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ABSTRACT

Identification and characterization of plant G-proteins are mainly based on
sequence homology with their mammalian counterparts. Studies with mutant plants
have confirmed the assigned functional roles of these proteins and possible signaling
pathways involving G-proteins (Fujisawa Y et al., 2001). The work presented in this
thesis, reports detailed sequence alignment analyses of A. thaliana G-protein o subunit
(GPA1) with its mammalian counterpart rat transducin o subunit (PDB entry 1gg2).
Alignment of GPA1 with the other known Ga sequences, from plants, reveal a high

degree of homology. Same analyses are extended to A. thaliana B and y subunits.

Results of sequence analyses were used as a basis for secondary structure
prediction and for modeling 3D structure of GPA1. Secondary structure prediction was

carried out for § and y subunits as well.

Modeling calculations were based on the sequence alignment, secondary structure
prediction, known structure of rat transducin o subunit, and carried out using the
MODELLER module within insightIl program. The best model predicted 76% correct
folding within confidence limits determined using ERRAT. The accuracy of this model
can be improved with further optimization of the loop regions. Further work is in
progress for over-expression of recombinant GPA1 so that the structure can also be

determined experimentally.



OZET

Bitki G-proteinlerinin kesfedilmeleri ve tanimlanmalari memeli sistemlerdeki
proteinlerle olan dizi benzerliklerine dayanmaktadir. Bitkiler {izerinde yapilan mutasyon
caligmalar1 bu proteinlerin islevleri ile olasi sinyal iletim mekanizmalarini ortaya
cikarmistir (Fujisawa Y et al., 2001). Bu tezde, 4. thaliana G protein a alt biriminin
(GPA1) detayli dizi analizleri ile fare transdusin o alt birimiyle (PDB kod: 1gg2)
karsilagtirmalar1 verilmektedir. GPA1 proteininin diger bitki G protein a alt birimleriyle
olan eslestirmeleri yiiksek oranda benzerlikler gostermektedir. Ayni analizler A.

thaliana B ve vy alt birimleri i¢inde gergeklestirilmistir.

Dizi analizlerinin sonuglar1 ikincil yap1 belirleme calismalarinda ve GPAI1
proteinin 3 boyutlu modelinin olusturulmasinda kullanilmistir. ikincil yapr belirleme

calismalar1  ve y alt birimleri i¢inde gergeklestirilmistir.

Model hesaplamalar dizi eslestirmelerine, ikincil yap1 belirleme ¢aligmalarina ve
yapist bilinen fare transdusin a alt birimine dayanmakta olup Insight II programinin
icinde yer alan MODELLER modiilii kullanilarak yapilmistir. ERRAT kullanilarak
yapilar1 kontrol edilen modellerin en iyisinin %76 oraninda dogru oldugu belirlenmistir.
Bu modelin dogrulugu yap1 igerisindeki degisken bolgelerin optimize edilmesi ile
arttirilabilir. GPA1 proteinin yapisinin deneysel olarak belirlenebilmesi i¢in rekombinan

protein ekspresyon caligmalari siirmektedir.
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1 INTRODUCTION

G-proteins constitute a large family of regulatory GTP hydrolyzing proteins
including Ras proteins, elongation factors and heterotrimeric G-proteins. All proteins of
this family share a core structural organization. The GTP-hydrolysis mechanism is a

feature of the core structure.

Heterotrimeric G-proteins consist of o, B and y subunits. These subunits are
complexed to each other at the interior part of the cell membrane, until being activated
by a signal. The signal is transmitted from the outside by a receptor known as G-protein
coupled receptor (GPCR). Upon activation, o subunit dissociates from Py complex,
enabling both Ga and GB/Gy to bind to their effector systems and transmit the signal
further.

At the core of every G-protein, is a guanine nucleotide-binding domain. The five-
polypeptide loops (G-1, G-2, G-3, G-4, and G-5), that form the guanine nucleotide-
binding site, are the most highly conserved elements in the domain and define the G-
protein superfamily. The G-1 box contacts the a- and B-phosphates of the guanine
nucleotide. The G-3 loop links the subsites for binding of Mg** and the y-phosphate of
GTP. The guanine ring is recognized, by the G-4 and G-5 loops.

After the advances in protein and nucleic acid sequencing methods, sequence
databases have grown rapidly. In contrast, determination of protein structure by NMR
or X-Ray crystallography has proceeded much more slowly. Hence, there are many
proteins where the three-dimensional structure is not known, while the sequences are

available through the databases.



Predicting the overall fold of a protein solely from its sequence is a major problem
in current computational and structural biology fields. To overcome this problem,
homology-modeling methods, that are able to predict the 3D structure of a protein

sequence, were developed.



2  OVERVIEW

2.1 Small GTP-Binding Proteins

Small GTP-binding proteins are monomeric G-proteins that exist in eukaryotes
from yeast to human and constitute a superfamily consisting of more than 100 members
(Bourne HR et al., 1990). The members of this superfamily are structurally classified
into at least five families: the Ras, Rho, Rab, Sarl/Arf, and Ran families. Ras proteins
mainly regulate gene expression, while the Rho/Rac/Cdc42 proteins of the Rho family
regulate both cytoskeletal reorganization and gene expression. The Rab and Sarl/Arf
family members regulate intracellular vesicle trafficking; and the Ran family members
regulate nucleocytoplasmic transport during the G1, S, and G2 phases of the cell cycle

and microtubule organization during the M phase.

Like heterotrimeric G-proteins, small G-proteins are found in two forms, GDP-
bound inactive and GTP-bound active. Activation by an upstream signal, coming from
both Ga and GPy subunits, leads to dissociation of GDP from the protein, followed by
GTP binding (Bourne HR et al., 1990; Hur EM et al., 2002). Once activated, they bind
to their downstream effectors and function as biological timers, unlike heterotrimeric G-
proteins that function as molecular switches (Matozaki T et al., 2000). The GTP-bound
form is converted by the action of intrinsic GTPase activity to the GDP-bound form,
which then releases the bound downstream effectors. This step, being the rate-limiting
step, is extremely slow and requires a regulator, namely the guanine nucleotide
exchange protein (GEP) or guanine nucleotide exchange factor (GEF) or guanine

nucleotide releasing factor (GNRFT1).



2.2 Heterotrimeric G-Proteins

GTP-binding proteins have the ability to efficiently bind and subsequently
hydrolyze guanine nucleotides. Among these proteins, the heterotrimeric G-proteins are
the only family taking role in signal transduction pathways (Bischoff et al., 1999). The
heterotrimer is formed by three subunits: a (alpha), B (beta), and y (gamma); and is
located on the cytoplasmic side of the plasma membrane. G-protein trimers respond to
signals generated by transmembrane receptors called as G-protein coupled receptors
(GPCR) that recognize ligands as diverse as glycoprotein hormones, cathacolamines,
and light, by activating or inhibiting intracellular effector molecules, such as adenylyl
cyclases, phospholipase CPs, and ion channels (Downes GB et al., 1999). Upon
activation, o subunit dissociates from GB/Gy complex, enabling both Go and GB/Gy to
bind to their effector systems and transmit the signal further. Heterotrimeric G-protein
subunits have also been identified in plants. Though plant G proteins have mostly
different activators, they probably use the same or similar second messenger cascades
that have to be identified. Despite their differences, plant G proteins have the same

mechanism of activation as their mammalian counterparts (Bischoff F ez al., 1999).

2.2.1 Subunit families

In mammalians, the family of heterotrimeric G-proteins includes 23 isoforms
from 4 classes of a (Gi, Gs, Gq, and G12), 5 of B and 12 of y, known so far. In recent
years, 13 Ga, 10 G and 2 Gy subunits have been identified and cloned in plants (Table
2.1). When signaling, they function in essence as dimers because the signal is
communicated either by the Go subunit or by the GPy complex. These interact
specifically with over a thousand of different receptors and more than a dozen effectors

(Downes GB et al., 1999).



Table 2.1 Plant G protein designations (Assmann SM, 2002).

Gene Species Classification Reference
GPAl Arabidopsis Gu Ma et al., 1990
TGAl Tomato Ga Ma et al., 1991
LjGPA1 Lotus Gu Poulsen et al., 1994
) Ishikawa et al., 1995; Seo
RGA1/DI Rice Go etal., 1995
SGAI Soybean Gu Kim et al., 1995
SGA2 Soybean Ga Gotor et al., 1996
NtGPel Tobacco Gar Saalbach et al., 1999
NtGA?2 Tobacco Ga Ando et al., 2000
) Kusnetsov and Oelmueller,
LGPal Lupin Go 1996b
AfGul Wild oat Gu Jones et al., 1998
PGAI,
PGA2 Pea Go Marsh and Kaufman, 1999
SOGAI1 Spinach Gu Perroud et al., 2000
NPGPAI | lu;\; ’g;;i’;,‘; i Ga Kaydamov et al., 2000
AGBI Arabidopsis GB Weiss et al., 1994
ZGBI Maize GB Weiss et al., 1994
TGBI Tobacco GB Kusnetsov and Oelmueller,
1996a
RGBI1 Rice GB Ishikawa et al., 1996
AfGE1 Wild oat GB Jones et al., 1998
AfGB2 Wild oat Possible G3 Jones et al., 1998
NPGPBI | lu;\; ’g;;i’;,‘; i GB Kaydamov et al., 2000
AGGI Arabidopsis G7 Mason and Botella, 2000
AGG2 Arabidopsis G7 Mason and Botella, 2001
Potential heterotrimeric Josefsson and Rask, 1997;
GCRI Arabidopsis . Plakidou-Dymock et al.,
G protein receptor 1998
MLO Barley Potential hpterotnmenc Devoto et al., 1999
G protein receptor
AtXLGI Arabidopsis Extra large GTP binding Lee and Assmann, 1999
protein
PsDRG Pea Developmentally Devitt et al., 1999
regulated G protein
. . Developmentally Etheridge et al., 1999;
AtDRG Arabidopsis regulated G protein Devitt et al., 1999
. . (putative GTP-binding Schiefelbein and
RDH3 Arabidopsis protein) Somerville, 1990
ATGBI Arabidopsis GTP-binding protein Biermann et al., 1996
fw2.2/ORFX Tomato (putative  GTP-binding Frary et al., 2000
protein)




2.2.1.1 The o-subunit

Being the major signaling component, the Ga subunits in mammalians have been

divided into four families based on sequence similarities, while GB and Gy subunits

have not been classified (Neves SR et al., 2002). (Table 2.2)

Table 2.2 G-protein subfamilies and their activities (Neves SR et al., 2002).

