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ABSTRACT

CLASSICAL AND LEARNING-BASED MULTI-GOAL ORDERING AND PATH
PLANNING FOR MOBILE ROBOTS

ABDULLAH ALLUS

MECHATRONICS ENGINEERING M.Sc. THESIS, JULY 2025

Thesis Supervisor: Prof. Dr. MUSTAFA ÜNEL

Keywords: Mobile Robots, Path-Planning, Multi-Goal Pathfinding, A-Star,
Transformers

In the field of autonomous mobile robotics, efficient and scalable solutions to the
multi-goal ordering and path planning problem—where a robot must visit a set of
spatially distributed goal nodes in the most optimal sequence—remain a signifi-
cant challenge. In this study, we develop two approaches to tackle this important
problem. The first one is a classical geometry-based approach and the second one
is a learning-based approach that addresses the problem using either a traditional
machine learning technique or a transformer-based method.

In the classical approach, we propose a novel ordering strategy based on a one-
distance-two-angles paradigm, which reduces reliance on traditional distance met-
rics by incorporating geometric considerations to infer optimal visiting sequences.
This ordering procedure is paired with an improved version of the A* algorithm that
integrates principles from computer graphics to eliminate redundant zigzags and in-
termediate points often present in grid-based environments, resulting in smoother
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and more cost-effective paths without compromising computational efficiency. Addi-
tionally, we introduce two learning-based frameworks to predict goal visiting orders.
The first is a traditional machine learning model trained on hand-crafted features
derived from brute-force optimal solutions, capturing geometric patterns such as dis-
tances, angles, and spatial relationships. The second is a transformer model trained
on features extracted using CNNs and Relational Transformers, along with geomet-
ric context-based features from optimal paths. Our experiments demonstrate that
both models generalise effectively to unseen environments and large-scale scenarios,
achieving high accuracy in reproducing near-optimal orders.

We conducted extensive evaluations on a variety of publicly available datasets and
synthetic environments, benchmarking our proposed approaches against state-of-
the-art algorithms. Results demonstrate that both the classical and learning-based
methods outperform existing solutions in terms of distance cost, path smoothness,
and computational runtime. The proposed methods also show strong scalability and
reproducibility across different problem instances.
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ÖZET

MOBIL ROBOTLAR İÇIN KLASIK VE ÖĞRENME TABANLI ÇOKLU HEDEF
SIRALAMA VE YOL PLANLAMA

ABDULLAH ALLUŞ

MEKATRONİK MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, TEMMUZ 2025

Tez Danışmanı: Prof. Dr. MUSTAFA ÜNEL

Anahtar Kelimeler: Mobil Robotlar, Yol Planlama, Çoklu Hedefli Yol Bulma,
A-Star, Dönüştürücüler (Transformers)

Otonom mobil robotik alanında, robotun mekânsal olarak dağılmış hedef düğümler
kümesini en uygun sırayla ziyaret etmesi gereken çoklu hedef sıralama ve yol plan-
lama problemlerine yönelik verimli ve ölçeklenebilir çözümler sunmak hâlen önemli
bir zorluk olarak varlığını sürdürmektedir. Bu çalışmada, söz konusu probleme yöne-
lik iki farklı yaklaşım geliştiriyoruz. İlk yaklaşım klasik, geometrik temelli bir yön-
temken; ikinci yaklaşım, problemi ya geleneksel makine öğrenimi teknikleriyle ya
da dönüştürücü (transformer) tabanlı yöntemlerle ele alan öğrenme tabanlı bir yak-
laşımdır.

Klasik yaklaşımda, geleneksel mesafe metriklerine olan bağımlılığı azaltmak
amacıyla, hedef ziyaret sıralarını geometrik açıdan çıkarımsal olarak belirlemeye
imkân tanıyan “bir mesafe – iki açı” paradigmasına dayalı yeni bir sıralama strate-
jisi öneriyoruz. Bu sıralama yöntemi, ızgara tabanlı ortamlarda sıklıkla ortaya çıkan
gereksiz zikzakları ve ara noktaları ortadan kaldırmak amacıyla bilgisayar grafik-
lerinden alınan prensipleri entegre eden, geliştirilmiş bir A* algoritmasıyla birleştir-
ilmiştir. Böylece, hesaplama verimliliğinden ödün vermeden daha düzgün ve maliyet
açısından daha verimli yollar elde edilmektedir. Buna ek olarak, hedef düğüm-
lerin ziyaret sıralarını tahmin edebilen iki farklı öğrenme tabanlı çerçeve sunuyoruz.
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İlki, cebirsel olarak elde edilen optimal çözümlerden türetilmiş, uzaklıklar, açılar ve
mekânsal ilişkiler gibi geometrik desenleri yakalayan elle tasarlanmış öznitelikler ile
eğitilmiş geleneksel bir makine öğrenimi modelidir. İkincisi ise, Evrişimli Sinir Ağları
(CNN) ve İlişkisel Dönüştürücüler (Relational Transformers) kullanılarak çıkarılan
özniteliklerle birlikte optimal yollardan elde edilen geometrik bağlam öznitelikleriyle
eğitilmiş bir dönüştürücü modelidir. Yaptığımız deneyler, her iki modelin de daha
önce görülmemiş ortamlara ve büyük ölçekli senaryolara etkili bir şekilde genelleme
yapabildiğini ve optimal sıralamaya yakın sonuçları yüksek doğrulukla üretebildiğini
göstermektedir.

Geliştirdiğimiz yaklaşımları, kamuya açık çok sayıda veri kümesi ve sentetik ortam-
lar üzerinde kapsamlı biçimde değerlendirdik ve mevcut en gelişmiş algoritmalarla
karşılaştırmalı analizler gerçekleştirdik. Sonuçlar, hem klasik hem de öğrenme ta-
banlı yöntemlerin; mesafe maliyeti, yol düzgünlüğü ve hesaplama süresi açısından
mevcut çözümleri geride bıraktığını göstermektedir. Ayrıca, önerilen yöntemlerin
farklı problem örnekleri arasında güçlü bir şekilde ölçeklenebilir ve tekrarlanabilir
olduğu da gözlemlenmiştir.
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1. INTRODUCTION

The field of robotics extensively researches and develops robotic autonomy to miti-
gate human error, enhance task accuracy, and optimise resource utilisation. The au-
tonomy of mobile robots fundamentally hinges on robust paradigms of task planning,
path planning, and motion planning Alatise & Hancke (2020); Davoodi, Panahi, Mo-
hades & Hashemi (2015); Piazzi, Bianco & Romano (2007); Sanchez-Ibanez, Pérez-
del Pulgar & García-Cerezo (2021). A primary challenge within path-planning in-
volves identifying the least costly route between two specified positions on a given
map, accounting for variables such as distance, terrain roughness, and travel time.
The coordinates of the starting and goal positions are typically provided by either
the user or another intelligent autonomous algorithm, while the map itself delin-
eates the coordinates of existing structures and obstacles. In our study, we utilise
a pre-processed map, where navigable areas are depicted in white and obstacles in
black. Such maps are commonly derived from real-world workspaces, but can also
originate from digital environments like games or design applications.

In numerous real-world scenarios, including warehouse automation Digani, Sabat-
tini, Secchi & Fantuzzi (2015); Kumar & Kumar (2018); Poudel (2013); Wurman,
D’Andrea & Mountz (2008), general logistics Fragapane, De Koster, Sgarbossa &
Strandhagen (2021); Scholz-Reiter, Windt & Freitag (2004); Wurll, Fritz, Hermann
& Hollnaicher (2018), and rescue missions in hazardous zones Murphy, Kravitz,
Stover & Shoureshi (2009); Vasilyev, Kashourina, Krasheninnikov & Smirnova
(2015), mobile robots demand complete autonomy for intricate path-planning, often
maintaining a human-in-the-loop for safety and oversight. One such challenge is
multi-goal path planning, where the robot must visit multiple equally prioritised
goal nodes exactly once and then return to its origin, forming a closed loop Janoš,
Vonásek & Pěnička (2021) as shown in Figure 1.1. This task underscores the critical
need for resource efficiency, especially when minimising agents is possible or when
operations are in dangerous environments. Our objective is to optimise this closed
path by identifying the most efficient sequence for visiting goal nodes, thereby max-
imising resource utilisation and ensuring the most accurate execution of assigned
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tasks.

We introduce novel solution methodologies across two distinct frameworks: classical
and learning-based. Both dynamically order goal nodes, striving to achieve a near-
optimal visiting sequence that minimizes total distance cost in a given multi-goal
scenario. Furthermore, our approaches are engineered for computational efficiency,
a crucial aspect since many real-world situations can change rapidly, demanding
swift adaptive responses.

