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1 Introduction

Letp > 2 be a prime and denote Iy, the finite field of ordep which we identify with
the set of integer$0, 1,...,p — 1}.

Thelinear complexityL(S) of an N-periodic sequencé = oo, 01, ... overF, is
the smallest nonnegative integefor which there exist coefficients, do, ... ,d; € F),
such that

o;i+dio;_1+...+dpo;_, =0 forall¢> L.

The linear complexity is of fundamental importance as a complexity measure for
periodic sequences (se&3[ 14, 15, 16, 19]). Motivated by security issues of stream
ciphers, in L8 Stamp and Martin proposed a different measure of the complexity of
periodic sequences, tteerror linear complexitywhich is defined by

Li(S) = mTinL(T),
where the minimum is taken over all-periodic sequences = 7o, 71, ... overF, for

which the Hamming distance of the vectdes, o1, ...,o0n-1) and(ro, 71, ..., 7Tn—-1)
is at mostk. Evidently we have

N > Lo(8) = L(S) > Li(S) > La(S) > ... > Ln(S) = 0.

The concept ofk-error linear complexity was built on the earlier conceptsjpiiere
complexitySCy(S) introduced in the monograpf][andweight complexityntroduced
in [4], see also3, Chapter 2.3.4]. The sphere complexi¢',(S) of an N-periodic
sequence ovéf, can be defined by

SC(S) = mTin L(T),
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where the minimum is taken over ali-periodic sequences # S overF,, for which
the Hamming distance of the vectoisy, o1,...,0n_1) and (m,71,...,7n_1) is at
mostk. Obviously we have

The weight complexityV Cy(S) of S is the minimal linear complexity of all sequences
with Hamming distance t8 exactlyk.

Letd > 1 be a divisor ofp — 1 and« a fixed primitive element of,. Then the
cyclotomic classes of ordergive a partition off'; =¥, \ {0} defined by

Do = {a®™ : 0<n<(p-1)/d—1} and Dj:ajDo7 1<j<d-1

For fixedco, c1,...,cq—1 € F, the cyclotomic sequence of orderis the p-periodic
sequenc€ = (o, (1, . . . defined by

O’ p"L, )
e =0,1,.... 1.1
‘ {‘% (imodp) e D;, 0<j<d—1, (1.1)

As p-periodic sequencé, is defined by its firsp terms. Hence it is sufficient to define
Gfor0<i<p-1.
In the case that

we have
G=indgi, 1<i<p-1, (1.2)

where ing i denotes thdiscrete logarithnmodulod of 4, i.e. the uniqug with : = aJ°

for somejo = jmodd and 0< 5 < d — 1. Some cryptographic properties of the
sequencé€ with (1.2) were analyzed ing, 10, 11, 12, 21]. In particular, these results
support the assumption of the hardness of the discrete logarithm problem. This paper
provides further indications on how hard the discrete logarithm problem is. In the case
d = 2 the sequencégl.2) is calledLegendre sequengcsee B, 20]. The k-error linear
complexity oveilF, of the Legendre sequengewas determined for alt in [1],

22 k=0,
Li(L)=1 (p+1)/2, 1<k<(p-3)/2 1.3)
A cyclotomic sequence of ordérdefined with
co=cz=l1landcy=c,=0 (1.49)

is investigated in3, Chapter 8].Hall's sextic residue sequenée [8, 9] is the cyclo-
tomic sequence of order 6 with

60201263=1and0226420520.
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The main objectives of this paper are to find systematically sequences witl-high
error linear complexity in view of their suitability for stream ciphers and to analyze
some famous sequences suggested in the literature. In particular, we gk@nid
arbitrary cyclotomic sequences. Under a certain necessary restriction on the choice of
thec; we prove that

d-1r-1

Ly(C) = 7

41, 1§k§p%l—l.

For the above mentioned special examples we also prove explicit results et
linear complexity fork > (p — 1) /d.

2 Preliminary results

First we recall 2, Theorem 8].

