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Abstract. Given a compact set K in an open set D on a Stein manifold

; dim
 = n; the set ADK of all restrictions of functions, analytic in D with
absolute value bounded by 1; is a compact subset of C(K). The problem on
the strict asymptotics for Kolmogorov diameters (widths) :

� ln ds
�
ADK

�
� � s1=n; s!1:

was stated by Kolmogorov in an equivalent formulation for "-entropy of that
set [K1, K2, KT]. It was conjectured in [Z6, Z7] that for "good" pairs

(K;D) such an asymptotics holds with the constant � = 2�
�

n!
C(K;D)

�1=n
,

where C (K;D) is the pluricapacity of the "pluricondenser" (K;D), intro-
duced by Bedford-Taylor [BT2]. In the one-dimensional case it is equiva-
lent to Kolmogorov�s conjecture about the "-entropy of the set ADK , which
has been con�rmed by e¤orts of many authors (Erokhin, Babenko, Zahariuta,
Levin-Tikhomirov, Widom, Nguyen, Skiba - Zahariuta, Fisher - Miccheli, et
al).

In [Z6, Z7] the above problem had been reduced (the proof was only
sketched there) to a certain problem of pluripotential theory about approx-
imating the relative Green pluripotential of the "pluricondenser" (K;D) by
pluripotentials with �nite set of logarithmic singulatities. The latter problem
has been solved recently by Nivoche [N1, N2] and Poletsky [P]. Here we give
a detailed proof of the above-mentioned reduction, which provides, together
with the Nivoche-Poletsky result, a positive solution of our conjecture about
asymptotics of Kolmogorov diameters.

1. Introduction

Let K be a compact set in an open set D on a Stein manifold 
, H1 (D)
the Banach space of all bounded and analytic in D functions with the uniform
norm, and ADK be a compact subset in the space of continuous functions C (K)
consisted of all restrictions of functions from the unit ball BH1(D); since it will be
always assumed that the restriction operator is injective, one may infer that ADK
= BH1(D).
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Given a compact set A in a metric space X we denote by N" (A) the smallest
integer N such that A can be covered by N sets of diameter not greater than 2".
Following [M] we de�ne the "-entropy of A by the formula: H" (A) := lnN" (A)
(notice that the information theory "-entropy [log2N" (A)] + 1 is asymptotically
equivalent to H" (A) = ln 2 as "! 0). Kolmogorov raised the problem about strict
asymptotics ([K1, K2, T1, V, KT])

(1.1) H"

�
ADK
�
� �

�
ln
1

"

�n+1
; "! 0;

with some constant � (the weak asymptotics for H"

�
ADK
�
had been already proved

by him under some natural restrictions on K and D).
For a set A in a Banach space X the Kolmogorov diameters ( or widths) of A

with respect to the unit ball BX of the space X are the numbers (see,e.g., [T2]):

(1.2) di (A;BX ) := inf
L2Li

sup
x2A

inf
y2L

kx� ykX ;

where Li is the set of all i-dimensional subspaces of X . For a pair of normed spaces
Y ,! X with a linear continuous imbedding we shall write simply di (Y;X) instead
of di (BY ;BX ); in particular, di

�
ADK
�
:= di (H

1 (D) ; AC (K)) ; where AC (K)
is the completion of the set of all traces of functions, analytic on K; in the space
C (K).

From Mityagin [M] and Levin-Tikhomirov [LT] it follows that the asymptotics
(1.1) is equivalent to the following asymptotics for Kolmogorov diameters of the set
ADK :

(1.3) ln di
�
ADK
�
� �� i1=n; i!1:

with the constant � =
�

2
(n+1)�

�1=n
.

Kolmogorov conjectured that, in the case n = 1; the constant � coincides with
the Green capacity � (K;D) for proper pairs (K;D). Recall that the Green capacity
of a condenser (K;D) on a Riemann surface 
 is the number � (K;D) := 1

2�

R
�!;

where ! (z) = ! (D;K; z) is the generalized Green potential, de�ned by the formula

(1.4) ! (z) := lim sup
�!z

sup fu (�) : u 2 Sh(D); ujK � 0; u (�) < 1 in Dg ;

here Sh(D) stands for the class of all subharmonic functions in D and �! is un-
derstood as a positive Borel measure (supported by K).

Kolmogorov�s hypothesis has been con�rmed by e¤orts of many authors ([B,
E1, E2, Z1, LT, Ng, W, ZS, FM]). The following statement summarizes, in a
sense, those one-dimensional results.

Proposition 1.1. Let K be a non-polar compact subset of an open set D on an
open one-dimensional Riemann surface 
, K = bKD, and D is a relatively compact
open set in 
 with boundary @D consisting of a countable set of compact connected
components at least one of which has more than one point. Then the asymptotics
(1.3) holds with n = 1 and � = 1

�(K;D) .

An important tool in the proof of those results (see, e.g., [ZS]) is the classical
fact of potential theory about the approximation of the potential (1.4) by �nite
combinations

Pm
k=1 �k gD(�k; z); where gD(�; z) is the Green function of D with

the unit logarithmic singularity at �.
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The asymptotics (1.3) for n � 2 was known for a long time only in some
particular cases (see, e.g.,[KT, V, Z3, ARZ]).

In [Z6] (see, also [Z7]) it was conjectured that for a good enough pair K �
D on a Stein manifold 
; dim
 = n; the asymptotics (1.3) holds with � =

2�
�

n!
C(K;D)

�1=n
, where C (K;D) is the pluricapacity of the "pluricondenser" (K;D),

introduced by Bedford-Taylor [BT2]. It was sketched in [Z6] how to reduce the
problem about the asymptotics (1.3) for n � 2 to the certain problem of pluripo-
tential theory (suggested as an analogue of the above one-dimensional fact). We
state it (see Problem 1.2 below) after some necessary de�nitions.

The Green pluripotential ! (z) = ! (D;K; z) of a pluricondenser (K;D) on a
Stein manifold 
 is de�ned by the same formula (1.4) with the class Psh (D) of
all plurisubharmonic functions in D instead of Sh(D) in it. We say that (K;D)
is a pluriregular pair on 
 provided the conditions: (a) K is a compact subset of
an open set D � 
 such that K coincides with its holomorphic envelope bKD with
respect to D and the set D has no component disjoint with K; (b) ! (D;K; z) � 0
on K and lim

z!@D
! (D;K; z) = 1, that is ! (D;K; zj) ! 1 for any sequence fzjg

� D having no limit point in D. Given F =
�
�1; : : : ; ��; : : : ; �m

	
� D and � =

(��) 2 Rm+ the Green multipole plurisubharmonic function gD (F; �; z) is de�ned
([Z6, Kl, Le, Z7]) as a regularized upper envelope of the family of all functions
u 2 Psh (D), negative inD and satisfying the estimate u (z) � �� ln

��t(��)� t(z)��+
const in some neighborhood U� of each point �� in local coordinates t : U� ! Cn;
see below in section 5 about this function more in detail. The following problem
was posed in [Z6, Z7].

Problem 1.2. Given a pluriregular pair (K;D) on a Stein manifold does
there exist a sequence of multipole Green functions gD

�
F (j); �(j); z

�
converging to

! (D;K; z)� 1 uniformly on any compact subset of D rK?

This problem has been solved recently by Nivoche [N1, N2] and Poletsky [P]
(see below Proposition 8.1), which covers an important part of the �nal positive
proof of our conjecture on Kolmogorov problem.

In this paper we represent a detailed proof of the reduction part which was
only sketched in the survey [Z7] (somewhat more comprehensive proof from [Z6]
has been never published).

It is natural to modify the Kolmogorov problem in the following more general
way. Denote by A(D) the Fréchet space of all functions analytic in D with the
topology of uniform convergence on compact subsets and by A(K) the locally con-
vex space of all germs of analytic functions on K with the usual inductive limit
topology. We are concerned with the strict asymptotics of the sequence of Kol-
mogorov diameters di (X1; X0) of the unit ball of a Banach space X1 with respect
to the unit ball of a Banach spaceX0 for couples of Banach spacesX0; X1 satisfying
the linear continuous imbeddings:

(1.5) X1 ,! A(D) ,! A(K) ,! X0

and closely related with the spaces A(D) and A(K) in the following sense.

