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2-D Iteratively Reweighted Least Squares Lattice Algorithm and Its
Application to Defect Detection in Textured Images∗

Ruşen MEYLANİ†, Cenker ÖDEN††, Nonmembers, Ayşın ERTÜZÜN†a), Member,
and Aytül ERÇİL†††, Nonmember

SUMMARY In this paper, a 2-D iteratively reweighted least squares lat-
tice algorithm, which is robust to the outliers, is introduced and is applied
to defect detection problem in textured images. First, the philosophy of
using different optimization functions that results in weighted least squares
solution in the theory of 1-D robust regression is extended to 2-D. Then a
new algorithm is derived which combines 2-D robust regression concepts
with the 2-D recursive least squares lattice algorithm. With this approach,
whatever the probability distribution of the prediction error may be, small
weights are assigned to the outliers so that the least squares algorithm will
be less sensitive to the outliers. Implementation of the proposed iteratively
reweighted least squares lattice algorithm to the problem of defect detec-
tion in textured images is then considered. The performance evaluation, in
terms of defect detection rate, demonstrates the importance of the proposed
algorithm in reducing the effect of the outliers that generally correspond to
false alarms in classification of textures as defective or nondefective.
key words: robust least squares lattice algorithm, 2-D lattice filters, texture
analysis, defect detection

1. Introduction

The field of multidimensional digital signal processing has
become increasingly important in recent years due to num-
ber of trends in digital signal processing. Two-dimensional
(2-D) lattice filter structures have found numerous appli-
cations in 2-D prediction, 2-D spectral estimation, signal
modeling, 2-D filter design, image processing such as im-
age compression and coding, restoration and noise cancel-
lation and texture analysis. The 2-D lattice filter structures
in literature [1]–[3] combine one forward and a number of
backward prediction error fields into a single structure and
they all are modular and can be obtained by cascading iden-
tical stages. Each stage is a multi-input/multi-output struc-
ture defined in terms of reflection coefficients. The reflection
coefficients can be calculated either directly solving normal
equations [1]–[3] or recursively by adaptive methods [4]–
[8]. The algorithms developed for the adaptation of the lat-
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∗This work has been partially supported by Turkish Technol-

ogy Development Foundation under contract number TTGV-169.
a) E-mail: ertuz@boun.edu.tr

DOI: 10.1093/ietfec/e89–a.5.1484

tice parameters are either gradient-based [4]–[6] or recur-
sive least squares (RLS) type [7], [8] algorithms. Ffrench
et al. [7] have developed a recursive least squares lattice
(RLSL) type adaptive algorithm for the twelve-parameter 2-
D lattice filter and applied it on the detection of small objects
in correlated clutter. They have shown that RLSL algorithm
provides the exact least squares solution for a single stage
lattice filter.

Motivated by the success of the RLSL algorithm in [7],
we developed an iteratively reweighted least squares lattice
(IRLSL) algorithm, which is robust to outliers, using the
concepts of robust estimation methods [11]. Even though
robust estimation methods are not new in literature, to the
best of our knowledge they have not been used in the con-
text of 2-D lattice filters which have many attractive features
and are common structures in signal and image processing
applications.

The proposed IRLSL algorithm is developed for the
twelve-parameter 2-D lattice filter structure that is the most
general structure in the sense that no spectral symmetry as-
sumptions are imposed on the input data. However with
small modifications, this algorithm can easily be applied to
various 2-D lattice structures.

The organization of this paper is as follows: The back-
ground material on robust estimation is given in Sect. 2. The
general concepts related to the twelve-parameter 2-D lat-
tice filter structure are elaborated in Sect. 3. In Sect. 4, the
IRLSL algorithm for the 2-D twelve-parameter lattice filter
is presented. Section 5 is devoted to a brief explanation of
the texture defect detection scheme and then focuses on the
practical use of the proposed algorithm for the texture de-
fect detection problem. The experimental results are also
presented in this section. Finally, the conclusions are drawn
in Sect. 6. In the Appendix, the 1-D robust regression algo-
rithm is also presented for reference.

2. Background Material on Robust Estimation

The method of least squares is a model dependent procedure
used to solve linear filtering problems. This method can be
viewed as a deterministic alternative to Wiener filter theory.
Method of least squares estimates the unknown parameters
of the model:

y = c0 + Xc + ε (1)

where y is an n-by-1 vector of responses, X is an n-by-p
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matrix of known predictor or independent variables, and ε
is an n-by-1 vector of errors. The objective is to estimate the
unknown intercept c0 and the p-by-1 parameter vector c.

