A PROPOSED ARCHITECTURE FOR REMOTE MECHATRONICS
LABORATORY

by
C. ONUR SOZBILIR

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of
the requirements for the degree of
Master of Science
Sabanci University

Spring 2002

A PROPOSED ARCHITECTURE FOR REMOTE MECHATRONICS
LABORATORY

APPROVED BY :

Prof. Dr. Asif Sabanovic

(Dissertation Supervisor)

Assoc. Prof. Dr. Seta Bogosayan ...

Assist. Prof. Dr. Berrin Yanikoglu

Assist. Prof. Dr. Kemalettin Erbatur

Assist. Prof. Dr. Ahmet Onat ...

DATE OF APPROVAL: ...

© C. Onur Sozbilir
All Rights Reserved

ABSTRACT

Experimentation is a very important part of education in engineering. This is
also true for mechatronics engineering which is a relatively new field, combining three
engineering disciplines : mechanical engineering, electrical engineering and software
engineering. The equipments needed for experiments in mechatronics are generally
expensive. Examples are robot manipulators, mobile robots, electrical motors, fast DSP
cards, CNC machines, etc. One solution for expensive equipments is sharing the
available equipments with other universities around the world. This relatively new
concept, called “remote laboratory”, is based on the computer communication
technology and the internet. With the internet, sharing the available resources with the
world costs almost nothing. In this thesis a new architecture for a remote mechatronics
laboratory is proposed. The proposed architecture is original in the sense that multiple
users can use multiple experiments at the same time. The system is flexible so that new
experiments can be added quite easily. In order to reduce the overall cost and increase
efficiency, multithreaded programming is proposed to reduce the number of computers
necessary. For flexibility, communication is done using objects. Verification of the

communication part is done implementing the DC motor control experiment, remotely.

OZET

Deney yapmak miihendislik egitiminin 6nemli bir pargasidir. Bu gercek nispeten
yeni bir alan olan, makina miihendisligi, elektrik miihendisligi ve yazilim
miithendisliginin birlesimi mekatronik miithendisligi i¢in de gecerlidir. Genellikle
mekatronik miihendisligi deneyleri yapmak igin gerekli olan araglar pahalidir. Ornek
olarak robot kollar, hareketli robotlar, elektrik motorlari, hizli DSP kartlar1 ve CNC
makinalar1 verilebilir. Pahali araglar i¢in bir ¢6ziim varolan araglar diger tiniversitelerle
ve diinyayla paylagsmaktir. Nispeten yeni bir kavram olan uzak laboratuar su giinlerde
hizla gelisen internet teknolojisine dayanmaktadir. internet teknolojisi sayesinde
halihazirda varolan araglar1 diinyayla paylasmanin hemen hemen hig bir ek maliyeti
yoktur. Bu ¢alismada uzak mekatronik laboratuari i¢in yeni bir mimari 6nerilmistir.
Maliyeti azaltmak ve verimi artirmak i¢in kullanilan bilgisayar sayisini azaltan
multithreaded (¢ok iplik¢ikli) programlam onerilmistir. Esneklik i¢cin haberlesme
nesneler kullanilarak yapilmigtir. Haberlesme kismi uzak dogru akim motor kontrol

deneyi uygulanarak test edilmistir.

Dedicated to my family, Baris, Naciye and Halim

and to the spirit of Asimov.

ACKNOWLEDGEMENTS

I would like to thank to my professors, Professor Asif Sabanovic and Professor
Gokhan Goktug for their support and encouragement during my two years master’s
study.

Special thanks goes to my family, my brother Baris, my mother Naciye and my
father Halim for their support.

I would like to thank to also my dear friends in Mechatronics graduate

laboratory, and professors Kemalettin Erbatur and Ahmet Onat for their kindness.

Page
ABSTRACT ... v
OZET . ..o v
DEDICATION. ...ttt e vi
ACKNOWLEDGEMENTS e vii
TABLE OF CONTENTS . ..ottt e viii
LIST OF FIGURES. . ..ot X
CHAPTER 1 : INTRODUCTION...ccctittiiiiniieiieiiiiniiaiieciiiieeniiscsecccncencee 1
1.1) Remote Laboratory..........cvviiiiiiiiiiii e 1
1.2) Communication with TCP/IP Sockets............ccovviiiiiiiiiiinninn... 5
1.2.1) International Organisation for Standards Open System
Interconnection Reference Model (ISO OSI-RM)....................... 5
1.2.2) TCP/IP. .. e 8
1.2.3) Programming with Sockets.............c.cooviiiiiiiiiiiiiiinn. 9
1.3) Multithreaded Programming................ccooviiiiiiiiiiiiiinannnn. 11
1.3.1) What is Multithreading?................coiiiiiiiiiii ., 11
1.3.2) Why is Multithreading used?...............coooiiiiiiiiiins, 14
1.3.3) Thread Synchronisation..............c.cooeviiviiiiniiieennannnn.. 17
CHAPTER 2 : SYSTEM DESCRIPTION.....cccciitiuiieiiiiiiiniieiiiiniiariecncnnss 19
2.1) System Structure : Hardware.................cooiiiiiiiiiiiiiinien. . 19
2.2) Communication with Objects..........ccooviiiiiiiiiiiiiiii e 21
2.3) System Structure : Software.............cooiiiiiiiiiiiii 25
CHAPTER 3 : PLANTS. . tiitiiiiiiiiiiiiiiiiiiiiieiieiiiitietiececnttsieasscescnns 46
3.1) DC Motor Control Experiment...............ccocvvviiiiiiiiiininninnnnnnn. 46
3.2) Mitsubishi PA-10 7-DOF Robot Manipulator........................... 48

TABLE OF CONTENTS

CHAPTER 4 : EXPERIMENTAL RESULTS...cccciiiiiiiiiiiiiiiieiiicineinnnn 49

CHAPTER 5 : CONCLUSION AND FUTURE WORK......cccccvtiiiniinnnnnne. 56
APPENDIX A : SOURCE CODE FOR USERPC........ccccceiniiiiiiiiiinninnnnnns 59
APPENDIX B : SOURCE CODE FOR SETUPPC.......ccccceviviniiniiiiiinnnnnnn 112

REFERENCES.ctiitiiiiiiiiiiiiiiiiiiiiiiiiitiitiittiatietieciatiasssassascsssscnnes 169

1.1)
1.2)
1.3)
1.4)
1.5)
1.6)

1.7)
1.8)
1.9)
1.10)

1.11)

2.1)
2.2)
2.3)

3.1)
4.1)
42)
4.3)
4.4)
4.5)
4.6)
4.7)

LIST OF FIGURES

Remote mechatronics laboratory concept

Seven layers of OSI

Each layer adding headers to the user data

Computers communicating with sockets

The mechanism to achieve concurrency in single-threaded programming

The structure of program from programmer’s point of view in multithreaded
programming

The timing chart of the running threads organized by the scheduler

The states of a thread

The environment of a thread is within a process

In single-threaded programming the time needed to complete multiple tasks is
sum of the times needed to complete each task

In multi-threaded programming the time needed to complete multiple tasks is
almost the same as the time needed to complete longest task

Client/server view of the system

Hardware topology of the server side for efficient use of pcs

A typical robot-arm control experiment

2.3.1) Software structure of SetupPC

2.3.2) Software structure of ServerPC

2.3.3) Software structure of UserPC

2.3.4) Software structure of whole system for two-user — three-plant scheme
Functional block diagram representation of DC motor control setup
Permanent Magnet DC Motor Experimental Setup

GUI of the Client software running on the UserPC

User connects to the remote experiment

User clicks Task->Set Experiment Parameters to adjust PID parameters
Experiment parameters dialog box

User clicks Task->Send Task in order to send the Task object

Response curve for Kp=0.1, Ki=0, Kd=0, wref = 50 rad/sec

4.8) Response curve for Kp=0.1, Ki=1, Kd=0, wref = 50 rad/sec

4.9) Response curve for Kp=21.8, Ki=1, Kd=0.001, wref = 50 rad/sec

4.10) Response curve for Kp=21.8, Ki=1, Kd=0.001, wref = 30 rad/sec

5.1) A different kind of application using the proposed architecture as organisation

layer

CHAPTER 1
INTRODUCTION

1.1 Remote Laboratory

Education in engineering has two main parts: theory and practice. Theory
involves mathematical and scientific rules, axioms, theorems and some derivations and
conclusions which does not require much cost. Practice, on the other hand, involves
experimentation and experimentation requires tools, both hardware and software. This
is also true for mechatronics engineering education. Mechatronics is a relatively new
term, first coined in 1970s, combining the traditional engineering disciplines of
mechanical engineering and electrical engineering with a relatively new engineering
discipline, information or software engineering. Therefore mechatronics equipments are
among the most complex engineering equipments having parts related with all three
disciplines. A strong mechatronics education can not be thought without practice gained
in experimentation. Mechatronics equipments are among the expensive equipments, like
electrical motors, DSPs, robots, PLCs, etc. So, a university considering to build a well-
established strong mechtronics laboratory has to spend considerable amount of money.
A relatively new concept called remote laboratory or virtual laboratory offers a good
way of sharing the available resources with other universities and institutions in the
world with almost zero cost. This is due to the already established computer
communication network, called internet. With the use of internet, the laboratory of a
university can be at least partially open to other students in other universities without
any addititonal cost. There is only one requirement for remote users of the laboratory
which is they must have a computer connected to the internet and this is quite affordable

nowadays. This idea is roughly skectched in Figl.1.

Remote laboratory concept does not only allow to share the available resources
with other universities but also allows Sabanci University students to use the laboratory
more effectively and efficiently. A Sabanci University student may access the
laboratory from his/her dorm or even from his/her house in a remote city.

Remote Laboratory is relatively new concept but there is some good work done
on the subject. Some good examples are the virtual engineering laboratory developed by
Carnegie Mellon University[1], remote control engineering laboratory at Oregon State
University[2], remote control engineering laboratory at the National Polytechnique
Institute of Grenoble, France[3], a remote measurement laboratory at University of
Naples and University of Salemo in Italy[4], internet-based real-time control
engineering laboratory at Polytechnique University[5], and remote process control
laboratory by Case Western Reserve and Cooper Union Universities[6].

In [1], electronic equipments such as signal generator, voltmeter and
oscilloscope are connected to the internet to provide a remote electronics laboratory.
Two experiments, “the black box™ and “martian rescue” are conducted by
undergraduate students remotely. In “the black box” experiment, students are asked to
characterize an unknown circuit from terminal measurements. In the “martian rescue”
experiment, students are asked to control the operation of a reversible motor drive for a
camera.

In [2], they described a remote control engineering laboratory based on
client/server scheme and demonstrated the remote experimentation with a 3 degree-of-
freedom (3-DOF) robot arm. They enabled remote users to receive visual and audio
information from the laboratory and a communication tool, which they called the
whiteboard, to enable users to collaborate with each other. This is a piece of CRT screen
shared among users.

In [3], remote access to the “ball and beam” experiment, which is a widely used
control engineering experiment, is established. Remote users can select among pretuned
PD, PID or RST controllers or define their own RST controllers and test it on the
system to see the success or the controller.

In [4], a remote access to automatic measuring setups and instruments is
described. They connected a DSP analyzer, a digital oscilloscope and a sine generator to
internet. They used Visual C++, HTML, CGI and PERL as software.

In [5], they describe the “Client-Enhanced Internet-Based Remote Laboratory”

which gives the remote user more authority and responsibility over the experiment. In

this scheme, the remote user can decide whether the controller runs on the server
computer located in the plant site or on the client computer, and will send the control
signals through network. They implemented this scheme on a remote digital PID control
where there is a delay between the plant and controller. Their remote controller works
well because the plant’s response time is about 3-5 seconds, which is much larger than
the delay on Local Area Networks (LAN).

In [6], a remote access to a process control setup is established. The process is a
water flow system where flow, level and temperature may be measured and controlled.
There can be two experiments done on the setup: Remote sensor calibration experiment

and remote PI control of flow and level experiment.

Sabanci University student in dormitory

NETWORK (internet
or ethernet)

Student in California,USA

Figl.1 : Remote mechatronics laboratory concept

Sabanci University Mechatronics Graduate Laboratory
in Istanbul, TURKEY

1.2 Communication with TCP/IP Sockets
1.2.1 International Organisation for Standards Open System Interconnection
Reference Model (ISO OSI-RM)

The internet can be defined as a huge network of computers distributed
throughout the world connected in such a way that any computer can send and receive
data to any other computer. If someone is to connect two computers with the same
properties, then he/she can write a program to send and receive data between these
computers. But if it is desired to write a program that can send/receive data to computer
with unknown properties then some set of rules must be established. These rules are
called protocols. In order to set standard international rules there is an organisation
called International Organisation for Standards (ISO). For computer network
communications, ISO defined a set of standards known as Open System Interconnection
(OSI). The “Open Standard” means that the software is open to anyone who wants to
design a product using the standard. So, the OSI is not hidden but available to anyone.

OSI consists of seven layers each responsible for managing some function
related to data transfer between machines like transport of data, packaging of messages,
end-user applications, etc[X]. These layers are application, presentation, session,

transport, network, data link and physical layer, shown in Figl.2.

Application Layer 7
Presentation Layer 6
Session Layer 5
Transport Layer 4
Network Layer 3
Data Link Layer 5
Physical Layer 1

Figl.2: Seven layers of OSI

Application Layer :

The application layer is the layer between the user and the other lower layers. It
displays the received data to the user and sends the user data to the lower layers.
Presentation Layer :

The presentation layer converts the data from machine dependent format to the
machine independent format called canonical representation.

Session Layer :

The session layer is responsible for synchronisation of the exchange of data
between processes which can be in the same or different machines.
Transport Layer :

The transport layer is responsible for establishing, maintaining and terminating
the communication between two machines. The order and priority of data is managed
by this layer also.

Network Layer :

The network layer is responsible for routing the data and determining routing
paths between machines.
Data Link Layer :

The data link layer detects and sometimes corrects the error occurred in the
physical layer.
Physical Layer :

The physical layer deals with the electrical transmission of data as its name
implies. So, the wiring is in this layer.

In order to have more efficient communication data is sent in uniform quantities,
called packets. Each layer adds it own protocol header or protocol control information
to the front of the user data to be sent and when the data is received each layer removes

its own header to obtain the raw data. This is shown in Figl.3.

User data

'

Application layer

User data

header

header

Presentation layer

Session layer
header

Transport layer
header

Network layer

header

Data Link layer
header

Physical layer
header

Figl.3: Each layer adding headers to the user data

1.2.2 TCP/IP

TCP/IP is a software-based communications protocol. It can handle errors in
transmission, manage the routing and delivery of data, and control the actual
transmission by the use of predetermined status signals[X]. TCP/IP resides in the
network layer and transport layer of the OSI reference model. So, it is not dependent on
the bottom two layers, data link layer and physical layer. Internet Protocol (IP) is in the
network layer and Transmission Control Protocol (TCP) is in the transport layer.
TCP/IP is based on the concept of client/server. The device initiating the
communication is the client and the device responding to the request is the server.
TCP/IP is the most widely used protocol over the internet. The reasons are:

e TCP/IP is proved to be running effectively and efficiently for quite a time.

e TCP/IP has a well-established management system.

e There are thousands of programs using TCP/IP.

e It has well-documented Application Programming Interface (API).

e [t is vendor-independent protocol.

TCP/IP also works well with Ethernet on Local Area Networks (LAN). Ethernet
provides the lowest two layers, data link layer and physical layer and TCP/IP provides
the network layer and transport layer.

Internet Protocol (IP)

Internet Protocol (IP) sits in the network layer of the OSI reference model. All
machines on the internet can use IP and IP can be used on networks that are not
connected to internet also. The responsibilities of IP are datagram routing, determining
where the datagram will be sent and finding alternate routes when a problem occurs.
But the delivery of datagrams is not guaranteed by IP. It has no capability to verify that
a sent message is received correctly by the destination. IP is connectionless. This means
that all datagrams don’t need to follow the same route. The IP header is five or six bytes
including sending address, destination address and other information about the
datagram.

Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) sits in the transport layer of the OSI
reference model. It is a connection-oriented protocol meaning that all datagrams are sent
through the same route once a communication is started between two machines. A

connection-oriented communication has three stages : establishing the communication,

data transfer and terminating the communication. TCP assures that the datagram is sent
correctly. If the datagram is lost or corrupted, TCP handles the retransmission. So, TCP
provides end-to-end communications ensuring the transfer of a datagram from the
source to the destination. The sending machine waits for an acknowledgement (ACK)
signal for a certain amount of time and if the time expires resends the datagram. This
way the correct delivery of data is guaranteed with a sacrifice of time delay. If a slight
increase in speed of transfer is much more important than the correct delivery of data
then an alternative protocol, User Datagram Protocol (UDP) can be used. UDP is a
connectionless protocol with smaller protocol header.
1.2.3 Programming with Sockets

When using connection-oriented communication, TCP/IP uses sockets which

can be thought as end points of a virtual circuit. This is shown in Fig.1.4.

Computer 4 Computer B

Socket
Socket

Figl.4 : Computers communicating with sockets

If a programmer wants to write a program that is using TCP/IP, he/she must use
the socket programming interface functions. These are well-defined, operating system
independent and programming language independent functions, called Socket
Application Programming Interface (Socket API). The Socket API was developped at
the University of California at Berkeley. Basically there are six communications
functions of the Socket API: open, send, receive, status, close and abort.

open: open function is used to initiate the communication. There are basically
two types of open commands: passive open which is used to prepare a server to
communication and active open for client. Passive open involves the following :
creating the socket returning a number for the new socket, binding the new socket to a
local port address, listening to the socket for any requests from clients and accepting
client requests. Active open involves the following: creating the socket returning a

number for the new socket and connecting to the server socket.

send: send function is used to send data to the remote computer. It has five
different versions: send, sendto, sendmsg, write and writev each are similar with slight
differences.

receive: receive function is used to receive data from the remote computer. It
also has five different versions: read, readv, recv, recvfrom and recvmsg.

status: status functions are used to obtain information about a connection. They
are usually used in case of errors.

close: close function is used to terminate the connection.

abort: abort function is similar to close function but it is used in more urgent
cases when an emergency shutdown is required.

Using the MFC Winsock Classes

Before Windows95, networking was not built into the Windows operating
system. So, a programmer who wanted to build a network communication program had
to buy a network software from numerous different companies. The software of each of
these companies had their own ways of using sockets for applications. So, a program
that performed network communications had a list of different networking software in
order to work properly. In order to prevent this, all the networking companies and
Microsoft together developed the Windows Socket API (Winsock API). The advanced
Integrated Development Environment (IDE) of Microsoft, Visual Studio 6, has its
strong built-in libraries called Microsoft Foundation Class (MFC). MFC includes a lot
of useful functions and classes that facilitates programming a lot. Using MFC Winsock
classes building software for network communication is quite helpful. Among some of
the base classes the class CAsyncSocket is one of the most powerful base class that
provides event-driven communications. Event-driven means that you can define some
function that will be called upon some interrupts. So, for example when the socket
receives a data, it informs you by setting an event and your function that handles this
data runs when this event is set. This removes the need of polling, which consumes

CPU time and makes the program more complicated.