Lemma 2.1. Let f(X) € F,[X] be a polynomial of degree at mgst- 1 andS =
00,01, . .. thep-periodic sequence ovél, defined by

o= f() for 0<i<p-—1

Then we have
L(S) =deq f) + 1.

Next we prove a result on the stability of the linear complexity.

Lemma 2.2. Let S be ap-periodic sequence ovét, and0 < ko < (p — 1)/2. Then
we have
Lk(S) = L}CO(S) forkg<k<p- LkO(S) — ko.

Proof. By the definition of thet-error linear complexity and by Lemnfal for 0 <
m < p—1there exists a polynomigl,,(X) € F,[X] of degreeL,, (S) — 1 and a subset
Sm C I, of cardinality at leasp — m such that; = f,, () for all i € S,,. Hence, for
anyk > ko we have

(@) — fro(i) =0 foralli e S, N Sk,
and
dlek — f;go) < LkO(S) -1
Since|S, N Sk,| > p— k — ko we have eithelf.(X) = fix,(X) orp—k —ko < ded fir. —
Tro) < Lio(S)—1, or equivalently, eithel s (S) = Ly, (S) ork > p— Ly, (S) —ko+10

Now we describe the standard method for finding the unique polyngfig) e
F,[X] of degree at mogi — 1 satisfyingf(:) = (; for alli € F,,.
Let o, d be as defined above, and put= o~Y/4, First we construct the unique
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polynomialg(X) = ag+a1 X +...+aq_1 X% of degree at most—1 with g(p?) = ¢;.
We consider the Vandermonde matrix

V= (p)i;2

i,j=0"
The inverse oV is given by

vt (),

Consequently the solution
(CL()7 az, ..., ad_l) = (Co, C1,. .. ,Cd_l)Vil

of the linear equation systetXo, X1,...,X4-1)V = (co,c1,...,cq_1) iS explicitely
given by

d—1
a; = d_lZcipi(d_j), 0<j<d-1
i=0
Evidently the polynomial
f_(X) = g(XP=V/d) = g5 + alX'%1 R ad/_l)((d—l)p%l (2.1)

satisfiesf (i) = ¢; = ¢; if iP~V/4 = p7 i.e.(imodp) € D;,fori =1,2,...,p— 1.
Moreover, the polynomial
p—1

F(X) = apXP~1 4 alX%l + ot ag XADET (2.2)

of degree at mogt — 1 satisfiesf (i) = ¢; foralli =0,1,...,p — 1.

3 General results on thek-error linear complexity

The following theorem indicates how to determine the exact value for-#veor linear
complexity of a sequence defined {dy1) for a certain range of.

Theorem 3.1. Letp > 2 be a prime,d a divisor ofp — 1, co,c1,...,¢4-1 € Fp, v @
primitive element of, andC the p-periodic sequence ovét, defined by(1.1). Put
p= aP=1/d gnd

b; :gcipij, 0<j<d-1
=0
Lett be the smallest index such that# 0 then
Ly(C)=p—t(p—1)/d for O0<k<t(p—1)/d.
Additionally, ifbg # 0 andr is the smallest index with > 1 andb, # 0, then
L(C)=p and Ly(C)=p-7(p—1)/d for 1<k<7(p—-1)/d-—1



On thek-Error Linear Complexity of Cyclotomic sequences 5

Proof. Note thathg = dap andb; = daq—, for1 <j <d—1.

If ¢ is the smallest index such thiat£ 0 then the corresponding polynom{@2) has
degree(d — t)(p — 1)/d. With Lemmas2.1 and2.2 we get the first assertion of the
theorem.

