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Abstract Besides equidistribution properties and statistical independence the lat-
tice profile, a generalized version of Marsaglia’s lattice test, provides another qual-
ity measure for pseudorandom sequences over a (finite) field. It turned out that the
lattice profile is closely related with the linear complexity profile. In this article
we give a survey of several features of the linear complexity profile and the lattice
profile, and we utilize relationships to completely describe the lattice profile of
a sequence over a finite field in terms of the continued fraction expansion of its
generating function. Finally we describe and construct sequences with a certain
lattice profile, and introduce a further complexity measure.

Keywords Sequences over finite fields · Continued fraction expansion ·
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1 Introduction

Besides good equidistribution properties and statistical independence of successive
elements a fine lattice structure is a desirable feature for a sequence for applica-
tions in Monte Carlo methods (see the surveys in [4,12,13]). In the series of papers
[1–3] the following generalization of Marsaglia’s lattice test (see [6]) was intro-
duced and analyzed. Let S = s1, s2, . . . be a sequence with terms in the finite
field Fq then we say that S passes the �-dimensional n-lattice test if the vectors
{sj − s1 | 2 ≤ j ≤ n − � + 1} span F

�
q , where

sj = (sj , sj+1, . . . , sj+�−1) 1 ≤ j ≤ n − � + 1.

Remark We follow the notation of [3]. In particular we start the sequences with s1
and not with s0 as in [1,2]. This is necessary in order to utilize the results of [9].
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If S passes the �-dimensional n-lattice test then it passes all �′-dimensional lattice
tests for all �′ ≤ �, and if S fails the �-dimensional n-lattice test then it fails all
�′-dimensional lattice tests for all �′ ≥ �. The greatest � such that S passes the
�-dimensional n-lattice test denoted by �n(S) is called the nth lattice level of S.
Additionally we define �0(S) = �1(S) = 0. The lattice level �(S) of S is then
defined to be

�(S) = sup
n≥0

�n(S),

and we call the sequence 〈�n(S)〉∞n=0 the lattice profile of S (cf. [2,3]).
Recall that the nth linear complexity Ln of S, denoted by Ln(S), is the length

of the shortest recurrence relation

aLn
sj+Ln

+ aLn−1sj+Ln−1 + · · · + a0sj = 0 for j = 1, 2, . . . , n − Ln (1)

satisfied by the first n terms of S. The corresponding polynomial

fn = aLn
xLn + aLn−1x

Ln−1 + · · · + a0

is called the nth minimal polynomial of S. If S starts with n zeros and sn+1 �= 0
then we define Li(S) = 0 for 1 ≤ i ≤ n, and Ln+1(S) = n + 1. Additionally we
put L0(S) = 0.

In general the recurrence relation (1) (and the corresponding nth minimal poly-
nomial) is not unique, but apart from a multiplication with a constant we have
uniqueness if and only if Ln(S) ≤ n/2 (see [9, Theorem 1]). The linear complexity
L(S) of S is defined as

L(S) = sup
n≥0

Ln(S), (2)

and the sequence 〈Ln(S)〉∞n=0 is denoted as the linear complexity profile of S (cf.
[8,9,15]).

Trivially the linear complexity (2) is finite, say L(S) = L, if and only if S is
(ultimately) periodic. Then, if S satisfies the recurrence relation

aLsj+L + aL−1sj+L−1 + · · · + a0sj = 0 for j = 1, 2, . . . , (3)

the polynomial

f (x) = aLxL + aL−1x
L−1 + · · · + a0 (4)

with deg(f ) = L is called the minimal polynomial of S. Apart from a multiplica-
tion with a constant the recurrence relation (3) and the minimal polynomial f are
uniquely determined.

In [9] formal Laurent series viewed as generating functions of sequences have
been discussed. It has been shown that the linear complexity profile of a sequence
can be described in terms of the continued fraction expansion of its generating
function. The first connections between the linear complexity and the lattice level
have been established in [14]. In [1,2,14] strong relationships between the linear
complexity profile and the lattice profile have been elaborated. These strong rela-
tionships can be utilized to obtain a further understanding of the dynamic behavior
of the nth lattice level.
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In Section 2 we will describe the lattice profile of a sequence in terms of the
continued fraction expansion of its generating function. In Section 3 we will use
the results to describe and construct sequences with certain lattice profile. Finally
in Section 4 we introduce a further related complexity measure for sequences over
Fq .

