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ABSTRACT 

Micropropulsion mechanisms differ from macro 
scale counterparts owing to the domination of viscous 
forces in microflows. In essence, propulsion mecha-
nisms such as cilia and flagella of single celled or-
ganisms can be deemed as nature’s solution to a chal-
lenging problem, and taken as a basis for the design 
of an artificial micropropulsion system. In this paper 
we present numerical analysis of the flow due to 
oscillatory planar waves propagating on microstrips. 
The time-dependent three-dimensional flow due to 
moving boundaries of the strip is governed by in-
compressible Navier-Stokes equations in a moving 
coordinate system, which is modeled by means of an 
arbitrary Lagrangian-Eulerian formulation. The fluid 
medium surrounding the actuator boundaries is 
bounded by a channel, and neutral boundary condi-
tions are used in the upstream and downstream. Ef-
fects of actuation parameters such as amplitude, exci-
tation frequency, wavelength of the planar waves are 
demonstrated with numerical simulations that are 
carried out by third party software, COMSOL. Func-
tional-dependencies with respect to the actuation 
parameters are obtained for the average velocity of 
the strip and the efficiency of the mechanism.  
 

INTRODUCTION 
Propulsion mechanisms of microswimmers can 

be imitated as artificial propulsion systems to operate 
in low Reynolds number environments. A series of 
theoretical work focus on natural microswimmers and 
their actuation principles [1-7]. It was shown that 
inside highly viscous fluids with low Reynolds num-
ber, a conventional time reversible swimming action 
can not yield desired propulsive effect due to ‘scallop 
theorem’ [1].  

Microswimmers, which usually are single celled 
organisms like spermatozoa, employ planar or helical 
wave propagation via their flagellum and cilia called 
organelles [2,3]. Periodic traveling-wave deforma-
tions on the biopolymer tail of the microorganism are 
the result of the balance between the bending stresses 
of the structure and the total stress in the fluid [4]. Sir 
Taylor presented asymptotic solutions of the flow for 
a sinusoidal wave propagating on an infinite inexten-
sible sheet immersed in a viscous fluid [5]. Later, 
Katz presented an asymptotic solution for the infinite 
sheet placed inside a channel [6]. Childress [7] ex-
panded the study to extensible sheet propulsion. Our 
previous work verifies asymptotic results of Taylor 
[5] and Katz [6] by means of numerical solution of 
the two-dimensional time-dependent Stokes flow due 
to plane waves traveling on a finite-length thin mem-
brane inside a channel [8]. Although time irreversible 
wave propulsion is the method utilized by natural 
microswimmers, efficiency of these swimmers is 
found to be very low due to high shear losses [9]. 

The micro-surgical-swimmer idea was articu-
lated by Richard Feynman as an example to the po-
tential upcoming micro applications [10,11]. Re-
cently, theoretical and experimental studies were 
published on the propulsion of autonomous swim-
ming robots utilizing biological mechanisms 
[12,13,14]. A conceptual design utilizing rotational 
motion to create propulsive effect for a surgical mi-
croswimmer was discussed by Edd et al. [12]. Fur-
thermore, beating motion on a single filament was 
replicated artificially by wave propagation on a syn-
thetic tail made by magnetic filaments attached to 
blood-cells and driven by alternating external mag-
netic fields [15]. Also macro scale experiments were 
carried out to demonstrate the feasibility of planar 
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and helical wave propagation as propulsion method 
[16,17]. 

Traveling wave propagation on an electrically 
driven Nafion based tail in centimeter scale proved to 
be viable as a propulsion system [16] at low frequen-
cies. Similarly, three-dimensional numerical investi-
gation of surface acoustic waves created by interdigi-
tal transducers on a thin membrane was carried out as 
an actuation method at large frequency despite the 
small amplitude of the acoustic waves [18]. Further-
more it is plausible to suggest that the wave propaga-
tion effect can also be sustained by a series of piezo-
electric material replaced in series and driven out-of-
phase via shear mode piezo strips [19,20,21].   