G-protein
subfamily

Family members

Properties

Activities

G

Gtgn
G,
GBy

Gt gy G0y
Gta

Gtan2)

G,

Gt

L_"O:gusl

Gqur GD’.—|-|

Gy, Gy, Goy g
Gy, Gty 3

GD{h

Ghs Gz

Cholera toxin activates

Pertussis toxin nhibits

Pertussis toxin nhibits

Pertussis, cholera toxin sensitive

Stimulate adenylyl cyelase
Upen calcium channels
Inhibit adenylyl cyclase
Open potassium charmels
Close calcium channels
Inhibit adenylyl cyclase

Activate cGMP phosphodiesterase

Stimulate PLCJ

7

Stimulate PLCR

Stimulate PLCR
Activate or mhibit adenylyl cyclases

The Gs and Gq families have very well defined effector pathways, the adenylyl

cyclase and phospholipase C- pathways, respectively. The Gi and Go families are less

structured, and here the signal flows through both the Ga and GBy complexes. Although

signaling with the G12 and G13 pathways have been extensively studied, with similar

downstream components being identified, it is not clear whether they always regulate

similar biological functions. (Figure 2.1)

G-protein o subunits range from 350 to 395 amino acids in length. Plant a

subunits have at least 70% homology, while mammalian o subunits show at least 40%

homology and the levels of homology between plant and mammalian Go subunits were

as high as 38-40% (Lochrie MA, 1988).



. 'L"E Dﬂpﬂmmﬂ Hrsi.:_l_rnlnu Ami'_:!@x:-llnn Sun:@ustmln Saidkn
EHe T/ : o Anglotensin
i e S -+ Yaspprassin
Epinaphrina ', - —— __LPh
Glueagen . =i/ ———— Thrombin
[ Gy
Sy i
Benbanlic chml.z';a g Trnssrplicnal m"‘“. ﬁ!'"‘!i";h, Secralory
L L Iranspariers maghirory rrachingry mochinary
Glucoge Slaroid Pacemakar P — Cardlac Svnaphc PlwRary
motabafsm praduclion acinity measd Furactian pizsticly Eunclion
;|
orgaeisma Ny Embrone ¢ Geadnl ¢ Learig

\, hoamonetagl | oavalopmart | | oevalcomant | ', andmamary

Figure 2.1 G-protein pathways (Neves SR et al., 2002).

2.3 G-protein Coupled Receptors

Precise control of physiological phenomena is performed by various kinds of
receptor-mediated signaling. The vast number of receptors belongs to the GPCR family,
making them one of the largest receptor families found in nature. Recent estimates are
that about 1% of the mammalian genome code for these types of receptors, and
thousands of GPCRs are predicted to exist. (Hur et al., 2002) Plant GPCRs have also
been identified and cloned (Josefsson LG, 1997).

GPCRs have a common structure formed of seven transmembrane helices,
connected by intracellular loops that form the G-protein-binding domain. Ligand
binding to the receptor causes conformational changes, resulting in the activation of
GPCR-interacting proteins, but the exact mechanism of this process is not completely
understood yet (Hur ef al., 2002; Brady et al., 2002). Models describing the interaction
of GPCRs with their protein targets were generally based on the assumption that the
receptors exist as monomers and couple to G-proteins in a 1:1 stoichiometric manner.

However, recent studies have shown both the existence of multi-domain scaffolding



proteins and chaperone molecules interacting with GPCRs, and homo- and hetero-
oligomerization of the receptors themselves, generating numerous possibilities for the

role and function of GPCRs than has been estimated (Brady et al., 2002).

2.4 Regulators of G-Protein Signaling

Regulators of G-protein signaling (RGS) proteins act as negative regulators of G-
protein dependent signaling, as they enhance GTP-hydrolysis by Ga subunits to turn off
signaling (Dohlman HG, 1997; Wilkie TM, 2000). These proteins form a highly diverse
family, having unique tissue distributions, and strong regulation by signal transduction

events.

In addition to their GTPase-accelerating activity, RGS proteins also: directly
antagonize Ga effectors (Hepler et al., 1997), enhance receptor-G-protein coupling
(Zhong H, 2001), are GI13 effectors (Kikuchi A, 1999), may participate in

desensitization or tolerance to opioids (Potenza MN et al., 1999).

A member of RGS family that is well defined is the Ga-interacting protein
(GAIP). These proteins are able to regulate heterotrimeric G-protein activity by specific

binding to Ga subunits (Wylie F et al., 1999).

2.5 Mechanism of Activation and Action

In the inactive state, G-proteins form membrane-bound afy heterotrimers, with
GDP tightly bound to the a-subunit. Receptor activation by ligand binding is thought to
cause changes in the relative orientations of transmembrane helices 3 and 6, though
high resolution structure data has not been reported for GPCRs, yet (Hamm HE, 1998).

These changes then affect the conformation of G-protein interacting intracellular loops



of the receptor and thus may uncover previously blocked G-protein-binding sites

(Farrens D et al., 1996).

When an activated receptor interacts with the Ga, the exchange of GDP for GTP
is catalyzed (Perroud et al., 2000). GTP binding leads to rapid dissociation of Ga-GTP
from the GPy complex, due to the unstable nature of GTP-bound form of the
heterotrimer. Activation of downstream effectors occur both by Go-GTP and Gfy
subunits. G-protein deactivation is the rate-limiting step for switching off the cellular
response and occurs when the a-subunit hydrolyzes GTP to GDP (Zimmermann H,
1993; Hamm HE, 1998). This GTPase activity is activated by the binding of the a

subunit to its effector and reforms the original complex with the By subunits.

Certain oncogenes have been shown to code for G-proteins that contain a defect in
their intrinsic GTPase activity. The oncogene product Ras is a good example. Such
proteins, once bound to GTP, are unable to return to the inactive state, causing the cell
to continue to receive the 'on' signal, even in the absence of receptor binding to a ligand.
On the other hand, the toxin released from the bacterium Vibrio cholerae, known as
cholera toxin, inactivates the o subunit of G-proteins. Being an oligomeric enzyme, the
toxin catalyzes the transfer of ADP-ribose to a specific arginine residue of the o subunit,
destroying its GTPase activity. By this way, the G-protein becomes irreversibly

activated and the effector systems become either activated or deactivated permanently.

Heterotrimeric G-proteins transduce ligand-induced signals into intracellular
responses, which underlie physiological responses of tissues and organs. G-proteins
play important roles in determining the specificity of the cellular responses to signals
(Hamm HE, 1998). However, because of the diversity of G-protein subunits and
downstream effector molecules, the pattern of responses of a particular cell or tissue to
stimulation by a ligand is quite complex and only a general scheme can be given to

explain this process.

Once activated, both a and Py subunits interact with their effector systems.
Different types of Ga's interact with various effector systems, including adenylyl

cyclase, cGMP phoshodiesterase, and phospholipase C-f. Moreover, a subunits have



been shown to interact with other proteins, like RGS and GAIP. Interestingly, By
subunits use some of the effector molecules that the a subunit uses, namely adenylyl

cyclases and phospholipases. (Figure 2.2)

However, GBy subunits mediate signal transduction by interaction with many
other proteins including GPCRs, GTPases, K™ channels, voltage-sensitive Ca'

channels, PI3 Kinase, and molecules within the MAPK pathway (Hur EM et al., 2002).

v
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Figure 2.2 Effector molecules regulated by different Go and Gy subunits

(Hur EM et al., 2002).

2.5.1 Adenylyl Cyclase

In mammals, adenylyl cyclase is a single polypeptide that resides in the plasma
membrane of cells. Its role is to catalyze production of cAMP from ATP. The 3'-OH
ribose group of the ATP attacks the a-phosphoryl group resulting in cyclisation of the
molecule. The energy released from this reaction helps to drive the cyclisation reaction

(Tang W1J, 1992).

10



Like many of the proteins in signal transduction, there are various isoforms of
adenylyl cyclase. Although the mammalian ones are integral in the plasma membrane,
other forms have been found to be peripheral plasma-membrane proteins, for example
in the yeast S. cerevisiae or in E. coli. At least eight isoforms have been identified in
mammals (type I[-VIII), but all share similar structural topology. They contain two
clusters of six transmembrane-spanning highly hydrophobic domains that separate two

catalytic domains on the cytoplasmic side of the membrane.

When a hormone binds to the relevant receptor on the cell surface, activation of
adenylyl cyclase is an indirect process, requiring the use of G-proteins. The action of a
G-protein on the activity of adenylyl cyclase is either stimulatory or inhibitory,
depending on the G-protein involved. Stimulatory effect results in increased cAMP
levels, while the inhibitory effect causes the opposite (Mattera R et al., 1989; Cooper
DMF et al., 1995). However, G-proteins are not the only means of controlling the
activity of adenylyl cyclases. Ca™?/Calmodulin can also activate some of the isoforms of

the enzyme (Cooper DMF et al., 1995).

Although the active part of trimeric G-proteins has been thought to be the a
subunit, the By complex has also been shown to be important (Ahmed AH et al., 1997).
Moreover, it was shown that different isoforms of adenylyl cyclase were controlled
differently by the subunits of the G-protein heterotrimer. While some adenylyl cyclases
were stimulated by the By complex, others were inhibited or even not affected (Ihiguz-

Lluhi J et al., 1993).

2.5.2 Phospholipase C-p

One of the key events in signal transduction in cells takes place on the membrane
and involves the breakdown of some of the lipids of the membrane. Phospholipase C-f3
(PLC) enzymes belong to a large family of inositol-lipid specific phospholipase C’s
with well-defined functions. They hydrolyze several inositol lipids including
phosphatidylinositol-4,  5-biphosphate  (PIP;), phosphatidylinositol (PI), and
phosphatidylinositol 4-phosphate (PI4-P). Hydrolysis of PI and PI4-P releases the
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inositol phosphates such as inositol-1, 4, 5- triphosphate (IP3) and diacylglycerol (DAG)
(Divecha N et al., 1995).

IP; is responsible for the release of Ca™ ions from intracellular stores, which leads
to the activation of the Ca™* signaling pathways, including the activation of calmodulin
and its associated effectors. DAG, on the other hand, leads to the activation of protein
kinase C (PKC) and the associated phosphorylation of a host of proteins along with

modulation of their activity.