Definition 1.3. We say that a couple of Banach spaces X0; X1 satisfying the
imbeddings (1.5) is admissible for a pair (K;D) if for any other couple of Banach
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spaces Y0; Y1 satisfying the linear continuous imbeddings:

X1 ,! Y1 ,! A(D) ,! A(K) ,! Y0 ,! X0;

we have ln di (Y1 ; Y0) � ln di (X1 ; X0) as i!1.

For any pluriregular pair (K;D) there exists an admissible couple X0; X1 (see
below, Corollary 4.10) and the asymptotic class of the sequence ln di (X1 ; X0) is
rather a characteristic of the pair (K;D), than of any individual couple X0; X1

admissible for this pair. Moreover, since the spaces A(K) and A(D) are nuclear,
there are admissible couples of Hilbert spaces, which allows to apply the Hilbert
scale technics.

Problem 1.4. ([Z6, Z7]) Let (K;D) be a pluriregular pair "compact set-open
set" on a Stein manifold 
. Does the strict asymptotics

(1.6) ln di (X1 ; X0) � �2�
�

n! i

C (K;D)

�1=n
; i!1

hold for some (hence, for any) couple of Banach spaces X0; X1 , admissible for
(K;D)?

Developing our approach from [Z6, Z7] and applying the above-mentioned
result of Nivoche-Poletsky we shall give the positive solution of this problem, namely
the following theorem will be proved in Section 9 after substantial preparatory
considerations in sections 2-8.

Theorem 1.5. Let K be a compact set on a Stein manifold 
 and (K;
) be a
pluriregular pair. Then the asymptotics (1.6) holds for any couple of Banach spaces
X0; X1; admissible for (K;
) :

Remark 1.6. The statement of this theorem remains true assuming that the
pair (K;
) satis�es all conditions in the de�nition of a pluriregular pair besides that
K is supposed to be only non-pluripolar (instead of the condition ! (
;K; z) � 0 on
K). But in what follows, for the simplicity sake, we will consider only pluriregular
pairs.

As a consequence we obtain an answer to the question about the asymptotics
(1.3) specifying the fuzzy terms "good enough" or "proper" in the above conjectures.

Corollary 1.7. Given a pluriregular pair (K;D) the asymptotics

(1.7) ln di
�
ADK
�
� �2�

�
n! i

C (K;D)

�1=n
; i!1:

holds if and only if the couple (AC (K) ;H1 (D)) is admissible for (K;D).

The last statement, though being �nal, is too general and calls for some concrete
description of admissibility. We discuss some necessary and su¢ cient conditions of
admissibility of a couple (AC (K) ; H1 (D)) in the sections 4,9. On the other hand,
we consider in Section 9 certain classes of pluriregular pairs (K;D), for which the

asymptotics (1.3) does not hold with the constant � = 2�
�

n!
C(K;D)

�1=n
but may be

true with some larger constant.
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2. Preliminaries

Notation. For a pair of positive sequences we write ai � bi if there is a constant
C such that ai � C bi. IfX and Y are locally convex spaces, thenX ,! Y stands for
a linear continuous imbedding. We use the notation: jxjF := sup fjx (z)j : z 2 Fg.
Given a Banach space X the notation BX is for its closed unit ball.

Some facts of Pluripotential Theory. In what follows 
 is a Stein manifold,
dim
 = n. The set of all plurisubharmonic functions in an open set D � 
 is
denoted by Psh (D) ; MP (D) stands for the set of all maximal plurisubharmonic
functions in D. Let us remind that u 2 Psh (D) is maximal in D if for any
subdomain G b D and for each function v 2 Psh (D) it follows that the inequality
v (z) � u (z) takes place on G provided that it is valid on the boundary @G. A Stein
manifold 
 is called pluriregular (or hyperconvex ) if there is a negative function
u 2 Psh (
) such that limu (zj) = 0 for any sequence fzjg having no limit point
in 
. An open set D b 
 is strongly pluriregular if there is an open set G c D and
a function u 2 C (G) \ Psh (G) such that D = fz 2 G : u (z) < 0g.

The Green pluripotential of a condenser (K;D) on 
 (that is K is a compact
set in an open set D � 
) is the function

(2.1) ! (z) = ! (D;K; z) := lim sup
�!z

sup fu (�) : u 2 P (K;D)g ;

where P (K;D) is the set of all u 2 Psh(D) such that ujK � 0 and u (�) < 1 in D.
The following two families of sublevel sets are important for further considerations:

(2.2) D� := fz 2 D : ! (z) < �g ; K� := fz 2 D : ! (z) � �g ; 0 < � < 1:

A compact set K � 
 is pluriregular if ! (D;K; z) � 0 on K for any open set
D � K. We say that a pair (condenser) (K;D) is pluriregular if (a) both K and
D are pluriregular; (b) bKD = K; (c) D has no components disjoint with K. It is
known that ! (D;K; z) is continuous in D for a pluriregular condenser (see, e.g.
[Z3, Wl]).

Due to Bedford and Taylor [BT1, BT2] (inspired by [CLN]), the Monge-
Ampére operator u! (ddcu)

n is well-de�ned as an operator from the space L1 (
; loc)\
Psh (
) to the spaceM (
) of non-negative Borel measures with the weak conver-
gence topology; it is "continuous" with respect to monotone sequences of functions;
therewith this operator is continuous as an operator from the space C (
)\Psh (D)
to the spaceM (
) . Maximality of a function u 2 Psh (
)\L1 (
; loc) in D � 

is equivalent to (ddcu)n = 0 in D; in particular, (ddc! (D;K; z))n � 0 in D r K
for a pluriregular pair (K;D) ([BT1, Sa1]).

Of prime importance for our considerations is the notion of pluricapacity of a
condenser (K;D), which in the case of a pluriregular condenser can be written in
the form ([BT2]):

(2.3) C (K;D) :=

Z
K

(ddc! (D;K; z))
n
:

For facts from Pluripotential Theory which are not explained here (or below) we
send the reader to the book [Kl] warning only that our notation may di¤er from
used there.

Spaces. Let D be an open set on a Stein manifold 
. Denote by A(D) the
Fréchet space of all functions analytic in D with the topology of locally uniform
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( or compact) convergence on D, determined by the sequence of seminorms

(2.4) kxks := jxjKs
= max fjx (z)j : z 2 Ksg ; x 2 A(D); s 2 N;

where Ks is any non-decreasing sequence of compact subsets exhausting D. By
A(K) we denote the locally convex space of all germs of analytic functions on K
with the usual inductive limit topology.

Given a compact set K on an open set D � 
 the restriction operator J =
JD;K : A (D) ! A(K) is an operator which maps any function f 2 A (D) to the
germ ' = Jf 2 A(K), generated by f .

If X;Y are locally convex spaces and i : X ! Y is a linear continuous injection
we say that X is imbedded (linearly and continuously) into Y , identifying often X
with its image i (X) and writing X ,! Y . If this imbedding is dense (i.e. i (X)
is a dense set in Y ) then the conjugate mapping i� := Y � ! X� is also a linear
continuous injection, so we can identify any linear functional y� 2 Y � with its image
y0 := i� (y�) = y�jX and write in this case that Y � = Y 0 := i� (Y �) ,! X� ; this
imbedding is also dense if the space X is re�exive.

In particular, for a pluriregular pair (K;D) we shall write

A (D) = JD;K (A (D)) ,! A (K) ;(2.5)

A (K)
�
= A (K)

0
:= J�D;K

�
A (K)

��
,! A (D)

�
:

Given an open setD � 
 the elements of the spaceA (D)� are called usually analytic
functionals on D (see, e.g., [Hr]); so, any functional from A (K)

� is identi�ed in
(2.5) with the corresponding analytic functional on D. Given F � D the non-
bounded seminorm is introduced

(2.6) jx0j�F := sup fjx
0 (x)j : x 2 A (D) ; jxjF � 1g

on A (D)
�
; which is de�nitely a norm if (K;D) with K = F is a pluriregular

condenser.
Scales. A family of Banach spacesX�; �0 � � � �1; is called a scale of Banach

spaces (or simply a scale ) if for arbitrary �0 � � < � � �1 two conditions hold: 1)

X� ,! X� and 2) kxk � C(�; �; )
�
kxkX�

�1��() �kxkX�

��()
with � () = ��

��� ,

� <  < �. In what follows we send the reader to the monograph [KPS] for further
notions and results about scales.

