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Abstract

We present a new exact solution for self-dual Abelian gauge fields living on the space of the Kerr–Taub-bolt instanton, which is a ge
example of asymptotically flat instantons with non-self-dual curvature, by constructing the corresponding square integrable harmonic fo
space.
 2005 Elsevier B.V. All rights reserved.
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Gravitational instantons are usually defined as comp
non-singular solutions of the vacuum Einstein field equati
in Euclidean space[1–5]. Among other things, they play an im
portant role in the path-integral formulation of quantum gr
ity [6,7] forming a privileged class of stationary phase met
that provide the dominant contribution to the path integral
mediate tunneling phenomena between topologically inequ
lent vacua. The first examples of gravitational instanton me
were obtained by complexifying the Schwarzschild, Kerr a
Taub–NUT spacetimes through analytically continuing them
the Euclidean sector[1,2]. The Euclidean Schwarzschild an
Euclidean Kerr solutions do not have self-dual curvature tho
they are asymptotically flat at spatial infinity and periodic
imaginary time, while the Taub–NUT instanton is self-du
However, there exists another type of Taub–NUT instan
which, unlike the first one, is not self-dual and possesse
event horizon (“bolt”)[8]. The generalization of this Taub-bo
metric to the rotating case was given in[9].

Another class of gravitational instanton solutions consist
the Eguchi–Hanson metric[10] and the multi-centre metric
of [2], which include the former as a special case. These me
are asymptotically locally Euclidean with self-dual curvatu
and admit a hyper-Kähler structure. (For a review see[11]).
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The hyper-Kähler structure of gravitational instantons and s
properties of gravitational instantons which are derivable fr
minimal surfaces in 3-dimensional Euclidean space were
amined in[12,13] using the Newman–Penrose formalism
Euclidean signature.

A fundamental difference between manifolds that h
Euclidean(++++) and Lorentzian(−+++) signatures is
that the former can harbor self-dual gauge fields that h
no effect on the metric, while in the latter external fie
serve as source terms in field equations. In other words, s
the energy–momentum tensor vanishes identically for s
dual gauge fields, solutions of Einstein’s equations autom
ically satisfy the system of coupled Einstein–Maxwell a
Einstein–Yang–Mills equations. The corresponding self-d
gauge fields are inherent in the given instanton metric. Furt
more, in Euclidean signature, Weyl spinors also have vanis
energy–momentum tensor and vector and axial- vector b
ear covariants. Hence they cannot appear as source terms
field equations as well. The explicit solutions for different co
figurations of some “stowaway” gauge fields and spinors liv
on well-known Euclidean-signature manifolds have been
tained in a number of papers (see[14–19]).

In recent years, motivated by Sen’sS-duality conjecture[20],
there has been some renewed interest in self-dual g
fields living on well-known Euclidean-signature manifolds. T
gauge fields were studied by constructing self-dual square
grable harmonic forms on given spaces. For instance, the sq
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integrable harmonic 2-form in self-dual Taub–NUT metrics w
constructed in[21], its generalization to the case of comple
non-compact hyper-Kähler spaces was given in[22]. However
the similar square integrable harmonic form on manifolds w
non-self-dual metrics was found only for the simple case of
Euclidean Schwarzschild instanton[23]. In this note we shal
give a new exact solution to describe the Abelian “stowaw
gauge fields harbored by the Kerr–Taub-bolt instanton, w
is a generalized example of asymptotically flat instantons w
non-self-dual curvature. This is achieved by explicit constr
tion of the corresponding square integrable harmonic form
the space.

The Euclidean Kerr–Taub-bolt instanton was discovered
Gibbons and Perry[9] as a rotating generalization of the earl
Taub-bolt solution[8] with non-self-dual curvature. This Ricc
flat metric is still asymptotically flat and in Boyer–Lindqui
type coordinates it has the form

ds2 = Ξ

(
dr2

∆
+ dθ2

)
+ sin2 θ

Ξ
(α dt + Pr dϕ)2

(1)+ ∆

Ξ
(dt + Pθ dϕ)2,

where the metric functions are given by

(2)∆ = r2 − 2Mr − α2 + N2,

(3)Ξ = Pr − αPθ = r2 − (N + α cosθ)2,

(4)Pr = r2 − α2 − N4

N2 − α2
,

(5)Pθ = −α sin2 θ + 2N cosθ − αN2

N2 − α2
.

The parametersM,N,α represent the “electric” mass, “ma
netic” mass and “rotation” of the instanton, respectively.

Whenα = 0 this metric reduces to the Taub-bolt instan
solution found in[8] with an event horizon and non-self-du
curvature. IfN = 0, we have the Euclidean Kerr metric. Th
one can say that the metric(1) generalizes the Taub-bolt sol
tion of [8] in same manner just as the Kerr metric general
the Schwarzschild solution. The coordinatet in the metric be-
haves like an angular variable and in order to have a comp
non-singular manifold at values ofr defined by equation∆ = 0,
t must have a period 2π/κ . The coordinateϕ must also be peri
odic with period 2π (1− Ω/κ) , where the “surface gravity”κ
and the “angular velocity” of rotationΩ , are defined as

(6)κ = r+ − r−
2r2

0

, Ω = α

r2
0

,

with

r± = M ±
√

M2 − N2 + α2,

(7)r2
0 = r2+ − α2 − N4

N2 − α2
.

As a result one finds that the condition

κ = 1

4|N |
e

”
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along withΞ � 0 for r > r+ and 0� θ � π guarantees tha
r = r+ is a regular bolt in the non-singular manifold of(1).