If by # 0 andr is the smallest index with > 1 andb, # 0, then the polynomial2.2)
has degrep — 1, and the polynomig(2.1) has degreéd — 7)(p — 1) /d. Consequently
with Lemma2.1 we haveL(C) = p, and sincef(i) = ¢;, 1 < i < p — 1, we have
L1(C) = p — 7(p — 1)/d since each polynomial that coincides wifi.X) in at least
p — 2 positions is either equal t6(X) or has degree at least— 2. With Lemma2.2
we obtainL,(C) = L1(C) for 1< k < 7(p—1)/d — 1. O

Theorem 3.2. For a p-periodic sequencé overF,, defined by(1.1) and an integer
0 <t < dwe have

Li(@) < (d—t—1)(p—1)/d+1 for k>t(p—1)/d+1.

Proof. We choosel — ¢ different cyclotomic coset®,,,...,D;, , and calculate the
polynomialh(X) = ag+a1 X +---+aq_¢_1 X4 *~1 of degree at most— ¢ — 1 which
satisfiesi(p’') = ¢j,,i = 1,...,d—t. Then the polynomiaj(X) = ag+ay X P~1/4 4
ot agp 1 X4 D-D/ satisfiesy () = ¢ for at least(d — t)(p — 1)/d = p —
(t(p—1)/d+1) differentj with 0 < j < p— 1. With Lemma2.1we get the assertidnh.

4 k-error linear complexity for some selected generators

4.1 Discrete logarithm sequences
Applying Theorems3.1 and 3.2 and using ideas froml[/, Chapter 8] we obtain the
following results.

Theorem 4.1. For d > 1 the sequencé€ = (o, (1, ... defined by(1.2) with {; = 0
satisfies

p : k=0
Ly(C) =4 (d-V(p-1)/d+1 : 1<k<(p—-1)/d—1
0 : k>(d-1)(p—1)/d.

Ford >3and(p—1)/d <k < (d—1)(p—1)/(2d) we have

(@-Ve-1 5 gy o @1k -V E-1)
d - - d '
Proof. With

d—1

d—1
bo=Y ¢;=Y j=dd-1)/2#0
j=0

=0
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and
d—1 . d—1 )
(p=D%1 = (=212 ¢p) =(p—-172D jp
j=0 j=0

= p—dp'+(d-1)p"t =d(p—1) #0,

Theorem3.1, and the fact that the cyclotomic sequence produdes 1)(p — 1)/d
nonzero terms per period we obtain the first part of the theorem. The upper bound of
the second part follows from Theoresr2.

Finally, we prove the lower bound of the second part. feX) € F,[X] be a
polynomial with f (i) = ¢; = ind, i for atleast{d — 1)(p — 1)/d — k elements K i <
p—1withi & Cyq_1. For atleastd — 1)(p — 1)/d — 2k of these elements we also have

Flad) = indy (i) = 1+indg i = 1+ £(3).

Hence, the polynomiat'(X) = f(aX) — f(X) — 1 of degree at most défj) has at
least(d — 1)(p — 1)/d — 2k zeros. Sincd’(0) = —1 # 0 we get degf) > deq F) >
(d — 1)(p — 1)/d — 2k and the result follows by Lemna 1 u|

Theoremd.1gives only a nontrivial lower bound if < (d —1)(p — 1)/2d. Next we
prove a lower bound which is nontrivial for d@ll< (d — 1)(p — 1) /d.

Theorem 4.2. We have

(P=1-k)((d=1)(p—1) —dk)
2(d-1)(p-1)

Proof. Let S C T, be any set of cardinalityS| > p — 1 — k and f(X) € F,[X] any
polynomial with

Ly(C) > +1

fl) =6, iesS
Let us consider the set
D={a=i%:indja#0,i,jeS}
We havelD| < (d — 1)(p — 1)/d and there exists an < D such that there are at least

1481 =(p=1)/d) _ dp—-1-k)(p—1—k—(p—1)/d)
D B (d—1)p

representations = i~1j, i, j € S. Select this: and let
R={icF,: f(i) = ¢ andf(ai) = Cai}.