Figure 1.1 A 3D illustration that depicts a polymorphic, obstacle-filled workspace,
featuring a complex environment with both obstacles and navigable regions. It
showcases a multi-goal ordering and path planning problem, where a robot starts
from a designated starting position, visits a set of goal locations, and then returns
back to the starting position. The right-hand side presents 2D top-view maps,
visually representing various possible visiting sequences for these goal positions.

At the heart of our proposed ordering approaches is an enhanced A* search al-
gorithm, perfectly suited to the problem environments. We’ve improved the A*
algorithm by incorporating essential image processing techniques to shorten the
path during execution and post-prune it after generation. This enhancement min-
imises redundant nodes, manoeuvres, and abrupt changes, consequently reducing
the overall distance cost.

To assess our proposed approaches, we performed extensive experiments on diverse
maps with varying numbers of goal nodes. These evaluations allowed us to examine
our algorithms’ scalability, robustness, and reproducibility across unexpected and
varied scenarios, including custom-designed maps, satellite port maps, and publicly
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available maps Bhardwaj, Choudhury & Scherer (2017); Sturtevant (2012). More-
over, we benchmarked our algorithms against current state-of-the-art solutions to
underscore their potential as a competitive option in multi-goal path planning. Our
results consistently show that our algorithms not only meet but frequently surpass
the performance of existing methods, demonstrating their capability as contending
approaches for ordering goal nodes in multi-goal path planning.

1.1 Problem Formulation

We hereby introduce the mathematical formulation of the multi-goal ordering and
path planning problem:

The Multi-Goal Ordering and Path Planning Problem involves determining an op-
timal sequence of visits for a set of N goal nodes {G1,G2, ...,GN }, starting and
ending at a specified starting node S0, where nodes are defined by their carte-
sian coordinates {(xi,yj) | i = 0,1, ...,N}. For each sequence, a corresponding set of
collision-free paths Pk must be generated connecting successive nodes. The primary
objective is to minimise the total cumulative cost ∑N

k=0 cost(Pk), subject to spatial
constraints, obstacle avoidance, and kinematic constraints, path smoothness, within
the given 2D map.

1.2 Thesis Contributions

Our work significantly advances the literature on multi-goal ordering and path plan-
ning, the A* algorithm, and the application of supervised machine learning and
transformer models in this domain:

• First, we introduce a pre-processing framework for 2D workspace maps, de-
signed for autonomous mobile robots. This framework involves generating
mesh-like equidistant nodes, detecting obstacles, and constructing an efficient
neighbourhood graph. This graph effectively represents the relationships be-
tween nodes, creating a suitable visual-graphical format for informed search
algorithms like A*.

• Second, we propose a geometric enhancement to the A* algorithm utilising
image processing techniques. The path generated by this improved A* is then
refined through a similar post-pruning technique. This enhanced algorithm
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demonstrates superior performance in reducing path distance and generating
smoother, more robot-dynamics friendly paths with fewer turns and abrupt
changes.

• Third, we present a novel classical algorithm for multi-goal node ordering,
based on the guidance of a combination of local and global angles, aiming for
a near-optimal visiting sequence. The order derived from our algorithm then
undergoes post-pruning using modified, well-known algorithms. The resulting
total paths, which visit all goal nodes, prove to be near-optimal, exhibiting
minimal self-intersections and redundant manoeuvres.

• Fourth, we created two distinct datasets: one for 10-goal node scenarios and
another for 7-goal nodes. For these datasets, the optimal visiting order of
randomly selected goal node sets was determined either using an adapted
Google’s OR-Tools TSP solver or an enhanced brute-force technique.

• Fifth, we introduce a traditional machine learning-based method that dynam-
ically orders goal nodes to approximate an optimal visiting sequence, thereby
minimising overall distance cost. This supervised machine learning model
is trained using meticulously designed, hand-crafted features, developed af-
ter extensive testing and observation of optimal paths obtained via enhanced
brute-force methods across varying numbers of goal nodes and diverse map
configurations. Crucially, our algorithm is optimised for computational ef-
ficiency, which is vital for real-world applications where environments can
change rapidly, demanding swift adaptive responses.

• Sixth, we propose a transformer-based method for dynamic goal node ordering.
This approach leverages a transformer model, trained on a generated dataset
that utilises CNNs and relational transformers to produce information-rich,
high-dimensional feature vectors for the goal nodes.
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1.3 Thesis Outline and Organisation

The remainder of this thesis is structured as follows:

Chapter 2 offers a comprehensive literature review. It covers prominent path plan-
ning frameworks, environment representations, the fundamentals of robotic path
planning, with a particular focus on the A* algorithm and its enhancements, and
both classical and learning-based solutions for multi-goal ordering and path plan-
ning. The improved A* algorithm, which forms the core of our multi-goal ordering
and path planning solutions, is introduced and thoroughly detailed in Chapter 3.
Here, we elaborate on our enhancements to the algorithm, considering the working
environment and experimental setup presented in the preceding chapter. Chapter
4 provides a detailed explanation of our proposed classical solution to the multi-
goal ordering and path planning problem. This section introduces the novel "One-
Distance-Two-Angles" paradigm and discusses the specific angular criteria chosen
for ordering the goal nodes. In Chapter 5, we introduce two distinct Artificial Intel-
ligence frameworks for tackling the multi-goal ordering and path planning problem:
traditional machine learning and transformers. We delve into the preliminary as-
sumptions, axioms, data generation processes, feature extraction methods, and the
training and inference procedures used within each framework. Chapter 6 is ded-
icated to the verification and validation of our proposed approaches. We present
various detailed experiments and comparative analyses, showcasing the results to
clearly demonstrate the competence and effectiveness of our algorithms. Finally,
Chapter 7 offers a summary of our study. It highlights the major contributions
and key findings from our experiments and comparisons, while also discussing the
limitations of our algorithms and outlining potential avenues for future work.
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2. RELATED WORK ON MULTI-GOAL ORDERING

AND PATH PLANNING

2.1 Fundamentals of Robotic Path Planning

Path planning is a fundamental aspect of mobile robot autonomy, broadly cate-
gorised into global and local path planning. The more research-intensive of the two
is global path planning, which focuses on devising the shortest, most reliable path
for a robot to reach a goal from a starting point while actively avoiding obstacles.
This process relies on available environmental information, which can be represented
in various ways. Common environment modelling methods include topological rep-
resentations, graphical representations, which we will utilise in our work, and mixed
representations. Researchers have long been dedicated to developing path plan-
ning techniques. Among the most widely adopted and effective approaches are cell
decomposition techniques, sampling-based techniques, and graph-search techniques
Alatise & Hancke (2020); Liu, Wang, Yang, Liu, Li & Wang (2023); Sanchez-Ibanez
et al. (2021), the latter of which will be employed in this thesis.

2.2 Graphical Environment Representation and Path Planning

Graphical environment representation is a widely adopted method for digitally mod-
elling physical workspaces, enabling the solution of various problems, including path
planning. While diverse approaches exist for representing physical spaces using
graphs, most entail designating navigable nodes to areas where a robot can traverse
and non-navigable nodes to obstacles. These nodes, along with their attributes
and relationships, are then stored within a neighbourhood graph . This structured
representation allows algorithms to efficiently understand connectivity and iden-
tify barriers within the operational environment Masoudi & Fadel (2022); Wooden
(2006). Various graph-based search algorithms are used to plan and find the short-
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est path. Informed search algorithms, such as Dijkstra’s algorithm Alshammrei,
Boubaker & Kolsi (2022); Dharmasiri, Kavalchuk & Akbari (2020); Dijkstra (2022);
Liu, Lin, Yao, He, Zheng, Huang & Shi (2021); Qing, Zheng & Yue (2017); Wang,
Yu & Yuan (2011) and the A* algorithm Erke, Bin, Yiming, Qi, Liang & Dawei
(2020); Hart, Nilsson & Raphael (1968); Li, Hu, Wang & Du (2020); Tang, Tang,
Claramunt, Hu & Zhou (2021); Wang, Wang, Qin, Wu, Duan, Li, Cao, Ou, Su, Li &
others (2015); XiangRong, Yukun & XinXin (2021); Zhang, Chen & Zhang (2024),
are predominantly employed due to their efficiency. Alternatively, some researchers
utilize uninformed search algorithms like the RRT (Rapidly-exploring Random Tree)
algorithm and its variants Feraco, Luciani, Bonfitto, Amati & Tonoli (2020); Hu,
Cao & Zhou (2021); LaValle (1998); Mashayekhi, Idris, Anisi & Ahmedy (2020);
Melchior & Simmons (2007), which are effective in high-dimensional spaces. More
recently, there has been a growing focus on combining classical search algorithms
with learning-based approaches to achieve more advanced and robust path-planning
capabilities Gao, Ye, Guo & Li (2020); Sombolestan, Rasooli & Khodaygan (2019);
Wang, Chi, Li, Wang & Meng (2020); Yu, Su & Liao (2020); Zhang, Cai, Yan, Yang
& Hu (2024).