The resulting estimator from the method of least
squares is given as:

ĉ = (XT X)−1XTy (2)

This estimator is equivalent to minimizing a performance
index that consists of sum of error squares:

J =
n∑

i=1

ε2
i (3)

where εi’s are the elements of the estimation error vector ε.
The method of least squares estimates the unknown pa-

rameters directly using Eq. (2) or recursively using the RLS
algorithm [9]. The least squares estimator, whether it cal-
culates the unknown parameters directly or recursively, is
known to be unreliable when the observations contain out-
liers in the data [10], [11]. The outliers may be present as a
result of nonnormal errors. The classical equation of (3) can
be made robust in a straightforward way; instead of mini-
mizing a sum of squares, we minimize a sum of less rapidly
increasing functions of the residuals:

J =
n∑

i=1

ρ(εi/d) (4)

where εi’s are the elements of the estimation error vector
ε, d is a robust estimator of scale and ρ(.) is some appro-
priately chosen function which down-weights observations
with large residuals. Different types of ρ function can be
used to reduce the effects of outliers. The solution to Eq. (4)
can be found using the iteratively reweighted least squares
algorithm [12]. The algorithm for the numerical solution of
1-D robust regression is given in Appendix. The idea in this
algorithm is iteratively to update the unknown parameters
ci’s i.e. the elements of vector c and the parameter d until
convergence for both is achieved.

3. 2-D Lattice Filters

A 1-D lattice filter [9] is a prediction error filter where the
input to the first stage is the signal of interest and the out-
put is the error between the predicted (either into the future
or into the past) and the true values of the input. The er-
ror obtained in predicting into the future is referred to as the
forward prediction error and the error obtained in predict-
ing into the past is called the backward prediction error. The
forward and the backward prediction error filtering are com-
bined into a single structure in the lattice filter. The filter is
arranged as a cascade of stages; the input and the output
of stages are forward and backward prediction errors. Each
stage is characterized by a parameter called the reflection
coefficient. The reflection coefficients can be used to repre-
sent the input signal as an autoregressive (AR) model. There
is a one-to-one correspondence between the reflection coef-
ficients and the AR parameters. It is much simpler to use the

reflection coefficients instead of the AR parameters to have
an AR model of the input signal. Lattice filter has attractive
features like modularity, arithmetic insensitivity; and the lo-
cal optimizations of the stages lead to global optimization
of the whole structure. Theory of 1-D lattice filter has been
well developed for several applications. It is used in spectral
analysis, speech synthesis and system modeling.

2-D lattice filter is a digital filter that has been devel-
oped extending the structure of 1-D lattice filter to 2-D. With
the attractive features stated [1]–[8], the 2-D lattice filter has
been the center of interest in this study as an effective tool
for modeling the input data as an AR process.

2-D lattice filter structures consist of concatenated
multi-input/multi-output stages that are defined in terms of
the reflection coefficients. The inputs and the outputs of
each stage are forward and backward prediction error fields
that are generated simultaneously.

Among many different lattice filter structures present
in the literature, the twelve-parameter lattice filter, being the
most general quarter-plane filter, where no assumptions on
spectral symmetry conditions of the input data have been
made, will be used in this work.

In twelve-parameter lattice filter, there are four quarter-
plane filters which are designed independently. No restric-
tions are imposed on their design since no spectral assump-
tions are required [3], [4], [7]. The input-output relation of
the n-th stage can be explicitly written as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e(n)
00 (i, j)

e(n)
10 (i, j)

e(n)
11 (i, j)

e(n)
01 (i, j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −k(n)
1 −k(n)

2 −k(n)
3

−k(n)
4 1 −k(n)

5 −k(n)
6

−k(n)
7 −k(n)

8 1 −k(n)
9

−k(n)
10 −k(n)

11 −k(n)
12 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e(n−1)
00 (i, j)

e(n−1)
10 (i − 1, j)

e(n−1)
11 (i − 1, j − 1)

e(n−1)
01 (i, j − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Here (i, j)’s are the pixel indices, k(n)
i ’s are the reflection co-

efficients of the n-th stage where (n) = (n1, n2) with (n + 1)
= (n1 + 1, n2 + 1) and n1 = 1, . . . ,N1, n2 = 1, . . . ,N2,
n = 1, . . . ,N. The error fields e(n)

00 (i, j), e(n)
10 (i, j), e(n)

11 (i, j) and

e(n)
01 (i, j) correspond, respectively, to the first, the second, the

third and the fourth quarter plane prediction error fields at
the output of the n-th lattice stage. The initialization is as
follows:

e(0)
00 (i, j) = e(0)

