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Abstract

We formulate a model of continuous-time financial market consisting of a bank ac-
count with constant interest rate and one risky asset subject to capital gains taxes. We
consider the problem of maximizing expected utility from future consumption in infi-
nite horizon. This is the continuous-time version of the model introduced by Dammon,
Spatt and Zhang [11]. The taxation rule is linear so that it allows for tax credits when
capital gains losses are experienced. In this context, wash sales are optimal. Our main
contribution is to derive lower and upper bounds on the value function in terms of
the corresponding value in a tax-free and frictionless model. While the upper bound
corresponds to the value function in a tax-free model, the lower bound is a consequence
of wash sales. As an important implication of these bounds, we derive an explicit first
order expansion of our value function for small interest rate and tax rate coefficients.
In order to examine the accuracy of this approximation, we provide a characteriza-
tion of the value function in terms of the associated dynamic programming equation,
and we suggest a numerical approximation scheme based on finite differences and the
Howard algorithm. The numerical results show that the first order Taylor expansion is
reasonably accurate for reasonable market data.
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1 Introduction

Since the seminal papers of Merton [24],[25], there has been an extensive literature on the
problem of optimal consumption and investment decision in financial markets subject to
imperfections. We refer to Cox and Huang [7] and Karatzas, Lehoczky and Shreve [20] for
the case of incomplete markets, Cvitanić and Karatzas [9] for the case portfolio constraints,
Constantinides and Magill [6], Davis and Norman [10], Shreve and Soner [27], Duffie and
Sun [14] for the case of transaction costs.

However, the problem of taxes on capital gains received a very limited attention, although
taxes represent a much higher percentage than transaction costs in real securities markets.
Compared to ordinary income, capital gains are taxed only when the investor sells the
security, allowing for a deferral option. One may think that the taxes on capital gains have
an appreciable impact on individuals consumption and investment decisions. Indeed, under
taxation of capital gains, the portfolio rebalancement implies additional charges, therefore
altering the available wealth for future consumption. This possibly induces a depreciation
of consumption opportunities compared to a tax-free market. On the other hand, since
taxes are paid only when embedded capital gains are actually realized, the investor may
choose to defer the realization of capital gains and liquidate his position in case of a capital
loss, particularly when the tax code allows for tax credits.

Previous works attempted to characterize consumption and investment decisions of in-
vestors who have permanently to choose between two conflicting issues : realize the transfers
needed for an optimally diversified portfolio, or use the ability to defer capital gains taxes.
The first relevant work is due to Constantinides [5] who shows that the investment and con-
sumption decisions are separable, and that the optimal strategy consists in realizing losses
and deferring gains. These results rely heavily on the possibility of short-selling the risky
asset. Since capital gain realization are observed in real securities markets, the subsequent
literature considers the problem under the no short-sales constraint.

In a multi-period context many challenging difficulties appear because of the path depen-
dency of the problem. The taxation code specifies the basis to which the price of a security
has to be compared in order to evaluate the capital gains (or losses). The tax basis is either
defined as (i) the specific purchase price of the asset to be sold, (ii) the purchase price of
any asset held in the portfolio, or (iii) the weighted average of past purchase prices. In
some countries, investors can chose either one of the above definitions of the tax basis.

A deterministic model with the above definition (i) of the tax basis, together with the first
in first out priority rule for the stock to be sold, has been introduced by Jouini, Koehl and
Touzi [18], [19]. An existence result is proved, and the first order conditions of optimality
are derived under some conditions. However, the numerical complexity due to the path
dependency of the problem was not solved in the context of this model.

A financial model with the above definition (ii) of the taxation rule was considered by
Dybvig and Koo [15] in the context of a four-periods binomial model. Some numerical
progress was achieved later by DeMiguel and Uppal [12] who were able to consider more
periods in the binomial model and/or more stocks. This numerical progress is very limited
as these authors were not able to go beyond ten periods in the single-asset framework.
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The taxation rule (iii), where the tax basis is the weighted average of past purchase prices,
was first considered by Dammon, Spatt and Zhang [11] in the context of a binomial model
with short sales constraints and linear taxation rule. The average tax basis is actually used
in Canada. Dammon, Spatt and Zhang [11] considered the problem of maximizing the
expected discounted utility from future consumption, and provided a numerical analysis of
this model based on the dynamic programming principle. The important technical feature
of this model is that that the path dependency of the problem is seriously reduced, as the
dynamics of the tax basis is Markov. This implies a significant advantage of this model in
comparison to [15]. This advantage was further justified by [12] who provided a numerical
evidence that the certainty equivalent loss from using the average tax basis (iii) instead of
the exact tax basis (ii) is typically less that 1% for a large choice of parameter values.

The analysis of Dammon, Spatt and Zhang was further extended to the multi-asset frame-
work by Gallmeyer, Kaniel and Tompaidis [16]. We also refer to Leland [21] who formulated
a similar model to ours, but considered the problem of minimizing the tracking error to a
Benchmark index.

In this paper, we formulate a continuous time version of the Dammon, Spatt and Zhang
utility maximization problem under capital gains taxes, see Section 2. The financial market
consists of a tax-free riskless asset and a risky one. The holdings in risky asset are subject
to the no-short sales constraint, and the total wealth is restricted by the no-bankruptcy
condition. The risky asset is subject to taxes on capital gains. The tax basis is defined as
the weighted average of past purchase prices, and the taxation rule is linear, thus allowing
for tax credits.

In the context of this financial market, we consider the problem of maximizing expected
utility from future consumption in infinite horizon. The investor preferences are described
by the power utility which exhibits a constant relative risk aversion coefficient. This sim-
plification is only needed in order to reduce the numerical complexity by taking advantage
of the homogeneity property of the power utility function.

In our setting no explicit description of the value function and the optimal consumption-
investment policy is available. We therefore concentrate on the approximation aspect and
we obtain the two following main results.
• In Section 4, we derive an upper and a lower bound on the value function.
A first important implication of these bounds, is an explicit first order Taylor expansion of

the value function. This explicit approximation of the value function is valid for models with
small interest rate and tax parameters. However, our numerical experiments indicate that
this approximation is satisfactory with realistic values of interest rate and tax parameters
as it leads to a relative error within 10%.

The lower bound is derived as the limit of the value implied by a sequence of strategies
which mimics the Merton optimal strategy in a Merton-type fictitious frictionless financial
market with tax-deflated drift and volatility coefficients. The risk premium of this fictitious
financial market is smaller than that of the original market. So, even if the optimal strategy
in our problem is not available in explicit form, our first order expansion is accompanied by
an explicit strategy which achieves “the first order maximal utility value”. Therefore, this
sequence of strategies can be viewed as a first-order maximizing sequence for the problem
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of optimal investment under capital gains taxes.
The investment component of this approximation sequence exhibits a smaller exposition

to the risky asset. Then, the presence of taxes appears as a possible explanation of the risk
premium puzzle highlighted by Mehra and Prescott [23]. Notice that this is not consistent
with the numerical results of Dammon, Spatt and Zhang [11] for two reasons. First, the
bank account in their model is also subject to taxes with the same rate as the risky asset.
Second, when the investor portfolio is in a situation of capital gains, she takes advantage
of the tax forgiveness at death hypothesis assumed in their model by keeping her holdings
in risky assets to maturity.
• In order to evaluate the accuracy of our first order Taylor expansion, we report in

Section 6 a characterization of the value function in terms of the associated dynamic pro-
gramming equation. The rigorous derivation of these results involves heavy technicalities
and is therefore reported in the accompanying paper [4]. In order to obtain a satisfactory
uniqueness result, which is crucial for the justification of our numerical results of this paper,
we introduce in [4] a convenient approximation of our value function.

As a technical by-product of our analysis, we obtain the continuity (and even Lipschitz-
continuity, up to a change of variable) of the value function. We recall that, in the tax-free
models of [24, 6, 10], the value function is immediately seen to be concave, and the continuity
is therefore trivial. Under capital gains taxes, this argument fails, and the numerical results
of Section 7 suggest that the value function is indeed not concave.

This characterization of the value function, in terms of the associated dynamic program-
ming equation, is exploited in order to define a numerical approximation based on the finite
differences and the Howard algorithm. The convergence of our numerical procedure is guar-
anteed by the general result of Barles and Souganidis [3]. The precise description of our
algorithm together with some numerical results are displayed in Section 7. In particular,
for reasonable market data, our explicit first order Taylor expansion of the value func-
tion is remarkably close to the numerical approximation obtained by the finite differences
algorithm.

The numerical approximation of the optimal strategy displays a bang-bang behavior as
expected in our singular control problem. As in the transaction costs context of [10], the
state space is partitioned in three regions : the no-transaction region NT, the buy region B,
and the sell region S. In NT, the optimal investor holds his position on the financial market,
and does not perform any trading. In S, the optimal trader sells immediately part of his
holdings in risky assets so that his position is instantaneously removed to the NT region.
In particular, this region contains all capital loss positions, since wash sales are shown to be
optimal in the absence of transaction costs. Finally, in the B region, the optimal investor
buys immediately some amount of risky asset, thus removing instantaneously the position
to the NT region. In contrast with the transaction costs framework of [10], these regions
are not cones.