2.3 The A* Algorithm and Its Variants

A* is an informed search algorithm formulated for weighted graphs. Its primary
objective is to discover the path with the minimal cost (e.g., least distance or shortest
time) from a given starting node to a specified goal node within a graph. A* achieves
this by maintaining a tree of paths originating from the starting node, incrementally
extending these paths one edge at a time until the goal node is reached. In each
iteration, A* strategically chooses which path to extend based on its current cost and
an estimated cost to reach the goal. Specifically, it selects the path that minimises
the function f(n) = g(n)+h(n), where n represents the next node on the path. Here,
g(n) signifies the known cost from the starting node to n, and h(n) is a problem-
specific heuristic function estimating the cheapest path cost from n to the goal.

Researchers have long been interested in A*, dedicating considerable effort to de-
veloping improvements and variants suitable for diverse scenarios. For instance, Ju,
Luo & Yan (2020) proposed an enhancement to the classical A* for situations where
it fails to yield an optimal path, though their study lacked thorough experimental
validation. Li et al. (2020) introduced an improved A* by expanding the neighbour-
hood definition to generate shorter paths with fewer inflection points and abrupt
changes, but this increases computational complexity due to a larger search space.
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Tang et al. (2021) presented a geometric enhancement to A* that addresses undesir-
able cross-path and sawtooth segments, simultaneously reducing expanded nodes,
which shortens paths and decreases time complexity. Erke et al. (2020) developed
an improved A* specifically tailored for autonomous land vehicles, addressing their
unique navigational challenges. The study in XiangRong et al. (2021) proposed im-
provements to the classical A* algorithm to reduce memory consumption; however,
they did not address the critical issue of reducing redundancies in the generated path
that could hinder robot motion. Finally, Duchoň, Babinec, Kajan, Beňo, Florek,
Fico & Jurišica (2014) introduced geometry-based modifications to the classical A*
algorithm, primarily focusing on reducing its computational complexity, validating
their improvements through experiments in SLAM robotic environments.

2.4 Multi-Goal Ordering and Path Planning

More complex path-planning tasks frequently arise in numerous real-world appli-
cations. Mobile robots operating in diverse environments like logistics hubs, ware-
houses, factories, libraries, museums, and parks often need to do more than simply
find the shortest path between a start and a single goal. Instead, they must de-
termine the most efficient visiting sequence for multiple goal nodes. This typically
involves the robot starting at a specific location, visiting several designated goals,
and then returning to its origin, all while minimising the total distance traveled.
Solutions to this intricate problem in the literature generally fall into two primary
categories:

• Classical approaches: Researchers in this domain address the problem us-
ing traditional methods such as dynamic programming, Traveling Salesperson
Problem’s (TSP) classical heuristics, expert systems, and geometry-based tech-
niques. These methods rely on well-established algorithms and mathematical
principles.

• Learning-based approaches: Here, researchers leverage artificial intelligence
(AI) techniques. They develop various model structures trained on diverse
datasets to determine optimal visiting orders, allowing the robot to learn com-
plex relationships from data.
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2.4.1 Classical Approaches

The multi-goal path planning problem extends beyond mobile robots; for instance,
Wurll, Henrich & Wörn (1999) explored it in industrial robot settings, focusing
on finding collision-free paths for robotic arms through a set of goal poses while
minimising total path length. Our current study specifically addresses this problem
within autonomous mobile robots.

Saeed, Reforgiato Recupero & Remagnino (2021) tackled the mobile robot multi-
goal problem with a boundary node method, executing in two steps: a genetic
algorithm for sequence generation, followed by the boundary node method itself
for inter-goal pathfinding. This paper, however, lacks extensive experimentation in
highly complex scenarios with many goal nodes or complex obstacles. In Hongyun,
Xiao & Hehua (2013), the authors combined a branch-detected algorithm for path
planning with Traveling Salesman Problem (TSP) solutions for ordering within a
grid-space environment. Their work, however, also lacked intensive experimentation
to demonstrate the algorithm’s efficiency across diverse scenarios and maps.

Janoš et al. (2021) introduces Space-Filling Forest (SFF*), a sampling-based plan-
ner designed to compute efficient, collision-free paths between multiple targets in
obstacle-filled environments for multi-goal path planning. By growing multiple
RRT*-like trees from each target and optimising interconnections, SFF* produces
shorter target-to-target paths, leading to improved TSP solutions in terms of overall
travel cost, but their experiments were limited to scenarios with a maximum of 20
goal nodes. Best, Faigl & Fitch (2016) presents a self-organising map (SOM) algo-
rithm for multi-goal path planning in active perception and data collection tasks,
where robots aim to maximise observation rewards within travel budget constraints.
By jointly selecting nodes and sequencing sensing locations in overlapping continu-
ous viewpoint regions, yet their experiments provided insufficient detail on handling
map obstacles. Similarly, Faigl & Hollinger (2014) proposes a self-organising map
(SOM) framework for solving variants of the multi-goal path planning problem,
particularly in autonomous data collection scenarios involving stationary sensors.
The approach accommodates flexible constraints such as sensor prioritisation and
proximity-based data collection, outperforming traditional TSP heuristics in both
simulated and real-world underwater monitoring applications, but did not explicitly
address obstacle avoidance.

Devaurs, Siméon & Cortés (2014) proposed Multi-T-RRT, a multiple-tree exten-
sion of the Transition-based RRT algorithm, designed to address ordering-and-
pathfinding problems by navigating continuous cost spaces without relying on sym-
bolic task planners. The method is validated through comparisons with other plan-
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ners and is successfully applied to an industrial aerial inspection task involving un-
ordered waypoint traversal. However, their experiments did not emphasise closed-
path scenarios and lacked thorough scalability analysis. Pěnička, Faigl & Saska
(2019) tackled the Physical Orienteering Problem (POP), a variant tailored for
multi-goal data collection where a robot must maximise rewards by visiting a subset
of targets within a limited travel budget and an obstacle-filled environment. The
proposed VNS-PRM* algorithm combines variable neighbourhood search with a pro-
gressively refined PRM* roadmap, achieving high-quality, collision-free paths suit-
able for applications such as UAV-based data collection in urban settings. Huang,
Tan, Lee, Desaraju & Grizzle (2023) presented an anytime iterative framework that
jointly addresses multi-objective path planning and destination ordering using a
combination of an informable multi-directional RRT* algorithm and a hybrid solver
integrating enhanced cheapest insertion and genetic algorithms. The system effi-
ciently handles complex waypoint-based tasks in real-world driving scenarios and
demonstrates scalability through multi-threaded implementation and evaluation on
large graphs, but their work largely focused on large-scale maps without directly
addressing critical issues like obstacle avoidance and robot dynamics.

In our prior work Allus, Diab & Bayraktar (2024), we introduced an A*-based multi-
goal ordering and path planning algorithm. However, it suffered from requiring
multiple A* executions within the ordering procedure and was restricted to local
optimization, neglecting global map aspects. Consequently, we developed a new
angle-based ordering paradigm that leverages global geometrical information and
eliminates the need for multiple A* executions by using angles instead of distances,
thereby overcoming these limitations.

We published our classical algorithmic framework in Allus & Unel (2025) under the
title "Angle-based multi-goal ordering and path-planning using an improved A-star
algorithm".

2.4.2 Learning-Based Approaches

Given that the multi-goal ordering problem in robotics path planning can be seen as
a variation of the Travelling Salesperson Problem (TSP), we’ll now discuss relevant
learning-based solutions from the literature.

In Min, Bai & Gomes (2023), the authors propose UTSP, an unsupervised learning
framework. This framework employs a Graph Neural Network (GNN) to predict
edge probabilities for TSP, subsequently using local search to construct the final
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route. The work in Mele, Gambardella & Montemanni (2021) introduces a ma-
chine learning-based constructive heuristic for TSP. It leverages candidate lists to
shrink the solution space and guide edge selection, allowing scalability to very large
instances. By focusing the machine learning model on confirming likely optimal
edges, this method demonstrates strong generalization and competitive performance
against classical heuristics, even for problems with thousands of cities.