We seethatR| > (p —1—k)((d—1)(p— 1) — dk)/(d — 1)p.
Moreover, we have either indai) = ind, a+ind, i orindy (ai) = —d+ind; a+indy 4.
Hence, at least one of the polynomials

hi(X) = f(aX) — f(X) —indg a andhy(X) = f(aX) — f(X)+d—indg a
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has at leastR|/2 zeros. Sincé1(0) = p — ind; a # 0 andhy(0) = d — indy a # 0 we
get
degf > max{deghi,deghy} > |R|/2

and the result follows by Lemma 1 g

For concrete values afwe can improve the lower bounds of Theorefnsand4.2
We present the result far= 3.

Theorem 4.3. For p > 7 andd = 3 the sequencé of Theoremi.1 satisfies
p : k=0
2p—-1)/3+1 : 1<k<(p—-1)/3-1

(p-1/3+1 : (p-1)/3+1<k<(p-1)/2
0 : k>2p-1)/3,

Li(C) =

and additionally

Proof. Fork < (p—1)/3— 1 andk > 2(p — 1)/3 the result immediately follows from
Theorem4d.1
Next we assumé > (p — 1)/3 + 1 and annotate that the polynomials

wx) = 25 (o240 Tx00),
p—1 p
2
— _ (p—1)/3
gl(X) pz_l( 1+ X )a
1
S (p—=1)/3
satisfy
G =gi(j) forjelF,\ D,
but

¢ #gi(j) forje D;U{0},

i = 0,1,2. (Note that ifp = 7 we may havep = 2 and thusgy(0) = 0.) From
Lemma2.1we getL,(C) < degg;+1 = (p—1)/3+1. We remark that the polynomials
¢:(X) can easily be obtained with the method described in Se&ifam finding the
unique polynomialf(X) € F,[X] of smallest degree satisfying(j) = ¢; for all
j e Fr.

In order to prove the theorem it remains to show thgt 1),3(C) > 4(p — 1)/9+1,
and thatL,(C) > (p—1)/3+1fork < (p —1)/2.
Let7 = 79, 71,..., be anyp-periodic sequence obtained frafrby at mostt changes
per period. Let(X) € F,[X] be the polynomial with(j) = 7;,0< j <p— 1.
We obtain that(j) = ¢,(j) for atleast 2p—1—k)/3 elementg of IF,, for an appropriate
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choice of, i.e., the polynomiah(X) = ¢(X) —g¢,(X) has at least@—1—k)/3 zeros.
If we putk = (p — 1)/3, then by the above considerations we h&€) == ¢;(X) and
thush(X) is not the zero polynomial. Consequently we must havé/deg dedt) >

2(p—1-k)/3=4(p—1)/9 and thus.(,_1),3(C) > 4(p —1)/9+ 1. Trivially we have
the upper bound., _1),3(C) < L(,_1)/3-1(C) = 2(p — 1)/3+ 1.

Fork < (p—1)/2 we have eitheli(X) = 0 and thus de@) = ded¢g;) = (p — 1)/3 or
degh) =dedt) >2(p—1—k)/3> (p—1)/3and we havd.,(C) > (p—1)/3+ 10

4.2 Cyclotomic sequences of ordet

Theorem 4.4. The cyclotomic sequencéf order 4 defined by(1.1), and (1.2) for
p # 5,17 or (1.4), respectively, satisfy

p : k=0
3p-—1)/4+1 : 1<k<(p-1)/4-1
(r-1/2+1 : (p—-1)/4+1<k<(p-1)/3
0 : k>(p-1)/2

Li(C) =

Additionally we have

9(p—1)/16+ 1< L,-1)4(C) < 3(p — 1)/4+ 1,

and
(p—1)/4+1<Ly(C)<(p—-1)/2+1for(p—-1)/3<k<(p-1)/2
Proof. Since
d—1 d—1
ch =2+#0 and chpj =1-p
j=0 j=0

for the sequencél.2) with d = 4, and

d—1 d—1
ch:67é0 and chpj:—Z(p—i—l)
=0 =0

for the sequencél.4), the cyclotomic sequence of order 4 satisfidg) = p and
Liy(C)=3(p—1)/4+1for1<k < (p—1)/4—1by TheorenB.1
For0< i < 3letg;(X) € F,[X] be the unique polynomial of degree at mgst- 1) /2
satisfying

