1074

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.5, NO.8, AUGUST 2006

Quarantine Region Scheme to Mitigate Spam
Attacks in Wireless Sensor Networks

Vedat Coskun, Member, IEEE, Erdal Cayirci, Senior Member, IEEE,
Albert Levi, Member, IEEE, and Serdar Sancak

Abstract—The Quarantine Region Scheme (QRS) is introduced to defend against spam attacks in wireless sensor networks where
malicious antinodes frequently generate dummy spam messages to be relayed toward the sink. The aim of the attacker is the
exhaustion of the sensor node batteries and the extra delay caused by processing the spam messages. Network-wide message
authentication may solve this problem with a cost of cryptographic operations to be performed over all messages. QRS is designed to
reduce this cost by applying authentication only whenever and wherever necessary. In QRS, the nodes that detect a nearby spam
attack assume themselves to be in a quarantine region. This detection is performed by intermittent authentication checks. Once
quarantined, a node continuously applies authentication measures until the spam attack ceases. In the QRS scheme, there is a trade-
off between the resilience against spam attacks and the number of authentications. Our experiments show that, in the worst-case
scenario that we considered, a not quarantined node catches 80 percent of the spam messages by authenticating only 50 percent of all

messages that it processes.

Index Terms—Network-level security and protection, wireless sensor networks, authentication, quarantine region, spam attacks.

1 INTRODUCTION

IRELESS sensor networks are rapidly deployable,

flexible, and self-organizing systems that incur low
deployment and maintenance cost and, therefore, they have
many application areas, such as military, environmental,
health, home, etc. In many of these application areas,
security is one of the key challenges. When a sensor
network is reachable, sensor nodes can be collected or
destroyed by the enemy. The wireless sensor networks that
we focus on in this paper are the ones deployed in regions
not accessible for the opponent. The examples for such
networks are given in [1]: monitoring friendly forces,
equipment, and ammunition (MFFEA) and nuclear, biolo-
gical, and chemical (NBC) attack detection. For example, in
MFFEA application, sensor nodes are deployed among the
friendly troops in friendly regions and, therefore, they are
not physically accessible by the enemy. Moreover, since this
network is widely deployed, there is not an effective way to
burn or disable them by electro magnetic pulse (EMP) type
attacks. However, in this case, some malicious nodes can be
deployed inside the sensor network and they can set several
attacks against the sensor network. Karlof and Wagner [2]

e V. Coskun is with the Department of Information Technologies, ISIK
University, Sile 34980, Istanbul, Turkey.
E-mail: vedatcoskun@isikun.edu.tr.

e E. Cayirci is with the Electrical and Computer Engineering Department,
University of Stavanger, N-4036 Stavanger, Norway.
E-mail: erdal.cayirci@genetlab.com.

o A. Levi is with the Faculty of Engineering and Natural Sciences, Sabanci
University, Orhanli, Tuzla 34956 Istanbul, Turkey.
E-mail: levi@sabanciuniv.edu.

e S. Sancak is with the Naval Science and Engineering Institute, Turkish
Naval Academy, Deniz Harp Okulu, Tuzla 34942 Istanbul, Turkey.
E-mail: ssancak@dho.edu.tr.

Manuscript received 30 Dec. 2004; revised 7 May 2005; accepted 10 May
2005; published online June 15 2006.

For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0356-1204.

1536-1233/06/$20.00 © 2006 IEEE

give a detailed list of such attacks, such as selective
forwarding, sinkhole, wormhole, and Sybil attacks. Denial
of Service (DoS) is another kind of attack, where the basic
aim is to restrain the nodes to function properly. DoS
attacks on sensor networks are extensively analyzed by
Wood and Stankovic in [3].

In this paper, we focus on a kind of a DoS attack, the so-
called spam attack, which can be carried out by the hostile
nodes called antinodes. In this attack, antinodes deployed
inside sensor networks frequently generate unsolicited
spam messages. These spam messages are relayed by the
sensor nodes toward the sink. In this way, antinodes cause
the sensor nodes to use up their battery unnecessarily. If
such a spam attack continues, sensor nodes, especially the
ones close to the sink, fail sooner than their natural lifetime
due to energy depletion. In other words, antinodes fight
against legitimate sensor nodes in the sensor field, so we
can say that this attack is a kind of war between sensor
nodes and antinodes.

In this paper, we introduce the quarantine region scheme
(QRS) to defend against spamming antinodes. In QRS,
continuous security measures are taken temporarily and
only in the quarantine regions, which are the regions that
confine all the quarantined nodes. Not quarantined nodes
perform message authentication intermittently in order to
catch possible spam. When a node comes across a spam
message, it declares itself as quarantined.

Our scheme reduces the overhead for security compar-
ing to other possible schemes that always take security
measures for every node. We performed a mix of analytical
and simulation techniques for the performance evaluation
of QRS. Once quarantined, a node always eliminates spam.
Our analysis shows that, even in the worst case, where the
antinode coverage area is almost the whole network, a not
quarantined node can catch 80 percent of the spam
messages by authenticating only 50 percent of all messages.

Published by the IEEE CS, CASS, ComSoc, IES, & SPS

COSKUN ET AL.: QUARANTINE REGION SCHEME TO MITIGATE SPAM ATTACKS IN WIRELESS SENSOR NETWORKS

The remainder of this paper is organized as follows: In
Section 2, we introduce QRS and explain its design details,
including formation of quarantine regions, message struc-
ture, and authentication mechanisms. A discussion on
possible attacks and countermeasures on QRS is also given
there. The performance of QRS is analytically evaluated in
Section 3, where we analyze two performance metrics for
QRS: the resilience of a not quarantined node against
attacks and the quarantine gain of a not quarantined node
during an attack. In Section 4, we give the numerical results
from our experiments. Section 5 discusses related works.
Section 6 concludes our paper.

2 QUARANTINE REGION SCHEME

Spam attacks aim to neutralize the targeted wireless sensor
network by using antinodes scattered randomly inside the
network. Antinodes, which are much smaller in number as
compared to the number of sensor nodes in the network, set
spam attacks by generating frequent unsolicited dummy
messages and broadcasting them to the neighboring nodes.
Hence, they increase the data traffic conveyed in the
network. In sensor networks, all data generated by the
sensor nodes are forwarded to a central node, i.e., the sink,
which collects the sensed data from sensor nodes and then
relays them to the users or external networks [1]. The nodes
closer to the sink have to relay more messages than the other
nodes. Therefore, nodes closer to the sink are expected to fail
earlier than the other sensor nodes in the network due to
energy depletion. This causes the sink to be disconnected
from the sensor network. If the attack continues, other
sensor nodes exhaust their batteries as well.

Antinodes may be fixed or mobile. They can use fixed
local identification values or change their identifications as
frequently as they need. It is relatively easier to develop a
procedure to refuse the messages produced by a fixed
antinode than a mobile antinode. For example, after
detecting a spam attack, prohibiting the sensor with that
identification value from sending any other messages to the
network could be an easy solution, but only if we can make
sure that the antinodes do not change their identifications.
However, we do not think that this will be a common case.
Therefore, in this paper, we focus on the counter-measures
against mobile antinodes that change their local identifica-
tions continuously, which is a more challenging problem.

QRS has been designed for the cases where there is
continuous struggle between antinodes and legitimate
sensor nodes. Thus, sensor nodes are always alerted in
order to sense any possible spam attempt around them-
selves (but are not always quarantined, consequently,
message authentication is performed only whenever neces-
sary). QRS is designed under the assumption that no central
node (e.g., sink) is responsible for detecting the existence of
a spam attack in the sensor field. Instead, each node detects
whether or not there is a spam attack occurring in its
neighborhood (i.e., within its transmission range). In this
respect, QRS is a distributed scheme, which complies with
the general architecture of sensor networks phenomenon.