10 (i, j) = e(0)
11 (i, j) = e(0)

01 (i, j) = u(i, j) (6)

Here u(i, j) represents the 2-D input data or image data.
Compactly, the input-output relation of a 2-D lattice filter is
given as a linear combination of input prediction error fields
as follows:

e(n) = K(n)ẽ(n−1) (7)

where e(n) and ẽ(n−1) are, respectively, the output and the
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delayed input vectors containing forward and backward pre-
diction error fields associated with stage n. K(n) is the matrix
of reflection coefficients associated with stage n. In vector-
matrix notations, the pixel indices will not be written ex-
plicitly for clarity. The twelve-parameter lattice filter is il-
lustrated in Fig. 1.

Each row of the matrix in Eq. (5) defines the parame-
ters of the relevant prediction error filter. In the basic three-
parameter lattice filter, all rows are the permutations of the
first row thus it is sufficient to design only one of the fil-
ters i.e. it is sufficient to solve one set of normal equations
and the other prediction error filters can easily be obtained
by simple row, column and row, and column reversals [1].
This is the result of imposing four-quadrant symmetry to
the power spectral density. For the twelve-parameter filter,
on the other hand, four sets of normal equations have to be
solved each corresponding to one of the quarter-plane pre-
diction error filters. The mean squared error, Q(n), the cost
function for calculating the reflection coefficients, for the n-
th stage of lattice model is defined as:

Q(n) = E[e(n)(i, j)TΛe(n)(i, j)] (8)

where E[ ] is the expectation operator and T denotes vector
transposition. Λ is a diagonal matrix whose elements are
equal to either 0 or 1; location of digit 1 shows that the opti-
mization is done in the field relevant to that position [1]. By
minimizing Q(n) with respect to the reflection coefficients of

(a)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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]
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the corresponding stage, the normal equations as Eqs. (9a)
to (9d) (i.e. the least squares solution) can be obtained for

(b)

Fig. 1 (a) Block diagram of a 2-D lattice filter structure. (b) Linear
combination of the prediction error fields in the n-th stage of the twelve-
parameter lattice filter.
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each of the quarter-plane filters. These equations can also
be expressed in terms of the autocorrelation matrix R(n−1)

m

and the cross-correlation vector r(n−1)
m of the input data and

the reflection coefficient vector k(n)
m of stage n for the corre-

sponding prediction error filter.

R(n−1)
m k(n)

m = r(n−1)
m (m = 1, 2, 3, 4) (10)

where m designates the quadrant of the prediction error fil-
ters. The vector and matrix valued variables in Eq. (10) will
be defined subsequently. The autocorrelation matrices are
defined as follows:

R(n−1)
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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The crosscorrelation vectors are defined as follows:
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where Φ(n−1)
exyepq

’s are the correlations between the prediction

errors e(n−1)
xy and e(n−1)

pq ; (x, y, p, q) ∈ (0, 1) given as:

Φ(n−1)
exyepq

= E[e(n−1)
xy (i − x, j − y)e(n−1)

pq (i − p, j − q)]

(x, y, p, q) ∈ (0, 1) (13)

In Eqs. (11)–(13), the pixel indices (i, j)’s are left out for
clarity. The reflection coefficient vectors k(n)

m ’s are defined
as follows:

k(n)
1 = [k(n)

1 k(n)
2 k(n)

3 ]T (14a)

k(n)
2 = [k(n)

4 k(n)
5 k(n)

6 ]T (14b)

k(n)
3 = [k(n)

9 k(n)
7 k(n)

8 ]T (14c)

k(n)
4 = [k(n)

12 k(n)
10 k(n)

11 ]T (14d)

Calculation of the lattice filter coefficients, which is a major
task in lattice filters, involves the solution of the so-called
normal equations, namely Eq. (10). Alternatively, the reflec-
tion coefficients can be calculated adaptively [4]–[8]. There

have been a number of adaptive algorithms developed to up-
date the reflection coefficients of the 2-D lattice filter. A new
2-D adaptive lattice algorithm based on the RLSL concepts
and robust regression will be elaborated in the next section.

4. 2-D Iteratively Reweighted Least Squares Lattice
Algorithm

The attractive features of RLS algorithms have initiated the
need of obtaining RLSL algorithms in 1-D [9] and 2-D [7].
RLS algorithms, whether in 1-D or 2-D, are based on recur-
sive methods for finding the inverse of the autocorrelation
matrix R [9]. However, in the RLSL algorithm derived by
Ffrench et al. [7], the correlation values, namely Φ(n−1)

exyepq
’s,

are calculated recursively and the inverses of the autocorre-
lation matrices are calculated directly. In the derivation of
the proposed 2-D IRLSL algorithm, the robust estimation
concepts will be incorporated into the RLSL algorithm of
[7].

