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1 Introduction

Let p > 2 be a prime and denote byFp the finite field of orderp which we identify with
the set of integers{0, 1, . . . , p− 1}.

The linear complexityL(S) of an N -periodic sequenceS = σ0, σ1, . . . over Fp is
the smallest nonnegative integerL for which there exist coefficientsd1, d2, . . . , dL ∈ Fp

such that
σi + d1σi−1 + . . . + dLσi−L = 0 for all i ≥ L.

The linear complexity is of fundamental importance as a complexity measure for
periodic sequences (see [13, 14, 15, 16, 19]). Motivated by security issues of stream
ciphers, in [18] Stamp and Martin proposed a different measure of the complexity of
periodic sequences, thek-error linear complexity, which is defined by

Lk(S) = min
T

L(T ),

where the minimum is taken over allN -periodic sequencesT = τ0, τ1, . . . overFp for
which the Hamming distance of the vectors(σ0, σ1, . . . , σN−1) and(τ0, τ1, . . . , τN−1)
is at mostk. Evidently we have

N ≥ L0(S) = L(S) ≥ L1(S) ≥ L2(S) ≥ . . . ≥ LN (S) = 0.

The concept ofk-error linear complexity was built on the earlier concepts ofsphere
complexitySCk(S) introduced in the monograph [7] andweight complexityintroduced
in [4], see also [3, Chapter 2.3.4]. The sphere complexitySCk(S) of an N -periodic
sequence overFp can be defined by

SCk(S) = min
T

L(T ),
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where the minimum is taken over allN -periodic sequencesT 6= S overFp for which
the Hamming distance of the vectors(σ0, σ1, . . . , σN−1) and (τ0, τ1, . . . , τN−1) is at
mostk. Obviously we have

Lk(S) = min(SCk(S), L(S)).

The weight complexityWCk(S) of S is the minimal linear complexity of all sequences
with Hamming distance toS exactlyk.

Let d > 1 be a divisor ofp − 1 andα a fixed primitive element ofFp. Then the
cyclotomic classes of orderd give a partition ofF∗p = Fp \ {0} defined by

D0 = {αdn : 0≤ n ≤ (p− 1)/d− 1} and Dj = αjD0, 1≤ j ≤ d− 1.

For fixed c0, c1, . . . , cd−1 ∈ Fp the cyclotomic sequence of orderd is thep-periodic
sequenceC = ζ0, ζ1, . . . defined by

ζi =

{
0, p|i,
cj , (i modp) ∈ Dj , 0≤ j ≤ d− 1,

i = 0, 1, . . . . (1.1)

As p-periodic sequence,C is defined by its firstp terms. Hence it is sufficient to define
ζi for 0≤ i ≤ p− 1.
In the case that

cj = j, 0≤ j ≤ d− 1,

we have
ζi = indd i, 1≤ i ≤ p− 1, (1.2)

where indd i denotes thediscrete logarithmmodulod of i, i.e. the uniquej with i = αj0

for somej0 ≡ j modd and 0≤ j ≤ d − 1. Some cryptographic properties of the
sequenceC with (1.2) were analyzed in [5, 10, 11, 12, 21]. In particular, these results
support the assumption of the hardness of the discrete logarithm problem. This paper
provides further indications on how hard the discrete logarithm problem is. In the case
d = 2 the sequence(1.2) is calledLegendre sequence, see [6, 20]. Thek-error linear
complexity overFp of the Legendre sequenceL was determined for allk in [1],

Lk(L) =


p, k = 0,

(p + 1)/2, 1≤ k ≤ (p− 3)/2,

0, k ≥ (p− 1)/2.