Here we turn our attention to a particular case of Hilbert scale H� = H1��
0 H�

1 ; � 2
(�1;1) ; spanned on a couple of Hilbert spaces with a dense compact imbedding
H1 ,! H0. Since under such assumptions there is a common orthogonal basis f'ig
for H0 and H1, normalized in H0 and enumerated by non-decreasing of norms in
the space H1:

(2.7) k'ikH0
= 1; i 2 N; �i = �i (H0;H1) := k'ikH1

%1;

this scale is determined by the norms

(2.8) kxkH�
:=

 X
i2N
j�ij

2
�2�i

!1=2
; x =

X
i2N

�i 'i;

so that the space H� consists of x 2 H0 with a �nite norm (2.8) if � � 0, while H�

is the completion of H0 by the norm (2.8) if � < 0 .
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Diameters. We shall use the following equivalent de�nition of the Kolmogorov
diameters (1.2):

(2.9) di (X1; X0) = inf finf f� > 0 : BX1
� � BX0

+ Lg : L 2 Lig ;

where Li is the set of all i-dimensional subspaces of X0.
The following property follows directly from the de�nitions (1.2), (2.9).

Proposition 2.1. Let X1 ,! Y1 ,! Y0 ,! X0 be a quadruple of Banach spaces
with dense imbeddings, then there is a constant M such that

(2.10) di (X1; X0) �M di (Y1; Y0) ; i 2 N:

In the conditions concerned with (2.7) the following simple expression for the
diameters holds (see, e.g., [M], Corollary 3) :

(2.11) di (H1;H0) =
1

�i+1 (H0;H1)
; i 2 N:

Hence for the Hilbert scale H� = H1��
0 H�

1 , due to representation (2.8), we have
the equality

(2.12) di (H�1 ;H�0) =
1

�i+1 (H0;H1)
�1��0 = (di (H1;H0))

�1��0 ; �0 < �1:

3. Hadamard type inequalities for analytic functions and functionals

Analogously to the one-dimensional case, one of the main applications of Green
pluripotential is Two Constants Theorem for analytic functions, in particular,
Hadamard type interpolational estimates ([Si], see also [Z3]), which may be writ-
ten, for a pluriregular pair (K;D) ; in the form

(3.1) jf jD�
� (jf jK)

1��
(jf jD)

�
; 0 < � < 1; f 2 H1 (D) ;

where the intermediate sets D� are de�ned in (2.2). Those estimates are very useful
for constructing of common bases for the spaces A (K) and A (D) ([Z1, Z3, Z6,
Z7], see also [Ng, ZS, Ze1]), since they provide good estimates for the system
ffi (z)g, examined for being a basis.

Hadamard type interpolational estimates for analytic functionals are of no less
importance. They are needed to provide good estimates for the biorthogonal system

of analytic functionals
n
f
0

i

o
. In the one-dimensional case, due to Grothendieck-

Köthe-Silva duality, analytic functionals can be represented as analytic functions
in the complement of K, so one can use the same inequalities (3.1) to estimate
functionals (see, e.g., [Z1, Ng, ZS]). For n � 2, though this direct way fails, the
following analogue of Two Constant Theorem for analytic functionals holds.

Theorem 3.1. ( [Z3, Z6, Z7]) Let (K;D) be a pluriregular pair on a Stein
manifold 
 and D be strongly pluriregular. Then for each " > 0 and � 2 (0; 1)
there is a constant M = M (�; ") such that for any x0 2 AC (K)0 ,! A (D)

� the
estimates hold:

(3.2) jx0j�D�
�M

�
jx0j�K

�1��+" �
jx0j�D

���"
:
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4. Adherent spaces

Let E be a Fréchet space,
n
kxkp ; p 2 N

o
be a system of seminorms de�ning

its topology,

(4.1) kx�k�p := sup
n
jx� (x)j : x 2 E; kxkp � 1

o
; x� 2 E�; p 2 N;

be the system of polar (non-bounded, in general) norms, and

(4.2) Up :=
n
x 2 E : kxkp � 1

o
; U�p :=

n
x� 2 E� : kx�k�p � 1

o
; p 2 N:

The following interpolation property proved to be useful in studying of struc-
tural properties of Fréchet spaces (see, e.g., [Z2, Z5, Vg, VW, MV]).

Definition 4.1. A Fréchet space E satis�es the property D2 (we write also E
2 (D2)) if for every p 2 N there is q 2 N such that for each r 2 N there is a constant
C providing the estimate:

(4.3)
�
kx�k�q

�2
� C kx�k�p kx

�k�r ; x� 2 E�

Definition 4.2. A Banach space X ,! E is said to be adherent to E if for
each p 2 N and any � > 0 there is q 2 N and a constant C > 0 such that

kx�k�q � C (kx�kX�)
1��

�
kx�k�p

��
; x� 2 E�:

Proposition 4.3. ([Vg, MV])A Banach space X is adherent to E if and only
if for any neighborhood V of zero in E and each � > 0 there is p 2 N and a constant
C > 0 such that

(4.4) Up � t� BX +
C

t1��
V; t > 0;

Proposition 4.4. (D. Vogt [Vg], Lemma 4) Let a Schwartz Fréchet space E
satisfy the property D2. Then there is a Banach space X ,! E adherent to E.

Proposition 4.5. Let 
 be a Stein manifold with a �nite set of connected
components. Then the following statements are equivalent: (i) 
 is pluriregular;
(ii) A (
) 2 D2; (iii) there exists a Hilbert space H ,! A (
) adherent to the space
A (
) .

Proof. The relations (i) , (ii) and (iii)) (i) are due to [Z3, Z5] (see also,
[Z6, Z7]), therewith the proof of (i)) (ii) is based on Hadamard type inequalities
for analytic functionals (see, Theorem 3.1 above); (ii), (iii) by Vogt�s result (see,
Proposition 4.4 above) there exists a Banach space X ,! A (
) adherent to the
space A (
) and, since A (
) is nuclear, then, due to Pietsch [Pi], there exists a
Hilbert space H such that X ,! H ,! A (
). Hence H is adherent to A (
). �

It should be mentioned that Aytuna [A] constructed, under the assumption
(i), an adherent Hilbert space for A (
) as a weighted L2-space, applying Hörman-
der�s @-problem technics. For good enough domains we have the following easy
description of adherent spaces for A (
) (see, e.g., [Z6, Z7]).

Proposition 4.6. Let D be a strongly pluriregular domain on a Stein manifold.
Then any Banach space X satisfying the dense imbeddings A

�
D
�
,! X ,! A (D)

is adherent to A (D); in particular, the space H1 (D) is adherent to A (D).
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Definition 4.7. Let K be a compact set on a Stein manifold 
 and a Banach
space X be such that the dense imbedding A (K) ,! X holds. We say that X is
adherent to A (K) if its dual X� ,! A (K)

� is adherent to A (K)� (in the sense of
De�nition 4.2).

The following fact cannot be obtained from Proposition 4.5 for dim
 � 2,
because there is no proper multidimensional analogue of the Grothendieck�Köthe-
Silva duality.

Proposition 4.8. ([Z3, Z4]) Let K be a compact set on a Stein manifold 

such that A (
) is dense in A (K) (i.e. K is a Runge set on 
) and 
 has no
connected component disjoint with K. The following statements are equivalent: (i)
K is pluriregular; (ii) A (K)� 2 D2; (iii) there is an adherent to A (K) Hilbert space
H  - A (K); (iv) the space AC (K) is adherent to A (K).

It follows from (i)) (iv) that any Hilbert space H; satisfying the dense imbed-
dings A (K) ,! H ,! AC (K), is adherent to A (K). A more explicit example of
a Hilbert space adherent to A (K) is the space H = AL2 (K;�) obtained as a
completion of A (K) by the norm

kxk :=
�Z

K

jx (z)j2 d�

�1=2
;

where � := (ddc!)
n with ! (z) = ! (D;K; z) and D is any open set composing a

pluriregular pair (K;D) withK ([Z6, Ze1, Z7], see also [Ze2] for a characterization
of Borel measures � providing that H = AL2 (K;�) is adherent to A (K)).

Definition 4.9. Given a pluriregular pair (K;
) a couple of Banach spaces
(X0; X1) is said to be adherent to a couple (A (K) ; A (
)) if

(4.5) X1 ,! A (
) ,! A (K) ,! X0

and X1 is adherent to A (
), X0 is adherent to A (K).

