting value to saturate the linear velocity, eθ is the orientation

error, and vref is the reference speed.

The reference pose of Ri, Xref =
[

xref yref θref

]t

, is obtained by the inte-

gration of the calculated reference linear and angular velocities:




xref

yref

θref


 =




∫
u1refcosθrefdt

∫
u1refsinθrefdt
∫

u2refdt


 . (5.15)

5.6 Switching Between Controllers

Finally, the generated reference pose is input as reference to the controller of the

robot that applies the feedback control laws given in Chapter 3.

When the robots are uniformly distributed around T on a circle of radius dtarg

based on the framework given throughout the chapter, the last maneuver that robots

should do is to orient themselves towards the target.

69

The reference trajectories generated by the integration of reference velocities are

tracked by the control law given by (3.9). After the robots are fully distributed

on the circle of radius dtarg around T , the control law of (3.12) is used to park the

robots on the circle with necessary orientations so that they head towards T . The

fixed-point reference position for Ri to park at is used as the current position of Ri

on the circle, whereas the reference orientation for Ri to be headed towards T is

calculated artificially for that fixed reference position.

70

Chapter 6

Simulations and Experiments

Computer simulations were carried out to test the performance of the developed

models; both for Dynamic Coordination Model of Chapter 4 and for Kinematic

Coordination Model of Chapter 5.

The system was simulated in Simulink 6.1 embedded in MATLAB 7.0.1, a very

convenient tool for modeling and simulation of systems, both continuous and dis-

crete, linear and nonlinear. Plotting and animation properties were very useful in

adjustment of parameters, development of models, etc.

The novel collision avoidance algorithm explained in detail in Section 4.3 was

also tested experimentally on Boe-Bot unicycle robots along with OpenCV, where

a wide variety of image interpretation tools can be implemented, as the software

programming basis.

6.1 Dynamic Coordination Model Simulations

The structure of the considered model for a group of three autonomous mobile robots

generated for the simulations in Simulink is depicted in Fig. 6.1.

The virtual masses used in simulations are set as mi = 1kg. The maximum speed

of the masses, hence the robots, are set to 0.5m/sec, while the maximum angular

speed of the robots was set to (2π)rad/sec. The virtual collision prediction regions

of the autonomous robots have radii rcoll = 0.45m and angle θcoll = (pi/2)rad. The

constants in the control laws were set as: k1 = k2 = 20.0 for time-variant reference

trajectories in (3.9) to be used in Phase (1) and k1p = 23.0, k2p = 16.0 for fixed-point

reference trajectories in (3.12) to be used in Phase (2).

71

Figure 6.1: Simulink block diagram for the simulations of Dynamic Coordination

Model for 3 robots

6.1.1 Collision Avoidance Simulations

The simulations were run with Ftarg = Fcoord = 0 to see the performance of the

collision avoidance algorithm in the absence of any coordinated behavior.

Head-to-Head Collision Avoidance

In this initial setting, the robots are moving towards each other with constant ve-

locities as seen in Fig. 6.2(a). Fig. 6.2(b) shows the moment of collision prediction.

Their new situation is given in Fig. 6.2(c) after they avoid the collision by taking

the necessary action. Since both robots touch the other’s VCPR, they both change

their orientations applying the velocity update algorithm explained in Section 4.3.2.

The result proves the success of the algorithm for head-to-head collisions.

72

A

B

A

B A
B

(a) (b) (c)

Figure 6.2: Dynamic coordination model, Head-to-Head Collision Avoidance:

(a)Before (b)Prediction (c)After

A

B

A

B

A

B

(a) (b) (c)

Figure 6.3: Dynamic coordination model, Single-Robot Collision Avoidance:

(a)Before (b)Prediction (c)After

Single-Robot Collision Avoidance

Fig. 6.3(a) shows the robots before any collision is predicted for this scenario where

one of the robots is approaching the other from its right hand side. Only one of the

robots, A, senses that the other is too close, i.e. detects the risk of a collision, as

shown in Fig. 6.3(b). The new headings of the robots, after A changes its orientation,

are depicted in Fig. 6.3(c). The result proves the success of the collision avoidance

algorithm in this situation as well.

6.1.2 Coordinated Motion Simulations

The coordinated motion method was simulated on the basis of the specified coordi-

nated task. The presented method was simulated for two distinct initial configura-

73

tions for three robots and two different initial configurations for four robots. The

tolerance for the robots to start parking was set to be 0.2 percent of dnear. The

other parameters in the simulations were set as in Table 6.1.

Parameter Value Reference Equation

ccoord 10.0Ns/m 4.3

dfar 2.0m 4.3

ktarg 15.0N/m 4.4

ctarg 15.0Ns/m 4.4

dtarg

2.0m for 3 Robots

3.0m for 4 Robots
4.4

kfar 50.0N/m 4.8

knear 10.0N/m 4.8

µ 10.0 4.8

φ 0.5 4.8

dbreak 1.3dtarg 4.8

Table 6.1: Dynamic coordination model parameters for simulations

Scenario-1

This simulation was run for a group of three autonomous nonholonomic mobile ro-

bots. Since virtual bonds are constructed for each mi with its closest two neighbors,

mutual coordination forces among each binary combination of the robots exist in

this simulation.

The initial configuration is such that the robots and the target are placed on

opposite corners of the room as depicted in Fig. 6.4(a). They detect and avoid the

collisions and move in a coordinated fashion in the form of an equilateral triangle

with sides dfar. As the distance between each Ri and T falls below dbreak, it starts

circular motion since the virtual bonds are relaxed and Ftarg becomes dominant.

Finally, they take the form of an equilateral triangle with sides equal to dnear.

Snapshots from the animation are given in Fig. 6.4.

74

(a) (b)

(c) (d)

Figure 6.4: Dynamic coordination model, Scenario-1: (a)Initial configuration

(b)Collision avoidance (c)Coordinated motion (d)Desired formation achieved

Scenario-2

This simulation was also run for a group of three autonomous nonholonomic mobile

robots. Each mi is in coordination with all the other robots in the group since there

are three robots in this simulation.

75

(a) (b)

(c) (d)

Figure 6.5: Dynamic coordination model, Scenario-2: (a)Initial configuration

(b)Coordination dominant (c)Virtual bonds relaxed (d)Desired formation achieved

The initial setting of this scenario is depicted in Fig. 6.5(a). In this case, the

robots first move towards each other and then approach T as a group. This is because

kcoord = kfar > ktarg initially. After the robots form the triangle seen in Fig. 6.5(b),

they move in a coordinated manner and achieve the desired formation.

76

Scenario-3

This simulation was run for a group of four autonomous nonholonomic mobile robots.

Since virtual bonds are constructed for each mi with its closest two neighbors, the

farthest robot’s virtual mass with respect to mi doesn’t apply any force on mi in

(a) (b)

(c) (d)

Figure 6.6: Dynamic coordination model, Scenario-3: (a)Initial configuration

(b)Coordinated motion (c)Virtual bonds relaxed (d)Desired formation achieved

77

cases where number of robots is higher than three such as this simulation.