Activation of PLC is brought about in different ways depending on the isoforms,
but one of the mechanisms for turning on PLC is through the interaction with
components of the trimeric G-proteins. Both a and By subunits of heterotrimeric G-
proteins can bind and affect PLC-f activity. Furthermore, it has been shown that the
binding sites on PLC-B for a and By subunits are different, indicating that they can
interact simultaneously (Smrcka AV et al., 1993).

PLC’s have also been reported to control the signal transduction cascade in which
they are involved. This is achieved through their GTPase-activation activity, exerted on
a subunits of G-proteins. Upon activation by G-proteins, PLC-B activates its
downstream effectors and binds to the a subunit to improve GTP-hydrolysis (Cook B et

al., 2000; Montell C., 2000).

2.5.3 1Ion channels

Ion channels are encoded by several hundred genes in mammalians, differing
widely in molecular structure, selectivity to ions and mechanisms of operation. Despite
the structural diversity, these proteins share a general structural motif: a pore formed by
and enclosed within the transmembrane segments of the channel protein, through which

ions traverse the plasma membrane.
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Ion channels are end targets in a large number of regulatory pathways that are
initiated by G-protein coupled pathways. Both o and By subunits can regulate ion
channels directly, via physical interactions between G-protein subunits and the channel
protein, or indirectly, via second messengers and protein kinases (Wickman K et al.,

1995).

Direct modulation by G-proteins has been proposed mainly for two families of ion
channels, voltage-dependent Ca™ channels and G-protein-activated inwardly rectifying

K" channels (GIRKSs or Kir3) (Dascal N, 2001).

2.6 G-protein Functions In Plants

Heterotrimeric G-proteins have distinct and important roles in various organisms,
including bacteria, fungi, plants and mammalians. In mammalians, heterotrimeric G-
proteins have been reported to play a role in taste perception (McLaughlin SK et al.,
1992), visual transduction (Arshavsky VY, 2002), several physiological disorders
including Alzheimer’s disease (Cowburn RF et al.,2001), hormonal signaling and
immune system (Kehrl JH, 1998; Lania A et al., 2001) and development (Malbon CC,
1997).

Plant G-proteins are thought to take role in various signaling processes, including
plant hormone signaling, light signaling, pathogen signaling, development, seed
germination and growth, regulation of biosynthetic pathways as well as regulation of
ion (K" and Ca'?®) channels and opening of stomatal guard cells (Fujisawa Y et al.,

2001; Millner PA, 2001).

Although studies using mutating agents activated or inhibited G-protein pathways,
the exact mechanism of G-protein involvement within the plant hormone signaling is
still not clear. In plants, G-proteins have been reported to take part in signal
transduction events of the hormones auxin, gibberellin, and abscisic acid (ABA)

(Millner PA, 2001).
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Auxin is mainly produced in apical meristems, buds, young leaves, and other
active young parts of plants. Besides stimulating the enlargement of cells by increasing
the plasticity of cell walls, auxins have many other effects, including triggering the
production of different growth regulators, causing the Golgi bodies to increase rates of
secretion, playing a role in controlling some phases of respiration, and influencing

numerous developmental aspects of growth (Stern KR, 1997).

Gibberellin, being a plant hormone and a growth regulator, controls diverse
developmental processes as seed germination, stem elongation, leaf expansion, trichome

development, flower and fruit development (Davies PJ, 1995).

ABA is synthesized in plastids, apparently from carotenoid pigments. It is found
in many plant materials but is particularly common in fleshy fruits, where it evidently
prevents seeds from germinating while they are still on the plant. As the stimulatory
effects of other hormones are inhibited by ABA, cell growth is also inhibited (Stern KR,
1997).

In higher plants, guard cell ion-channel regulation controls stomatal apertures.
Stomatal opening relies on increases in K*, CI, malate”, and sucrose in the guard cell
symplast to drive water influx and cell swelling. These processes result in an outbowing
of the guard cell pair and an increase in pore aperture. During stomatal opening, K"
uptake is mediated by inwardly rectifying K™ channels. During inhibition of stomatal
opening by ABA, these channels are inhibited. In guard cells, ABA activates
phospholipases C and D and can elevate cytosolic calcium levels through IP3 or other
pathways (MacRobbie EAC, 2000; Leckie SP et al., 1998). Cytosolic Ca™ elevation, in
turn, inhibits inwardly rectifying K™ channels and activates slow anion channels that
mediate CI" and malate” efflux (Wang X-Q e al., 1998). It has been shown that
regulation of ion channels in stomatal guard cells and ABA, at least in part, involves G-

proteins in plants (Wang X-Q et al., 2001).
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2.7 Structural Features of G-proteins

At the core of every G-protein, is a guanine nucleotide-binding domain. The five-
polypeptide loops (G-1, G-2, G-3, G-4, and G-5), that form the guanine nucleotide-
binding site are the most highly conserved elements in the domain, and define the G-

protein superfamily. (Table 2.3)

The diphosphate binding loop (P-loop or G-1 box), having the consensus
sequence GXXXXGK(S/T) connects the B1 strand to the al helix and contacts the a-
and B-phosphates of the guanine nucleotide. The G-3 loop, with the consensus sequence
DXXG, at the N-terminus of the a2 helix links the subsites for binding of Mg+2 and the
v-phosphate of GTP. The guanine ring is recognized, in part, by the G-4 loop that links
the B5 strand and the a4 helix. The connection between the al helix and the B2 strand
(G-2) contains a conserved threonine residue involved in MgJr2 coordination. G-5,

located between 6 and a5, forms the guanine base recognition site (Sprang SR, 1997).

2.7.1 Heterotrimeric G-protein a subunits

The general structure of Ga, in mammalian systems, is formed of two domains: a
GTPase domain and a helical domain. The GTPase domain contains the guanine
nucleotide binding pocket, the Mg® -binding domain, the guanine ring binding motif,
the threonine and glycine residues needed for GTP hydrolysis, an N-terminal lipid
modification site, and sites for binding receptors, effector molecules, and the By subunit.
The helical domain contains the arginine residue needed for GTP hydrolysis, and is
thought to slow down GTP hydrolysis but its exact function is not clear yet. Plant Ga
subunits are thought to have almost the same structure, as there are still no structural

studies conducted in plants.

Effector interaction involves three regions within the GTPase domain. The first of
these regions, called Switch I, is a loop connecting helix a4 to strand 6. The second

region, namely Switch II, corresponds to the loop preceding the a2 helix, and the helix
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itself. Switch III, the last region, corresponds to the loop that connects helix a3 to strand

B5. (Figure 2.3)

The base of the B propeller is positioned directly over the B,-Bs-ay cluster of the a
subunit. All but three of the DA (B blades 6 and 7) and BC (blade 6) loops contribute to
the o contact surface. Almost the entire length of the switch II region of the o subunit,
which corresponds to the B3-a, loop and the a, helix, is buried in the contact with 3
subunit. The hydrophobic core of the contact is organized around Trp-99 of B and Trp-
211 of the a subunit. This contact also includes the B subunit residues Tyr-59, Met-101,
Leu-117, Tyr-145, and Met-188 and the a subunit residues Ile-184, Phe-199, Cys-214,
Phe-215, and Lys-210. Trp-99 of the  subunit protrudes into a hydrophobic pocket in
the surface of the a subunit (Wall MA et al., 1995). Mutational studies involving the
Trp-99 of the B subunit resulted in disruption of the interaction between a and Py
subunits (Whiteway M et al., 1994).

GTPase DOMAIN

Switch 11

2 . \Linkcrz Switch 1

Linker 1

Figure 2.3 Overall structure of G-protein a subunit.

(Rens-Domiano S et al., 1995)

16



The GTP-hydrolysis mechanism involves a conformational change of the a
subunit, thereby enabling the formation of the heterotrimer. Both the switch II and the
amino-terminal parts of the o subunit are dynamic components of the interaction. Upon
GTP-hydrolysis, the switch II helix rotates ~120°, exposing the hydrophobic residues
Phe-199, Trp-211, and others, to interact with complementary nonpolar pockets in the 8
subunit. The same rotation also creates two ionic interactions between the o and
subunit: Glu-216 on a forms an ion pair with Lys-57 on  and Lys-210 is inserted into a
negatively charged pocket formed by Asp-288 and Asp-246 on adjacent loops of the 3
subunit (Sondek J et al., 1994).

Formation of the o/f interface likewise destabilizes the conformational state of
switch II that is required for GTP binding. The amino-terminus of the helix, of the
switch II region, forms the binding site for the y phosphate of GTP and positions the
catalytic residue GIn-204 for a role in transition state stabilization. The conformational
changes within switch II region are coordinated with a complementary shift of the
switch I peptide that ultimately traps GDP in the catalytic site of a subunit (Sondek J et
al., 1996).

In the GTP-bound state, Thr181 of switch I contributes an oxygen ligand to the
Mg™. This structural constraint is removed with the release of Mg™ upon GTP-
hydrolysis. Switch I region is removed from the catalytic site, to avoid any interactions
with Gly-203 caused by rotation of the switch II helix (Coleman DE et al., 1994). This
results in the repositioning of Glu-186 and Ile-184 for optimal interaction with the 3
subunit, and promotes hydrogen bonding as well as ion pair formation between Arg-178
and Glu-43. Formation of the ion pair prevents the diffusion of the nucleotide from the
catalytic site. Thus, Arg-178 is crucial for catalysis, and binding of By and GDP to the a
subunit (Higashijima T et al., 1987). In the heterotrimer, the carboxyl-terminus of the a
subunit is exposed for possible interactions with the cytoplasmic domains of their

receptors (Conklin BR et al., 1993).
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2.7.2 Heterotrimeric G-protein 3 subunits

The core of the B subunit folds into a B-propeller domain that is composed of
seven repeats, termed as WD40 repeats, comprising a four-stranded antiparallel sheet
that is called the B blade. WD40 repeats are approximately 40 amino acids in size, with
several additional conserved amino acids, including a Trp-Asp dipeptide. The WD40
repeat corresponds to the outer strand of one B blade and the first three inner strands of

the next (Wall MA et al., 1995).

Each of the seven 3 blades is organized around a narrow central channel, with the
B strands roughly parallel with the channel axis. The o subunit is positioned at the
narrow end of the channel, forming two contact surfaces with the B subunit. The first of
these includes the cluster containing the f2 and B3 strands and the a2 helix in the a
subunit. This segment contains the switch II region that undergoes conformational
rearrangement upon hydrolysis of GTP. The second contact region is an extended
interface between the helical amino terminus of a subunit and the side of the B propeller

(Lambright et al., 1994).