One may argue that a more centralized approach, where
the sink detects a spam attack in the network and broad-
casts an alarm message in order to let the nodes start

1075

checking local spamming antinodes, would be more
efficient since the spam detection by sensor nodes is
performed only when they are alarmed by sink. Although
sensor nodes seem to spend fewer resources for spam
detection in such a centralized approach, there exist some
disadvantages as well. These disadvantages are listed
below:

e A centralized spam detection mechanism requires
the sink to correlate spamming behaviors of indivi-
dual nodes in the network. Such a correlation
imposes the need for network-level time synchroni-
zation among the central sink and other nodes.
However, in our distributed design, there is no need
to have such network-level synchronization among
the nodes and the sink since spam detection is
always performed locally.

e In order to centrally decide about the existence of a
spam attack, several spam messages are to be
relayed up to the central sink, thus causing
unnecessary resource consumption and delay in
the network. However, the proposed distributed
design helps to attain quicker response to spam
attacks since the spam attacks are to be detected at
their source.

e In the centralized approach, the sink should send out
broadcast messages to start and cancel spam alarms.
These messages may be engineered by intelligent
antinodes so that they cease attack just after the alarm
message and immediately continue just after the
cancellation message. In this way, they create
periodic spam pulses in the sensor network. Since
no broadcast “alarm start” and “alarm cancel”
messages are needed in our distributed approach,
such antinode manipulations in the system are
eliminated.

In this section, we explain the details of proposed
distributed spam detection, defense, and quarantine region
formation mechanisms.

2.1 Formation of Quarantine Regions

In QRS, a quarantined set of nodes and quarantine regions
are determined dynamically by using a distributed
approach. Each sensor node decides whether it should be
quarantined or not on its own by intermittently checking
authentication failures in its transmission range. The
duration of authentication checks is a random variable
defined as a system parameter as described in the rest of
this section. The complete algorithm of forming a quar-
antine region is shown in Fig. 1.

Not quarantined nodes have two different modes of
operation in two alternating periods: 1) In check the status
periods, nodes check spam activities, 2) in keep the status
periods, nodes do not perform any spam check.

A sensor node does not relay unauthenticated messages
during the check the status period t.. If it receives an
unauthenticated message during ¢,, it first requests authen-
tication from the last hop node of the message. If the last
hop node fails on authentication, it indicates that the last
hop node may be an antinode, therefore the node changes
its status to be quarantined. The notion of a quarantine

1076

function main()
generate_random(7.)
reset (timer.)

period = check the status
status = not_quarantined
in_buffer zone = false

while (node is active)
check local alarm and buffer zone status()
if (status == not_quarantined)
if (period ==keep_the_status)
if (timery > 1)
period = check_the_status
generate_random(7.)
reset (timer.)
else // (period == check_the_status)
if (timer,>1t.)
period =keep_the_status
generate_random(#)
if (in_buffer zone == true)
t =t * s // s is keep the status factor
reset (timery)
if (unauthenticated message m is received from node)
request authentication of m from n
if (‘authentication of m is unsuccesful)
status = quarantined
generate_random(#)
reset (timery)
period ==keep_the_status
if (no local alarm is sent in the last £ * # period)
broadcast_local_alarm(d')
else // (status == quarantined) and (period == keep_the status)
if (m is received from)
if (m is not authenticated)
request authentication of m from »
if (authentication of m is unsuccesful)
reset (timery)
if (timery > t)
status = not_quarantined
generate_random(z.)
reset (timer.)
period = check the status
end // main

function check local alarm and buffer zone status()
if (local alarm is received with depth d)
generate_random(£,)
reset (timer.)
status = not quarantined
period = check the status
if (d> 1) and (no local alarm is sent in the last & * # period)
broadcast_local alarm(d- 1)
in_buffer zone = true
if (in_buffer_zone) and (time since last local alarm sent > k * #,)
in_buffer zone = false
end // check local alarm and buffer zone status

Fig. 1. Quarantine region algorithm.

region is exemplified in Fig. 2. A quarantine region is
basically an abstract region where the transmissions of the
antinode may be received. This region has an amorphous
shape due to the unpredictable propagation environment.
The nodes in the quarantine region are the ones that capture
the antinode’s spam messages during their t..

An example sensor field is shown in Fig. 3, where a
quarantine region is indicated by the gray area. Nodes 3, 4,
7,8, and an antinode are in the quarantine region, therefore
they have to send and can only relay authenticated
messages. Nodes outside the quarantine regions do not
need authentication to transmit a message even if the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.5, NO.8, AUGUST 2006

quarantine
region

quarantined
node

not quarantined
node

antinode

quarantine
region

quarantined
node

not quarantined
node

antinode

Fig. 3. A sample sensor network and a quarantine region.

te) a2 tko te3

é
* < >] |
P A <« >
| Y

not quarantined quarantined

Fig. 4. Timings for the quarantine periods.

message was an originally authenticated message coming
from a quarantine region, unless their messages go through
a quarantine region. For example, if node 11 receives and
authenticated messages from node 7 or 8§, it transmits the
message unauthenticated towards the sink since that node
is not in a quarantine region. On the other hand, if a node in
a quarantine region (node 3 in the example) receives an
unauthenticated message from a node outside of the
quarantine region (node 1 or node 2), it first requests
authentication from the corresponding node and relays the
data packets only after successful authentication.

QRS is a dynamic scheme where sensor nodes periodi-
cally check the validity of their status. If a node does not
detect a failure in authentication during the check the status
period t,, its status will become not quarantined. The node
stays in keep the status period for ¢, and starts another check
the status period after t;. If the node detects any authentica-
tion failure in the check the status period t., it changes its
status to quarantined. This is depicted at point a in Fig. 4,
where the node detects an authentication failure and starts a
quarantined period. A node starts another keep the status
period from the very beginning when it detects another
authentication failure while in the keep the status period. The
node exits the quarantined mode and enters into the check
the status period only if it does not detect any authentication
failure during a continuous keep the status period.

Both t. and t;, (i.e., te > temin, tk > timin, te € BT, t, € RT)
are random variables selected for each period, i.e., t. and ¢
may be different for every check the status and keep the status
periods. Sensor nodes determine these values according to

COSKUN ET AL.: QUARANTINE REGION SCHEME TO MITIGATE SPAM ATTACKS IN WIRELESS SENSOR NETWORKS

@ (b)

Fig. 5. The change in the boundaries of a quarantine region. (a) Before
displacement. (b) After displacement.

the system defined mean values, distribution functions, and
temin, tkmin- Since antinodes may be mobile or the propaga-
tion environment may change temporarily, this dynamic
approach is needed.

This procedure and how it changes the location of a
quarantine region dynamically is explained by using the
illustrative example in Fig. 5. In this example, nodes q, b, ¢,
d, and e independently and asynchronously find out that
there is a node within their transmission range that cannot
be successfully authenticated by the end of their ¢, as shown
in Fig. 5a. Therefore, they become quarantined. Nodes f
and g are not in the transmission range of the antinode;
therefore, they do not detect any authentication failure
during their ¢, and become not quarantined. As shown in
Fig. 5b, the antinode moves to a new location which
changes its coverage area such that it includes the locations
of nodes f and g. Since nodes f and g start a check the status
period after every keep the status period t;, they find out that
they are in the coverage of an antinode in the first check the
status period. On the other hand, when nodes a, b, and c do
not detect any authentication failure for a whole keep the
status period t;, they change their status to not quarantined.

Spam messages may get through a node during its keep
the status period when it is not quarantined. Local alarms are
used to minimize the effects of the spam messages that can
access the network due to this reason. A node that detects
an authentication failure disseminates a local alarm to its
d hop neighbors by calling the broadcast_local_alarm
function where d is called the local alarm depth. As soon as
anode receives a local alarm, it starts a check the status period.
By using a local alarm mechanism, the nodes become more
alerted and the period that an unsolicited message can get
through from a node becomes limited. Local alarm
processing is shown in Fig. 1.