In this scenario, the robots and the target are placed on opposite corners of the

room as in Fig. 6.6(a). Fig. 6.6(b) shows their motion in the form of a parallelogram

with sides equal to dfar. Fig. 6.6(c) is a snapshot depicting the circular motion of

the robots around T under the dominant effect of Ftarg . Finally, they take the form

of a square with sides dnear as seen in Fig. 6.6(d).

Scenario-4

This simulation was also run for a group of four autonomous nonholonomic mobile

robots. The farthest virtual mass doesn’t have any effect on mi in this simulation

as well.

In this initial configuration, four robots are placed at the corners of the room

while the target is in the middle as shown in Fig. 6.7(a). All robots directly head

towards the target, and wait for the others since they need to achieve distances of

dnear before they can park on the formation circle. The robots oscillate performing

circular motion around the target as shown in Fig. 6.7(c). Fig. 6.7 shows some

snapshots from this animation.

78

(a) (b)

(c) (d)

Figure 6.7: Dynamic coordination model, Scenario-4: (a)Initial configuration

(b)Approaching T (c)Oscillations around T (d)Desired formation achieved

The results of the simulations for the proposed dynamic coordination model

with three and four robots are all satisfactory in the sense that the robots move in

a coordinated manner, detect and avoid any possible collisions and form a uniform

polygon with sides equal to dnear, with each robot heading towards the target, where

the center of the peripheral circle of that polygon is the target.

79

6.2 Kinematic Coordination Model Simulations

The structure of the considered model for a group of three autonomous mobile robots

generated for the simulations in Simulink is depicted in Fig. 6.8.

In the simulations, the maximum linear speed of the robots is set to 0.5m/sec,

while the maximum angular speed is set to (π/3)rad/sec. The virtual collision

prediction regions of the autonomous robots have radii rcoll = 0.9m and angle θcoll =

(pi/2)rad. The constants in the control laws were set as: k1 = k2 = 20.0 for time-

variant reference trajectories in (3.9) to be used in Phase (A) and k1p = 23.0,

k2p = 16.0 for fixed-point reference trajectories in (3.12) to be used in Phase (B).

Figure 6.8: Simulink block diagram for the simulations of Kinematic Coordination

Model for 3 robots

80

6.2.1 Collision Avoidance Simulations

The simulations were run with vtarg = vcoord = 0 to see the performance of the

collision avoidance algorithm in the absence of any coordinated behavior.

Head-to-Head Collision Avoidance

In this collision avoidance test, the robots move towards each other with constant

velocities as seen in Fig. 6.9(a). The moment of collision prediction is depicted

in Fig. 6.9(b). The new situation is given in Fig. 6.9(c) after they avoid the colli-

sion by taking the necessary actions. Since both robots touch the other’s VCPR,

they both change their orientations by the application of the velocity update algo-

rithm described in Section 4.3.2. The result proves the success of the algorithm for

predicting and avoiding head-to-head collisions.

Single-Robot Collision Avoidance

The initial states of the robots before any collision is predicted for this scenario where

one of the robots is approaching the other from its side is depicted in Fig. 6.10(a).

Only one of the robots, B, senses that the other robot is too close, i.e. there’s a

collision risk, as shown in Fig. 6.10(b). The new headings of the robots, after B

changes its orientation, are given in Fig. 6.10(c). The result proves the success of

the collision avoidance algorithm in the case of only one of the robots predicting the

collision as well.

A

B

A

B

A

B

(a) (b) (c)

Figure 6.9: Kinematic coordination model, Head-to-Head Collision Avoidance:

(a)Before (b)Prediction (c)After

81

A

B

A

B
A

B

(a) (b) (c)

Figure 6.10: Kinematic coordination model, Single-Robot Collision Avoidance:

(a)Before (b)Prediction (c)After

A

B

C

A
B

C

A

B

C

(a) (b) (c)

Figure 6.11: Kinematic coordination model, Three-Robots Simultaneous Collision

Avoidance: (a)Before (b)Prediction (c)After

Three-Robots Collision Avoidance

The performance of the collision avoidance algorithm using kinematic was also tested

for three autonomous nonholonomic mobile robots. In this scenario, three robots

are headed towards each other as given in Fig. 6.11(a). At the moment shown

in Fig. 6.11(b), all robots predict collisions simultaneously. Although small oscil-

lations were observed for a short time, they were seen to avoid collisions and the

resulting safe configuration is given in Fig. 6.11(c). This result reveals the satisfac-

tory performance of the proposed algorithm for simultaneous collision risks among

three robots. This is expected due to the autonomous and modular nature of the

generated system.

82

6.2.2 Coordinated Motion Simulations

The proposed coordinated motion model was simulated on the basis of the specified

coordinated task. The presented method was simulated for two distinct initial con-

figurations for three robots, three different initial configurations for four robots and

a single initial configuration for five robots. The tolerance for the robots to start

parking was set to be 0.17 percent of dnear. The other parameters in the simulations

were set as in Table 6.2.

Parameter Value Reference Equation

klin 0.5 5.5 and 5.6

drelax 1.3dtarg 5.5, 5.9 and 5.11

dtarg 2.0m 5.6

kfar 0.8 5.9

knear 0.1 5.9

µ 10.0 5.9 and 5.11

φ 0.5 5.9 and 5.11

dfar 2.0m 5.11

krot 1.0 5.13

θlim 1◦ 5.14

Table 6.2: Kinematic coordination model parameters for simulations

Scenario-1

This simulation was run for a group of three autonomous nonholonomic mobile

robots. Each Ri is in coordination with all the other robots in the group as long as

di2T ≥ drelax as stated in (5.5).

In this scenario, the robots are placed on one corner of the room while T is at the

opposite corner initially. It was observed that they approach each other and move

towards T in a coordinated manner. Once they are close enough to T , to achieve

mutual distances of dnear, they spread around on the circle since they should stay

on the circle due to the dominant effect of vtarg . Finally, the group achieves the

desired formation. Snapshots from this animation are given in Fig. 6.12.

83

(a) (b)

(c) (d)

Figure 6.12: Kinematic coordination model, Scenario-1: (a)Initial configuration

(b)Coordinated motion (c)Distribution on circle (d)Desired formation achieved

Scenario-2

This simulation was also run for a group of three autonomous nonholonomic mobile

robots. Each Ri is in coordination with all the other robots in the group unless

di2T < drelax.

84

The initial setting in this case is depicted in Fig. 6.13(a). The robots move

towards T and towards each other but coordination effects are dominant as seen

in Fig. 6.13(b). Once they reach the circle, they spread around the circle due to

vcoord as shown in Fig. 6.13(c). Snapshots from this animation are shown in Fig. 6.13.

(a) (b)

(c) (d)

Figure 6.13: Kinematic coordination model, Scenario-2: (a)Initial configuration

(b)Coordination dominant (c)Distribution on circle (d)Desired formation achieved

85

Scenario-3

This simulation was run for a group of four autonomous nonholonomic mobile robots.

Since Ri is effected only by its closest two neighbors, the farthest robot with respect

to Ri doesn’t affect Ri in cases where number of robots is higher than three.