To form the B subunit, the seven four-stranded sheets (B blades) are nested face to
face around the barrel axis. The first strand (A) of the B blade lines the inner channel of
the structure, and the rest advances outward so that the fourth strand (D) forms the outer
edge. The AB loops and the CD loops are located at the end, where the y subunit is
bound, while the BC and long DA loops are located on the opposite end that faces the a
switch II region. The amino terminal of the  subunit forms an extended polypeptide
chain that tightens the top of the barrel. This part of the chain forms a shallow groove
on the surface of the barrel that binds the y subunit. (Figure 2.4)
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Figure 2.4 Overall structure of G-protein B and y subunits. B subunit is shown in yellow,
vy subunit in green. (Tooze J and Branden C, 1999)

2.7.3 Heterotrimeric G-protein y subunits

The y subunit of the heterotrimeric G-protein is composed of two helical segments
joined by a loop and has essentially no tertiary structure. The direction of the y chain is
parallel to that of the amino-terminus of the B subunit. A part of the amino-terminal of
the y chain is a-helical and crosses the amino-terminal helix of the § subunit at an angle

of 15°, suggestive of a parallel coiled-coil interaction (Garritsen A ef al., 1993).

Like the B subunit, the y subunit projects into solvent towards the o subunit, where
the terminal residues are disordered. The second helix in the y subunit runs side by side
with the second helix of the P subunit, covering the fifth and sixth blades of the 8
subunit. The carboxyl-terminal loop of y subunit is buried in a hydrophobic pocket on

the surface of the  subunit (Katz I ez al., 1995).

19



Table 2.3 Conserved nucleotide-binding motifs in selected G-proteins (modified from Sprang SR, 1997).

Organism Protein | Residue G-1 Residue G-2 Residue G-3 Residue G-4 Residue G-5
Human Ras 10 GAGGVGKS 32 YPDTIED 55 ILDTAGQE 114 VGNKCD 142 YIETSAK
Human Rap-1A 10 GSGGVGKS 32 YDPTIED 55 ILDTAGTE 114 VGNKCD 140 FLGSSAK
Human ARF-

A 24 GLGAAGKT 45 TIPTIGF 65 VWDVGGQD 124 FANKQD 155 IQATCAT

E. coli EF-Tu 18 GHVDHGKT 58 RGITINT 79 HVDGPGHA 133 FLNKCD 169 IVRGSAL

T. thermophilus EF-G 19 AHIDAGKT 61 RGITITA 81 [IDTPGHV 135 FANKMD 258 VFLGSAL
Bovine G 47 GAGESGKS 201 RVLTSGI 221 MFDVGGQR 290 FLNKQD 361 PHFTCAV
Bovine Giy 40 GAGESGKS 178 RVKTTGI 198 LFDVGGQR 267 FLNKKD 321 THFTCAT
Bovine G 36 GAGESGKS 174 RVKTTGI 194 MFDVGGQR 263 FLNKKD 317 SHMTCAT
Bovine Goa 40 GAGESGKS 179 RVKTTGI 199 MFDVGGQR 268 FLNKKD 321 CHMTCAT
Human G 40 GTSNSGKS 179 RDMTTGI 199 MFDVGGQR 268 FLNKKD 322 SHFTCAT
Mouse Gy 40 GTGESGKS 177 RVPTTGI 197 MFDVGGQR 266 FLNKKD 320 SHFTCAT
Tomato Tgal 45 GAGDSGKSTI 191 RIRTTGV 217 LFDVGGQR 285 LFLNKFD 251 IYRTTAL
Potato Stgpal 45 GAGDSGKSTI 191 RIRTTGV 217 LFDVGGQR 285 LFLNKFD 251 IYRTTAL
plumbti:inifolia Npga 53 GAGDSGKSTI 199 RIRTTGV 225 LFDVGGQR 273 LFLNKFD 240 IYRTTAL
Spinach SOGAL 44 GAGESGKSTI 190 RVRTTGV 216 LFDVGGQR 284 LFLNKFD 250 IYQATAF
Arabidopsis GPAl 44 GAGESGKSTI 190 RVRTTGV 216 LFDVGGQR 284 LFLNKFD 250 IYRTTAL

20




2.8 Homology Modeling

After advances in protein and nucleic acid sequencing methods, sequence
databases such as the protein information resource (http://www-nbrf.georgetown.edu/),
SwissProt and TrEMBL (http://www.expasy.ch/) have grown rapidly. In contrast,
experimental determination of protein structure by NMR or X-Ray crystallography has
proceeded much more slowly and there are many proteins where the three-dimensional

structure is not known, but the sequences are available through the databases.

One of the major problems currently faced in computational and structural biology
is to be able to predict the overall fold of a protein correctly, purely from its sequence.
This is known as the protein-folding problem (Osguthorpe DJ, 2000). Homology
modeling methods may predict the 3D structure of a protein sequence by using

information derived from a homologous protein of known structure (Sanchez R, 1997).

In order to construct a homology model for a query protein sequence, the query
must first be aligned with one or more homologous reference proteins of known
structure. If the sequence identity between the two proteins within the alignment falls to
30% or below, the alignment process becomes increasingly unreliable (Venclovas C et

al., 1999) and results in incorrectly folded regions in the predicted structure.

There are two methods of homology modeling, which can be used: fragment-
based homology modeling and restraint-based homology modeling. Fragment-based
homology modeling procedures use the alignment between the query sequence and the
known protein(s) to identify a number of structurally conserved regions (SCR). These
regions have no insertions or deletions and tend to have well defined secondary
structures, like helices or strands. The level of sequence conservations is also the
highest at these sections of the protein. Regions of the protein sequences in between the

structurally conserved regions are usually denoted as variable regions (Forster MJ,

2002).

21


http://www.expasy.ch/
http://www-nbrf.georgetown.edu/

As the SCRs provide a consistent framework between the known and unknown
structures, the coordinates of the protein backbone in the query protein can be copied
from those in one of the known proteins. Variable regions in an alignment, on the other
hand, are most often protein loop regions where mutations, insertions, and deletions are
common and these make accurate modeling hard. Generally, loops are modeled by
searching a structural database for regions of a suitable length and geometry at the
interface with the SCRs, along with the requirement that they do not have any
interference on the rest of the model structure (Forster MJ, 2002). Several commercially
available homology-modeling programs utilize this approach for model construction.
These include the COMPOSER program (Blundell TL et al., 1987, 1988; Topham CM
et al., 1990) which is incorporated into the SYBYL program suite (Tripos Inc., St.
Louis, http://www.tripos.com) and HOMOLOGY, which is a component of InsightIl
(MSI, San Diego, http://www.accelrys.com).

Unlike fragment-based methods, the restraint-based homology modeling methods
do not break the model building process into two distinct phases i.e. building conserved
regions then finding variable loop regions. Instead, the alignment is used to derive
geometrical restraints, such as limits on distances between pairs of C, atoms, ranges of
backbone, and side chain dihedral angles, etc. These restraints can then be combined
together to find an overall scoring function that defines how well the model structure
matches the set of geometric criteria. A structure generation procedure, of which
multiple types have been reported, is then used to create model structures that best
satisfy the restraints (Forster MJ, 2002). Restraint-based molecular dynamics
procedures for structure generation have been used in the MODELLER program that is
available = for  academic  authors  through the author’s web  site
(http://guitar.rockefeller.edu/modeller/modeller.html) or commercially as a component

of InsightIl.
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3 AIM OF THE STUDY

In this M.Sc. work, detailed sequence alignment analyses of A. thaliana G-protein
a subunit (GPA1) with its mammalian counterpart rat transducin o subunit (PDB entry
1gg2 and 1fgk) were carried out. Alignment of GPA1 with other known Ga sequences,
from plants, reveal a high degree of homology. Same analyses were extended to A.

thaliana B and y subunits.

Results of sequence analyses were used as a basis for secondary structure
prediction and for modeling 3D structure of GPA1. Secondary structure prediction was

carried out for § and y subunits as well.

Furthermore, a model structure for GPA1 was proposed, based on the sequence
alignment, secondary structure prediction and known structure of rat transducin o

subunit.
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4 MATERIALS

4.1 Chemicals

All chemicals and growth mediums were purchased from SIGMA (USA), Fluka
(Switzerland), Merck (Germany), and Riedel de Hien (Germany).

4.2 Primers and Vectors

Primers for GPA 1, without restriction enzyme cutting sites, designed according to
the sequence reported by Ma H (Ma H et al., 1990) were purchased from Integrated
DNA Technologies Inc., USA.

G1-primer (forward): 5" —ATG GGC TTA CTC TGC AGT -3’

G3-primer (reverse): 5> —TCA TAA AAG GCC AGC CTC -3

pGEM-T Easy (Promega) is a vector facilitating cloning of the nucleic acid

fragment with its 3’ Adenine tail.
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4.3 Enzymes

T4 DNA ligase (Promega) — 3u/pl

Taq DNA polymerase (Promega) — Su/pl

EcoRI Restriction enzyme (Promega) — 12u/ul

4.4 Commercial Kits

QIAGEN, Qiaquick® Gel Extraction Kit (250)

QIAGEN, Qiaquick® PCR Purification Kit (50)

QIAGEN, Qiaquick® PCR Purification Kit (250)

QIAGEN, Qiaprep”® Spin Miniprep Kit (250)

QIAGEN, QIAGEN® Plasmid Midi Kit (100)

Promega, PCR Core System II

4.5 Buffers and Solutions

Luria-Bertani Growth Medium:

1% w/v tryptone
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0.5% w/v yeast extract

1% w/v NaCl, pH: 7.2

4.6 Equipment

A complete listing of equipment used in this study can be found in Appendix B.
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S METHODS

5.1 Culture Growth

Basic culture growth, competent cell preparation, cloning, plasmid isolation, and
restriction enzyme analysis procedures flowed were used according to Sambrook ef al.
(Sambrook J and Russell DW, 2001) throughout this study, E. coli IM109 cells were
kindly provided by Prof. Beki Kan (Dept. of Biophysics, Marmara University, Istanbul,
TURKIYE). The cells were grown overnight in Luria-Bertani (LB) medium, prior to

any application.

5.2 Polymerase Chain Reaction (PCR)

The vector pCIT767 containing GPAI sequence was digested overnight at 37° C
using the restriction enzyme EcoRI. Three units enzyme/ug DNA was used for the
digestion mix. PCR was carried out using PCR Core System II, GPAI being the
template together with the designed primers (G1 and G3). The following program was

used in the thermocycler (Eppendorf thermocycler):

Template: 3 pl (final: < 0.5 pg/50 pl)

Primer (G1 and G3): 1 uM final conc.