4.1 Background on the 2-D Recursive Least Squares Lat-
tice (RLSL) Algorithm

In the RLSL algorithm of [7], the cost function is the mean
squared value of the total prediction error power at the out-
put of stage n as

Q(n)(m1,m2)

=

m1∑
i=0

m2∑
j=0

[
e(n)(i, j)Te(n)(i, j)

]
λ(m1−i)λ(m2− j) (15)

here m1 and m2 are the pixel indices and λ is the forgetting
term, a constant in the interval (0,1), which allows the al-
gorithm to converge to new image statistics or new image
features in the least squares sense for non-stationary data.
Equation (15) where forgetting terms are included is the 2-
D lattice counterpart of Eq. (3). It is desirable to calculate
the correlation values recursively. In other words the cor-
relation at each pixel (i, j) is calculated based on previous
pixels (i − 1, j) and (i, j − 1). In order to process an im-
age by scanning it in the horizontal direction (i.e. in the m2

direction), first define a sum of vertical correlation compo-
nents, namely φ(n−1)

exyepq
(m1, j), and then a recursive horizontal

sum of the sum of vertical correlation values. The vertical
sum, φ(n−1)

exyepq
(m1, j), is defined as follows:

φ(n−1)
exyepq

(m1, j) =
m1∑
i=0

e(n−1)
xy (i, j)e(n−1)

pq (i, j)λ(m1−i);

(x, y, p, q) ∈ (0, 1) (16)

This sum can be updated recursively as

φ(n−1)
exyepq

(m1, j) = λφ(n−1)
exyepq

(m1 − 1, j)

+e(n−1)
xy (m1 − x, j − y)e(n−1)

pq (m1 − p, j − q);

(x, y, p, q) ∈ (0, 1) (17)

The autocorrelation and cross-correlation values,Φ(n−1)
exyepq

(m1,
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m2)’s, are then defined in terms of the vertical correlations
as follows:

Φ(n−1)
exyepq

(m1,m2) =
m2∑
j=0

φ(n−1)
exyepq

(m1, j)λ(m2− j);

(x, y, p, q) ∈ (0, 1) (18)

These can be recursively calculated as follows:

Φ(n−1)
exyepq

(m1,m2) = λΦ(n−1)
exyepq

(m1,m2 − 1)

+φ(n−1)
exyepq

(m1,m2); (x, y, p, q) ∈ (0, 1) (19)

In Eq. (17), the vertical correlations are calculated and
these are used to calculate the true correlations in (19). Thus
the true correlations, used for defining the autocorrelation
matrices and the cross correlation vectors defined in Sect. 3,
are totally independent of the scanning scheme used. In this
algorithm [7], the correlation values are calculated recur-
sively and since the sizes of the autocorrelation matrices are
small, their inverses are taken directly. In this respect the
RLSL algorithm of [7] is different than the 1-D RLS algo-
rithm where the inverse of the autocorrelation matrix is cal-
culated recursively [9].

4.2 2-D Iteratively Reweighted Least Squares Lattice
(IRLSL) Algorithm

IRLSL algorithm is a novel approach that extends the idea
of using weights in an iterative manner from the 1-D theory
of robust regression [10], [11] to 2-D lattice filters. With this
approach, it is intended to ensure that, whatever probability
distribution the prediction errors may have, small weights
are assigned to the outliers so that the least squares algo-
rithm will be less sensitive to the outliers and improved false
alarm rate will be achieved.

Similar to the 1-D case, the 2-D robust estimation pro-
vides a method to detect outliers and reduce their effect.
When the error distribution is not close to the normal dis-
tribution, the cost function to be minimized with respect to
the unknown parameters will be given as follows:

Q(n) =
∑
i, j

ρ

(
e(n)(i, j)

d

)
(20)

where ρ(.) is an appropriately chosen objective function.
This equation is the 2-D counter part of Eq. (4) where error
is a vector-valued quantity represented by e(n)(i, j). Different
types of ρ functions can be used to reduce the effects of out-
liers. Some examples of well known ρ(.) functions and the
weight functions associated with those objective functions
are illustrated in Fig. 2. Weight functions are designed to
make sure that smaller weights are given to outliers. For any
given objective function ρ(s), there corresponds a weight
function related to the first derivative of ρ(s). Thus ρ(s)
gives an idea on the general behavior of the weight func-
tion in comparison to the mean-squared error. The weight
function that corresponds to the squared error is constant

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2 (a) Objective function 1 − cos(s). (b) Weight function (1/s) sin(s)
associated with Fig. 2(a). (c) Objective function (1/2) log(1 + s2). (d)
Weight function (1 + s2)−1 associated with Fig. 2(c). (e) Objective func-
tion (1/2) (1 − (1 − s2)3). (f) Weight function (1 − s2)2 associated with
Fig. 2(e). (g) Objective function s2. (h) Weight function 1 associated with
Fig. 2(g).