Once a node sends a local alarm, it should not send
another local alarm for k x t;, period even if it receives some
other spam messages, where k is the local alarm factor,
k € R'. This is done in order not to flood the network with
local alarms. An example is depicted in Fig. 6, which shows
the timings of local alarms by a node under attack. The
node sends a local alarm at point a where it detects an
unsolicited message for the first time. Then, it waits at least
k x t;, before sending another local alarm. During this

1077
te 5% t kxtg
b - i A
) T . | |]
€ 1 —
a b ¢ d e

quarantine
region
O quarantined

node

O not quarantined
node

. antinode

buffer
O sne

Fig. 7. Buffer zone.

period, it neither generates local alarms for the detected
spam messages nor relays the local alarm messages of the
other nodes. For example, at points b, ¢, and d, it detects
other unsolicited messages but does not send any local
alarms for them. After k x ¢;, period, it disseminates another
local alarm after the detection of the unsolicited message at
Point e.

By local alarms, a buffer zone around the quarantine
region is created, as shown in Fig. 7. The nodes in a buffer
zone are still not quarantined, but are more alert than the
nodes that are in a not quarantined region. The node in the
buffer zone runs the same algorithm as a not quarantined
node. It only shortens the keep the status period by
multiplying it with the keep the status factor s, where
0 < s < 1. A node starts a check the status period as soon
as it receives a local alarm, which implies that the node is in
the buffer zone of a quarantine region. If it does not receive
another local alarm during & x ¢;, the node assumes that it
is not in the buffer zone anymore. The algorithm for buffer
zone processing is shown in Fig. 1.

The QRS scheme can also tackle with the antinodes that
have long transmission range. This kind of antinode can
attempt to attack the entire sensor network from a distance.
Our scheme is independent of the location and the
transmission range of the antinode. Since the antinode
cannot authenticate, its messages are not relayed by the
sensor nodes no matter where it is broadcasting its spam
messages. In QRS, only the nodes that can receive the
transmissions of the antinode carry out the authentication,
while the others do not. If there is a node hidden to the
antinode due to any reason, it accepts unauthenticated
messages even if the antinode transmits with a high power
from a long distance because the node does not receive the
messages of the antinode. Therefore, the overhead of the
authentication is incurred only for the nodes in the coverage
area of the antinodes.

2.2 Authentication in a Quarantine Region and
Message Format

Authentication in QRS must be simple enough to fit the

stringent constraints of tiny sensors. Therefore, we choose

1078

source | source
id location

last hop
node id

last hop node
location

sequence
p
number

authentication

sensed data M
code

Fig. 8. Authenticated message structure (*: not needed in unauthenti-
cated messages).

message authentication based on cryptographic hash func-
tions. We use the standard HMAC (hash-based message
authentication code) mechanism [4], [5] for this purpose.
HMAC uses a cryptographic one-way hash function, such
as MD5 [6]. The sender and the receiver share a secret key,
K. The message authentication code of the message M is
calculated as,

HMAC = H(K @ opad||H(K @ ipad||M)),

where @ is the bitwise “exclusive OR” operation, H is the
underlying one-way hash function, and ipad and opad are
two constants defined in [4], [5].

Power consumption of the HMAC algorithm is an
important issue for its usage in sensor networks. We
analyzed power consumption for Berkeley Motes [7].
Berkeley motes consume 1 pJ for transmitting and 0.5 uJ
for receiving a single bit, while the CPU executes 208 cycles
(roughly 100 instructions) with 0.8 pJ [8]. We have
implemented the HMAC algorithm in C and assembled
it using AVR Studio [9]. We have observed that the
HMAC algorithm consumes approximately 45.6 pJ when
it is run on a Berkeley mote. This indicates that the
overhead of the authentication code generation is equal to
approximately 20 percent of the transmission cost for an
average QRS packet.

The message fields required for QRS are shown in Fig. 8.
Source id is the local identification of the source node that
generates the sensed data. Last hop node id is the identification
of the last node that relays the message. Every node that
relays a message replaces the latter field with its identifica-
tion. The last hop node id is the same as the source id when the
message is initially transmitted by the source node. Sensed
data is the payload of the message.

The source location and Last hope node location fields
include the location information according to a coordinate
system for the corresponding nodes. Location awareness is
generally a requirement and a key point for sensor
networks in order to make the data meaningful. Sensor
data without location information is accepted to become
almost useless, as discussed in [1], [10]. For example, a
target detection data is almost meaningless without a
location is associated with it. In [1], it has been argued that
an ideal sensor network should have attribute-based
addressing and location awareness. The possibility of being
equipped with a location finding system, together with the
requirement of having a highly accurate knowledge of the
location of most of the sensor network routing techniques
and sensing tasks are also addressed in the same paper.
There are various GPS-based, beacon-based, and beaconless
location estimation schemes [11], [12], [13] applicable to the
tactical sensor networks. Therefore, it is reasonable to
assume that the sensor nodes know their location. While
GPS may not be used in all sensor networks because of the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.5, NO.8, AUGUST 2006

]
Sender i Receive
: K
]
]
]
! —— | HMAC
M M L M
|
]
l ac| t |ac| |
! . compare
K HMAC h compare with
. the last SN I
]
]

M: Message, SN: Sequence number, K: Key, AC: Authentication code

Fig. 9. Message authentication in QRS.

financial cost [14], other solutions are analyzed in many
papers. One solution is offered in [15], where current
location sensing technologies, accuracy and precision, scale,
cost, and limitations of the techniques are also listed. As
localization information is widely used in sensor networks,
especially deployed untethered in hostile environments,
many attacks have been worked on to prevent processing
trustworthy location information. Lazos and Poovendran
[16] proposed robust statistical methods to make localiza-
tion attack-tolerant. Fang et al. [17] proposed a security-
aware, range-independent localization scheme.

The sequence number and authentication code fields are
added to the message structure in order to support
authentication and prevent certain attacks that will be
discussed later. The sequence number field identifies out-
going messages. The authentication code is the calculated
HMAC value. These two fields are needed only in
authenticated messages; they are not part of the message
structure for normal unauthenticated messages.

Please note that these are the fields needed for QRS,
which is independent of the transport, network, and
medium access layer protocols.

In QRS, we do not focus on key management and key
distribution issues. If the network is in a physically
inaccessible region and the node compromise is not an
issue, then the sensors are equipped with the same secret
key K before deployment. If node compromise is consid-
ered as a threat, having a single key would cause a problem.
In such a case, one of the pairwise key distribution
mechanisms [18], [19], [20], [21], [22] described in the
literature can be used. These mechanisms also provide
resistance against node compromise.

When a sender has a message to send, it first generates
the authentication code using the HMAC algorithm and the
key, K. The message over which HMAC is to be calculated
contains the source id, last hop node id, sequence number, and
sensed data fields. The sequence number is incremented for
every outgoing message. After the composition, the
authenticated message is transmitted. Any node that should
relay this message generates the authentication code by using
the same algorithm, message, and key. If the value
calculated at the end of this process is not equal to the
value with the authentication code field of the incoming
message, the message is discarded. Otherwise, the message
is accepted. This mechanism is depicted in Fig. 9.

COSKUN ET AL.: QUARANTINE REGION SCHEME TO MITIGATE SPAM ATTACKS IN WIRELESS SENSOR NETWORKS

To facilitate the implementation of HMAC in the sensor
nodes, (K @ opad) and (K & ipad) can be precomputed, as
offered in [4] and [5]. This implementation is more efficient,
especially when the message is short. As discussed in [23],
sensor nodes use small messages (approximately 30 bytes).
Thus, this implementation is suitable for QRS.