(a) (b)

(c) (d)

Figure 6.14: Kinematic coordination model, Scenario-3: (a)Initial configuration

(b)Coordinated motion (c)Distribution on circle (d)Desired formation achieved

86

This scenario has the initial setting given in Fig. 6.14(a). Since coordination is

dominant in phase (A), the robots approach each other, instead of going directly

towards T , and form a square with sides dfar as shown in Fig. 6.14(b). The result

is a circular formation with the robots on the corners of a square of sides dnear as

depicted in Fig. 6.14(d).

(a) (b)

(c) (d)

Figure 6.15: Kinematic coordination model, Scenario-4: (a)Initial configuration

(b)Coordination dominant (c)Coordinated motion (d)Desired formation achieved

87

Scenario-4

This simulation was also run for a group of four autonomous nonholonomic mobile

robots.

The initial configuration of this scenario is almost the same as the initial config-

uration of Scenario-3, except that the symmetry of the robots is perturbed as seen

in Fig. 6.15(a). The results were similar to results of Scenario-3. This reveals the

(a) (b)

(c) (d)

Figure 6.16: Kinematic coordination model, Scenario-5: (a)Initial configuration

(b)Coordinated motion (c)Distribution on circle (d)Desired formation achieved

88

fact that, there’s no constraint on the initial configuration for the proposed model

to yield satisfactory results. Snapshots from this animation are given in Fig. 6.15.

Scenario-5

The initial setting of this scenario is very similar to the initial configuration of

Scenario-1, except that the group consists of four robots. The only difference is

that the robots move as a parallelogram instead of a triangle when approaching

T in coordination. This proves the success of coordination with the closest two

neighbors in achieving the coordinated motion as a group even when there are more

than three robots. Fig. 6.16 shows some snapshots of this animation.

Scenario-6

This simulation was run for a group of five autonomous nonholonomic mobile robots.

Since Ri is effected only by its closest two neighbors, the farthest two robots with

respect to Ri don’t affect Ri in such a group of five robots.

The initial setting is depicted in Fig. 6.17(a). As there are more robots, the risk

of collision increases for the same value of dtarg. As depicted in Fig. 6.17(b), some

collisions were predicted around the formation circle, but they were successfully

avoided and the robots started circular motion on the formation circle as shown

in Fig. 6.17(c). The final formation is satisfactory with a uniform distribution of

robots as shown in Fig. 6.17(d).

The videos of the animations, snapshots from which are presented above, can be

found in the CD enclosed at the back of this thesis in the folder named SimVideos.

The nomenclature is such that each video has file name extension .avi and file

name same as the number of the figure presented above. For example, the video file

of the animation from which snapshots are given in Fig. 6.5 is named 65.avi. The

videos are also currently available on the following web site:

http://students.sabanciuniv.edu/ nusrettin/cd/SimVideos

89

(a) (b)

(c) (d)

Figure 6.17: Kinematic coordination model, Scenario-6: (a)Initial configuration

(b)Collision avoidance (c)Distribution on circle (d)Desired formation achieved

The results of the simulations for the proposed kinematic coordination model

with three, four and five robots are all satisfactory. Moreover, the consistent success

of the algorithm across the increase in the number of robots is promising for the

modular and autonomous nature of the system.

90

6.3 Experiments

The collision avoidance algorithm proposed in this thesis and explained in detail in

Section 4.3 was tested experimentally using two of the autonomous robots shown

in Fig. 6.18.

Each autonomous robot consists of four main parts:

• A unicycle robot equipped with Board of Education(BOE), namely Boe-Bot.

• A Philips PCVC 830 webcam.

• A cylinder on top for identification in image processing.

• A PC where image processing and collision avoidance algorithms are run.

The Boe-Bot, seen in Fig. 6.19(a), is an off-the-shelf and cheap unicyle robot

designed for educational purposes. The robot consists of a base to which 2 servomo-

tors are attached for the right and left wheels, and a Boe-Board is mounted. The

Boe-Board consists of digital input-output pins, the power circuitry for the servos,

Figure 6.18: Autonomous robot prepared for experiment

91

a serial programming port, and a PIC that can process digital signals. The PIC

is programmed via Basic Stamp II, a programming language very similar to clas-

sical BASIC. More information on Boe-Bot and Basic Stamp II can be found in

Appendix A.

The Philips PCVC 830 camera, seen in Fig. 6.19(b), is mounted on the robot

to acquire images to gather information about the environment along with image

processing. The camera is capable of capturing 30 frames per second with resolution

320× 240 pixels.

The cylinder mounted above the robot is a simple cylindrical can wrapped with

colored paper. The cylinder is used to indicate that there’s a robot in the image.

Specifically, a cylindrical structure is chosen due to the ease its symmetrical structure

provides in image processing; i.e. a cylinder’s diameter is constant looking from any

viewpoint.

The camera is connected to a PC, where image processing and control algorithms

are carried out, by a USB connection. On the other hand, the result of the algorithm,

i.e. the generated reference linear and angular velocities, are sent back to the robot

via the parallel port. Information about the parallel port and accessing its output

pins in Windows XP environment can be found in Appendix B. Since the parallel

port has 8 output pins, the velocity information is sent to each wheel via 4-bits.

(a) (b)

Figure 6.19: Components of experimental setup: (a)Boe-Bot unicycle robot

(b)Philips PCVC 830 camera

92

With these bits, the robot could have 14 speed levels, front and back, since at least

one of the 16 values that can be coded by 4-bits should stop the motors. However,

Basic Stamp II can compile codes if and only if they are shorter than 675 lines. The

nonlinear nature of the velocities of the servomotors with respect to the applied

pulse widths requires if-then-else loops for every distinct situation. In those 675

lines, only 6 gears could be coded, 4 forward and 2 backward.

The image processing is done using OpenCV library under C++. OpenCV

implements a wide variety of tools for image interpretation. It is mostly a high-level

library implementing algorithms for calibration techniques, feature detection and

tracking, shape analysis, object segmentation and recognition. The essential feature

of the library is its high performance. More information about OpenCV along with

a template code for beginners can be found in Appendix C.

To conduct the experiments, a room of 2m×2m was constructed for the robots to

navigate inside. To ensure proper detection of the cylinder in the image processing

algorithm, the walls of the room were built using white paper. The features to track

were chosen as the vertical lines implying the sides of the cylinder. However, vertical

sides of the cylinder were tilted on the image due to perspective projection, since

the lens of the camera was below the center of the cylinder by 5cm. To get rid

of this tilt effect, a tolerance was introduced on the slope of the detected lines to

interpret them as vertical lines. The distance between midpoints of the two lines was

used to extract information about how far the sensed robot is. More information on

perspective projection can be found in Appendix D.

6.3.1 PseudoCode

Each autonomous mobile robot runs the following algorithm during the experiments:

1. Image capture and enhancement.

• Capture the image, convert it to grayscale for faster processing.

2. Extraction of features.

• Carry out line detection by the built-in function, cvHoughlines2.

• If there are at least 2 vertical lines:

93

– Find the highest and lowest values among the x pixel coordinates of

the midpoints of the extracted lines.

– Find the difference between those values to obtain the diameter of

the cylinder; hence the approximate depth information.

– Find the midpoint of the above extracted points and interpret as the

center of the cylinder; i.e. the sensed robot’s position.

– By perspective projection, calculate the position of the sensed robot.

3. Calculation of the reference orientation.

• Run the collision avoidance algorithm to decide on the reference orienta-

tion. Keep the orientation constant if a collision is not predicted.