1.3 Multithreaded Programming
1.3.1 What is multithreading?

Traditional computer programs are typically composed of sequential program
statements executed one after the other. This sequence of program statements executed
by the computer is a single thread of execution. If the program needs to accomplish
several different tasks simultaneously then the programmer must consider and design
the program himself in such a way that it achieves the desired concurrency. The

required mechanism is shown in Figl.5 below.

I

Task1

'

Task2

TaskM

Figl.5 : The mechanism to achieve concurrency in single-threaded programming

Here, in order to achieve a certain level of concurrency the single-thread does
not complete a task fully before executing next task. Instead the single-thread partially
completes the task for a certain time and then saves the information about the current
state of the task in order to resume correctly in the next iteration of the loop. Although
this seems to be a solution for dealing with multiple tasks at the same time, it loads a lot
of burden on the programmer and has other disadvantages. For example, if a task is
blocked for some reason, the whole program will stop.

Some operating systems use the multi-tasking technique described above by
running multiple programs, or processes, at the same time. In these systems the

operating system is responsible for switching from one process to the other.

A good alternative to multi-process programming is multi-threaded
programming where multiple threads, which can be thought as light-weight processes,
are running in a process at the same time.

With the use of pre-emptive multi-tasking in modern operating systems like
Windows NT, the switching between threads is under the responsibility of the operating
system. So, the programmer does not need to deal with the scheduling of tasks but may
simple regard them individual threads as running concurrently.

The structure of multi-threaded program from the programmers’ point of view is

shown in Figl.6 below.

Task1 Task2 TaskM

I I I
l

Figl.6 : The structure of program from programmer’s point of view in
multithreaded porogramming

Thread Scheduling and States of a Thread

In most of the systems there are more threads than processors. In order to
achieve concurrence some kind of scheduling must be done by the processor. For
systems with single-processor usually CPU utilises the time-slicing scheme as
scheduling. In time-slicing scheme each thread is allowed to use CPU for a certain
amount of time. This is shown in Figl.7. Context switch includes saving the context of
currently running thread and loading the context of newly scheduled thread.

The lifetime of a thread consists of four states, namely ready, running, sleeping
and terminated. This is shown in Figl.8. Running state is the state when the thread is
actually using the CPU. Ready state is the state when the thread waits for the scheduler
to give the CPU to the thread. Most of the time the thread is in ready or running state.
Some times the thread must wait for some event of some time to continue running
correctly. In this situation the thread enters the sleeping state. Scheduler doesn’t allocate

the CPU time to the thread until the thread enters the ready state. After the thread

accomplishes its task fully, it enters the terminated state, waiting for the CPU to delete
it. This may be important in some cases because other threads may need to know

whether this thread is still alive or not.

Context
switch
time
—>
Running Threadl Thread2 | . ThreadM Thread1
threads
Waiting Thread2 Threadl Threadl Thread2
threads
ThreadM ThreadM Thread ThreadM
M-1

Figl.7 : The timing chart of the running threads organized by the scheduler

> Ready > Running > Terminated >
< :
Sleeping

Figl.8 : The states of a thread

Thread environment

Threads are in the environment of a process. Some part of this environment is
commonly shared by all threads belonging to the process while some part is specific to
each thread and not shared by other threads. This is shown in Figl.9. Shared
environment consists of the executable code and data storage. Thread specific
environment or namely thread-specific context, consists of stack, registers of CPU and
keys defined by user. Data in storage exist whole time the process is running while
thread-specific context must be switched when the scheduler assignes CPU to a new

thread.

Process

Threadl ThreadM

Registers

Stack

Registers

Stack

Keys Keys

Storage

Figl.9 : The environmet of a thread is within a process

1.3.2 Why is multi-threading used?

A programmer must have a reason to learn, exercise and use multi-threaded
programming because it takes time to learn this style and it is not so easy to write well-
behaved, efficient, bug-free multi-threaded programs. Some of the advantages of multi-
threaded programming may be listed as follows:

Faster processing and more efficient use of CPU:

Typically if the application is suited to multi-threaded programming and it is
well designed, then it will increase the speed of program and a better utilisation of CPU
will be achieved. For a single-threaded program the time it takes to complete the
multiple tasks is the sum of the times needed to complete each task. This is shown in
Figl.10.

However a multi-threaded program completes all of the tasks in almost the same
time needed to complete the longest task. This is shown in Figl.11.

Additional small amount of time is due to switching between threads. This may
be ignored in most cases if the multi-threaded program is written is written carefully for
the application it is suitable for.

More robust program:

By isolating tasks into different threads the robustness of the program may
increase. If one of the tasks fail for some reason, other tasks will be accomplished by

threads responsible for them in a carefully designed multi-threaded program.

Better response to the users:

By using separate threads to tasks taking long time, the user can still use the
system with the threads responsible for user interface. Background printing is a good
example for this. A user can still use the computer while printing a long document.

Some of the advantages above can be more or less gained by using multi-process
programming. So, what is the advantage of multiple threads to multiple processes? The
biggest advantage of multiple threads is absolute: threads are cheap. They can be
started-up and shut down very fast, much faster than processes and this results in
minimal use of system resources. So, a few hundred threads may run without any
problem on the same processor while a few hundred processes will have big load on
processor resulting in degradation in performance. Second, the switch from one process
to other takes much more time than that of threads. This will also effect system
performance a lot. Another advantage of threads over processes is threads share the
same address space in memory, so they can communicate between each other much

faster and easier than processors can do.

Start Finish
Task1 Task2 | o TaskM
time
—>

Figl.10 : In single-threaded programming the time needed to complete multiple
tasks is sum of the times needed to complete each task

Start Finish

Task1

Task2

TaskM

time
—

Figl.11 : In multi-threaded programming the time needed to complete multiple
tasks is almost the same as the time needed to complete longest task

Why is multi-threading preferred in this study?

One of the main concerns in this study is to allow multiple users control multiple
plants virtually at the same time using minimum number of PCs. So, this immediately
requires that one PC must control multiple plants at the same time. There are two
choices to accomplish multiple tasks with a single processor virtually at the same time:
multi-tasking using multi-process programming and multi-threading. In order to have
relatively fast system and for the reasons mentioned in the previous section, multi-
threading is preferred in this study. Consider two users trying to conduct experiments
controlled by the same PC at the same time. If single-threaded programming is used and
if one of the users sends a long task to be performed on the experiment side then the
other user has to wait until that task is completed. If the number of users and number of
plants controlled by a single PC increases considerably then it will be much worse with
single-threaded programming. With multi-threaded programming approach no matter

how long the task of some users, other users will still use the system efficiently.

1.3.3 Thread Synchronisation

Why?

Communication between threads of a process is usually made by modification of
the shared process environment. However, the interrupt times of the scheduler may be
unpredictable. This brings the probability that the process environment is not left by one
thread in a consistent state ready for the other thread to use it. In order to prevent this
there are some “thread synchronisation” techniques used. The main idea lying behind
these techniques is to ensure that each modification of the process data is completed
before control is given to another thread. These techniques are needed not only to
prevent data corruption but also to allow multiple threads work in a desired way. For
example, one thread may need to wait for something to happen depending on the
application and other thread may inform this thread to continue operation. Some of the
synchronisation mechanisms used are:

e (ritical section

e Mutex

e Semaphore

e Event

These are briefly explained in this section.

Critical Section

Critical Section is a part of the program that has access to a shared resource. It is
used to prevent data corruption due to multiple threads accessing a shared data at the
same time. This is done by allowing only one thread to be inside the critical section. So,
a thread may access to a critical section only if there are no other threads using that code
at that moment. Critical section can only be used for threads in the same process. For
threads in different processes mutex, which is explained next, must be used.

Mutex

Mutex is very similar to critical section in functionality but it has some
differences. Some of the differences between mutex and critical section are:

- A mutex needs much more time to be locked (entered) and unlocked (left)

than a critical section does.

- A mutex can be used with threads between processes but this is not true for a

critical section.

- A timeout for waiting on a mutex can be defined but not for critical section.

Semaphore

A semaphore can be thought as a more general form of mutex. Only one thread
can access a mutex at a certain time while the number of threads that can access a
semaphore can be adjusted. This number is set as initial count of semaphore. When a
thread accesses the semaphore the count is decreased by one and when a thread leaves
the semaphore this count is increased by one. When the number reaches to zero, no
more thread can access the semaphore. So, this way number of threads accessing a
semaphore is limited in a desired way.

Event

Event is a kernel object, which can be in either of two states: signalled or non-
signalled. This state is controlled by the programmer in a desired way. A thread waiting
for an “event” to be “signalled” will go into the “blocked” mode saving more CPU time
for the whole application. When the event object becomes signalled the thread will go

into the ready mode and execute whenever the scheduler gives the CPU to it.

CHAPTER 2
SYSTEM DESCRIPTION

2.1 System structure : Hardware

We can divide the system into two main parts (Figure 2.1) :
e C(lient side

e Server side

User 1 \ Plant 1

NETWORK

(www or
ethernet)

RLCSSS

User m /

Plant n

Client side Server side

Figure 2.1 Client/server view of the system

Client side is composed of user pcs connected to the internet or ethernet. This is
Somehow user interface of remote users to the remote laboratory system. Users generate
their desired commands to conduct the experiment and see the experimental results
using their pcs.

Server side is composed of pcs responsible for accepting the remote user

commands, controlling the plants and sending back the experiment results as feedback

to the remote users. The communication between client side and server side is done
through internet or ethernet. The system server side is designed in such a way that
additional plants can be integrated to the system without any problem easily.

One of the main concerns in this study is to allow multiple users control multiple
plants at the same time with minimum number of PCs on the serverside in a reliable,

efficient way. For this reason the structure in Figure 2.2 is chosen.

Plant
setuppc
User
Plant
NETWORK
serverpc
(Www or
ethernet)
User Plant
setuppc
Plant

Figure 2.2 Hardware topology of the server side for efficient use of pcs

Here, there are two types of PCs in server side. One is setuppc responsible for
controlling the plant and recording the state of the plant and second is serverpc which is
the gate of outside world to the laboratory, responsible for accepting remote user
commands and sending them to the setuppc controlling the corresponding plant,
receiving feedback from plants and sending them to the corresponding remote user.
Here, multiple plants are connected to each setuppc. Number of plants on each PC
depends on the computation power for each plant. Furthermore, multiple setuppcs are
connected to one serverpc. Here, there can be more serverpcs depending on the number
of plants and users which effect the traffic. If the demand on the laboratory is high then

additional serverpcs can be added to take the communication load.

2.2 Communication with objects

There are two types of interaction for any experiment performed by a human : One
is the set of actions by the human to control the experiment in a desired way, such as
setting the parameters or starting and stopping the experiment. Second 1is recording,
observing and commenting on the experiment results. Control of a robot arm can be

given as a good example (Fig2.3).

@ Design PID
% constants
Set PID constants Set reference
for each link path for robot

> >
Start moving Follow and

> record trajectory

Show actual path View and comment
followed

on results
«

Goto step 14&

Satisfactory?

yes

End of experiment

Figure 2.3 A typical robot-arm control experiment

If a control engineering student wants to test the independent joint PID control

algorithm he/she has designed practically on a robot arm, he must be able to set the PID

constants for each link and give the reference path to be followed by the robot. Also,

he/she must be able to start and stop the experiment. These belong to the first type of

interaction between the human and the experiment, action from the human to the

experiment, namely command. In order to complete the experiment the actual angles or

path followed by the robot must be recorded and shown to the human. These belong to

the second type of interaction, action from robot to human, namely feedback. These

two interactions, controlling and observing an experiment, are necessary and sufficient

to perform any kind of experiment. So, if one can perform these two remotely, he/she

can conduct an experiment from a remote place. For this reason, in this study two main

objects are defined : emd (for command) object for controlling the experiment and fb

(for feedback) object for observing the experiment results. Different sets of cmd and fb

objects must be defined for different experiments. For similar experiments similar

objects can be used. Two examples of set of objects for two experiments are defined

below.

cmdname

set controller type
set reference type
set kp

set ki

set kd

set kfr

set amplitude

set frequency
start experiment
cmdname

set reference type
set kp

set ki

set kd

add reference 1

add reference 2

arg

0,1,2

0,1

kp

ki

kd

kfr

amplitude
frequency

0

arg

0,1

kpl, kp2, ..., kp7
kil, ..., ki7
kdl, ..., kd7
X, Y, Z, YW, P, T

theta vector

fbname
controller type
reference type
current kp
current ki

current kd
current kfr
current amplitude
current frequency
angular velocity
fbname
reference type
current kp
current ki

current kd
current pos & or

current thetas

arg
0,1,2

0,1

kp

ki

kd

kfr
amplitude
frequency
w

arg

0,1

kpl, ..., kp7
kil, ..., ki7
kdl, ..., kd7
X,Y,Z,YW,p,I

theta vector

In the example experiments above, the user decides on the action he/she wants
to perform and sends this to the laboratory through the internet or ethernet. The
computers in the laboratory receive this desired action, or command, and transmit it to
the corresponding plant through serverpc and setuppc, respectively. The desired
command is executed, result is recorded as fb and sent back to the remote user for
feedback to complete the experiment. Since the communication is done through internet
or ethernet there is unpredicted amount of delay. In order to perform a more efficient
experiment reducing the effect of delay, two other objects are defined, namely task and
feedback. Task object consists of consecutive set of cmd objects defined by the user.
This way the user can first design the whole set of actions he/she wants to be executed
by the experiment and then send them to the laboratory. And the setuppc records the tb
objects for each cmd object while executing the experiment, collects them in a feedback
object and sends the feedback object back to the user. So, the two new objects defined
are task object consisting of successive cmd objects and feedback object consisting of
successive fb objects.

Since there will be multiple plants and multiple users, there will be multiple task
and feedback objects at the same time in the system. In order to send the task and
feedback objects to the correct plant and user, respectively, each object must carry
source and destination addresses. So, each plant and user are assigned an address. Plant
addresses are static while user addresses are dynamic. Each time a user reenters the
system, he/she is assigned a new address. This address may depend on, but is not the
same as, the IP address of the user.

In order to have a more generic and flexible system, each task and feedback
object is assigned a priority and an accessrank. For example the owner of the laboratory,
Sabanci University (SU), may want to give more priviliges to its own students or to the
students of some other universities. The priority of a task or feedback object is defined
as follows:

If there are two or more task or feedback objects on a PC at the same time, the
one having higher priority is executed first. So, the users having higher priorities will
reach the system faster than others.

Accessrank is defined for only tasks. The accessrank of a task object defines the
level of authority of the user to use the plant. For example, graduate students registered
to the system studying robot control may have full authority to use the robot arm so that

they can define their own controllers while unregistered users having low accessrank

may only define reference path of the robot. As mentioned above, these two properties
are defined to make the whole system more generic and flexible, but they may or may
not be used. In order to collect statistics and record the events all task and feedback
objects are labeled by an id, namely taskid and feedbackid, respectively.

So, the whole structure of task and feedback objects of the system are as shown

below:
Task Feedback
Task.id Feedback.id
Task.source Feedback.source
Task.destination Feedback.destination
Task.priority Feedback.priority
Task.accessrank Feedback.taskaccepted

Task.cmdlist Feedback.fblist

2.3 System Structure : Software

One of the main concerns in this study is to allow multiple users conduct multiple
experiments virtually at the same time with minimum number of PCs. In order to reduce
number of PCs used, multiple plants need to be controlled by each SetupPC. So,
SetupPC must accomplish multiple tasks at the same time. Two approaches can be used
for this case. One is multitasking by writing multiple programs and ask the operating
system to run all at the same time. The other is multithreading by writing multiple
special functions, called threads, and running them at the same time in the same
program. Multithreading is more preferable to multitasking since communication
between threads is easier, faster and safer than communication between processes.
Some advanced Computer Aided Software Engineering (CASE) tools, like Visual C++,
have functions to manage reliable thread communication and syncronization. So,
multithreaded programming is chosen in this study.

There are basically three types of threads:

e PAT : Plant Application Threads

e IT: Interface Threads

e GUIT : Graphical User Interface Threads

Plant Application Threads (PAT) are responsible for controlling the experiments.

For each experiment there is a separate PAT and TaskList.

PAT’s operation can be divided into four steps :
e Read the next Task to be executed from TaskList
e Check whether the Task is safe
e Apply commands of the task one by one to the experiment and record fbs
e Build Feedback object and write it to the FeedbackList
PAT blocks itself if the TaskList is empty in order to save processor time to other

threads.

Interface Threads (IT) are responsible for communication of Task and Feedback

objects between PCs. There are basically two types of ITs: Receiver IT and Sender IT.

Receiver IT’s operation can be divided into two steps:

e Receive Task or Feedback object from other PC through TCP/IP socket

e Write received object to TaskList or FeedbackList.

Sender IT’s operation can be divided into two steps:
e Read next object from TaskList or FeedbackList

e Send the read object to the corresponding PC.

Each IT is given a specific name according to its position. The ITs between SetupPC
and ServerPC are called SetupPC-ServerPC Interface Thread (SSIT), the ITs between
ServerPC and UserPC are called ServerPC-UserPC Interface Thread (SUIT) in
ServerPC and UserPC-ServerPC Interface Thread (USIT) in UserPC.

Graphical User Interface Threads (GUIT) are responsible for allowing user to
define his/her command and show feedback to user. There are two types of GUITs:

e Task GUIT

e Feedback GUIT

Task GUIT’s operation is can be divided into two basic steps:
e Take user actions as input and build Task object

e Write Task object to the TaskList

Feedback GUIT’s operation can be divided into two basic steps:
e Read Feedback object from FeedbackList

e Show Feedback data to the user

Software structure of programs running on each PC are explained in this section.
First, general block diagram is given. In block diagrams, circles represent threads, large
rectangles represent object arrays of Task and Feedback objects, namely TaskList and
FeedbackList, respectively, and small rectangles represent TCP/IP sockets. Then flow

chart of each thread is explained in detail.