2 Lattice profile and continued fraction

We start the section with a collection of the significant relations between the linear
complexity profile and the lattice profile.

Proposition 1 [1, Theorem 1] We have either

�n(S) = min(Ln(S), n + 1 − Ln(S)) or

�n(S) = min(Ln(S), n + 1 − Ln(S)) − 1.

Proposition 2 [1, Corollary 13] If Ln(S) = (n + 1)/2 then �n(S) = (n − 1)/2.

If Ln(S) ≤ n/2 then we know from Proposition 1 that we either have �n(S) =
Ln(S) or �n(S) = Ln(S)− 1. The next proposition presents a necessary and suffi-
cient condition for �n(S) < Ln(S) assuming that Ln(S) ≤ n/2. This proposition
was originally shown in [1]. We present it in the notation of [3].

Proposition 3 [3, Proposition 4] If Ln(S) ≤ n/2 and

aLn
sj+Ln

+ aLn−1sj+Ln−1 + · · · + a0sj = 0, 1 ≤ j ≤ n − Ln

is the shortest recurrence relation satisfied by the first n terms of S, then

�n(S) = Ln(S) − 1

if and only if

a0 + a1 + · · · + aLn−1 + aLn
= 0. (5)

Otherwise �n(S) = Ln(S).

Proposition 4 (cf.[2, Theorem 2]) Assume Ln1(S) = n1/2 and let n2 be the small-
est integer such that n1 < n2 and Ln2(S) = n2/2. (If such an integer n2 does not
exist, we can put n2 = ∞.) If �n1(S) = Ln1(S) − 1, i.e. the shortest recurrence
relation satisfied by the first n1 terms of S fulfills (5), then for n1 ≤ n ≤ n2 − 2 we
have

�n(S) = min(Ln(S), n + 1 − Ln(S)) − 1.

Else we have

�n(S) = min(Ln(S), n + 1 − Ln(S)).
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Notice that the condition (5) on the coefficients of the recurrence relation is equiv-
alent to fn ≡ 0 mod (x − 1), where fn denotes the corresponding nth minimal
polynomial.

Invoking the well known direct consequence of the Berlekamp-Massey algo-
rithm ([7]) that the linear complexity can just increase if Ln(S) ≤ n/2, and that
in the case of an increase we have Ln+1(S) = n + 1 − Ln(S) (for a proof see [5,
Theorem 6.7.4]), the above relations were utilized in [2] to describe the typical
lattice profile. The fundamental feature of the lattice profile is that whenever the
lattice profile starts to increase, it increases in each step by 1 until it meets the
n/2-line. This also means that the lattice profile of a given sequence S is uniquely
determined by the set of integers n for which we have �n(S) = n/2.

In [8–10] the relations between the linear complexity profile and continued
fraction have been investigated comprehensively. In the following we shortly sum-
marize the basic concepts.

We can associate the sequence S = s1, s2, . . . with terms in the finite field Fq

with its generating function

S =
∞∑

i=1

six
−i ,

which can be viewed as an element of the field Fq((x
−1)) of formal Laurent series

over Fq in x−1. The generating function of S is rational, i.e.

∞∑

i=1

six
−i = g(x)

f (x)

with f, g ∈ Fq[x], deg(g) < deg(f ) and gcd(f, g) = 1, if and only if S is (ulti-
mately) periodic. Apart from a multiplication with a constant the polynomial f (x)
is uniquely determined and it is exactly the minimal polynomial (4) of the sequence
S (see [9, Lemma 2]). Consequently we have L(S) = deg(f ).

Every S ∈ Fq((x
−1)) has a unique continued fraction expansion

S =
∞∑

i=1

six
−i = A0 + 1/(A1 + 1/(A2 + · · · )) =: [A0, A1, A2, . . . ],

where the Aj , j ≥ 0, are polynomials over Fq with deg(Aj ) ≥ 1 for j ≥ 1. If S
is a generating function of a sequence S over Fq then the polynomial part Pol(S)
of S equals 0 and we have A0 = 0. In general the polynomials Aj are obtained
recursively by

Aj+1 = Pol(B−1
j ), Bj+1 = B−1

j − Pol(B−1
j ), for j ≥ 0, (6)

with the initial polynomials A0 = Pol(S(x)) and B0 = S(x) − Pol(S(x)). This
can be continued as long as Bj �= 0. If the continued fraction expansion is broken
off after term Aj , j ≥ 0, we get the rational convergent Pj/Qj . The polynomials
Pj and Qj can be calculated recursively by

P−1 = 1, P0 = A0, Pj = AjPj−1 + Pj−2 for j ≥ 1,
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Q−1 = 0, Q0 = 1, Qj = AjQj−1 + Qj−2 for j ≥ 1. (7)

The following proposition is crucial for our considerations.