6.3.2 Results

Experiments for the case of a static obstacle and a moving obstacle were conducted

using the given algorithm above for each autonomous mobile robot. The C++ code

generated to be run on each robot can be found in the CD included at the back of

this thesis with the name “CollisionAvoidance.cpp”.

A sample run of the generated program is shown in Fig. 6.20(a). In this sample,

the sides of the cylinder are detected as vertical lines. The distance between the

midpoints of these lines is extracted by image processing tools offered by OpenCV.

The so obtained diameter of the cylinder is used to extract depth information for

the sensed robot; hence the pose of the detected robot in world coordinate system

is reconstructed at each computational step. Essential information such as pose of

the sensed robot, the sampling time, etc is displayed on the screen when ‘d’ is stroke

on the keyboard. A sample display of the information is shown in Fig. 6.20(b). The

current step time for the computations is 30.707ms, which yields an approximate

frequency of 30Hz for the generated program to be cycled.

94

(a)

(b)

Figure 6.20: Screen shots of the generated C++ code: (a)Detection of the lines on

the image (b)Essential information displayed when ‘d’ is pressed

95

6.3.3 Static Obstacle Avoidance

To enable static obstacle detection, a stationary robot was used as a static obstacle.

Snapshots from this experiment are given in Fig. 6.21. In this scenario, A serves as a

static obstacle. B approaches A from the depicted initial position of Fig. 6.21(a). B

predicts a collision at the instant given in Fig. 6.21(b). After adjusting its orientation

as seen in Fig. 6.21(c), B moves with a constant velocity on the collision-free path

as seen in Fig. 6.21(d).

A B A B

(a) (b)

A
B

A
B

(c) (d)

Figure 6.21: Static obstacle avoidance experiment: (a)Initial configuration

(b)Collision prediction (c)Adjusting orientation (d)Collision avoided

96

6.3.4 Head-to-Head Collision Avoidance

In this scenario, the robots are headed towards each other as depicted in Fig. 6.22(a).

As they approach each other, they sense the other and calculate its position and

velocity. When the distance between them becomes equal to rcoll, they both change

their orientations and move safely away, without any collisions. The snapshots of

this experiment can be seen in Fig. 6.22.

A B A B

(a) (b)

A B A
B

(c) (d)

Figure 6.22: Head to head collision avoidance experiment: (a)Initial configuration

(b)Collision predictions (c)Adjusting orientations (d)Collision avoided

97

The videos of the experiments, snapshots from which are presented above and

some others, can be found in the CD enclosed at the back of this thesis in the

folder named ExpVideos. The nomenclature is the same as animation videos. For

example, the video file of the experiment from which snapshots are given in Fig. 6.21

is named 621.avi. The videos are also currently available on the following web site:

http://students.sabanciuniv.edu/ nusrettin/cd/ExpVideos

98

Chapter 7

Conclusions

In this thesis, two novel approaches for the coordinated motion of a group of au-

tonomous mobile robots, aimed for the achievement of a coordinated task, have been

proposed. A novel online collision avoidance algorithm is inherent in both of the

proposed models. The test beds considered are unicycle type autonomous nonholo-

nomic mobile robots. For simplicity in analysis, reliable communication protocols

between these robots were assumed, to demonstrate the satisfactory performance of

the proposed models.

A virtual reference system that consists of virtual mass-spring-damper units is

introduced in the first model. The reference trajectories for the autonomous robots

are obtained from the dynamics of this computer-generated system. A feedback path

between the actual robots and the virtual reference system was constructed enabling

online generation of references. Together with the proposed collision avoidance

algorithm, this system generates online collision-free reference trajectories, required

to manipulate a coordinated task. The performance of this approach was tested in

computer simulations and the results are promising.

In the second approach, online generation of references for the autonomous robots

in terms of their linear and angular velocities is enabled. This model consists of

virtual reference robots, the linear and angular velocities of which are designed for

the coordinated motion and coordinated task manipulation of a group of robots.

The reference trajectories to be used in the control laws are then generated by

the integration of so-obtained reference velocities. The essential advantage of this

approach is that possible nonholonomy of the robots is dealt with in the phase of

reference generation, so that the regulation of tracking errors to zero is guaranteed.

99

The results of the simulations run for the performance test of this algorithm are also

satisfactory.

In addition to the proposed approaches to the problem of modeling the coordi-

nated motion of a group of autonomous mobile robots, some other problems were

attacked. A novel algorithm for collision avoidance - that is inherent to any co-

ordinated motion problem - has been proposed. In the proposed algorithm, the

autonomous robots use sensory information to predict collisions ahead of time by

the introduction of a virtual circular arc. The algorithm updates the velocities of the

robots in case of such a collision prediction to avoid any possible collisions with the

other members of the group or any static obstacles. This algorithm is used in both

of the proposed coordinated motion models. The problem of the group’s achieve-

ment of certain formations to accomplish certain coordinated tasks has also been

addressed. Some parameters of the developed models were switched throughout the

manipulation of the coordinated task to enable achievement of required formations.

For example, the equilibrium length of the virtual springs in the first approach were

switched. For this parameter switching problem, a sigmoid function was used to

facilitate smooth response of the robots.

Experiments were conducted to test the performance of the collision avoidance

algorithm using BoeBot type robots, a brand of unicycle robots, and OpenCV. The

performance of the proposed collision algorithm was promising both in the simula-

tions of coordinated motion and in the experiments where any coordinated behavior

was absent for simplicity. However, the experiments could have been extended to

more complicated scenarios of collision avoidance and tests of coordinated motion

approaches could have been carried out if the robots that are used could work with

higher precision.

The work could be extended to the construction of appropriate communication

protocols between the robots. Once this is done, the coordinated motion of a group

of autonomous mobile robots for various coordinated tasks such as search and rescue

could be realized by the aid of the proposed models in this thesis.

100

Appendix A

Boe-Bot and Basic Stamp

A.1 Boe-Bot

1 The Boe-Bot is a unicycle type mobile robot that mechanically consists of the

parts listed below.

• (1) Boe-Bot chassis.

• (1) Battery pack.

• (2) Parallax pre-modified servos.

• (2) Plastic wheels and tires.

• (1) Polyethylene ball.

• (1) Board of Education and BASIC Stamp II.

The servos, to which the wheels are connected are mounted to the chassis as well

as the other components. The polyethylene ball is used as the back wheel of the

robot that provides the equilibrium of the chassis. The robot works with 4 AA size

batteries that are used inside the battery pack that is mounted below the chassis.

A.1.1 Parallax Servo Motors

Parallax servomotors shown in Fig. A.1 are used to drive the wheels of the robot.

The RC type servo motors are originally fabricated for a limited rotational mo-

tion range. For a complete rotation of (2π)rad, they are modified. The mechanical

stop is removed and the potentiometer originally placed for encoding rotational posi-

tion is replaced by a resistor pair. Parallax servos with the label PM are pre-modified

for such purposes.

1Parallax Inc. Educational Materials, Robotics Student Workbook Version 1.5

101

Figure A.1: Parallax pre-modified servomotor

The servo’s control line is used to send the motor a “pulse train” that encodes

the velocity reference. Pulse width is what controls the servo’s motion. The low

time between pulses can range between 10ms and 40ms without adversely affecting

the servo’s performance.