2.3.1 SetupPC

SETUPPC
newtask
P —— PLANT
— » SKI1 | —
- —>
O < | SK2 4— <«
&
4
=
a4
m
n)
FeedbackList
» SK3
7 sK4

Fig. 2.3.1 Software Structure of SetupPC

Once a Task object is received by a SetupPC, first it must be saved in the
TaskList object array. This is done by SSIT1. SSIT1 receives Task object from
ServerPC through SK1 and writes it to TaskList. The main thread in SetupPC is PAT,
which controls the plant. PAT reads this Task object into its own local variable,
processes it, constructs Feedback object and writes it to FeedbackList. This Feedback
object must be sent back to ServerPC and this is done by SSIT2. SSIT2 reads Feedback
object from FeedbackList into its own local variable and sends it to ServerPC through
SK4. SK2 is used to inform ServerPC whether SSITT1 is ready to receive next task
object or busy with writing the last received Task object to TaskList. Similarly, SK3 is
used to learn whether the ServerPC is ready to receive next Feedback object. The flow

chart of each thread is explained next.

PAT:

START PAT

newtask i(
..................... R

SsITl B —

)

ReadTask

v

SafetyCheck

—> TaSkACCepted _ 0

TaskAccepted = 1

ApplyTaskandBuildFeedback

v

WriteFeedback

v

CheckTaskList

askList N

mpty?

Y

ReadTask :

PAT first locks the TaskList object in order to prevent it to be modified by other
threads. Then, PAT copies the next Task object in the TaskList into its own local Task
variable.

SafetyCheck :

Each cmd object of the Task object is checked whether it is safe or dangerous
for the plant. For example, for the PA-10 robot move to XYZ cmds that have Z
parameters less than certain value are immediately rejected since it will crash the robot
to the ground. Once an unsafe cmd is found, this function returns with negative return
value to inform the calling function that the requested Task object is not accepted.
ApplyTaskandBuildFeedback :

Each cmd object is executed and corresponding fb object is recorded. For
example, for PA-10 robot if the next cmd object is move to XYZ(X, Y, Z;), the
robot is moved to < X, , Y;, Z; > coordinates and the resulting actual <X ,Y ,Z>
coordinates are recorded in the XYZ(X, Y, Z) tb object. After all of the cmd objects

are executed and corresponding fb objects are recorded, a Feedback object is built.

WriteFeedback :

The FeedbackList is locked in order to prevent it to be used by other threads.
The built Feedback object is copied into the FeedbackList. At the end the FeedbackList
is unlocked to allow other waiting threads to access it.

CheckTaskList :

The TaskList is checked whether it is empty or not. If the TaskList is empty and
there are no other Task objects to be executed for the time, PAT enters into the blocked
state in order not to waste CPU time. If the TaskList is not empty and there are Tasks to
be executed, PAT goes to the ReadTask step.

Blocked Mode :

Threads have three types of modes : Stopped, running and blocked.

Blocked mode is the mode entered when the thread has nothing to do in order to save
processor time. PAT quits from blocked mode when it receives newtask event message

from SSIT1.

SSIT1

START SSIT1

newtask SK1 <
e —‘ V

SK1 BLOCKED MODE

h 4

ReceiveTask

v

SetBusyFlag (1)

v

WriteTask

I

CheckTaskList

‘Y

AwakePAT

«

SetBusyFlag(0)

ReceiveTask :

SetupPC receives Task object from ServerPC through TCP/IP socket SK1. SK1
sets event newtask to inform SSIT1 that new task has arrived. SSIT1 reads this Task
object into its own local variable.

SetBusyFlag :

In order to prevent ServerPC to send another task object while SSIT1 is writing
last received Task into TaskList, SSIT1 sends ServerPC a short message. If the message
is 1 then it means that SSIT1 is busy with writing the last received Task object into the
TaskList. If the message is 0 then it means that SSIT1 is ready to receive the next Task
object.

WriteTask :

SSIT1 writes the received Task object into the TaskList.
CheckTaskList :

After writing the received Task object into the TaskList SSIT1 checks whether
the TaskList was empty or not.
AwakePAT :

If TaskList was empty this means that PAT is in blocked mode so SSIT1 sends a
message by setting the newtask event in order to release PAT from blocked mode.
BlockedMode :

In order to save CPU time SSIT1 enters into the blocked mode until next Task is
sent by the ServerPC. When TCP/IP socket SK1 receives the next Task it send a
message by setting the newtask SK1 event in order to release SSIT1 from blocked

mode.

SSIT2

START SSIT2

h

ReadFeedback
CheckServerPC server_ready
ST SK3
Y >
° BlockedMode
N
SendFeedback

ReadFeedback :

SSIT2 copies next Feedback object, constructed by PAT, from the FeedbackList
into its own local variable.
CheckServerPC :

SSIT2 checks whether the ServerPC is ready to receive the Feedback object or
busy, by checking a local variable which stores the status of the ServerPC.
SendFeedback :

If the ServerPC is ready to receive the Feedback object, SSIT2 sends the
Feedback through TCP/IP socket SK4 and goes to ReadFeedback step.
BlockedMode :

If ServerPC is not ready then SSIT2 enters into the blocked mode until a
message comes from the ServerPC through SK3. This short message releases SSIT2

from blocked mode and allows it to send the Feedback object to ServerPC.

2.3.2 ServerPC

SERVERPC
TaskList
—t SKI SK5 |
SK2 SK6 [
&)
s &
> =)
o =
2] [8a)
- . %)
FeedbackList
— P SK3 —» K7
4_
€T SK4 < gkg le—

Fig. 2.3.2 Software Structure of ServerPC

ServerPC is the bridge between UserPC and SetupPC. Every Task object sent
from a UserPC to a SetupPC and every Feedback object sent from a SetupPC to a
UserPC must pass through ServerPC. Once a Task object is received by the ServerPC,
first it must be saved in the TaskList object array. This is done by SUIT1. SUIT1
receives Task object from UserPC through TCP/IP socket SK1 and writes it to TaskList.
Then, SSIT1 reads this Task object into its own local variable and sends it to the
corresponding SetupPC through SKS5. Processing of Feedback object is similar. SSIT2
receives a Feedback object from a SetupPC and writes it into FeedbackList. SUIT2
reads the Feedback object from FeedbackList and sends it to corresponding UserPC.
SK2, SK3, SK6 and SK7 are used by threads in separate PCs whether they are busy or

ready to receive objects. The flow chart of each thread is explained next.

SUIT1 :

START SUIT1

«
newtask i

SK1 BLOCKED MODE

v

ReceiveTask

v

SetBusyFlag (1)

v

WriteTask

v

SetBusyFlag (0)

ReceiveTask :

ServerPC receives Task object from UserPC through TCP/IP socket SK1. SK1
sets event newtask to inform SUIT1 that new task has arrived. SUIT1 reads this Task
object into its own local variable.

SetBusyFlag :

In order to prevent UserPC to send another task object while SUIT1 is writing
last received Task into TaskList, SUIT1 sends UserPC a short message. If the message
is 1 then it means that SUIT1 is busy with writing the last received Task object into the
TaskList. If the message is 0 then it means that SUIT1 is ready to receive the next Task
object.

WriteTask :
SUIT1 writes the received Task object into the TaskList.

SSIT1

START SSIT1

i<

ReadTask
CheckSetupPC setuppc read
up PPETEEY ske
BlockedMode

SendTask

ReadTask :

SSIT1 copies next Task object from the TaskList into its own local variable.
CheckSetupPC :

SSIT1 checks whether the SetupPC is ready to receive the Task object or busy,
by checking a local variable which stores the status of the SetupPC.
SendTask :

If the SetupPC is ready to receive the Task object, SSIT1 sends the Task through
TCP/IP socket SK5 and goes to ReadTask step.
BlockedMode :

If SetupPC is not ready then SSIT1 enters into the blocked mode until a message
comes from the SetupPC through SK6. This short message releases SSIT1 from blocked
mode and allows it to send the Task object to SetupPC.

SSIT2

START SSIT2

newfeedback V<

SK8 BLOCKED MODE

v

ReceiveFeedback

v

SetBusyFlag (1)

v

WriteFeedback

v

SetBusyFlag (0)

ReceiveFeedback :

ServerPC receives Feedback object from SetupPC through TCP/IP socket SKS.
SK8 sets event newfeedback to inform SSIT2 that new feedback has arrived. SSIT2
reads this Feedback object into its own local variable.

SetBusyFlag :

In order to prevent SetupPC to send another feedback object while SSIT2 is
writing last received Feedback into FeedbackList, SSIT2 sends SetupPC a short
message. If the message is 1 then it means that SSIT?2 is busy with writing the last
received Feedback object into the FeedbackList. If the message is 0 then it means that
SSIT2 is ready to receive the next Feedback object.

WriteTask :
SSIT2 writes the received Feedback object into the FeedbackList.

SUIT2 :

START SUIT2

b

ReadFeedback
CheckUserPC userpc read
BlockedMode

SendFeedback

ReadFeedback :

SUIT?2 copies next Feedback object from the FeedbackList into its own local
variable.
CheckUserPC :

SUIT2 checks whether the UserPC is ready to receive the Feedback object or
busy, by checking a local variable which stores the status of the UserPC.
SendFeedback :

If the UserPC is ready to receive the Feedback object, SUIT2 sends the
Feedback through TCP/IP socket SK4 and goes to ReadFeedback step.

BlockedMode :

If UserPC is not ready then SUIT2 enters into the blocked mode until a message
comes from the UserPC through SK3. This short message releases SUIT2 from blocked
mode and allows it to send the Feedback object to UserPC.

2.3.3 UserPC

USERPC
newtask
S TaskList
28 X
o E SK1
>
4_
= SK2 | o
o =4
2 O S
zZ 2 =
o newfeedback v
o
- 8 V FeedbackList
> — SK3
< g =) <«
= g < sK4 ¢
=8
22

Fig. 2.3.3 Software Structure of UserPC

UserPC is the device that allows remote users conduct their experiments. User
commands are generated using the input devices, keyboard and mouse and feedback to
the user is shown by the output device, monitor. Every Task object is built and every
Feedback object is terminated in UserPC. Once user decides that the Task object he
constructed is the desired one he asks the client software to send it by clicking the
SendTask button on the GUI window. GUIT1 writes the Task object to the TaskList and
informs USIT]1 that there is a new Task object by sending an event message, newtask.
USIT1 reads the Task object from TaskList into its own local variable and sends it to
ServerPC through TCP/IP socket SK1. USIT?2 is the thread to deal with a received
Feedback object. Once USIT2 receives a Feedback object from ServerPC through SK4
it writes it to the FeedbackList and informs GUIT?2 that there is a new Feedback object
arrived. GUIT?2 reads this Feedback object from FeedbackList and shows it to the user
to complete the whole remote control loop. The flow chart of each thread is explained

next.

GUIT1 :

START GUIT1

N

newtask user v

USER BLOCKED MODE

h 4

ReadTask

v

SetBusyFlag (1)

v

WriteTask

I

CheckTaskList

‘Y

AwakeUSIT1

«

A 4

SetBusyFlag(0)

ReadTask :

With the newtask user event message sent by user clicking the “SendTask”
button on the GUI, GUIT1 copies the Task object saved in a temporary variable into its
own local variable.

SetBusyFlag :

In order to prevent user to send another task object while GUIT1 is writing last
Task into TaskList, GUIT1 sends user a message. If the message is 1 then it means that
GUIT1 is busy with writing the last Task object into the TaskList. If the message is 0
then it means that GUITT is ready to read the next Task object. This message is shown
on the GUI window informing user whether he can send the next Task he has built.
WriteTask :

GUIT1 writes the Task object into the TaskList.

CheckTaskList :

After writing the Task object into the TaskList GUIT1 checks whether the
TaskList was empty or not.

AwakeUSIT1 :

If TaskList was empty this means that USIT]1 is in blocked mode so GUIT1
sends a message by setting the newtask event in order to release USIT1 from blocked
mode.

BlockedMode :

In order to save CPU time GUITT1 enters into the blocked mode until next Task

is built by the user. When user builts next Task he sends a message by setting the

newtask user event in order to release GUIT1 from blocked mode.

USIT1 :

START USIT1
i<
ReadTask
CheckServerPC serverpc_ready
e SK2
BlockedMode

SendTask

ReadTask :

USIT1 copies next Task object from the TaskList into its own local variable.
CheckServerPC :

USIT1 checks whether the ServerPC is ready to receive the Task object or busy,
by checking a local variable which stores the status of the ServerPC.
SendTask :

If the ServerPC is ready to receive the Task object, USIT1 sends the Task
through TCP/IP socket SK1 and goes to ReadTask step.
BlockedMode :

If ServerPC is not ready then USITT1 enters into the blocked mode until a
message comes from the ServerPC through SK2. This short message releases USIT1

from blocked mode and allows it to send the Task object to ServerPC.

USIT2 :

SK4

START USIT2

newfeedback

*4

BLOCKED MODE

v

ReceiveFeedback

v

SetBusyFlag (1)

v

WriteFeedback

v

CheckFeedbackList

Awake GUIT?2

iz

SetBusyFlag (0)

ReceiveFeedback :

USIT?2 receives Feedback object from ServerPC through TCP/IP socket SK4.

SetBusyFlag :

USIT2 sends ServerPC a short message through SK3 to inform that it is busy.

WriteFeedback :

USIT?2 writes the received Feedback object into the FeedbackList.

CheckFeedbackList :

USIT?2 checks whether the size of the FeedbackList is one.

AwakeGUIT?2 :

If the size of the FeedbackList is one then it means that GUIT2 is in blocked

mode. Then USIT2 sends an event message to GUIT2 in order to release it from the

blocked mode.

GUIT2:

START GUIT2

¢
newfeedback

usIT2 BLOCKED MODE

v

ReadFeedback

v

ShowFeedbackToUser

ReadFeedback :

GUIT?2 reads a Feedback object from FeedbackList into its own local variable.
ShowFeedbackToUser :

GUIT2 shows the Feedback object tb-by-b to user on the GUI window. This
completes the remote control and experimentation loop.
BlockedMode :

If there no more Feedback object in the FeedbackList, GUIT2 enters the blocked
mode in order to save CPU time. When new feedback object arrives, USIT2 releases

GUIT2 from blocked mode by sending an event message, newfeedback.

USERI

USER?2

USERPC1
newtask

TaskList

o

newfeedback

SK1

SK2

V FeedbackLis‘[‘.%""'-a.,m
i <4
SK4 [«
USERPC2
newtask
TaskList
@ SK1 —p
sk2 [
newfeedback
V FeedbackLis‘[‘.%""'-a.,m
b <4
SK4 ¢

SERVERPC
SK1
SK2 [

—»| SK3

<4— SK4
SK5 [SUIT1
ske | €

_>

SK7 SUIT2
SK8 |*

TaskList

FeedbackList

SSIT1

SSIT2

SETUPPC1
newtask PATI1
.......................... T PLANTl
TaskList ' I/O CARD
SK9 > p SKI | |
| —
SK10 € — SK2 7
4__
FeedbackList
> ski1 T sk3 :®i—
4_
SK12 SK4 PLANT?2
ssiT1 "eWtask PAT2 o cARD
_> _»
TaskList i |
<4 4__‘
FeedbackList
SETUPPC2 newtask PATI1
...................................])LANT3
TaskList ' I/O CARD
— SKI3 | —p |} SKI .
> 5 _ @ L,
[SK14 - SK2
4_ 4__
FeedbackList
—p SKI5 |—p M SK3 (a
4 SK16 | SK4

Figure 2.3.4 Software structure of whole system for two-user — three-plant scheme

Software structure of whole system for two-user — three-plant scheme is shown
in the figure above. Note that two plants are connected to the first SetupPC. Addition of
an extra plant to a SetupPC involves initialisation of one more PAT. Number of plants
one SetupPC can control depend on the processing power of the SetupPC and the
complexity of the cmds for the plants. The advantage of the proposed structure may not
be seen for low number of expensive plants, like robots, since the price of PC may be
ignored compared with the price of robot. But if the price of plant is low comparable
with the price of a PC, like a DC motor control experiment setup or a relatively cheap

mobile robot, then the proposed structure is very effective and efficient.

CHAPTER 3
PLANTS

Definition of the communication objects as cmd and fb gives flexibility enabling
connection of various plants to the system. In this study two different kinds of plants are
connected to the system. One is “DC Motor Control Setup” which is relatively simple
and constitutes a good experiment for especially undergraduate mechatronics and
control engineering students. Second is a robot arm which constitutes a very important

part of mechatronics field. In this chapter these plants are described in detail.

3.1 DC Motor Control Experiment

As an introductory experiment for mechatronics engineering education, DC Motor
Control Experiment is chosen. There are several reasons for this. First, DC motor
control setup involves all components of a mechatronics product, mechanical, electrical,
control and software. Second, DC motor is linear in certain region which means
classical control techniques can be applied. Third, it is widely used in industry and
robotics which means it is also a good investment to learn.

The experiment consists of four main parts. First part is learning about the basics of
components of the experiment, mechanical, electrical and software components. Second
part is mathematical modelling of the DC motor. Some parameters are given to the
student so that the mathematical model of the model can be derived numerically. Third
part is open-loop control of the DC motor. Student designs an open-loop proportional
controller first without friction compensator, then with friction compensator so that the
actual speed of the motor is equal to the desired speed. Then the student sets the desired
speed and obtains the step response of the motor. He/she must see that the controller

with friction compensator works well for step function. But when the desired velocity is

sinusoidal function the motor can not track the reference above some frequency. Fourth
and last part is closed-loop P, PI, PD, PID control of DC motor. Student designs a PID
controller to meet certain performance criteria. Then he/she sets the desired speed and
obtains the step response of the motor. Closed-loop controller also works well for step
function. When the reference is sinusoidal the closed-loop controller achieves better
response than the open-loop controller. The block diagram representation of the setup is

shown in Fig3.1.

USER USER

' f

GUI » Controller [* Sensors > GUI

v f

Power ™ Load

. p| Driver |y DC Motor (Inertia)
4—

supply

Fig3.1 : Functional block diagram representation of DC motor control setup

Power supply is adjustable DC power supply which can give voltage between
0-32 volts. Driver is H-bridge in order to have bi-directional drive of DC motor. DC
motor is permanent magnet brush DC motor with maximum voltage of 24V. There are
two sensors : a simple resistor as current sensor and a dual channel optical encoder with
3600ppr as velocity sensor. Controller is one of open-loop proportional controller
with/without friction compensator, closed-loop P,PI,PD,PID controller. GUI enables the
user to adjust the controller parameters and shows the response of the system as
feedback.