Proposition 5 [9, Theorem 1] Let S = s1, s2, . . . be an arbitrary sequence with
terms in Fq and let S = [0, A1, A2, . . . ] be its generating function. Then for any
n ≥ 1 the nth linear complexity of S is given by

Ln(S) = deg(Qj ),

where j ≥ 0 is uniquely determined by the condition

deg(Qj−1) + deg(Qj ) ≤ n < deg(Qj ) + deg(Qj+1). (8)

Furthermore the nth minimal polynomials of S are exactly all polynomials fn of
the form

fn = aQj + CQj−1,

where a ∈ Fq, a �= 0, and C ∈ Fq[x] with deg(C) ≤ 2 deg(Qj ) − n − 1.

We remark that for 2 deg(Qj ) ≤ n < deg(Qj ) + deg(Qj+1) the nth minimal
polynomials are of the form fn = aQj , and that deg(Qj ) = ∑j

i=1 deg(Ai), for
j ≥ 1.

With Proposition 5 the linear complexity profile of a sequence S is explicitely
described in terms of the continued fraction expansion of its generating function.
In order to describe the lattice profile of a sequence S in terms of the continued
fraction expansion of its generating function, for all j ≥ 1 we will have to know
whether the - apart from a multiplication with a constant - uniquely determined
minimal polynomial Qj is divisible by x − 1. Therefore we define the residue
sequence R̄ = r̄−1, r̄0, r̄1, . . . over Fq by

R̄ = 0, 1, Q1 mod (x − 1), Q2 mod (x − 1), . . .

which following (7) can easily be determined with the continued fraction expansion
[0, A1, A2, . . . ] of S by the recursion

r̄j = r̄j−2 + r̄j−1Aj(1) for j = 1, 2, . . . . (9)

We remark that the residue sequence R̄ will never have two consecutive zeros.
Since we are only interested if Qj ≡ 0 mod (x − 1) or Qj �≡ 0 mod (x − 1),

we transform R̄ into the binary residue sequence R = r−1, r0, r1, . . . defined by
rj = 0 iff r̄j = 0, j = −1, 0, 1, . . . . We now can establish the connections between
the lattice profile of a sequence S over the finite field Fq and the continued fraction
expansion of its generating function.

Theorem 1 Let S be an arbitrary sequence over Fq , [0, A1, A2, . . . ] the continued
fraction expansion of its generating function, and R = 0, 1, r1, . . . the correspond-
ing binary residue sequence. Then for any n ≥ 0 the nth lattice level �n(S) of S is
given by

�n(S) = n − deg(Qj ) + rj−1 for

deg(Qj−1) + deg(Qj ) ≤ n < 2 deg(Qj ) − 1, (10)

�n(S) = deg(Qj ) − 1, if n = 2 deg(Qj ) − 1,

�n(S) = deg(Qj ) − 1 + rj for

2 deg(Qj ) ≤ n < deg(Qj ) + deg(Qj+1). (11)
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Proof If n = 2 deg(Qj ) − 1 with Proposition 5 we get Ln(S) = deg(Qj ) =
(n + 1)/2, and hence Proposition 2 yields �n(S) = (n − 1)/2 = deg(Qj ) − 1.

If deg(Qj−1) + deg(Qj ) ≤ n < 2 deg(Qj ) − 1 with Proposition 1 and Propo-
sition 5 we immediately get that we either have �n(S) = n−deg(Qj ) or �n(S) =
n − deg(Qj ) + 1. Analogously for 2 deg(Qj ) ≤ n < deg(Qj ) + deg(Qj+1) Prop-
osition 1 and Proposition 5 yield that we either have �n(S) = deg(Qj ) − 1 or
�n(S) = deg(Qj ). We apply Propositions 3–5 to obtain the exact value.