2.3 More Arguments

QRS thwarts possible replay attacks of antinodes using the
sequence numbers. Every sensor node has a counter to be
used for sequence numbers in outgoing messages. It begins
with zero and is incremented by one for each message.
Thus, the sequence number of a message created or relayed
by a sensor node should be greater than that of every
message sent or relayed by the same node before. Each
sensor node keeps the last sequence number obtained from
each of its neighboring nodes. The freshness of each
received message is checked by comparing the sequence
number of the received message with the last sequence
number of the last hop node id of that message that is kept
locally. If the received message has a higher sequence number
and the authentication code is verified, then it is concluded
that the message is not a replay and is authentic. Such a
message is accepted for relaying and the locally kept last
sequence number is updated accordingly. Relaying nodes do
not accept a message with a sequence number, which is equal
or less than the preceding ones. In such a case, the relaying
node asks for the authentication code of the same message but
with the expected sequence number. If the last node cannot
regenerate this authentication code, then the message is not
authenticated.

We assume that the sequence number is long enough
that it never repeats within the lifetime of a node. This is an
acceptable assumption which also exists in SPINS [23].
Please note that a node needs authentication only for the
messages sent when it is in quarantined status and every
node generates its own sequence number, i.e., a sequence
number can be reused by the other nodes.

One may argue that the authentication codes created by a
sensor node, which is hidden to another node, node,, can be
exploited by antinodes. Since those authenticated messages
are not received by node,, the antinodes can record and
later resend them to it. node, accepts those replays as valid
and relays them. However, antinodes can never reach to a
significant spam rate by using any of these techniques
because they need to keep pace with the other nodes to use
the authentication codes generated by them.

Attackers may collect authenticated and genuine mes-
sages from several parts of the network and transfer them to
some antinodes in other parts of the network via wormholes
[24]. Tt may be argued that, in this way, antinodes can
enable authentication but still perform spam by sending
authenticated messages generated in other parts of net-
works. Sequence numbers help to mitigate such attacks to
some extent, but do not solve this problem in its entirety
because antinodes may use messages originally generated
by nodes that have not sent messages in that region before.
In such a case, sensor nodes think that a new node has just
moved within its coverage area. Fortunately, last hop node
location information stored in messages helps to thwart such
replay attacks. Whenever a message is to be authenticated,

1079

besides MAC verification and sequence number checks, the
recipient node also checks if the location of the last hop
node is in its coverage area. If the last hop is close enough to
the recipient, then the recipient concludes that the message
has not been sent out from a distant location. However, the
messages used in this attack should originally come from
other parts of the network, so they should bear distant
location information because, otherwise, the replay attack
would become a local one and the recipient would easily
spot the attack by checking the sequence numbers as
described above. As a side note, readers should notice that
antinodes are not capable of changing the last hop node
location field within the authenticated messages used in the
attack because such an attempt would cause nonverifia-
bility of the MACs in the authenticated messages.

3 PERFORMANCE METRICS

QRS reduces the number of nodes that need authentication
when transferring or relaying a data packet, i.e.,, quaran-
tined nodes. It also limits the time period for authentication
such that quarantined nodes can become not quarantined
when they are out of the range of any antinode. Therefore,
the overhead of the security measures decreases. We call
this reduction in the cost of data security “quarantine gain” .
However, a malicious message generated by an antinode
may access the sensor network through a sensor node
before the sensor node detects that it is in the quarantine
region. As the quarantine gain v decreases, the probability
that a malicious message is detected by a not quarantined
node, i.e., the “resilience against an attack” 6, increases. Both
quarantine gain ~ and resilience 6 are dependent on QRS
parameters such as “check the status” period t., “keep the
status” period tj, antinode range, and the malicious message
generation rate. We analyze this relationship in this section
analytically.

3.1 Average Quarantine Gain

Nodes do not need to authenticate during keep the status
period t;, if they are not quarantined. Therefore, the average
quarantine gain -y is the ratio of ¢; to the sum of ¢, and check
the status period t.. Both t. and t; are random variables and
the distributions and average values for these variables are
selected by the system designers. We prefer uniform
distribution for generating these variables because it is
easier and computationally more efficient to generate
random numbers according to uniform distribution com-
paring to other continuous distributions. If we assume that
check the status and keep the status periods are uniformly
distributed between t.in, timin and tenes, temaee, then the
average quarantine gain vy is

temax Thmax ;

k
temin

Lhmin

where

1

(tk max tk min)(tu max

v = :
t(’, Inin)

1080
w
— A —
o o o o
o o Oo (o] o o
%o~ © o %°%o © © o 50O
o o Oo Oooo o o
o o Oo o o]
o ©°L 02 5 o° 9o bt oo h
[e} OO o o O ©O%o %o o o
o o © © O o o o
°o o ° ° o © o°
o o
o o o
o [elNe] o o o o o O
(0,0)

Fig. 10. Sensor network coordinate system.

3.2 Average Resilience against an Attack
The resilience 6 of a not quarantined node can be given by

6=1-=Dpu, (2)

where p, is the probability that a malicious message is not
detected by a not quarantined node and can be found out by

p11:p¢XAX7a (3)

where pj is the probability that the not quarantined node is in
the range r of the antinode, A is the malicious message
generation rate of the antinode, and v is the quarantine gain.
The locations in a sensor field can be defined by using a
grid coordinate system, as shown in Fig. 10. In this
coordinate system, a sensor field is the smallest rectangle
that covers all the sensor nodes. The location of the
bottommost and leftmost corner of this rectangle is given
as 0 in the X axis and 0 in the Y axis, i.e., from south to north.
The width w of the sensor field is the distance between its
east and west edges and the height h is the distance
between the south and north edges. By using this
coordinate system, the probability that a sensor node is in

the range of an antinode can be given as
)

where z,, and y, are the x and y coordinates of the sensor
node, z. and y. are the x and y coordinates of the antinode,
and r is the transmission range of the antinode.

Although the transmission range may not be the same at
each direction due to the unpredictable propagation
environment, we assume that the antinode has a perfect
circular coverage. This is the worst-case scenario for the
QRS scheme. In real life, some nodes may be hidden from
an antinode even if they are in the transmission range of the
antinode. Hence, they will not be quarantined. This will be
an additional gain for QRS.

We calculate ps; in two steps: First, we compute the
probability density functions (pdf) of X =z, — 2, and
Y =y, — y.; then, we compute the pdf of Z = /(X% +Y?).

At the first step, by substituting z. =z, — X and
Ye = yYn — Y, we find

ps = P (\/(xn *xe)z + (Un *ye)z <

fX(x): / fX,,X(,(xnaxn_m)dxea

fY(y): / f’ﬁyn(ymyn_y)dye-

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.5, NO.8, AUGUST 2006

Since z,, Z., yn, and y. are independent random variables,

o0

fx(x) = / F () . (@ — 2)d,
e (6)
fr(y) = / P) . (9 — 9)dlye.

At the second step, to formulate the pdf of Z, an auxiliary
random variable W, as W = X, is introduced. This will
enable us to use the general formula of finding fzy by
using two functions of two random variables with n real
roots, given below:

J;

faw(z,w) = i: Fxy (i, y:) | i) (7)

The equations
Z—-\VX2+Y?2=0,
W-X=0

have two real roots, for |w| < z, namely,

N =w T2=W (9)
n=vVZ-u? yp=—VZ—uw?