(1.3)

A cyclotomic sequence of order4 defined with

c0 = c3 = 1 andc1 = c2 = 0 (1.4)

is investigated in [3, Chapter 8].Hall’s sextic residue sequenceH [8, 9] is the cyclo-
tomic sequence of order 6 with

c0 = c1 = c3 = 1 andc2 = c4 = c5 = 0.
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The main objectives of this paper are to find systematically sequences with highk-
error linear complexity in view of their suitability for stream ciphers and to analyze
some famous sequences suggested in the literature. In particular, we extend(1.3) to
arbitrary cyclotomic sequences. Under a certain necessary restriction on the choice of
thecj we prove that

Lk(C) =
(d− 1)(p− 1)

d
+ 1, 1≤ k ≤ p− 1

d
− 1.

For the above mentioned special examples we also prove explicit results on thek-error
linear complexity fork ≥ (p− 1)/d.

2 Preliminary results

First we recall [2, Theorem 8].

Lemma 2.1. Let f(X) ∈ Fp[X] be a polynomial of degree at mostp − 1 and S =
σ0, σ1, . . . thep-periodic sequence overFp defined by

σi = f(i) for 0≤ i ≤ p− 1.

Then we have
L(S) = deg(f) + 1.

Next we prove a result on the stability of the linear complexity.

Lemma 2.2. Let S be ap-periodic sequence overFp and0 ≤ k0 ≤ (p − 1)/2. Then
we have

Lk(S) = Lk0(S) for k0 ≤ k ≤ p− Lk0(S)− k0.

Proof. By the definition of thek-error linear complexity and by Lemma2.1 for 0 ≤
m ≤ p−1 there exists a polynomialfm(X) ∈ Fp[X] of degreeLm(S)−1 and a subset
Sm ⊆ Fp of cardinality at leastp−m such thatσi = fm(i) for all i ∈ Sm. Hence, for
anyk ≥ k0 we have

fk(i)− fk0(i) = 0 for all i ∈ Sk ∩ Sk0

and
deg(fk − fk0) ≤ Lk0(S)− 1.

Since|Sk∩Sk0| ≥ p−k−k0 we have eitherfk(X) = fk0(X) or p−k−k0 ≤ deg(fk−
fk0) ≤ Lk0(S)−1, or equivalently, eitherLk(S) = Lk0(S) or k ≥ p−Lk0(S)−k0+1.

Now we describe the standard method for finding the unique polynomialf(X) ∈
Fp[X] of degree at mostp− 1 satisfyingf(i) = ζi for all i ∈ Fp.
Let α, d be as defined above, and putρ = α(p−1)/d. First we construct the unique
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polynomialg(X) = a0+a1X+. . .+ad−1X
d−1 of degree at mostd−1 with g(ρj) = cj .

We consider the Vandermonde matrix

V = (ρij)d−1
i,j=0.

The inverse ofV is given by

V −1 = (d−1ρi(d−j))d−1
i,j=0.

Consequently the solution

(a0, a1, . . . , ad−1) = (c0, c1, . . . , cd−1)V −1

of the linear equation system(X0, X1, . . . , Xd−1)V = (c0, c1, . . . , cd−1) is explicitely
given by

aj = d−1
d−1∑
i=0

ciρ
i(d−j), 0≤ j ≤ d− 1.

Evidently the polynomial

f̄(X) = g(X(p−1)/d) = a0 + a1X
p−1

d + · · ·+ ad−1X
(d−1) p−1

d (2.1)

satisfiesf̄(i) = ζi = cj if i(p−1)/d = ρj , i.e. (i modp) ∈ Dj , for i = 1, 2, . . . , p − 1.
Moreover, the polynomial

f(X) = a0X
p−1 + a1X

p−1
d + · · ·+ ad−1X

(d−1) p−1
d (2.2)

of degree at mostp− 1 satisfiesf(i) = ζi for all i = 0, 1, . . . , p− 1.

3 General results on thek-error linear complexity

The following theorem indicates how to determine the exact value for thek-error linear
complexity of a sequence defined by(1.1) for a certain range ofk.