In order to conduct the experiment student has to have two kind of interaction
with the setup : he/she must be able to set the controller parameters, start and stop the
experiment at any time he/she wants and he/she must be able to see the experimental
result, that is the plot of the response of the motor. So, the cmd and fb objects can be

defined as follows:

cmdname arg fbname arg

set controller type 0,1,2 controller type 0,1,2

set reference type 0,1 reference type 0,1

set kp kp current kp kp

set ki ki current ki ki

set kd kd current kd kd

set kfr kfr current kfr kfr

set amplitude amplitude current amplitude amplitude
set frequency frequency current frequency frequency
start experiment 0 angular velocity W

3.2 Mitsubishi PA-10 7-DOF Robot Manipulator

Among all products, robots are one of the best example to an advanced
mechatronics system. First, they involve all parts of a mechatronics system to the full
extend : complex mechanics, complex electronics, complex control and complex
software. Second, they are used in various real world applications from welding,
grinding to pick&place, painting. So, they constitute an important part of mechatronics
field. Adding a good robot to remote mechatronics laboratory also makes sense since a
good robot is quite expensive and so not affordable by every university. Mitsubishi
PA-10 7-DOF Robot Arm is a well-designed, smart, general purpose robot with open
architecture which is a good candidate for educational purposes. As an example robot
control experiment independent joint PID control of PA-10 can be given. The cmd and

fb objects are as follows.

cmdname arg fbname arg

set reference type 0,1 reference type 0,1

set kp kpl, kp2, ..., kp7 current kps kpl, ..., kp7
set ki kil, ..., ki7 current kis kil, ..., ki7
set kd kdl, ..., kd7 current kds kdl, ..., kd7

add reference 1 current pos & or

Xayazaywapar

theta vector

X, Y, z, YW, p:» r

add reference 2 theta vector current thetas

start experiment

CHAPTER 4
EXPERIMENTAL RESULTS

As an experimental study of the remote laboratory concept, DC motor control

experiment is chosen. The DC motor control experiment consists of the following parts

and shown in Fig4.1:

24V Permanent Magnet DC motor
3600 ppr, 3 channel optical encoder
L298n dual H-bridge motor driver
20V DC power supply
Humusoft MF604 multi-function I/O card
SetupPC :

e CPU : Pentium 733MHz

e RAM: 128 MB

e Operating system : Windows 98
Ethernet Card

UserPC is a laptop computer consisting of Celeron SO0MHz CPU, 64 MB of
RAM and an Ethernet Card.

In SetupPC a server software is running, listening to port 4000 for client

requests. In UserPC, a client software with a simple GUI is running as shown in Fig4.2.

User connects to the experiment by clicking the Experiment->Connect on the menu,

Fig4.3. Server accepts the client request and establishes the connection. User sets the

parameters, Kp, Ki, Kd of the PID controller by selecting the Task->Set Experiment

Parameters, Fig4.4, Fig4.5. Then user sends the Task objects by selecting Task->Send

1:20V DC POWER SUPPLY

: PMDC MOTOR

: OPTICAL ENCODER

: H-BRIDGE MOTOR DRIVER

E VS N \Y)

PWM

HUMUSOFT MF604
I/O CARD
ISA BUS
SETUPPC
PCI BUS
ETHERNET CARD
LAN
ETHERNET CARD
PCI BUS
USERPC

Fig4.1 : Permanent Magnet DC Motor Experimental Setup

Task, Fig4.6. SetupPC receives the Task object and runs the experiment. The velocity of
the DC motor is recorded as feedback. When the experiment is finished the Feedback
object is sent to the UserPC. When UserPC receives this Feedback object “FEEDBACK
RECEIVED!!!!” message is shown to the user on the status read-only edit box. User
clicks Feedback->Show Feedback on the menu to see the response curve of the DC
motor. If he/she wants user can readjust the parameters of the controller. Different

response curves for different PID parameters are shown in Fig4.7-Fig4.10.

#= UserPC_GUI2]
Esperiment Task Feedback Help

Feedback will be shown here.

Fig4.2 : GUI of the Client software running on the UserPC

#= UserPC_GUI2

Feedback will be shown here.

Fig4.3 : User connects to the remote experiment

£z UserPC_GUI2

Set Experiment Parameters

Feedback will be shown here.

Fig4.4 : User clicks Task -> Set Experiment Parameters to adjust PID parameters

Fig4.5 : Experiment parameters dialog box

#r UserPC_GUIZ

Send Task

Feedback will be shown here.

Fig4.6 : User clicks Task->Send Task in order to send the Task object

i~
=]
%]
o
ED
1)
L
=]

e

p

Tazk Feedback Hel

E=periment

IFEEDBAEK 15 SHOWM MOwI

disecs

win ra

IME 1IN SECS

t

~4-F-1-d-
[[P P

50 rad/sec

0, Kd=0, wref =

i

0.1, K

Response curve for Kp=

Figd.7

=
=]
T
)
£
[}
“
=

P

Tazk Feedback Hel

Ewperiment

IFEEDE.L‘«EK 15 SHOWH WO

disecs

winra

IME IN SECS

t

VO
= L e e e
= F-l-d-

50 rad/sec

1, Kd=0, wref =

i

0.1, K

Response curve for Kp=

Fig4.8

=
=]
=]
&)
E5
)
L2
=]

P

Tazk Feedback Hel

Ewperiment

|FEEDB#3\I:K IS SHOWH MO

df{secs

win ra

IME 1IN 5EC5

t

= 50 rad/sec

0.001, wref

=1, Kd=

21.8,K

Response curve for Kp=

Fig4.9

£z UserPC_GUI2

p

Tazsk Feedback Hel

Experiment

|FEEDBAEK 15 SHOWM MOwI

dfsecs

win ra

IME 1IN SECS

t

= 30 rad/sec

0.001, wref

21.8, Ki=1, Kd=

Response curve for Kp=

Figd.10

CHAPTER 5
CONCLUSION AND FUTURE WORK

In this study a new architecture for remote mechatronics laboratory is proposed.
In order to increase efficiency using fewer number of computers, multi-threaded
programming is proposed. For flexibility of the system, communication via objects is
used. This way, a new plant can be added to the system by simply defining new set of
cmd and fb objects and designing the necessary GUI specific to that plant. Two set of
cmd and fb objects are given as example, one for DC motor control experiment and
other for a 7-DOF robot manipulator. Due to time restriction, only DC motor control
experiment is implemented but implementation of the other plants is straightforward.
This way, communication via objects is proved to be successful.

For future work first multi-threaded programming wil be implemented for multi-
user multi-plant scheme. As experiment, fifty-users eight-plants scheme will be
established in order to make efficient use of equipments like computers, input/output
cards, and software license for MATLAB and real-time toolbox. Second, other types of
plants like robot manipulator, XYZ table, mobile robots, microrobot, signal generator,
oscilloscope etc will be connected to the system. Third visual feedback will be added in
order to give a more realistic experiment to the user. Finally, JAVA will be used to
write the client software to enable full platform independence and enable Linux users to
use the system. Additionally, the system can be used as an infrastructure for a different
application : Hierarchical hybrid (central + distributed) intelligent control. An example
system for this type of application is shown in Fig5.1. In this application a group of
mobile robots, robot manipulators, XYZ tables, CNC machines are used in order to

accomplish a certain task, like production and transportation of certain products. Each

robot has its own embedded controller and certain intelligence to accomplish low level
tasks, like going to some certain position. Artificial Intelligence is running in the
UserPC as higher layer. Human supervisors can program, observe and interrupt the
system via a GUI. The proposed architecture in this study constitutes the organisation
part of the hierarchical control. So, the Al unit in the higher layer decides what each
robot must do in order to achieve a high level objective, sends the low level objectives
to each robot as cmd object, receives the status of the whole plant as fb objects and
decides on the next action. User can program the high level Al and knowledge base.

This experiment is also thought as a future work.

USER

GUI

UserPC

Knowledge Base

ServerPC

ﬁ SetupPC

SetupPC

SetupPC

‘ =

Fig5.1 : A different kind of application using the proposed architecture as organisation layer

APPENDIX A
SOURCE CODE FOR USERPC

/' UserPC_GUI2.h : main header file for the USERPC GUI2 application
//

#if

!defined(AFX USERPC GUI2 H F7C2A932 842E 11D6 BBA3 0010A4BF96E1
_INCLUDED)

#define

AFX USERPC GUI2 H F7C2A932 842E 11D6 BBA3 0010A4BF96E1 INCLU
DED _

#if MSC_VER > 1000

#pragma once

#endif / MSC_VER > 1000

#ifndef AFXWIN H
#error include 'stdafx.h' before including this file for PCH
#endif

#include "resource.h” // main symbols

T T
// CUserPC_GUI2App:

/I See UserPC_GUI2.cpp for the implementation of this class
//

class CUserPC_GUI2App : public CWinApp

{
public:

CUserPC_GUI2App();

// Overrides
/I ClassWizard generated virtual function overrides
/I{{AFX_VIRTUAL(CUserPC_GUI2App)
public:

virtual BOOL InitInstance();
//} yAFX _VIRTUAL

// Implementation

/I{{AFX_MSG(CUserPC_GUI2App)
// NOTE - the ClassWizard will add and remove member functions here.
/- DO NOT EDIT what you see in these blocks of generated code !

/1Yy AFX_MSG

DECLARE MESSAGE MAP()

T T

//{{AFX_INSERT LOCATION}}

/I Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif //
'defined(AFX_USERPC_GUI2 H_ F7C2A932 842E_11D6_BBA3 0010A4BF96E
1__INCLUDED)

/' UserPC_GUI2.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "UserPC_GUI2.h"
#include "UserPC_GUI2DIg.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS FILE[]= FILE ;
#endif

s
// CUserPC_GUI2App

BEGIN MESSAGE MAP(CUserPC_GUI2App, CWinApp)
II{{AFX MSG MAP(CUserPC_GUI2App)
// NOTE - the ClassWizard will add and remove mapping macros here.
/- DO NOT EDIT what you see in these blocks of generated code!
11} YAFX MSG
ON_COMMAND(ID HELP, CWinApp::OnHelp)
END MESSAGE MAP()

T T
/I CUserPC_GUI2App construction

CUserPC_GUI2App::CUserPC_GUI2App()
{

// TODO: add construction code here,

// Place all significant initialization in InitInstance

T T

// ' The one and only CUserPC_GUI2App object

CUserPC_GUI2App theApp;

T
// CUserPC_GUI2App initialization

BOOL CUserPC_GUI2App::InitInstance()

{
if (!AfxSocketlnit())
{
AfxMessageBox(IDP_SOCKETS INIT FAILED);
return FALSE;
}

AfxEnableControlContainer();

// Standard initialization
// If you are not using these features and wish to reduce the size
/I of your final executable, you should remove from the following

/I the specific initialization routines you do not need.

#ifdef AFXDLL

Enable3dControls(); // Call this when using MFC in a shared
DLL
#else

Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

CUserPC_GUI2DIg dlg;
m_pMainWnd = &dlg;

int nResponse = dlg.DoModal();
if (nResponse == IDOK)

{

// TODO: Place code here to handle when the dialog is
/I dismissed with OK

}

else if (nResponse == IDCANCEL)

{
// TODO: Place code here to handle when the dialog is
/I dismissed with Cancel

}

/I Since the dialog has been closed, return FALSE so that we exit the
/I application, rather than start the application's message pump.

return FALSE;

/' UserPC_GUI2DIg.h : header file
//

#if

!defined(AFX_USERPC_GUI2DLG H_F7C2A934 842E 11D6 BBA3 0010A4BF9
6E1__INCLUDED)

#define

AFX USERPC GUI2DLG H F7C2A934 842E 11D6 BBA3 0010A4BF96E1_IN
CLUDED _

#include "MyReceiveSocket.h" // Added by ClassView
#include "Task.h" // Added by ClassView

#include "SetExpParamDIg.h" // Added by ClassView
#include "Cmd.h" /I Added by ClassView

#include "MySocket.h" // Added by ClassView
#include "Feedback.h" /I Added by ClassView
#include "Fb.h" /I Added by ClassView

#if MSC_VER > 1000

#pragma once

#rendif / MSC_VER > 1000

#include <afxtempl.h>

s
// CUserPC_GUI2DIg dialog

class CUserPC_GUI2DIg : public CDialog
{
// Construction
public:
void OnSendRecSock();
void OnReceiveRecSock();
void OnConnectRecSock();
void OnCloseRecSock();

void OnAcceptRecSock();

void OnReceive();

void OnSend();

void OnClose();

void OnConnect();

void OnAccept();

CUserPC_GUI2DIg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
II{{AFX_DATA(CUserPC_GUI2DIlg)
enum { IDD =IDD USERPC _GUI2 DIALOG };
CString m_status;

//}}AFX_DATA

/I ClassWizard generated virtual function overrides

/I{{AFX_ VIRTUAL(CUserPC_GUI2DIg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

/I} yAFX _VIRTUAL

// Tmplementation
protected:
HICON m_hlcon;

/I Generated message map functions
II{{AFX_MSG(CUserPC_GUI2DIg)

virtual BOOL OnlnitDialog();

afx_msg void OnSysCommand(UINT nID, LPARAM IParam);
afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDraglcon();

afx_msg void OnSetexperimentparameters();

afx_msg void OnSendtask();

afx_msg void OnDisconnect();

afx_msg void OnShowfeedback();
afx_msg void OnConnectMenu();
/1Y yAFX_MSG
DECLARE MESSAGE MAP()
private:
float m_reference amplitude;
void ProcessFeedback();
CFb m_cfbdefault;
CMyReceiveSocket m sReceiveSocket;
CFb m_GUItb;
CFeedback m_ GUIfeedback;
CCmd m_ccmddefault;
void ReceiveCFeedback();
CMySocket m_sConnectSocket];
void SendCTask();
CTask m_GUItask;
CCmd m_GUlcmd;
CSetExpParamDIg m_dSetExpParamDIg;
int toggle;
CArray<double, double> m_GUIresponse curve;

CArray<double, double> m GUIreference curve;

//{{AFX_INSERT LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif //
!defined(AFX USERPC GUI2DLG H F7C2A934 842E 11D6 BBA3 0010A4BF9
6E1__INCLUDED)

/' UserPC_GUI2DIg.cpp : implementation file
//

#include "stdafx.h"

#include "UserPC_GUI2.h"
#include "SetExpParamDIg.h"
#include "UserPC_GUI2DIg.h"
#include "Task.h"

#include "MySocket.h"
#include "math.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS FILE[]= FILE ;
#endif

s
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:

CAboutDlg();

// Dialog Data
/I{{AFX_DATA(CAboutDIg)
enum { IDD =IDD ABOUTBOX };
/I}YAFX _DATA

/I ClassWizard generated virtual function overrides
/I{{AFX_VIRTUAL(CAboutDlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX);

// DDX/DDV support

//}}AFX_VIRTUAL

// Implementation
protected:
/I{{AFX_MSG(CAboutDlg)
/1Yy AFX_MSG
DECLARE MESSAGE MAP()

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
/I{{AFX_DATA_INIT(CAboutDlg)
//}yAFX_DATA _INIT

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
CDialog::DoDataExchange(pDX);
II{{AFX_DATA MAP(CAboutDIg)
/I}}AFX_DATA MAP

BEGIN MESSAGE MAP(CAboutDlg, CDialog)
II{{AFX_MSG_MAP(CAboutDlg)
// No message handlers
/I} }AFX_MSG_MAP
END _MESSAGE MAP()

T T
// CUserPC_GUI2DIg dialog

CUserPC_GUI2DIg::CUserPC_GUI2DIg(CWnd* pParent /*=NULL*/)
: CDialog(CUserPC_GUI2DIg::IDD, pParent)

I1{{AFX_DATA_ INIT(CUserPC_GUI2DIg)

m_status = T("");

//}*AFX_DATA_INIT

// Note that LoadIcon does not require a subsequent Destroylcon in Win32

m_hlcon = AfxGetApp()->Loadlcon(IDR_MAINFRAME);

void CUserPC_GUI2DIg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);

II{{AFX_DATA MAP(CUserPC_GUI2Dlg)

DDX Text(pDX, IDC STATUS, m_status);

/I} }AFX _DATA MAP

BEGIN MESSAGE MAP(CUserPC_GUI2DIg, CDialog)
II{{AFX_MSG_MAP(CUserPC_GUI2DIg)
ON_WM SYSCOMMAND()
ON_ WM PAINT()
ON WM QUERYDRAGICON()
ON_COMMAND(IDM_SETEXPERIMENTPARAMETERS,
OnSetexperimentparameters)
ON_COMMAND(IDM_SENDTASK, OnSendtask)
ON_COMMAND(IDM_DISCONNECT, OnDisconnect)
ON_COMMAND(DM_SHOWFEEDBACK, OnShowfeedback)
ON_COMMAND(IDM_CONNECT, OnConnectMenu)
/I} }AFX_MSG_MAP
END MESSAGE MAP()

T
/I CUserPC_GUI2DIg message handlers

BOOL CUserPC_GUI2DIg::OnlnitDialog()
{

CDialog::OnlnitDialog();

// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);

ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)

{
CString strAboutMenu;
strAboutMenu.LoadString(IDS ABOUTBOX);
if (!strAboutMenu.IsEmpty())
{
pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX,
strAboutMenu);
}
}

/I Set the icon for this dialog. The framework does this automatically
/I when the application's main window is not a dialog
Setlcon(m_hlcon, TRUE); // Set big icon
Setlcon(m_hlcon, FALSE); // Set small icon

// TODO: Add extra initialization here
m_dSetExpParamDIlg.m_controllertype = 0;

m_dSetExpParamDlg.m_referencetype = 0;

m_sConnectSocket1.SetParent(this);

m_sReceiveSocket.SetParent(this);

m_ccmddefault.cmdname = 0;

m_ccmddefault.argl = 0;

m_ctbdefault.fbname = 0;
m_ctbdefault.argl = 0;

toggle = 1;

float n=0.0;
for (int i=0; 1<500; i++)

{

n=i;
m_GUIresponse curve.Add(100*sin(n/10));
m_GUIreference curve.Add(100);

return TRUE; // return TRUE unless you set the focus to a control

void CUserPC_GUI2DIg::OnSysCommand(UINT nID, LPARAM IParam)

{
if (nID & 0xFFF0) == IDM_ABOUTBOX)

{
CAboutDlg dlgAbout;
dlgAbout.DoModal();
}
else
{
CDialog::OnSysCommand(nID, 1Param);
}

// If you add a minimize button to your dialog, you will need the code below
//" to draw the icon. For MFC applications using the document/view model,

/I this is automatically done for you by the framework.

void CUserPC_GUI2DIg::OnPaint()

{
if (IsIconic())

{
CPaintDC dc(this); // device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM)
dc.GetSafeHdc(), 0);

// Center icon in client rectangle

int cxIcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(&rect);

int x = (rect. Width() - cxIcon + 1) / 2;

int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon

dc.Drawlcon(x, y, m_hlcon);

else

CDialog::OnPaint();

// The system calls this to obtain the cursor to display while the user drags
//" the minimized window.
HCURSOR CUserPC_GUI2DIg::OnQueryDraglcon()

{
return (HCURSOR) m_hlcon;

void CUserPC_GUI2DIg::OnSetexperimentparameters()
{
// TODO: Add your command handler code here
if (m_dSetExpParamDIg.DoModal() == IDOK)
{
// BUILD CMD OBJECT AND ADD IT TO TASK OBJECT HERE!!!!

int size=0;

m_GUlcmd.cmdname = 1;

m_GUlcmd.argl = m_dSetExpParamDIlg.m_controllertype;
size = m_GUltask.cmdlist.GetSize();
m_GUItask.cmdlist.SetAtGrow(size, m_GUIcmd);

m_GUIcmd.cmdname = 2;

m_GUlcmd.argl = m_dSetExpParamDlg.m_referencetype;
size = m_GUltask.cmdlist.GetSize();
m_GUltask.cmdlist.SetAtGrow(size, m_GUIcmd);

m_GUlecmd.cmdname = 3;

m_GUlcmd.argl = m_dSetExpParamDIg.m_kp;
size = m_GUItask.cmdlist.GetSize();
m_GUltask.cmdlist.SetAtGrow(size, m_GUIcmd);

m_GUlIcmd.cmdname = 4;

m_GUlcmd.argl = m_dSetExpParamDlg.m_ki;
size = m_GUItask.cmdlist.GetSize();
m_GUltask.cmdlist.SetAtGrow(size, m_GUIcmd);

m_GUlcmd.cmdname = 5;

m_GUlcmd.argl = m_dSetExpParamDIlg.m kd;
size = m_GUItask.cmdlist.GetSize();
m_GUItask.cmdlist.SetAtGrow(size, m_GUIcmd);

m_GUIcmd.cmdname = 6;

m_GUlcmd.argl = m_dSetExpParamDlg.m_kft;
size = m_GUItask.cmdlist.GetSize();
m_GUItask.cmdlist.SetAtGrow(size, m_GUIcmd);

m_GUlIcmd.cmdname = 7,

m_GUlcmd.argl = m_dSetExpParamDIlg.m amplitude;
size = m_GUltask.cmdlist.GetSize();
m_GUItask.cmdlist.SetAtGrow(size, m_GUIcmd);

m_GUIcmd.cmdname = §;

m_GUlcmd.argl = m_dSetExpParamDlg.m_frequency;
size = m_GUltask.cmdlist.GetSize();
m_GUltask.cmdlist.SetAtGrow(size, m_GUIcmd);

m_GUlecmd.cmdname = 9;

m_GUlcmd.argl = 0;

size = m_GUItask.cmdlist.GetSize();
m_GUltask.cmdlist.SetAtGrow(size, m_GUIcmd);

m_reference amplitude = m_dSetExpParamDlg.m_amplitude;

void CUserPC_GUI2DIg::OnSendtask()

{

// TODO: Add your command handler code here
m_GUItask.TaskID = 1;

m_GUItask.source = 1; // FOR USERPC#1
m_GUltask.destination = 1; // FOR DC MOTOR SETUP#1
m_GUltask.accessrank = 1;

m_GUIltask.priority = 1;

// 111 Here the task must be sent !!!!