Vertical traveling-wave motion of the fully sub-
merged elastic rod tail causes dynamic high and low 
pressure regions to shift positions resulting in net 
fluid flow. As the deformation shifts position accord-
ingly with the propagation of traveling waves, high 
and low pressure regions in the vicinity of the tail 
demonstrate consequential shifts which result in two-
dimensional thrust effect.  This resultant shifts cause 
a combinational force interactions between swimmer 
body and surrounding fluid which leads to transla-
tions along both x-axis and y-axis and rotation around 
z-axis. 

We present numerical simulations of 3D time-
dependent motion of a conceptual swimming micro-
robot, inside a liquid filled channel due to the propa-
gation of sine-wave deformations on a long conical 
tail attached to a capsule. The motion of the swimmer 
is governed by rigid-body equation of motion which 
incorporates the forces and moments from the motion 
of the fluid governed by incompressible Navier-
Stokes equations subject to continuity in a time-
varying domain that has moving boundaries due to 
the motion of the tail as well as the motion of the 
robot. Mesh displacement due to moving boundaries 
of the tail is modeled using arbitrary Lagrangian-
Eulerian formulation [22,23] incorporating the Wins-
low method [24]. Effects of the amplitude, frequency, 
wave length and homogeneity of traveling waves on 
the speed, hydraulic power and efficiency are demon-
strated.  

NOMENCLATURE 
Symbol  Description                                       
Latin Letters 

A  Area                                                    
B  Wave amplitude                             
C  Wave limiting constant                            

H  Channel height            
I  Identity matrix                                  
J  Mass moment of inertia                         
L  Channel length                                 
M  Mass of the swimmer                      
M  Moment on swimmer                                           
P  Liquid pressure                                 
Q  Flow rate                                          
S  Swimmer surface                                           
U  Fluid velocity vector                         
W   Width                                                     
f  Excitation frequency [Hz]                            
k  Wave number                                    

  Tail length                                                           
n  Surface normal vector                        
r  Distance from center of mass                                
t  Spatial time                                         
t  Surface tangent vector                                       
u  Mesh velocity vector                        
u,v,w  velocity components                       
x,y,z  Spatial coordinates                   

Functions and Groups                                                                          
B  Amplitude expression                          
min  Minimum function                           
Re  Reynolds Number  

Greek Letters                                                                
θ  Rotation angle to center of mass                                
Π  Mechanical Power exerted on fluid 
Σ  Mono directional full stress tensor  
Ω  Domain occupied by fluid inside    
α  Angle between r and x-axis              
η  Percentage mechanical efficiency      
λ  Wave length                              
µ  Dynamic viscosity of liquid              
ρ  Liquid density                                   
ω  Angular frequency                                              

Subscripts and Superscripts                                     
A.av  Area-averaged                                 
av  Time-averaged                               
ch  Channel parameter                             
com  Center of mass                              
f  Tail parameter          
in,out  Inwards/outwards direction             
m  Mesh parameter                                
o  Maximum possible value                             
o  Flow development time                
sim  Simulation Parameter                                 
sh  Wave shape parameter                     
T  Transpose                                         

 

METHODOLOGY 
Three-dimensional motion of the swimmer has 

four distinctive elements: First is the traveling-plane 
wave deformation of the tail, which transfers the 

energy from the structure to the flow; second and 
third elements are x and y-translations of the swim-
mer and lastly the z-rotation of the swimmer around 
its center of mass.  



                                                                                                                                            Copyright © 2007 by ASME 
 

3

 
Figure 1: Plane-wave deformations traveling in the x-direction on the tail attached to the head of the swimming 
robot; side-view in the z-direction on the xy-symmetry plane.  

 
 

Figure 2: 3D view of conceptual swimming microrobot and the channel; cut into two symmetric pieces with respect 
to xy-symmetry plane. 

 
 

Figure 3: 3D view of conceptual swimming microrobot; net propulsion and wave propagation wakes place on oppo-
site sides. 