From Proposition 5 we know that the integers

n1 = 2 deg(Qj−1), n2 = 2 deg(Qj ) and n3 = 2 deg(Qj+1)

satisfy Lni
(S) = ni/2, i = 1, 2, 3. Furthermore there is no other integer n1 ≤ n ≤

n3 with that property. With Proposition 3 and the definition of rj−1 respectively rj

we get

�n1(S) = Ln1(S) − 1 + rj−1 = deg(Qj−1) − 1 + rj−1 and

�n2(S) = Ln2(S) − 1 + rj = deg(Qj ) − 1 + rj .

From Proposition 4 we know that then we have

�n(S) = min(Ln(S), n + 1 − Ln(S)) − 1 + rj−1

for all n with 2 deg(Qj−1) = n1 ≤ n ≤ n2 − 2 = 2 deg(Qj ) − 2. In particular for
deg(Qj−1) + deg(Qj ) ≤ n < 2 deg(Qj ) − 1 we get

�n(S) = n − deg(Qj ) + rj−1.

Similarly with Proposition 4 we get

�n(S) = deg(Qj ) − 1 + rj

for 2 deg(Qj ) ≤ n < deg(Qj ) + deg(Qj+1), where we use that deg(Qj ) +
deg(Qj+1) − 1 ≤ 2 deg(Qj+1) − 2 = n3 − 2. 
�

3 Sequences with certain lattice profile

Theorem 1 provides the lattice profile given the continued fraction expansion of
the generating function of a sequence over Fq (see (6)). In this section we con-
versely describe sequences possessing a certain predetermined lattice profile. In
[3] the number of finite sequences over Fq with length n and given nth lattice level
� ≤ n/2 has been determined. Given this counting function, the expected value [3,
Theorem 2] and the variance [3, Theorem 3] of the nth lattice level of an arbitrary
sequence over Fq have been calculated. The results show that the lattice profile of a
random infinite sequence with terms in a finite field Fq follows closely the n/2-line
(without exceeding n/2). Frequent large deviations from n/2 are not very likely.
This motivates the following definition for sequences with maximal possible nth
lattice level for all n = 0, 1, 2, . . . (see also [3, Section 6]).
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Definition 1 A sequence S = s1, s2, . . . with terms in a finite field Fq is said to
have a perfect lattice profile if

�n =
⌊n

2

⌋
, for n ≥ 0.

The following corollary gives an explicit characterization of sequences with a per-
fect lattice profile in terms of the continued fraction expansion of its generating
function.A similar description of sequences with a perfect linear complexity profile
(see [8,9]) has been given in [9, Theorem 2].

Corollary 1 A sequence S with terms in Fq has a perfect lattice profile if and only
if its generating function S is irrational and has a continued fraction expansion
S = [0, A1, A2, . . . ] with deg(Aj ) ≤ 2 for all j ≥ 1, and binary residue sequence
R = 0, 1, 1, 1, . . . .

Proof Suppose rj = 0 for any j ≥ 1. Then with Theorem 1 for n = 2 deg(Qj ) we
have �n(S) = deg(Qj ) − 1 < �n/2. If deg(Aj+1) ≥ 3 for an index j ≥ 0, then
�n(S) ≤ deg(Qj ) < �n/2 for n = 2 deg(Qj ) + 2 < deg(Qj ) + deg(Qj+1).

Conversely let deg(Aj ) ≤ 2, for j ≥ 1 and R = 0, 1, 1, 1, . . . . Then we have
the inequalities

2 deg(Qj ) − 2 ≤ deg(Qj−1) + deg(Qj ) and

deg(Qj−1) + deg(Qj ) ≤ 2 deg(Qj ) + 2.

Consequently for (10) only the value n = 2 deg(Qj ) − 2 is possible and for (11)
only the cases n = 2 deg(Qj ) and n = 2 deg(Qj )+1 are possible. Since for j ≥ 1
we have rj = 1 for all of those possible cases we get �n(S) = �n/2. Note that
for n = 2 deg(Qj ) − 1 we always have �n(S) = �n/2. 
�
We note that the binary residue sequence equals R = 0, 1, 1, 1, . . . if and only if
for j ≥ 1 we have r̄j−2 + r̄j−1Aj(1) �= 0, i.e.

Aj(1) �= − r̄j−2

r̄j−1
, j ≥ 1. (12)

For instance the choice A1(1) = 1 and Aj(1) = 0 for j ≥ 2 guarantees that (12)
is satisfied.