SendCTask();

m_GUItask.cmdlist. RemoveAll();

m_GUItask.cmdlist.FreeExtra();

void CUserPC_GUI2DIg::OnConnectMenu()

{

// TODO: Add your command handler code here
m_sConnectSocket1.Create();

m_sConnectSocketl.Connect("10.92.54.218",4000);

m_sReceiveSocket.Create();

m_sReceiveSocket.Connect("10.92.54.218",4001);

void CUserPC _GUI2DIg::OnDisconnect()

{

// TODO: Add your command handler code here
m_sConnectSocket1.Close();
m_sReceiveSocket.Close();

m_status = "DISCONNECTED!!!!";
UpdateData(FALSE);

void CUserPC_GUI2DIg::OnShowfeedback()

{

// TODO: Add your command handler code here
11111/ INITIALIZATION OF THE PLOT ///////11111]]
this->RedrawWindow();

int i=0, 11=0;

float n=0.0;

CClientDC dc(this);

int number of sample points = 500;

CPoint initial point;

initial point.x = 40;

initial _point.y = 400;

dc.MoveTo(initial point.x, initial point.y);

CPen 1PenBlackWide(PS_SOLID, 2, RGB(0,0,0));
dc.SelectObject(&IPenBlackWide);
dc.MoveTo(initial point.x ,initial point.y);
dc.LineTo(550+initial point.x,initial point.y);
dc.MoveTo(initial point.x ,initial point.y);
dc.LineTo(initial point.x ,initial point.y - 260);

dc.TextOut(initial point.x +100 ,initial point.y+2, "1");
dc.TextOut(initial point.x +200 ,initial point.y+2, "2");
dc.TextOut(initial point.x +300 ,initial point.y+2, "3");
dc.TextOut(initial point.x +400 ,initial point.y+2, "4");
dc.TextOut(initial point.x +500 ,initial point.y+2, "5");

dc.TextOut(initial point.x +550 ,initial point.y+2, "time in secs");

dc.TextOut(initial point.x -35 ,initial point.y-50-10, "20");
dc.TextOut(initial point.x -35 ,initial point.y-100-10, "40");
dc.TextOut(initial point.x -35 ,initial point.y-150-10, "60");
dc.TextOut(initial point.x -35 ,initial point.y-200-10, "80");
dc.TextOut(initial point.x -35 ,initial point.y-250-10, "100");
dc.TextOut(initial point.x -35 ,initial point.y-280-10, "w in rad/secs");

CPen 1PenGrid(PS_DOT, 1, RGB(0,0,0));
dc.SelectObject(&1PenGrid);
for (11=0; 11<56; 11++)
{
dc.MoveTo(initial point.x +10*il ,initial point.y);
dc.LineTo(initial point.x +10*i1 ,initial point.y-260);

for (11=0; 11<27; 11++)

{
dc.MoveTo(initial point.x ,initial point.y -10*i1);
dc.LineTo(initial point.x +550 ,initial point.y -10*i1);

CPen 1PenBlack(PS_SOLID, 1, RGB(0,0,0));
dc.SelectObject(&IPenBlack);
for (11=0; 11<6; 11++)

{
dc.MoveTo(initial point.x +550 ,initial point.y -50*i1);
dc.LineTo(initial point.x -10 ,initial point.y -50*i1);
}
for (11=0; 11<6; i1++)
{
dc.MoveTo(initial point.x + 100*il,initial point.y +5);
dc.LineTo(initial point.x + 100*11 ,initial point.y -260);
}

/1111111/ end of initialization of the plot ///////////////

// DRAWING THE REFERENCE AND RESPONSE CURVES //////
CPen 1PenBlue(PS_SOLID, 2, RGB(0,0,255));
dc.SelectObject(&IPenBlue);

for (11=0; 11<499; i1++)
{
n=il;
dc.MoveTo(initial point.x +il ,initial point.y -
2.5*m_GUIresponse curve.ElementAt(il));
dc.LineTo(initial point.x +il1+1 ,initial point.y -
2.5*m_GUIresponse curve.ElementAt(il+1));

}

CPen IPenRed(PS_SOLID, 2, RGB(255,0,0));

dc.SelectObject(&1PenRed);

for (11=0; 11<499; i1++)
{
n=il;
dc.MoveTo(initial point.x +il ,initial point.y -
2.5*m_GUIreference curve.ElementAt(il));
dc.LineTo(initial point.x +il+1 ,initial point.y -
2.5*m_GUIreference curve.ElementAt(il+1));

}

// end of drawing the reference and response curves //

m_status = "FEEDBACK IS SHOWN NOW!!!!";
UpdateData(FALSE);

void CUserPC_GUI2DIg::SendCTask()

{
int iSent;
CCmd tmpemd = m_ccmddefault;
CCmd *tempcmd = &tmpcemd;
int tmpint = 1;

int *temptaskvariables = &tmpint;

// sending the taskid
*temptaskvariables = m GUItask.TaskID;
do
{
iSent = m_sConnectSocket].Send(temptaskvariables,
sizeof(*temptaskvariables));

+ while (iSent == SOCKET_ ERROR);

// sending the tasksource

*temptaskvariables = m_GUItask.source;

do
{

iSent = m_sConnectSocketl.Send(temptaskvariables,

sizeof(*temptaskvariables));
} while (iSent == SOCKET_ERROR);

// sending the taskdestination
*temptaskvariables = m_GUItask.destination;

do
{

iSent = m_sConnectSocketl.Send(temptaskvariables,

sizeof(*temptaskvariables));
} while (iSent == SOCKET_ERROR);

// sending the taskpriority
*temptaskvariables = m_GUItask.priority;
do
{
iSent = m_sConnectSocket1.Send(temptaskvariables,

sizeof(*temptaskvariables));
}+ while (iSent == SOCKET_ERROR);

// sending the taskaccessrank
*temptaskvariables = m_GUItask.accessrank;

do
{

iSent = m_sConnectSocketl.Send(temptaskvariables,

sizeof(*temptaskvariables));
}+ while (iSent == SOCKET_ERROR);

// sending the number of commands
*temptaskvariables = m_GUItask.cmdlist.GetSize();
do

iSent = m_sConnectSocketl.Send(temptaskvariables,
sizeof(*temptaskvariables));

+ while (iSent == SOCKET_ ERROR);

// sending the commands

for (int k=1; k<m_GUltask.cmdlist.GetSize()+1 ; k++)

{
*tempecmd = m_GUltask.cmdlist.ElementAt(k-1);
do
{
iSent = m_sConnectSocketl.Send(tempcmd, sizeof(*tempemd));
} while (iSent == SOCKET_ERROR);
H

void CUserPC_GUI2DIg::ReceiveCFeedback()
{

int iRcvd;

int number of fbs;

CFb tmpfb = m_cfbdefault;

CFb *temptb = &tmptb;

int tmpint = 1;

int *tempfeedbackvariables = &tmpint;

m_GUIfeedback.fblist. RemoveAll();
m_GUIfeedback.fblist.FreeExtra();

// receiving the feedbackid
do
{
iRcvd = m_sReceiveSocket.Receive(tempfeedbackvariables,
sizeof(*tempfeedbackvariables));

} while (iRevd == SOCKET ERROR);

m_GUlIfeedback.FeedbackID = *tempfeedbackvariables;

// receiving the feedbacksource

do
{

iRcvd = m_sReceiveSocket.Receive(tempfeedbackvariables,
sizeof(*tempfeedbackvariables));
}+ while (iRcvd == SOCKET_ERROR);

m_GUlIfeedback.source = *tempfeedbackvariables;

// receiving the feedbackdestination
do
{

iRcvd = m_sReceiveSocket.Receive(tempfeedbackvariables,
sizeof(*tempfeedbackvariables));
}+ while (iRcvd == SOCKET_ERROR);

m_GUIfeedback.destination = *tempfeedbackvariables;

// receiving the feedbackpriority
do

{

iRcvd = m_sReceiveSocket.Receive(tempfeedbackvariables,
sizeof(*tempfeedbackvariables));
}+ while (iRcvd == SOCKET ERROR);
m_GUIfeedback.priority = *tempfeedbackvariables;

// receiving the taskaccepted

do
{

iRcvd = m_sReceiveSocket.Receive(tempfeedbackvariables,

sizeof(*tempfeedbackvariables));
} while (iRcvd == SOCKET ERROR);
m_GUIfeedback.task accepted = *tempfeedbackvariables;

// receiving the number of fbs

do
{

iRcvd = m_sReceiveSocket.Receive(tempfeedbackvariables,
sizeof(*tempfeedbackvariables));
} while (iRcvd == SOCKET ERROR);

number of fbs = *tempfeedbackvariables;

// receiving the tbs

for (int k=1; k<number of fbs+1; k++)

{
do
{
iRcvd = m_sReceiveSocket.Receive(temptb, sizeof(*temptb));
+ while (iRcvd == SOCKET_ERROR);
m_GUIfeedback.fblist.SetAtGrow(k-1, *tempfb);
H
ProcessFeedback();

void CUserPC_GUI2DIg::OnAccept()
{

void CUserPC_GUI2DIg::OnConnect()

{
m_status = "CONNECTED!!!!";

UpdateData(FALSE);

void CUserPC_GUI2DIg::OnClose()
{

m_sConnectSocket1.Close();

m_status = "CONNECTION CLOSED!!!!";
UpdateData(FALSE);

void CUserPC _GUI2DIg::OnSend()

{
m_status = "TASK SENT!!!!";

UpdateData(FALSE);

void CUserPC_GUI2DIg::OnReceive()

{
}

void CUserPC_GUI2DIg::OnAcceptRecSock()
{

void CUserPC_GUI2DIg::OnCloseRecSock()
{

m_sReceiveSocket.Close();
m_status = "CONNECTION CLOSED!!!!";
UpdateData(FALSE);

void CUserPC_GUI2DIg::OnConnectRecSock()
{

void CUserPC_GUI2DIg::OnReceiveRecSock()

{
ReceiveCFeedback();

m_status = "FEEDBACK RECEIVED!!!!";
UpdateData(FALSE);

void CUserPC_GUI2DIg::OnSendRecSock()
{

void CUserPC_GUI2DIg::ProcessFeedback()
{
int i=0;
int size=0;
int fbname=0;
float arg1=0;
int number of samples=500;
int reference type = 0;
float reference amplitude=0, reference frequency=0;

float experiment_sampling time=0.01;

reference amplitude = m_reference amplitude;

m_GUIresponse curve.RemoveAll();
m_GUIresponse_curve.FreeExtra();
m_GUIreference curve.RemoveAll();

m_GUlreference curve.FreeExtra();

size = m_GUlIfeedback.fblist.GetSize();
for (i=0; i<size; i++)
{
fbname = m_GUIfeedback.fblist.ElementAt(i).fbname;
argl = m_GUIfeedback.fblist.ElementAt(i).argl;
if (fbname == 9)
m_GUlIresponse curve.Add(argl);

if (fbname == 2)
reference type = argl;
if (fbname == 7)
reference_amplitude = argl;
if (fbname == 8)

reference frequency = argl;

}
if (reference type == 0)
{
for (i=0; i<number of samples; i++)
{
m_GUIreference curve.Add(reference amplitude);
h
h
if (reference type == 1)
{

for (i=0; i<number of samples; i++)

{

m_GUIreference curve.Add(reference amplitude*sin(i*reference frequency*e
xperiment_sampling_time));

}

#if

!defined(AFX_SETEXPPARAMDLG H F7C2A93C 842E 11D6 BBA3 0010A4B
F96E1 INCLUDED)

#define

AFX SETEXPPARAMDLG H F7C2A93C 842E 11D6 BBA3 0010A4BF96E1 1
NCLUDED _

#if MSC_VER > 1000

#pragma once

#endif / MSC_VER > 1000

// SetExpParamDIg.h : header file
//

s
/I CSetExpParamDlg dialog

class CSetExpParamDIg : public CDialog
{
// Construction
public:
CSetExpParamDIg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
/I{{AFX_DATA(CSetExpParamDIg)
enum { IDD =IDD SETEXPERIMENTPARAMETERS };
float m_amplitude;
float m_frequency;
float m kd;
float m_kfr;
float m_ki;
float m kp;
int m_controllertype;
int m_referencetype;

//}}AFX_DATA

// Overrides
/I ClassWizard generated virtual function overrides
/I{{AFX VIRTUAL(CSetExpParamDIg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}}AFX_VIRTUAL

// Tmplementation
protected:
virtual BOOL OnlnitDialog();

/I Generated message map functions
/I{{AFX_MSG(CSetExpParamDIlg)
afx_msg void OnOlwithfrcomp();
afx_msg void OnOlwithoutfrcomp();
afx_msg void OnCl();

afx_msg void OnStep();

afx_msg void OnSinusoidal();

/1Y yAFX_MSG

DECLARE MESSAGE MAP()

/I{{AFX_INSERT LOCATION}}
/I Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif //
!defined(AFX_SETEXPPARAMDLG H F7C2A93C 842E 11D6 BBA3 0010A4B
F96E1__INCLUDED)

/I SetExpParamDIg.cpp : implementation file
//

#include "stdafx.h"
#include "UserPC_GUI2.h"
#include "SetExpParamDIg.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS FILE[]= FILE ;
#endif

s
/I CSetExpParamDlg dialog

CSetExpParamDIlg::CSetExpParamDIg(CWnd* pParent /*=NULL*/)
: CDialog(CSetExpParamDIg::IDD, pParent)

/1{{AFX DATA INIT(CSetExpParamDIg)
m_amplitude = 0.0f;

m_frequency = 0.0f;

m_kd = 0.0f;

m_kfr = 0.0f;

m_ki = 0.0f;

m_kp = 0.0f;

m_controllertype = -1;

m_referencetype = -1;

//}}AFX_DATA_INIT

void CSetExpParamDIlg::DoDataExchange(CDataExchange™ pDX)

CDialog::DoDataExchange(pDX);

/I{{AFX_DATA MAP(CSetExpParamDlIg)

DDX Text(pDX, IDC_AMPLITUDE, m_amplitude);
DDX Text(pDX, IDC_FREQUENCY, m_frequency);
DDX Text(pDX, IDC KD, m_kd);

DDX Text(pDX, IDC_KFR, m_kfr);

DDX Text(pDX, IDC KI, m_ki);

DDX Text(pDX, IDC_KP, m_kp);

DDX Radio(pDX, IDC_ OLWITHOUTFRCOMP, m_controllertype);
DDX Radio(pDX, IDC_STEP, m_referencetype);
//}YAFX DATA MAP

BEGIN MESSAGE MAP(CSetExpParamDIlg, CDialog)
II{{AFX MSG MAP(CSetExpParamDIg)
ON_ BN _CLICKED(IDC_OLWITHFRCOMP2, OnOlwithfrcomp)
ON_ BN _CLICKED(IDC_OLWITHOUTFRCOMP, OnOlwithoutfrcomp)
ON BN CLICKED(IDC CL, OnCl)
ON_BN _CLICKED(IDC_STEP, OnStep)
ON_ BN _CLICKED(IDC_SINUSOIDAL, OnSinusoidal)
//}YAFX _MSG_MAP
END MESSAGE MAP()

T
/I CSetExpParamDIlg message handlers

void CSetExpParamDlg::OnOlwithfrcomp()

{
// TODO: Add your control notification handler code here
GetDlgltem(IDC_KP)->EnableWindow(TRUE);
GetDlgltem(IDC _KI)->EnableWindow(FALSE);

GetDlgltem(IDC KD)->EnableWindow(FALSE);
GetDlgltem(IDC KFR)->EnableWindow(TRUE);

void CSetExpParamDIlg::OnOlwithoutfrcomp()

{

// TODO: Add your control notification handler code here
GetDlgltem(IDC_KP)->EnableWindow(TRUE);
GetDlgltem(IDC_KI)->EnableWindow(FALSE);
GetDlgltem(IDC KD)->EnableWindow(FALSE);
GetDlgltem(IDC_KFR)->EnableWindow(FALSE);

void CSetExpParamDIg::OnCl()

{

// TODO: Add your control notification handler code here
GetDlgltem(IDC_KP)->EnableWindow(TRUE);
GetDlgltem(IDC _KI)->EnableWindow(TRUE);
GetDlgltem(IDC_KD)->EnableWindow(TRUE);
GetDlgltem(IDC_KFR)->EnableWindow(FALSE);

BOOL CSetExpParamDlg::OnlnitDialog()

{

CDialog::OnlnitDialog();

GetDlgltem(IDC_KP)->EnableWindow(TRUE);
GetDlgltem(IDC_KI)->EnableWindow(FALSE);
GetDlgltem(IDC_KD)->EnableWindow(FALSE);
GetDlgltem(IDC_KFR)->EnableWindow(FALSE);
GetDlgltem(IDC_FREQUENCY)->EnableWindow(FALSE);

return TRUE;

void CSetExpParamDIg::OnStep()

{
// TODO: Add your control notification handler code here
GetDlgltem(IDC_ AMPLITUDE)->EnableWindow(TRUE);
GetDlgltem(IDC_FREQUENCY)->EnableWindow(FALSE);
}

void CSetExpParamDIlg::OnSinusoidal()

{
// TODO: Add your control notification handler code here
GetDlgltem(IDC_AMPLITUDE)->EnableWindow(TRUE);
GetDlgltem(IDC_FREQUENCY)->EnableWindow(TRUE);

#if

!defined(AFX MYSOCKET H_ 0EB06560 86CC 11D6 BBA3 0010A4BF96E1 1
NCLUDED)

#define

AFX MYSOCKET H_ 0EB06560 86CC 11D6 BBA3 0010A4BF96E1 _INCLUD
ED

#if MSC_VER > 1000

#pragma once

#endif / MSC_VER > 1000

// MySocket.h : header file

//

T T
/I CMySocket command target

class CMySocket : public CAsyncSocket
{
/I Attributes

public:

// Operations
public:
CMySocket();
virtual ~CMySocket();

// Overrides
public:
void SetParent(CDialog* pWnd);
/I ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CMySocket)
//} yAFX_VIRTUAL

/I Generated message map functions
/I{{AFX_MSG(CMySocket)
// NOTE - the ClassWizard will add and remove member functions here.