A pre-modified servo can be pulsed to make its output shaft turn continuously.

The pulse widths for pre-modified servos range between 1.0ms and 2.0ms for full

speed clockwise and counterclockwise, respectively. For example, pulses of width

1.25ms will make the shaft turn clockwise at almost half of the full speed. The

so-called “center pulse width” is around 1.5ms, and makes the servo stay still. Due

to errors in fabrication and resistive tolerances, the center pulse width might deflect

from this value.

A.1.2 Board of Education and Basic Stamp II

The Board of Education, BOE, is designed to teach students the basics of robotics.

It is compliant with Basic Stamp II, a micro-controller that can process digital

signals. The necessary power and digital signals necessary for running the servos in

Boe-Bot are processed by the Board of Education.

The input pulse trains applied to the motors are generated by Basic Stamp

II micro-controller and processed by the Boe-Board. The power to the servos is

regulated and supplied by the circuitry on the board. The Boe-Board also contains

additional circuitry for special applications of Boe-Bot such as battery-low alarm.

There’s a spare breadboard for possible modifications to the Boe-Board. Students

can experiment using circuits built on that and the Basic Stamp programming.

102

(a) (b)

Figure A.2: Board of Education, BOE, and Basic Stamp II: (a)Board of Education,
Rev. B (b)Basic Stamp II micro-controller

A.2 Basic Stamp

Basic Stamp is a preliminary programming language that is used to program the

micro-controller Basic Stamp II. For applications of Boe-Bot, the language is gener-

ally used to control the velocity of wheels the robot. The pulse widths of the input

pulse trains are controlled by certain code generated in this language.

The generated code to program the robots for the experiments of this thesis

can be found in the CD enclosed at the back of this thesis in the folder named

BasicStamp.

103

Appendix B

Parallel Port

For the experiments in this thesis, the explained algorithm is run in C++ along with

OpenCV library. The result of the algorithm, i.e. the generated reference linear and

angular velocities, are sent back to the robot via the parallel port.

The parallel port has 25 pins 8 of which can be used as digital outputs. The pin

configuration of the parallel port is depicted in Fig. B.1. 8 pins of the data register

is used to send the robot velocity information.

The parallel port in Windows XP cannot be controlled directly using any pro-

gramming language. Activating the parallel port outputs in Windows XP is ex-

plained in the document with the name “Activation.doc”. This document can

be found in the CD included at the back of this thesis under the folder named

ParallelPortXP. This folder also includes the program “userport” that is required

to activate direct access to the ports in Windows XP.

Once the parallel port output pins are activated, the signal at each pin can be

pulled up to high value around 5V or pulled down to a low value around 0V . In

C++, the following code declares and writes a specified value to the parallel port’s

Figure B.1: Parallel port pin configurations

104

data register. The value of the variable “parout” can be changed by any control

algorithm between lines 3 and 4.

int _outp(unsigned short port, int databyte);

int IN0=0, IN1=0,IN2=0, IN3=0, //Parallel port output pins.

IN4=0, IN5=0, IN6=0, IN7=0;

int parout=0; // Byte to be output from parallel port.

_outp(0x378,parout); // Output the data to parallel port.

105

Appendix C

OpenCV

1 OpenCV means Intel R© Open Source Computer Vision Library. It is a collection

of C functions and few C++ classes that implement some popular algorithms of

Image Processing and Computer Vision.

OpenCV is cross-platform middle-to-high level API that consists of a few hun-

dreds C functions. It does not rely on external numerical libraries, though it can

make use of some of them (see below) at runtime, if they are available.

More references on the functions and libraries of OpenCV can be found at:

http://www.cs.bham.ac.uk/resources/courses/robotics/doc/opencvdocs/

C.1 Installation

The installation of OpenCV in Windows XP requires certain environments to be

set and certain libraries to be copied to some specific directories. Please follow

the instructions in “Installation.doc” to get rid of problems. This instruction

manual is located under the folder named OpenCV in the included CD of this thesis.

C.2 Template Code for Beginners

The following is a sample code for beginners of OpenCV. This code can also be

found in the folder named OpenCV with the folder name WorkingTemplate OpenCV

in the enclosed CD.

1http://www.cs.bham.ac.uk/resources/courses/robotics/doc/opencvdocs/

106

//--//

//------------------- OPENCV TEMPLATE SOURCE ---------------------//

//---------- Nusrettin GULEC, 5212, Sabanci University -----------//

//------------------- CopyRight (c), 2005, SU --------------------//

//--//

//**//

//

//**//

//--//

//---------------- START YOUR LIBRARIES TO INCLUDE ---------------//

//**//

// Declare that this is a code written for OpenCV library.

#ifdef _CH_ #pragma package <opencv> #endif

//--//

// For an OpenCV source code, you should include the following.

#ifndef _EiC #include "cv.h" // Main OpenCV Library.

#include "highgui.h" // For high-level GUI functions;

#include <windows.h> // To open windows and display images.

//--//

// Any other type of regular libraries that you want to include.

// #include <Library or header file>

#include <stdio.h> // Standard I/O Library.

#include <ctype.h> // Alpha-numeric settings for character strings

#endif

//**//

//---------------- END YOUR LIBRARIES TO INCLUDE -----------------//

//--//

//**//

//

//**//

//--//

//--------------- START YOUR FUNCTION DEFINITIONS ----------------//

//**//

// void, double, int, etc... any type of function def.s here.

// <ReturnType> <FunctionName> (<Type> <Name>)

// {

// internal variable declarations.

// whatever the function does.

// <return> statement if not void type.

// }

//--//

/* Examples: double SgnForDoubles(double param)

{

double SgnParam;

if (param == 0)

107

{

SgnParam = 0;

}

else

{

SgnParam = param/fabs(param);

}

return SgnParam;

}

void IncrementPositive(double incremented) {

if (incremented > 0)

{

incremented ++;

}

}*/

//**//

//---------------- END YOUR FUNCTION DEFINITIONS -----------------//

//--//

//**//

//

//**//

//--//

//--------------- START YOUR VARIABLE DECLARATIONS ---------------//

//**//

int main(int argc, char** argv)

{

//--//

// Main image processing variables.

CvCapture* captured = 0; // BlackBox Structure For Capturing.

IplImage* frame = 0; // Storage for captured frame.

IplImage* gray = 0; // Storage for grayscale image.

CvRect RegOfInt; // Region of Interest to be used.

int RoiSideX=200; // Desired size of a ROI to be taken in x.

int RoiSideY=200; // Desired size of a ROI to be taken in y.

//--//

// Any variables or constants you will define for your algorithm.

// <VariableType> <VariableName> = <Value>;

//--//

/* Examples:

// const double pino = 3.141592653589793; // The pi number.

// bool Displayer = false;

// double ParameterForControl = 0; */

//**//

//----------------- END YOUR VARIABLE DECLARATIONS ---------------//

//--//

//**//

108

//

//**//

//--//

//------------------ START YOUR IMAGE PROCESSING -----------------//

//**//

// Capture an image.

captured = cvCaptureFromCAM(argc == 2 ? argv[1][0] - ’0’ : 0);

//--//

// Give Error Message if cannot capture.

if(!captured)

{

fprintf(stderr, "\n\n\tERROR!!!\n"

"\tCapturing Couldn’t Be Started;\n"

"\tCheck Your Connections!\n\n\n");

return -1; // Exit!