We shall also need the basis one-forms for the metric(1)
which can be chosen as

e1 =
(

Ξ

∆

)1/2

dr,

e2 = Ξ1/2 dθ,

e3 = sinθ

Ξ1/2
(α dt + Pr dϕ),

(8)e4 =
(

∆

Ξ

)1/2

(dt + Pθ dϕ).

The isometry properties of the Kerr–Taub-bolt instan
with respect to aU(1)-action in imaginary time imply the exis
tence of the Killing vector field

(9)
∂

∂t
= ξ

µ

(t)

∂

∂xµ
.

We recall that the fixed point sets of this Killing vector fie
describe a two-surface, or bolt, in the metric. We shall use
Killing vector to construct a square integrable harmonic 2-fo
on the Kerr–Taub-bolt space. It is well-known that for a Ric
flat metric a Killing vector can serve as a vector potential
associated Maxwell fields in this metric[24]. Since our Kerr–
Taub-bolt instanton is also Ricci-flat, it is a good strategy
start with the Killing one-form field

(10)ξ = ξ(t)µ dxµ

which is obtained by lowering the index of the Killing vect
field in (9). Taking the exterior derivative of the one-form in t
metric(1) we have

dξ = 2

Ξ2

{[
Mr2 + (αM cosθ − 2Nr + MN)(N + α cosθ)

]
× e1 ∧ e4

− [
N

(
∆ + α2 + α2 cos2 θ

) + 2α
(
N2 − Mr

)
cosθ

]
(11)× e2 ∧ e3}.

In this expression we have used the basis one-forms(8) in order
to facilitate the calculation of its Hodge dual, which is based
the simple relations

(12)�
(
e1 ∧ e4) = e2 ∧ e3, �

(
e2 ∧ e3) = e1 ∧ e4.

Straightforward calculations using the above expressions s
that the two-form(11) is both closed and co-closed, that is, it
a harmonic form. However the Kerr–Taub-bolt instanton d
not admit hyper-Kähler structure, and the two-form given
(11) is not self-dual. Instead, we define the (anti-)self-dual
form

(13)F = λ

2

(
dξ ± �dξ

)
,

whereλ is an arbitrary constant related to the dyon charges
ried by the fields and the minus sign refers to the anti-self-d
case. Taking Eqs.(11) and (12)into account in this expression
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we obtain the harmonic self-dual two-form

(14)F = λ(M − N)

Ξ2
(r + N + α cosθ)2(e1 ∧ e4 + e2 ∧ e3),

which implies the existence of the potential one-form

A = −λ(M − N)

(15)×
[
cosθ dϕ + r + N + α cosθ

Ξ
(dt + Pθ dϕ)

]
.

After an appropriate re-scaling of the parameterλ, which in-
cludes the electric coupling constant as well, a string singula
at θ = 0 or θ = π in this expression is avoided as usual by
manding the familiar Dirac magnetic-charge quantization ru

From Eq.(13) we also find the corresponding anti-self-du
two-form

(16)F = λ(M + N)

Ξ2
(r − N − α cosθ)2(e1 ∧ e4 − e2 ∧ e3).

The associated potential one-form is given by

A = −λ(M + N)

(17)×
[
−cosθ dϕ + r − N − α cosθ

Ξ
(dt + Pθ dϕ)

]
.

For α = 0, the above expressions describe self-dual, or a
self-dual Abelian gauge fields living on the space of a Ta
NUT instanton with an horizon[8]. In the absence of the “mag
netic” mass(N = 0) we have the gauge fields harbored by
Euclidean Kerr metric. The latter can also be obtained from
potential one-form in the Kerr–Newman dyon metric after
appropriately Euclideanizing it and setting the electric and m
netic charges equal to each other (see[25]).

Next, we shall show that these self-dual and anti-self-d
harmonic two-forms are square integrable on the Kerr–Ta
bolt space. This can be shown by explicitly integrating
Maxwell action. For the self-dual two-form we have

1

4π2

∫
F ∧ F = λ2

2π2
(M − N)

t0∫
0

dt

ϕ0∫
0

dϕ

(18)= 2λ2

κ
(M − N)

(
1− 2α

r+ − r−

)
,

wheret0 = 2π/κ andϕ0 = 2π(1 − Ω/κ). Since this integral
which represents the second Chern classC2 of theU(1)-bundle,
is finite, the self-dual two-formF is square integrable on th
Kerr–Taub-bolt space. For an anti-self-dualF , a plus sign mus
be introduced betweenM andN in (18). SinceF is propor-
tional toM − N , the expression in(18) not being quadratic in
the same quantity may look suspicious; however, Eq.(18) hap-
pens to be correct. The explanation is that thedr dθ integration
brings a factor of 1/(M − N).
y
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It is also useful to calculate the total magnetic fluxΦ which
is obtained by integrating the self-dual 2-formF over a closed
2-sphereΣ of infinite radius; dividing this by 2π gives the first
Chern class with minus sign

(19)−C1 = Φ

2π
= 1

2π

∫
Σ

F = 2λ(M − N)

(
1− 2α

r+ − r−

)
,

which must be equal to an integern because of the Dirac quan
tization condition. We see that the periodicity of angular co
dinate in the Kerr–Taub-bolt metric affects the magnetic-cha
quantization rule in a non-linear way. It involves both the “el
tric” and “magnetic” masses and the “rotation” parameter.
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