At both roots,

J ‘ has the same value:
z
V22—t

Since X and Y are independent random variables, a direct

- - o

application of (4) yields
z

fzw(zw) = Jr—

We get fx(z) and fy(y) in (6), so we can find Fy(r)

[Fx(@n) fy (yn) + fx(@e) fr (ye)l. (1)

f2) = | fawtzwidu, (12)
P, = Fy(r) = / Fo(2)dz. (13)
0

Equation (13) gives the probability that a sensor node in the
range of an antinode can be extended for the Gaussian
distribution, where =x,, ., v, and y. are distributed
according to N(0,03), N(0,02), N(0,0), and N(0,0.),
respectively, and the Gaussian distribution is centered at
the center of the sensor field.

o0

1 z

f(2) = @\/ﬁe

—00

27942
z/Qde

(14)
i —2%/20° 2

z
dw)
Za Y e
0

COSKUN ET AL.: QUARANTINE REGION SCHEME TO MITIGATE SPAM ATTACKS IN WIRELESS SENSOR NETWORKS 1081

Since the term in parentheses has value 7n/2, Z = resilience &
V(X2 +7Y2), f.(2) is the Rayleigh density function where 1'|
the standard deviation o is
_ 0,996
o a5
0 Oy, — Ty,
0,992 1
T
z _.2 2
Py = Fy(r) = /ge 2120 (). (16)
0 0,988 -
Equation (13) can also be extended for uniform random 0.1
. 04
variables X, (0, w), Xe(0,w), Yu(0,4), and Y.(0,), where w 09841 quarantine
and h are the width and height of the sensor field, 01 o3 Yo f gainy
’ 0,7
respectively. If we solve (11) for these random variables, malicious message 0.9
generation rate A
we get
. Fig. 11. Resilience versus malicious message generation rate and
Trt+w
f u%an _ u;;:r,’ —w<z S 0 quarantine gain.
fX(fE) = (')LL ? (17) . . . 2 2
1 _w-z if we substitute v with v = 2* — t*, so dv becomes dv =
Jdx, =", 0<z<w . . .
T —2wdw and, by solving the integrals, since z>0 and
lw| < z, we get:
y+h N
[ds, =5 —h<y<0 f2(2) =
_ 0 z
fr(y) = b - : (18) (,?—j [arcsind] [+ 2 [— 22— tQ})U(z)ﬁwSrSOﬁhS,USh
'h2dy,_h727 0<y§h 2 ,
Y (% [arcsin ﬂg— % [—\/ 22— tZ]O)u(z),—wgzgn,—hgygh

The same steps are followed from (13) to (15) and then

(23)
fx(x1), fx(x2), fy(y1), and fy(y2) are substituted in (16).
__Z [2G+2u(z), —w<az<0,~h<y<h
Tl = = fZ(Z)‘{Tz@ﬁ)u(z), Cw<r<0-h<y<hf
() (=0 + (5 (=), —w <2 < 0,-h <y <0 (24)

(=% (
() (A==t (it (et <2 < 0,0<y < h The probability that a sensor node is in the range r of an
t t

T : G J tinode b :
(1) ,L_\gr_?) n %)(,L+\{L§7:§)70 <r<w0<y<h antinode becomes
w—t\ (h+Vz2—t? w—t\ (h—V2z22—t2 A
o + (&% : O<z<w,-h<y<0
D ’ Ro= 1) = [s (25)
(19)
0
z
Z,t iy ———— ol 3
far(zt) = == Po_{m2 o, w§x§0,h§y§h} 26)
¢ ik 2 :
FE+d) —w<e<0,-h<y<h (20) B~ e 0SeSw—h<y<h
(%) G- w) 0<z<w-h<y<h By using (16) or (26), we can extend (3) and then (2), which
. - gives the average resilience 6 against an attack for a not
where z > 0,]t| < z conditions must be satisfied. quarantined node.
[o.¢]
fal2) = | far(zt)dt, (21) 4 THE EXPERIMENTAL RESULTS
—00

In this section, the performance of QRS in the percentage of
authenticated data packets, i.e., quarantine gain ~, and the

) = percentage of spam packets that cannot access the network,
% j dt u(z) + 2z j tdt u(z),~w<z<0,~h<y<h ie., resilience 6, is evaluated both by the mathematical
W Vet W Vet o T models in Section 3 and through simulation.
z z The resilience 6 of the QRS found out by (2) is depicted in
2 [u() — i [Hu(z), —w <2 < 0,~h <y <h y @)l dep
w o V2 ¢ A1 o VA ¢

Figs. 11 and 12 for various antinode transmission range r,
malicious message generation rate A, and quarantine gain +.
In Fig. 11, the value of antinode transmission range r is 10

1082
resilience &
10
e
0,
\‘-‘\.
08 .
o .
-
T, »
x.
07 =, F'Y
.‘. "
s -
~,
' "
0,6

L 55 60
antinode range r

Fig. 12. Resilience versus antinode range and quarantine gain.

and the sensor field size is 100 both in height h and width w.
In this case, more than 3 percent of the sensor nodes receive
the transmissions created by the antinode when sensor
nodes are deployed according to Uniform distribution. In
Fig. 12, the sensitivity of resilience against the antinode
transmission range is examined. When the antinode range r
is 60, the antinode covers an area larger than the sensor
field, which implies that the transmissions of the antinode
are received by almost every node in the sensor field. Even
in this case, more than 80 percent of spam messages are
detected by sensor nodes when the quarantine gain is
50 percent and the probability that there is a spam message
in the air at any moment is 0.5, as shown in Fig. 12. When
the coverage area of the antinode decreases, the probability
that a spam message is detected, i.e., resilience ¢, can be as
high as over 0.99, as shown in Fig. 12.

In our simulations, we randomly deploy 100 sensor nodes
and 10 antinodes in a sensor field 200 x 200 in size according
to Uniform distribution. One of the topologies used in our
simulation is shown in Fig. 13. In the figure, the sensor nodes
are depicted with “+” and the antinodes with “*”. Sensor
nodes are fixed. However, antinodes move in the sensor
field according to the random waypoint model. The average
speed of the antinodes is factored in simulations.

The data generation rate of sensor nodes is 0.01 packets
per second (pps) and the malicious packet generation rate

100 43 77 i
100 £
| oL\ i
80 BB
E |9 +A }45
0 4088 -4t LB »
[P A{ (
ol 74 - uj?{ 15
B
+C %L—’ \\B

2 4
D
i s . B o8 wig 4
\534 vy ¥
2 ‘ ! 24 B
\&%ﬁ_' lza " \
-40 5 e 52 4 - RIS S
72 B4
ol e i ¥ ﬁ"ﬁ‘ﬁm 45 ,Za

e el 9 'ﬁsn P
e 56 i
Sy i
10 N i 49

"o 80 60 -0 0 0 20 40 60 80 100

Fig. 13. Sensor and antinode deployment in a sensor field.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5,

NO. 8, AUGUST 2006

80000
70000 -
60000 - .
50000 - L
40000 - _
30000 - L
20000 - e

10000 | -
0 o o
0 1 2 3 4 5 6 7 8 9 10

number of anti-nodes

number of hops

Fig. 14. Effect of QRS in a sensor field with 100 sensor nodes and some
antinodes.

of antinodes is 0.5 pps. Since the change in the packet
generation rate of sensor nodes does not have any impact
on the results, it is fixed and not randomized. This also
helps us in being fair and analyzing the results easier.

In Fig. 14, we depict how the QRS scheme prevents spam
traffic effectively by reducing the total number of hops or
the network traffic caused by antinodes in the network. We
simulate the sensor network with one to 10 antinodes, each
generating 100 messages. When analyzing the situation, we
have run our simulations using 10 different random
network setups similar to the one shown in Fig. 13 and
depicted the average behavior in Fig. 14. The QRS scheme
eliminates 66 percent of the traffic caused by antinodes.

In Fig. 15, we depict the effect of spam frequency in QRS
with 10 antinodes in the network. Since it takes some time
to detect the existence of a spam attack, network perfor-
mances are very close to each other when the number of
spam messages per antinode is small. The percentage of
traffic eliminated by the QRS scheme increases as the
number of messages generated by antinodes increases.

We also examine the sensitivity of QRS for varying
antinode transmission range r, local alarm depth n, local
alarm factor k, and quarantine gain 7. Note that the
quarantine gain v is a function of keep the status period t;,
and check the status period t.. We use directed diffusion [25]
as the data dissemination scheme. Since physical layer
parameters, such as path loss exponent and hop distance,
do not affect our results, they are not factoring parameters
in our experiments.

210000 | -..s-- without QRS P
,, 180000 | 4 wih QRS A
£ 150000 |
S 120000 Lk
5 o
g 90000 - a

A

g 60000 a

30000 | ot L, e

0 T T T T T T i

20 40 60 80 100 120 140 160 180 200

number of messages created by antinodes

Fig. 15. Impact of spam frequency.