 

Motion of the tail in the xy-plane is perpendicu-
lar to the wave propagation in the x-direction as 
shown in Fig. 1, and given by a sinusoidal wave-form 
as a function of time, t, x-position on the tail, xf, exci-

tation frequency, ω=2πf, wave number, k=2π/λ and 
the amplitude function B, i.e.  

( ) ( ), sin ω , 0f f f fy x t B t kx x= − >  (1) 

x 
y 

Limiting envelop 

xf 

Body Tail 

Propagation direction (x,y)=(H,L) 

(x,y)=(0,0) 

yf 
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In Eq. (1), B=B(xf,t) forms an envelop function 
for  deformations in the y-direction resulting in one 
end being free and the other end attached to the body 
at all times. Furthermore, to ensure zero initial condi-
tions, an initial ramp of the amplitude of deforma-
tions is defined and restricted to the first full period: 

( )
( ){ } ( )o

,

1 exp min ,1

f

sh f com

B x t

B C x x t f

=

 − − − 

 (2)  

where Csh is the shape constant for limiting amplitude 
envelope, xcom is the x-coordinate of the center of 
mass which is on the rigid joint between tail and 
body.  

Translation in the x-direction is due to the thrust 
force exerted by the y direction motion of the tail, and 
calculated from the equation of motion:  

( )

1
S x

S t

x dS
M

Σ= ∫  (3) 

where, M is the mass of the neutrally buoyant swim-
mer and Σx is the x-component of the full stress ten-
sor, which is given by [25]:  

2

x

u
P

x
u v

y x
u w

z x

∂
µ −
∂

∂ ∂
∑ µ + ⋅

∂ ∂

∂ ∂
µ +

∂ ∂

  
    
  =     
      

n  (4) 

Translation in the y-direction is calculated in the 
same manner as in Eq. (3) but with the y component 
of the full stress tensor as follows 

( )

1
S y

S t

y dS
M

Σ= ∫  (5) 

where 

2y

u v

y x

v
P

y

v w

z y

∂ ∂
µ +

∂ ∂

∂
∑ µ − ⋅

∂

∂ ∂
µ +

∂ ∂

  
    

  =     
  
    

n  (6) 

Rotation around the center of mass, which is at 
the rigid connection between the body and the tail of 
the swimmer, in the z-direction is obtained from 

( )

1
z

S t

dS
J

θ = ∫ M  (7) 

where, J is the z-moment of inertia, and Mz is the z-
moment and given by 
 

( )
( )

sin cosx y comz
S t

r dSα α= Σ +Σ∫M . (8) 

In Eq. (8) rcom is the distance of a point on the 
swimmer’s surface from the center of mass of the 
swimmer, and α is the angle between the position 
vector of a point on the swimmer surface and the x-
axis.  

In order to model the flow around the swimmer, 
incompressible Navier-Stokes equations are used in 
the time-dependent domain Ω(t): 

 ( ) 2ρ µm P
t

∂ + − ⋅∇ = −∇ + ∇ ∂ 

U U u U U  (11) 

0∇⋅ =U  (12)   

where U=[u,v,w]T is the velocity vector, P is pressure, 
ρ is density, and µ is the viscosity of the fluid. The 
time-dependent domain, Ω(t) deforms according to 
the moving boundaries of the swimmer and its tail. 
The um in Eq. (11) is the deformation velocity of the 
mesh used in the finite-element solution of Navier-
Stokes equations. Since the mesh deforms only on the 
swimmer boundaries and remains fixed at the channel 
walls, inlet and outlet, a gradual deformation of the 
mesh is specified between the moving swimmer and 
the fixed boundaries.  