gi(j) = ¢, JETF,\ Dy,

where(; is defined with(1.2) for d = 4 and(1.4), respectively. For the sequene?2)
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we have
g(X) = 21 (4p 1-2x@=b/ X<p‘1)/2>,
1
a(X) = E(4_p_2X(p—1)/4 (p—2)X - 1/2>
1 1/4 (r-1)/2
n(X) = 5 (20+ 12X /% — (29— 1) x0-V/2)
1
B(X) = 3 (p L2 2x-1/4 _ pX<p—1>/2> ’
and for the sequendd.4),
1 l)/4 ( 1)/2
o(X) = 7 (p+1+20X0 V44 (p-2)xV/2),
1 1)/ 1)/2
g(X) = Z(p+3+2Xp —(p+1)x(P- )
1 /4, (r-1)/2
@(X) = 7 (3=p+2pX A4 (1 X I2),
1 /4, (r-1)/2
(X)) = 21(1 p+2XP VAL (p41)xP )

It is easy to check thaj;(X) satisfiesg;(0) # 0 and dedy;) = (p — 1)/2 (since
p # 5,17 for the first sequence). Consequently we can apply the same technique as in
the proof of Theorerd.3to prove the result fofp — 1)/4+1 < k < (p—1)/3 and
k=(p—-1)/4.
Moreover the existence of the (unique) polynomigisX ), b1(X) of degregp — 1)/4
that satisfy

bo(j) = ¢, if j € DoU Dy

and
bi(j) = ¢; if j € D1U Ds,

enables us to use this technique for a further step. We have

bo(X) = 1—x@-D/4
h(X) = 2—p txE-bA
or
1 (p—1)/4
bo(X) = E(1+X )
1
bi(X) = 2(1+pX(p 1>/4>

respectively. Suppose that= o, 71, ... is ap-periodic sequence obtained frahby
at mostk changes per period and I€tX) be the polynomial with(j) = 7, 0 < j <
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p — 1. Then for at least onec {0, 1} we havet(j) = b;(5) for at least(p — 1 — k)/2
elementg € F,. Then the polynomiat(X) = b;(X)—¢(X) has atleastp —1—k)/2
zeros. Hencey(X) = 0 and thus de@) = degb;) = (p — 1)/4 or dedh) = dedt) >
(p—1-k)/2 > (p—1)/4. As a consequence we hatg(C) > (p — 1)/4+ 1 if
k<(p-1)/2. O

4.3 Hall's sextic residue sequence
For Hall's sextic residue sequence we can show the following result.

Theorem 4.5. For thek-error linear complexity oveF,, p > 7, of Hall's sextic residue
sequencé{ we have

||
=
IA Il

0,
k<(p—1)/6-1,
=(p-

)/67

)

)= (p 1)/6+1

~1)/36< Li(H) <5(p—1)/6+1
)

Ly(H
Li(H
25(
Li(H)=2(p-1)/3+1 1)/6<k<(-1)/5
2(p—1)/3-2k/3< Lg(H) <2(p—-1)/3+1 ~1)/5<k<(p-1)/4,

(p
(»
(P—1)/3<Le(H)<2(p-1)/3+1 D (p-1D/A<k<(p-1)/3
o
(p

(p—1)/6<Li(H) < (p+1)/2 =(p-1)/3
(p—1)/6<Ly(H)<(p-1)/3+1 -1)/3<k<(p-1)/2
Lp(H)=0 C k> (p—1)/2
Proof. Since
d—1 d—1
D e;=3#£0 and Y ¢;pf =1+p+p°=p#0,
j=0 j=0

we obtainL(H) = pandLy(H) = 5(p —1)/6 +1for1< k < (p—1)/6 — 1 by
Theorem3.1 TheoremB.2yieldsL,(H) < 2(p—1)/3+1fork > (p—1)/6+ 1 and
thus also fork > (p — 1)/4. SinceH has exactlyp — 1)/2 nonzero terms per period
we haveL,(H) = Oifand only ifk > (p — 1)/2.