//}}AFX_MSG

// Implementation

protected:
virtual void OnSend(int nErrorCode);
virtual void OnReceive(int nErrorCode);
virtual void OnClose(int nErrorCode);
virtual void OnConnect(int nErrorCode);
virtual void OnAccept(int nErrorCode);

private:

CDialog* m_pWnd;

T T

/I{{AFX_INSERT LOCATION}}
/I Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif //
!defined(AFX MYSOCKET H_ 0EB06560 86CC 11D6 BBA3 0010A4BF96E1 1
NCLUDED)

/I MySocket.cpp : implementation file
//

#include "stdafx.h"

#include "UserPC_GUI2.h"
#include "MySocket.h"
#include "UserPC_GUI2DIg.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS FILE[]= FILE ;
#endif

I
/I CMySocket

CMySocket::CMySocket()

{
}

CMySocket::~CMySocket()

{
}

// Do not edit the following lines, which are needed by ClassWizard.
#if 0
BEGIN MESSAGE MAP(CMySocket, CAsyncSocket)
II{{AFX_MSG_MAP(CMySocket)
//} yAFX_MSG_MAP
END MESSAGE MAP()
#endif // 0

T
/I CMySocket member functions

void CMySocket::SetParent(CDialog *pWnd)

{
m_pWnd = pWnd,

void CMySocket::OnAccept(int nErrorCode)

{
if (nErrorCode == 0)
{
((CUserPC_GUI2DIg*)m pWnd)->OnAccept();
}
}

void CMySocket::OnConnect(int nErrorCode)

{
if (nErrorCode == 0)
{
((CUserPC_GUI2DIg*)m pWnd)->OnConnect();
}
}

void CMySocket::OnClose(int nErrorCode)

{
if (nErrorCode == 0)
{
((CUserPC_GUI2DIg*)m_pWnd)->OnClose();
}
}

void CMySocket::OnReceive(int nErrorCode)
{

if (nErrorCode == 0)

{
((CUserPC_GUI2DIg*)m_pWnd)->OnReceive();

void CMySocket::OnSend(int nErrorCode)

{
if (nErrorCode == 0)
{
((CUserPC_GUI2DIg*)m_pWnd)->OnSend();
H

#if

!defined(AFX_MYRECEIVESOCKET H_ 94C02542 882B 11D6 BBA3 0010A4B
F96E1 INCLUDED)

#define

AFX MYRECEIVESOCKET H_94C02542 882B 11D6 BBA3 0010A4BF96E1
INCLUDED _

#if MSC_VER > 1000

#pragma once

#endif / MSC_VER > 1000

/ MyReceiveSocket.h : header file
//

T T
/I CMyReceiveSocket command target

class CMyReceiveSocket : public CAsyncSocket
{
/I Attributes

public:

/I Operations
public:
CMyReceiveSocket();
virtual ~CMyReceiveSocket();

// Overrides
public:
void SetParent(CDialog* pWnd);
/I ClassWizard generated virtual function overrides
/I{{AFX_VIRTUAL(CMyReceiveSocket)
//} yAFX_VIRTUAL

/I Generated message map functions
/I{{AFX_MSG(CMyReceiveSocket)
// NOTE - the ClassWizard will add and remove member functions here.

//}}AFX_MSG

// Implementation

protected:
virtual void OnSend(int nErrorCode);
virtual void OnReceive(int nErrorCode);
virtual void OnConnect(int nErrorCode);
virtual void OnClose(int nErrorCode);
virtual void OnAccept(int nErrorCode);

private:

CDialog* m_pWnd;

T T

/I{{AFX_INSERT LOCATION}}
/I Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif //
!defined(AFX MYRECEIVESOCKET H 94C02542 882B 11D6 BBA3 0010A4B
F96E1__INCLUDED)

/I MyReceiveSocket.cpp : implementation file
//

#include "stdafx.h"

#include "UserPC_GUI2.h"
#include "MyReceiveSocket.h"
#include "UserPC_GUI2DIg.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS FILE[]= FILE ;
#endif

I
/I CMyReceiveSocket

CMyReceiveSocket::CMyReceiveSocket()

{
}

CMyReceiveSocket::~CMyReceiveSocket()

{
}

// Do not edit the following lines, which are needed by ClassWizard.
#if 0
BEGIN MESSAGE MAP(CMyReceiveSocket, CAsyncSocket)
II{{AFX MSG MAP(CMyReceiveSocket)
//} yAFX_MSG_MAP
END MESSAGE MAP()
#endif // 0

T T

/I CMyReceiveSocket member functions

void CMyReceiveSocket::OnAccept(int nErrorCode)

{
if (nErrorCode == 0)
{
((CUserPC_GUI2DIg*)m_ pWnd)->OnAcceptRecSock();
}
}

void CMyReceiveSocket::OnClose(int nErrorCode)

{
if (nErrorCode == 0)
{
((CUserPC_GUI2DIg*)m_pWnd)->OnCloseRecSock();
}
}

void CMyReceiveSocket::OnConnect(int nErrorCode)

{
if (nErrorCode == 0)
{
((CUserPC_GUI2DIg*)m pWnd)->OnConnectRecSock();
}
}

void CMyReceiveSocket::OnReceive(int nErrorCode)

{
if (nErrorCode == 0)
{
((CUserPC_GUI2DIg*)m pWnd)->OnReceiveRecSock();
}

void CMyReceiveSocket::OnSend(int nErrorCode)

{
if (nErrorCode == 0)
{
((CUserPC_GUI2DIg*)m pWnd)->OnSendRecSock();
}
}

void CMyReceiveSocket::SetParent(CDialog *pWnd)

{
m_pWnd = pWnd,

// Cmd.h: interface for the CCmd class.
//
s

#if

!defined(AFX_CMD _H_F7C2A93D 842E 11D6 BBA3 0010A4BF96E1_INCLU
DED)

#define

AFX CMD H_F7C2A93D 842E 11D6 BBA3 0010A4BF96E1 INCLUDED

#if MSC_VER > 1000
#pragma once

#endif / _MSC_VER > 1000

class CCmd

{

public:
int cmdname; //'1 for SetExpParamsandStart
float argl; // Type of Controller : 1->OL without fr.c.
CCmd();

virtual ~CCmd();

#endif //
!defined(AFX_ CMD _H_F7C2A93D 842E 11D6 BBA3 0010A4BF96E1 INCLU
DED)

// Cmd.cpp: implementation of the CCmd class.
//
s

#include "stdafx.h"
#include "UserPC_GUI2.h"
#include "Cmd.h"

#ifdef DEBUG

#undef THIS FILE

static char THIS FILE[]=_ FILE ;
#define new DEBUG_NEW

#endif

I
// Construction/Destruction

T T

CCmd::CCmd()
{

CCmd::~CCmd()
{

// Fb.h: interface for the CFD class.
//
s

#if

!defined(AFX_FB H_94C02540 882B 11D6 BBA3 0010A4BF96E1 _INCLUDED
)

#define

AFX FB H 94C02540 882B 11D6 BBA3 0010A4BF96E1 INCLUDED

#if MSC_VER > 1000
#pragma once

#endif / MSC_VER > 1000

class CFb

{

public:
int fbname; /I ' 1-> status_of exp, 2-> response curve
float argl; // type_of controller
CFb();

virtual ~CFb();

#endif //
!defined(AFX_FB H_94C02540 882B 11D6 BBA3 0010A4BF96E1 _INCLUDED

)

/I Fb.cpp: implementation of the CFb class.
//
s

#include "stdafx.h"
#include "UserPC_GUI2.h"
#include "Fb.h"

#ifdef DEBUG

#undef THIS FILE

static char THIS FILE[]=_ FILE ;
#define new DEBUG_NEW

#endif

I
// Construction/Destruction

T T

CFb::CFb()
{

CFb::~CFDb()
{

// Task.h: interface for the CTask class.
//
s

#if

!defined(AFX_TASK H F7C2A93E 842E 11D6 BBA3 0010A4BF96E1_INCLU
DED)

#define

AFX TASK H F7C2A93E 842E 11D6 BBA3 0010A4BF96E1_INCLUDED _

#if MSC_VER > 1000
#pragma once

#endif / MSC_VER > 1000

#include "Cmd.h"

#include <afxtempl.h>

class CTask

{

public:
int TaskID;
int source;
int destination;
int priority;
int accessrank;
CArray<CCmd,CCmd> cmdlist;
CTask();
virtual ~CTask();

#endif //
!defined(AFX _TASK H F7C2A93E 842E 11D6 BBA3 0010A4BF96E1 INCLU
DED)

// Task.cpp: implementation of the CTask class.
//
s

#include "stdafx.h"
#include "UserPC_GUI2.h"
#include "Task.h"

#ifdef DEBUG

#undef THIS FILE

static char THIS FILE[]=_ FILE ;
#define new DEBUG_NEW

#endif

I
// Construction/Destruction

T T

CTask::CTask()
{

CTask::~CTask()
{

// Feedback.h: interface for the CFeedback class.
//
s

#if

!defined(AFX_FEEDBACK H_94C02541 882B 11D6 BBA3 0010A4BF96E1 IN
CLUDED)

#define

AFX FEEDBACK H 94C02541 882B 11D6 BBA3 0010A4BF96E1 INCLUDE
D

#if MSC_VER > 1000
#pragma once

#endif / _MSC_VER > 1000

#include "Fb.h"

#include <afxtempl.h>

class CFeedback
{
public:
int task accepted;
int priority;
int destination;
int source;
int FeedbackID;
CArray<CFb, CFb> fblist;
CFeedback();
virtual ~CFeedback();

#endif //
!defined(AFX FEEDBACK H 94C02541 882B 11D6 BBA3 0010A4BF96E1 IN
CLUDED)

/I Feedback.cpp: implementation of the CFeedback class.
//
s

#include "stdafx.h"
#include "UserPC_GUI2.h"
#include "Feedback.h"

#ifdef DEBUG

#undef THIS FILE

static char THIS FILE[]=_ FILE ;
#define new DEBUG_NEW

#endif

I
// Construction/Destruction

T T

CFeedback::CFeedback()
{

CFeedback::~CFeedback()
{

APPENDIX B
SOURCE CODE FOR SETUPPC

// iodnm1.h : main header file for the IODNM1 application
//

#if

!defined(AFX_IODNM1 H BIASODE4 87CB _11D6 8435 00010318EDFF__INCL
UDED)

#define

AFX IODNMI1 H BI1ASODE4 87CB 11D6 8435 00010318EDFF_INCLUDED

#if MSC_VER > 1000
#pragma once

#endif / MSC_VER > 1000

#ifndef AFXWIN H
#error include 'stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

T T
/I Clodnm1App:

/I See iodnm1.cpp for the implementation of this class
//

class Clodnm1App : public CWinApp
{
public:

Clodnm1App();

// Overrides
/I ClassWizard generated virtual function overrides
I1{{AFX_VIRTUAL(Clodnm1App)
public:
virtual BOOL InitInstance();

//}}AFX_VIRTUAL

// Implementation

I{{AFX_MSG(Clodnm1App)
// NOTE - the ClassWizard will add and remove member functions here.
/- DO NOT EDIT what you see in these blocks of generated code !

/1Y yAFX_MSG

DECLARE MESSAGE MAP()

T

//{{AFX_INSERT LOCATION}}

// Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif /
'defined(AFX_IODNM1_H_B1AS80DE4 87CB_11D6_ 8435 00010318EDFF__IN
CLUDED)

// iodnm1.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "iodnm1.h"

#include "iodnm1DIg.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS FILE[]= FILE ;
#endif

s
// Clodnm1App

BEGIN MESSAGE MAP(Clodnm1App, CWinApp)
I1{{AFX MSG MAP(Clodnm1App)
// NOTE - the ClassWizard will add and remove mapping macros here.
/- DO NOT EDIT what you see in these blocks of generated code!
11} YAFX MSG
ON_COMMAND(ID HELP, CWinApp::OnHelp)
END MESSAGE MAP()

T T
/I Clodnm1App construction

Clodnm1App::Clodnm1App()
{

// TODO: add construction code here,

// Place all significant initialization in InitInstance

T T

// ' The one and only Clodnm1App object

Clodnm1App theApp;

T
/I Clodnm1App initialization

BOOL Clodnm1App::InitInstance()

{
if (!AfxSocketlnit())
{
AfxMessageBox(IDP_SOCKETS INIT FAILED);
return FALSE;
}

AfxEnableControlContainer();

// Standard initialization
// If you are not using these features and wish to reduce the size
/I of your final executable, you should remove from the following

/I the specific initialization routines you do not need.

#ifdef AFXDLL

Enable3dControls(); // Call this when using MFC in a shared
DLL
#else

Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

Clodnm1Dlg dlg;
m_pMainWnd = &dlg;

int nResponse = dlg.DoModal();
if (nResponse == IDOK)

{

// TODO: Place code here to handle when the dialog is
/I dismissed with OK

}

else if (nResponse == IDCANCEL)

{
// TODO: Place code here to handle when the dialog is
/I dismissed with Cancel

}

/I Since the dialog has been closed, return FALSE so that we exit the
/I application, rather than start the application's message pump.

return FALSE;

// iodnm1DlIg.h : header file
//

#if

!defined(AFX IODNMIDLG H B1A8SODE6 87CB_11D6 8435 00010318EDFF I
NCLUDED)

#define

AFX IODNMIDLG H BIASODE6 87CB 11D6 8435 00010318EDFF_INCLUD
ED

#include "MySocket1.h" // Added by ClassView

#include "MySocket2.h" /I Added by ClassView

#include "Task.h" // Added by ClassView

#include "Cmd.h" /I Added by ClassView

#include "Feedback.h" /I Added by ClassView

#include "Fb.h" // Added by ClassView

#if MSC_VER > 1000

#pragma once

#rendif / MSC_VER > 1000

T
/I Clodnm1DIg dialog

class Clodnm1DIg : public CDialog

{

// Construction

public:
void OnReceiveSK2();
void OnSendSK2();
void OnCloseSK2();
void OnConnectSK2();
void OnAcceptSK2();
void OnReceiveSK1();
void OnSendSK1();

void OnCloseSK1();
void OnConnectSK1();
void OnAcceptSK1();

Clodnm1DIlg(CWnd* pParent = NULL);

// Dialog Data

/I{{AFX_DATA(Clodnm1Dlg)
enum { IDD =IDD IODNMI1_ DIALOG };

float
float
int

float
float
float
float
float
float
float

m_frequency;
m_duty;

m_irc;
m_kp;
m_ki;
m_kd;
m_freq of reference;
m_amplitude of ref;
m_totalexptime;

m_ew;

CString m_status;

//}}AFX_DATA

/I ClassWizard generated virtual function overrides

/I{{AFX_VIRTUAL(Clodnm1DIg)

protected:

virtual void DoDataExchange(CDataExchange* pDX);

support

//}}AFX_VIRTUAL

// Implementation

protected:

HICON m_hlcon,;

// Generated message map functions

//{{AFX_MSG(Clodnm1DIg)

// standard constructor

// DDX/DDV

private:

virtual BOOL OnlnitDialog();

afx_msg void OnSysCommand(UINT nID, LPARAM IParam)

afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDraglcon();

afx_msg void OnBupdate();
afx_msg void Onlnitializepwm();
afx_msg void OnBreadirc();
afx_msg void OnBstartpid();
afx_msg void OnBlisten();

/1Y yAFX _MSG

DECLARE MESSAGE MAP()

void SendCFeedback();
float m_kft;

void ApplyControl(int, int, float, float, float, float, float, float);

int m_reference_type;

int m_controller type;

CFb Applycmdandbuildfb(CCmd cmd]1);

int CheckSafe();

CFeedback m_setuppc Feedback;
void ApplyTaskandBuildFeedback();
CCmd m_ccmddefault;

CFb m_cfbdefault;

CTask m_setuppc_Task;

void ReceiveCTask();

CMySocket2 m sConnectSocketSK2;
CMySocket2 m_sListenSocketSK2;
CMySocket]l m_sConnectSocketSK1;
CMySocket] m_sListenSocketSK1;

void PlotResponseCurve();

//{{AFX_INSERT LOCATION}}

>

/I Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif //
!defined(AFX_IODNMIDLG H BI1A80DE6 87CB_11D6 8435 00010318EDFF 1

NCLUDED)

// iodnm1DIg.cpp : implementation file
//

#include "stdafx.h"
#include "iodnm1.h"
#include "iodnm1DIg.h"
#include "conio.h"
#include <afxtempl.h>

#include "math.h"

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS FILE[]=_FILE ;
#endif

#define BASE 0x300

CArray<float, float> temp_fblist;

void PWMbas(float frequency, float duty);
void InitializePWM();

void InitializeIRC();

int readIRC();

void resetIRC();

s
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog

{
public:

CAboutDlg();

// Dialog Data
/I{{AFX_DATA(CAboutDIg)
enum { IDD =IDD ABOUTBOX };
/1Y yAFX _DATA