Channel walls are subjected to no-slip boundary 
conditions at all times, 

 

( )
( )

( )
( )

,0, , , , , 0
,0, , , , , 0

( ,0, , ) ( , , , ) 0

( , ,0, ) ( , , , ) 0
( , ,0, ) ( , , , ) 0
( , ,0, ) ( , , , ) 0

ch

ch

ch

u x z t u x H z t
v x z t v x H z t
w x z t w x H z t

u x y t u x y W t
v x y t v x y W t
w x y t w x y W t

     
     = =     
         

    
    = =    
        

 (13) 

where H is the channel height and Wch is the channel 
width. Tail does not move in z-direction as its motion 
is limited to the xy-plane at z=0 given by Eq. (1) 
 ( ), , , 0f f fw x y z t =  (14) 

In Eq. (14), xf, yf and zf constitute the time-
dependent position vector on the tail; yf is given by 
Eq. (1). Y-velocity due to waving action on the tail is 
given by the time derivative of the displacement in 
Eq. (1) and other velocity components can be found 
like wise as in Eq. (16). 
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( ) ( ),
,

f f
f f

dy x t
v x t

dt
=  (15) 

Hence the velocity of a point on the surface of 
the swimmer is obtained by combining the time de-
rivative of Eq. (1), and integrals of (3), (5) and (7). 

( )

( )

( )

cos

sin

0

S
com

f S
comS

S t

dx dr
dt dt

dy dy dr
dt dt dt

θ α

θ α

 
− 

 
 

= + + 
 
 
 
 

U  (16) 

Inlet and outlet surfaces are specified as neutral 
[24] in all simulations: 

[ ] 0, , ,
0

x y z t
P

=
− + ⋅ =I σ n  (17) 

[ ]
, , ,

0
x L y z t

P
=

− + ⋅ =I σ n  (18) 

and xy-symmetry plane is designated as 
slip/symmetry [26] to cancel the tangential forces and 
the normal velocity on the designated boundary as in 
Eq. (19) and (20). 

[ ] , , , / 2,
0

x y z W tch
P− + ⋅ =I σ t  (19) 

0⋅ =U n  (20) 

where t is the tangential vector of the designated 
boundary. 

 For the flow at rest, all velocity components are 
specified as zero to guarantee stationary initial condi-
tions. 

 ( ) ( ), , ,0 , , ,0 ( , , ,0) 0u x y z v x y z w x y z= = =  (21) 

Displacement of the deforming mesh is calcu-
lated from the prescribed displacement given by Eq. 
(1), (3), (5) and (7) by a rubber mesh function, which 
limits the deformation to the vicinity of the swimmer: 

( ), ,

0

S com x

m f S com y

x r
y y r x y z

θ
θ

 +
 

∆ = + + β 
 
 

x  (22) 

where β(x,y,z) is the rubber mesh function [22]. The 
mesh displacement velocity, um, in Navier-Stokes 
equation is found directly from the prescribed mesh 
deformation:  

 m
m

d
dt
∆

=
x

u  (23) 

Once um is obtained from Eq. (23), finite-
element representation of Navier-Stokes and continu-
ity equations, are solved subject to boundary condi-

tions Eq. (13)-(22) by commercial finite element 
code, COMSOL, incorporating Intel’s MKL that 
invokes the parallel, PARDISO solver in COMSOL 
[26,27].  

Time-averaged velocity components of the 
swimming microrobot are also found by integrating 
Eq. (16) and averaging it over simulation time. Tan-
gential and rotational components of the surface 
velocity vector vanish in time averaging and can be 
neglected as can be observed in Fig. 4 and Fig. 5, 
therefore net propulsion occurs on the opposite direc-
tion of wave propagation as depicted in Fig. 3. 
Swimmer’s average velocity in the x-direction is 
given by; 

2 /

2

t fo
S

av
to

dxfu dt
dt

+

= ∫            (24) 

 
Figure 4: Instantaneous y-velocity of the swim-

mer.  

 
Figure 5: Instantaneous angular velocity of the 

swimmer.  
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Instantaneous rate of work done on the fluid by 
the deforming tail is the area integration of the prod-
uct of the total y-stress and the local y-velocity, i.e. 