1. Certainly, for distributions other than the normal distri-
bution, the maximum likelihood estimator will be different
than the least squares estimator.

The solution of the 2-D least squares lattice estimator
is given by Eq. (9). On the other hand, the solution to the
IRLSL predictor will be modified similar to the algorithm
given in Appendix and the solution for the first quadrant
(i.e. m = 1) prediction error filter is as Eq. (21) in next page
[13]. Here W is a 3-by-3 diagonal weight matrix whose el-
ements are closely related to the first derivative of the ob-
jective function ρ with respect to the lattice parameters of
the first quadrant filter. The diagonal elements of the weight
matrix are designed to ensure that smaller weights are given
to outliers. The RLSL algorithm of [7] can thus be viewed
as a special form of the proposed IRLSL algorithm where
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e(n−1)

10 (i − 1, j)

e(n−1)
11 (i − 1, j − 1)

e(n−1)
01 (i, j − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
e(n−1)

10 (i − 1, j) e(n−1)
11 (i − 1, j − 1) e(n−1)

01 (i, j − 1)
]
W

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
k(n)

1

k(n)
2

k(n)
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = e(n−1)
00 (i, j)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e(n−1)

10 (i − 1, j)

e(n−1)
11 (i − 1, j − 1)

e(n−1)
01 (i, j − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦W (21)

Table 1 2-D iteratively reweighted least squares lattice (IRLSL) algo-
rithm.

all the weight values are equal to 1. For a general objective
function ρ, the weight values are defined as follows:

wi =

∂ρ

(
K(n)ẽ(n−1)

d

)

∂k(n)
i⎛⎜⎜⎜⎜⎜⎝2e(n)
00

d

⎞⎟⎟⎟⎟⎟⎠
; i = 1, 2, 3 (22)

Under the recursive estimation approach, the mini-
mization of Eq. (20) or the solution given by Eq. (21) is
equivalent to redefining the calculation of the vertical sum
given by Eq. (16) in the following manner:

φ(n−1)
exyepq

(m1, j) =
m1∑
i=0

e(n−1)
xy (i, j)wae(n−1)

pq (i, j)λ(m1−i);

(x, y, p, q) ∈ (0, 1) (23)

where wa is one of the weights defined in Eq. (22) depending
on the values of x, y, p and q.

The recursive update equation for the vertical sum thus
is modified as follows:

φ(n−1)
exyepq

(m1, j) = λφ(n−1)
exyepq

(m1 − 1, j)

+e(n−1)
xy (m1 − x, j − y)wae(n−1)

pq (m1 − p, j − q);

(x, y, p, q) ∈ (0, 1) (24)

Equations (18) and (19) need no modifications.
The equations for the second, the third and the fourth

quadrant prediction error filters can be modified similarly.
The proposed IRLSL algorithm [13] is summarized in

Table 1. It should be noted that in the calculation of pa-
rameter d in Eq. (22) mean values are used rather than the
median as in Eq. (A· 7) since the prediction error field val-
ues are close to each other.

5. Application to Textile Defect Detection Problem

To illustrate some practical issues of the IRLSL algorithm
presented in this paper, it is applied to texture defect detec-
tion, more specifically to the textile fabric inspection which
is a topical issue in manufacturing.

The automation and the integration of quality control
clearly have vital implications for industry. Quality control
is designed to ensure that defective products are not allowed
to reach the customer.

Texture defect detection is one possible application do-
main for the proposed IRLSL algorithm; it can be applied to
any image processing problem where the undesirable effects
of outliers should be alleviated.

In the defect detection applications, AR modeling of
the textile images is performed by the 2-D lattice filters.
The 2-D lattice filter rather than directly computing the AR
model parameters, calculates the reflection coefficients and
models the 2-D data in terms of these coefficients. There is
a one-to-one correspondence between the reflection coeffi-
cients and the AR parameters through Levinson-Durbin type
of recursions [1]. In order not to increase the computational
complexity, the textures at the input of the lattice filters are
modeled in terms of the reflection coefficients rather than the
AR parameters. Hence, the reflection coefficient vector will
be used as the feature vector to represent the input texture.
The reflection coefficients are real numbers in the range of
−1 and 1.