Notations : For a domain D in Rn, we denote by USC(D) (resp. LSC(D)) the collection
of all upper semi-continuous (resp. lower semi-continuous) functions from D to R. The set
of continuous functions from D to R is denoted by C0(D) := USC(D) ∩ LSC(D). For a
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parameter δ > 0, we say that a function f : D −→ R has δ−polynomial growth if

sup
x∈D

|f(x)|
1 + |x|δ

< ∞ .

We finally denote by USCδ(D) := {f ∈ USC(D) : f has δ−polynomial growth}. The sets
LSCδ(D) and C0

δ(D) are defined similarly.

2 Consumption-investment models with capital gains taxes

2.1 The financial assets

Throughout this paper, we consider a complete probability space (Ω,F , P), endowed with a
standard scalar Brownian motion W = {Wt, 0 ≤ t}, and we denote by F the P-completion
of the natural filtration of the Brownian motion.

We consider a financial market consisting of one bank account with constant interest rate
r > 0, and one risky asset with price process evolving according to the Black and Scholes
model :

dPt = Pt [(r + θσ)dt + σ dWt] , (2.1)

where θ > 0 is a constant risk premium, and σ > 0 is a constant volatility parameter. The
positivity restriction on the risk premium coefficient ensures that positive investment in the
risky asset is interesting. The shares of stock are assumed to be infinitely divisible.

2.2 Taxation rule on capital gains

The sales of the stock are subject to taxes on capital gains. The amount of tax to be paid
for each sale of risky asset, at time t, is computed by comparison of the current price Pt to
an index Bt defined as the weighted average price of the shares purchased by the investor
up to time t. When Pt ≥ Bt, i.e. the current price of the risky asset is greater than the
weighted average price, the investor would realize a capital gain by selling the risky asset.
Similarly, when Pt ≤ Bt, the sale of the risky asset corresponds to the realization of a
capital loss.

In order to better explain the definition of the tax basis B, we provide the following
example taken from the official Canadian tax code, see the document Capital Gains 2004
p21 on www.cra.gc.ca.

The following table reports transactions performed by an individual on shares of STU
Ltd, and how the tax basis of the individual changes over time
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Transaction Price P number of shares Portfolio composition Tax basis B

(Dollars) (unitless) (unitless) (Dollars)

Purchase at t1 15.00 100 100 : 15.00/share 15.00
Purchase at t2 20.00 150 100 : $15.00/share

150 : $20.00/share 18.00
Sale at t3 - 200 20 : $15.00/share

= 4
5 (100 + 150) 30 : $20.00/share 18.00

Purchase at t4 21.00 350 20 : $15.00/share
30 : $20.00/share

350 : $21.00/share 20.625

Just after a sale transaction, the tax basis is not changed. However sales do alter the tax
basis starting from the date of the next purchase. Notice however that the tax basis is only
affected by the number of shares which has been sold, and not by the sale price.

The sale of a unit share of stock at some time t is subject to the payment of an amount
of tax computed according to the tax basis of the portfolio at time t. In this paper we
consider a linear taxation rule, i.e. this amount of tax is given by

`(Pt −Bt) := α (Pt −Bt) , (2.2)

where α ∈ (0, 1) is a constant tax rate coefficient. When the tax basis is smaller than the
spot price, the investor realizes a capital gain. Then, by selling one unit of risky asset at
the spot price Pt, the amount of tax to be paid is α(Pt −Bt). When the tax basis is larger
than the spot price, the investor receives the tax credit α(Bt − Pt) for each unit of asset
sold at time t.

Remark 2.1 In practice, the realized capital losses are deduced from the total amount of
taxes that the investor has to pay, and he annual deductible capital losses amount may
be limited by the tax code. In our model we follow Dammon, Spatt and Zhang [11] by
adopting the simplifying assumption that capital losses are credited immediately without
any limit.

Remark 2.2 Our definition of the tax basis B is slightly different from that of Dammon,
Spatt and Zhang [11] who set the tax basis to be equal to the spot price whenever the average
purchase price exceeds the current price. This does not affect the results, as Proposition
4.5 below shows that wash sales are optimal.

2.3 Consumption-investment strategies

We denote by Xt the position on the bank, Yt the position on the risky assets account, and

Kt := Bt
Yt

Pt
, t ≥ 0 , (2.3)

the position on the risky asset account evaluated at the basis price. The trading in risky
asset is subject the no-short sales constraint

Yt ≥ 0 P− a.s. for all t ≥ 0 , (2.4)
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and the position of the investor is required to satisfy the solvency condition

Zt := Xt + Yt − ` (Pt −Bt)
Yt

Pt

= Xt + (1− α)Yt + αKt ≥ 0 P− a.s. (2.5)

i.e. the total wealth of the investor, after liquidation of the risky asset position, is non-
negative at any point in time.

Trading on the financial market is described by means of the transfers between the two
investment opportunities defined by two F−adapted, right-continuous and non-decreasing
processes L = {Lt, t ≥ 0} and M = {Mt, t ≥ 0} with L0− = M0− = 0. The amount
transferred from the bank to the non-risky asset account at time t is given by dLt and
corresponds to a purchase of risky asset. The amount transferred from the risky asset
account to the bank at time t is given by Yt−dMt and corresponds to a sale of risky asset.
The example of calculation of the tax basis of a portfolio, displayed in the above table,
shows the importance of expressing the sales in terms of proportions of the total holdings
in risky asset.

In order to ensure that the no short-sales constraint (2.4) holds, we restrict the jumps of
M by

∆Mt ≤ 1 for t ≥ 0 P− a.s. (2.6)

With these notations, the evolution of the wealth on the risky asset account is given by

dYt = Yt
dPt

Pt
+ dLt − Yt−dMt . (2.7)

and, by definition of the tax basis B and (2.3), we have :

dKt = dLt − Kt−dMt . (2.8)

Observe that the contribution of the sales in the dynamics of Kt is evaluated at the basis
price. For any given initial condition (Y0−,K0−) equations (2.7)-(2.8) define a unique
F−adapted process (Y, K) with values in R2

+, the non-negative orthant of R2.
In addition to the trading activities, the investor consumes in continuous time at the rate

C = {Ct, t ≥ 0}. Here, C is an F−adapted process with

C ≥ 0 and
∫ T

0
Ctdt < ∞ P− a.s. for all T > 0 . (2.9)

Then, the bank component of the wealth process satisfies the dynamics

dXt = (rXt − Ct) dt− dLt + Yt−dMt − ` (Pt −Bt−)
Yt−dMt

Pt

= (rXt − Ct) dt− dLt + [(1− α)Yt− + αKt−] dMt . (2.10)

Since the processes Y and K have been previously defined, the above dynamics uniquely
defines an F−adapted process X valued in R, for any given initial condition X0−.
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For later use, we report the dynamics of the corresponding liquidation value process
defined in (2.5), which follows from (2.7)-(2.8)-(2.10) :

dZt = (rZt − Ct) dt + (1− α) Yt

(
dPt

Pt
− rdt

)
− rαKtdt . (2.11)

Definition 2.1 (i) A consumption investment strategy is a triple of F−adapted processes
ν = (C,L,M) where C satisfies (2.9), L,M are non-decreasing, right-continuous, L0− =
M0− = 0, and the jumps of M satisfy (2.6).
(ii) Given an initial condition s = (x, y, k) ∈ R×R+ ×R+, and a consumption-investment
strategy ν, we denote by Ss,ν = (Xs,ν , Y s,ν ,Ks,ν) the unique strong solution of (2.10)-(2.7)-
(2.8) with initial condition Ss,ν

0− = s.
(ii) Given an initial condition s = (x, y, k) ∈ R × R+ × R+, a consumption-investment
strategy ν is said to be s−admissible if the corresponding state process Ss,ν satisfies the
no-bankruptcy constraint (2.5). We shall denote by A(s) the collection of all s−admissible
consumption-investment strategies.

The admissibility conditions imply that the process Ss,ν is valued in the closure S̄ of

S =
{
(x, y, k) ∈ R3 : x + (1− α)y + αk > 0 , y > 0 , k > 0

}
. (2.12)

We partition the boundary of S into ∂S = ∂zS ∪ ∂yS ∪ ∂kS with

∂yS :=
{
(x, y, k) ∈ S̄ : y = 0

}
, ∂kS :=

{
(x, y, k) ∈ S̄ : k = 0

}
,

and

∂zS =
{
(x, y, k) ∈ S̄ : z := x + (1− α)y + αk = 0

}
.

2.4 The consumption-investment problem

The investor preferences are characterized by a power utility function with constant relative
risk aversion coefficient 1− p ∈ (0, 1) :

U(c) :=
cp

p
for all c ≥ 0 .

The restriction of the relative risk aversion coefficient to the interval (0, 1) does not corre-
spond to observed values on real financial markets. We do impose this condition in order
to simplify the analysis of this paper, as the boundary condition on ∂zS is easily obtained,
see Proposition 4.1.

For every initial data s ∈ S̄ and any admissible strategy ν ∈ A(s), we introduce the
investment-consumption criterion

JT (s, ν) := E
[∫ T

0
e−βtU(Ct)dt + e−βT U(Zs,ν

T )1{T<∞}

]
, T ∈ R+ ∪ {+∞} .(2.13)

The consumption-investment problem is defined by

V (s) := sup
ν∈A(s)

J∞(s, ν) , s ∈ S̄ . (2.14)
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We shall assume that the parameters r, θ, σ, p and β satisfy the condition :

β

p
− r − θ2

2(1− p)
> 0 , (2.15)

which has been pointed out as a sufficient condition for the finiteness of the value function
in the context of a financial market without taxes in [24] and [27].