COSKUN ET AL.: QUARANTINE REGION SCHEME TO MITIGATE SPAM ATTACKS IN WIRELESS SENSOR NETWORKS

nunanthenticated
messages (%0)

0.7
/ quarantine
g gainy

10 2},""‘"-?-._1 _____ 03
antinode 40 T r— f 0.1
transmission range 60

Fig. 16. Percentage of unauthenticated messages versus antinode
transmission range r and quarantine gain ~.

unauthenticated

local alarm
factor k

5 T——

7
local alarm depth » 9

Fig. 17. Percentage of unauthenticated messages versus local alarm
factor k and depth n for quarantine gain v = 0.5 and node range r = 25.

100 nnanthenticated messages (*o)

e
- -
] e
e —
80 g e
" o
0 o ol
&0 —— fixed antinodes
=.... antinode speed=10 ——— -
jr—
50 — & — antinode speed=20 e
40 .
L
30
e e e o e =
W04 —
10 v v v T v T J
0.1 02 03 04 05 0,6 0.7 08 09

quarantine gain

Fig. 18. Percentage of unauthenticated messages versus quarantine
gain v and antinode mobility.

In Figs. 16, 17, and 18, we examine the ratio between the
number of unauthenticated transmissions and the total
number of transmissions (the unauthenticated message
percentage), which is more than 80 percent for quarantine

1083
resilience &
1
~—)
B .
-, = - T~
. \"‘\.‘_
~. ~
i L. -
08 ——gain=0.5 . ~_ ~—
. ~ ~
= - gain=0.7 . .
. : 9 ~
woeeieee gain=0 9 -
07
06 r T - -
10 15 20 23 30 35 40 45 50 55 60

anti node range ¢

Fig. 19. Percentage of the malicious messages that can access the
sensor network versus quarantine gain v and antinode range r.

vesilience &

0.95
b
e
0.9 *
085 —
——
08 o depth=1 ... R .
— - depth=2 - -~ ——
o depth=3 A .
075 - Y ~—
.. -
. - o -
0.7 e
vy
0,85
0.6 - . . r - : :
] 10 20 30 40 50 80 7 80 % 100

anti node mobility (meter per minute)

Fig. 20. Percentage of the malicious messages that can access the
sensor network versus quarantine gain v and antinode range r.

gain v > 0.5 and the antinode transmission range r < 30 as
shown in Fig. 16. This indicates that only 20 percent of the
messages are authenticated even when the sensor field is
completely under attack of antinodes. The impact of local
alarm depth n on the unauthenticated message percentage is
higher comparing to the impact of local alarm factor k as
shown in Fig. 17. The sensitivity of the unauthenticated
message percentage against the mobility of antinodes is
depicted in Fig. 18. When antinode speed is 20 meters per
minute, it can travel from one side of the sensor field to the
other side in 10 minutes. In such a case, the percentage of
the unauthenticated messages is as low as 20 because
almost every node in the sensor network that we simulate is
in a quarantine region continuously.

In Fig. 19, the resilience 6 is shown for varying antinode
range. The values in this figure are from our simulations,
and they are almost the same as the values in Fig. 12, which
are found out by the analytical models in Section 3. This
also verifies our mathematical models.

In Fig. 20, the resilience ¢ is shown for varying antinode
speeds when quarantine gain v = 0.7 and antinode range
r = 25. When the antinode speed is 100 meters per minute,
an antinode can travel from one side of our sensor field to
the other side in two minutes. Please note that we have
10 antinodes in our sensor field, which means almost every

1084
TABLE 1
Number of Nodes within Transmission Range, r = 25
Number of =
neighbors 01234567891011{_‘5
within range

Number of nodes
havingthatmuch [3 [7 [10[17|14[13|11[10[4 |64 | 1 | 100
neighbors

node is under attack continuously. Even in this extreme
case, more than 80 percent of the malicious messages are
eliminated by our scheme in our simulations.

Since the storage capacity of sensor nodes is limited, we
also examine the storage requirement that QRS imposes on
each node. We have stated in Section 2.3 that each sensor
node has to keep the last sequence number received from each
adjacent node, i.e., nodes within the transmission range; we
call this list as the adjacency list. Here, the readers should
remark that only the last sequence number from each
adjacent node needs to be stored; no history is to be stored.
This requirement may raise a question as to how much
storage load is imposed by the QRS scheme. We have
calculated the number of nodes within the transmission
range, r = 25, of each node by using the simulation setup
which was depicted in Fig. 13. The results are shown in
Table 1. As shown in this table, the length of list per node
varies between 0 and 11, with the average length of the list
being 4.72. By looking at these values, we may easily
conclude that the QRS scheme does not impose hard
requirements on the sensor nodes for keeping sequence
numbers of adjacent nodes.

We also calculated the size of adjacency list with
different ranges {10..50}. The maximum and average sizes
of the adjacency list are shown in Table 2. Here, notice that
the highest transmission range in the table, r = 50, is too big
for a 200 x 200 sensor network, whereas, even in this case,
the maximum adjacency list size is 29 and the average
adjacency list size is 17.28, which are still not very high. This
also verifies our previous argument that QRS scheme does
not impose too much overhead for keeping the sequence
number information.

5 RELATED AND COMPLEMENTARY WORK

Perrig et al. give a good overview of security-related
challenges and attacks in wireless sensor networks in [26].
Various security schemes that tackle these types of attacks
are introduced for ad hoc networks in [27], [28], and [29].
However, they are not well suited for the features and
application requirements of sensor networks due to the
differences between ad hoc and sensor networks [1].

Spam attacks that we studied in this paper may be
considered as a kind of Denial of Service (DoS) attack since
the aim of antinodes is to halt the sensor network. Layer by
layer vulnerabilities and defense mechanisms to DoS
attacks for a typical sensor network are discussed by Wood
and Stankovic in [3].

As discussed in [3], attempts to add DoS resistance to
existing protocols often focus on cryptographic-authentica-
tion mechanisms. However, there are also some noncrypto-
graphic DoS resistant systems proposed in the literature.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.5, NO.8, AUGUST 2006

TABLE 2
Size of the Adjacency List for r = {10..50}

Range 10 | 15120 | 25|30 |35 40 | 45 | 50

Maximum size of
Adjacency List

3 5 7111|1315 21 24 | 29

Average size of

)] 0,72(1,52(2,98 (4,72 (6,48 8,38 (11,46|14,24|17,28
Adjacency List

Marti et al. [30] proposed two extensions to DSR (Dynamic
Source Routing) [31] in order to detect and mitigate routing
misbehavior. These extensions are watchdog and pathrater.
The watchdog detects misbehaving nodes, while the
pathrater avoids routing packets through these nodes. The
watchdog scheme has further been extended, yielding
rating schemes [32], [33], [34]. In the rating scheme, the
neighbors of a particular node collaborate in rating the node
according to how well the node executes the functions
requested.

Besides DoS, several other types of attacks on sensor
networks are identified and some countermeasures are
proposed by Karlof and Wagner in [2] and Hu et al. in [35].
Among these attacks, Sybil [36] and wormhole [24] are
especially related to the attack model defined in this paper.
In Sybil attacks, an attacker presents multiple identities to
other nodes. Antinodes can do the same in our attack model,
but they are caught by sensor nodes during authentication.
In wormbhole attacks, attackers tunnel messages received in
one part of network to another part and replay there. The
wormhole problem in QRS is mentioned and a counter-
measure is proposed in Section 2.3.

Restricting the damage caused by a compromised node
to its local area is a similar aim with keeping an antinode’s
effect limited to the quarantine region. Deng et al. proposed
and evaluated the performance of the INSENS (Intrusion
Tolerant Routing in Wireless Sensor Networks) scheme [37],
[38] that has the property that a single compromised node
can only disrupt a localized portion of the network.