Propositions 4.5 and 4.8 yield the following

Corollary 4.10. For any pluriregular pair (K;
) there exists a couple of
Banach (Hilbert) spaces (X0; X1) adherent to (A (K) ; A (
)).

The following statement was proved in [Z3] for the particular case of Hilbert
couples (X0; X1); here we derive the general case from the Hilbert version using
standard technics of Banach scales (see, e.g., [KPS]).

Theorem 4.11. Suppose that (K; D) is a pluriregular pair, D is a Stein
manifold. Let (X0; X1) be a couple of Banach spaces adherent to the couple
(A (K) ; A (D)) such that X1 is imbedded normally into X0 and BX1

is closed in
X0. Let X�, 0 � � � 1, be any regular normal scale of Banach spaces connecting
the spaces X0; X1. Then the following linear continuous imbeddings have place:

(4.6) A (K�) ,! X� ,! A ( D�) ; 0 < � < 1;

where K�; D� have been de�ned in (2.2):

Proof. Consider any regular normal scale X�; 0 < � < 1; connecting X0 and
X1. First we are going to show that the imbeddings

(4.7) A (D) ,! X� ,! A (K)
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hold for each � 2 (0; 1). By the adherence of X1 to A (D) ; for each � < 1 there is
� < 1 such that

jx0j�D�
� C

�
kx0kX�

0

�1�� �
kx0kX�

1

��
; x0 2 A (D)� :

Therefore for the minimal scale Xmin
� connecting the spaces X0 and X1 ([KPS])

we obtain the estimate

kxkXmin
�

:= sup
x02X�

0

8><>: jx0 (x)j�
kx0kX�

0

�1�� �
kx0kX�

1

��
9>=>; � C sup

x02X�
0

(
jx0 (x)j
jx0j�D�

)
= C jxjD�

:

Hence A (D) ,! Xmin
� , 0 < � < 1. Then, due to Lions-Peetre [LP] (see, also

[KPS], Chapter IV, Theorem 2.20), the left imbedding in (4.7) holds for any scale
X�; 0 < � < 1; connecting X0 and X1.

The imbeddings (4.5) imply the natural dense imbeddings X�
0  - A (K)

�  -
A (D)

�  - Y0;where Y0 is the closure of A (
)� in X�
1 . Since BX1

is closed in X0 we
have, by Aronszajn-Gagliardo [AG], that Y0 is a norming set for X1. Therefore,
taking into account the re�exivity of A (K), the adherence of X1 to A (K) implies
that for any  > 0 there is � > 0 and C > 0 such that

jxjD�
� C

�
kxkX0

�1� �kxkX1

�
; x 2 X1:

Then bX ,! AC (D�) ,! A(K), where bX� := (X0; X1 )�;L1;�;L1;� is the maxi-
mal scale of means ([KPS], Chapter IV, Lemma 2.6). Therefore, applying this
imbedding with  < �=2 and taking into account that any regular scale is almost
imbedded into any scale ([KPS], Chapter IV, Corollary 3), we obtain the right
imbedding in (4.6).

Now we take any pair of Hilbert spaces H0; H1 satisfying the imbeddings

X1 ,! H1 ,! A(D) ,! A(K) ,! H0 ,! X0:

Then by (4.7) the imbeddings

X1 ,! H1 ,! X1�" ,! X" ,! H0 ,! X0

hold for every " : 0 < " < 1=2. Applying now (4.7) to the Hilbert scale H� =

(H0)
1��

(H1)
�, which is true due to [Z3, Z6, Z7], and using the interpolation

property of scales [KPS], we obtain the imbeddings

X�+"(1��) ,! H� ,! A ( D�) ; A (K�) ,! H� ,! X�(1�") ; 0 < � < 1:

Since " > 0 may be taken arbitrarily small here, we obtain (4.6) that ends the
proof. �

The following result will be useful for investigating the problem about the
asymptotics (1.7).

Theorem 4.12. Let a Hilbert space X0  - A (K) and a Banach space X1 ,!
A (
) make a couple adherent to (A (K) ; A (
)). Then the pair (X0; X1) is admis-
sible for (K;
).

Proof. Let Y0; Y1 be a couple of Banach spaces satisfying the linear continuous
imbeddings from De�nition 1.3. We need to prove that

(4.8) ln di (Y1; Y0) � ln di (X1; X0) as i!1:
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By Pietsch [Pi], Proposition 4.4.1, there exists a Hilbert space H1 satisfying the
continuous imbeddings X1 ,! H1 ,! A(
), which is obviously adherent to A(
).
Then, by Theorem 4.11, the Hilbert scaleH� = (X0)

1��
(H1)

� satis�es the continu-
ous imbeddings (4.6). Then, by these imbeddings, the system of norms kxkH�

, � <
1; de�nes the original topology of the space A(
). Since X1 is adherent to the
space E = A(
), we obtain that for arbitrary � > 0 there exists � = � (�) < 1 and
C = C (�) > 0 such that

(4.9) BH�
�
�
1

�

��
BX1

+ C�1�� BX0
; � > 0:

Now take an arbitrary � > 0 such that

(4.10) di (X1; X0) < � < 2di (X1; X0) :

By the de�nition, there is L 2 Li such that

(4.11) BX1
� � BX0

+ L:

Combining (4.9), (4.11), we obtain that

BH�
� (1 + C)�1�� BX0

+ L

Then, due to (4.10), we obtain

di (H�; X0) � (1 + C) (2di (X1; X0))
(1��)

:

Let � > � > 0. Then, taking into account (2.12), we get from here that

di (X1; X0) � di (Y1; Y0) � di (H�;H�) = (di (H1; X0))
���
�

� (di (X1; X0))
(1��)(���)

� ;

Since � can be taken arbitrarily small, we obtain (4.8). �

Corollary 4.13. Let a Banach space X1 ,! A (
) be adherent to A (
). Then
the couple (AC (K) ; X1) is admissible for (K;
).

Proof. Since the Hilbert space X0 = AL2 (K;�) (see the paragraph preceding
De�nition 4.9) is adherent to A (K) and A (K) ,! AC (K) ,! X0, we obtain,
applying Theorem 4.12, that (AC (K) ; X1) is admissible for (K;
). �

Remark 4.14. The admissibility is, in general, essentially weaker than the
adherence. Indeed, consider the simplest pair of two concentric disks K = D,
D = DR; R > 1. De�ne the couple of Hilbert spaces (H0;H1) by the norms

(4.12) kxk� :=
 1X
k=0

j�kj
2
a
(�)
k

!1=2
; x (z) =

1X
k=0

�k z
k; � = 0; 1

with a(�)k := R��k if k 6= 2j and a(�)k := (2R)
��k if k = 2j , j 2 N. An easy

calculation shows that ln di (H1;H0) � � i
lnR = � i

�(K;D) as i ! 1, hence the
couple (H0;H1) is admissible for (K;D), but it is not adherent to (A (K) ; A (D)).

Problem 4.15. Let (AC (K) ;H1 (D)) be an admissible couple for a plurireg-
ular pair (K;D). Is then H1 (D) adherent to A (D)?
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5. Maximal plurisubharmonic functions with isolated singularities

Let 
 be a pluriregular Stein manifold. Given a �nite set � =
�
�� : � = 1; : : : ;m

	
�


, denote by G� (
) the class of all functions u 2 Psh (
)\ MP (
r �) taking
the value �1 on � and satisfying the conditions lim

j!1
u (zj) = 0 for any sequence

fzjg discrete in 
 (or, shortly, lim
z!@


u (z) = 0). In particular, if 
 is a regular

one-dimensional Stein manifold, then every function u 2 G (
) is represented in
the form

(5.1) u (z) = �
mX
�=1

�� G

�
��; z

�
;

where �� > 0 and G
 (�; z) is the Green function for 
 with the unit logarithmic
singularity at the point �. It is well-known how important are those functions in one-
dimensional complex analysis, especially in the approximation and interpolation
theory.

By contrast, the multidimensional case is much more complicated: on the one
hand, usually a function u 2 G (
) with more than one pole is not representable as
a sum of functions with single poles and , on the other hand, isolated singularities
of such functions are extremely varied (as seen from the following example).