3 Review of the tax-free model

In this section, we briefly review the solution of the consumption-investment problem when
the financial market is free from taxes on capital gains. The properties of the corresponding
value function are going to be useful to state relevant bounds for the maximal utility
achieved in a financial market with taxes.

In the classical formulation of the tax-free consumption-investment problem [24], the
investment control variable is described by means of a unique process π which represents
the proportion of wealth invested in risky assets at each time, and the consumption process
C is expressed as a proportion c of the total wealth :

dZ̄t = Z̄t [(r − ct)dt + πtσ(θdt + dWt)] . (3.1)

In this context, a consumption-investment admissible strategy is a pair of adapted processes
(c, π) such that c is nonnegative and∫ T

0
ctdt +

∫ T

0
|πt|2dt < ∞ P− a.s. for all T > 0 .

We shall denote by Ā the collection of all such consumption-investment strategies. For
every initial condition z ≥ 0 and strategy (c, π) ∈ Ā, there is a unique strong solution to
(3.1) that we denote by Z̄z,c,π. The frictionless consumption-investment problem is

V̄ (z) := sup
(c,π)∈Ā

E
[∫ ∞

0
e−βtU

(
ctZ̄

z,c,π
t

)
dt

]
. (3.2)

Theorem 3.1 ([24]) Let Condition (2.15) hold. Then, for all z ≥ 0 :

V̄ (z) = γ(r, θ)
zp

p
, where γ(r, θ) :=

(
β − p r

1− p
− p θ2

2 (1− p)2

)p−1

,

and the constant consumption-investment strategy

π̄ :=
θ

(1− p)σ
, c̄ := γ(r, θ) ,

is optimal.

Remark 3.1 The reduction of the model of Section 2 to the frictionless case, i.e. α = 0,
does not alter the value function. However, the investment strategies in our formulation are
constrained to have bounded variation. Since the Merton optimal strategy is well-known
to be unique and has unbounded variation, it follows that existence fails to hold in our
formulation.

9



4 First properties of the value function

4.1 Boundary value

We first discuss the value function on the boundary of the state space S. Observe that
there is no a priori information on the boundary components ∂yS and ∂kS. This is one
source of difficulty in the numerical part of this paper, as this state constraint problem
needs a special treatment, see [4]. On the remaining boundary ∂zS, the following result
states that the value function is zero.

Proposition 4.1 For every s ∈ ∂zS, we have V (s) = 0.

Proof. Let s be in ∂zS, and ν be in A(s). By the definition of the set admissible controls,
the process Zs,ν is non-negative. By Itô’s Lemma together with the non-negativity of C,
K, and the non-decrease of L, this provides

0 ≤ e−rtZs,ν
t ≤ (1− α)

∫ t

0
e−ruY s,ν

u σ [θdu + dWu] .

Let Q be the probability measure equivalent to P under which the process {θu + Wu, u ≥ 0}
is a Brownian motion. The process appearing on the right-hand side of the last inequality
is a Q−supermartingale as a non-negative Q−local martingale. By taking expected values
under Q, it then follows from the last inequalities that Zs,ν = Y s,ν = Ks,ν = C = L ≡ 0.
We have then proved that for s ∈ ∂zS, any admissible strategy ν = (C,L,M) ∈ A(s) is
such that C = L ≡ 0, implying that V (s) = 0. 2

4.2 Monotonicity and Homogeneity

Proposition 4.2 The value function V is nondecreasing with respect to each of the vari-
ables x, y, and k.

Proof. Let s := (x, y, k) be in S̄, and s′ := (x′, y′, k′) such that s′ − s ∈ R3
+. Clearly s′ is

in S̄. In order to prove the required result, it is sufficient to show that A(s) ⊂ A(s′). Let
ν = (C,L,M) be an arbitrary strategy in A(s), and we claim that the liquidation value
process Zs′ν is non-negative, so that ν ∈ A(s′). Indeed, for t ≥ 0, we directly compute that

Ŷt := Y s′,ν
t − Y s,ν

t = (y′ − y)e(r+σθ−σ2/2)t+σWt−Mc
t

∏
0≤s≤t

(1−∆Ms) ≥ 0 P− a.s. ,

K̂t := Ks′,ν
t −Ks,ν

t = (k′ − k)e−Mc
t

∏
0≤s≤t

(1−∆Ms) ≥ 0 , P− a.s.

where we denoted by M c the continuous part of M , and

e−rt
(
Xs′,ν

t −Xs,ν
t

)
= x′ − x +

∫ t

0
e−ru

[
(1− α)Ŷu− + αK̂u−

]
dMu ≥ 0 .

Then, Zs′,ν
t ≥ Zs,ν

t ≥ 0 since ν ∈ A(s), and therefore ν is in A(s′). 2

We next state a homogeneity property of V which is implied by the choice of the power
utility function. This feature will be used, in the numerical approximation of this paper,
to reduce the dimensionality of the state space.
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Proposition 4.3 The value function V satisfies the following homogeneity property

V (δs) = δp V (s) for all s ∈ S̄ and δ > 0 .

Proof. 1. Let ν = (C,L,M) be an arbitrary strategy in A(s), and define the strategy ν ′

:= (δC, δL, M). We easily verify that Sδs,ν′ = δSs,ν ∈ S̄, which implies that ν ′ is in A(δs),
and therefore

V (δs) ≥ E
[∫ ∞

0
e−βuU(δCu)du

]
= δpJ∞(δ, ν) ,

where the last equality follows from the homogeneity property of the utility function U . By
the arbitrariness of ν in A(s), this shows that V (δs) ≥ δpV (s).
2. The reverse inequality follows immediately from the first step of this proof by writing
V (s) = V

(
δ−1δs

)
≥ δ−pV (δs). 2

4.3 Continuity of the value function

In the absence of taxes on capital gains, i.e. α = 0, it is easy to deduce from the concavity
of U that the value function V is concave, and therefore continuous. The numerical results
exhibited in Section 7 reveal that this property is no longer valid when α > 0. The proof of
the following continuity result is obtained by first reducing the continuity problem to the
ray {(x, 0, 0), x ∈ R+)}. This is achieved by means of a comparison result in the sense of
viscosity solutions. Then the continuity on the latter ray is proved by direct argument.

Proposition 4.4 The value function V is continuous on S̄.

Proof. See Appendix. 2

4.4 Optimality of wash sales

In this subsection we prove that it is always worth realizing capital losses whenever the
tax basis exceeds the spot price of the risky asset. In other words, given s = (x, y, k) ∈ S̄,
every admissible strategy ν ∈ A(s), with Ks,ν

τ > Y s,ν
τ (i.e. Bs,ν

τ > Pτ ) for some stopping
time τ , can be improved strictly by realizing the capital loss on the entire portfolio at time
τ . This property is observed in practice, and is known as a wash sale. It was stated in [11],
and embedded directly in the definition of the tax basis.

This result can be understood easily. Observe that any wash sale implies an immediate
decrease of the holdings in risky assets evaluated at the basis price K, while the total
holdings in risky assets remain unchanged. Since the dynamics of K in (2.8) is autonomous
and K ≥ 0, it follows that wash sales imply a permanent decrease of the K variable. We
now observe from the dynamics of the Z variable in (2.11) that this in turn implies an
increase of the after-tax liquidation value of the portfolio. Since such an increase may be
used to increase the consumption rate, this shows that wash sales induce an increase of the
total consumption.
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Proposition 4.5 Consider some s ∈ S̄ and ν = (C,L,M) ∈ A(s). Assume that Ks,ν
τ

> Y s,ν
τ a.s. for some finite stopping time τ . Then there exists an admissible strategy

ν̃ =
(
C̃, L̃, M̃

)
∈ A(s) such that

Y ν̃ = Y ν , ∆M̃ −∆M = 1{τ} and J∞(s, ν̃) > J∞(s, ν) ,

i.e. wash sale is optimal.

To prove this result, we start by the following lemma.

Lemma 4.1 In the setting of Proposition 4.5, set (L′,M ′) := (L,M)+(1, 1)(1−∆Mτ )1t≥τ .
Then ν ′ = (C,L′,M ′) ∈ A(s) and the resulting state process satisfies

Y s,ν′ = Y s,ν , Zs,ν′ ≥ Zs,ν , Ks,ν′ ≤ Ks,ν a.s. and Zν′
t > Zν

t a.s. on {t > τ} .

Proof. 1. Since ν and ν ′ differ only by the jump at the stopping time τ , and ∆L′τ = ∆M ′
τ ,

we have

Y s,ν′ = Y s,ν , and
(
Zs,ν′

t ,Ks,ν′

t

)
= (Zs,ν

t ,Ks,ν
t ) for all t < τ .

Moreover, it follows from (2.11) that the processes Zs,ν and Zs,ν′ have continuous paths.
Hence Zs,ν′

τ = Zs,ν
τ .