( ) y f f
Af

t v dAΠ = Σ∫   (25) 

where Af is the tail’s surface area. Similarly to Eq. 
(24), time-averaged rate of work done by the tail, i.e. 
the hydraulic power is calculated from: 

 ( )
2

2

t fo

av
to

f t dt
+

Π = Π∫  (26) 

The force against average motion of the swim-
mer is given by  

2 /

( )2

t fo

x av x
t S to

fF dSdt
+

− = Σ∫ ∫  (26) 

Finally, the efficiency of the swimmer is calcu-
lated from the ratio of the rate of work done on the 
fluid due to average motion of the swimmer and the 
rate of work done on the fluid due to motion of the 
tail as described by Froude efficiency formulation 
[28]: 

η x av av

av

F u−=
Π

 (27) 

RESULTS 
Reference dimensions and properties of the 

swimmer are provided in Table 1 for numerical re-
sults that are presented here. For each simulation, 
about 33000 linear equations are solved for at least 3 
time units that correspond to 3 full cycles and at least 
300 time steps after simulation outputs converge to 
the steady-periodic state within the first cycle. Each 
simulation takes between 2 to 3 hours on a double 
dual-core 3.7 GHz 64-bit Xeon workstation with 
16GB of RAM running on SUSE Linux 10.0 operat-
ing system.  

Time-averaged quantities are obtained from in-
tegration over the last two cycles. Unless otherwise 
noted, the base case used in the simulations corre-
sponds to λ = / 2f , Bo = 0.073λ, f = 1 Hz, and Csh = 
6.  

Figure 6 and 7 illustrate the flow field on the 
symmetry plane where large circulations take place 
around the tip of the tail and in the downstream. Fig-
ure 7 reveals that the swimmer pushes the fluid in the 
propulsion direction upstream, and cause circulations 
behind the tail.  

Figure 8 demonstrates the relationship between 
the amplitude and the average x-velocity of the mi-
croswimmer for all the variables fixed at the base 
case except the amplitude. As amplitude increases, 
the x-velocity increases quadratically with the change 
in amplitude. Figure 9 illustrates the effect of ampli-
tude on hydraulic power which clearly shows that 
hydraulic power changes proportionally with the 
square of the change in amplitude. These results are 
in agreement with the asymptotical predictions stated 
by Taylor and Katz [5,6]. Figure 10, shows how 
swimmer’s hydraulic efficiency behaves with respect 
to amplitude. It can be observed that efficiency in-
creases very rapidly for small amplitudes but starts to 
plateau before reaching to 1%. 

 

Name, symbol Values/dimensions 

Wch 4x10-3 [m] 

Channel Height, H 3x10-3  [m] 

Channel Length, L 6x10-3 [m] 

Tail Length, f  1.25x10-3  [m] 

Head Length, Lh 6.25x10-4 [m] 

Head Radius, rh 1.25x10-4 [m] 

Tail width, Wf  2x10-5 [m] 
 

Swimmer Mass Mo-
ment of Inertia, J 

 7.073456x10-12 
[kg.m2] 

Mass of the Swimmer, 
M 

1.713071x10-8 
[kg] 

Dynamic Viscosity of 
water, µ 

1.12x10-3 [Pa.s] 

Density of water, ρ 999 [kg/m3] 

Table 1: Simulation Constants  

 

Figure 11 demonstrates the relationship between 
the frequency and the average x-velocity of the mi-
croswimmer for all the variables fixed at the base 
case except the frequency. As frequency increases, 
the average x-velocity increases linearly with the 
frequency.  

Figure 12 illustrates the effect of the frequency 
on the power, and clearly shows that power increases 
proportionally with the square of the frequency.  
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Figure 13, efficiency of the swimmer is plotted 
against the frequency. The frequency of the traveling-
waves does not affect the efficiency of the swimmer.  

Results shown in Fig. 8 to Fig. 12 agree well 
with the asymptotical predictions stated by Taylor 
and Katz [5,6]. 