Theorem 3.1. Let p > 2 be a prime,d a divisor ofp − 1, c0, c1, . . . , cd−1 ∈ Fp, α a
primitive element ofFp andC thep-periodic sequence overFp defined by(1.1). Put
ρ = α(p−1)/d and

bj =
d−1∑
i=0

ciρ
ij , 0≤ j ≤ d− 1.

Let t be the smallest index such thatbt 6= 0 then

Lk(C) = p− t(p− 1)/d for 0≤ k ≤ t(p− 1)/d.

Additionally, ifb0 6= 0 andτ is the smallest index withτ ≥ 1 andbτ 6= 0, then

L(C) = p and Lk(C) = p− τ(p− 1)/d for 1≤ k ≤ τ(p− 1)/d− 1.
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Proof. Note thatb0 = da0 andbj = dad−j for 1≤ j ≤ d− 1.
If t is the smallest index such thatbt 6= 0 then the corresponding polynomial(2.2) has
degree(d − t)(p − 1)/d. With Lemmas2.1 and2.2 we get the first assertion of the
theorem.
If b0 6= 0 andτ is the smallest index withτ ≥ 1 andbτ 6= 0, then the polynomial(2.2)
has degreep− 1, and the polynomial(2.1) has degree(d− τ)(p− 1)/d. Consequently
with Lemma2.1 we haveL(C) = p, and sincef̄(i) = ζi, 1 ≤ i ≤ p − 1, we have
L1(C) = p − τ(p − 1)/d since each polynomial that coincides with̄f(X) in at least
p − 2 positions is either equal tōf(X) or has degree at leastp − 2. With Lemma2.2
we obtainLk(C) = L1(C) for 1≤ k ≤ τ(p− 1)/d− 1.

Theorem 3.2. For a p-periodic sequenceC over Fp defined by(1.1) and an integer
0≤ t ≤ d we have

Lk(C) ≤ (d− t− 1)(p− 1)/d + 1 for k ≥ t(p− 1)/d + 1.

Proof. We choosed − t different cyclotomic cosetsDj1, . . . , Djd−t
and calculate the

polynomialh(X) = a0 +a1X + · · ·+ad−t−1X
d−t−1 of degree at mostd− t−1 which

satisfiesh(ρji) = cji , i = 1, . . . , d−t. Then the polynomialg(X) = a0+a1X
(p−1)/d+

· · · + ad−t−1X
(d−t−1)(p−1)/d satisfiesg(j) = ζj for at least(d − t)(p − 1)/d = p −

(t(p−1)/d+1) differentj with 0≤ j ≤ p−1. With Lemma2.1we get the assertion.

4 k-error linear complexity for some selected generators

4.1 Discrete logarithm sequences

Applying Theorems3.1 and3.2 and using ideas from [17, Chapter 8] we obtain the
following results.

Theorem 4.1. For d > 1 the sequenceC = ζ0, ζ1, . . . defined by(1.2) with ζ0 = 0
satisfies

Lk(C) =


p : k = 0

(d− 1)(p− 1)/d + 1 : 1≤ k ≤ (p− 1)/d− 1
0 : k ≥ (d− 1)(p− 1)/d.

For d > 3 and(p− 1)/d < k ≤ (d− 1)(p− 1)/(2d) we have

(d− 1)(p− 1)
d

− 2k + 1≤ Lk(C) ≤ (d− 1− bd(k − 1)/(p− 1)c) (p− 1)
d

+ 1.

Proof. With

b0 =
d−1∑
j=0

cj =
d−1∑
j=0

j = d(d− 1)/2 6= 0
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and

(ρ− 1)2b1 = (ρ− 1)2
d−1∑
j=0

cjρ
j = (ρ− 1)2

d−1∑
j=0

jρj

= ρ− dρd + (d− 1)ρd+1 = d(ρ− 1) 6= 0,

Theorem3.1, and the fact that the cyclotomic sequence produces(d − 1)(p − 1)/d
nonzero terms per period we obtain the first part of the theorem. The upper bound of
the second part follows from Theorem3.2.