Joshi, Laurent & Bresson (2019) presents a non-autoregressive deep learning ap-
proach for solving the Euclidean TSP, utilizing Graph Convolutional Networks
(GCNs) and parallelized beam search. This method outperforms recent autoregres-
sive models in terms of solution quality, inference speed, and efficiency, though it
still lags behind traditional Operations Research solvers. Lastly, Bresson & Laurent
(2021) adapts the Transformer architecture to solve the TSP using reinforcement
learning, eliminating the need for ground truth solutions during training. This
approach achieves state-of-the-art performance on TSP benchmarks, significantly
reducing the optimality gap compared to previous learned heuristics.

These learning-based approaches, while primarily developed for TSP, offer valu-
able insights and methodologies that can be adapted and extended to address the
multi-goal ordering challenges in robotic path planning, particularly when dealing
with complex or large-scale scenarios where traditional methods might struggle with
computational efficiency or optimality.
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3. IMPROVED A* ALGORITHM

The A* algorithm serves as the fundamental framework for all path planning strate-
gies employed in this work. It was chosen due to its classification as an informed
graph search algorithm, which allows it to efficiently guide the search process using
heuristic information. Given that the input map is assumed to be well-structured
and appropriately scaled—and will subsequently be converted into a graph-based
representation—the A* algorithm proves to be the most suitable choice for our ap-
plication. Its balance between optimality and computational efficiency makes it
especially effective in environments with predictable geometric properties.

3.1 Graphical Environment Setup

This section outlines the process of converting an input map from an image format
into a graphical representation suitable for navigation algorithms.

The workspace environment represents a real-world 3D space, heavily populated
with obstacles that restrict a robot’s movement. Figure 3.1 demonstrates the appro-
priate input format, which is created by transforming a polymorphic, obstacle-dense
3D workspace model into a 2D top-view map. This image-based format depicts ob-
stacles in black and navigable areas in white. Both types of regions are represented
using a mesh grid of equidistant nodes, with each node assigned a specific naviga-
bility flag (non-navigable for obstacles, navigable for free space). Therefore, each
obstacle is defined by a collection of non-navigable equidistant nodes. It is cru-
cial to meticulously determine the 2D map’s scale [meter/pixel] to ensure that our
algorithms’ output can be smoothly integrated with a real-world robot’s localisa-
tion system. While this 3D-to-2D transformation typically involves computer vision
and image processing techniques, our algorithms are not limited to maps derived
from physical environments; they are equally compatible with maps generated from
virtual settings, such as games and graphical user interfaces (GUIs).
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Figure 3.1 Transformation from a polymorphic, obstacle-dense 3D environment to a
2D top-view map. The map is presented in the precise format required for seamless
compatibility with our proposed path planning algorithms.

To prepare a 2D input map for navigation algorithms, especially A*, it is crucial
to convert its image format into a suitable graphical representation. This involves
storing the image’s grayscale values as a matrix. Subsequently, down-sampling this
matrix is necessary to lower computational costs in later stages, thereby boosting
the algorithm’s overall efficiency. Figure 3.2 illustrates the entire pre-processing
stage, detailing steps from the initial raw 2D map to a final pre-processed version
ready for path planning and search algorithms.
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(a) An image that shows the initial
processing of the input map to ensure
compatibility with our proposed algo-
rithms.

(b) A mesh of equidistant nodes is
generated, with spacing defined by
the user.

(c) Illustration of the filtering process,
where nodes overlapping with obsta-
cles are removed.

(d) A neighbourhood relation graph
is constructed, connecting equidistant
and user-defined nodes.

Figure 3.2 A figure that summarises the Pre-processing Stage’s key steps: Equidis-
tant Nodes Generation, Obstacle Detection, and Neighbourhood Graph Generation.

3.1.1 Equidistant Nodes Generation, Obstacle Detection and Equidistant
Nodes Filtering

Figure 3.2b illustrates the creation of an equidistant node grid based on a
user-defined spacing value, ∆. It is crucial that ∆ ≤ dmin, where dmin is
the smallest dimension of the smallest obstacle on the map. This grid, N ={
(xi,yj) | xi = i ·∆, yj = j ·∆, 1 ≤ i ≤ w

∆ , 1 ≤ j ≤ h
∆

}
, acts as a down-sampled ma-

trix of the workspace (with w as width and h as height). Each vertex, (xi,yj), is an
equidistant node vital for defining potential robot paths.

The choice of ∆ involves a trade-off between accuracy and computational complex-
ity. The number of equidistant nodes, |N | = round(w·h

∆2 ), is inversely related to ∆2.
A smaller ∆ increases node count, enhancing obstacle representation but also raising
computational load for search algorithms. Conversely, a larger ∆ reduces computa-
tion at the cost of accuracy. To balance this, we typically set ∆ = dmin, ensuring
sufficient obstacle precision with minimal computational burden. A sensitivity anal-
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ysis shows that halving ∆ quadruples nodes, significantly increasing complexity,
while doubling ∆ quarters nodes, boosting efficiency but reducing accuracy. This
highlights the importance of an optimal ∆ for precision and efficiency.

Each equidistant node is then evaluated by its grayscale intensity. Nodes above a
user-defined threshold are marked as navigable, while those below it are flagged as
obstacles. Figure 3.2c demonstrates this filtering, ensuring only nodes above the
threshold are considered navigable for path-planning. For more precise obstacle def-
inition, connected components analysis Suzuki & others (1985) can detect obstacle
contours, providing exact boundary information for integration into our framework.

These preprocessing steps significantly boost the reliability and effectiveness of our
navigation algorithms by ensuring thorough obstacle comprehension without exces-
sive computational demand, and by restricting all subsequent navigation computa-
tions exclusively to navigable nodes.

3.1.2 Neighbourhood Relations’ Graph and User-Defined Nodes

One of the most important preparations for the execution of search algorithms is
to define the neighbourhood relationships between equidistant nodes, converting
the input map into a graphical representation suitable for navigation algorithms.
Typically, each node (xi,yj) can have up to eight neighbours: four directly adjacent
(cardinal directions) with an edge cost of dedge = ∆, and four diagonally adjacent
with a diagonal cost of ddiag =

√
2 · ∆. Nodes bordering obstacles are assigned an

infinite neighbouring cost to prevent traversal. Additionally, edge cases like map
boundaries will naturally have fewer than eight neighbours. Figure 3.3a visually
demonstrates these neighbourhood relationships among equidistant nodes, with the
algorithmic specifics detailed in Algorithm 1.

Algorithm 1: Define Neighbourhood Relations For Equidistant Nodes
Input : N, ∆
Output: N
i ← 0;
j ← 0;
foreach row in N do

foreach node in row do
∆←∞ if not node.isNavigable else 1;
neighbours ← [(i, j)foriin[−1,0,1]forjin[−1,0,1]if(i, j) ̸= (0,0)];
foreach (di, dj) in neighbours do

distance ←∆ if di == 0 or dj == 0 else
√

2 ·∆;
node.addNeighbour(N[row + di][col + dj], distance);

return N;

User-defined nodes offer a mechanism to manually integrate specific points of interest
or constraints into the graph, thereby complementing the automatically generated
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equidistant nodes. These nodes, typically serving as starting or goal positions, estab-
lish their neighbourhood relationships through a brute-force search within a maxi-
mum allowable neighbourhood cost, MANC =

√
2 ·∆. This process ensures connec-

tivity exclusively to navigable neighbours, as illustrated in Figure 3.3b. Equation
3.1 is then used to calculate the connection cost based on their spatial proximity:

(3.1) dUD =
√

(xi −xUD)2 +(yj −yUD)2

Algorithm 2 details the process for generating these nodes according to user spec-
ifications. Each node’s navigability is assessed by comparing its grayscale value
against a defined obstacle threshold. If a node is determined to be navigable, it is
added to the navigable nodes vector (AN[0]); otherwise, it is assigned to the obstacle
nodes vector (AN[1]).

Algorithm 2: Generate User Defined Nodes
Input : GI, OT, UDNC, MANC, AN
// GI: Grey Image, OT: Obstacle Threshold, UDNC: User-Defined Nodes Coordinates, MANC: Maximum Allowable

Neighbouring Cost, AN: All Nodes where AN[0] is the set of navigable nodes and AN[1] is the set of
non-navigable nodes.