- 94°C, 1 min.
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- 94°C, 1 min.

\
- 53°C, 1 min. 30 cycles
- 72°C, 1 min.

J
- 72°C, 1 min.
- 22°C, hold.

5.3 Preparation of pGEM-T Easy + GPAI Construct

Ligation reaction was prepared using purified GPA/ fragment as the insert, and
cut pGEM-T Easy as the vector. The reaction mix was prepared according to the
manufacturer’s instructions with three pl insert. Besides the desired ligation reaction,
controls with no insert DNA (background control) and with control insert DNA
(positive control) were also prepared. The ligation mix was used to transform competent

E. coli IM109 cells.

5.4 Plasmid Isolation and Verification of GPAI Sequence

GPAI was kindly provided by Dr. Hong Ma (Dept. of Biology, Pennsylvania
State University, Pennsylvania, USA) in a pCIT767 vector. pCIT767 vector was
isolated from E. coli cells, using Qiagen plasmid isolation protocol, and used as a

template for the Polymerase Chain Reaction (PCR).

For verification of GPAI sequence, pGEM-T Easy+GPAI construct was also

isolated from E. coli IM109 cells using the same system. Restriction enzyme analysis
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was carried out on the isolated construct using EcoRI restriction enzyme. Sequencing

was carried out at Seqlab GmBH (Goéttingen, GERMANY).

5.5 Homology Modeling

Throughout this study, fragment-based homology modeling method was used.
GPAI sequence (GenBank entry: M32887), from Arabidopsis thaliana, was processed
against a database of PDB files with known structures using PSIBLAST (Altschul SF et
al., 1997). The most similar 10 sequences were downloaded onto WORKBENCH
(http://workbench.sdsc.edu) and an alignment was generated with CLUSTALW
(Thompson JD et al., 1994). After inspection of the result, the number of sequences for
final alignment was reduced to two, namely the sequences 1fgk (Chimera of guanine
nucleotide-binding protein G, -1 subunit and guanine nucleotide-binding protein G; -
1 subunit) and 1gg2 (G protein heterotrimer mutant G; w-1, B-1, y-2 with GDP bound)

in PDB that are rat transducin o subunits.

Final alignment was loaded onto the MODELLER program within Insightll, to
create two models with low loop optimizations. The accuracy of the models was
checked using ERRAT (Colovos C and Yeates TO, 1993), a program for verifying
protein structures determined by crystallography. Here the error values are plotted as a
function of the position of a sliding 9-residue window. The error function is based on
the statistics of non-bonded atom-atom interactions in the reported structure (compared
to a database of reliable high-resolution structures). An acceptable structural model
should have 95% of its overall error function below the 95% limit, shown in ERRAT

graphs.

A second alignment was done, using Align2D function within MODELLER, to
generate a new set of models. These models were also checked using ERRAT. A final
modeling job was carried out using the first alignment, but this time with high loop

optimizations and sent to ERRAT to verify their accuracy.
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6 RESULTS

6.1 Amplification of GPAI and Sequence Verification

pCIT767 plasmid, bearing the GPA1 sequence was kindly provided by Dr. Hong
Ma (Penn. State Univ., Pennsylvania, USA), in E. coli cells and served as a starting
point for this study. The plasmid was isolated from the cells and digested using EcoRI
restriction enzyme, to obtain a 1100 bp fragment containing GPAI. This fragment
(Figure 6.1A) was used as a template in the PCR for amplification (Figure 6.1B) with
internal primers designed according to GPA1 sequence. As shown in figure 6.1B, the

PCR product is a fragment of about 1100 bp.

1%¢ Agarose gel, 100V, 1h
uncut pCIT B

cut pCIT[{+EcoRI) cut pCIT[+EcoRI]

Figure 6.1 A) Results of agarose gel electrophoresis showing pCIT767 vector cut with
EcoRI restriction enzyme. The first lane is the MW marker, ®174/BSU (Promega).
Second, third and fifth lanes are digested pCIT767 showing GPAI. The fourth lane
shows uncut pCIT767. B) Agarose gel electrophoresis results showing PCR products
using GPAI, cut from pCIT767, as a template. Lane 1 is the marker and lanes 2-5 are
PCR products.
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The amplified fragment was ligated into pGEM-T Easy vector and E. coli IM109
cells were transformed with the construct. Plasmid isolation and restriction enzyme
analysis, as well as sequencing of the pGEM-T Easy+GPAI construct verified that
GPAI was amplified without any mismatches (Figure 6.2). The gene is being currently

cloned for over-expression.

GFR e T T TR T T A TR AT R AT AT A T AN G AT BT T O AT A CAG T T AT CCTR T OO AT AT AN T AR LA TGOTZANGTETL
SaguanTiag OG0 GGG a T TGN TA T GG T T TG A GTAS MG TC A A TC AT TRAAGA TR BTG T AT A TA CAG TTCAGL COTE T AR TRA A AL AAG TROTEAAGTETA

I IRETEIITTERITTERITTRRNTIRATTRRRT AR TR AT Rd A TR R AT TER AT TR R A TR R AT TR AR TR AT ITERITRERI TR ba TR TE

GTA TACTGATRAGR RTACKC AGOCTOCTOAAATCO ARG AC GO ATAG RO ARG AAGE A A AGG0 SO BT TL T TR MG TR R TG0 A A MG TOAG N GGG A TCRATTCATCTLTITRL
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Figure 6.2 Sequencing results for pPGEM-T Easy+GPAI construct isolated from E. coli
JIM109 cells. Identical residues are shown in blue, while pGEM-T Easy sequence is
shown in red.
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6.2 Structure Prediction of GPA1

6.2.1 Alignment of GPA1 with Mammalian Ga

The amino acid sequence for G-protein o subunit (AAA32805) from Arabidopsis
thaliana (GPA1) was searched against proteins of known structure, using PSIBLAST
(Altschul SF et al., 1997; Schaffer AA et al., 2001). (Appendix A) Highest score
yielding proteins were found to be members of the transducin family, especially of rat
(Rattus norvegicus) origin. Out of these sequences, the ten most similar were aligned
amongst themselves using CLUSTALW (Thompson JD et al., 1994). As can be seen in
Figure 6.3, there is 62% identity between mammalian sequences. Alignment of GPAI
sequence with the rat sequences using CLUSTALWPROF is shown in Figure 6.4.
Similar protein sequences were removed from the rat transducin alignment and a final
alignment, with only two transducin sequences and the GPA1 sequence, was generated.

As demonstrated on Figure 6.5, the identity among the sequences decreased to 40%.

6.2.2 Secondary Structure Prediction of GPA1

Secondary structure prediction was carried out by sending the GPA1 sequence to
the META server (http.//wwwl.embl-heidelberg.de/predictprotein/submit meta.html)
that uses three different prediction servers, PSIpred (Jones DT, 1999), PSSP (Raghava
G, unpublished) and SAM-T99 (Karplus K et al., 1998). The resulting predictions were
compared using a program written in PERL (Sezerman U, unpublished) and the
consensus secondary structure shown in Figure 6.6 was obtained. Alignment of the
predicted structure with GPA1 and rat transducin is shown in Figure 6.7. As can be seen
from these comparisons and Figure 6.8, the key residues are conserved across
mammalian and plant species, as well as between plant species with the exception of
AC-binding site. The overall predicted secondary structure agrees 82% with the

observed structure of rat transducin o, excluding the gapped regions found in the
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alignment. The GTP-hydrolysis region (res. 40-54) as well as switch I (res. 189-199), 11
(res. 216-237) and III (res. 249-260) are almost fully conserved across species.

6.2.3 Secondary Structure Prediction of p and y subunits

Same procedures for secondary structure prediction were carried out for G-protein
B and y subunits. Both subunits were aligned with the most similar sequences from
PSIBLAST results, using CLUSTALW followed by CLUSTALWPROF. Each of the
subunits was sent to the META server for secondary structure prediction. The alignment
results are shown in figures 6.9 and 6.10 together with those of secondary structure
predictions. Results on figure 6.9 indicate that 4. thaliana B subunit sequence agrees
51% with that of human transducin B subunit whereas those on figure 6.10 show vy
subunit with the bovine counterpart. These results are consistent with those obtained for
the o subunit that the best agreement is within the transducin family. Among the known
plant G-protein B subunit sequences, key residues for binding o and y subunits were
found to be mostly conserved (Figure 6.11), while the y subunit lacked the conservation

of key residues.

6.2.4 Modeling the GPA1 structure

3D structural models were generated, using the CLUSTALW alignment of GPA1
with two rat transducin o subunits (PDB entries: 1GG2 and 1FQK) and the Align2D
alignment module within the MODELLER program.

The first models were created using low loop optimizations within the program.
These models had up to 62% of their structure below the given error limits when sent to
ERRAT (Colovos C and Yeates TO, 1993), and yielded erroneous folding as can be
seen from the Figures 6.12 A and B.
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Align2D function within the MODELLER program was used to generate a new
alignment with the same sequences. This time the amount of correctly folded regions

decreased down to 26%. (Figure 6.13)