False data injection to the sensor network is another type
of malicious node attack. In the literature, there are some
solutions proposed for this problem using the selective
authentication approach, which is a similar approach to
QRS. Ye et al. [39] propose a statistical en-route detection
scheme, which allows en-route detection of false data
packets. A recent study by Zhu et al. [40] proposes an
interleaved hop-by-hop authentication scheme that guaran-
tees that the base station detects any injected false packets.
Independent of this study, Vogt [41] also proposes an
interleaved authentication approach for data integrity
protection.

SPINS (Security protocols for sensor networks) is one of
the security schemes proposed for sensor networks [23]. In
SPINS, two secure building blocks are used: SNEP (Secure
Network Encryption Protocol) and pyTESLA (the micro
version of the Timed, Efficient, Streaming, Loss-tolerant
Authentication Protocol). SNEP provides data confidenti-
ality, two party data authentication, and data freshness.
uTESLA provides an authenticated streaming broadcast.

COSKUN ET AL.: QUARANTINE REGION SCHEME TO MITIGATE SPAM ATTACKS IN WIRELESS SENSOR NETWORKS

Establishing message authentication in sensor networks
is the main idea behind fighting against spam attacks. In
that respect, SPINS also fights against spam. However, in
SPINS, unlike QRS, all packets need to be authenticated.

Vogt [41] explores several types of message authentication
techniques, including end-to-end, hop-by-hop, and multi-
path authentication, and gives some design space considera-
tions for message authentication in sensor networks.

QRS may be seen as a sort of exclusion scheme, where
the antinodes are isolated from the rest of the network.
Another interesting exclusion study for wireless sensor
networks is given by Di Pietro et al. in [42], where they
introduce the concept of Supervisor, which can invoke the
secure exclusion of a malicious node from the network
using a scalable and cooperative algorithm that also
provides rekeying.

There are several key distribution schemes proposed in
the literature [18], [19], [20], [21], [22], [43]. Most of them
[18], [19], [20], [21], [43] are based on the random key
predistribution idea adopted from [20]. Moreover, most of
the proposed key distribution schemes [18], [19], [21], [22],
[43] provide resistance against node compromise to some
extent. In QRS, we focused on intermittent authentication
patterns of sensor nodes and assumed that the necessary
key for authentication is predeployed in nodes. However,
QRS may be combined with a key distribution and manage-
ment scheme in order to assign different keys to different
nodes and links and in order to make the system resistant
against node compromise while avoiding spam attacks.

6 CONCLUSION

In this paper, we introduce QRS (Quarantine Region
Scheme) for defending against spam attacks performed by
hostile antinodes scattered around the field. In the scope of
QRS, we propose spam detection and location-aware
message authentication mechanisms. The spam detection
mechanism is a totally distributed one. Each node decides
whether there is a spam attack in its reception range by
requesting authenticated messages in some irregular and
random time periods. Thus, the antinodes cannot synchro-
nize themselves with the legitimate nodes and eventually
get caught. A node that detects a spam attack in its vicinity
puts itself in a quarantine region and performs continuous
message authentication until the attack comes to an end. As
the above discussions imply, in QRS, message authentica-
tion is not performed all the time. Consequently, the
overhead of authentication measures is reduced and limited
according to the size of the threat.

The dynamic features of spam detection and location-
aware message authentication mechanisms help the system
to survive even where the sensor and antinodes are mobile.
Moreover, the system becomes resistant against various
kinds of replay and wormhole attacks.

Analytical models for performance evaluation are also
developed. QRS is evaluated both by using these models
and through simulations. The results prove the gains and
effectiveness of QRS. Our analysis also shows that QRS is a
trade-off scheme such that it is possible to play with some
parameters in order to set a level for the trade-off between

1085

the resilience against spam attacks and the number of
authentications. Such a trade-off could be useful to play
according to several system factors, such as sensitivity of
the field against spam attacks, the remaining battery power
of sensor nodes, etc.

REFERENCES

[1] LF. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless Sensor Networks: A Survey,” Computer Networks J.,
vol. 38, no. 4, pp. 393-422, 2002.

[2] C. Karlof and D. Wagner, “Secure Routing in Wireless Sensor
Networks: Attacks and Countermeasures,” Ad Hoc Networks, vol. 1,
nos. 2-3, pp. 293-315, Sept. 2003.

[31 A.D. Wood and J.A. Stankovic, “Denial of Service in Sensor
Networks,” Computer, vol. 35, pp. 54-62, 2002.

[4] W. Stallings, Cryptography and Network Security, third ed. Prentice
Hall, 2003.

[5S] H. Krawczyk, M. Bellare, and R. Canetti, “RFC 2104—HMAC:
Keyed-Hashing for Message Authentication,” 1997.

[6] R.L. Rivest, “RFC 1321—The MD5 Message-Digest Algorithm,”
1992.

[7]1 J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System Architecture Directions for Network Sensors,” Proc. Int’]
Conf. Architectural Support for Programming Languages and Operating
Systems, 2000.

[8] S. Bhattacharya, H. Kim, S. Prabh, and T.F. Abdelzaher, “Energy-
Conserving Data Placement and Asynchronous Multicast in
Wireless Sensor Networks,” Proc. Int’l Conf. Mobile Systems,
Applications, and Services, 2003.

[9] http://www.atmel.com/products/AVR, Oct. 2003.

[10] J. Beutel, “Location Management in Wireless Sensor Networks,
Handbook of Sensor Networks,” Compact Wireless and Wired
Sensing Systems, July 2004.

[11] A. Nasipuri and K. Li, “A Directionality Based Location Discovery
Scheme for Wireless Sensor Networks,” Proc. First ACM Workshop
Wireless Sensor Networks and Applications, pp. 105-111, 2002.

[12] A. Savvides, H. Park, and M.B. Srivastava, “The Bits and Flops of
the N-Hop Multilateration Primitive for Node Localization
Problems,” Proc. First ACM Workshop Wireless Sensor Networks
and Applications, pp. 112-121, 2002.

[13] Z. Li, W. Trappe, Y. Zhang, and B. Nath, “Robust Statistical
Methods for Securing Wireless Localization in Sensor Networks,”
Proc. Int’l Symp. Information Processing in Sensor Networks, 2005.

[14] G. Amato, A. Caruso, S. Chessa, V. Masi, and A. Urpi, “State of the
Art and Future Directions in Wireless Sensor Network’s Data
Management,” Istituto di Scienza e Tecnologie dell’Informazione del
CNR, May 2004.

[15] J. Hightower and G. Borriello, “Location Systems for Ubiquitous
Computing,” Computer, vol. 34, no. 8, pp. 57-66, Aug. 2001.

[16] L.Lazos and R. Poovendran, “SeRLoc: Secure Range-Independent
Localization for Wireless Sensor Networks,” Proc. ACM Workshop
Wireless Security, 2004.

[17] L. Fang, W. Du, and P. Ning, “A Beacon-Less Location Discovery
Scheme for Wireless Sensor Networks,” Proc. IEEE Infocom, 2005.

[18] H. Chan, A. Perrig, and D. Song, “Random Key Predistribution
Schemes for Sensor Networks,” Proc. IEEE Symp. Security and
Privacy, pp. 197-213, May 2003.

[19] W. Du, J. Deng, Y. Han, and P. Varshney, “A Pairwise Key
Predistribution Scheme for Wireless Sensor Networks,” Proc. 10th
ACM Conf. Computer and Comm. Security, Oct. 2003.

[20] L. Eschenauer and V. Gligor, “A Key-Management Scheme for
Distributed Sensor Networks,” Proc. Ninth ACM Conf. Computer
and Comm. Security, Oct. 2002.

[21] D. Liu and P. Ning, “Establishing Pairwise Keys in Distributed
Sensor Networks,” Proc. 10th ACM Conf. Computer and Comm.
Security, Oct. 2003.

[22] R. Di Pietro, L.V. Mancini, and S. Jajodia, “Providing Secrecy in
Key Management Protocols for Large Wireless Sensors Net-
works,” Ad Hoc Networks, vol. 1, no. 4, pp. 455-468, Nov. 2003.