}

//--//

// Windows For Displaying the frames.

cvNamedWindow("CurrentFrame", 1);

cvNamedWindow("GrayScale", 1);

//--//

// Print the user’s manual on screen.

printf(

"\n\n\t\t\t\tHOTKEYS\n\t\t-------------------------------------\n\n"

"\t\t\tESC - Quit \n\n"

"\t\t-------------------------------------\n\n\n");

//--//

// Here is the repeated part of the program

// unless a ’break’ is encountered.

while(1)

{

frame = cvQueryFrame(captured); // Get current frame.

CvRect CurrRoi = cvGetImageROI(frame); // Get the current

RegOfInt.x = (CurrRoi.width-RoiSideX)/2; // frame’s size and

RegOfInt.y = (CurrRoi.height-RoiSideY)/2; // change the ROI

RegOfInt.width = RoiSideX; // according to the

RegOfInt.height = RoiSideY; // desired

cvSetImageROI(frame, RegOfInt); // ROI dimensions.

//--//

// Convert frame to grayscale.

gray = cvCreateImage(cvGetSize(frame), IPL_DEPTH_8U, 1);

cvConvertImage(frame, gray, CV_CVTIMG_FLIP);

//--//

// Apply any kind of image processing algorithm here.

/* Example:

// Form the new image and apply Canny’s edge detection algorithm.

edges = cvCreateImage(cvGetSize(gray), IPL_DEPTH_8U, 1);

109

cvCanny(gray,edges,EdgeThreshLow,EdgeThreshHigh,3); */

//**//

//-------------------- END YOUR IMAGE PROCESSING -----------------//

//--//

//**//

//

//**//

//--//

//------------------ START YOUR CONTROL ALGORITHM ----------------//

//**//

// Apply any kind of controls you might use in the implementation.

//--//

/* Example:

while (ParameterForControl)

{

ParameterForControl = SgnForDoubles(ParameterForControl);

IncrementPositive(ParameterForControl);

}*/

//**//

//------------------- END YOUR CONTROL ALGORITHM -----------------//

//--//

//**//

//

//**//

//--//

//-------------- START YOUR OUTPUTS AND KEY CONTROLS -------------//

//**//

// Apply any image processing and keyboard controls.

if(!frame) // Break if frame can’t be captured.

break;

//--//

// Show the processed images.

cvShowImage("CurrentFrame", frame);

cvShowImage("GrayScale", gray);

//--//

// Wait for keystroke on keyboard.

int PressedKey = cvWaitKey(10);

//--//

if(PressedKey == 27) // Break if ’ESC’ is stroke.

break;

//--//

/* Example: Other possible key controls.

switch(PressedKey)

{

case ’d’:

Displayer = true;

break;

110

default:;

}*/ }

//**//

//-------------- START YOUR OUTPUTS AND KEY CONTROLS -------------//

//--//

//**//

//

//**//

//--//

//------------------ DESTROY AND EXIT THE PROGRAM ----------------//

//**//

// Destroy the current windows and current data before

// exiting in reverse order you opened them.

cvDestroyWindow("GrayScale");

cvReleaseImage(&gray);

cvDestroyWindow("CurrentFrame");

cvReleaseCapture(&captured);

//--//

// Exit message when ’break’ is encountered from while.

printf("\n\n\t\tThe Program Will Now Exit!\n\n\t\t");

//--//

return 0; // Exit.

}

//**//

//-------------- END OF OPENCV TEMPLATE SOURCE CODE --------------//

//--//

//**//

//

//**//

//--//

//------------------- OPENCV TEMPLATE SOURCE ---------------------//

//-------- Nusrettin GULEC, 5212, Sabanci University -------------//

//------------------ CopyRight (c), 2005, SU ---------------------//

//--//

//**//

111

Appendix D

Perspective Projection and Camera Model

1 A simplified model of image formation is shown in Fig. D.1. This is called pinhole

model. In this model, the lens is assumed to be a single point. The world coor-

dinates (X,Y ,Z) of a point are transformed to the image coordinates (x,y) under

perspective projection. If the origin is located at the lens center as in Fig. D.1(a)

and f is the focal length of the camera, the distance from the lens to the image

plane. Then using the similarity in triangles, the following can be written:

−y

Y
=

f

Z
. (D.0.1)

Since the image is formed upside down, the negative sign in often used in the

above equation. The x and y image coordinates can be extracted from the above

equation as:

x = −fX
Z

, y = −fY
Z

. (D.0.2)

The above equations represent the perspective projection with the origin at the

lens. If the origin is moved to the center of image as in Fig. D.1(b), these equations

are changed to:

x = − fX
f−Z

, y = − fY
f−Z

. (D.0.3)

It is mathematically not possible to derive a perspective matrix such as common

translation, rotation or scaling matrices in robotics. Hence, homogenous transfor-

1Fundamentals of Computer Vision, Mubarak Shah, CS Department, University of Central
Florida, Orlando, 1997

112

(a) (b)

Figure D.1: Pinhole camera model: (a)Origin at the lens (b)Origin at the image
plane

mations are introduced. The homogenous transformation converts the Cartesian

world coordinates (X,Y ,Z) into the homogenous world coordinates (kX,kY ,kZ,k).

Similarly the inverse homogenous transform converts the homogenous image coor-

dinates (Ch1,Ch2,Ch3,Ch4) into the Cartesian image coordinates (Ch1

Ch4
,Ch3

Ch4
,Ch3

Ch4
). The

perspective matrix is then defined as:

P =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 −1
f

1




. (D.0.4)

The perspective transformation, which relates the homogenous world coordinates

with the homogenous image coordinates is defined as:




kX

kY

kZ

−kZ
f

+ k




=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 −1
f

1







kX

kY

kZ

k




. (D.0.5)

The Cartesian image coordinates can easily be derived from the above equation

as:

x = fX
f−Z

,

y = fY
f−Z

,
(D.0.6)

113

which is exactly same as equation D.0.3. The inverse perspective matrix is given

by:

P =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 1
f

1




. (D.0.7)

114

Bibliography

[1] T. Suzuki, T. Sekine, T. Fujii, H. Asama, I. Endo, “Cooperative Formation

among Multiple Mobile Robot Teleoperation in Inspection Task”, Proceedings

of the 39th IEEE International Conference on Decision and Control, Vol. 1,

December 2000, 358-363.

[2] A.K. Das, R. Fierro, V. Kumar, J.P. Ostrowski, J. Spletzer, C.J. Taylor, “A

Vision-Based Formation Control Framework”, IEEE Transactions on Robotics

and Automation, Vol. 18, No. 5, October 2002, 813-825.

[3] J. Kennedy, R.C. Eberhart, Y. Shi, “Swarm Intelligence”, Morgan Kaufmann

Publishers, San Francisco, 2001.

[4] R. Salomon, “The Force Model: Concept, Behavior, Interpretation”, Congress

on Evolutionary Computation, CEC2004, Vol. 1, June 2004, 1119-1126.