Two new models with high loop optimizations using CLUSTALW alignment
were created. These yielded 76% of the structure within the limits. The model shown on
figure 6.14-B was better folded at the amino-terminus (res. 1-10) and at different
positions corresponding to several functional sites, i.e. GTP-hydrolysis region (res. 40-
45), switch I (res. 193-203), switch III (res. 256-259). As can be seen by comparing
figure 6.14-B with figure 2.3 the two-domain structure of the o subunit can be
identified. Appearance of the GTP-binding pocket and possible distribution of helices
and extended structures (based on figures 6.6 and 6.7) indicate that the loop regions
within the created models do not interfere with any functional sites, but alter the overall

structure of GPA1.
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Figure 6.3 Alignment of rat transducin a protein sequences using PSIBLAST. These were found to be those that are most similar to GPA1. PDB
codes are indicated on the left. Identical amino acids are shown in blue, with "*'. *: " indicates strong similarity while "." indicates low similarity
between amino acids.
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Figure 6.4 CLUSTALW PROF alignment of GPA1 with the most similar rat transducin o sequences.
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Figure 6.5 CLUSTALWPROF alignment generated using the two most similar rat transducins and GPA1 sequences.
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Figure 6.6 Secondary structure prediction results for GPA1. PSIpred, SSPRO and SAM-T99 are the three structure predicting server names and
the colored sequence is the resulting prediction (C=Coil, H=Helix, E=Extended).
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Figure 6.7 Sequence and secondary structure alignment of rat transducin and GPA1 using CLUSTALW, where secondary structure features are
shown in red. Identical amino acids are shown in blue and similar amino acids in green. Boxes indicate erroneous predictions.
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Figure 6.8 CLUSTALW Alignment of all known plant G-protein a subunits and rat transducin o protein 1GG2. Residues in blue are identical,

highly similar ones are in green and key residues are shown in red.
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Figure 6.9 G-protein 3 subunit (GBB1) from A. thaliana aligned with human transducin  subunit (1GG2_B) using CLUSTALW. Secondary

structure prediction results are shown in red. (H=Helix, C=Coil, E=Extended) Boxes indicate erroneous predictions.
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Figure 6.10 G-protein y subunits (AGG1 and AGG2) from A. thaliana aligned with bovine transducin y (1GG2_G) using CLUSTALW.
Secondary structure prediction results are shown in red.
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Figure 6.11 CLUSTALWPROF Alignment of all known plant G-protein B subunits with the most similar mammalian sequence, bovine
transducin (1GG2_B). Identical residues are shown in blue, similar sequences are shown in green. Key residues in binding o subunit are shown in

red.
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Figure 6.12 G-protein o subunit models created using MODELLER, with low

optimization parameters. A) Model 1 with the ERRAT result graphs. B) Model 2 with
the ERRAT result graphs.
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Figure 6.13 Models created using Align2D function within MODELLER. A) Model 1
created with its ERRAT result. B) Model 2 with its ERRAT result.
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Figure 6.14 Models created using CLUSTALW with high loop optimization. A) First
model with its ERRAT result. B) Second model with its ERRAT result.
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7 DISCUSSION

Biological macromolecules such as proteins and nucleic acids perform crucial
tasks that sustain life. Specific tasks, such as catalysis of an enzymatic reaction or a
ligand-binding event, are intimately associated with the structure and the structure of the
molecule may undergo conformational changes while performing its function. Defining
the molecular structure and its dynamic behavior is, therefore, essential for

understanding how a biological macromolecule functions.

Current structural studies use two different approaches: Experimental and
computational methods. The experimental approach involves isolation of the molecule
directly or cloning, expression and purification of the protein of interest followed by
NMR (Nuclear magnetic Resonance) or X-Ray crystallography experiments to
determine the 3D structure. The experimental approach is not only time consuming but
both X-Ray and NMR methods have limitations and need to be refined for yielding true

structures.

In X-Ray crystallography, the interaction of X-Rays with electrons is used to
obtain an electron-density map of the molecule, which can then be interpreted in terms
of an atomic model. Crystallization of proteins can be difficult to achieve and usually
requires many different experiments varying a number of parameters, such as pH,
temperature, protein concentration, and the nature of solvent and precipitant. Protein
crystals contain large channels and holes filled with solvents, which can be used for
diffusion of heavy metals into the crystals. The addition of heavy metals is necessary for
the phase determination of the diffracted beams. X-Ray structures are determined at
different levels of resolution. At low resolution, only the shape of the molecule is
obtained, whereas at high resolution most atomic positions can be determined to a high

degree of accuracy. At medium resolution, the fold of the polypeptide chain is generally
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correctly revealed together with the approximate positions of the side chains, including

those at the active site (Branden C and Tooze J, 1999).

In NMR, the magnetic-spin properties of atomic nuclei within a molecule are used
to obtain a list of distance constraints between those atoms in the molecule, from which
a three-dimensional structure of the protein molecule can be obtained. However, not
requiring any protein crystals, this method is restricted in its use to small protein

molecules (Cantor CR and Schimmel PR, 1980).

Computational methods, on the other hand, require only the sequence of the
protein in question as the input, but different techniques for comparative modeling,
including homology modeling, threading as modeling protein-ligand complexes and
protein-protein complexes need to be developed. Computational approaches depend on
the algorithms created and the hardware used; they try to correlate biological function
with structure while creating a model of the protein of interest. As there are no
considerable limitations for the use of these techniques, they are very fast yet less

reliable than experimental procedures.

In this study, preliminary results of verification of GPAI sequence and homology-
modeling results for predicting the 3D structure of Arabidopsis thaliana G-protein o
subunit are presented. As there are no experimental or calculated models reported for
GPAL1, these results provide insight for functional analyses and a basis for further

structural studies.

7.1 Subcloning and GPAI Sequence Verification

PCR amplification of GPAI and further subcloning studies, using pPGEM-T Easy,
showed that the amplified GPA1 sequence agreed with that published by Ma, H (Ma H
et al., 1990). This result provided a basis for further cloning work for over-expression of

GPAI. Over-expressed recombinant GPA1 will be purified and used in X-Ray
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crystallography and solution scattering studies for determination of the structure

experimentally.

7.2 Structure Prediction and Modeling

Despite extensive work on the structure of mammalian heterotrimeric G-proteins
and interpretation of their functional characteristics in terms of structural features
(Sprang SR, 1997) similar studies on plant G-proteins are lacking (Fujisawa Y et al.,
2001). It is still uncertain if G-proteins function as heterotrimers in plants, which
signalling pathways they are involved in and if the mechanisms of activation (which
involves interactions with GPCRs) and action (which involve interactions with effectors
and regulators) are similar to the mammalian systems. Lack of direct experimental
structural data renders sequence analysis, structure prediction and modelling studies
such as those reported in this thesis useful for providing clues to answers to these
questions. The results presented in this work can be interpreted in the framework of

functional sites and domains and their relation to mechanism of activation and action.

Alignment operations indicated that functional sites and regions such as 3, y and
GTP binding, are conserved between GPAl and rat transducin (Figure 6.8). Key
residues in Py binding i.e. Arg-178, Ile-184, Glu-186, Phe-199, Trp-211, Cys-214, Phe-
215 and Glu-216 are mostly conserved with the exception of Ile-184, Phe-199, and Cys-
214 that are mutated to Val, Tyr, and Leu in GPAl. As mentioned earlier GTP-
hydrolysis (KLLLGAGESGKST) region is also fully conserved as well as the amino
acids GIn-204 and the Thr-181 involved in GTP- and MgJr2 binding respectively.

Switch regions (I, IT and III) important in binding the By subunit and stabilizing
the GTP-bound state are found to be highly homologous. Here differences appear to be

substitutions from similar groups of amino acids i.e. Thr>Ala, Lys—> Arg.

These results indicate that the mechanism of GTP-binding and hydrolysis by G-

proteins in plants appear similar to that observed in mammalian species. These studies
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are further supported by biochemical work on GTP binding and GTPase activity
(Perroud PF et al., 1997).

A drastic difference in protein sequence between rat transducin and GPA1 is
observed in the region corresponding to adenylyl cyclase binding site in transducin. As
can be seen on figure 6.8, this region is fully conserved among the plant species. This
result implies that plant G-proteins are not involved in the AC pathway in plants at least
not at this site. Moreover as AC is not yet found in plants it may point to different
mechanisms for cAMP mechanisms in plants. Since AC is an effector of G-proteins in
mammalian systems the result presented here may also point to different effector

interactions.

Alignments of the known 14 plant G-protein a subunit sequences demonstrate the
high level of homology (70-85%) among plant species. As expected key residues in By-
binding, GTP-hydrolysis and the switch regions are highly conserved and indicate
similar mode of interaction with the B subunit and similar functional features. (Figure

6.8)

As mentioned earlier, in mammalian systems heterotrimeric G-protein specificity
is established mostly by the o subunit which appears to show sequence variations
according to the tissue in different plants. Based on sequence analysis only two types of
G o subunit is reported in the Arabidopsis genome. One is GPA1 and the other is an
extra large G a to which no function has so far been attributed (Lee YR and Assmann
SM, 1999). The small number and the high homology among the plant G a subunits
may indicate that there are a small number of signalling pathways where G-proteins are

involved.

Secondary structure predictions yielded a high degree of identity (95%) between
the structures of rat transducin (1gg2) and GPA1. The differences occurred due to gaps
within the alignment and resulted in longer helices or coils in GPA1 structure. In order
to overcome this problem, the alignments can be altered by changing the parameters

(Appendix A) or the positions of the amino acids within the alignment, manually.
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All plant G protein o subunits are members of the inhibitory type of G protein
family, G;. They show the highest sequence similarity to transducin proteins within this
family, but have the characteristic functional sites of G, proteins. Both G, proteins and
plant G protein a subunits lack the carboxyl-terminal cysteine required for ribosylation
by pertussis toxin and contain a myristolization motif specific to G, proteins. As
homology modeling methods require the usage of sequences with the highest identities,
transducin a subunits were used in our studies. In order to preserve the functional sites,

G, proteins could be used instead of transducins to generate models.

Results of alignment and secondary structure prediction for B subunits support
interaction of a and  subunits in plants. This provides evidence that G-proteins may
function as heterotrimers in plants. Similarities observed in the plant B subunit
sequences with their mammalian counterparts (figures 6.9 and 6.10) complement the
results for the o subunit, and point towards a similar mechanism of activation and action

in plants.

Plant y subunits, on the other hand, lack the key residues required for  binding
(amino- and carboxyl-termini), and have very little similarity with the mammalian y
subunits. (Figure 6.11) There are currently 2 known y subunits in plants, identified in A.
thaliana, having similarities up to 40% with each other. Using the positively charged
amino acids at the amino-terminus of the y subunit, it is possible to find candidate sites

on the a subunit for binding.

Studies conducted on Py binding in plants, revealed two different heterotrimer
formations, depending on the y subunit involved (Mason MG et al., 2001). It is possible
that the specificity of the G-proteins in plants is provided by the y subunit.

Interpretation of sequence alignment results in terms of mechanism of activation
and action of plant G-proteins is further supported by the results of secondary structure
prediction work. The predicted structure was found to be very similar to the known
structure of rat transducin, except in some helix and loop regions. Long helices in GPA1
structure are found after the GTP-hydrolysis site and at the C-terminus, both not

affecting the function of the subunit directly. Although not affecting the function
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directly, these longer helices change the overall conformation of the protein, resulting in

a different structure.

For modelling GPA1, homology modelling methods were used. Although being
the best method available, homology modelling methods depend on the parameters of
the alignments that are used. In turn, altering the parameters to improve the alignments
requires expertise and is the weakest part of this work. As the alignments used in this
study relied on sequence conservations, more than functional conservations, further

work on the alignments is required.