Finally, we prove the lower bound of the second part. Letf(X) ∈ Fp[X] be a
polynomial withf(i) = ζi = indd i for at least(d− 1)(p− 1)/d− k elements 1≤ i ≤
p− 1 with i 6∈ Cd−1. For at least(d− 1)(p− 1)/d− 2k of these elements we also have

f(αi) = indd (αi) = 1 + indd i = 1 + f(i).

Hence, the polynomialF (X) = f(αX) − f(X) − 1 of degree at most deg(f) has at
least(d− 1)(p− 1)/d− 2k zeros. SinceF (0) = −1 6= 0 we get deg(f) ≥ deg(F ) ≥
(d− 1)(p− 1)/d− 2k and the result follows by Lemma2.1.

Theorem4.1gives only a nontrivial lower bound ifk < (d−1)(p−1)/2d. Next we
prove a lower bound which is nontrivial for allk < (d− 1)(p− 1)/d.

Theorem 4.2. We have

Lk(C) ≥ (p− 1− k)((d− 1)(p− 1)− dk)
2(d− 1)(p− 1)

+ 1.

Proof. Let S ⊆ F∗p be any set of cardinality|S| ≥ p − 1− k andf(X) ∈ Fp[X] any
polynomial with

f(i) = ζi, i ∈ S.

Let us consider the set

D = {a = i−1j : indd a 6= 0, i, j ∈ S}.

We have|D| ≤ (d− 1)(p− 1)/d and there exists ana ∈ D such that there are at least

|S|(|S| − (p− 1)/d)
|D|

≥ d(p− 1− k)(p− 1− k − (p− 1)/d)
(d− 1)p

representationsa = i−1j, i, j ∈ S. Select thisa and let

R = {i ∈ F∗p : f(i) = ζi andf(ai) = ζai}.

We see that|R| ≥ (p− 1− k)((d− 1)(p− 1)− dk)/(d− 1)p.
Moreover, we have either indd (ai) = indd a+indd i or indd (ai) = −d+indd a+indd i.
Hence, at least one of the polynomials

h1(X) = f(aX)− f(X)− indd a andh2(X) = f(aX)− f(X) + d− indd a
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has at least|R|/2 zeros. Sinceh1(0) = p− indd a 6= 0 andh2(0) = d− indd a 6= 0 we
get

degf ≥ max{degh1, degh2} ≥ |R|/2

and the result follows by Lemma2.1.

For concrete values ofd we can improve the lower bounds of Theorems4.1and4.2.
We present the result ford = 3.

Theorem 4.3. For p > 7 andd = 3 the sequenceC of Theorem4.1satisfies

Lk(C) =


p : k = 0

2(p− 1)/3 + 1 : 1≤ k ≤ (p− 1)/3− 1
(p− 1)/3 + 1 : (p− 1)/3 + 1≤ k < (p− 1)/2

0 : k ≥ 2(p− 1)/3,

and additionally

4(p− 1)/9 + 1≤ L(p−1)/3(C) ≤ 2(p− 1)/3 + 1.

Proof. Fork ≤ (p− 1)/3− 1 andk ≥ 2(p− 1)/3 the result immediately follows from
Theorem4.1.
Next we assumek ≥ (p− 1)/3 + 1 and annotate that the polynomials

g0(X) =
1

ρ− 1

(
ρ− 2 +

1
ρ
X(p−1)/3

)
,

g1(X) =
2

ρ2 − 1

(
−1 + X(p−1)/3

)
,

g2(X) =
1

ρ− 1

(
−1 + X(p−1)/3

)
,

satisfy
ζj = gi(j) for j ∈ F∗p \Di,

but
ζj 6= gi(j) for j ∈ Di ∪ {0},

i = 0, 1, 2. (Note that ifp = 7 we may haveρ = 2 and thusg0(0) = 0.) From
Lemma2.1we getLk(C) ≤ deggi+1 = (p−1)/3+1. We remark that the polynomials
gi(X) can easily be obtained with the method described in Section2 for finding the
unique polynomialf̄(X) ∈ Fp[X] of smallest degree satisfyingf(j) = ζj for all
j ∈ F∗p.