Remark For the important binary case recursion (9) and Corollary 1 yield that
a sequence S has a perfect lattice profile if and only if its generating function
S is irrational and has a continued fraction expansion S = [0, A1, A2, . . . ] with
deg(Aj ) ≤ 2, for all j ≥ 1, A1(1) = 1 and Aj(1) = 0 for j ≥ 2.

This fact has been implicitely used in [3] to show that in the binary case a
sequence S = s1, s2, . . . has a perfect lattice profile if and only if it satisfies

si + s2i = 1 for i = 1, 2, . . . .

Similarly one can define a k-almost perfect lattice profile, i.e. sequences for
which the deviation of the nth lattice level from the n/2-line does not exceed a
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given value k for each n ≥ 0. With Theorem 1 we easily see that a sequence S has
a k-almost perfect lattice profile if and only if the continued fraction expansion of
its generating function S = [0, A1, A2, . . . ] satisfies

deg(Aj+1) + 1

2
− rj ≤ k, j = 0, 1, . . . .

Theorem 1 also supports a procedure for constructing a sequence S over Fq with
a desired lattice profile. We describe our desired lattice profile in terms of the gaps
(g1, g2, . . . ) between the integers for which the lattice profile meets the n/2-line,
i.e. lattice profile (2, 4, 2, 6, 4, . . . ) means that the first 6 integers with lattice level
�n(S) = n/2 are n = 0 (by definition) and n = 2, 6, 8, 14, 18. The idea behind
is to construct an appropriate continued fraction expansion [0, A1, A2, . . . ] given
a lattice profile with gaps (g1, g2, . . . ). Suppose we already used g1, g2, . . . , gt−1
to calculate appropriate polynomials A0 = 0, A1, A2, . . . Aj−1, and suppose that
rj−1 = 1. Then for µ = 2

∑j−1
r=1 deg(Ar) Theorem 1 yields �µ(S) = µ/2. We

refer to this situation as an initial state. Note that the first initial state will be the
starting position, where n = 0, j = 1.

Case 1: gt = 2.

Choose a polynomial Aj of degree 1 such that rj = 1, which is always possible.
With µ = 2

∑j

r=1 deg(Ar) we arrive at an initial state.

Case 2: gt > 2, gt+1 = 2.

Choose a polynomial Aj of degree gt/2 + 1 such that rj = 1. With µ = 2
∑j

r=1
deg(Ar) we again arrive at an initial state.

Case 3: gt > 2, gt+1 > 2.

Choose a polynomial Aj of degree gt/2 + 1 such that rj = 0, and a polynomial
Aj+1 of degree gt+1/2 − 1. Independently from the choice of Aj+1 we will have
rj+1 = 1, and with µ = 2

∑j+1
r=1 deg(Ar) we again arrive at an initial state.

To show the correctness of the procedure it suffices to prove that whenever
we move from one to the next initial state, the calculated polynomials guarantee
that the gaps between the next integers where the lattice profile meets the n/2 line
are in fact the gi we used for the calculation. For a given j we note the following
observations.

(I) There exists an n satisfying (10) and �n(S) = n/2 if and only if deg Aj > 1
and rj−1 = 1, namely n = 2 deg(Qj ) − 2.

(II) There exists an n satisfying (11) and �n(S) = n/2 if and only if rj = 1,
namely n = 2 deg(Qj ).

At the formulation of the algorithm we started at an initial stateµ = 2
∑j−1

r=1 deg(Ar)
and rj−1 = 1 such that we have �µ(S) = µ/2. For the Case 1 we have to show
that µ + gt is the next integer that satisfies �n(S) = n/2. For the Case 2 and the
Case 3 we have to show that the next two integers that satisfy �n(S) = n/2 are
µ + gt and µ + gt + gt+1.

Case 1: With the choice deg(Aj ) = 1 and rj = 1 we observe that the conditions
in (II) are satisfied. As required, the integer satisfying (11) and �n(S) = n/2
is exactly n = 2 deg(Qj ) = µ + 2. We emphasize that we are then at an initial
state.
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Case 2: With the choice deg(Aj ) = gt/2 + 1 and rj = 1 the conditions in (I) and
(II) are satisfied. As required, the corresponding integers satisfying �n(S) =
n/2 are

n1 = 2 deg(Qj ) − 2 = µ + 2 deg(Aj ) − 2 = µ + gt

for (I) and

n2 = 2 deg(Qj ) = µ + gt + gt+1

for (II).