The structural model developed for the Arabidopsis G a subunit results in a two
domain structure similar to that of rat transducin as can be seen on figure 6.14 B. The
GTP binding and hydrolysis pocket is identified. This model needs to be improved by
further work on the loop regions. This is a task where currently there are no effective
methods (Fiser A et al., 2000). Although the developed model was sent to ERRAT for
verification purposes, the results of ERRAT can not be used solely as ERRAT checks
the structure regardless of the position of the amino acids. Thus, other programs need to

be used to verify the accuracy of the model.
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8 CONCLUSION

G-proteins are important constituents of cellular signaling, having roles in various
processes ranging from development and diseases in mammalians to pathogen
resistance and hormone signaling in plants. Defining their structure will provide insights
into distinct processes among different species as defined above. Mammalian G-
proteins have been studied extensively, together with the mechanisms of the signal
transduction cascades they are involved in. There is little knowledge on plant G-proteins
and their signal transduction cascades and no structural work, which can be interpreted

in the context of functional mechanisms.

With this aim, G-protein a subunit (GPA1) from A. thaliana has been cloned for
further studies involving expression, purification and structural analysis using small
angle X-Ray solution scattering and X-ray crystallography. Sequence alignment,
secondary structure prediction and 3D structure prediction tools have been used to
predict the structure of GPAland to gain insights on mechanisms of signal transduction

in plants.

G-protein o subunit, being the key subunit in the heterotrimer, is involved in
activation of the heterotrimer and signaling of downstream effectors. Binding of GTP
triggers activation of the subunit, releasing it from the heterotrimer. Upon GTP-
hydrolysis, the a subunit binds to the By subunits to form the heterotrimer and becomes
inactive. To perform these processes, the a subunit has several functional sites,

including GTP-hydrolysis and switch regions.
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When compared with the mammalian G-protein o subunits, functional sites were
found to be highly conserved in plant G-protein a subunits, with the exception being the
adenylyl cyclase binding site. As no adenylyl cyclases have so far been found in plant
species, it can be concluded that there are either no adenylyl cyclases in plants or they

are significantly different from their mammalian counterparts.

There are currently 14 plant G-protein a subunits known, with over 70% identity
in their amino acid sequences. All of the known plant G-protein o subunits have
conserved GTP-hydrolysis and switch regions, and show the highest similarity with rat
transducin a (Gt) proteins. The degree of homology in the GTP hydrolysis region, Mg"
and GTP binding sites show that the mechanism of GTPase activity of plant Ga

subunits is similar to that of rat transducin.

Despite the similarity, however, GPA1 shares interesting common features with
Gz proteins belonging to the inhibitory type G-proteins (Gi). According to the data, it
can be concluded that plant G-protein subunits form a new class of G-proteins, showing
high similarity to transducin proteins while having common functional features with Gz

proteins.

Further studies on the 3D structure of G-protein o subunits require the expression
and purification of GPA1 together with the B and y subunits, to form the heterotrimer.
Reliability of the generated models can be improved with further optimizations on loop
regions of GPA1. The ultimate goal is to compare the models with the experimentally

determined structure.
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APPENDIX A

PSIBLAST iteratively searches one or more protein databases for sequences
similar to one or more protein query sequences. PSIBLAST is similar to BLAST except
that it uses position-specific scoring matrices derived during the search. PSIBLAST
uses position-specific scoring matrices (PSSMs) to score matches between query and
database sequences, in contrast to BLAST that uses pre-defined scoring matrices such
as BLOSUMG62. PSIBLAST may be more sensitive than BLAST, meaning that it might
be able to find distantly related sequences that are missed in a BLAST search. (Altschul
SF et al., 1997)

PSIBLAST can repeatedly search the target databases, using a multiple alignment
of high scoring sequences found in each search round to generate a new PSSM for use
in the next round of searching. PSIBLAST will iterate until no new sequences are
found, or the user specified maximum number of iterations is reached, whichever comes
first. Normally, the first round of searching uses a standard scoring matrix, effectively

performing a blast search.

PSIBLAST is a statistically driven search method that finds regions of similarity
between a given query sequence and database sequences and produces gapped
alignments of those regions. Within these aligned regions, the calculated score is higher
than some level that one would expect to occur by chance alone. (Schaffer AA et al.,

2001)

A typical PSIBLAST search starts with the selection of the sequence of interest,
and the database(s) in which the search is going to be performed. There are different
databases available and new ones are being added continuously. The most common

databases are the PDB Sequences, GenPept Full Release, TTEMBL, GenBank Bacterial,
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Viral, Other Mammalian, Rodent, Other Invertebrate Sequences and Genome
Databases. The search itself requires several parameters to be set, of which the most

important ones are:

Maximum expectation level (This value is set for each round and defines the
expectation of a sequence as the probability of the current search finding a sequence
with a score that is obtained by chance alone. Setting the maximum expectation level to
10.0, the default, limits the reported sequences to those with scores high enough to have

been found by chance only ten or fewer times)

Threshold expectation value (A value that is used for obtaining sequences to score and
still be used to build PSSMs. Typically, this threshold is a smaller value than the

maximum expectation level and the default is 0.005)

Maximum number of rounds (Specifies the repetition number of searches within the

selected databases. Default value is 5)

Matrix selection (After each search round, high-scoring sequences are used to create a
multiple alignment that is then used to calculate match scores for the PSSM. When
building the PSSMs, part of each score is based upon observed amino acid frequencies
in the multiple alignments, and part is based on prior knowledge of amino acid
substitutability. The prior information, represented as "pseudo counts", is derived from a
standard scoring matrix, such as BLOSUMSG62. (Henikoff S and Henikoff JG, 1992)
Pseudo counts are particularly useful when the sequences included in the multiple
alignments do not constitute an adequate sample of the protein family that they
represent. Other available matrices are BLOSUM 45, BLOSUM 80, PAM 40 and PAM
70)

The parameters and the database used in this study is given below, together with the

PSIBLAST output.

Database: PDB Sequences
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Max. Expectation Value: 10 (default)

Threshold expectation value: 0.005 (default)

Number of rounds: 5 (default)

Matrix: BLOSUM 62 (default)

Iteration

Used in model

and found again| in model

Hits not used

1 52

2 38 18

3 48 28

4 52 48

Database ID Name Score | E-value

PDBSEQRES [1GG2 A |COMPLEX (GTP-BINDING/TRANSDUCER) 554 | e-158
PDBSEQRES |1FQK_A |SIGNALING PROTEIN 554 | e-158
PDBSEQRES |1AGR_A |COMPLEX (SIGNAL TRANSDUCTION/REGULATOR) | 554 | e-158
PDBSEQRES |1CIP_A |HYDROLASE 554 | e-158
PDBSEQRES |1GDD__ |SIGNAL TRANSDUCTION PROTEIN 554 | e-158
PDBSEQRES |[1GFI  |SIGNAL TRANSDUCTION PROTEIN 554 | e-158
PDBSEQRES |[1GIA  |SIGNAL TRANSDUCTION PROTEIN 554 | e-158
PDBSEQRES [1GP2 A |COMPLEX (GTP-BINDING/TRANSDUCER) 554 | e-158
PDBSEQRES |[1GIL  |GTP-BINDING PROTEIN 551 | e-157
PDBSEQRES |1BOF__ |SIGNAL TRANSDUCTION PROTEIN 551 | e-157
PDBSEQRES |1GIT__ |GTP-BINDING PROTEIN 551 | e-157
PDBSEQRES |1ASO _ |SIGNAL TRANSDUCTION 550 | e-157
PDBSEQRES |1AS2  |SIGNAL TRANSDUCTION 550 | e-157
PDBSEQRES [1AS3  |SIGNAL TRANSDUCTION 550 | e-157
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PDBSEQRES |[1FQJ_A |SIGNALING PROTEIN 531 | e-151
PDBSEQRES |1FQJ D |SIGNALING PROTEIN 531 | e-151
PDBSEQRES |1AGR_D |COMPLEX (SIGNAL TRANSDUCTION/REGULATOR) | 531 | e-151
PDBSEQRES |1FQK_C |SIGNALING PROTEIN 531 | e-151
PDBSEQRES |1KJY_A |SIGNALING PROTEIN 529 | e-151
PDBSEQRES |1KJY_C |SIGNALING PROTEIN 529 | e-151
PDBSEQRES |1GOT_A |COMPLEX (GTP-BINDING/TRANSDUCER) 519 | e-148
PDBSEQRES |1ITAD A |GTP-BINDING PROTEIN 515 | e-147
PDBSEQRES |1TAD B |GTP-BINDING PROTEIN 515 | e-147
PDBSEQRES |1TAD C |GTP-BINDING PROTEIN 515 | e-147
PDBSEQRES |1ITAG  |GTP-BINDING PROTEIN 515 | e-147
PDBSEQRES |ITND_A |BINDING PROTEIN(GTP) 515 | e-147
PDBSEQRES |1TND_B |BINDING PROTEIN(GTP) 515 | e-147
PDBSEQRES |ITND_C |BINDING PROTEIN(GTP) 515 | e-147
PDBSEQRES |[1BH2  |SIGNAL TRANSDUCTION PROTEIN 509 | e-145
PDBSEQRES |1AZS C |COMPLEX (LYASE/HYDROLASE) 473 | e-134
PDBSEQRES |1AZT A |HYDROLASE 473 | e-134
PDBSEQRES |1AZT B |HYDROLASE 473 | e-134
PDBSEQRES |1CUL C |LYASE/LYASE/SIGNALING PROTEIN 472 | e-134
PDBSEQRES |1CJK_C |LYASE/LYASE/SIGNALING PROTEIN 468 | e-132
PDBSEQRES |1CIT_C |LYASE/LYASE/SIGNALING PROTEIN 468 | e-132
PDBSEQRES |1CJU_C |LYASE/LYASE/SIGNALING PROTEIN 468 | e-132
PDBSEQRES |1CJV_C |LYASE/LYASE/SIGNALING PROTEIN 468 | e-132
PDBSEQRES [1CS4 C |LYASE/LYASE/SIGNALING PROTEIN 464 | e-131
PDBSEQRES |1HFV_A |G PROTEIN 133 | le-31
PDBSEQRES |1HFV_B |G PROTEIN 133 | le-31
PDBSEQRES |1E0S_A |G PROTEIN 133 | le-31
PDBSEQRES |IRRF | TRANSPORT PROTEIN 130 | 9e-31
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PDBSEQRES | IRRG A | TRANSPORT PROTEIN 130 | 9e-31
PDBSEQRES | IRRG_B | TRANSPORT PROTEIN 130 | 9e-31
PDBSEQRES | IHUR_A |PROTEIN TRANSPORT 129 | 9e-31
PDBSEQRES | IHUR B |PROTEIN TRANSPORT 129 | 9e-31
PDBSEQRES [1KSG A |SIGNALING PROTEIN/HYDROLASE 121 | 4e-28
PDBSEQRES |[1KSH A |SIGNALING PROTEIN/HYDROLASE 121 | 5e-28
PDBSEQRES [1KSJ A |SIGNALING PROTEIN/HYDROLASE 118 | 4e-27
PDBSEQRES |1F6B_A |PROTEIN TRANSPORT 112 | 2e-25
PDBSEQRES |1F6B_B |PROTEIN TRANSPORT 112 | 2e-25
PDBSEQRES |1FZQ A |SIGNALING PROTEIN 107 | 7e-24

Evaluation of the output:

Bit Score (Score): Each aligned segment pair has a normalized score expressed in bits,
which lets one estimate the magnitude of the search space before expecting to find an
HSP score as good as or better than this one by chance. Thus, higher bit score results in

better matches.