[5] J. Lin; A.S. Morse, B.D.O. Anderson, “The Multi-Agent Rendezvous Problem”,

Proceedings of the 42nd IEEE Conference on Decision and Control, Vol. 2,

December 2003, 1508-1513.

[6] T.B. Gold, J.K. Archibald, R.L. Frost, “A Utility Approach to Multi-Agent

Coordination”, Proceedings of the 2000 IEEE International Conference on Ro-

botics and Automation, ICRA ’00, Vol. 3, April 2000, 2052-2057.

[7] S.G. Loizou, H.G. Tanner, V. Kumar, K.J. Kyriakopoulos, “Closed Loop Mo-

tion Planning and Control for Mobile Robots in Uncertain Environments”,

Proceedings of the 42nd IEEE Conference on Decision and Control, Vol. 3,

December 2003, 2926-2931.

[8] R. Li, Q. Shi, “Study on Integration of Urban Traffic Control and Route Guid-

ance based on Multi-agent Technology”, Proceedings of the 2003 IEEE Interna-

115

tional Conference on Intelligent Transportation Systems, Vol. 2, October 2003,

1740-1744.

[9] J.B. de Sousa, F.L. Pereira, “Specification and design of coordinated motions

for autonomous vehicles”, Proceedings of the 41st IEEE Conference on Decision

and Control, Vol. 1, December 2002, 101-106.

[10] Y. Hur, R. Fierro, I. Lee, “Modeling Distributed Autonomous Robots using

CHARON: Formation Control Case Study”, Sixth IEEE International Sympo-

sium on Object-Oriented Real-Time Distributed Computing, ISORC ’03, May

2003, 93-96.

[11] P. Seiler, A. Pant, K. Hedrick, “Analysis of Bird Formations”, Proceedings of

the 41st IEEE Conference on Decision and Control, Vol. 1, December 2002,

118-123.

[12] H. Yamaguchi, “A Cooperative Hunting Behavior by Mobile-Robot Troops”,

The International Journal of Robotics Research, Vol. 18, No. 8, September 1999,

931-940.

[13] H. Yamaguchi, “A Cooperative Hunting Behavior by Multiple Nonholonomic

Mobile Robots”, 1998 IEEE International Conference on Systems, Man, and

Cybernetics, Vol. 4, October 1998, 3347-3352.

[14] A. Jadbabaie, J. Lin, A.S. Morse, “Coordination of Groups of Mobile Au-

tonomous Agents Using Nearest Neighbor Rules”, Proceedings of the 41st IEEE

Conference on Decision and Control, Vol. 3, December 2002, 2953-2958.

[15] A. Borkowski, M. Gnatowski, J. Malec, “Mobile Robot Cooperation in Simple

Environments”, Proceedings of the Second International Workshop on Robot

Motion and Control, October 2001, 109-114.

[16] S. Yannier, A. Sabanovic, A. Onat, “Basic Configuration for Mobile Robots”,

Proceedings of the IEEE International Conference on Industrial Technology,

Vol. 1, December 2003, 256-261.

116

[17] M.J. Mataric, M. Nillson, K.T. Simsarin, “Cooperative Multi-Robot Box-

Pushing”, Proceedings of the 1995 IEEE/RSJ International Conference on In-

telligent Robots and Systems, ’Human Robot Interaction and Cooperative Ro-

bots’, Vol. 3, August 1995, 556-561.

[18] A.V. Savkin,“Coordinated Collective Motion of Groups of Autonomous Mo-

bile Robots: Analysis of Vicsek’s Model”, IEEE Transactions on Automatic

Control, Vol. 49, No. 6, June 2004, 981-982.

[19] T. Rabie, A. Shalaby, B. Abdulhai, A. El-Rabbany, “Mobile Vision-based Vehi-

cle Tracking and Traffic Control”, Proceedings of the Fifth IEEE International

Conference on Intelligent Transportation Systems, September 2002, Singapore,

13-18.

[20] C. Marques, P. Lima, “Avoiding Obstacles - Multisensor Navigation for Non-

holonomic Robots in Cluttered Environments”, IEEE Robotics and Automation

Magazine, Vol. 11, No. 3, September 2004, 70-82.

[21] T. Weigel, J.S. Gutmann, M. Dietl, A. Kleiner, B. Nebel, “CS Freiburg: Coor-

dinating Robots for Successful Soccer Playing”, IEEE Transactions on Robotics

and Automation, Vol. 18, No. 5, October 2002, 685-699.

[22] M. Perron, H. Zhang, “Coaching a Robot Collective ”, Proceedings of the 2004

IEEE International Conference on Robotics and Automation, ICRA ’04, Vol.

4, April 2004, 3443-3448.

[23] W. Sheng, Q. Yang, J. Tan, N. Xi, “Risk and Efficiency: A Distributed Bid-

ding Algorithm for Multi-robot Coordination”, Proceedings of the Fifth World

Congress on Intelligent Control and Automation, WCICA 2004, Vol. 5, June

2004, 4671-4675.

[24] F. Marc, I. Degirmenciyan-Cartault, “Multi-Agent Planning as a Coordination

Model for Self-Organized Systems”, IEEE/WIC 2003 International Conference

on Intelligent Agent Technology, IAT ’03, October 2003, 218-224.

[25] N. Sarkar, T.K. Podder, “Coordinated Motion Planning and Control of Au-

tonomous Underwater Vehicle-Manipulator Systems Subject to Drag Optimiza-

117

tion”, IEEE Journal of Oceanic Engineering, Vol. 26, No. 2, April 2001, 228-

239.

[26] Y. Liu, K.M. Passino, M. Polycarpou, “Stability Analysis of One-Dimensional

Asynchronous Swarms”, Proceedings of the American Control Conference, Vol.

2, June 2001, 716-721.

[27] J. Spletzer, A.K. Das, R. Fierro, C.J. Taylor, V. Kumar, J.P. Ostrowski, “Coop-

erative Localization and Control for Multi-Robot Manipulation”, Proceedings

of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, Vol. 2, October 2001, 631-636.

[28] J.D. Sweeney, H. Li, R.A. Grupen, K. Ramamritham, “Scalability and Schedu-

lability in Large, Coordinated, Distributed Robot Systems”, Proceedings of the

2003 International Conference on Robotics and Automation, ICRA ’03, Vol. 3,

September 2003, 4074-4079.

[29] J.S. Baras, X. Tan, P. Hovareshti, “Decentralized Control of Autonomous Vehi-

cles”, Proceedings of the 42nd IEEE Conference on Decision and Control, Vol.

2, December 2003, 1532-1537.

[30] S. Souissi, X. Defago, T. Katayama, “Decomposition of Fundamental Problems

for Cooperative Autonomous Mobile Systems”, Proceedings of the 24th Inter-

national Conference on Distributed Computing Systems, March 2004, 554-560.

[31] K.N. Kutulakos, C.R. Dyer, V.J. Lumelsky, “Provable Strategies for Vision-

Guided Exploration in Three Dimensions”, Proceedings of the 1994 IEEE In-

ternational Conference on Robotics and Automation, Vol. 2, May 1994, 1365-

1372.