5.1 Texture Defect Detection

Texture defect detection can be defined as the process of
determining the location and/or the extent of a collection
of pixels in a textured image with remarkable deviation in
their intensity values or spatial arrangement with respect to
the background texture.
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The defect detection system used in the experiments
consists of two stages: (i) The feature extraction part uti-
lizes prediction error filtering of the textured images and
calculates the reflection coefficients of the twelve parameter
lattice filter using the proposed algorithm. (ii) The detec-
tion part is a Mahalanobis distance classifier being trained
by defect-free samples.
The algorithms for each block are provided below:
(i) Feature Extraction:

a) Divide each N × N image into non-overlapping sub-
windows S i of size p × p.

b) Process each sub-window using the twelve-parameter
lattice filter and adaptively calculate the reflection co-
efficients associated for each sub-window

c) Construct the feature vector in terms of the reflection
coefficients of the lattice filter for the i-th sub-window
S i

si = [k(1)
1 k(1)

2 k(1)
3 · · · k(1)

12 k(2)
1 k(2)

2 · · · k(M)
1 · · · k(M)

12 ]T

where k( j)
(i) is the i-th reflection coefficient of the j-th

stage.

(ii) Detection:
The detection part of the system consists of a learning phase
and a classification phase.
1. Learning phase

a) Given L defect-free N ×N fabric images, calculate the
feature vectors for each sub-window of the image us-
ing the feature extraction scheme given above. Con-
sider these vectors as the true feature vectors and name
them as t i

b) Compute the mean vector µ and the covariance matrix
Σ for the feature vectors t i.

2. Classification phase

a) Given a test image of size N × N, calculate the feature
vectors si’s for each sub-window Si using the feature
extraction scheme given above.

b) Compute the Mahalanobis distance hi between each
feature vector si and the mean vector µ

hi = (si − µ)T
∑−1

(si − µ) (25)

where µ is the mean vector and
∑

is the covariance
matrix; both are determined in the learning phase.

c) Classify a subwindow S i for which hi exceeds a
threshold value α as defective; else identify it as non-
defective. i.e.

S i =

{
defective if hi > α
nondefective otherwise

The detection part of the system consists of a learning
phase and a classification phase. In the learning phase, fea-
ture vectors for each sub-window of L defect-free images
are calculated. Their mean is found and the mean vector is
considered as the true feature vector. In the classification

phase, feature vectors corresponding to the sub-windows of
a test image are calculated and the Mahalanobis distance hi

between feature vector of each sub-window and the true vec-
tor is computed. Each sub-window S i for which hi exceeds
a threshold value α is classified as defective; else it is identi-
fied as non-defective. The threshold value is determined by
the formula

α = Dm + η(Dq − Dm) (26)

Dm and Dq are, respectively, the sample median and the up-
per quartile of the order statistics Di (distances hi arranged in
ascending order). For an image divided into M subwindows
Dm = (DM/2 + DM/2+1)/2 ve Dq = (DM−M/4 + DM−M/4+1)/2.
The second term of summation in Eq. (26) is the confidence
interval and parameter η is a constant determined experi-
mentally or automatically by methods like cross-validation.
η is normally a critical parameter and its choice is a com-
promize between the number of false alarms and the num-
ber of misses [15]. Simulations with FFT-based methods,
Markov Random Fields, Principle Component Analysis and
Co-occurrence matrices in the context of defect detection
have shown that they are sensitive to the choice of η [14],
on the other hand it is observed that the proposed IRLSL al-
gorithm is quite insensitive [13]. This may be accounted for
the ability of the proposed algorithm in reducing the effects
of the outliers since the choice of the η, is a compromise
between the false alarm rate and the detection rate in other
detect detection methods mentioned above.

Intuitively, the classifier labels the sub-windows with
considerable difference from the rest as defective. In cal-
culating the threshold, for an image, the median of the dis-
tances of sub-windows from the learned sample in place of
mean is used as the mean will not be a reliable measure if
there are defective sub-windows.

5.2 Implementation and Experimental Results

For the experimental justification of the algorithm, real fab-
ric images acquired by a CCD camera in a laboratory envi-
ronment are used [13]. The database consists of 256 × 256
sized 8-bit long gray level images. Front lighting has been
used during the acquisition of the images, that is the camera
and the light source are placed on the same side of the fab-
rics. Texture images we used were taken in a real environ-
ment with light and intensity variations, hence they all in-
clude realistic noise. The performance of the algorithms are
tested under the realistic noise conditions. Each of the ac-
quired images corresponds to 8.53 cm × 8.53 cm fabric with
resolution of 3.33 pixels/mm, which is the same resolution
required in the factory environment. Effort has been made to
include various textures and different types of defects. The
defective images used in the experiments may be observed
in Fig. 3.