Output: GUDN
// GUDN: Generated User-Defined Nodes

GUDN ← [];
foreach nodeCoordinate in UDNC do

if GI.getpixel(nodeCoordinate) < OT then
isNavigable ← False;

else
isNavigable ← True;

tempNode ← Node(nodeCoordinate, isNavigable);
if tempNode not in AN[0] and tempNode not in AN[1] then

if isNavigable then
tempNode.addUserDefinedNeighbour(AN[0], MANC);
AN[0].append(tempNode);

else
tempNode.addUserDefinedNeighbour(AN[1], MANC);
AN[1].append(tempNode);

GUDN.append(tempNode);

return GUDN;
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(a) Neighbourhood structure of
equidistant nodes, where each node
can have up to 8 neighbouring
connections based on equidistant
spacing.

(b) Neighbourhood structure of user-
defined nodes, established using a
brute-force search approach with a
maximum of 8 potential neighbours.

Figure 3.3 Comparison of neighbourhood graphs: (a) uses equidistant spacing to
define neighbouring relations, while (b) applies a brute-force search to determine
the neighbours of user-defined nodes, both allowing up to 8 connections.

3.2 The A* Algorithm

The A* algorithm serves as the central component of our path-planning method-
ology, tasked with finding the shortest route between two nodes using predefined
costs and heuristics, as illustrated in Figure 3.4. In our adapted version, we have
enhanced the classical A* to seamlessly integrate with our input map’s graphical rep-
resentation. This involves utilizing the neighbourhood relations graph to efficiently
calculate node-to-node costs. Our chosen heuristic is the Euclidean distance, which
is particularly effective as it naturally accommodates diagonal movement, a crucial
capability in environments where such traversals between nodes are permissible.
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Figure 3.4 An illustration of several possible paths from a starting node to a goal
node, successfully navigating around obstacles. The core function of the A* algo-
rithm is to identify the shortest path among all viable options.

As depicted in Algorithm 3, the A* algorithm initiates its search from a starting node
towards a goal node, evaluating potential paths using calculated costs and heuristic
estimates. Crucially, if a path for the same node pair has been previously computed,
it is retrieved from memory. This memory retrieval step significantly speeds up
computation and conserves resources, especially vital in static environments like
warehouses or well-structured engineered spaces. In such settings, after repeated
traversals, frequently used paths can be directly accessed from memory, bypassing
recalculation.
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Algorithm 3: Improved A* Algorithm
Input : SN, GN, GPs, GI, IPP
// SN: Starting Node, GN: Goal Node, GPs: Generated Paths, GI: Grey Image, IPP: Is Post Pruned
Output: PC
// PC: Path and Total Cost

PFPC ← GPs.get((SN, GN), None);
// PFPC: Previously Found Path and Cost
if PFPC ̸= None then

return PFPC;

openSet ← [SN], closedSet ← [];
g ← {}, g[SN] ← 0;
parents ← {}, parents[SN] ← SN;
subPath ← None;
while length of openSet > 0 do

n ← None;
foreach temp in openSet do

if n == None or g[temp] + calculateHeuristics(temp, GN) < g[n] + calculateHeuristics(n, GN) then
n ← temp;

if n == GN or length of n.neighbours == 0 then
pass;

else
foreach (m, cost) in n.neighbours.items() do

if m not in openSet and m not in closedSet then
openSet.append(m);
parents[m] ← n, g[m] ← g[n] + cost;

else
if g[m] > g[n] + cost then

g[m] ← g[n] + cost, parents[m] ← n;
if m in closedSet then

closedSet.remove(m);
openSet.append(m);

if n == None then
return None;

if subPath ̸= None then
n ← subPath[0][0], parents[goalNode] ← n, g[goalNode] ← g[n] + subPath[1], n ← GN;

if n == GN then
path ← [];
while parents[n] ̸= n do

path.append(n);
n ← parents[n];

path.append(SN);
TC ← g[GN], pathCopy ← path.copy();
pathCopy.insert(0, GN);
path.reverse();
// TC: Total Cost
if IPP then

path ← postPrunePath(path);

GPs[(GN, SN)] ← [pathCopy, TC], GPs[(SN, GN)] ← [path, TC], PC ← [path, TC];
return PC;

openSet.remove(n);
closedSet.append(n);

rho ←
√

((GN.coordinates[0]−n.coordinates[0])2 + (GN.coordinates[1]−n.coordinates[1])2);
if isLineObstacleFree(n, GN, GI) then

subPath ← [[n, GN], rho];

3.2.1 Time and Space Complexity of The A* Algorithm

Let V represent the number of navigable nodes on the map, and k be the average
number of neighbors per node. In a standard A* application, the worst-case time
complexity involves visiting all nodes. The main loop runs O(|V |) times. Each iter-
ation requires finding the node n with the minimum f(n), which contributes O(|V |)
to the complexity, and iterating through n’s neighbours to update information, con-
tributing O(k). Thus, the approximate overall complexity for A* is O(|V |2 + |V | ·k).
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However, since the number of neighbors per node is bounded (8 in our implementa-
tion), the term O(|V | · k) becomes effectively constant relative to V .Therefore, the
overall time complexity of the A* algorithm can be approximated as O(|V |2).

Regarding space complexity, the algorithm utilizes several data struc-
tures—including the open set, closed set, cost dictionary, parent dictionary, and
the reconstructed path—each storing at most O(|V |) elements in the worst case.
Consequently, the overall space complexity of the A* algorithm is O(|V |).

3.2.2 Straight Line Navigation Enhancement

Our primary enhancement to the A* algorithm focuses on maximising the use of
straight-line segments. In other words, the algorithm should reduce the number
of unnecessary zigzags in the generated paths. When our improved A* is tasked
with finding the shortest path between two nodes, say [(xS ,yS),(xG,yG)], its ini-
tial step is to check for obstacle-free connectivity using Bresenham’s line algorithm
Bresenham (1977). If no obstacles are detected—meaning all pixels along the line
from [(xS ,yS),(xG,yG)] are white (navigable)—the algorithm directly returns this
straight line as the shortest path.

However, if an obstacle is encountered, the classical A* algorithm proceeds as usual.
Yet, with each new node added to its closed list, our improved algorithm re-checks for
obstacle-free connectivity to the goal node. As long as obstacles persist, the classical
A* continues its operation. But, critically, once an obstacle-free connection is found
between the current node and the goal node, the remaining path is determined to be
a straight line. This strategic shortcut significantly reduces the number of iterations
required by the classical A* algorithm, thereby enhancing the generated path in
terms of overall cost and computational efficiency.

3.2.3 Post-Pruning The Generated Path

The inherent nature of the A* algorithm, operating on discrete graphical repre-
sentations of workspaces, often results in redundant path segments. Because the
algorithm is confined to navigating between a maximum of 8 neighbouring nodes, it
can execute necessary but inefficient manoeuvres, increasing overall path costs. This
limitation frequently forces A* to zigzag between equidistant nodes to circumvent
obstacles, producing paths with many intermediate nodes that are often superfluous.
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Therefore, we implement a post-pruning process to eliminate two categories of re-
dundancies:

• Distance redundancies: These stem directly from the A* algorithm’s
neighbour-based movement constraints.

• Useless intermediate node redundancies: These refer to unnecessary
nodes that do not alter the fundamental structure of the path.

To address useless intermediate nodes, we remove all path nodes lying on a straight
line between two key nodes. Specifically, for any three consecutive path nodes,
(xk,yk), (xk+1,yk+1), and (xk+2,yk+2), if they satisfy the collinearity condition:

(3.2) (xk+2 −xk)(yk+1 −yk) = (yk+2 −yk)(xk+1 −xk)

then the intermediate node (xk+1,yk+1) is deemed redundant and is removed. This
iterative process is applied to all consecutive triplets along the path.

Additionally, we tackle distance redundancies by checking for shorter, obstacle-free
path segments using Bresenham’s line algorithm Bresenham (1977). For any pair of
non-consecutive nodes (xk,yk) and (xl,yl), if Bresenham’s algorithm confirms a clear
path between them, the direct straight Euclidean line: dl =

√
(xl −xk)2 +(yl −yk)2

replaces all intermediate nodes originally between (xk,yk) and (xl,yl). This en-
sures the most direct path and eliminates unnecessary zigzagging, leading to a more
efficient trajectory.

By combining these two strategies—removing unneeded intermediate nodes and sub-
stituting redundant zigzag patterns with straight segments—the final path is signif-
icantly optimised in terms of both node count and total distance.

