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Starting from the observation that at very low temperatures an isolated nanomagnet can be treated as an 

effective two-state system, we introduce a model to study quantum tunnelling and decoherence phenom-

ena. We assume that the total spin of the magnet interacts with a spin bath. We show that depending upon 

the interaction strengths the molecule can exhibit tunnelling with or without decoherence. We also inves-

tigate the case where the spin-spin interaction is mediated by phonons. 

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

Quantum tunneling phenomena in nanomagnets have become a very attractive research area not only 

because of their potential applications like data storage and quantum computation but also due to the 

relevance of the problem to some fundamental issues in quantum mechanics like tunneling and decoher-

ence [1]. Molecular magnets such as Mn12 and Fe8, have been the most promising systems due to their 

well-defined structures with well-characterized spin ground states [2]. Generally nanomagnets can be 

modeled as a single large spin S with uniaxial anisotropy. In pure quantum regime the direction of mag-

netization changes when small transverse perturbation exist at the resonance between energy levels of 

spin states on opposite sides of the potential barrier. Then the spin Hamiltonian can be written as 
2

z trans
H DS H= - + , where D is uniaxial anisotropy constant and 

trans
H  is the transverse term that does 

not commute with z-component of the spin. Tunneling between nearly degenerate levels can be under-

stood by the Landau-Zener theory [3].  

 

Quantum tunneling in these systems is important to understand the decoherence problem also [4]. Beside 

its connection to crossover from to quantum to classical world, decoherence is the main obstacle to built 

effective quantum information devices [5]. At very low temperatures it is possible to truncate the 

nanomagnet with large spin S to a two-level system [6]. Then Hamiltonian of the isolated system simply 

becomes
x

H ∆σ= , where 
x

σ  is Pauli spin operator and ∆  is the tunneling matrix element. This trunca-

tion is valid only if the tunneling splitting is small compared to energy gap between the lowest doublet 

spin states and the next excited states. Then it is easy to study decoherence phenomena due to the cou-

pling of the two-state system to environmental degrees of freedom, such as nuclear spins [7] and pho-

nons [8]. Although both of these couplings are well understood [9] there are still some discrepancies 

between experiment and theory [10]. For a consistent explanation of the experimental data, the two dif-

ferent baths, spin and phonon, which are considered to be effective at different time scales should be 

properly combined. 

 

At low temperatures low temperatures local modes such as defects, impurity spins, and nuclear spins 

dominate the environmental quantum dynamics of molecular magnets. Therefore, we will first assume 
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that effective two-state system of the magnetic molecule interacts with bath of N spin-½ particles. For 

this purpose we will use the Hamiltonian 

1

N

x k kx

k

H σ ω τ�

=

Ê ˆ
= Á ˜Ë ¯

Â . 

Here, 
kx

τ  is the Pauli spin operator for the kth spin of the bath and 
k

ω�  is the interaction strength. We 

will assume that the nanomagnet is initially in one of the degenerate ground states, say S = 10 corre-

sponding to spin up state ≠  in the two-state approximation so that  

( )
1

(0)

N

k k k k

k

Ψ α β
=

= ≠ ƒ + + -’  

where 
k

+  and 
k

-  are eigenstates of 
kx

τ  with eigenvalues +1 and –1, respectively. We can easily find 

the state of the combined system at later times as 

( ) ( )( ) k k k k

N N

i t i t i t i t

k k k k k k k k

k k

t e e e e
ω ω ω ωΨ α β α β− −

= =

= + ⊗ + + − + − ⊗ + + −∏ ∏
1 1

1 1

2 2
 

where +  and -  are eigenstates of 
x

σ  with eigenvalues +1 and –1, respectively. We observe that the 

nanomagnet and the bath spins, which are initially in a product state, become entangled as soon as the 

interaction is turned on.  

 

Knowing the state vector ( )tΨ  we can find the density matrix for the combined system as 

( ) ( ) ( )t t tρ Ψ Ψ= however what we are interested in is the reduced density matrix ( )t
σ

ρ  which de-

scribes the nanomagnet. For this purpose we trace out bath spins so that ( ) ( ) ( )t Tr t t
σ τ

ρ Ψ Ψ= , in 
x

σ -

basis, is given by 

*

11
( )

12

r

t

r
σ

ρ
È ˘

= Í ˙
Î ˚

 

where the decoherence factor is ( )2 2

1

( ) k k

N

i t i t

k k

k

r t e e
ω ωα β-

=

= +’ . Here, 1r =  and 1r = -  values corre- 

spond to ≠  and Ø  states, respectively. At 0t = , 1r = and as t  increases in general it decays to zero 

with a Gaussian time dependence [11]. When r vanishes, 
σ

ρ describes a classical ensemble of spin-1/2 

systems where half of them are up and half of them are in the down state.  

 

For the special case where 
2

1
k

α =  for all spin baths, the decoherence factor becomes 

1

( ) exp
N

k
k

r t it ω

=

Ê ˆ= - ÂÁ ˜Ë ¯
 and there fore there is no decay and r simply traces the unit circle. In other words, 

 the nanomagnet exhibits tunneling between ≠  and Ø  states back and forth.  

 

Another special case is 
2 2

1/ 2
k k

α β= = . This time 
1

( ) cos

N

k

k

r t tω

=

=’  and if the interaction strengths are 

random we can show that 
2

2

1

( ) exp
2

N

k

k

t
r t ω

=

Ê ˆ
@ -Á ˜Ë ¯

Â  so that r is always positive and hence the nanomagnet 

never goes to the state Ø . The system undergoes decoherence before tunneling. 
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We can generalize the model to the case where the spin-spin interaction is mediated by phonons [12]. For 

this purpose, we introduce the harmonic oscillator operators 
k

a
+  and 

k
a   and the Hamiltonian 

( )
1 1

N N

x k k k kx k k k

k k

H a a a aσ ω τ Ω� �
+ +

= =

= + +Â Â . 

We assume that the nanomagnet, the spin bath and the phonon bath system is initially in the state 

( )
1

(0)

N

k k k k k

k

Ψ α β λ
=

= ≠ ƒ + + - ƒ’  

where 
k

λ  denotes the coherent state corresponding to the annihilation operator 
k
a  with eigenvalue 

k
λ  

so that 
k k k k

a λ λ λ= . Coherent states describe classical harmonic oscillations: A Gaussian  

wave packet performs simple harmonic motion without loosing its shape. Therefore, if 
kx

τ  is the nuclear 

spin operator, the model can be used to study decoherence in the presence of atomic vibrations.  

For te special case where 
k

λ  is the gorund state of the kth oscillator, decoherence factor becomes 

2 2

1

( ) exp 2

N

k

k

r t t ω

=

Ê ˆ
ª -Á ˜Ë ¯

Â . Therefore, in this limit r is again a Gaussian function of time. It is possible to 

find r(t) for arbitrary 
k

λ  and we can show that decoherence factor is always a decaying function. 
 

In conclusion, using an effective two-state description of a nanomagnet we studied the decoherence and 

tunneling phenomena, We showed that except for a very special initial condition both spin and phonon 

baths cause the loss of coherence. In general, the nanomagnet undergoes decoherence before tunneling of 

magnetization. Decoherence of two nanomagnets is also an interesting problem. In this case entangle-

ment of spins should properly be taken into account [13]. For example, if the two spins are prepared in 

properly chosen states, it is possible to obtain relatively longer coherence time.  
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