/I ClassWizard generated virtual function overrides
/I{{AFX_VIRTUAL(CAboutDlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}yAFX_VIRTUAL

// Tmplementation

protected:
I1{{AFX_MSG(CAboutDlg)
/I}YAFX _MSG
DECLARE MESSAGE MAP()

CAboutDIg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
/I{{AFX_DATA INIT(CAboutDlg)
//}*AFX_DATA_INIT

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
CDialog::DoDataExchange(pDX);
/I{{AFX DATA_ MAP(CAboutDlg)
//}}AFX_DATA MAP

BEGIN MESSAGE MAP(CAboutDlg, CDialog)
II{{AFX_MSG_MAP(CAboutDlg)

// No message handlers
/I} }AFX_MSG_MAP
END MESSAGE MAP()

T
/I Clodnm1DlIg dialog

Clodnm1Dlg::Clodnm1DIg(CWnd* pParent /*=NULL*/)
: CDialog(Clodnm1Dlg::IDD, pParent)

/I{{AFX_DATA _ INIT(Clodnm1DIg)
m_frequency = 0.0f;

m_duty = 0.0f;

m_irc =0;

m_kp = 0.0f;

m_ki = 0.0f;

m_kd = 0.0f;

m_freq of reference = 0.0f;
m_amplitude of ref= 0.0f;
m_totalexptime = 0.0f;

m_ew = 0.0f;

m_status = T("");
//}*AFX_DATA_INIT

// Note that LoadIcon does not require a subsequent Destroylcon in Win32

m_hlcon = AfxGetApp()->Loadlcon(IDR_MAINFRAME);

void Clodnm1Dlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);

/I{{AFX_DATA_ MAP(Clodnm1Dlg)

DDX Text(pDX, IDC_EFREQ, m_frequency);

DDX Text(pDX, IDC_EDUTY, m_duty);

DDX Text(pDX, IDC IRC, m_irc);

DDX Text(pDX, IDC_EKP, m_kp);

DDX Text(pDX, IDC_EKI, m_ki);

DDX Text(pDX, IDC_EKD, m_kd);

DDX Text(pDX, IDC_EFREQUENCY, m_freq of reference);
DDX Text(pDX, IDC_EAMPLITUDE, m_amplitude of ref);
DDX Text(pDX, IDC_ETOTALEXPTIME, m_totalexptime);
DDX Text(pDX, IDC_EW, m_ew);

DDX Text(pDX, IDC_ESTATUS, m_status);

/I} }AFX_DATA MAP

BEGIN MESSAGE MAP(Clodnm1Dlg, CDialog)
I1{{AFX _MSG MAP(Clodnm1DIg)
ON_WM_SYSCOMMAND()
ON_WM PAINT()
ON_ WM QUERYDRAGICON()
ON_BN_CLICKED(IDC BUPDATE, OnBupdate)
ON_BN CLICKED(DC INITIALIZEPWM, Onlnitializepwm)
ON BN CLICKED(IDC BREADIRC, OnBreadirc)
ON_ BN CLICKED(IDC BSTARTPID, OnBstartpid)
ON_BN CLICKED(IDC BLISTEN, OnBlisten)
/1Y yAFX MSG_MAP

END MESSAGE MAP()

T T
/I Clodnm1DIg message handlers

BOOL Clodnm1DIg::OnInitDialog()
{
CDialog::OnlnitDialog();

// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.

ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)

{
CString strAboutMenu;
strAboutMenu.LoadString(IDS_ ABOUTBOX);
if (!strAboutMenu.IsEmpty())
{
pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX,
strAboutMenu);
h
}

/I Set the icon for this dialog. The framework does this automatically
/I when the application's main window is not a dialog
Setlcon(m_hlcon, TRUE); // Set big icon
Setlcon(m_hlcon, FALSE); // Set small icon

// TODO: Add extra initialization here
m_frequency = 20000;

m_duty = 0.5;

m_kp =21.8;

m ki=1.0;

m_kd =0.001;

m_amplitude of ref=50.0;
UpdateData(FALSE);

m_sListenSocketSK1.SetParent(this);
m_sConnectSocketSK1.SetParent(this);
m_sListenSocketSK?2.SetParent(this);
m_sConnectSocketSK2.SetParent(this);

m_ccmddefault.cmdname = 1;

m_ccmddefault.argl = 0;

return TRUE; // return TRUE unless you set the focus to a control

void Clodnm1Dlg::OnSysCommand(UINT nID, LPARAM I|Param)

{
if (nID & 0xFFF0) == IDM_ABOUTBOX)

{
CAboutDlg dlgAbout;
dlgAbout.DoModal();
b
else
{
CDialog::OnSysCommand(nID, [Param);
h

// If you add a minimize button to your dialog, you will need the code below
/I to draw the icon. For MFC applications using the document/view model,

// this is automatically done for you by the framework.

void Clodnm1Dlg::OnPaint()

{
if (IsIconic())

{

CPaintDC dc(this); / device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM)
dc.GetSafeHdc(), 0);

/I Center icon in client rectangle

int cxIcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(&rect);

int x = (rect. Width() - cxIcon + 1)/ 2;

int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon

dc.Drawlcon(x, y, m_hlcon);

else

CDialog::OnPaint();

// ' The system calls this to obtain the cursor to display while the user drags
//" the minimized window.
HCURSOR Clodnm1DIg::OnQueryDraglcon()

{
return (HCURSOR) m_hlcon;

void Clodnm1Dlg::OnBupdate()

{
// TODO: Add your control notification handler code here
UpdateData(TRUE);
PWMbas(m_frequency, m_duty);

}

void Clodnm1DIg::Onlnitializepwm()

{
// TODO: Add your control notification handler code here

InitializePWM();

PWMbas(20000, 0.5);
InitializeIRC();

void Clodnm1DIg::OnBreadirc()

{
// TODO: Add your control notification handler code here
m_irc = readIRC();
UpdateData(FALSE);
H
void InitializePWM()
{
_outp(BASE+1, OxFF); // master reset
_outp(BASE+1, 0x5F); // resets all counters loading 0x0000 from load
registers
_outp(BASE+1, 0x01); // select counterl mode register
_outp(BASE, 0x62); // select mode J duty cycle generator
_outp(BASE, 0x0B);
PWMbas(20000, 0.5);
_outp(BASE+1, 0x21); // arms counterl
H

void PWMbas(float frequency, float duty)

{
float LOADREGLO, LOADREGHI, HOLDREGLO, HOLDREGHLI;
double load, hold;
float F1 = 2¢7;

load = (duty*F1)/frequency;
hold = (F1/frequency)*(1-duty);

LOADREGLO = (int)load % 256;
LOADREGHI = ((int)load / 256);

HOLDREGLO = (int)hold % 256;
HOLDREGHI = ((int)hold / 256);

_outp(BASE+1, 0x09); // select counterl load register
_outp(BASE, LOADREGLO);
_outp(BASE, LOADREGHI);

_outp(BASE+1, 0x11); // select counterl hold register
_outp(BASE, HOLDREGLO);
_outp(BASE, HOLDREGHI);

_outp(BASE+1, 0x41); // loads and arms counterl
}
void InitializeIRC()
{

_outp(BASE+0x11, 0x01); // reset BP

_outp(BASE+0x10, 0); //PRO=0

_outp(BASE+0x11, 0x18); //PRO ->PSC
_outp(BASE+0x11, 0x01); // reset BP
_outp(BASE+0x10, 0x00); // reset PR
_outp(BASE+0x10, 0x00);
_outp(BASE+0x10, 0x00);
_outp(BASE+0x11, 0x08); // PR -> CNTR
_outp(BASE+0x11, 0x38); //CMR

_outp(BASE+0x11, 0x41); //IOR
_outp(BASE+0x11, 0x65); //IDR

}

int readIRC()

{
int irc=0;
_outp(BASE+0x11, 0x11); //CNTR -> OL, reset BP
irc = _inp(BASE+0x10);
irct=_inp(BASE+0x10)<<S8;
irct=_inp(BASE+0x10)<<16;
return(irc);

h

void resetIRC()

{
_outp(BASE+0x11, 0x01); // reset BP
_outp(BASE+0x10, 0x00); // reset PR
_outp(BASE+0x10, 0x00);
_outp(BASE+0x10, 0x00);
_outp(BASE+0x11, 0x08); // PR ->CNTR

h

void Clodnm1DIlg::OnBstartpid()

{
// TODO: Add your control notification handler code here
UpdateData(TRUE);

clock t prevtime,newtime, prevtime long, newtime long;
float elapsedtime=0, elapsedtime long=0;
float w=0, wp=0, wac=0, wacp=0, wref = 0;

float e=0, ep=0, et=0, ed=0;

int number of samples=0;

float experiment_total time = 5.0; // in seconds
float experiment _sampling_time = 0.01; // in seconds

number_of samples = experiment total time / experiment sampling time;

float ppr = 3600;

float pulse to w_coef=0;

float Kp=0, Ki=0, Kd=0;
float u=0.0;

int i=0;

long 11=0;

temp_fblist. RemoveAll();
temp_fblist.FreeExtra();

UpdateData(TRUE);

wref =m_amplitude of ref;

Kp=m kp;
Ki=m_ki;
Kd=m_kd;

pulse to w_coef = ((1/ppr)/experiment_sampling time)*6.28;

InitializePWM();
InitializeIRC();

prevtime long = clock();
for (i=0; i<number of samples; i++)
{
/I SAMPLING CLOCK //
for (11=0; 11<1600000; i1++)

2

/I end of sampling clock //*/

// READING W //
w = readIRC();
wac = w - wp;
wac = pulse to w_coef*wac;
if (wac>90)
wac = wacp;
if (wac<-90)
wac = wacp;
Wp=W;

wacp = wac,;

temp_fblist. Add(wac);
// end of reading w //

// CALCULATING ERROR //
e = wref - wac;

et = et + e*experiment sampling time;
ed = (e - ep)/experiment _sampling_time;

ep =e¢;

// end of calculating error //

// PID CONTROLLER //
u=Kp*e + Ki*et + Kd*ed;
/h=0.9;

// end of PID controller //

u=-1;

u= (u+l)/2,

if (u>1)

if (u<0)

u=0;

PWMbas(20000.0, u);

newtime long = clock();

elapsedtime long = (double)(newtime long-
prevtime long)/CLOCKS PER SEC;

m_totalexptime = elapsedtime long;

UpdateData(FALSE);

PWMbas(20000, 0.5);

PlotResponseCurve();

void Clodnm1DIlg::PlotResponseCurve()

{
this->RedrawWindow();

int 1=0, 11=0;
float n=0.0;
CClientDC dc(this);

int number of sample points = 500;

CPoint initial point;

initial point.x = 40;
initial point.y = 550;
dc.MoveTo(initial point.x, initial point.y);

CPen IPenBlackWide(PS_SOLID, 2, RGB(0,0,0));
dc.SelectObject(&1PenBlackWide);
dc.MoveTo(initial point.x ,initial point.y);
dc.LineTo(550+initial point.x,initial point.y);
dc.MoveTo(initial point.x ,initial point.y);
dc.LineTo(initial point.x ,initial point.y - 260);

dc.TextOut(initial point.x +100 ,initial point.y+2, "1");
dc.TextOut(initial point.x +200 ,initial point.y+2, "2");
dc.TextOut(initial point.x +300 ,initial point.y+2, "3");
dc.TextOut(initial point.x +400 ,initial point.y+2, "4");
dc.TextOut(initial point.x +500 ,initial point.y+2, "5");

dc.TextOut(initial point.x +550 ,initial point.y+2, "time in secs");

dc.TextOut(initial point.x -35 ,initial point.y-50-10, "20");
dc.TextOut(initial point.x -35 ,initial point.y-100-10, "40");
dc.TextOut(initial point.x -35 ,initial point.y-150-10, "60");
dc.TextOut(initial point.x -35 ,initial point.y-200-10, "80");
dc.TextOut(initial point.x -35 ,initial point.y-250-10, "100");
dc.TextOut(initial point.x -35 ,initial point.y-280-10, "w in rad/secs");

CPen 1PenGrid(PS_DOT, 1, RGB(0,0,0));
dc.SelectObject(&1PenGrid);
for (11=0; 11<56; i11++)
{
dc.MoveTo(initial point.x +10*i1 ,initial point.y);
dc.LineTo(initial point.x +10*il ,initial point.y-260);
}
for (11=0; 11<27; i1++)
{

dc.MoveTo(initial point.x ,initial point.y -10*i1);
dc.LineTo(initial point.x +550 ,initial point.y -10*11);

CPen IPenBlack(PS_SOLID, 1, RGB(0,0,0));
dc.SelectObject(&1PenBlack);
for (11=0; 11<6; 11++)

{
dc.MoveTo(initial point.x +550 ,initial point.y -50*i1);
dc.LineTo(initial point.x -10 ,initial point.y -50*i1);
}
for (11=0; 11<6; 11++)
{
dc.MoveTo(initial point.x + 100*i1,initial point.y +5);
dc.LineTo(initial point.x + 100*i1 ,initial point.y -260);
}

/11111l end of 1nitialization of the plot ///////////////

// DRAWING THE REFERENCE AND RESPONSE CURVES //////
CPen 1PenBlue(PS_SOLID, 2, RGB(0,0,255));
dc.SelectObject(&1PenBlue);

for (11=0; 11<499; i1++)
{
n=il;
dc.MoveTo(initial point.x +il ,initial point.y -
2.5*%temp_fblist.ElementAt(il));
dc.LineTo(initial point.x +il+1 ,initial point.y -
2.5*temp_fblist.ElementAt(il+1));
h

CPen IPenRed(PS_SOLID, 2, RGB(255,0,0));
dc.SelectObject(&IPenRed);

for (11=0; 11<499; 11++)
{
n=il;
dc.MoveTo(initial point.x +il ,initial point.y -
2.5*m_amplitude of ref);
dc.LineTo(initial point.x +il1+1 ,initial point.y -
2.5*m_amplitude of ref);
}

/I end of drawing the reference and response curves //

void Clodnm1DIg::OnAcceptSK1()

{
m_sListenSocketSK1.Accept(m_sConnectSocketSK1);
m_status = "OnAcceptSK1";
UpdateData(FALSE);

H

void Clodnm1Dlg::OnConnectSK1()
{

void Clodnm1DIg::OnCloseSK1()

{
m_sConnectSocketSK1.Close();
m_status = "OnCloseSK1";
UpdateData(FALSE);

H

void Clodnm1Dlg::OnSendSK1()
{

void Clodnm1Dlg::OnReceiveSK1()

{
ReceiveCTask();
ApplyTaskandBuildFeedback();
SendCFeedback();

}

void Clodnm1DIg::OnAcceptSK2()

{
m_sListenSocketSK2.Accept(m_sConnectSocketSK?2);
m_status = "OnAcceptSK2";
UpdateData(FALSE);

}

void Clodnm1DIg::OnConnectSK2()
{

void Clodnm1DIg::OnCloseSK2()

{
m_sConnectSocketSK2.Close();
m_status = "OnCloseSK2";
UpdateData(FALSE);

H

void Clodnm1DIg::OnSendSK2()
{

void Clodnm1Dlg::OnReceiveSK2()

void Clodnm1DIg::OnBlisten()

{

// TODO: Add your control notification handler code here
m_sListenSocketSK1.Create(4000);
m_sListenSocketSK1.Listen();

m_sListenSocketSK2.Create(4001);
m_sListenSocketSK2.Listen();

void Clodnm1DIg::ReceiveCTask()

{

int iRcvd;

int number of commands;

CCmd tmpemd = m_cemddefault;
CCmd *tempcmd = &tmpemd,
int tmpint = 1;

int *temptaskvariables = &tmpint;

// receiving the taskid
do

{

iRcvd = m_sConnectSocketSK 1.Receive(temptaskvariables,

sizeof(*temptaskvariables));

+ while (iRcvd == SOCKET ERROR);
m_setuppc Task.TaskID = (*temptaskvariables);

// receiving the tasksource

do
{

iRcvd = m_sConnectSocketSK 1.Receive(temptaskvariables,
sizeof(*temptaskvariables));
+ while (iRcvd == SOCKET ERROR);

m_setuppc_Task.source = (*temptaskvariables);

// receiving the taskdestination
do
{

iRcvd = m_sConnectSocketSK 1.Receive(temptaskvariables,

sizeof(*temptaskvariables));
+ while (iRcvd == SOCKET ERROR);

m_setuppc_Task.destination = (*temptaskvariables);

// receiving the taskpriority

do
{

iRcvd = m_sConnectSocketSK 1.Receive(temptaskvariables,

sizeof(*temptaskvariables));
+ while (iRcvd == SOCKET ERROR);

m_setuppc_Task.priority = (*temptaskvariables);

// receiving the taskaccessrank
do
{

iRcvd = m_sConnectSocketSK1.Receive(temptaskvariables,

sizeof(*temptaskvariables));
} while (iRcvd == SOCKET ERROR);

m_setuppc Task.accessrank = (*temptaskvariables);

// receiving the number of commands
do
{

iRcvd = m_sConnectSocketSK1.Receive(temptaskvariables,

sizeof(*temptaskvariables));

} while (iRevd == SOCKET ERROR);

number of commands = *temptaskvariables;

// receiving the commands

for (int k=1; k<number of commands+1; k++)

{
do
{
iRcvd = m_sConnectSocketSK1.Receive(tempemd,
sizeof(*tempcmd));

} while (iRcvd == SOCKET ERROR);
m_setuppc Task.cmdlist.SetAtGrow(k-1, *tempcmd);

H
m_status = "RECEIVED!!!!";
UpdateData(FALSE);

void Clodnm1DIg::ApplyTaskandBuildFeedback()
{

int i=0;

int size=0;

CCmd cmd;

m_setuppc Feedback.FeedbackID = m_setuppc Task.TaskID;
be changed

m_setuppc Feedback.source = m_setuppc Task.destination;
be changed

m_setuppc_Feedback.destination = m_setuppc_Task.source;

m_setuppc_Feedback.priority = m_setuppc_Task.priority;

m_setuppc Feedback.task accepted = CheckSafe();

if (CheckSafe() ==1)

{

size = m_setuppc_Task.cmdlist.GetSize();

for (1i=0; 1<size; i++)