3.2.3.1 Time and Space Complexity of The Post-Pruning Process

Let V be the number of navigable nodes and P the number of nodes in the returned
path. The post-pruning process involves checking each pair of nodes in the returned
path, which takes (O(P 2)) time. Each check uses Bresenham’s algorithm, hav-
ing a complexity linear to the distance between points, (O(P )). Consequently, the
worst-case time complexity of the post-pruning procedure is approximately O(P 3).
Therefore, the overall time complexity for the improved A* algorithm can be ap-
proximated as O(|V |2 + P 3) in the worst case. However, in typical scenarios, P is
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considerably smaller than |V |, so the overall complexity of the improved A* algo-
rithm remains roughly O(|V |2).

In terms of space complexity, the algorithm maintains the pruned path, which in
the worst case could store all P nodes from the original path, resulting in an (O(P ))
space requirement. Additionally, the function uses only a few auxiliary variables for
indexing, which do not significantly contribute to the space complexity. Therefore,
the overall space complexity of the post-pruning procedure is (O(P )).
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4. CLASSICAL MULTI-GOAL ORDERING

AND PATH PLANNING

This chapter introduces our novel classical angle-based approach for efficiently or-
dering multiple goal nodes. We start by detailing our fundamental assumptions
and offering geometric insights into our methodology. Following this, we lay out
the foundational principles guiding our algorithmic design. Finally, we present the
comprehensive formulation of our innovative angle-based ordering paradigm.

4.1 Preliminaries and Assumptions

Discovering the precise optimal solution for an ordering problem with NG goal nodes
is computationally demanding, exhibiting a factorial complexity of NG!. While this
is manageable for small values of NG, computational limitations quickly arise in
larger problems. Here, even advanced technologies might take days to compute
the optimal solution using brute-force methods. In our experiments, an enhanced
brute-force enumeration was only feasible for up to 13 goal nodes; beyond this, com-
putational constraints made it prohibitive. To analyse the structure and behaviour
of optimal paths, we conducted extensive experiments using enhanced brute-force
techniques across various goal node distributions and maps.

A crucial insight from these experiments reveals that in optimal paths, the next
goal node,(x∗

Gi+1
,y∗

Gi+1
), chosen from the current goal node, (x∗

Gi
,y∗

Gi
), is typically

one of the two nearest goal nodes in terms of actual traversed distance (not simply
Euclidean distance). These are the potential next goal nodes: (xPot

Gi+1
,yPot

Gi+1
). This

aligns intuitively with human navigation, where proximity often dictates immediate
choices. This finding highlights the effectiveness of dynamically ordering goal nodes,
structuring the algorithm to iteratively select the best next goal based on the current
node’s context within the overall expected path.

Dynamically ordering nodes means the algorithm’s structure relies on a current goal
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node, (xGi
,yGi

), and a set of potential next goal nodes, (xPot
Gi+1

,yPot
Gi+1

). This same
ordering process repeats up to NG times to find a near-optimal sequence. Essentially,
we order one goal node at a time.

While dynamic ordering offers advantages, it introduces a "cost of locality". By con-
centrating on immediate neighbour goal nodes during the ordering process, we risk
compromising global path optimality. To counter this, our approach incorporates
concepts designed to infuse the dynamic ordering procedure with global insights.
These concepts form the foundational pillars of our proposed methodology, which
we’ll detail in subsequent sections.

Essentially, our methodology opts for ordering one goal node at a time, basing each
decision on the current goal node’s context. This ensures that while local proximity
is considered, we simultaneously strive to maintain global path coherence. This
balanced approach aims to leverage the efficiency of local decision-making while
integrating strategic insights to improve overall path quality.

4.2 Closed Path Concept and Centroid Utilisation

A core global concept in our method is the closed path formation.
The robot begins at a starting node, (xG0 ,yG0), visits all specified goal
nodes, [(xG1 ,yG1), ...,(xGNG

,yGNG
)], and then returns to the starting node,

(xGNG+1 ,yGNG+1) = (xG0 ,yG0). This forms a complete loop and provides the ge-
ometric intuition for our approach, especially through the use of the centroid of the
goal nodes.

Our analysis of optimal paths derived from brute-force revealed that well-ordered se-
quences often create a circular pattern around a central point. This led us to use the
centroid of the goal nodes, (xGC

,yGC
), as a crucial reference. The centroid serves as

a guide for the incremental, circular traversal of nodes. We follow a counterclockwise
convention, though clockwise is equally viable.

The centroid for NG goal nodes and the starting node is calculated using their global
coordinates as:

(4.1) (xGC
,yGC

) = (ΣNG
i=0xGi

NG +1 ,
ΣNG

i=0yGi

NG +1 )
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This calculation gives an approximate centroid based on the discrete sample points
(the goal nodes and starting node). Even as an approximation, it provides a de-
pendable basis for our strategy.

In short, the closed path concept introduces two vital global factors for our dynamic
ordering: the starting node (which doubles as the final node) and the centroid (which
steers the overall circular movement). This strategy helps us find a near-optimal
and closed path for efficient robot navigation through all goal nodes.

4.3 Utilising Angles for Efficient Goal Node Ordering

Effectively combining local and global ordering strategies demands computational
efficiency, especially for both offline and online applications. Given the presence
of obstacles, solely relying on distance measurements would necessitate repetitive
and computationally expensive A* algorithm executions, which is impractical. To
address this, we developed the One-Distance-Two-Angles strategy.

Since our assumptions indicate the next optimal node is typically one of the two
closest, this method minimises A* algorithm calls. It uses A* only once to identify
the three nearest nodes to the current node based on distance cost. Among these, the
farthest node is designated as a temporary goal, while the other two are considered
potential next nodes. The centroid coordinates and the starting node coordinates
are crucial global ordering factors, as they help determine relevant angles for the
ordering process.

The One-Distance-Two-Angles strategy reduces reliance on distance calculations for
next-node selection, favouring angles, which are significantly more time-efficient.
Instead of three full distance measurements, this approach uses one set of distances
(between the current node and its three nearest neighbour goal nodes). Additionally,
it incorporates two sets of angles that relate the current node to the possible next
nodes, based on distinct global and local criteria. These criteria are captured by
three specific angles: α, β and γ.

Figure 4.1 visually represents the angles α, β and γ. These angles are crucial for
assessing the relationships between the current node and potential next nodes, all
in reference to specific key points.

• Angle α measures the relationship between the current node and each poten-
tial next node relative to the centroid. This offers a crucial global geometric
perspective for node ordering by establishing a consistent measure against the
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fixed centroid. As discussed in Section4.2, an optimal path tends to revolve
around the centroid, making it a reliable reference for selecting the next node
in each iteration. It is computed via the dot product of vectors:

(4.2) α = arccos
(

r · s
|r| · |s|

)

• Angle β defines the relationship between the current node and each possible
next node with respect to the starting node. This provides an additional global
geometric perspective on node ordering, establishing a measure against the
absolute starting node. Given that an optimal solution ultimately concludes
at the starting node (as detailed in Section4.2), this ensures the starting node
remains a consistent reference for selecting the next node at each iteration. It
is calculated using the formula:

(4.3) β = arccos
(

t ·u
|t| · |u|

)

• Angle γ captures the relationship between the current node and each possible
next node concerning the temporary goal node. This angle provides vital
local geometric information for the ordering algorithm by establishing a direct
measure between the potential next nodes and the temporary goal. This allows
the algorithm to intuitively estimate the direction or trend of the upcoming
goal nodes. It is computed as:

(4.4) γ = arccos
(

v ·w
|v| · |w|

)

The vectors used in these computations are established as follows:

r = (xGi
−xGC

,yGi
−yGC

), s = (xPot
Gi+1 −xGC

,yPot
Gi+1 −yGC

)

t = (xGi
−xG0 ,yGi

−yG0), u = (xPot
Gi+1 −xG0 ,yPot

Gi+1 −yG0)

v = (xPot
Gi+1 −xGi

,yPot
Gi+1 −yGi

), w = (xtemp
Gi+3

−xGi
,ytemp

Gi+3
−yGi

)

Here, (xGi
,yGi

) are the coordinates of the current node, (xPot
Gi+1

,yPot
Gi+1

) refer to the
coordinates of the two possible next goal nodes, and (xtemp

Gi+3
,ytemp

Gi+3
) represents the

coordinates of the temporary goal node, which is the farthest of the nearest three
nodes.
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Figure 4.1 A visual illustration that demonstrates the key angles used in our angle-
based ordering strategy. It practically shows how to calculate α, β and γ in a
real-world scenario, highlighting their roles in determining the relationship between
the current node, potential next nodes, and various reference points. Reproduced
from Allus & Unel (2025)

The intuition behind using angles stems from their proportionality to distances
between nodes, as governed by the law of sines. This relationship allows angles to
offer a computationally efficient way to assess node relationships, eliminating the
need for repeated A* algorithm executions. Consequently, the One-Distance-Two-
Angles strategy substantially lowers computational complexity while preserving the
effectiveness of the ordering process.