2. For t > τ , we compute directly from (2.8) that

Ks,ν′

t −Ks,ν
t =

(
Ks,ν′

τ −Ks,ν
τ

)
e−Mc

t +Mc
τ

∏
τ<u≤t

(1−∆Mu)

Observe that the newly defined strategy ν ′ consists in selling out the whole portfolio at
time τ , as ∆M ′

τ = 1. Hence Ks,ν′
τ = Y s,ν′

τ = Y s,ν
τ , and

Ks,ν′

t −Ks,ν
t = (Y s,ν

τ −Ks,ν
τ ) e−Mc

t +Mc
τ

∏
τ<u≤t

(1−∆Mu) > 0 for t ≥ τ ,

since Y s,ν
τ −Ks,ν

τ < 0, by definition of τ .
3. We finally compute directly from (2.11) that

e−rt
(
Zs,ν′

t − Zs,ν
t

)
= −rα

∫ t

τ
e−ru

(
Ks,ν′

u −Ks,ν
u

)
du > 0 , for t > τ ,

by Step 2 of this proof. Hence Zs,ν′ ≥ 0 and ν ′ ∈ A(s). 2

Proof of Proposition 4.5. Let ν ′ = (C,L′,M ′) be the transformation of of the consumption-
investment strategy ν introduced in the previous Lemma 4.1, and define the strategy
ν̃ = (C̃, L̃, M̃) by :

C̃t := Ct + ξ
(
Zs,ν̃

t − Zs,ν
t

)
1t≥τ and

(
L̃, M̃

)
:=

(
L′,M ′) , (4.1)

12



where ξ is an arbitrary positive constant. Observe that (Y s,ν̃ ,Ks,ν̃) = (Y s,ν′ ,Ks,ν′), and
Zs,ν̃

t = Zs,ν′

t = Zs,ν
t for t ≤ τ . In particular, Ks,ν̃ −Ks,ν = Ks,ν′ −Ks,ν ≤ 0 by Lemma

4.1. In order to check the admissibility of the strategy ν̃, we directly compute that :

e−r(t−τ)
(
Zs,ν̃

t − Zs,ν
t

)
= Zs,ν̃

τ − Zs,ν
τ − rα

∫ t

τ
e−r(u−τ)

(
Ks,ν̃

u −Ks,ν
u

)
du

+ξ

∫ t

τ
e−r(u−τ)

(
Zs,ν̃

u − Zs,ν
u

)
du

≥ −ξ

∫ t

τ
e−r(u−τ)

(
Zs,ν̃

u − Zs,ν
u

)
du .

By the Gronwall inequality, this implies that Z ν̃
t > Zν

t on {t > τ}, and therefore C̃ > C on
{t > τ} with positive Lebesgue⊗P measure. Hence J∞(s; ν̃) > J∞(s; ν). 2

5 The first order approximation

5.1 Upper bound

We now derive an upper bound on the value function V , which expresses that there is no
way for the investor to take advantage of tax credits in order to do better than in the
tax-free financial market.

Proposition 5.1 For s = (x, y, k) in S̄, we have V (s) ≤ V̄ (x + (1− α)y + αk).

Proof. Let s = (x, y, k) be in S̄. Consider some consumption-investment strategy ν =
(C,L,M) in A(s). Define a consumption-investment strategy ν̃ = (C, (1 − α)L,M) and
denote by (X̃, Ỹ ) the corresponding tax-free bank and risky assets account processes with
the initial endowment (x + αk, (1− α)y). Clearly

Ỹt = (1− α)Y s,ν
t ≥ 0 P− a.s.

We next prove that ν̃ is admissible in the tax-free financial market by showing that Z̃t :=
X̃t + Ỹt is P− a.s. nonnegative. Since Z̃0− − Zs,ν

0− = 0, we have

Z̃t − Zs,ν
t ≥ ert

∫ t

0
e−rurαKs,ν

u du ≥ 0 .

Hence, Z̃s,ν
t ≥ Zs,ν

t ≥ 0 P− a.s. and V̄ (x + (1−α)y + αk) ≥ J∞(s, ν), see Remark 3.1. The
required result follows from the arbitrariness of ν ∈ A(s). 2

5.2 Lower bound

Recall the function γ defined in Theorem 3.1.

Proposition 5.2 For s = (x, y, k) in S̄ and z = x+(1−α)y+αk, there exists a sequence
of admissible strategies (νn)n≥1 ⊂ A(s) such that

V (s) ≥ γ
(
r, θ̃α

) zp

p
= lim

n→∞
J∞ (s, νn) where θ̃α := θ − rα

σ(1− α)
,

13



i.e. the value function of the Merton frictionless problem with the smaller risk premium θ̃α

can be approached as close as possible in the context of the financial market with taxes.

This result is proved by producing a sequence of admissible strategies (Cn, Ln,Mn)n≥1 ⊂
A(s) which approximates the Merton’s value function with the smaller risk premium θ̃α.
To give an intuitive justification of this result, we re-write (2.11) as

dZt = (rZt − Ct) dt + Yt σ̃α
(
dWt + θ̃αdt

)
+ rα (Yt −Kt) dt , (5.1)

where θ̃α is defined in the statement of Proposition 5.2 and σ̃α := (1 − α)σ. The above
equation shows that the dynamics of Z differs from the dynamics (3.1) of the wealth process
Z̄, in the classical frictionless model with modified parameters (σ̃α, θ̃α), only by the term
rα(Y − K). In view of Proposition 4.5, we expect this term to be non-negative for the
optimal strategy (if exists). This hints that the liquidation value process Z is larger than
the wealth process in the fictitious tax-free financial market with modified risk premium,
and therefore justifies the inequality of Proposition 5.2.

The proof reported in Appendix A exhibits an explicit sequence of strategies which mim-
ics the optimal consumption-investment strategy in the Merton frictionless model, while
keeping the difference Y −K small, or equivalently, the tax basis close to the spot price of
risky asset.

Remark 5.1 Let b := r + θσ be the instantaneous mean return coefficient in our financial
market. Then, the modified risk premium θα can be easily interpreted in terms of the
modified volatility coefficient σα = (1 − α)σ and a similarly modified instantaneous mean
return coefficient bα := (1− α)b, as

θα =
bα − r

σα
.

This fictitious financial market with such modified coefficients corresponds to the situation
where the investor is forced to realize the capital gains or losses, at each time t, before
adjusting the portfolio.

5.3 The first order expansion

Propositions 5.1 and 5.2 provide the following bounds on the value function V

γ(r, θ̃α)
(x + (1− α)y + αk)p

p
≤ V (x, y, k) ≤ γ (r, θ)

(x + (1− α)y + αk)p

p
, (5.2)

where θ̃α is defined in the statement of Proposition 5.2, and γ is defined in Theorem 3.1.
Observe that θ̃α = θ whenever α = 0 or r = 0. Therefore, we might expect that these
bounds are tight for small interest rate or tax parameter. This is the object of the following
first main result of this paper.

Proposition 5.3 For s = (x, y, k) ∈ S, we have

V (s) = V app(s) + o(α + r) ,

14



where o(ξ) is a function on R with o(ξ)/ξ −→ 0 as ξ → 0, and

V app(s) :=
(

γ(0, θ) + r
∂γ

∂r
(0, θ)

)
(x + y)p

p
+ α γ(0, θ)(k − y)(x + y)p−1 .

Before turning to the proof of this result, let us make some comments.
1. Observe that the function γ defined in Theorem 3.1 is decreasing in the r variable.

Then, the above first order expansion shows that the value function V is decreasing in the
interest rate variable (for small interest rate and tax parameters).

2. The variation of the value function in terms of the tax rate α depends on the initial
position of the tax basis. If the initial tax basis is larger than the spot price, i.e. in a
situation of capital gain loss, the investor takes advantage immediately of the tax credit, as
stated in Proposition 4.5, and the value function V is increasing in α (for small α). In the
opposite situation, i.e. when the initial tax basis is smaller than the spot price, the value
function is decreasing in α. Finally, when the initial tax basis coincides with the spot price,
the value function is not sensitive to the tax rate in the first order.

This variation of the value function (up to the first order) in terms of the tax rate α is
somehow surprising. Indeed, in a capital loss situation, an increase of the tax parameter
implies

- on one hand, a increase of the tax credit received initially by the agent,
- on the other hand, a larger amount of tax to be paid during the infinite lifetime of the

agent.
Our first order expansion shows that, for small interest rate and tax parameters, the increase
of initial tax credit is never compensated by the increase of tax over the infinite lifetime.

Proof of Proposition 5.3 It is sufficient to observe that the bounds on the value function
V in (5.2) are smooth functions with identical partial gradient with respect to (r, α) at the
origin. This follows from the fact that

∂θ̃α

∂α

∣∣∣∣∣
(r,α)=(0,0)

=
∂θ̃α

∂r

∣∣∣∣∣
(r,α)=(0,0)

= 0 .