The polynomial

) )2
— (r—1)/6 (»—1)/3 (p—1)/2
1,2( ) ] 1

satisfies
912( ) =G, Jel \ (D1UD2),
and the polynomial

g1.4(X) = (,,+ (- 1)/3)

p+1

satisfies
914(7) = G, J €Fy\ (D1U Da).
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Consequently., (H) < (p—1)/2+ 1if k > (p—1)/3andLy(H) < (p— 1)/3 + Lif
k> (p-1)/3+1.
From the table given below we see that the polynomjdlX),: =0, ..., 5, of degree
at most Zp — 1)/3 with
9i(j) = ¢, JEF,\ Dy,

satisfyg;(0) # 0 and defy;) = 2(p — 1)/3. (Here we need > 7.) Consequently we
again can apply the technique of the proof of Theoreand obtainZ, 1) 6(H) >
25(p — 1)/36+ 1, andLi(H) > 2(p — 1)/3+ 1 for k < (p — 1)/5 which yields
Liy(H)=2(p—-1)/3+1for(p—1)/6+1<k<(p—1)/5.
The following remains to be shown: (D.(H) > 2(p — 1)/3+ 1 — 2k/3 for (p —
1)/5<k<(p-—2/4 () Ly(H) > (p—-1)/3+1fork < (p—1)/3, and (lll)
Liy(H) > (p—1)/6+1fork < (p—1)/2. We will prove (1), (II) and (Ill) by extending
the technique of the proof of Theoref3.
(I) We consider the 6 different polynomials

gil,iz(X) € FP[X], (7:15 iZ) € {(07 1)7 (1a 2)a (27 3)7 (37 4>’ (4’ 5)7 <07 5)}’
of degree at mogip — 1)/2, which satisfy

9217/2( )_CJ7 ]EF;\(D’L1UD7,2)7

and observe that all of these polynomials are of degpee 1)/2. W.l.0o.g. suppose
thatg, ;,(X) also satisfieg;(j) = ¢; for an elementj € D;,. Then among the con-
sidered polynomials we can choose a polynomislich thaty(j) = ¢; for j # 0 and
forall j ¢ D;, U D,,, i3 # i1,i2. Then the polynomiak(X) = g;, ;,(X) — ¢g(X) has
at least(p — 1) /2 + 1 solutions which is not possible. Consequemtly;,(j) # ¢; if

j € D;; UD,,, i.e. we havey,(j) # ¢; for atleast(p — 1)/3 elements ofF,,.

Let7 = 79,71, ... be a sequence obtained framby at mostk < (p — 1)/4 changes,
and lett(X) be the polynomial witht(j) = 7;. Thent(X) # g;,,:,(X) for all con-
sidered pairgiy, i2), and for at least one paits,i>) we havet(j) = gi,,(j) for at
least Zp — 1 — k)/3 elementsj of F,. Consequentiyi(X) = ¢(X) — ¢;,.:,(X) has
at least 2p — 1 — k)/3 zeros, and hence dgg > 2(p — 1 — k)/3. Note that since
2(p—1-k)/3> (p—1)/2aslong as < (p — 1)/4 we have de@:) = dedt) >
2(p — 1 - k)/3 which completes the proof of (I).

(I) Let bo(X) andby(X) be the (unique) polynomials of degrée— 1)/3 for which
we havebo(j) = Cj If] € Do U Dy U Dy andbl(j) = Cj If] € D1 U D3 U Ds,
and let againt(X) be a polynomial witht(j) = (; for at leastp — k terms. Then for
at least ong € {0, 1} we haveb;(j) = t(j) for at least(p — 1 — k)/2 elements of
F,. Suppose that the degree) is smaller thar(p — 1)/3. Then the polynomial
h(X) = b;(X) — t(X) of degreg(p — 1)/3 has at leastp — 1 — k)/2 zeros which is a
contradiction as long as < (p — 1)/3. This completes the proof of (II).