In order to prove the theorem it remains to show thatL(p−1)/3(C) ≥ 4(p− 1)/9+ 1,
and thatLk(C) ≥ (p− 1)/3 + 1 for k < (p− 1)/2.
Let T = τ0, τ1, . . . , be anyp-periodic sequence obtained fromC by at mostk changes
per period. Lett(X) ∈ Fp[X] be the polynomial witht(j) = τj , 0≤ j ≤ p− 1.
We obtain thatt(j) = gi(j) for at least 2(p−1−k)/3 elementsj of Fp for an appropriate



8 Hassan Aly, Wilfried Meidl, and Arne Winterhof

choice ofi, i.e., the polynomialh(X) = t(X)−gi(X) has at least 2(p−1−k)/3 zeros.
If we putk = (p− 1)/3, then by the above considerations we havet(X) 6= gi(X) and
thush(X) is not the zero polynomial. Consequently we must have deg(h) = deg(t) ≥
2(p−1−k)/3 = 4(p−1)/9 and thusL(p−1)/3(C) ≥ 4(p−1)/9+1. Trivially we have
the upper boundL(p−1)/3(C) ≤ L(p−1)/3−1(C) = 2(p− 1)/3 + 1.
Fork < (p− 1)/2 we have eitherh(X) ≡ 0 and thus deg(t) = deg(gi) = (p− 1)/3 or
deg(h) = deg(t) ≥ 2(p− 1− k)/3 > (p− 1)/3 and we haveLk(C) ≥ (p− 1)/3+ 1.

4.2 Cyclotomic sequences of order4

Theorem 4.4. The cyclotomic sequencesC of order4 defined by(1.1), and(1.2) for
p 6= 5, 17or (1.4), respectively, satisfy

Lk(C) =


p : k = 0

3(p− 1)/4 + 1 : 1≤ k ≤ (p− 1)/4− 1
(p− 1)/2 + 1 : (p− 1)/4 + 1≤ k < (p− 1)/3

0 : k ≥ (p− 1)/2.

Additionally we have

9(p− 1)/16+ 1≤ L(p−1)/4(C) ≤ 3(p− 1)/4 + 1,

and

(p− 1)/4 + 1≤ Lk(C) ≤ (p− 1)/2 + 1 for (p− 1)/3≤ k < (p− 1)/2.

Proof. Since
d−1∑
j=0

cj = 2 6= 0 and
d−1∑
j=0

cjρ
j = 1− ρ

for the sequence(1.2) with d = 4, and

d−1∑
j=0

cj = 6 6= 0 and
d−1∑
j=0

cjρ
j = −2(ρ + 1)

for the sequence(1.4), the cyclotomic sequence of order 4 satisfiesL(C) = p and
Lk(C) = 3(p− 1)/4 + 1 for 1≤ k ≤ (p− 1)/4− 1 by Theorem3.1.
For 0≤ i ≤ 3 letgi(X) ∈ Fp[X] be the unique polynomial of degree at most(p−1)/2
satisfying

gi(j) = ζj , j ∈ F∗p \Di,

whereζj is defined with(1.2) for d = 4 and(1.4), respectively. For the sequence(1.2)
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we have