2

Remark 5.2 Since the lower bound in (5.2) has the same first order Taylor expansion than
the value function V , we can view the corresponding strategy as nearly optimal. From the
discussion following Proposition 5.2, the portfolio allocation defining the lower bound is by
definition an approximation of the constant portfolio allocation

π̄α :=
θ̃α

(1− p)σ̃α
=

1
(1− p)σ2

[
b

1− α
− r

(1− α)2

]
,

where b := σθ + r is the instantaneous mean return of the risky asset. Direct computation
shows that π̄α ≤ π̄0 if and only if r ≥ (1−α)(ρ− r). Using the data set of Dammon, Spatt
and Zhang [11] (r = 6%, ρ = 9%, α = 36%), we see that π̄α ≤ π̄0.
Notice that the portfolio π̄α is not consistent with the numerical findings of [11]. This is
due to the fact that the bank account in their model is also subject to taxes with the same
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tax rate as for the risky asset which implies that the optimal portfolio strategy in the forced
realization case is given by

π̂α =
b(1− α)− r(1− α)
(1− p)σ2(1− α)2

=
π̂0

1− α
,

which is increasing in α.

6 Characterization by the dynamic programming equation

The goal of this section is to provide a characterization of V by means of a second order
partial differential equation for which we shall provide a numerical solution in the sub-
sequent section. Unfortunately, we are unable to obtain a characterization of V by the
corresponding dynamic programming equation. In paragraph 6.2 below, we exhibit a con-
sistent approximation V ε as the unique solution of an approximating second order partial
differential equation.

6.1 The dynamic programming equation

For s in S̄ and ν = (C,L,M) in A, the jumps of the state processes S are given by

∆Ss,ν
t = −∆Lt gb − ∆Mt

[
(1− α)Y s,ν

t− + αKs,ν
t−
]

gs
(
Ss,ν

t−
)

where the vector fields gb and gs(x, y, k) are defined by

gb :=

 1
−1
−1

 and gs(s) :=

 −1
1

1−α

0

+

 0
−α
1−α

1

 k

(1− α) y + αk
1(y,k) 6=0 .

The dynamic programming equation of our problem is then given by

min
[
−LV , gb ·DV , gs ·DV

]
= 0 on S̄ \ ∂zS and V = 0 on ∂zS (6.1)

where L is the second order differential operator defined by

LV = βV − rxV x− byVy − 1
2σ2y2Vyy − Ũ(Vx) , with Ũ(q) = supc≥0 U(c)− cq .

Observe that we have no information on the regularity of the value function V , hence we
cannot prove that V is a classical solution to (6.1). Moreover the value function V is only
known on the boundary ∂zS, see Proposition 4.1, but there is no possible knowledge of
V on ∂yS ∪ ∂kS. We then need to use the notion of viscosity solutions which allows for
a weak formulation of solutions to partial differential equations and boundary conditions.
For a locally bounded function v : S̄ −→ R, we shall use the classical notations in viscosity
theory

v∗(s) := lim sup
S3s′→s

v(s′) and v∗(s) := lim inf
S3s′→s

v(s′)

for the corresponding upper and lower semi-continuous envelopes.
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Definition 6.1 (i) A locally bounded function v is a constrained viscosity subsolution of
(6.1) if v∗ ≤ 0 on ∂zS, and for all s ∈ S̄ \ ∂zS and ϕ ∈ C2(S̄) with 0 = (v∗ − ϕ)(s) =
maxS̄\∂zS(v∗ − ϕ) we have min

[
−Lϕ , gb ·Dϕ , gs ·Dϕ

]
≤ 0.

(ii) A locally bounded function v is a constrained viscosity supersolution of (6.1) if v∗ ≥ 0
on ∂zS, and for all s ∈ S and ϕ ∈ C2(S) with 0 = (v∗ − ϕ)(s) = minS(v∗ − ϕ) we have
min

[
−Lϕ , gb ·Dϕ , gs ·Dϕ

]
≥ 0.

(iii) A locally bounded function v is a constrained viscosity solution of (6.1) if it is a con-
strained viscosity subsolution and supersolution.

In the above definition, Observe that there is no boundary value assigned to the value
function on ∂yS ∪ ∂kS. Instead, the subsolution property holds on this boundary. Notice
that the supersolution property is satisfied only in the interior of the domain S. The
notion of constrained viscosity solution was introduced in [28]. For later use, we report the
following results [4].
Because gs is not locally Lipschitz continuous, we were unfortunalety not able to obtain a
characterization of the value function V as constrained viscosity solution of (6.1). In order
to justify the validity of our numerical results, we then introduce in the next section an
approximation which builds on the results of the accompanying paper [4].

Remark 6.1 The main difficulty to prove a stronger comparison result, which would not
require a priori comparison on {(x, 0, 0) : x ≥ 0}, is that the mapping gs is not continuous
on this axis. In the subsequent paragraph, we define an approximation V ε of V by means
of a convenient approximation of gs by a sequence of locally Lipschitz-continuous functions
(gs

ε)ε>0 on S̄ \ ∂zS.

6.2 Characterization by approximation

For every ε > 0, we define the function

fε(x, y, k) := 1 ∧
(

k

εz
− 1
)+

with z := x + (1− α)y + αk ,

together with the approximation of gb and gs :

gb
ε :=

 1 + ε

−1
−1

 ,

and

gs
ε(x, y, k) := gs (x, y, kfε(s)) for all s ∈ S \ ∂zS .

Notice that gs
ε is locally Lipschitz-continuous on S̄ \ ∂zS, and gs

ε(s) = gs(s) whenever
k ≥ 2εz. We now state the main result for the numerical application of the subsequent
paragraph.
In the following statement, a constrained viscosity solution of (6.2) is understood in the
sense of Definition 6.1 with (gb

ε ,gs
ε) substituted to (gb,gs).
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Theorem 6.1 ([4]) For each ε > 0, the boundary value problem

min
{
−Lϕ , gb ·Dϕ , gs

ε ·Dϕ
}

= 0 on S̄ \ ∂zS and ϕ = 0 on ∂zS (6.2)

has a unique constrained viscosity solution V ε in the class C0
p

(
S̄
)
. Moreover,

(i) the family (V ε)ε>0 is non-increasing and converges to the value function V uniformly
on compact subsets of S̄ as ε ↘ 0,
(ii) for every s ∈ S̄ and δ ≥ 0, we have V ε(δs) = δp V ε(s).

Proof. The existence of V ε as the unique constrained viscosity solution of (6.2) in the
class C0

p

(
S̄
)

is shown in [4], where we introduced the value function vε,λ of a consumption
investment problem with transaction costs (λ, 0) and ε−modified taxation rule near the
ray {(x, 0, 0), x ∈ R+}. Here V ε = vε,ε. The property (ii) was proved for vε,λ in [4], and is
therefore inherited by V ε.
It remains to prove (i). The non-increase of the sequence (V ε)ε>0 is inherited from the non-
increase of the sequence

(
vε,λ

)
ε>0

, proved in [4], together with the decrease of the sequence(
vε,λ

)
λ>0

. If follows from this monotonicity property that V 0 := limε→0 V ε is well defined.
Now observe that vε,λ ≤ V ε ≤ v0,ε ≤ V for every λ ≥ ε. Then

lim
λ→0

lim
ε→0

vε,λ ≤ V 0 ≤ V ,

and the limit on the left hand side is shown to be V in [4]. Hence V 0 = V , and the
convergence holds uniformly on compact subsets by monotonicity of (V ε) and the continuity
of the limit V . 2

In the above Theorem 6.1, the uniqueness statement is a consequence of the following
comparison result, which will be further needed in order to justify the convergence of our
numerical method by the general argument of Barles and Souganidis [3].

Proposition 6.1 ([4]) Let u be an upper-semicontinuous constrained viscosity subsolu-
tion of (6.2), and v be a constrained viscosity supersolution of (6.2) such that (u − v)+ ∈
USCp

(
S̄
)
. Then u ≤ v in the entire domain S̄.

7 Numerical results

We have stated in the previous section that the value function V is approximated by the
functions (V ε)ε>0, where for each ε > 0, V ε can be computed as the unique viscosity solution
of the boundary value problem (6.2). In this section we provide a numerical estimate for V ,
based on a numerical schemes for (6.2) defined by the finite-difference discretization, and
the classical Howard algorithm.

This section is organized as follows. We first exploit the homotheticity property of V ε

(Theorem 6.1 (ii)) to reduce the dimension and the domain of the state space to [0, 1] ×
[0, 1]. We next describe the numerical scheme based on finite differences and the Howard
algorithm.
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7.1 Change of variables and reduction of the state dimension

By the homotheticity property of V ε (Theorem 6.1(ii)) we have for s = (x, y, k) ∈ S̄ \ ∂zS
and z := x + [(1− α)y + αk]

V ε(s) = zp Vε

(
y

z
,
k

z

)
where Vε(ξ1, ξ2) := V ε (1− (1− α)ξ1 − αξ2, ξ1, ξ2) .

Next, for a vector ξ ∈ R2
+, we define the vector ζ ∈ [0, 1]2 by

ζi := ξi/(1 + ξi) , i = 1, 2 , and Ψε(ζ) := Vε(ξ) .

This reduces the domain of Vε from R2
+ to the compact [0, 1]2. By changing variables, it is

immediately checked that Ψε is a continuous constrained viscosity solution on [0, 1)× [0, 1)
of

min
a∈A

β(a)Ψε(ζ)−
2∑

i=1

bi(a, ζ) ·DiΨε(ζ)− 1
2

2∑
i,j=1

ηij(a, ζ)D2
ijΨ

ε(ζ) − g(a)

 = 0 , (7.1)

where the control set A and the expressions of β, (bi)i=1,2 (ηi,j)i,j=1,2 are obtained by
immediate calculation.