Figure 14 demonstrates the relationship between 
the wave length and the average x-velocity of the 
microswimmer for all variables fixed at the base case 
except the wave length. As wave length increases 
average x-velocity increases linearly with the wave 
length agreeing well with the asymptotic calculations 
of Katz [6].  

Figure 15 illustrates the effect of wavelength on 
the power showing that as wavelength increases the 
power increases with 3/2nd power of the wavelength.  

Figure 16, shows the effect of the wavelength on 
the swimmer’s hydraulic efficiency, which is not as 
significant as the effect of the amplitude (Fig. 10). 
This behavior is closer to the frequency effect (Fig. 
13). 

 

 

 

 

 
Figure 6: Swimmer microrobot with planar waves propagating on its tail. Circulations appear due to shear stresses 
created by the motion of the tail.  

 
Figure 7: Normalized arrow plot demonstrating the flow field on the symmetry plane. 
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Figure 8: Wave amplitude vs. time averaged propul-
sion velocity for λ = 625 µm, f = 1 Hz and Csh = 6. 

 

 
Figure 9: Wave amplitude vs. time averaged hydrau-
lic power for λ = 625 µm, f = 1 Hz and Csh = 6. 

 

 
Figure 10: Wave amplitude vs. swimmer’s hydraulic 
efficiency for λ = 625 µm, f = 1 Hz and Csh = 6. 

 

 

 

 

 

 

 
Figure 11: Driving frequency vs. time averaged 
propulsion velocity for λ = 625 µm, Bo = 45.625 µm 
and Csh = 6. 

 

 
Figure 12: Driving frequency vs. time averaged 
hydraulic power for λ = 625 µm, Bo = 45.625 µm and 
Csh = 6. 

 

 
Figure 13: Driving frequency vs. swimmer’s hydrau-
lic efficiency for λ = 625 µm, Bo = 45.625 µm and Csh 
= 6. 
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Figure 14: Ratio of wave length to tail length vs.  
time averaged propulsion velocity for Bo = 45.625 
µm, f = 1 Hz and Csh = 6. 

 

 
Figure 15: Ratio of wavelength to tail length vs.  
time averaged hydraulic power for Bo = 45.625 µm, f 
= 1 Hz and Csh = 6. 

 

 
Figure 16: Ratio of wave length to tail length vs. 
swimmer’s hydraulic efficiency for Bo = 45.625 µm, f 
= 1 Hz and Csh = 6. 

 

CONCLUSION 
The effects of operating conditions, such as the 

wave amplitude, wavelength and excitation frequency 
on the propulsion performance of a microswimming 

robot are demonstrated by means of three-
dimensional time-dependent simulations. In simula-
tions time-dependent three-dimensional incompressi-
ble Navier-Stokes equations subject to continuity are 
solved in a moving coordinate system using the arbi-
trary Lagrangian Eulerian method, which utilizes the 
Winslow smoothing. 

Net x-translation, or in other words the x-thrust is 
modeled in accordance with the net force exerted on 
the swimmer surface along x-direction. Efficiency 
computations are based on Froude efficiency defini-
tion. 

Numerical results show that y-translation and z-
rotation results in zero net motion in time. Speed of 
the swimmer and the rate of work done on the fluid 
by traveling-wave deformation of the tail vary quad-
ratically with the amplitude of the wave. Further-
more, the efficiency of the swimmer increases with 
the wave amplitude faster than a quadratic rate. How-
ever the effect tends to level off slightly at higher 
amplitudes. 

Frequency has a linear effect on propulsion 
speed but a quadratic effect on hydraulic power; 
efficiency remains unaffected with the varying fre-
quency. These results are in agreement with the ear-
lier published asymptotical results [5,6] and our pre-
vious work on micropumps that incorporate travel-
ing-plane wave actuators [8,29]. 

Wavelength has a linear effect on propulsion 
speed and quadratic effect on the hydraulic power 
verifying the asymptotic results by Katz [6]. The 
efficiency of the swimmer does not change with the 
wavelength. 
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