g0(X) =
1
2ρ

(
4ρ− 1− 2X(p−1)/4 −X(p−1)/2

)
,

g1(X) =
1
2

(
4− ρ− 2X(p−1)/4 + (ρ− 2)X(p−1)/2

)
,

g2(X) =
1
2ρ

(
2ρ + 1− 2X(p−1)/4 − (2ρ− 1)X(p−1)/2

)
,

g3(X) =
1
2

(
ρ + 2− 2X(p−1)/4 − ρX(p−1)/2

)
,

and for the sequence(1.4),

g0(X) =
1
4

(
ρ + 1 + 2ρX(p−1)/4 + (ρ− 1)X(p−1)/2

)
,

g1(X) =
1
4

(
ρ + 3 + 2X(p−1)/4 − (ρ + 1)X(p−1)/2

)
,

g2(X) =
1
4

(
3− ρ + 2ρX(p−1)/4 + (1− ρ)X(p−1)/2

)
,

g3(X) =
1
4

(
1− ρ + 2X(p−1)/4 + (ρ + 1)X(p−1)/2

)
.

It is easy to check thatgi(X) satisfiesgi(0) 6= 0 and deg(gi) = (p − 1)/2 (since
p 6= 5, 17 for the first sequence). Consequently we can apply the same technique as in
the proof of Theorem4.3 to prove the result for(p − 1)/4 + 1 ≤ k < (p − 1)/3 and
k = (p− 1)/4.
Moreover the existence of the (unique) polynomialsb0(X), b1(X) of degree(p− 1)/4
that satisfy

b0(j) = ζj if j ∈ D0 ∪D2

and
b1(j) = ζj if j ∈ D1 ∪D3,

enables us to use this technique for a further step. We have

b0(X) = 1−X(p−1)/4,

b1(X) = 2− ρ−1X(p−1)/4,

or

b0(X) =
1
2

(
1 + X(p−1)/4

)
b1(X) =

1
2

(
1 + ρX(p−1)/4

)
,

respectively. Suppose thatT = τ0, τ1, . . . is ap-periodic sequence obtained fromC by
at mostk changes per period and lett(X) be the polynomial witht(j) = τj , 0 ≤ j ≤
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p − 1. Then for at least onei ∈ {0, 1} we havet(j) = bi(j) for at least(p − 1− k)/2
elementsj ∈ Fp. Then the polynomialh(X) = bi(X)− t(X) has at least(p−1−k)/2
zeros. Hence,h(X) ≡ 0 and thus deg(t) = deg(bi) = (p− 1)/4 or deg(h) = deg(t) ≥
(p − 1 − k)/2 > (p − 1)/4. As a consequence we haveLk(C) ≥ (p − 1)/4 + 1 if
k < (p− 1)/2.

4.3 Hall’s sextic residue sequence

For Hall’s sextic residue sequence we can show the following result.

Theorem 4.5. For thek-error linear complexity overFp, p > 7, of Hall’s sextic residue
sequenceH we have

Lk(H) = p : k = 0,

Lk(H) = 5(p− 1)/6 + 1 : 1≤ k ≤ (p− 1)/6− 1,

25(p− 1)/36 < Lk(H) ≤ 5(p− 1)/6 + 1 : k = (p− 1)/6,

Lk(H) = 2(p− 1)/3 + 1 : (p− 1)/6 < k < (p− 1)/5,

2(p− 1)/3− 2k/3 < Lk(H) ≤ 2(p− 1)/3 + 1 : (p− 1)/5≤ k < (p− 1)/4,

(p− 1)/3 < Lk(H) ≤ 2(p− 1)/3 + 1 : (p− 1)/4≤ k < (p− 1)/3,

(p− 1)/6 < Lk(H) ≤ (p + 1)/2 : k = (p− 1)/3,

(p− 1)/6 < Lk(H) ≤ (p− 1)/3 + 1 : (p− 1)/3 < k < (p− 1)/2,

Lk(H) = 0 : k ≥ (p− 1)/2.