7.2 Numerical scheme for (7.1)

We adopt a classical finite difference discretization in order to obtain a numerical scheme
for (7.1).

Let N be a positive integer, and set h := 1
N , the finite difference step, we set e1 := (1, 0),

e2 := (0, 1), and we define the uniform grid S̄h := [0, 1]2 ∩ (hZ)2. We denote by ζh :=
(ζh

1 , ζh
2 ) a point of the grid S̄h, and we set Sh := (0, 1)× [0, 1)∩ (hZ)2. In order to define a

discretization of (7.1) , we approximate the partial derivatives of Ψε by the corresponding
backward and forward finite differences

bi(a, ζ)∂iΨε(ζ) ≈

{
bi(a, ζ)D+

i Ψε(ζ) if bi(a, ζ) ≥ 0 ,

bi(a, ζ)D−
i Ψε(ζ) if bi(a, ζ) < 0 ,

∂iiΨε(ζ) ≈ D2
i Ψ

ε(ζ) ,

ηij(a, ζ)∂ijΨε(ζ) ≈

{
ηij(a, ζ)D+

ijΨ
ε(ζ) if ηij(a, ζ) ≥ 0 ,

ηij(a, ζ)D−
ijΨ

ε(ζ) if ηij(a, ζ) < 0 ,

where the finite difference operators are defined for i 6= j ∈ {1, 2} by

D+
i Ψε(ζ) =

Ψε(ζ + hei)−Ψε(ζ)
h

,

D−
i Ψε(ζ) =

Ψε(ζ)−Ψε(ζ − hei)
h

,

D2
i Ψ

ε(ζ) =
Ψε(ζ + hei)− 2Ψε(ζ) + Ψε(ζ − hei)

h2
,

D±
ijΨ

ε(ζ) =
1

2h2
{2Ψε(ζ) + Ψε(ζ + hei ± hej) + Ψε(ζ − hei ∓ hej)

− Ψε(ζ + hei)−Ψε(ζ − hei)−Ψε(ζ + hej)−Ψε(ζ − hej)} .
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In order to compute these differences at every point of Sh, we extend Ψε as follows

Ψε
(
ζh
0

)
= Ψε

(
ζh
0 + he1

)
, Ψε

(
ζh
1

)
= Ψε

(
ζh
1 − he1

)
,

for ζh
0 ∈ {0} × [0, 1], ζh

1 ∈ {1} × [0, 1], and

Ψε
(
ζh
0 − he2

)
= Ψε

(
ζh
0

)
, Ψε

(
ζh
1

)
= Ψε

(
ζh
1 − he2

)
for ζh

0 ∈ [0, 1] × {0}, ζh
1 ∈ [0, 1] × {1}. This provides a system of (N − 1)N non linear

equations with the (N − 1)N unknowns Ψε
h(ζh), ζh ∈ Sh :

min
a∈A

{Aa
hΨε

h − g(a) } = 0 . (7.2)

7.3 The classical Howard algorithm

In order to solve (7.2) we adopt the classical Howard algorithm which can be described as
follows

step 0 : start from an initial value for the control : a0 ∈ A ,

Ψ0
h solution of Aa0

h ϕ− g(a0) = 0 ,

step k + 1 , k ≥ 0 : find ak+1 ∈ argmina∈A

{
Aa

hΨk
h − g(a)

}
,

Ψk+1
h solution of Aak+1

h ϕ− g(ak+1) = 0 .

7.4 Accuracy of the first order Taylor expansion

We implement the above numerical algorithm with the following parameters

p = 0.3 , σ = 0.3 , and β = 0.1 .

We also fix the instantaneous mean return of the risky asset to

b := θσ + r = 0.11 ,

In Figures 1, 2 and 3 we have plotted the relative error∣∣∣Vh
ε

(
ζh
ij

)
− Vapp

(
ζh
ij

)∣∣∣
Vapp

(
ζh
ij

) .

on the grid for various fixed values of r an α. The right hand-side of all these figures
reports the same plot than the left hand-side concentrated on [(y/z), (k/z)] ∈ [0, 1]2. We
observe large errors near the boundary of the grid which can explode up to 50 %. In these
regions, we can draw no conclusions as the numerical scheme based on the finite differences
typically exhibits large approximation errors near the boundary. However, we observe that
the relative error is remarkably small for points of the grid which are located far from the
boundary.
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Figure 1: Relative error for r = 0.001 and α = 0.01 .

Figure 2: Relative error for r = 0.001 and α = 0.1 .
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Figure 3: Relative error for r = 0.01 and α = 0.05 .

Figure 4: Relative error for r = 0.01 and α = 0.1 .
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Figure 5: Relative error for r = 0.07 and α = 0.05 .

Figure 6: Relative error for r = 0.07 and α = 0.3 .
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Figure 7: Mean relative error on [0, 10]2. Figure 8: Mean relative error on [0, 1]2.

We next examine the accuracy of the approximation for different sets of parameters r and
α :

r ∈ {0.001 , .01 , .07} and α ∈ {.001 , .01 , .05 , .1 , .2 , .3 , .36} .

Figure 7 plots the mean relative error between the results of the first order expansion and
the numerical algorithm over all points of the grid :

1
N(N − 1)

∑
i,j

∣∣∣Vh
ε

(
ζh
ij

)
− Vapp

(
ζh
ij

)∣∣∣
Vapp

(
ζh
ij

) ,

where N(N − 1) is the total number of points in the grid, Vh
ε is the approximation of Vε

obtained by our numerical scheme, and

Vapp (ξ1, ξ2) := V app (1− (1− α)ξ1 − αξ2, ξ1, ξ2) .

As expected, the relative error is zero at the origin, and increases when the values of the
parameters r and α increase. For realistic market values of r and α, the average relative
error is of the order of 40 %.

In order examine further the error, we concentrate on the points of the grid which are
located far from the boundary. The corresponding average relative error is plotted in Figure
8. We observe that the average relative error is remarkably small, and is of the order of
4 % for realistic values of r and α. This figure is our main numerical result as it shows the
high accuracy of the first order Taylor approximation V app of the value function V .
Welfare analysis. In view of Remark 5.2, an approximatin strategy is given by the constant
portfolio allocation π̄α, and the constant consumption-wealth ratio c̄α = γ(r, θ̃α). The
expected utility realized by following this approximating strategy corresponds to the lower
bound Ṽ (z) = γ(r, θ̃α) of Proposition 5.2.
In order to compare this approximating strategy to the optimal one, we report in Figures
9 and 10 the welfare cost, z∗ such that V (1− (1− α)ξ1 − αξ2, ξ1, ξ2) = Ṽ (1 + z∗), with the
following parameters

p = .3 , β = .1 , b := r + θσ = .11 , σ = .3 , and r = .07 .

The welafre cost is non-increasing with respect to the tax basis and remains relatively small
for reasonable values of the parameters α : it reaches a maximum of 8% for α = 0.2 and of
12% for α = 0.36.
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Figure 9: Welfare cost for α = 0.20 .

Figure 10: Welfare cost for α = 0.36 .

7.5 Optimal investment strategies

Throughout this subsection we implement our numerical algorithm with the following pa-
rameters

p = .3 , β = .1 , b := r + θσ = 0.11 , σ = 0.3 , and r = .07 .

The tax-free model. For α = 0.0, our algorithm produces the well-known results of the
Merton frictionless model. Given the above values of the parameters, the Merton’s optimal
strategy is given by

π̄ = .6349 and c̄ = .1074 .

Figure 11 reports the numerical solution for the function Vh
ε . We verify that the function

Vh
ε in this tax-free context does not depend on the variable ξ2, so that the value function

V h
ε does not depend on the k component. We also see that the value function is concave.
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Figure 12 reports the optimal investment strategy, and produces the expected partition of
the state space into

- the region of no transaction (NT) which corresponds to positions such that the propor-
tion of wealth allocated to the risky asset y/(x+ y) is equal to π̄. In this region no position
adjustment is considered by the investor,

- the Sell region, where the investor immediately sells risky assets so as to attain the
region NT by moving along the ray (1,−1),

- the Buy region, where the investor immediately purchases risky assets so as to attain
the region NT by moving along the ray (−1, 1).
We verify again that this partition is independent of the variable ξ2.

Figure 11: Vh
ε for α = 0.0 .

Figure 12: Partition of the domain R2
+ for α = 0.0 .
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The value function approximation with taxes. We next concentrate on the case where the
tax coefficient is positive. Figures 13, 14, 15 and 16 report the numerical solution for the
function Vh

ε for α = .01, .1, .2 and .36. The main observation out of these numerical results
is that, for a positive tax parameter, the value function is no longer concave. This surprising
feature leads to mathematical difficulties as we had to derive the dynamic programming
equation without any a priori regularity of the value function.

Figure 13: Vh
ε for α = 0.01 .

Figure 14: Vh
ε for α = 0.10 .
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Figure 15: Vh
ε for α = 0.20 .

Figure 16: Vh
ε for α = 0.36 .
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Optimal investment strategy under taxes. Figures 17, 18, 19 and 20 show that, for positive
α, the domain is again partitioned into three non-intersecting regions :

- the no-transaction region NT, where no portfolio adjustment is performed by the opti-
mal investor,

- the Sell region, where the investor immediately sells risky assets so as to attain the
region NT by moving towards the origin along the ray ((1− α)y + αk,−y,−k) = −[(1 −
α)y + αk]gs,

- the Buy region, where the investor immediately purchases risky assets so as to attain
the region NT by moving along the ray (−1, 1, 1) = −gb.