Example 5.1. Let � be a complete logarithmically convex n-circular domain,
relatively compact in a unit polydisc Un; and

h (�) = h� (�) := sup

(
nX
�=1

�� ln jz� j : z = (z�) 2 �
)

its characteristic function. Then every function

(5.2) k� (z) := sup

�Pn
�=1 �� ln jz� j
�h (�) : � = (��) 2 �

�
; z 2 Un

is of the class Gf0g (Un). All this singularities at the origin are di¤erent, in the
sense of the following:

Definition 5.2. Given a point � 2 
 we consider the set of all functions
' 2 Psh (U) \ MP (U r f�g) with ' (�) = �1, where U = U (') is an open
neighborhood of � and de�ne the equivalence relation by

(5.3) ' �  def
= lim

z!�

' (z)

 (z)
= 1:

Denote by S� the set of all equivalence classes under the relation (5.3) (we call them
also "standard singularities" at the point �) and write � = ['] if ' 2 � 2 S� . A
singularity � 2 S� is called continuous if there is a representative ' 2 �, continuous
in some punctured neighborhood of �.

Theorem 5.3. ([Z6, Z7]) Given a pluriregular Stein manifold 
, a �nite set
F =

�
�� : � = 1; : : : ;m

	
on it and continuous standard singularities �� =

�
'�
�
2

S�� , � = 1; : : : ;m, there exists the unique function g 2 GF (
) having the singu-
larities �� at the points ��. This function is continuous in 
rF and is de�ned by
the formula:

(5.4) g (z) = g
 (F; (��) ; z) := sup fu (z) : u 2 P (
; F; (��))g ;
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where P (
; F; (��)) is the class of all functions u 2 Psh (
) such that u (z) < 0 in

 and there is a constant c = c (u) provided the estimate u (z) � '� (z)+ c in some
neighborhood of ��; � = 1; : : : ;m:

Proof. We suppose, without loss of generality, that the neighborhoods U� =
U
�
'�
�
are disjoint, set U := [U� and de�ne a function ' on U so that ' (z) :=

'� (z) for z 2 U�: Consider the sets

(5.5) �� = fz 2 U : ' (z) < ��g ; F� = fz 2 U : ' (z) � ��g ; 0 < � <1:

Choose � > 0 such that F� is compact in 
. For any u 2 P (
; F; (��)) �nd
constants c and � � � such that u (z) � ' (z) + c if z 2 F� : Take �0 = max fc; �g.
The function  (z) = ��c

��� (' (z) + �) is maximal plurisubharmonic function in U
for � > �0 and, by the construction, u (z) �  (z) if z 2 @ (�� r F�). Hence,

u (z) � �� c
�� � (' (z) + �) ; z 2 �� r F�; � > �0 :

Tending � to in�nity in this inequality, we obtain the estimate u (z) � ' (z)+� in ��
for any u 2 P (
;�; (��)) and derive from here that the function eg := lim sup

�!z
g (&)

satis�es the estimate

(5.6) eg (z) � ' (z) + �; z 2 ��;
hence belongs to the class P (
; F; (��)), therefore g (z) � eg (z). Then the function

v (z) :=

�
g (z) ; z 2 
r ��

max fg (z) ; ' (z) + � � g ; z 2 ��
;

where  := � inf fg (z) : z 2 @��g, belongs to the class P (
; F; (��)) itself, hence
v (z) � g (z). Therefore

(5.7) ' (z) � g (z)� � + ; z 2 ��:

From g (z) = eg (z) � 0 and (5.5), (5.6) we derive that
(5.8) g (z) � (�+ �) (! (
; F�; z)� 1) ; z 2 
r F�; � > �0 :

On the other hand, due to (5.7), if � > �1 := max f; �0 g, the function

w (z) :=

�
max fg (z) ; (�+ � � ) ((! (
; F�; z)� 1))g ; z 2 
r F�

g (z) ; z 2 F�
belongs to the class P (
; F; (��)), which provides, together with (5.8), the esti-
mates

(5.9) (�+ � � ) ((! (
; F�; z)� 1)) � g (z) � (�+ �) (! (
; F�; z)� 1)

for z 2 
r F�; � > �1. We conclude from here that

g (z) = lim
�!1

� (! (
; F�; z)� 1) ;

with uniform convergence on any compact subset of 
r F . Since the pair (
; F�)
is pluriregular for each �, the function � (! (
; F�; z)� 1) is continuous in 
 for
each �, hence the function g is continuous in 
rF . From (5.9) we derive also that
limz!@
 g (z) = 0, so g 2 GF (
). �
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Corollary 5.4. Given a �nite set F =
�
�� : � = 1; : : : ;m

	
on a pluriregular

Stein manifold and a vector � = (��) 2 Rm+ there is the unique function g (z) =
g
 (F; �; z) 2 GF (
) having at the point �� the standard singularity �� =

�
'�
�

de�ned by the function '� (z) := �� ln
��t�(��)� t�(z)��, where t� : U� ! Cn are

local coordinates in a neighborhood U� of the point ��; � = 1; : : : ;m (we call this
function multipolar Green function).

Definition 5.5. ([Z6, Z7]; cf.,[BT2], section 9) Let u 2 Psh (
), E b 
.
The MP -balayage (sweeping out) of the function u with respect to the set 
 r E
is the function

(5.10) s (z) = s (E; u; z) := lim sup
�!z

sup fv (�) : v 2 P (
; E;u)g ;

where P (
; E;u) is the class of all functions v 2 Psh (
), satisfying v (z) �
u (z) ; z 2 
r E.

Proposition 5.6. Let u 2 C (
) \ Psh (
), G b D b 
, G strictly regular
open set. Then

(5.11)
Z
D

(ddcu (z))
n
=

Z
D

(ddcs (G; u; z))
n
:

Proof. Let �rst u 2 C2 (
0) ; D b 
0 b 
; @D 2 C1. Then, by Stokes�
formula,

(5.12)
Z
D

(ddcu)
n
=

Z
@D

dcu ^ (ddcu)n�1 :

It is easily seen that Stokes�formula can be applied to functions which are C2 only
in a neighborhood of the boundary @D and so, to the function s (z) := s (G; u; z).
Since u (z) � s (z) in 
 r G, we obtain (5.11) and, furthermore, the smoothness
assumption on @D can be dropped.

In the general case, take a sequence u� 2 C2
�

0
�
\ Psh (
0), D b 
0 b 
,

such that �� := ju� u� j
0 ! 0. Let s� (z) := s (G; u� ; z). Since u� (z) � s� (z) in


0 rG and s and s� are maximal in G; we obtain that

s (z)� �� � s� (z) � s (z) + �� ; z 2 G:

Therefore js� s� j
0 ! 0 as � ! 0. By continuity of the Monge-Ampére operator
with respect to the compact convergence (see, e.g., [CLN, BT1, Sa1]), the limit
transition in the formula (5.11), with u� ; s� instead of u; s; gives this formula in
general case. �

Definition 5.7. Given a point � on a Stein manifold 
; dim
 = n, and
� = ['] 2 S� the charge of the standard singularity � is the value

(5.13) �� (�) = �� f'g :=
�
1

2�

�n Z



(ddcs (��; '; z))
n
; � > �;

where �� := fz 2 � : ' (z) < ��g, � = �(') b 
 is an open neighborhood of �
provided ' 2 Psh (�) \MP (�r f�g) and � = � (') is such that �� b 
.
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It is clear that

(5.14) !
�
��1 ;��0 ; z

�
=
s (��0 ; '; z) + �0

�0 � �1
and

(5.15) �� f'g = (�0 � �1)n C
�
��0 ;��1

�
;

where � < �1 < �0:

Proposition 5.8. The charge of a standard singularity is well-de�ned, i.e. the
value (5.13) does not depend on a choice of � or '.