Proof. Since

d−1∑
j=0

cj = 3 6= 0 and
d−1∑
j=0

cjρ
j = 1 + ρ + ρ3 = ρ 6= 0,

we obtainL(H) = p andLk(H) = 5(p − 1)/6 + 1 for 1 ≤ k ≤ (p − 1)/6− 1 by
Theorem3.1. Theorem3.2yieldsLk(H) ≤ 2(p− 1)/3+ 1 for k ≥ (p− 1)/6+ 1 and
thus also fork ≥ (p − 1)/4. SinceH has exactly(p − 1)/2 nonzero terms per period
we haveLk(H) = 0 if and only ifk ≥ (p− 1)/2.
The polynomial

g1,2(X) =
ρ2

ρ + 1
X(p−1)/6 + X(p−1)/3 − ρ2

ρ + 1
X(p−1)/2

satisfies
g1,2(j) = ζj , j ∈ Fp \ (D1 ∪D2),

and the polynomial

g1,4(X) =
1

ρ + 1

(
ρ + X(p−1)/3

)
satisfies

g1,4(j) = ζj , j ∈ F∗p \ (D1 ∪D4).
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ConsequentlyLk(H) ≤ (p− 1)/2+ 1 if k ≥ (p− 1)/3 andLk(H) ≤ (p− 1)/3+ 1 if
k ≥ (p− 1)/3 + 1.
From the table given below we see that the polynomialsgi(X), i = 0, . . . , 5, of degree
at most 2(p− 1)/3 with

gi(j) = ζj , j ∈ F∗p \Di,

satisfygi(0) 6= 0 and deg(gi) = 2(p− 1)/3. (Here we needp > 7.) Consequently we
again can apply the technique of the proof of Theorem4.3 and obtainL(p−1)/6(H) ≥
25(p − 1)/36 + 1, andLk(H) ≥ 2(p − 1)/3 + 1 for k < (p − 1)/5 which yields
Lk(H) = 2(p− 1)/3 + 1 for (p− 1)/6 + 1≤ k < (p− 1)/5.
The following remains to be shown: (I)Lk(H) ≥ 2(p − 1)/3 + 1 − 2k/3 for (p −
1)/5 ≤ k < (p − 1)/4, (II) Lk(H) ≥ (p − 1)/3 + 1 for k < (p − 1)/3, and (III)
Lk(H) ≥ (p−1)/6+1 for k < (p−1)/2. We will prove (I), (II) and (III) by extending
the technique of the proof of Theorem4.3.
(I) We consider the 6 different polynomials

gi1,i2(X) ∈ Fp[X], (i1, i2) ∈ {(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (0, 5)},
of degree at most(p− 1)/2, which satisfy