4.4 Euclidean-Based Heuristic Ordering

To manage the computational complexity of ordering goal nodes based on their prox-
imity, we propose a heuristic approach utilising Euclidean distances before engaging
the A* algorithm for distance-based ordering. This strategy is founded on our ob-
servation that, in dynamic multi-goal node ordering, the next optimal goal node is
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typically one of the two nearest nodes to the current node, even when considering
environmental obstacles.

In practical terms, this heuristic initially orders all goal nodes
based on their Euclidean distance from the current node:
[(x̂Gi+1 , ŷGi+1), ...,(x̂NG

, ŷNG
)] where |(x̂Gi+k

− xGi
, ŷGi+k

− yGi
)| < |(x̂Gi+k+1 −

xGi
, ŷGi+k+1 − yGi

)| for k = 1, ...,NG − i − 1. This preliminary step offers a swift,
obstacle-agnostic approximation of proximity. Subsequently, the more compu-
tationally intensive A* algorithm computes the actual shortest path distances,
factoring in obstacle avoidance, for the full list: [(xGi+1 ,yGi+1), ...,(xGNG

,yGNG
)].

The core innovation lies in validating the Euclidean ordering against the A* ordering
for the first three nodes in the list: [(xGi+1 ,yGi+1), ...,(xGi+k

,yGi+k
)] where k =

1,2,3. If the sequence of these three nodes matches between both approaches
[(xGi+1 ,yGi+1), ..., (xGi+k

,yGi+k
)] = [(x̂Gi+1 , ŷGi+1), ...,(x̂Gi+k

, ŷGi+k
)] ∀k, it confirms

they are indeed the nearest nodes, even considering obstacles. However, if a dis-
crepancy occurs, where a node (x̂Gi+k

, ŷGi+k
) from the Euclidean order does not

correspond to (xGi+k
,yGi+k

) from the A* order, that Euclidean node (x̂Gi+k
, ŷGi+k

)
is replaced by the next node (x̂Gi+k+1 , ŷGi+k+1) in the Euclidean sequence. Specifi-
cally, for some k, if (xGi+k

,yGi+k
) ̸= (x̂Gi+k

, ŷGi+k
), the substitution occurs, and this

validation iterates until (xGi+k
,yGi+k

) = (x̂Gi+k
, ŷGi+k

) for ∀k.

Algorithm 4 illustrates these details. This process ensures goal nodes are optimally
ordered, reconciling both Euclidean proximity and A* search results, with necessary
adjustments for obstacle presence.

Algorithm 4: Get Euclidean-Based Heuristic Ordering
Input : CN, GNs
// CN: Current Node, GNs: Goal Nodes
Output: OGNs
// OGNs: Ordered Goal Nodes

OGNs ← [];
// OGNs: Ordered Goal Nodes
for each node in GNs do

append [node, Euclidean distance from CN to node] to OGNs;

sort OGNs by the second element (distance);
if length of OGNs ≥ 3 then

counter ← 3;
while counter > 0 do

for each node in OGNs do
update the second element with A* cost from CN to node;
counter ← counter - 1;
if counter == 0 then

A*OGNs = sort OGNs by the second element (cost);
if A*OGNs is not OGNs then

counter ← 1;

return OGNs;

Despite its efficiency, the Euclidean-based heuristic ordering has certain limitations.
Its accuracy is influenced by the ratio of obstacles to navigable area, obstacle connec-
tivity, and the uniformity of traversal costs. When obstacles are sparse (low obstacle-
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to-navigable-area ratio), the heuristic is more effective, increasing the likelihood of
its ordering aligning with A*’s. Similarly, if obstacles are widely spaced rather than
densely connected, the heuristic remains more reliable. However, when costs extend
beyond simple distance, additional heuristics may be necessary to account for these
variations. In such limiting scenarios, the worst-case impact is reduced heuristic
efficiency, ultimately increasing reliance on A*-based ordering.

Nevertheless, this heuristic significantly reduces the number of full A* algorithm
executions, accelerating the overall ordering process. By initially leveraging Eu-
clidean distances, we streamline the identification of potential next nodes and op-
timise subsequent A* calculations for obstacle-aware pathfinding. This dual-step
approach balances computational efficiency with pathfinding accuracy, particularly
in scenarios where exhaustive search methods like brute force are impractical due
to computational constraints.

4.5 Angle-Based Ordering

Our ordering paradigm is built upon the earlier assumptions concerning the distances
to potential next nodes. In each iteration, the algorithm selects one of the two closest
nodes, (xPot1,2

Gi+1
,y

Pot1,2
Gi+1

), to be the next ordered node. This selection is primarily
guided by the angles illustrated in Figure 4.1.

Based on this, we propose two distinct ordering approaches:

4.5.1 Sequential Angle-Based Ordering (SABO)

Our first approach, Sequential Angle-Based Ordering (SABO), relies on a sequence
of conditions based on the magnitudes of the angles previously discussed. As shown
in Algorithm 5, for a closed path, the α angle is most indicative of path closeness.
Ideally, within a closed path formed by a set of nodes, the next node chosen from
the three nearest options should have the smallest α angle. Therefore, our primary
ordering condition is:

(4.5) α1 < α2 → (xGi+1 ,yGi+1) = (xPot1
Gi+1

,yPot1
Gi+1

)
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If this initial condition isn’t met, we then consider the second angle criterion, γ.
Although γ is a local measure, it offers crucial information about how much the
potential next nodes deviate from the temporary goal node.

(4.6) α1 > α2 AND γ1 > γ2 → (xGi+1 ,yGi+1) = (xPot1
Gi+1

,yPot1
Gi+1

)

Here, (xPot1
Gi+1

,yPot1
Gi+1

) deviates more from the temporary goal and is positioned after
(xPot2

Gi+1
,yPot2

Gi+1
) within the presumed closed path. Since both angles for (xPot1

Gi+1
,yPot1

Gi+1
)

are larger, it suggests this node is an outlier to the closed path. Thus, we opt to
visit it next to prevent a detrimental self-intersection later in the ordering process.

Should the second condition not be satisfied, we use the third angle criterion, β,
as a tie-breaker. Angle β helps evaluate angle α because both are global criteria.
The key difference is that α uses the centroid as its origin, while β uses the starting
node.

(4.7) α1 > α2 AND γ1 < γ2 AND β1 < β2 → (xGi+1 ,yGi+1) = (xPot1
Gi+1

,yPot1
Gi+1

)

(4.8) α1 > α2 AND γ1 < γ2 AND β1 > β2 → (xGi+1 ,yGi+1) = (xPot2
Gi+1

,yPot2
Gi+1

)

These four conditions collectively define our first angle-based ordering approach.
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Algorithm 5: Get Sequential Angle Based Ordered Goal Nodes
Input : ASN, GNs, GPs, CNCs, GI, CP
// ASN: Absolute Starting Node, GNs: Goal Nodes, GPs: Generated Paths, CNCs: Centroid Node Coordinates, GI: Grey Image, CP:

Closed Path
Output: OGNsO
// OGNsO: Ordered Goal Nodes Output

SNH ← ASN, GNsH ← GNs, OGNsO ← [];
// SNH: Starting Node Holder, GNsH: Goal Nodes Holder
while length of GNsH > 0 do

OGNs ← [];
// OGNs: Ordered Goal Nodes
OGNs = getEuclideanBasedHeuristicOrdering(SNH, GNsH)
holder ← first element of OGNs;
if length of OGNs > 2 then

Calculate Angles alpha1&2, beta1&2, gamma1&2
if alpha1 > alpha2 and gamma1 < gamma2 and beta1 > beta2 then

holder ← second node;

else if length of OGNs < 3 and CP then
CTASN ← A* cost from SNH to ASN;
// CTASN: Cost To Absolute Starting Node
append [ASN, CTASN] to OGNs;
Calculate Angles alpha1&2, beta1&2, gamma1&2
if alpha1 > alpha2 and gamma1 < gamma2 and beta1 > beta2 then

holder ← second node;
append second node to OGNsO;
append first node to OGNsO;

else
append first node to OGNsO;
append second node to OGNsO;

remove first node from GNsH;
remove second node from GNsH;
if CP then

insert ASN at the start of OGNsO;
append absoluteStartingNode to OGNsO;

return OGNsO;

append holder to OGNsO;
SNH ← holder;
remove holder from GNsH;

return OGNsO;

4.5.2 Combined Angle-Based Ordering (CABO)

The main limitation of sequential angle-based ordering is that it assesses potential
next nodes and their relationships with factors like the centroid and temporary goal
individually. We believe that combining these criteria to choose the next node could
be more efficient. Thus, leveraging the proportionality between angles and distances
(via the law of sines), we propose the following combined angle condition:

(4.9) α1 +γ2 > α2 +γ1 AND α1 > α2 → (xGi+1 ,yGi+1) = (xPot2
Gi+1

,yPot2
Gi+1

)

Let us say that angles α1, α2, γ1 and γ2 are proportional to distances a1, a2, g1

and g2 respectively as shown in Figure 4.1. The condition can be interpreted as
follows, the node that minimises the combination αN + γM is to be selected as the
next node. This is proportional to minimising the combination of aN + gM which
keeps locally minimizing the path sections seeking an overall global minimization
for the whole path. Keep in mind that we still use the global criterion of angle α
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as a parallel condition to optimise the assumed closed path. if the condition is not
satisfied, then we resort to selecting (xPot1

Gi+1
,yPot1

Gi+1
) as the next node.