Defective and non-defective images are subdivided to
non-overlapping sub-windows of size 32×32 and the model
parameters, namely the reflection coefficients are calculated
using the RLSL [7], FLRLS [8] and the proposed IRLSL
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(a) (b) (c)

(d) (e) (f)

Fig. 3 (a) Defect 1. (b) Defect 2. (c) Defect 3. (d) Defect 4. (e) Defect 5. (f) Defect 6.

Table 2 Results of simulations for different algorithms. For IRLSL-a ρ(s) = 1− cos(s); For IRLSL-b
ρ(s) = (1/2) log(1 + s2); for IRLSL-c ρ(s) = (1/2)(1 − (1 − s2)3).

algorithms. Window size chosen, in scanning the images
depends both on the resolution of the camera used for im-
age acquisition and the textural properties of the fabrics as
well as how localized the defects are. In the experiments,
the highest performance is obtained by using 32 × 32 sized
non-overlapping sub-windows for the original image [13].
In the experiments, parameter η in Eq. (26) is chosen as 3.

With this value of η, all adaptive lattice filters performed
with moderate rate of false alarms and acceptable defect de-
tection capability. In the other cases, either the defect has
not been detected or there has been a big false alarm rate.

The IRLSL algorithm is employed using various ob-
jective functions ρ in Eq. (20). Three different cases are (a)
ρ(s) = 1 − cos(s); (b) ρ(s) = (1/2) log(1 + s2) and (c) ρ(s) =
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(1/2)(1 − (1 − s2)3); the plots corresponding to those func-
tions are shown in Fig. 2. The parameter λ used in Eqs. (23)
and (24) is chosen to be 0.99 in the experiments. The forget-
ting factor and the initial value of the covariance matrix for
the FLRLS [8] algorithm are chosen as 0.9998 and 0.0003,
respectively. The IRLSL algorithms converged in 7 itera-
tions.

The results are presented in Table 2 for the RLSL [7],
the proposed IRLSL using different objective functions and
the FRLRS [8] algorithms, respectively. The correctly la-
beled defective blocks sum up to the number defined as PP
(actually present and labeled as present). The number of
false alarms sum up to the number AP (actually absent but
labeled as present). The undetected defective blocks sum
up to PA (actually present but labeled as absent). This is
the number of missed blocks. And finally the number AA
represents the number of correctly classified non-defective
blocks (actually absent and labeled as absent).

It can be observed from Table 2 that the IRLSL algo-
rithms in general give better results compared to the RLSL
algorithm and the FRLRS algorithm. Among the IRLSL al-
gorithms, the best performance is obtained when an appro-
priate weight function is used. In our case IRLSL-c gives
the best results where the weights corresponding to the ob-
jective function ρ(s) = (1/2)(1 − (1 − s2)3) is used. The per-
formance is evaluated in terms of the false alarm rate (the
AP column). When the number of false alarms is compared
for the RLSL (where no weights are used) and the IRLSL-
c, it is observed that the IRLSL-c achieves better or com-
parable performance with that of RLSL where no weights
are used. For comparison purposes, the detection ratio is
calculated as the ratio of the truly identified defective and
non-defective blocks to the total number of blocks, numer-
ically being equal to (PP+AA)/(defective + non-defective).
The experiments on the actual defective images reveal that
the best performance among all the algorithms is given by
IRLSL algorithm when weights corresponding to an objec-
tive function ρ(s) = (1/2)(1 − (1 − s2)3) are used. With
this choice, all the defects are successfully detected with the
least number of false alarms.

There is a decrease in the false alarm rate when weights
are used. However, the computational complexity is multi-
plied by a factor of 7 compared with RLSL. This drawback
can be eliminated using VLSI technology.

6. Conclusions

In this work, a 2-D IRLSL algorithm, which is robust to
outliers, is introduced to handle the adaptive defect detec-
tion problem in textured images. The proposed algorithm is
a novel method that combines concepts from robust regres-
sion theory and 2-D recursive least squares lattice algorithm.
The algorithm is developed for the twelve-parameter 2-D
lattice filter structure that is the most general structure in the
sense that no spectral symmetry assumptions are imposed on
the input data. However with small modifications, this algo-
rithm can easily be applied to various 2-D lattice structures.