gi1,i2(j) = ζj , j ∈ F∗p \ (Di1 ∪Di2),

and observe that all of these polynomials are of degree(p − 1)/2. W.l.o.g. suppose
thatgi1,i2(X) also satisfiesgi(j̄) = ζj̄ for an element̄j ∈ Di1. Then among the con-
sidered polynomials we can choose a polynomialg such thatg(j) = ζj for j 6= 0 and
for all j 6∈ Di2 ∪ Di3, i3 6= i1, i2. Then the polynomialh(X) = gi1,i2(X) − g(X) has
at least(p − 1)/2 + 1 solutions which is not possible. Consequentlygi1,i2(j) 6= ζj if
j ∈ Di1 ∪Di2, i.e. we havegi(j) 6= ζj for at least(p− 1)/3 elements ofFp.
Let T = τ0, τ1, . . . be a sequence obtained fromH by at mostk < (p − 1)/4 changes,
and lett(X) be the polynomial witht(j) = τj . Thent(X) 6= gi1,i2(X) for all con-
sidered pairs(i1, i2), and for at least one pair(i1, i2) we havet(j) = gi1,i2(j) for at
least 2(p − 1− k)/3 elementsj of Fp. Consequentlyh(X) = t(X) − gi1,i2(X) has
at least 2(p − 1− k)/3 zeros, and hence deg(h) ≥ 2(p − 1− k)/3. Note that since
2(p − 1− k)/3 > (p − 1)/2 as long ask < (p − 1)/4 we have deg(h) = deg(t) ≥
2(p− 1− k)/3 which completes the proof of (I).
(II) Let b0(X) andb1(X) be the (unique) polynomials of degree(p − 1)/3 for which
we haveb0(j) = ζj if j ∈ D0 ∪ D2 ∪ D4 and b1(j) = ζj if j ∈ D1 ∪ D3 ∪ D5,
and let againt(X) be a polynomial witht(j) = ζj for at leastp − k terms. Then for
at least onei ∈ {0, 1} we havebi(j) = t(j) for at least(p − 1 − k)/2 elements of
Fq. Suppose that the degree oft(X) is smaller than(p − 1)/3. Then the polynomial
h(X) = bi(X)− t(X) of degree(p− 1)/3 has at least(p− 1− k)/2 zeros which is a
contradiction as long ask < (p− 1)/3. This completes the proof of (II).
(III) Let d0(X), d1(X), d2(X) be the (unique) polynomials of degree exactly(p−1)/6
andd0(j) = ζj if j ∈ D0∪D2, d1(j) = ζj if j ∈ D1∪D4 andd2(j) = ζj if j ∈ D3∪D5.
For at least onei ∈ {0, 1, 2}, a polynomialt(X) with t(j) = ζj for at leastp− k terms
satisfiest(j) = di(j) for at least(p−1− k)/3 elements ofFq. Suppose that the degree
of t(X) is smaller than(p − 1)/6. Then the polynomialh(X) = di(X) − t(X) of
degree(p − 1)/6 has at least(p − 1− k)/3 zeros which is a contradiction as long as
k < (p− 1)/2.



12 Hassan Aly, Wilfried Meidl, and Arne Winterhof

Appendix to the proof of Theorem4.5:

g0(X) =
1
6

(
(3− ρ)− (1 + 2ρ2)X(p−1)/6 − 2ρ2X(p−1)/3

−(1 + ρ)X(p−1)/2 + X2(p−1)/3
)

,

g1(X) =
1
3

(
1 + X(p−1)/3 + X2(p−1)/3

)
,

g2(X) =
1
6ρ

(
(3ρ− 1) + (1 + ρ)X(p−1)/6 + 2X(p−1)/3

−(1 + ρ)X(p−1)/2 + ρ(ρ + 2)X2(p−1)/3
)

,

g3(X) =
1
6

(
(3 + ρ)− (1 + 2ρ2)X(p−1)/6 + 2X(p−1)/3 − (1 + ρ)X(p−1)/2

+(1 + 2ρ)X2(p−1)/3
)

,

g4(X) =
1
3

(
2− ρ2X(p−1)/3 + ρX2(p−1)/3

)
,

g5(X) =
1
6ρ

(
(3ρ + 1) + (1 + ρ)X(p−1)/6 + 2ρX(p−1)/3

−(1 + ρ)X(p−1)/2 + ρ2X2(p−1)/3
)

,

g0,1(X) =
1

ρ + 1

(
1 +

1
ρ
X(p−1)/6 +

1
ρ
X(p−1)/3 − ρX(p−1)/2

)
,

g2,3(X) =
1

ρ + 1

(
(ρ− 1)(ρ + 2)

2ρ
+ (2− ρ)X(p−1)/6 −X(p−1)/3+

(ρ− 1)(1− 2ρ)
2

X(p−1)/2
)

,

g3,4(X) =
1
3

(
3 + (ρ− 2)X(p−1)/6 + (3− 3ρ)X(p−1)/3

+(2ρ− 1)X(p−1)/2
)

,

g4,5(X) =
1

ρ + 1

(
ρ2

ρ− 1
+ X(p−1)/6 − 1

ρ− 1
X(p−1)/3 −X(p−1)/2

)
,

g0,5(X) =
1
2

(
1−X(p−1)/2

)
.
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