[23] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J.D. Tygar, “SPINS:
Security Protocols for Sensor Networks,” Proc. Int’l Conf. Mobile
Computing and Networks (MobiCom '01), pp. 189-199, 2001.

[24] Y.C. Hu, A. Perrig, and D.B. Johnson, “Packet Leashes: A Defense
against Wormhole Attacks in Wireless Networks,” Proc. IEEE
Infocom, Mar. 2003.

1086

[25] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
Diffusion: A Scalable and Robust Communication Paradigm for
Sensor Networks,” Proc. Sixth Ann. Int’l Conf. Mobile Computing
and Networks (MobiCom '00), 2000.

[26] A. Perrig, J. Stankovic, and D. Wagner, “Security in Wireless
Sensor Networks,” Comm. ACM, vol. 47, no. 6, pp. 53-57, June
2004.

[27] F. Stajano and R. Anderson, “The Resurrecting Duckling: Security
Issues for Ad-Hoc Wireless Networks,” Proc. Seventh Int’l Work-
shop Security Protocols, pp. 172-182, 2000.

[28] L. Zhou and Z]. Haas, “Securing Ad Hoc Networks,” IEEE
Network Magazine, vol. 13, no. 6, pp. 24-30, 1999.

[29]]J.P.Hubaux, L. Buttyan, and S. Capkun, “The Quest for Security in
Mobile Ad Hoc Networks,” Proc. ACM Symp. Mobile Ad Hoc
Networking and Computing, 2001.

[30] S. Marti, T.J. Giuli, K. Lai, and M. Baker, “Mitigating Routing
Misbehavior in Mobile Ad Hoc Networks,” Proc. Sixth Ann. Int’l
Conf. Mobile Computing and Networking (MobiCom 00), pp. 255-265,
2000.

[31] D.B. Johnson, D.A. Maltz, and J. Broch, “DSR: The Dynamic
Source Routing Protocol for Multi-Hop Wireless Ad Hoc Net-
works,” Ad Hoc Networking, C.E. Perkins, ed., chapter 5, pp. 139-
172, Addison-Wesley, 2001.

[32] P. Michiardi and R. Molva, “Core: A Collaborative Reputation
Mechanism to Enforce Node Cooperation in Mobile Ad Hoc
Networks,” Proc. Comm. and Multimedia Security Conf., 2002.

[33] P. Michiardi and R. Molva, “Prevention of Denial of Service
Attacks and Selfishness in Mobile Ad Hoc Networks,” Research
Report RR-02-063, Institut Eurecom, 2002.

[34] P. Michiardi and R. Molva, “Simulation-Based Analysis of
Security Exposures in Mobile Ad Hoc Networks,” Proc. European
Wireless 2002: Next Generation Wireless Networks: Technologies,
Protocols, Services and Applications, Feb. 2002.

[35] F. Hu, J. Ziobro, J. Tillett, and N.K. Sharma, “Secure Wireless
Sensor Networks: Problems and Solutions,” J. Systemics, Cyber-
netics, and Informatics, vol. 1, no. 4, 2004.

[36] J.R. Douceur, “The Sybil Attack,” Proc. First Int'l Workshop Peer-to-
Peer Systems (IPTPS '02), 2002.

[37] J. Deng, R. Han, and S. Mishra, “INSENS: Intrusion-Tolerant
Routing in Wireless Sensor Networks,” Technical Report CU-CS-
939-02, Dept. of Computer Science, Univ. of Colorado, Nov. 2002.

[38] J. Deng, R. Han, and S. Mishra, “A Performance Evaluation of
Intrusion Tolerant Routing in Wireless Sensor Networks,” Proc.
Second IEEE Int’l Workshop Information Processing in Sensor Net-
works (IPSN 2003), pp. 349-364, Apr. 2003.

[39] F.Ye, H. Luo, S. Lu, and L. Zhang, “Statistical En-Route Detection
and Filtering of Injected False Data in Sensor Networks,” Proc.
IEEE Infocom, 2004.

[40] S. Zhu, S. Setia, S. Jajodia, and P. Ning, “An Interleaved Hop-by-
Hop Authentication Scheme for Filtering of Injected False Data in
Sensor Networks,” Proc. IEEE Symp. Security and Privacy, pp. 260-
272, 2004.

[41] H. Vogt, “Exploring Message Authentication in Sensor Net-
works,” Proc. First European Workshop Security in Ad Hoc and
Sensor Networks, Aug. 2004.

[42] R. Di Pietro, L.V. Mancini, and S. Jajodia, “Secure Selective
Exclusion in Ad Hoc Wireless Network,” Security in the Information
Society: Visions and Perspectives, M.A. Ghonaimy, M.T. El-Hadidi,
and H.K. Aslan, eds., pp. 423-434, Kluwer Academic, 2002.

[43] S.Zhu, S. Xu, S. Setia, and S. Jajodia, “Establishing Pairwise Keys
for Secure Communication in Ad Hoc Networks: A Probabilistic
Approach,” Proc. 11th IEEE Int’l Conf. Network Protocols (ICNP '03),
Nov. 2003.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.5, NO.8, AUGUST 2006

Vedat Coskun (M’02) graduated from the
Turkish Naval Academy (1984) and received
the MSc degree in computer science from the
Naval Post Graduate School, California (1990),
and the PhD degree in computer security from
Yildiz Technical University, Istanbul (1998). He
managed the software development group at the
Naval Wargaming Center between 1997-2001.
He was chairman of the Computer Engineering
Department, Turkish Naval Academy, and is
currently with ISIK University, Istanbul, Turkey. His current research
areas include software engineering, sensor networks, computer
security, and cryptography. He is a member of the IEEE.

Erdal Cayirci (M'96-SM’04) graduated from the
Turkish Army Academy in 1986 and from the
Royal Military Academy Sandhurst in 1989. He
received the MS degree from the Middle East
Technical University and the PhD degree from
Bogazi¢i University in computer engineering in
1995 and 2000, respectively. He retired from the
Turkish Army when he was a Colonel in 2005.
He is currently the chief of the CAX Support
Branch at NATO’s Joint Warfare Center. He is
also with the Electrical and Computer Engineering Department at the
University of Stavanger. His research interests include military
constructive simulation, tactical communications, sensor networks, and
mobile communications. He was an editor for the IEEE Transactions on
Mobile Computing, AdHoc Networks (Elsevier Science), ACM/Kluwer
Wireless Networks, and ASP Sensor Letters. He received the 2002
IEEE Communications Society Best Tutorial Paper Award for his paper
titled “A Survey on Sensor Networks” published in IEEE Communica-
tions Magazine in August 2002 and the “Fikri Gayret” Award from the
Turkish Chief of General Staff in 2003. He is a senior member of the
IEEE and a member of the IEEE Computer Society.

Albert Levi (S’96-M’00) received the BS, MS,
and PhD degrees in computer engineering from
Bogazi¢i University, Istanbul, Turkey, in 1991,
1993, and 1999, respectively. He served as a
visiting faculty member in the Department of
Electrical and Computer Engineering, Oregon
State University between 1999 and 2002. He
was also a postdoctoral research associate in

) the Information Security Lab of the same
i zzx department. He worked at rTrust Inc. as a
consultant in 2001-2002. Since 2002, he has been a faculty member
of computer science and engineering at Sabanci University, Faculty of
Engineering and Natural Sciences, Istanbul, Turkey, and codirector of
the Cryptography and Information Security (CISEC) Lab. His research
interests include computer and network security with an emphasis on
mobile and wireless system security, public key infrastructures (PKI),
and application layer security protocols. He is a member of the IEEE and
the IEEE Computer Society.

Serdar Sancak received the BS degree in
computer engineering from the Turkish Naval
Academy in 1998 and received the MS degree in
computer science from the Naval Science and
Engineering Institute in 2003. Currently, he is the
director of information systems at Northern Sea
Area Command. His research interests include
sensor networks, network security, and wireless
communications.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