Case 3: With the choice deg(Aj ) = gt/2+1, rj = 0 and deg(Aj+1) = gt+1/2−1
the conditions in (I) are satisfied for j while the conditions in (II) are satisfied
for j +1.As required, the corresponding integers where the lattice profile meets
the n/2-line are n1 = µ + gt and

n2 = 2 deg(Qj+1) = µ + 2 deg(Aj ) + 2 deg(Aj+1) = µ + gt + gt+1.

We again emphasize that in all cases we arrive at an initial state.

Example over F3. (g1, g2, . . . ) = (2, 4, 2, 6, 4, . . . ):
We have g1 = 2, thus Case 1. We choose A1 = x in order to obtain r̄1 =

r̄−1 + r̄0A1(1) = 1 (see (9)) and thus r1 = 1.
For the next step we have g2 = 4, g3 = 2 and consequently Case 2. With the

choice A2 = x3 +x +2 we obtain deg(A2) = g2/2+1 and r̄2 = r̄0 + r̄1A2(1) = 2
and consequently r2 = 1, as required.

Finally g4 = 6 and g5 = 4 yields Case 3. We choose A3 = x4 + x + 2 and
A4 = x+1 in order to obtain deg(A3) = g4/2+1, r̄3 = r̄1 + r̄2A3(1) = 1+2 ·1 =
0 = r3, and deg(A4) = g5/2 − 1.

Applying Theorem 1 it is easy to check that the continued fraction expansion
[0, x, x3 + x + 2, x4 + x + 2, x + 1, . . . ] yields the desired lattice profile.

Simultaneously to an appropriate continued fraction expansion we can calculate
the terms of the corresponding sequence. Here we use the fact that the polynomials
Qj determined by the recursion (7) are nth minimal polynomials for n satisfying
(8). For a more detailed description see [10, Section 7].

4 The increase frequency

In [16], Wang introduced a new way of looking at the linear complexity profile.
The nth jump complexity Pn(S) of a sequence S is defined as the number of positive
integers among L1(S), L2(S) − L1(S), . . . , Ln(S) − Ln−1(S). Thus Pn(S) is the
number of "jumps" in the first n terms of the linear complexity profile. For a
detailed study of the jump complexity we refer to [11]. The following complexity
measure can be seen as the lattice profile equivalent to the jump complexity. The
nth increase frequency Fn(S) of a sequence S is defined as the number of integers
j with 1 ≤ j ≤ n for which we have �j(S) = j/2. The nth jump complexity and
the nth increase frequency can differ much more than the nth linear complexity
and the nth lattice level. Hence we can see the increase frequency as a more inde-
pendent complexity measure. Anyway we can show that the increase frequency is
lower and upper bounded by the jump complexity.
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Theorem 2 The nth increase frequency Fn(S) of a sequence S over Fq is bounded
by

Pn(S)

2
− 1 ≤ Fn(S) ≤ 2Pn(S).

Proof We utilize the continued fraction expansion of the generating function of S
and note that the nth jump complexity of S is the maximal number j ′ for which
we have 2 deg(Qj ′) = ∑j ′

j=1 deg(Aj ) ≤ n. By Theorem 1 for each 1 ≤ j ≤ j ′

the interval given by (10) contains an integer n̂ with �n̂(S) = n̂/2 if and only
if rj−1 = 1 and deg(Aj ) ≥ 2, and the interval given by (11) contains such an
integer n̂ if and only if rj = 1. Thus the upper bound is given by Fn(S) ≤ 2Pn(S)
which for 2 deg(Qj ′) ≤ n < deg(Qj ′) + deg(Qj ′+1) is attained if r0 = r1 =
. . . = rj ′ = 1 and deg(Aj ) ≥ 2, 1 ≤ j ≤ j ′. Conversely we see that we get the
minimal possible value for Fn(S) relative to Pn(S), i.e. Fn(S) = Pn(S)/2 − 1, if
we put deg(Aj ) = 1, 1 ≤ j ≤ j ′, the first terms of the binary residue sequence
r−1 = 0, 1, 0, 1, . . . , 0, 1 = rj ′ , and deg(Qj ′−1) + deg(Qj ′) ≤ n < 2 deg(Qj ′). 
�
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