E-value: There is a probability associated with each pair wise comparison in the list and
with each segment pair alignment. The number shown in the list is the probability of
observing a score purely by chance when a search is performed against a database of
this size. Higher E-values, approaching 1.0, indicate a score that would be obtained by

chance alone.
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CLUSTALW performs multiple sequence alignment on protein or nucleic sequences.

General Parameters

Output Order

Used to control the order of the sequences in the output alignments. By default, the
order corresponds to the order in which the sequences were aligned (from the guide
tree/dendrogram), thus automatically grouping closely related sequences. This switch

can be used to set the order to the same as the input file.

Pairwise Alignment Parameters

Alignment Method

The choices are an accurate, dynamic programming method, or the faster, approximate
method of Wilbur and Lipman. The dynamic method can be slow for a large number of

long sequences, e.g. 20 genetic sequences of over 1000 residues.

Accurate Parameters

These parameters do not have any affect on the speed of the alignments. They are used
to give initial alignments that are then rescored to give percent identity scores. These
percentage scores are the ones, which are displayed on the screen. The scores are

converted to distances for the trees.

Gap Open Penalty
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The penalty for opening a gap in the alignment.

Gap Extension Penalty

The penalty for extending a gap by 1 residue.

Protein Weight Matrix

The scoring table which describes the similarity of each amino acid to each other.

DNA Weight Matrix

The scores assigned to matches and mismatches (including IUB ambiguity codes).

Fast parameters

These similarity scores are calculated from fast, approximate, global alignments, which
are controlled by 4 parameters. Two techniques are used to make these alignments very
fast: 1) only exactly matching fragments (k-tuples) are considered 2) only the 'best'

diagonals (the ones with most k-tuple matches) are used.

K-tuple Size

This is the size of exactly matching fragment that is used. INCREASE for speed (max=
2 for proteins; 4 for DNA), DECREASE for sensitivity. For longer sequences (e.g.

>1000 residues) you may need to increase the default.

Gap Penalty

This is a penalty for each gap in the fast alignments. It has little affect on the speed or

sensitivity except for extreme values.
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Top Diagonals

The number of k-tuple matches on each diagonal (in an imaginary dot-matrix plot) is
calculated. Only the best ones (with most matches) are used in the alignment. This

parameter specifies how many. Decrease for speed; increase for sensitivity.

Window Size

This is the number of diagonals around each of the 'best' diagonals that will be used.

Decrease for speed; increase for sensitivity.

Multiple Alignment Parameters

These parameters control the final multiple alignment. This is the core of the program
and the details are complicated. To understand the use of the parameters and the scoring

system, you will have to refer to the additional documentation.

Each step in the final multiple alignment consists of aligning two alignments or
sequences. This is done progressively, following the branching order in the GUIDE
TREE. The basic parameters to control this are two gap penalties and the scores for

various identical / non-identical residues.

Gap Open Penalty

The penalty for opening a gap in the alignment. Increasing the gap-opening penalty will

make gaps less frequent.

Gap Extension Penalty
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The penalty for extending a gap by 1 residue. Increasing the gap extension penalty will

make gaps shorter. Terminal gaps are not penalized.

Delay Divergent Sequences

Delays the alignment of the most distantly related sequences until after the most closely
related sequences have been aligned. The setting shows the percent identity level
required to delay the addition of a sequence; sequences that are less identical than this

level to any other sequences will be aligned later.

DNA Transition Weight

Gives transitions (A <--> G or C <--> T i.e. purine-purine or pyrimidine-pyrimidine
substitutions) a weight between 0 and 1; a weight of zero means that the transitions are
scored as mismatches, while a weight of 1 gives the transitions the match score. For
distantly related DNA sequences, the weight should be near to zero; for closely related

sequences, it can be useful to assign a higher score.

Protein Gap Parameters

Gap Penalty options which are only used in protein alignments.

Residue Specific Penalties are amino acid specific gap penalties that reduce or increase
the gap opening penalties at each position in the alignment or sequence. See the
additional documentation for details. As an example, positions that are rich in glycine

are more likely to have an adjacent gap than positions that are rich in valine.

Hydrophilic Gap Penalties are used to increase the chances of a gap within a run (5 or
more residues) of hydrophilic amino acids; these are likely to be loop or random coil
regions where gaps are more common. The residues that are "considered" to be

hydrophilic are set by menu item 3.
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Gap Separation Distance tries to decrease the chances of gaps being too close to each
other. Gaps that are less than this distance apart are penalised more than other gaps.
This does not prevent close gaps; it makes them less frequent, promoting a block-like

appearance of the alignment.

End Gap Separation treats end gaps just like internal gaps for the purposes of avoiding
gaps that are too close (set by GAP SEPARATION DISTANCE above). If you turn this
off, end gaps will be ignored for this purpose. This is useful when you wish to align

fragments where the end gaps are not biologically meaningful.

Weight Matrices

For protein alignments, a weight matrix is used to determine the similarity of non-
identical amino acids. For example, Tyr aligned with Phe is usually judged to be 'better'

than Tyr aligned with Pro.

There are three 'in-built' series of weight matrices offered. Each consists of several
matrices, which work differently at different evolutionary distances. Crudely, several
matrices are stored in memory, spanning the full range of amino acid distance (from
almost identical sequences to highly divergent ones). For very similar sequences, it is
best to use a strict weight matrix that only gives a high score to identities and the most
favored conservative substitutions. For more divergent sequences, it is appropriate to

use "softer" matrices, which give a high score to many other frequent substitutions.

Blosum

These matrices appear to be the best available for carrying out data base similarity

(homology searches). The matrices used are the Blosum80, 62, 45 and 30 matrices.

PAM
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These have been extremely widely used since the late '70s. The matrices used are the

PAM 120, 160, 250 and 350 matrices.

Gonnet

These matrices appear to be more sensitive than the PAM series. The matrices used are

the Gonnet 40, 80, 120, 160, 250 and 350 matrices.

Identity

This matrix gives a score of 1.0 to two identical amino acids and a score of zero

otherwise. This matrix is not very useful.

For DNA, a single matrix (not a series) is used. Two hard-coded matrices are available.

IUB

This is the default scoring matrix used by BESTFIT for the comparison of nucleic acid
sequences. X's and N's are treated as matches to any IUB ambiguity symbol. All

matches score 1.9; all mismatches for [UB symbols score 0.

The parameters used in this study are:

Weight matrix: Blosum series
Gap open penalty: 10.00

Gap extension penalty: 0.20
Delay divergent sequences: 30
Residue-specific gap penalties: on
Hydrophilic gap penalties: on
End gap separation penalty: off
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APPENDIX B

Autoclave: Hirayama, Hiclave HV-110, JAPAN

Certoclav, Table Top Autoclave CV-EL-12L, AUSTRIA

Balance: Sartorius, BP211D, GERMANY

Sartorius, BP221S, GERMANY

Sartorius, BP610, GERMANY

Schimadzu, Libror EB-3200 HU, JAPAN

Centrifuge: Eppendorf, 5415C, GERMANY

Eppendorf, 5415D, GERMANY

Eppendorf, 5415R, GERMANY

Kendro Lab. Prod., Heraeus Multifuge 3L, GERMANY

Hitachi, Sorvall RC5C Plus, USA

Hitachi, Sorvall Discovery 100 SE, USA

Deepfreeze: -70° C, Kendro Lab. Prod., Heraeus Hfu486 Basic, GERMANY
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-20° C, Bosch, TURKIYE

Distilled Water: Millipore, Elix-S, FRANCE

Millipore, MilliQ Academic, FRANCE

Electrophoresis: Biogen Inc., USA

Biorad Inc., USA

Gel Documentation: ~ UVITEC, UVIdoc Gel Documentation System, UK

Biorad, UV-Transilluminator 2000, USA

Ice Machine: Scotsman Inc., AF20, USA

Incubator: Memmert, Modell 300, GERMANY

Memmert, Modell 600, GERMANY

Laminar Flow: Kendro Lab. Prod., Heraeus, HeraSafe HS12, GERMANY

Magnetic Stirrer: VELP Scientifica, ARE Heating Magnetic Stirrer, ITALY

VELP Scientifica, Microstirrer, ITALY

Microliter Pipette: Gilson, Pipetman, FRANCE

Mettler Toledo, Volumate, USA

Microwave Oven: Bosch, TURKIYE
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pH meter: WTW, pH540 GLP MultiCal®, GERMANY

Power Supply: Biorad, PowerPac 300, USA

Wealtec, Elite 300, USA

Refrigerator: +4° C, Bosch, TURKIYE

Shaker: Forma Scientific, Orbital Shaker 4520, USA

GFL, Shaker 3011, USA

New Brunswick Sci., Innova " 4330, USA

Spectrophotometer: Schimadzu, UV-1208, JAPAN

Schimadzu, UV-3150, JAPAN

Secoman, Anthelie Advanced, ITALY

Speed Vacuum: Savant, Speed Vac® Plus Sc100A, USA

Savant, Refrigerated Vapor Trap RVT 400, USA

Thermocycler: Eppendorf, Mastercycler Gradient, GERMANY
Vacuum: Heto, MasterJet Sue 300Q, DENMARK
Water bath: Huber, Polystat ccl, GERMANY
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