(1) Let do(X), d1(X), d2(X) be the (unique) polynomials of degree exa¢fly- 1)/6
anddo(j) = if j € DoUDsa, dl(j) = if j € D1UDqy anddz(j) =(j if j € D3UDs.
For at least one € {0, 1, 2}, a polynomialt(X) with ¢(j) = ¢, for at leasip — k terms
satisfieg(j) = d;(j) for at leastp — 1 — k) /3 elements oF,. Suppose that the degree
of ¢(X) is smaller than(p — 1)/6. Then the polynomiak(X) = d;(X) — ¢(X) of
degree(p — 1)/6 has at leastp — 1 — k)/3 zeros which is a contradiction as long as
k<(p-1)/2. d
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Appendix to the proof of Theored.5:

o(X) = ¢((B-p) -~ (L+2A)X0V/E_ 22X VP

(14 p)XPV/2 4 X2<p—1>/3) ,

1
aX) = 3 (1+X<p71>/3+X2<p71>/3) ’
1
92(X) = 5 ((3p — 1)+ (1 +p)xP~V/6 L 2xP-1/3
~(L+ )XWV 4 p(p+ 2) X203,
1
B(X) = g ( 34 p) = (L4 202)XP-/6 L ox =173 _ (14 p)x(p-1/2
+(1+20) X2 1R),
1
(X)) = 3 (2 _ 2xe3 pX2<p—1>/3) ’
1
g5(X) = 5 ((3,0 + 1)+ (L+ p)XPD/6 4 2y x(-1/3
(14 p)XPD/2 4 2 X2 1>/3)
1 1 1
Xy — 14 Yyve-vm . Lyve-nm 1)/2)
90,1(X) 1 ( + + p P
1 ((p=1(+2) (-1)/6 _ y(p—1
= — — X p )/3
92,3(X) 1 < 2 +(2-pX +
(p—1)(1 ZP)X(pl)/2>
2
1 _
ga(X) = é<3+(p 2)X x (- 1/6+(3_3p)X(p 1)/3
+(2p — 1)X<P—1>/2) ,
1 a _ 1 _ _
Xy = xe-0/6_ 1 o1 yw 1>/2>7
94,5(X) ,0—|—l<p—1+ 1
1
ps(x) = L (1-x0-12).

Acknowledgments.The authors wish to thank Tanja Lange for her very helpful com-
ments and suggestions.



On thek-Error Linear Complexity of Cyclotomic sequences 13

References

(1]
(2]
(3]
(4]

(5]
(6]
(7]

(8]
(9]

(10]
(11]

(12]

(13]

(14]

(18]
(16]

(17]

(18]

(19]

H. Aly and A. Winterhof,On thek-error linear complexity oveF,, of Legendre and Sidelnikov
sequencedDes. Codes Cryptogr. 40 (2006), pp. 369—-374.

S. Blackburn, T. Etzion, and K. Patersd®rmutation polynomials, de Bruijn sequences, and
linear complexity Journal of Combin. Theory, Series A 76 (1996), pp. 55-82.

T. W. Cusick, C. Ding, and A. Renval§tream Ciphers and Number TheoNorth-Holland
Publishing Co., Amsterdam, 1998.

C. Ding, Lower bounds on the weight complexity of cascaded binary sequehdeances
in Cryptology, Lecture Notes in Computer Science 453, pp. 39—-43. Springer-Verlag, Berlin,
1991.

C. Ding and T. HellesetlOn cyclotomic generator of ordet Inform. Process. Lett. 66 (1998),
pp. 21-25.

C. Ding, T. Helleseth, and W. Sha@®n the linear complexity of Legendre sequendE&EE
Trans. Inform. Theory 44 (1998), pp. 1276-1278.