[32] H.S. Oh, C.W. Lee, I. Mitsuru, “Navigation Control of a Mobile Robot based

on Active Vision”, 1991 International Conference on Industrial Electronics,

Control and Instrumentation, IECON ’91, Vol. 2, October 1991, 1122-1126.

[33] S. Vitabile, G. Pilato, F. Pullara, F. Sorbello, “A Navigation System For Vision-

Guided Mobile Robots”, Proceedings of the 1999 International Conference on

Image Analysis and Processing, September 1999, 566-571.

118

[34] O. Shakernia, Y. Ma, T.J. Koo, J. Hespanha, S.S. Sastry, “Vision Guided Land-

ing of an Unmanned Air Vehicle”, Proceedings of the 38th IEEE Conference on

Decision and Control, Vol. 4, December 1999, 4143-4148.

[35] H. Ishiguro, T. Maeda, T. Miyashita, S. Tsuji, “A Strategy for Acquiring an

Environmental Model with Panoramic Sensing by a Mobile Robot”, Proceedings

of the 1994 IEEE International Conference on Robotics and Automation, Vol.

1, May 1994, 724-729.

[36] E.T. Baumgartner, S.B. Skaar, “An Autonomous Vision-Based Mobile Robot”

IEEE Transactions on Automatic Control, Vol. 39, No. 3, March 1994, 493-502.

[37] Z. Zhang, R. Weiss, A.R. Hanson, “Obstacle Detection Based on Qualitative

and Quantitative 3D Reconstruction”, IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol. 19, No. 1, January 1997, 15-26.

[38] B. Kwolek, T. Kapuscinski, M. Wysocki, “Vision-based implementation of feed-

back control of unicycle robots”, Proceedings of the First Workshop on Robot

Motion and Control, RoMoCo ’99, June 1999, 101-106.

[39] P. Steinhaus, M. Walther, B. Giesler, R. Dillmann, “3D Global and Mobile

Sensor Data Fusion for Mobile Platform Navigation”, Proceedings of the 2004

IEEE International Conference on Robotics and Automation, ICRA ’04, Vol.

4, April 2004, 3325-3330.

[40] H. Ishiguro, K. Kato, S. Tsuji, “Multiple Vision Agents Navigating a Mobile

Robot in a Real World”, Proceedings of the 1993 IEEE International Conference

on Robotics and Automation, Vol. 1, May 1993, 772-777.

[41] W.M. Wells, III, “Visual Estimation of 3-D Line Segments from Motion-A

Mobile Robot Vision System”, IEEE Transactions on Robotics and Automation,

Vol. 5, No. 6, December 1989, 820-825.

[42] R.A. Brooks, “Vision and Spatial Modeling For Mobile Robots”, 1989 Interna-

tional Workshop on Industrial Applications of Machine Intelligence and Vision,

April 1989, 9-11.

119

[43] A.Y. Yang, W. Hong, Y. Ma, “Structure and Pose from Single Images of Sym-

metric Objects with Applications to Robot Navigation”, Proceedings of the

2003 IEEE International Conference on Robotics and Automation, ICRA ’03,

Vol. 1, September 2003, 1013-1020.

[44] A.K. Das, R. Fierro, V. Kumar, B. Southhall, J. Spletzer, C.J. Taylor, “Real-

Time Vision-Based Control of a Nonholonomic Mobile Robot”, Proceedings of

the 2001 IEEE International Conference on Robotics and Automation, ICRA

’01, Vol. 2, May 2001, 1714-1719.

[45] Z. Hai-bo, Y. Kui, L. Jin-dong, “A Fast and Robust Vision System for Au-

tonomous Mobile Robots”, Proceedings of the 2003 IEEE International Con-

ference on Robotics, Intelligent Systems and Signal Processing, Vol. 1, October

2003, 60-65.

[46] Y. Ma, J. Kosecka, S.S. Sastry, “Vision Guided Navigation for a Nonholonomic

Mobile Robot”, IEEE Transactions on Robotics and Automation, Vol. 15, No.

3, June 1999, 521-536.

[47] S.Y. Chen, Y.F. Li, “Automatic Sensor Placement for Model-Based Robot Vi-

sion”, IEEE Transactions on Systems, Man, and Cybernetics, Part B, Vol. 34,

No. 1, February 2004, 393-408.

[48] J.R. Spletzer, C.J. Taylor, “Sensor Planning and Control in a Dynamic Envi-

ronment”, Proceedings of the 2002 IEEE International Conference on Robotics

and Automation, ICRA ’02, Vol. 1, May 2002, 676-681.

[49] K. Han, M. Veloso, “Reactive Visual Control of Multiple Non-Holonomic Ro-

botic Agents”, Proceedings of the 1998 IEEE International Conference on Ro-

botics and Automation, Vol. 4, May 1998, 3510-3515.

[50] J. Spletzer, C.J. Taylor, “A Framework for Sensor Planning and Control with

Applications to Vision Guided Multi-robot Systems”, Proceedings of the 2001

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion, CVPR 2001, Vol. 1, December 2001, I-378-I-383.

120

[51] T.C. Lee; C.Y. Tsai; K.T. Song, “Fast parking control of mobile robots: a

motion planning approach with experimental validation”, IEEE Transactions

on Control Systems Technology, Vol. 12, No. 5, September 2004, 661-676.

[52] C. Samson, K. Ait-Abderrahim, “Feedback Stabilization of a Nonholonomic

Wheeled Mobile Robot”, Proceedings of the IEEE/RSJ International Workshop

on Intelligent Robots and Systems, IROS ’91, Vol. 3, November 1991, 1242-1247.

[53] C. Samson, K. Ait-Abderrahim, “Feedback Control of a Nonholonomic Wheeled

Cart in Cartesian Space”, Proceedings of the IEEE International Conference on

Robotics and Automation, Vol. 2, April 1991, 1136-1141.

[54] P. Morin, C. Samson, “Practical stabilization of a class of nonlinear systems.

Application to chain systems and mobile robots.” , Proceedings of the 39th

IEEE Conference on Decision and Control, Vol. 3, December 2000, 2989-2994.

[55] J. Shen, D.A. Schneider, A.M. Bloch, “Controllability and Motion Planning of

Multibody Systems with Nonholonomic Constraints”, Proceedings of the 42nd

IEEE Conference on Decision and Control, Vol. 5, December 2003, 4369-4374.

[56] C. Samson, “Control of Chained Systems Application to Path Following and

Time-Varying Point-Stabilization of Mobile Robots” IEEE Transactions on Au-

tomatic Control, Vol. 40, No. 1, January 1995, 64-77.

[57] G. Walsh, D. Tilbury, S.S. Sastry, R. Murray, J.P. Laumond, “Stabilization of

Trajectories for Systems with Nonholonomic Constraints” IEEE Transactions

on Automatic Control, Vol. 39, No. 1, January 1994, 216-222.

[58] C. Samson, “Trajectory tracking for non-holonomic vehicles: overview and case

study”, Proceedings of the Fourth International Workshop on Robot Motion and

Control, RoMoCo’04, June 2004, 139-153.

[59] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, “Novel Type of

Phase Transition in a System of Self-Driven Particles” Phys. Rev. Lett., Vol.

75, No. 6, August 1995, 1226-1229.

121