// this must

// this must

/I Applycmdandbuildfb
cmd = m_setuppc_Task.cmdlist.ElementAt(i);
Applycmdandbuildfb(cmd);

int Clodnm1DIg::CheckSafe()
{

return 1; // if task is safe else return 0

CFb Clodnm1Dlg:: Applycmdandbuildfb(CCmd cmd1)
{
CFb fb;
fb.fbname=0;
tb.arg1=0;
int controller type=0, reference type=0;
float Kp=0,Ki=0,Kd=0,K{r=0,amplitude=0,frequency=0;
switch (cmd1.cmdname)
{
case 1:
m_controller type = cmdl.argl;
break;
case 2:
m_reference type = cmdl.argl;
break;
case 3:
m_kp =cmdl.argl;
break;
case 4:
m_ki=cmdl.argl;

break;

case 5:
m_kd =cmdl.argl;
break;
case 6:
m_kfr =cmd]l.argl;
break;
case 7:
m_amplitude of ref=cmdl.argl;
break;
case 8:
m_freq of reference = cmdl.argl;
break;
case 9:
ApplyControl(m_controller type, m reference type, m kp, m ki, m kd,
m_kfr, m_amplitude of ref, m freq of reference);
break;
default:
break;
}

return fb;

void Clodnm1DIg::ApplyControl(int c_type, int r_type, float kp, float ki, float kd, float
kfr, float a, float f)
{

float w=0, wp=0, wac=0, wacp=0;

float e=0, ep=0, et=0, ed=0;

int number of samples=0;
float experiment_total time = 5.0; // in seconds
float experiment _sampling time = 0.01; // in seconds

number_of samples = experiment total time / experiment sampling time;

float ppr = 3600;

float pulse to w_coef=0;

float Kp=0, Ki=0, Kd=0, Kfr=0;
float u=0.0;

int i=0;
long 11=0;
int 12=0;

CFb 1b;

CArray<float, float> wref;

temp_fblist. RemoveAll();
temp_fblist.FreeExtra();
m_setuppc_Feedback.fblist. RemoveAll();
m_setuppc_Feedback.fblist.FreeExtra();

if (r_type ==0)
{
for (12=0; i2<number_of samples; i2++)
{
wref.Add(a);
}
}
if (r_type==1)
{
for (12=0; i2<number of samples; i2++)
{
wref. Add(a*sin(f*6.28*experiment _sampling_time));
h
h
Kp = kp;

Ki=ki;

Kd =kd;
Kfr = kfr;

pulse to w_coef = ((1/ppr)/experiment_sampling time)*6.28;

InitializePWM();
InitializeIRC();

for (i=0; i<number of samples; i++)
{
// SAMPLING CLOCK //
for (11=0; 11<2000000; i1++)

/I end of sampling clock //*/

// READING W //
w = readIRC();
wac = w - wp;
wac = pulse to w_coef*wac;
if (wac>90)
wac = wacp;
if (wac<-90)
wac = wacp;
Wp =W;

wacp = wac;

fb.fbname = 9;

fb.argl = wac;
m_setuppc_Feedback.fblist. Add(fb);
// end of reading w //

// CALCULATING ERROR //
e = wref.ElementAt(i) - wac;

et = et + e*experiment sampling time;

ed = (e - ep)/experiment _sampling_time;
ep =e¢;

// end of calculating error //

// PID CONTROLLER //
if (c_type == 0)
{
u = Kp*wref.ElementAt(i);
H
if (c_type==1)
{
u = Kp*wref.ElementAt(i)+Kfr;
H
if (c_type ==2)
{
u = Kp*e + Ki*et + Kd*ed;
H
// end of PID controller //

u=-u;

if (u>1)
u=1;
if (u<-1)

u=-1;
u=(ut+l)/2;
if (u>1)

u=1;
if (u<0)

u=0;

PWMbas(20000.0, u);

PWMbas(20000, 0.5);

void Clodnm1DIg::SendCFeedback()

{

int iSent;

CFb tmpfb = m_cfbdefault;
CFb *temptb = &tmpftb;
int tmpint = 1;

int *tempfeedbackvariables = &tmpint;

// sending the feedbackid
*tempfeedbackvariables = m_setuppc Feedback.FeedbackID;
do

{

iSent = m_sConnectSocketSK2.Send(tempfeedbackvariables,

sizeof(*tempfeedbackvariables));

} while (iSent == SOCKET ERROR);

// sending the feedbacksource

*tempfeedbackvariables = m_setuppc Feedback.source;
do

{

iSent = m_sConnectSocketSK2.Send(tempfeedbackvariables,

sizeof(*tempfeedbackvariables));

+ while (iSent == SOCKET_ ERROR);

// sending the taskdestination
*tempfeedbackvariables = m_setuppc Feedback.destination;

do
{

iSent = m_sConnectSocketSK2.Send(tempfeedbackvariables,

sizeof(*tempfeedbackvariables));

+ while (iSent == SOCKET_ ERROR);

// sending the taskpriority
*tempfeedbackvariables = m_setuppc Feedback.priority;

do
{

iSent = m_sConnectSocketSK2.Send(tempfeedbackvariables,

sizeof(*tempfeedbackvariables));

+ while (iSent == SOCKET_ ERROR);

// sending the taskaccessrank

*tempfeedbackvariables = m_setuppc Feedback.task accepted;
do
{

iSent = m_sConnectSocketSK2.Send(tempfeedbackvariables,

sizeof(*tempfeedbackvariables));

+ while (iSent == SOCKET_ ERROR);

// sending the number of commands

*tempfeedbackvariables = m_setuppc Feedback.fblist.GetSize();
do
{

iSent = m_sConnectSocketSK2.Send(tempfeedbackvariables,

sizeof(*tempfeedbackvariables));

} while (iSent == SOCKET ERROR);

// sending the commands
for (int k=1; k<m_setuppc Feedback.tblist.GetSize()+1 ; k++)
{

*tempfb = m_setuppc_Feedback.fblist. GetAt(k-1);

do

{

iSent = m_sConnectSocketSK2.Send(tempftb, sizeof(*temptb));
}+ while (iSent == SOCKET_ERROR);

#if

!defined(AFX_MYSOCKET1 H 51411EA6 8966 11D6 8435 00010318EDFF I
NCLUDED)

#define

AFX MYSOCKET1 H 51411EA6 8966 11D6 8435 00010318EDFF__ INCLUDE
D

#if MSC_VER > 1000
#pragma once

#endif / MSC_VER > 1000
// MySocketl.h : header file
//

T T
/I CMySocket] command target

class CMySocketl : public CAsyncSocket
{
/I Attributes

public:

// Operations
public:
CMySocket1();
virtual ~CMySocket1();

// Overrides
public:
void SetParent(CDialog* pWnd);
/I ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CMySocket1)
//} yAFX_VIRTUAL

/I Generated message map functions
II{{AFX_MSG(CMySocketl)
// NOTE - the ClassWizard will add and remove member functions here.

//}}AFX_MSG

// Implementation

protected:
virtual void OnReceive(int nErrorCode);
virtual void OnSend(int nErrorCode);
virtual void OnClose(int nErrorCode);
virtual void OnConnect(int nErrorCode);
virtual void OnAccept(int nErrorCode);

private:

CDialog* m_pWnd;

T T

/I{{AFX_INSERT LOCATION}}
/I Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif //
!defined(AFX MYSOCKETI H 51411EA6 8966 11D6 8435 00010318EDFF 1
NCLUDED)

// MySocketl.cpp : implementation file
//

#include "stdafx.h"
#include "iodnm1.h"
#include "MySocket1.h"
#include "iodnm1DIlg.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS FILE[]= FILE ;
#endif

I
// CMySocketl

CMySocketl::CMySocket1()

{
}

CMySocketl::~CMySocket1()

{
}

// Do not edit the following lines, which are needed by ClassWizard.
#if 0
BEGIN MESSAGE MAP(CMySocketl, CAsyncSocket)
II{{AFX_MSG_MAP(CMySocketl)
//} }AFX_MSG_MAP
END MESSAGE MAP()
#endif // 0

T
/I CMySocket] member functions

void CMySocketl::SetParent(CDialog *pWnd)

{
m_pWnd = pWnd,

void CMySocket]::OnAccept(int nErrorCode)

{
if (nErrorCode == 0)
{
((Clodnm1DIlg*)m_pWnd)->OnAcceptSK1();
}
}

void CMySocket]::OnConnect(int nErrorCode)
{
if (nErrorCode == 0)

{
((Clodnm1DIlg*)m_pWnd)->OnConnectSK1();

void CMySocket1::0OnClose(int nErrorCode)

{
if (nErrorCode == 0)
{
((Clodnm1DIlg*)m_pWnd)->OnCloseSK1();
}
}

void CMySocket1::OnSend(int nErrorCode)
{

if (nErrorCode == 0)

{
((Clodnm1DIg*)m_pWnd)->OnSendSK1();

void CMySocketl::OnReceive(int nErrorCode)
{
if (nErrorCode == 0)

{
((Clodnm1DIg*)m_pWnd)->OnReceiveSK1();

#if

!defined(AFX_ MYSOCKET2 H 51411EA8 8966 11D6 8435 00010318EDFF I
NCLUDED)

#define

AFX MYSOCKET2 H 51411EA8 8966 11D6 8435 00010318EDFF__ INCLUDE
D

#if MSC_VER > 1000
#pragma once

#endif / MSC_VER > 1000
// MySocket2.h : header file
//

T T
/I CMySocket2 command target

class CMySocket?2 : public CAsyncSocket
{
/I Attributes

public:

// Operations
public:
CMySocket2();
virtual ~CMySocket2();

// Overrides
public:
void SetParent(CDialog* pWnd);
/I ClassWizard generated virtual function overrides
/I{{AFX_VIRTUAL(CMySocket2)
//} yAFX_VIRTUAL

/I Generated message map functions
II{{AFX_MSG(CMySocket2)
// NOTE - the ClassWizard will add and remove member functions here.

//}}AFX_MSG

// Implementation

protected:
virtual void OnReceive(int nErrorCode);
virtual void OnSend(int nErrorCode);
virtual void OnClose(int nErrorCode);
virtual void OnConnect(int nErrorCode);
virtual void OnAccept(int nErrorCode);

private:

CDialog* m_pWnd;

T T

/I{{AFX_INSERT LOCATION}}
/I Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif //
!defined(AFX MYSOCKET2 H 51411EA8 8966 11D6 8435 00010318EDFF 1
NCLUDED)

/l MySocket2.cpp : implementation file
//

#include "stdafx.h"
#include "iodnm1.h"
#include "MySocket2.h"
#include "iodnm1Dlg.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS FILE[]= FILE ;
#endif

I
/I CMySocket2

CMySocket2::CMySocket2()

{
}

CMySocket2::~CMySocket2()

{
}

// Do not edit the following lines, which are needed by ClassWizard.
#if 0
BEGIN MESSAGE MAP(CMySocket2, CAsyncSocket)
II{{AFX_MSG_MAP(CMySocket2)
//} yAFX_MSG_MAP
END MESSAGE MAP()
#endif // 0

T
/I CMySocket2 member functions

void CMySocket2::SetParent(CDialog *pWnd)

{
m_pWnd = pWnd,

void CMySocket2::0OnAccept(int nErrorCode)

{
if (nErrorCode == 0)
{
((Clodnm1DIlg*)m_pWnd)->OnAcceptSK2();
}
}

void CMySocket2::0OnConnect(int nErrorCode)
{
if (nErrorCode == 0)

{
((Clodnm1DIlg*)m_pWnd)->OnConnectSK2();

void CMySocket2::0nClose(int nErrorCode)

{
if (nErrorCode == 0)
{
((Clodnm1DIlg*)m_pWnd)->OnCloseSK2();
}
}

void CMySocket2::0OnSend(int nErrorCode)
{

if (nErrorCode == 0)

{
((Clodnm1DIg*)m pWnd)->OnSendSK2();

void CMySocket2::OnReceive(int nErrorCode)
{
if (nErrorCode == 0)

{
((Clodnm1DIg*)m pWnd)->OnReceiveSK2();

// Cmd.h: interface for the CCmd class.
//
s

#if

!defined(AFX_ CMD _H_51411EA9 8966 11D6 8435 00010318EDFF__ INCLUDE
D)

#define

AFX CMD H_51411EA9 8966 11D6 8435 00010318EDFF__INCLUDED _

#if MSC_VER > 1000
#pragma once

#endif / MSC_VER > 1000

class CCmd

{

public:
int cmdname;
float argl;
CCmd();
virtual ~CCmd();

#endif //
!defined(AFX_ CMD _H_51411EA9 8966 11D6 8435 00010318EDFF__ INCLUDE
D)

// Cmd.cpp: implementation of the CCmd class.
//
s

#include "stdafx.h"
#include "iodnm1.h"

#include "Cmd.h"

#ifdef DEBUG

#undef THIS FILE

static char THIS FILE[]=_ FILE ;
#define new DEBUG_NEW

#endif

I
// Construction/Destruction

T T

CCmd::CCmd()
{

CCmd::~CCmd()
{

// Fb.h: interface for the CFD class.
//
s

#f
!defined(AFX FB H 51411EAA 8966 11D6 8435 00010318EDFF INCLUDED

2
#define AFX FB H 51411EAA 8966 11D6 8435 00010318EDFF INCLUDED

#if MSC_VER > 1000
#pragma once

#endif / MSC_VER > 1000

class CFb

{

public:
int fbname;
float argl;
CFb();
virtual ~CFb();

#endif //
!defined(AFX FB H 51411EAA 8966 11D6 8435 00010318EDFF _INCLUDED

)

/I Fb.cpp: implementation of the CFb class.
//
s

#include "stdafx.h"
#include "iodnm1.h"

#include "Fb.h"

#ifdef DEBUG

#undef THIS FILE

static char THIS FILE[]=_ FILE ;
#define new DEBUG_NEW

#endif

I
// Construction/Destruction

T T

CFb::CFb()
{

CFb::~CFDb()
{

// Task.h: interface for the CTask class.
//
s

#if

!defined(AFX_TASK H 51411EAB 8966 11D6 8435 00010318EDFF __INCLUD
ED)

#define

AFX TASK H_ 51411EAB 8966 11D6 8435 00010318EDFF _INCLUDED _

#if MSC_VER > 1000
#pragma once

#endif / MSC_VER > 1000

#include <afxtempl.h>

#include "Cmd.h"

class CTask

{

public:
int accessrank;
int priority;
int destination;
int source;
int TaskID;
CTask();
virtual ~CTask();
CArray<CCmd, CCmd> cmdlist;

#endif //
!defined(AFX TASK H 51411EAB 8966 11D6 8435 00010318EDFF__ INCLUD
ED)

// Task.cpp: implementation of the CTask class.
//
s

#include "stdafx.h"
#include "iodnm1.h"

#include "Task.h"

#ifdef DEBUG

#undef THIS FILE

static char THIS FILE[]=_ FILE ;
#define new DEBUG_NEW

#endif

I
// Construction/Destruction

T T

CTask::CTask()
{

CTask::~CTask()
{

// Feedback.h: interface for the CFeedback class.
//
s

#if

!defined(AFX_FEEDBACK H 51411EAC 8966 11D6 8435 00010318EDFF__IN
CLUDED)

#define

AFX FEEDBACK H 51411EAC 8966 11D6 8435 00010318EDFF__ INCLUDED

#if MSC_VER > 1000
#pragma once

#endif / _MSC_VER > 1000

#include <afxtempl.h>

#include "Fb.h"

class CFeedback
{
public:
int task accepted;
int priority;
int destination;
int source;
int FeedbackID;
CArray<CFb, CFb> fblist;
CFeedback();
virtual ~CFeedback();

#endif //
!defined(AFX FEEDBACK H_51411EAC 8966 11D6 8435 00010318EDFF__IN
CLUDED)

/I Feedback.cpp: implementation of the CFeedback class.
//
s

#include "stdafx.h"
#include "iodnm1.h"

#include "Feedback.h"

#ifdef DEBUG

#undef THIS FILE

static char THIS FILE[]=_ FILE ;
#define new DEBUG_NEW

#endif

I
// Construction/Destruction

T T

CFeedback::CFeedback()
{

CFeedback::~CFeedback()
{

REFERENCES

[1] http://www.ece.cmu.edu/~stancil/virtual-lab/concept.html

[2] Distance Learning Applied to Control Engineering Laboratories, Bur¢in Aktan,
Carisa A. Bohus, Lawrence A. Crowl, and Molly H. Shor, IEEE Transactions on
Education, Vol 39, No. 3, August 1996, 320-326

[3] Simulation workshop and remote laboratory: two web-based training approaches
for Control, M. Exel, S. Gentil, F. Michau and D. Rey, Proceedings of the American
Control Conference, Chicago, Illinois, June 2000

[4] A Measurement Laboratory on Geographic Network for Remote Test
Experiments, P. Arpaia, A. Baccigalupi, F. Cennamo, P. Daponte, IEEE Instrumentation
and Measurement Technology Conference, St. Paul, Minnesota (USA), May 18-21,
1998

[5] An Internet-Based Real-Time Control Engineering Laboratory, Jamahl W.
Overstreet, Antony Tzes, IEEE Control Systems, October 1999, 19-34

[6] Remote Laboratory Experimentation, Mohammed Shaheen, Kenneth A. Loparo
and Marcus R. Buchner, Proceedings of the American Control Conference,

Philadelphia, Pennsylvania, June 1998

	Spring 2002
	ABSTRACT
	ÖZET

	Dedicated to my family, Baris, Naciye and Halim
	and to the spirit of Asimov.
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	Page
	CHAPTER 1 : INTRODUCTION….…………………………….…………….….1
	CHAPTER 2 : SYSTEM DESCRIPTION………………………………………19
	CHAPTER 3 : PLANTS……………………………………………….…………46
	CHAPTER 4 : EXPERIMENTAL RESULTS…………………..……………...49
	CHAPTER 5 : CONCLUSION AND FUTURE WORK……………………….56
	APPENDIX A : SOURCE CODE FOR USERPC………………………………59
	APPENDIX B : SOURCE CODE FOR SETUPPC……………………………..112
	REFERENCES…………………………………….……………………………...169

	LIST OF FIGURES
	1.2.2 TCP/IP
	1.2.3 Programming with Sockets
	Using the MFC Winsock Classes
	1.3 Multithreaded Programming
	1.3.1 What is multithreading?
	
	
	Thread Scheduling and States of a Thread
	Thread environment
	1.3.2 Why is multi-threading used?
	Why is multi-threading preferred in this study?
	1.3.3 Thread Synchronisation
	Why?

	Critical Section
	Event

	CHAPTER 2
	Task						Feedback
	Task.cmdlist					Feedback.fblist
	Fig. 2.3.1 Software Structure of SetupPC
	Once a Task object is received by a SetupPC, first it must be saved in the TaskList object array. This is done by SSIT1. SSIT1 receives Task object from ServerPC through SK1 and writes it to TaskList. The main thread in SetupPC is PAT, which controls the
	SetBusyFlag :

	Fig. 2.3.2 Software Structure of ServerPC
	Fig. 2.3.3 Software Structure of UserPC
	SetBusyFlag :

	CHAPTER 3
	PLANTS
	CHAPTER 4
	EXPERIMENTAL RESULTS
	CHAPTER 5
	CONCLUSION AND FUTURE WORK
	APPENDIX A
	REFERENCES