Proof. The value (5.13) does not depend on � > �, due to Proposition 5.6.
To show that it is also independent of a choice of a representative ' in the class �,
we take another representative '0 2 � = ['] Then for each " > 0 there is  =  (")
such that

�(1+")� � �0� � �(1�")�; � � ;
where �0� are sublevel domains for the function '0. Using monotonicity of the
capacity ([Sa1, BT2]) and the relations (5.12), (5.14), (5.15) with �1 = � >  and
�0 = 2�, we get

�� f'g
(1 + 3")�

� �� f'0g
�

� �� f'g
(1� 3")�; � � ;

which implies the equality �� f'g = �� f'0g, since " > 0 is arbitrary. �

Definition 5.9. Given a function g 2 G (
) with the set of singularities F =
F (g) =

�
�� : � = 1; : : : ;m

	
consider its sublevel domains

(5.16) 
� := fz 2 
 : g (z) < ��g ; 0 < � <1:

The charge of g (supported by the set F ) is de�ned as the value

(5.17) � fgg :=
�
1

2�

�n Z



(ddcs (
�; g; z))
n
=

mX
�=1

��� [g] ; � > 0:

Proposition 5.10. The charge of the multipole Green plurifunction
g (z) = g
 (F; �; z) is the value

(5.18) � fgg = �n C (F�;
)

(2�)
n =

mX
�=1

(��)
n

where F� = fz 2 
 : g (z) � ��g ; 0 < � <1:

Proof. Proposition 5.6 gives that the charge � (g) does not depend on the
choice of local coordinates in the de�nition of the function g
 (F; �; z). Therefore,
applying (5.13), (5.17) and the well-known Jensen equality (see, e.g.,[Kl], Example
6.5.6): �

1

2�

�n Z
@B(o;r)

dc (ln jzj) ^ (ddc (ln jzj))n�1 = 1;

we obtain (5.18). �
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6. Generalized Schwarz and Bernstein Lemmas

Let 
 be a pluriregular Stein manifold, dim
 = n, F =
�
�� : � = 1; : : : ;m

	
�


; � = (s�) 2 Zm+ . Denote by A0 ((F; �) ;
) the ideal consisted of all functions f 2
A (
) vanishing on F and having zero of order � s� at the point ��; � = 1; : : : ;m;
and set

(6.1) A?0 (F; �) :=
n
f 0 2 A (F )0 : f

0
(f) = 0 for all f 2 A0 ((F; �) ;
)

o
An analytic functional f 0 2 A?0 (F; �) � A (
)

0 is called a discrete rational func-
tional having the poles of order at least s� at the point ��, � = 1; : : : ;m:

The following statement may be considered as a generalization of the classical
Schwarz Lemma.

Theorem 6.1. Let 
 be a pluriregular Stein manifold, dim
 = n, and

F =
�
�� : � = 1; : : : ;m

	
� 
; � = (s�) 2 Zm+ :

Let f 2 A0 ((F; �) ;
). Then the estimates
(6.2) jf (z)j � jf j
 exp (s (�) g
 (F; �; z)) ; z 2 
;

hold with s (�) := inf
�
s�
��

: � = 1; : : : ;m

�
.

Proof. It makes sense to consider (6.2) only for bounded functions f . The

function u (z) :=
ln jf (z)j � ln jf j


s (�)
belongs to the class P (
; F; (��)) with the

singularities �� de�ned by the function '� (z) := �� ln
��t(��)� t(z)��, where t :

U� ! Cn are a local coordinates in a neighborhood U� of the point ��; � = 1; : : : ;m
. Therefore u (z) � g
 (F; �; z) in 
 which is equivalent to (6.2) . �

Now we consider the statement which is a generalization of the classical Bernstein-
Walsh-Siciak Lemma (see, e.g., [Si, Z4]) in order to �t estimates of discrete rational
functionals.

Theorem 6.2. Let D be a strictly pluriregular open set on a Stein manifold 
,
F =

�
�� : � = 1; : : : ;m

	
� D; � = (s�) 2 Zm+ and

(6.3) �� = �� (F; �) := fz 2 D : gD (F; �; z) < ��g ; 0 < � <1:
Suppose f 0 2 A?0 (F; �) : Then for each � > 0 the estimates
(6.4) jf 0j��� � C jf

0j�D exp (�+ �) s; 0 < � <1;

hold with some constant C = C (�; �) and s = s (�) := sup

�
s�
��

: � = 1; : : : ;m

�
.

Proof. For each point �� 2 F we choose some local coordinates

(6.5) t(�) =
�
t
(�)
j

�
: �(�) ! Un;

with mutually disjoint neighborhoods �(�) and set � = [m�=1�(�). Then

(6.6) g� (F; �; z) = ��max
n
ln
���t(�)j (z)

��� : j = 1; : : : ; no ; z 2 �(�); � = 1; : : : ;m:
and

(6.7) �� := fz 2 � : g� (F; �; z) < ��g = [m�=1�(�)�
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where �(�)� =
n
z 2 �(�) :

���t(�)j (z)
��� < exp�� �

��

�o
; 0 < � <1. The system

fk;� (z) :=

�
t(�) (z)

k
:= t

(�)
1 (z)

k1 � � � t(�)n (z)
kn ; z 2 �(�)

0; z 2 �r�(�)
;

with k = (k1; : : : ; kj ; : : : ; kn) 2 Zn+ and � = 1; : : : ;m, forms a common basis for all
the spaces A (�� ) and the space A (F ). Its biorthogonal system

n
f 0k;�

o
� A (F )0 �

A (�� )
0 may be expressed by the formula

(6.8) f 0k;� (f) =

�
1

2�i

�n Z
S

f (v� (t)) dt

tk+I
; f 2 A (�� ) ; 0 < � <1;

where v� : Un ! �� is the mapping inverse to the coordinate mapping (6.5),
� = 1; : : : ;m, k = (k1; : : : ; kj ; : : : ; kn) 2 Zn+, I = (1; : : : ; 1) and S = S�;� is
the Shilov boundary of the polydisc Unr , where r = r (�) := exp (��� �=��) ;
0 < � <1. It is easily seen that

(6.9) jfk;�j��
= exp

�
�� jkj
��

�
;
��f 0k;������

= exp

�
� jkj
��

�
; 0 < � <1:

Since any functional f 0 2 A?0 (F; �) is represented in the form

f 0 =

mX
�=1

X
jkj�s�

f 0 (fk;�) f
0
k;�;

using (6.9), we obtain the estimate:

jf 0j���
�

���f 0 ����
��

mX
�=1

(��)
n

�
s�
��

�n
exp

�s�
��

�
���f 0 ����

��

mX
�=1

(��)
n
s (�)

n
exp �s (�)

with 0 < � <1. So, for each " < 0 the estimates
(6.10) jf 0j���

� L (") jf 0j�� exp (� + ") s; 0 < � <1;

hold with L (") =
mP
�=1

(��)
n
sup fxn exp (�"x) : x > 0g, where s = s (�) := sup

�
s�
��

: � = 1; : : : ;m

�
.

Choose  > 0 so that � b �: Since �� � �� ; 0 < � < 1, we �rst derive
from (6.10) a quite rough estimate for the left-hand side of (6.4):

(6.11) jf 0j��� � L (") jf
0j�� exp (� + ") s; 0 < � <1:

Using the notation F� := fz 2 D : gD (F; �; z) � ��g ; we have the relation:

! (D;F� ; z) =
1

�
gD (F; �; z) + 1; z 2 D r F� ; 0 < � <1;

which implies that

(6.12) D(�)
� := fz 2 D : ! (D;F� ; z) < �g = �(1��)� ; 0 < � < 1; 0 < � <1:

Therefore, applying (3.2) with K = F� , � = 1� �=� , 0 < � < � , " < 0, we obtain
the estimate

(6.13) jf 0j��� �M
�
jf 0j�F�

��=�+" �jf 0j�D�1��=��"
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with some constant M =M (� ; �; ").
Since the relation (6.4) is homogeneous, it is su¢ cient to prove it in the case

when jf 0j�D = 1. Under this assumption, taking into account (6.11) and (6.13), we
obtain the estimate:
(6.14)

jf 0j��� �M
�
L (") jf 0j�� exp (� + ") s

��
� +" �M 0

�
jf 0j��

��=�+"
exp (�+ "0) s

with some constant M 0 = M 0 (� ; �; ") and "0 = �" + " + "2; 0 < � < � . Applying
this estimate for � =  with � = 4 and " = 1=4 we obtain that

(6.15) jf 0j�� � (M
0)
2
exp 2 (2 + 1) s :

Given � > 0 and � > 0 we choose � = � (�; �) and " = " (�; �) so that

(6.16) 2 (2 + 1) (�=� + ") < �=2; �"+ "+ "2 < �=2:

Then putting (6.15) into (6.14) considered with parameters satisfying the conditions
(6.16) we obtain the estimate (6.4) in the case jf 0j�D = 1 with some constant C =
(�; �). This completes the proof. �

Corollary 6.3. Let 
 be a pluriregular Stein manifold of dimension n and
F =

�
�� : � = 1; : : : ;m

	
� 
; � = (s�) 2 Zm+ . Let H ,! A (
) be a Hilbert space

adherent to A (
) and the dual space A (
)� is considered as imbedded naturally
into H�. Then for each f 0 2 A?0 (F; �) and for any � > 0 the estimates

(6.17) jf 0j�
� � C
f 0

H�
exp (�+ �) s; 0 < � <1;

hold with some constant C = C (�; �) and s = s (�) := sup

�
s�
��

: � = 1; : : : ;m

�
.