Success of the algorithm is verified by computer examples
employing images acquired from real textile products con-
taining various defects. Satisfactory results, in terms of de-
fect detection ratio, are obtained with the proposed IRLSL
algorithm. The IRLSL algorithm reduced the false alarm
rate considerably, which demonstrates the importance of the
proposed algorithm in reducing the effect of the outliers that
generally correspond to false alarms in classification of tex-
tures as defective or nondefective.

Through this work, it has been demonstrated that adap-
tive 2-D lattice filters can be used in the context of texture
analysis in a supervised manner. Since this technique is
computationally intensive, use of special hardware might be
necessary for real time application of the technique.
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[2] A. Ertüzün, A.H. Kayran, and E. Panayırcı, “An improved 2-D lat-
tice filter and its entropy relations,” Signal Process., vol.28, pp.1–24,
July 1992.
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Appendix: Robust Regression

The classical method of least-squares is known to be un-
reliable when there are outliers in the observations (these
may result from non-normal errors) and a way of making
the solution robust is by minimizing a sum of less rapidly
increasing function of the residuals:

J =
t∑

i=1

ρ(εi/d) (A· 1)

where d is a robust estimator of scale and εi’s are the errors
defined as

εi = yi −
⎛⎜⎜⎜⎜⎜⎜⎝ĉ0 +

p∑
j=1

xi jc j

⎞⎟⎟⎟⎟⎟⎟⎠ , i = 1, . . . , n (A· 2)

where yi’s are the element of n-by-1 vector of responses,
namely y, xi j’s are the elements of n-by-p matrix of known
predictor or independent variables, namely X, εi’s are the
elements of n-by-1 vector of errors ε and the ci’s are the el-
ement of p-by-1 unknown parameter vector c. In order to
solve for the unknown parameters, the first partial deriva-
tives of Eq. (A· 1) with respect to the elements of vector c
will be equated to zero, this is equivalent to finding the so-
lution to p equations

n∑
i=1

ψ

⎛⎜⎜⎜⎜⎜⎜⎜⎝
yi −

(
ĉ0 +

∑p
j=1 xi jc j

)
d

⎞⎟⎟⎟⎟⎟⎟⎟⎠xik = 0, j = 1, . . . p

(A· 3)

where ψ = ρ′., i.e. the first partial derivative of ρ with re-
spect to elements of vector c.

If wi’s are defined as follows.

wi = ψ(εi/d)/(εi/d) (A· 4)

then this is clearly the set of linear equations that must be
solved for robust least squares whose solution is given by

ĉ = (XTWX)−1XTWy (A· 5)

In the above equation W is the diagonal weight matrix with
elements wi.

An iterative algorithm for solving Eq. (A· 3) is given as
follows [10]:

1. t:=0; t is the number of iterations, the notation “:=” is
used for “is defined to be.”

2. wi = 1, i = 1, . . . , n

3. Define a diagonal matrix W(t) with w(t)
i as its i-th diagonal

element.
4. Solve the following equation for ĉ(t+1):(

XT W(t)X
)

ĉ(t+1) = XT W(t)y

5. ε(t+1)
i := yi − (ĉ(t+1)

0 +
∑p

j=1 ĉ(t+1)
j xi j), i = 1, . . . , n (A· 6)

where εi’s are the residuals based on the least squares
estimates.

6. d := median
∣∣∣ε(t+1)

i − median(ε(t+1)
i )

∣∣∣ /0.6745 (A· 7)
where the numerator d is called the median of the abso-
lute deviations. The number 0.6745 is chosen because
then d ≈ σ if data length n is large and if the sample
arises from a normal distribution.

7. w(t+1)
i := ψ

(
ε(t+1)

i

d

)
/
(

2ε(t+1)
i

d

)
if ε(t+1)

i � 0, i = 1, . . . , n, (A· 8)

w(t+1)
i := ρ///2 otherwise i = 1, . . . , n; (A· 9)

8. If
∥∥∥ĉ(t+1) − ĉ(t)

∥∥∥ ≤ δwhere δ is a predetermined tolerance,
go to 10.

9. t := t + 1, go to 3.
10. Estimate c by ĉ(t+1).

The process continues until successive iterates on both c and
d have converged to desired accuracy. Huber and Dutter
have shown that this algorithm always converges due to the
special nature of the objective function defined by Eq. (A· 1)
for certain ρ functions [16].
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Ayşın Ertüzün was born in 1959 in Salihli,
Turkey. She received her B.S. degree (with hon-
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Turkish Pattern Recognition and Image Processing Society and a member
of the IEEE Computer Society. Birthdate: December 14, 1958.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