For positive α, the boundaries of the no-transaction region depend on the tax-basis, and
the range of the proportion of wealth allocated to the risky asset, (y/z), for which no-
transaction is optimal is very sensible to the values of the tax basis (k/z). Indeed, we
observe that the Buy region is limited from the left side by the wash-sales region which is
part of the Sell region, exactly according to the statement of Proposition 4.5.

We also observe that, for small values of the k variable, the no-transaction region NT
contains the Merton optimal portfolio proportions π̄ and π̄α corresponding respectively to
our financial market and to the fictitious financial market with modified parameters.

Figure 17: Partition of the domain R2
+ for α = 0.01 .
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Figure 18: Partition of the domain R2
+ for α = 0.10 .

Figure 19: Partition of the domain R2
+ for α = 0.20 .
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Figure 20: Partition of the domain R2
+ for α = 0.36 .

Optimal consumption strategy under taxes. Figures 21 and 22 report the consumption-
wealth ratio for α = .2 and .36. We notice that this ratio depends on the value of the
basis, as well as on proportion of wealth allocated to the risky asset. Moreover, in the
presence of taxes, on each point of the grid this ratio is higher than the Merton’s optimal
consumption-wealth ratio.

Figure 21: Consumption-wealth ratio for α = 0.20 .
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Figure 22: Consumption-wealth ratio for α = 0.36 .

8 Conclusion

In this paper, we formulated a continuous-time version of the optimal investment problem
under capital gains taxes, which was introduced by Dammon, Spatt and Zhang [11] in the
context of the binomial model. As a main result, we derived an explicit first order Taylor
expansion of the value function for small tax and interest rate parameters. Our numerical
results show that the error induced by this approximation is remarkably small for reasonable
values of market data. The first order approximation is decreasing in the interest rate
parameter, and exhibits a surprising sensitivity with respect to the tax parameter : in a
situation of capital loss, an increase of the tax parameter implies an increase of the value
function. This suggests that the initial tax credit is never compensated by the increases of
taxes through the lifetime of the agent.

The expansion was obtained from explicit bounds on the value function. The lower bound
is obtained as the limit of the expected utility of a sequence of strategies which are built so
as to mimic the Merton optimal strategy in a frictionless financial market with tax-deflated
parameters. Then, this sequence can be viewed as a “first order maximizing sequence” for
the problem of optimal investment under capital gains taxes.

The optimal strategies produced by our numerical results are however different in nature
from the “first order” optimal strategy, as it exhibits three non-intersecting regions of no
transaction, immediate selling and immediate buying.

The bounds on the value function were obtained in the context of the Black and Scholes
model and the power utility function. We shall investigate in future work whether similar
bounds are still valid in a multiple asset problem with more general dynamics for the
underlying risky assets, and whether such bounds still induce a first order Taylor expansion
of the value function. Another interesting question is whether these results are valid in the
corresponding finite horizon problem.
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Appendix A : Proof of Proposition 5.2

Preliminaries and notations

For s ∈ S̄ and ν ∈ A(s), the process Zs,ν is defined by the initial condition Zs,ν
0 = z :=

x + (1− α)y + αk and the dynamics

dZs,ν
t = (rZs,ν

t − Ct) dt + Y s,ν
t σ̃α

(
θ̃αdt + dWt

)
+ rαY s,ν

t

(
1− Bs,ν

t

Pt

)
dt ,

where

σ̃α := (1− α)σ and θ̃α := θ − rα

σ̃α
.

Our purpose is to show that the value function V outperforms the maximal utility achieved
in a frictionless financial market consisting of one bank account with the constant interest
rate r, and one risky asset with price process Pα given by

dPα
t = Pα

t

[
rdt + σ̃α(θ̃αdt + dWt)

]
and P̃α

0 = P0 .

From Theorem 3.1, the solution of the optimal consumption-investment problem with price
process Pα is given by the constant controls

π̄α :=
θ̃α

(1− p)σ̃α
and c̄α := γ

(
r, θ̃α

)
,

and the corresponding optimal wealth process is defined by

Z̄α = z and dZ̄α
t = Z̄α

[
(r − c̄)dt + π̄ασ̃α

(
θ̃αdt + dWt

)]
.

In order to prove the required result, we shall fix an arbitrary maturity T > 0, and construct
a sequence of admissible strategies ν̂T,n such that

V (s) ≥ lim
n→∞

JT

(
s, ν̂T,n

)
= E

[∫ T

0
e−βtU

(
c̄Z̄α

t

)
dt

]
.

Then, the required result follows by sending T to infinity in this inequality.

A sequence of strategies tracking the Merton optimal policy

Let T > 0 be a fixed maturity. We construct a sequence of consumption-investment strate-
gies ν̂T,n by forcing the tax basis B to be close to the spot price, and by tracking Merton’s
optimal strategy, i.e. keeping the proportion of wealth invested in the risky asset and the
proportion of wealth dedicated for consumption :

πt :=
Yt

Zt
1{Zt 6=0} and ct :=

Ct

Zt
1{Zt 6=0} , 0 ≤ t ≤ T ,

close to the pair (π̄α, c̄α).
To do this, we define a convenient sequence (νT,n)n≥1 := (CT,n, LT,n,MT,n)n≥1 for all

s = (x, y, k) ∈ S̄. We shall denote by
(
Y T,n, ZT,n, BT,n

)
=
(
Y νT,n

, ZνT,n
, BνT,n

)
the
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corresponding state processes. For each integer n ≥ 1, the consumption-investment strategy
νT,n is defined as follows.

1. At time 0, set ∆LT,n
0 := π̄αz and ∆MT,n

0 := 1, so that

KT,n
0 = Y T,n

0 , πT,n
0 = π̄α , and ZT,n

0 = z .

2. At the final time T , set ∆LT,n
T := 0 and ∆MT,n

T = 1, so that all the wealth is transferred
to the bank :

Y T,n
T = 0 and XT,n

T = ZT,n
T .

3. In Step 4 below, we shall construct a sequence of stopping times (τT,n
k )k≥1. Our con-

sumption strategy is defined by

CT,n
t := c̄αZT,n

t for 0 ≤ t ≤ T ,

and the investment strategy is piecewise constant :

dLT,n
t = dMT,n

t = 0 for all t ∈ [0, T ] \ {τT,n
k , k ≥ 1} .

4. We now introduce the sequence of stopping times τT,n
k as the hitting times of the pair

process (πT,n, BT,n) of some barrier close to (π̄, 1). Set

τT,n
0 := 0 and τT,n

k := T ∧ τπ
k ∧ τB

k , for k ≥ 1 ,

where

τπ
k := inf

{
t ≥ τT,n

k−1 : |πT,n
t − π̄α| > n−1π̄α

}
,

τB
k := inf

{
t ≥ τT,n

k−1 :

∣∣∣∣∣1− BT,n
t

Pt

∣∣∣∣∣ > n−1

}
.

Clearly, the sequence
(
τT,n
k

)
k≥0

is increasing, and converges to T .

5. Finally, we specify the jumps
(
∆LT,n,∆MT,n

)
at each time τT,n

k by :

∆LT,n
t := π̄αZT,n

t and ∆MT,n
t := 1 for t ∈ {τT,n

k , k ≥ 0} ,

so that

πT,n
t = π̄α and Bt,n

t = Pt for t ∈ {τ t,n
k , k ≥ 0} .

Lemma A.1 For each integer n, we have νt,n ∈ A(s).

Proof. By (5.1), we have

dZT,n
t = ZT,n

t

[
(r − c̄α) dt + πT,ν

t σ̃α
(
θ̃αdt + dWt

)
+ rαπT,n

t

(
1−BT,n

t

)
dt
]

.

Also 0 <
(
1− n−1

)
π̄α ≤ πT,n

t ≤
(
1 + n−1

)
π̄α. In particular, the process πT,n is bounded, so

that the above dynamics implies that the process ZT,n is positive, and Y T,n
t = πT,n

t ZT,n
t > 0

P− a.s. 2
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The convergence result

Lemma A.2 There is a constant A depending on T such that

E
[

sup
0≤s≤t

∣∣∣ZT,n
t − Z̄α

t

∣∣∣2] ≤ n−2 AeAT .

Proof. By definition of the sequence of consumption-investment strategies
(
νT,n

)
, we have

sup
0≤t≤T

∣∣∣πT,n
t − π̄α

∣∣∣ ≤ 1
n

π̄α and sup
0≤t≤T

∣∣∣∣∣1− BT,n
t

Pt

∣∣∣∣∣ ≤ 1
n

. (A.1)

By direct computation, we decompose the difference ZT,n − Z̄α into :

Dt := ZT,n
t − Z̄α

t = Ft + Gt + Ht ,

where

Ft :=
∫ t

0
Dt

[
(r − c̄α)du + πT,n

u

(
σ̃αθ̃αdu + αr

(
1− BT,n

u

Pu

)
du + σ̃αdWu

)]
,

Gt :=
∫ t

0
Z̄α

u σ̃α
(
πT,n

t − π̄α
)

(θαdu + dWu) ,

Ht := αr

∫ t

0
πT,n

u Z̄α
u

(
1− BT,n

u

Pu

)
du .