7. Extendible bases

Theorem 7.1. ([Z6, Z7] ) Let F =
�
�� : � = 1; : : : ;m

	
be a �nite set on a

pluriregular Stein manifold, dim
 = n, having no connected component disjoint
with the set F ; � = (��)

m
�=1, �� > 0, � = 1; : : : ;m. Let g
 (F; �; z) be the corre-

sponding Green multipole function,

(7.1) 
� := fz 2 
 : g
 (F; �; z) < ��g ; F� := fz 2 
 : g
 (F; �; z) � ��g ;
with 0 < � <1; and

(7.2) �n =

 
n!Pm

�=1 (��)
n

!1=n
:

Then there exists a common basis ffi (z)gi2N for all the spaces
(7.3) A (
) ; A (F ) ; A (
�) ; A (F�) ; 0 < � <1;
such that for each " > 0 and 0 < � <1 the estimates

(7.4)
1

C
exp�n (��� ") i1=n � jfi (z)jF� � C exp�n (��+ ") i1=n; i 2 N;

hold with some constant C = C (�; ") :The Green multipole function can be expressed
via the basis by the formula:

(7.5) �n g
 (F; �; z) = lim sup
�!z

lim sup
i!1

ln jfi (�)j
i1=n

; z 2 
r F:
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Proof. Consider a system of analytic functionals�
f 0k;�; k 2 Zn+; � = 1; : : : ;m

	
� A (F )0 � A (
)0 ;

biorthogonal to the basis in A (F ) consisted of monomials in local coordinates (see
the beginning part of the proof of Theorem 6.2). Enumerate it into the sequence

(7.6) e0i = f 0k(i);�(i); i 2 N;

so that the sequence s� (i) :=
jk (i)j
��(i)

will be non-decreasing.

Taking any Hilbert space H adherent to A (
), we consider the dual space
A (
)

�as imbedded naturally into H� (see, Preliminaries, Spaces). The system
(7.6) is linearly independent and complete in H�. Orthonormalizing it in the space
H�, we obtain the system of analytic functionals ("polynomials with respect to the
system (7.6)"):

(7.7) '0i =
X
j�i

bij e
0
j ; i 2 N;

belonging to A (F )0 � A (
)� � H�.
We are going to show that the system f'igi2N � H � A (
) � A (F ), biorthog-

onal to this system, is a required basis. This system is orthonormal in H. For any
f 2 A (F ) the relation '0i (f) = 0; i 2 N, implies that e0i (f) = 0; i 2 N, so the
function f vanishes on the set F with all its derivatives, hence f � 0 in a neighbor-
hood of F . Therefore the system f'ig is total and hence complete in the spaces
(7.3), due to re�exivity all of them. Since '0i (f) = (f; 'i)H , the orthogonal system
f'ig is maximal in H and hence complete also in H.

From (7.7) we have that '0i 2 A?0 (F; �) with � = ([�� s� (i)] + 1). Therefore
remembering that k'0ik = 1 we obtain, by Corollary 6.3, the estimates

(7.8) j'0ij
�

�
�M exp (�+ �) s� (i) ; i 2 N; 0 < � <1

with a constant M =M (�; �) ; � > 0.
On the other hand, due to H ,! A (
), for each � > 0 there is a constant

L = L (�) such that j'ij
� � L k'ikH = L and 'i 2 A0 ((F; �) ;
�) with � =
([�� s� (i)]). Therefore, taking into account that g
� (F; �; z) = g
 (F; �; z)+� and
applying Theorem 6.2, we obtain that the estimates

(7.9) j'ij
� � N exp (��+ �) s� (i) ; i 2 N; � < � <1;

hold with some constant N = N (�; �), � > 0. The estimates (7.8) and (7.9)
provide that, for each function f belonging to any space from the list (7.3), its
basis expansion f (z) =

P
i2N '

0
i (f) 'i (z) converges in the topology of that space.

The estimates (7.4) follows from (7.8), (7.9), taking into account the strict
asymptotics

s� (i) � �n i1=n; i!1;
which is derived from the evident strict asymptotics of the counting function:

c (t) := jfi : s� (i) � tgj �
mX
�=1

(�� t)
n

n!
; t!1:

�
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8. Strict asymptotics for Kolmogorov diameters

Now we are ready to prove the main results (Theorem 1.5 and Corollary 1.7).
As it was emphasized in the introduction, an important part of the proof is covered
by the following recent result of Nivoche-Poletsky (solving positively our conjecture
from [Z6, Z7]; see Problem 1.4 above).

Proposition 8.1. Let K be a compact set in Stein manifold 
 and (K;
) be a

pluriregular pair. Then there exist a sequence of �nite sets Fj =
n
�(j)� : � = 1; : : : ;mj

o
�


 and a sequence �(j) =
�
�
(j)
�

�
2 Rmj , �(j)� > 0, � = 1; : : : ;mj, such that the

sequence g

�
Fj ; �

(j); z
�
converges to the function ! (
;K; z)�1 uniformly on any

compact subset of 
rK.

Applying this result and our considerations developed in the previous sections,
we prove now Theorem 1.5.

Proof. Let ! (z) := ! (
;K; z). Take any pair of Hilbert spaces (H0;H1)
adherent to the pair (A (K) ; A (
)), hence, by Theorem 4.12, admissible for the
couple (K;
)). Since the strict asymptotics is the same for all admissible pairs of
Banach spaces it is su¢ cient to prove that

(8.1) � lim
i!1

ln di (H1;H0)

i1=n
= 2�

�
n!

C (K;
)

�1=n
:

First, by Theorem 4.11, the continuous linear imbeddings

(8.2) A (K� ) ,! H1��
0 H�

1 ,! A (
� ) ; 0 < � < 1;

hold for the Hilbert scale H� := H1��
0 H�

1 with

(8.3) K� := fz 2 
 : ! (z) � �g ; 
� := fz 2 
 : ! (z) < �g :
Take some sequences "j # 0 and �j # 0 so that
(8.4) "j+1 < "j � 2 �j ; j 2 N:
By the Nivoche-Poletsky result (Proposition 8.1), for each j 2 N there exists a
�nite set

F (j) =
n
�(j)� : � = 1; : : : ;mj

o
� 


and a vector �(j) =
�
�
(j)
�

�
2 Rmj

+ such that

(8.5) jgj (z)� ! (z) + 1j < �j ; z 2 K1�"j r 
"j ;

where gj (z) := g

�
F (j); �(j); z

�
; z 2 
. Denote for j 2 N

(8.6) �j := fz 2 
 : gj (z) � �1 + "jg ; Dj := fz 2 
 : gj (z) < �1 + "jg
and consider the function

(8.7) !j (z) := s

�
�j ;

gj + 1� "j
1� "j

; z

�
=

8<:
gj (z) + 1� "j

1� "j
; z 2 
r �j

0; z 2 �j
It is clear that !j (z) = ! (
;�j ; z) ; z 2 
. We show that
(8.8) !j (z) " ! (z) ; z 2 
:
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Indeed, taking into account (8.3),(8.4),(8.5),(8.6),(8.7), we get the inclusions:

(8.9) K"j+1� �j+1 � �j+1 � 
"j+1+ �j+1 � K"j� �j � Dj � �j � 
"j+ �j
Therefore the sequence !j (z) is non-decreasing and

(8.10) !
�

;K"j� �j ; z

�
� !j+1 (z) � !

�

;K"j+1� �j+1 ; z

�
; j 2 N:

So (8.8) is proved.
Due to [BT1, BT2], we have

(8.11) C (�j ;
) :=

Z
(ddc!j (z))

n #
Z
(ddc! (z))

n
=: C (K;
) :

On the other hand, due to (5.17),(5.18),

(8.12) C (�j ;
) =

�
2�

1� "j

�n mjX
�=1

(�j;�)
n
:

Given " > 0, due to (8.11), we can choose j 2 N so that
(8.13) C (K;
) � C (�j ;
) � (1 + ")C (K;
) and "j < ":

Now we consider the basis f'ig from Theorem 7.1 with the Hilbert space H = H1

chosen in the beginning of the proof and with F = F (j); � = �(j). Let G be the
Hilbert space of all x =

P
i2N

�i'i such that

(8.14) kxkG :=
 X
i2N
j�ij

2
exp 2�n (�1 + "j) i1=n

!1=2
<1;

where, due to 8.12,

(8.15) �n =

0BBB@ n!
mjP
�=1

(�j;�)
n

1CCCA
1=n

=
2�

1� "j

�
n!