C. Ding, G. Xiao, and W. SharThe Stability Theory of Stream Ciphetsecture Notes in
Computer Science 561. Springer-Verlag, Berlin, 1991.

M. Hall, Jr.,A survey of difference set8roc. Amer. Math. Soc. 7 (1956), pp. 975-986.

J-H. Kim and H-Y Song©On the linear complexity of Hall's sextic residue sequenteEE
Trans. Inform. Theory 47 (2001), pp. 2094-2096.

S. Konyagin, T. Lange, and |. Shparlinskinear complexity of the discrete logarithrbes.
Codes Cryptogr. 28 (2003), pp. 135-146.

W. Meidl and A. Winterhof Lower bounds on the linear complexity of the discrete logarithm
in finite fields IEEE Trans. Inform. Theory 47 (2001), pp. 2807—2811.

W. Meidl and A. Winterhof,On the autocorrelation of cyclotomic generatoRroceedings

of The Seventh International Conference on Finite Fields and Applicatidn3 {Toulouse
2003). Lecture Notes in Computer Science 2948 (G.L. Mullen, A. Poli, and H. Stichtenoth,
Eds.), pp. 1-11. Springer-Verlag, Berlin, 2004.

H. NiederreiterSome computable complexity measures for binary sequePreeedings of
The International Conference on Sequences and Their Applications - SETA98, (C. Ding, T.
Helleseth, and H. Niederreiter, Eds.), pp. 67—78. Springer-Verlag, London, 1999.

H. NiederreiterLinear complexity and related complexity measures for sequeRcegress in
Cryptology — Indocrypt 2003, Lecture Notes in Computer Science 2904 (T. Johansson and S.
Maitra, Eds.), pp. 1-17. Springer-Verlag, Berlin, 2003.

R. A. RueppelAnalysis and Design of Stream CipheBpringer-Verlag, Berlin, 1986.

R. A. Rueppel,Stream ciphersContemporary Cryptology: The Science of Information In-
tegrity (G.J. Simmons, Ed.), pp. 65-134. IEEE Press, New York, 1992.

I. Shparlinski, Cryptographic applications of analytic number theory. Complexity lower
bounds and pseudorandomneBsogress in Computer Science and Applied Logic, vol. 22.
Birkhauser Verlag, Basel, 2003.

M. Stamp and C. F. MartirAn algorithm for the-error linear complexity of binary sequences
with period2™, IEEE Trans. Inform. Theory 39 (1993), pp. 1398-1401.

A. Topuzdjlu and A. WinterhofPseudorandom sequencé@spics in Geometry, Coding The-
ory and Cryptography (A. Garcia and H. Stichtenoth, Eds.), pp. 135-166. Algebra and Appli-
cations, vol. 6. Springer-Verlag, Dordrecht, 2007.



14 Hassan Aly, Wilfried Meidl, and Arne Winterhof

[20] R.J. Turyn,The linear generation of Legendre sequerké&oc. Indust. Appl. Math. 12 (1964),
pp. 115-116.

[21] A. Winterhof, A note on the linear complexity profile of the discrete logarithm in finite fields
Coding, cryptography and combinatorics, pp.359-367. Progress Computer Science and Ap-
plied Logic, vol. 23. Birklauser Verlag, Basel, 2004.

Received

Author information

Hassan Aly, Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt.
Email: haly@kfu.edu.sa

Wilfried Meidl, Sabanci University, MDBF, Orhanli, 34956 Tuzistanbul, Turkey.
Email: wmeidl@sabanciuniv.edu

Arne Winterhof, Johann Radon Institute for Computational and Applied Mathematics, Austrian
Academy of Sciences, Altenbergerstrasse 69, A-4040 Linz, Austria.
Email: arne.winterhof@oeaw.sc.at



	Introduction
	Preliminary results
	General results on the k-error linear complexity
	k-error linear complexity for some selected generators
	Discrete logarithm sequences
	Cyclotomic sequences of order 4
	Hall's sextic residue sequence