In the subsequent calculation, A will denote a generic (T−dependent) constant whose value
may change from line to line. We shall also denote by V ∗

t := sup0≤u≤t |Vu| for all process
(Vt)t.
We first start by estimating the first component F . Observe that the process πt,n is bounded
by 2π̄. Then

|Ft|2 ≤ A

∫ t

0
|D∗

u|
2 du + 2

(∫ t

0
Duπt,n

u κ̃dWu

)2

.

By the Buckholder-Davis-Gundy inequality, this provides

E |F ∗
t |

2 ≤ A

∫ t

0
E |D∗

u|
2 du .

By a similar calculation, it follows from (A.1) that :

E|G∗
t |2 ≤ A

n2
and E|H∗

t |2 ≤ A

n2
.

Collecting the above estimates, we see that :

E|D∗
t |2 ≤ A

n2
+ K

∫ t

0
E|D∗

u|2du for all t ≤ T ,

and we obtain the required result by the Gronwall inequality. 2
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8.1 Proof of Proposition 5.2

For s = (x, y, k) ∈ S̄, and T > 0,∣∣∣∣JT (s, νT,n)−
∫ T

0
e−βtU

(
c̄αZ̄α

t

)
dt

∣∣∣∣ =
∣∣∣∣∫ T

0
e−βt

(
U
(
c̄αZT,n

t

)
− U

(
c̄αZ̄α

t )
)
dt
)∣∣∣∣

≤ A

∫ T

0
e−βt

∣∣∣ZT,n
t − Z̄α

t

∣∣∣p dt

for some positive constant A. Now, by the estimate of Lemma A.2, it follows that

lim
n→∞

JT (s, νT,n) =
∫ T

0
e−βtU

(
c̄αZ̄α

t

)
dt .

Since V (s) ≥ JT (s, νT,n) for every T > 0, this implies that

V (s) ≥ lim
T→∞

∫ T

0
e−βtU

(
c̄αZ̄α

t

)
dt = γ

(
r, θ̃α

) zp

p
.

2

Appendix B : Proof of Proposition 4.4

In order to prove the continuity of V we follow [4] by introducing the approximation v0,ε

defined as the value function of the control problem

v0,ε(s) := sup
ν∈Aε(s)

Jε(s, ν) , where Jε(s, ν) := E
[∫ ∞

0
e−βtU(Ct)dt

]
, (B.2)

and Aε(s) is the collection of all F−adapted processes ν = (C,L,M) where C satisfies (2.9),
L,M are non-decreasing, right-continuous, L0− = M0− = 0, the jumps of M satisfy (2.6),
and the process Ss,ν = (Xs,ν , Y s,ν ,Ks,ν) defined by Ss,ν

0− = s and the dynamics (2.7), (2.8),

dXt = (rXt − Ct) dt− (1 + ε)dLt + [(1− α)Yt− + αKt−] dMt .

takes values in S̄.
The above control problem corresponds to an optimal consumption investment problem

with capital gain taxes and proportional transaction cost ε > 0 on purchased risky assets.
Clearly

v0,ε ↘ V as ε ↘ 0 . (B.3)

For later use, we recall the following results from [4]

Theorem B.1 For ε ≥ 0, the function v0,ε is a constrained viscosity solution of

min
{
Lv0,ε;gb

ε · v0,ε;gs · v0,ε
}

= 0 on S̄ \ ∂zS and v0,ε = 0 on ∂zS . (B.4)

Theorem B.2 For ε > 0, let u be an upper-semicontinuous viscosity subsolution of (B.4),
and v be a lower-semicontinuous viscosity super-solution of (B.4), with (u−v)+ ∈ USCp(S̄).
Assume further that (u− v)(x, 0, 0) ≤ 0 for all x ≥ 0. Then u ≤ v on S̄.
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We first need to prove the continuity of v0,ε.

Lemma B.3 The function v0,ε is continuous on S̄.

Proof. By Proposition 5.1, the semi-continuous envelopes v0,ε∗ and v0,ε
∗ satisfy the poly-

nomial growth condition
(
v0,ε∗ − v0,ε

∗

)+
∈ USCp(S̄). We also know from Theorem B.1 that

they are respectively a constrained subsolution and supersolution of (6.1). We now claim
that (

v0,ε
∗ − v0,ε∗) (x, 0, 0) = 0 for all x ≥ 0 , (B.5)

so that v0,ε
∗ ≥ v0,ε∗ by the comparison result of Theorem B.2, and therefore v0,ε

∗ = v0,ε∗

since the reverse inequality holds by definition.
It remains to prove (B.5). Notice that for all s = (x, y, k) ∈ S̄ and z := x + (1−α)y + αk

v0,ε(z, 0, 0) ≤ v0,ε(s) ≤ v0,ε (z + y, 0, 0) . (B.6)

Before proving these inequalities, let us complete the proof of v0,ε
∗ = v0,ε∗ on {(x, 0, 0) : x ≥

0}. For an arbitrary x ∈ R+, let {sn = (xn, yn, kn), n ≥ 1}, {s′n = (x′n, y′n, k′n), n ≥ 1} be
two sequences in S̄ such that

sn, s′n −−−→
n→∞

(x, 0, 0) , v0,ε(sn) −−−→
n→∞

v0,ε
∗ (x, 0, 0) , and v0,ε(s′n) −−−→

n→∞
v0,ε∗(x, 0, 0) .

By (B.6) together with the homotheticity property of Proposition 4.3, we see that

v0,ε(s′n) ≤ v0,ε(z′n + y′n, 0, 0) =
(
z′n + y′n

)p
v0,ε(1, 0, 0) ,

v0,ε(sn) ≥ v0,ε(zn, 0, 0) = (zn)p v0,ε(1, 0, 0) ,

where zn = xn + (1 − α)yn + αkn and z′n = x′n + (1 − α)y′n + αk′n. Letting n → ∞ in the
above inequalities, and recalling that zn, z′n + y′n → x, we get the required result.

We now turn to the proof of (B.6).
• The left hand side of (B.6) holds since for each consumption-investment strategy ν =
(C,L,M) ∈ A(z, 0, 0), the strategy ν̄ := ν + {1−∆M0} (0, 0, 1) ∈ A(s).
• The right-hand side of (B.6) holds since for each ν = (C,L,M) ∈ A(s), the strategy
ν̄ := ν + {y(1−∆M0)} (0, 1, 0) ∈ A(s̄) where s̄ := (z + y, 0, 0).
Indeed, since ν and ν̄ differ only by the jump at time t = 0 the dynamics of the state
processes Ss,ν and S s̄,ν̄ are such that Y s,ν

0 = Y s̄,ν̄
0 and therefore Y s,ν

t = Y s̄,ν̄
t for t ≥ 0, and

K s̄,ν̄
t −Ks,ν

t =
(
K s̄,ν̄

0 −Ks,ν
0

)
e−Mc

t

∏
0≤s≤t

(1−∆Ms)

≤
(
K s̄,ν̄

0 −Ks,ν
0

)+
= (y − k)+(1−∆M0) .

Then the corresponding liquidation value processes Zs,ν and Z s̄,ν̄ are such that

Z s̄,ν̄
t − Zs,ν

t = ert

{
Z s̄,ν̄

0 − Zs,ν
0 − α

∫ t

0
e−rs

(
Ks,ν −K s̄,ν̄

)
s
ds

}
≥ ert

{
Z s̄,ν̄

0 − Zs,ν
0 − (Ks,ν

0 −K s̄,ν̄
0 )+

}
= ert

{
y − (y − k)+(1−∆M0)

}
≥ 0 .

37



It follows that Z s̄,ν ≥ 0, hence ν̄ ∈ A(s̄). 2

Proof of Proposition 4.4 Since
(
v0,ε
)
ε>0

is a non-increasing sequence of continuous
functions (Lemma B.3) converging to V as ε ↘ 0, it follows that the function V is lower-
semicontinuous.
Let V be the lower-semicontinuous function defined on R2

+ by

V(ξ, ζ) := V (1− (1− α)ξ + αζ, ξ, ζ) , (B.7)

so that

V (x, y, k) = zp V
(

y

z
,
k

z

)
with z = x + (1− α)y + αk , (B.8)

by the homotheticity property of V stated in Proposition 4.3. By Theorem B.1, we have
gb · DV ≥ 0 and gs · DV ≥ 0 in the viscosity sense. By a direct change of variable, this
implies that V is a lower semicontinuous viscosity supersolution of the equation

pV − (ξVξ + ζVζ)− ε−1 (Vξ + Vζ) ≥ 0 and ξVξ + ζVζ ≥ 0 .

Also, from the monotonicity of V in x, y and k, it follows that V is a lower semicontinuous
viscosity supersolution of the equation

pV − (ξVξ + ζVζ) + min
{

0 ,
1

1− α
Vξ ,

1
α
Vζ

}
≥ 0

Observe that V is bounded as a consequence of the upper bound provided in Proposition
5.1. We then deduce from the above viscosity supersolution properties that −|∇V| ≥ −A

on (0,∞)2, in the viscosity sense, for some constant A. Hence V is Lipschitz-continuous.
2
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