C (�j ;
)

�1=n
:

By (2.11), (8.14) we have

(8.16) di�1 (H1 ; G) = exp�n (�1 + "j) i1=n

which together with (8.13), (8.15) implies that

(8.17) 2�

�
n!

(1 + ")C (K;
)

�1=n
� � ln di�1 (H1 ; G)

i1=n
� 2�

�
n!

C (K;
)

�1=n
Due to the estimates (7.4), (8.2), we get the imbeddings:

H"j+ �j ,! A
�

"j+ �j

�
,! A (�j) ,! G ,! A (Dj) ,! A (K) ,! H0 :

Hence, by Proposition 2.1, there is a constant M > 0 such that

(8.18)
1

M
di (H1;H0) � di (H1; G) �M di

�
H1;H"j+ �j

�
:

From the left inequalities in (8.17) and (8.18) we obtain the estimate:

(8.19) � lim inf
i!1

ln di (H1;H0)

i1=n
� 2�

�
n!

(1 + ")C (K;
)

�1=n
:
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Applying (2.12) with �1 = 1 and �0 = "j+ �j , we derive from the right inequalities
in (8.17) and (8.18) that

(8.20) � lim sup
i!1

ln di (H1;H0)

i1=n
� 2�

1� 2"

�
n!

C (K;
)

�1=n
:

Since " > 0 is arbitrary, we conclude from (8.19),(8.20) that (8.1) is true. This
completes the proof. �

9. Final remarks and some problems

The following su¢ cient condition for the asymptotics (1.7) �ows out from
Proposition 4.6 and Corollary 4.13.

Corollary 9.1. Let D be strongly pluriregular. Then the strict asymptotics
(1.7) holds for any compact set K making up a pluriregular pair with D.

Some more general su¢ cient condition (covering the one-dimensional Proposi-
tion 1.1) is represented by

Proposition 9.2. Let (K;D) be a pluriregular pair on a Stein manifold, such
that D is an intersection of a countable decreasing sequence of open sets Ds such
that H1 (Ds) is adherent to A (Ds) for each s. Then H1 (D) is adherent to A (D)
and the asymptotics (1.7) holds.

Whereas the pluripotential ! (D;K; z) is an appropriate tool for the modi�ed
Kolmogorov problem (see, Theorem 1.5), for the solution of the original problem of
Kolmogorov (1.3) in general case one needs to deal with another extremal function
(see, e.g., [Z3, Sib]):

(9.1)  (D;K; z) := lim sup
�!z

sup fu (�) : u 2 A(D;K)g ;

here A(D;K) consists of all functions u (z) = � ln jf (z)j with � > 0; f 2 H1 (D)
and ujK � 0, u (z) < 1 in D. This is supported by the observation that in the
conditions of Corollary 9.1 or Proposition 9.2 we have ([Z3, Z6, Z7]):

(9.2)  (D;K; z) = ! (D;K; z) ; z 2 D;
and by the following result.

Theorem 9.3. Let the space H1 (D) be adherent to A (D). Then (9.2) holds
for any compact set K � D making up a pluriregular pair (K;D).

Proof. The space X0 = AC (K) is adherent to A (K) ([Z3]) and X1 =
H1 (D) is adherent to A (D) by the assumption. Therefore, by Theorem 4.11,
for any regular normal scale X�; connecting X0 and X1; the imbedding

(9.3) A (K�) ,! X�; 0 < � < 1;

holds. Suppose now that (9.2) is not valid. Then, since the function  (D;K; z) does
not exceed ! (D;K; z), there is a point z0 2 D rK such that � :=  (D;K; z0) <
! (D;K; z0) =: �:Take � : � < � < � and denote �� := fz 2 D :  (D;K; z0) < �g.
By the de�nition (9.1), the estimate

jxjL �
�
kxkX0

�1�� �kxkX1

��
; x 2 X1;

holds for any compact set L � ��. Therefore the imbedding bX� ,! A (��) is
true, where bX�; 0 � � � 1; is the maximal scale of means spanned by X0; X1
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([KPS], IV, Lemma 2.6). Since any regular scale is almost imbedded into any scale
([KPS], IV.11, Corollary 3) , we obtain from here and (9.3) that A (K�) ,! X� ,!bX� ,! A (��). Since z0 2 K� is an interior point of �� we get that each germ
x 2 A (K�) has an analytic extension onto some �xed neighborhood of the point
z0, which is impossible, because K� is holomorphically convex with respect to D.
This contradiction completes the proof. �

Problem 9.4. Let (K;D) be a pluriregular pair on a Stein manifold 
. Is the
condition (9.2) su¢ cient for the adherence of H1 (D) to A (D)?

Also, in connection with Theorem 4.12 and Problem 4.15, the following question
arises.

Problem 9.5. Let (K;D) be a pluriregular pair on a Stein manifold 
. Does

the condition (9.2) characterize the asymptotics (1.3) with the constant � = 2�
�

n!
C(K;D)

�1=n
?

In conclusion we consider some examples.

Example 9.6. Let E � R � C be the standard Cantor set. Then for the domain
D := CrE the space H1 (D) consists only of constants. Hence, for any pluriregular
compact set K � D, we have that di

�
ADK
�
= 0, i = 1; 2; : : : and the asymptotics

(1.3) has no sense ("holds with � = +1"), while 1=� (K;D) <1.

We notice that in this case  (D;K; z) � 0, whereas ! (D;K; z) is strictly
positive in D rK.

Example 9.7. Let E be again the usual Cantor set and G � E be any domain
in C satisfying the conditions of Proposition 1.1. Then for any regular compact set
K � D := GrE the asymptotics (1.3) holds with the constant � = 1

�(K;G) >
1

�(K;D) .

So, in this case the constant � is de�ned by ! (G;K; z) ; which is the harmonic
extension of the function  (D;K; z) onto the domain G, obtained after removing
of the non-polar portion E � @D having zero analytic capacity.

Example 9.8. Let E be a compact set of positive length on a recti�able curve
in C, having no portion of zero length, and D := CrE. Though, due to the positive
solution of Denjoy conjecture (see, e.g., [Ve]), the space H1 (D) is non-trivial it
seems that there is no answer to the following questions (even in the simplest case
of Cantor sets of positive Lebesgue measure):

(1) Is H1 (D) adherent to A (D)?
(2) Is the equality (9.2) true with some (hence with any) pluriregular compact

set K � D such that bKD = K?
(3) Is the couple (AC (K) ;H1 (D)) admissible for (K;D) if K is as above

or, what is the same, does the asymptotics (1.6) hold in this case?

Example 9.9. Sibony [Sib] studied domains

D = z =
�
(z1; z2) 2 C2 : jz1j < 1; jz2j < exp (�V (z1))

	
;

where 0 � V (z1) � 1 is a continuous subharmonic function of the open unit disc
and is equal to 0 on a discrete sequence such that every point of the unit circle
is the nontangential limit of one of its subsequences. He proved that any function
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f 2 H1 (D) can be extended onto the bidisc U2 = fjz1j < 1; jz2j < 1g preserving
its uniform norm. Hence for any pluriregular compact set K � D we obtain that

 (D;K; z) � !
�
U2;K; z

�
< ! (D;K; z) ; z 2 D rK

and the asymptotics (1.6) holds with � = 2�
�

n!
C(K;U2)

�1=n
.

For an arbitrary pluriregular pair (K;D) on a Stein manifold 
 we set

� (K;D) :=
1

(2�)
n

Z
K

(ddc (D;K; z))
n
:

and conjecture here that, if  (D;K; z) < ! (D;K; z) ; z 2 DrK, the asymptotics

(1.3) ought to hold with � =
�

n!
�(K;D)

�1=n
. Therewith (1.3) has to be understood

as di
�
ADK
�
= exp

�
� i1=no(1)

�
, if � (K;D) = 0.
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