Imagine angles α1, α2, γ1 and γ2 are proportional to distances a1, a2, g1 and g2,
respectively, as depicted in Figure 4.2. This condition suggests selecting the node
that minimises the combined sum αN +γM . This is proportional to minimising the
combination aN +gM , which allows for local path section minimisation while striving
for overall global path minimisation. Note that we still use the global criterion of
angle α as a parallel condition to optimise the assumed closed path. If the primary
condition is not met, we default to selecting (xPot1

Gi+1
,yPot1

Gi+1
) as the next node.

Figure 4.2 A visualisation of the Combined Angle-Based Ordering (CABO) that
illustrates the angles and their proportional distances, helping to clarify our ordering
concept. Reproduced from Allus & Unel (2025)

It’s vital to highlight that both proposed ordering approaches are highly computa-
tionally efficient, as they only require simple geometrical calculations.

4.5.3 Time and Spcae Complexity Analysis

Let N denote the number of goal nodes to be ordered by either the Combined Angle-
Based Ordering (CABO) or Sequential Angle-Based Ordering (SABO) algorithms.

Both algorithms commence with a Euclidean-based heuristic ordering. In this phase,
goal nodes are ordered by their Euclidean distance to the current node. This in-
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volves calculating N Euclidean distances, which takes (O(N)) time, followed by
sorting these distances, contributing (O(NlogN)) to the complexity. Thus, the to-
tal approximate complexity for this initial stage is O(NlogN).

In the second stage, the A* algorithm is called up to 3 times per iteration to de-
termine the actual obstacle-aware distances for the nodes ordered in the preceding
stage. As detailed in Section3.2, the complexity of A* is A = O(|V |2 + P 3). The
A*-based reordering typically stabilises after a small number of iterations k, which
can range from 3 in the best case to N in the worst case. This results in a complexity
of O(3kA) for this stage.

The final stage updates the ordered list based on CABO or SABO’s specific
conditions. The calculations for these conditions have a constant complexity of
O(1). Therefore, the complexity of each iteration is primarily governed by the
Euclidean-based ordering and A*-based reordering, leading to O(NlogN + 3kA).
Since the outer while loop runs N times, the overall complexity is approximately
O(NlogN +3k(|V |2 +P 3)), which simplifies toO(N2logN +3kN(|V |2 +P 3)).

If path post-pruning (discussed in Section3.2) is disabled, the O(P 3) term is re-
moved, simplifying the overall complexity to O(N2logN + 3kN |V |2). Generally,
the relative magnitudes of N, |V | and P determine the dominating term. For large
graphs, where |V | and P are significantly larger than N , the term O(3kN(|V |2 +P 3))
becomes dominant. Under typical conditions, where P is considerably smaller than
|V |, the dominating term further reduces to O(3kN |V |2). This highlights the crit-
ical importance of optimising the A* algorithm’s adaptation to reduce the overall
complexity of our proposed algorithms.

In terms of space complexity, the algorithm maintains the ordered list of goal nodes,
which, in the worst case, stores all N nodes, contributing O(N). Additionally,
temporary variables like startingNodeHolder, goalNodesHolder, and intermediate
ordered lists are stored, all proportional to N . The A* algorithm itself has a worst-
case space complexity of O(|V |) due to node information storage (as detailed in
Section3.2). Since A* is invoked multiple times, the space complexity of the entire
algorithm remains dominated by A*’s storage requirements, resulting in an overall
worst-case space complexity of O(|V |+N).

4.5.4 Ensemble Angle-Based Ordering

Given the notable efficiency of both proposed angle-based ordering algorithms, we
suggest employing an ensemble approach to further enhance the resulting pixel
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cost of the path. This involves running both the Sequential Angle-Based Ordering
(SABO) and Combined Angle-Based Ordering (CABO) variants in parallel. The
algorithm then selects the output that yields the lowest overall path cost. While
this method marginally increases the time needed to order the goal nodes, it proves
to be both efficient and superior in terms of optimising pixel cost and maintaining
favourable time complexity, as our upcoming experiments will demonstrate.

4.5.5 Post-Pruning Ensemble Angle-Based Ordering for Improved
Path Costs

A major contributor to increased path costs in ordered goal nodes is the presence
of self-intersections. Our inspection of optimal paths confirms they contain no self-
intersections. To tackle this, we developed a post-pruning algorithm designed to
reduce these self-intersections in the outputs of our proposed ordering algorithms.
Our approach leverages an improved version of the well-known 2-Opt algorithm
Chen, Zhou, Tang & Luo (2017). However, the main challenge with the standard
2-Opt algorithm is its computational expense: it requires evaluating the entire path
cost after each swap, which is impractical for large-scale ordering problems due to
its reliance on the A* algorithm.

To lessen this computational load, we propose two modifications:

• Modified 2-Opt with Euclidean Path Segments: This version performs swaps
directly on the path generated by our angle-based algorithm. This path com-
prises ordered nodes and intermediate path nodes, all connected by Euclidean
segments. Our key modification is to use a heuristic Euclidean distance cost
check after each swap, instead of the computationally expensive A* distance
cost check. This is similar to the approach used in our Euclidean-based heuris-
tic ordering. Since many Euclidean swaps might be invalid due to obstacles,
we added a crucial check using Bresenham’s line algorithm Bresenham (1977)
to verify obstacle-free connectivity on the Euclidean line connecting nodes
involved in a swap.

• Modified 2-Opt on Ordered Nodes Only: This variant performs swaps solely on
the set of ordered goal nodes, excluding intermediate path nodes. This offers
the potential for more aggressive and effective pruning. However, it carries
the risk of being misled by the Euclidean distance cost check since obstacle
existence isn’t directly considered in the swap validation. This post-pruning
method proved effective and superior to the first approach for maps where the
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total obstacle area doesn’t exceed approximately 40% of the entire map’s area.
Algorithm 6 outlines the steps for implementing this approach.

Algorithm 6: Modified 2-Opt Post-Pruning
Input : nodes, GI
// GI: Grey Image
Output: bestOrder
bestOrder ← nodes;
, improved ← True;
while improved do

improved ← False;
for i← 1 to length of bestOrder - 2 do

for j← i + 1 to length of bestOrder - 1 do
if j− i == 1 then

- ; // Consecutive nodes, skip

if i > 0 and j < length of bestOrder - 1 then
if not isLineObstacleFree(bestOrder[i−1], bestOrder[j], GI) or not

isLineObstacleFree(bestOrder[i], bestOrder[j + 1], GI) then-

newOrder ← bestOrder;
reverse the elements from i to j in newOrder;
if calculatePathLength(newOrder) < calculatePathLength(bestOrder) then

bestOrder ← newOrder;
improved ← True;

return bestOrder;

These modifications enable efficient post-pruning of ordered goal nodes, prevent-
ing misdirection by the Euclidean distance heuristic and avoiding computationally
expensive, repeated A* distance calculations. These refined approaches effectively
minimise self-intersections, ultimately leading to improved path costs without ex-
cessive computational expense. The proposed algorithms are grounded in a robust
mathematical intuition for selecting the specified angles and their conditions. As a
result, they offer a near-optimal solution with a minimised optimality gap for any
given multi-goal ordering and path-planning problem, as demonstrated in the results
chapter.
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5. LEARNING-BASED MULTI-GOAL ORDERING

AND PATH PLANNING

This chapter introduces our learning-based approach to efficiently tackle the multi-
goal ordering and path planning problem. We developed two distinct learning frame-
works, each with unique pre-assumptions, data collection strategies, feature extrac-
tion methods, and model structures. The first framework is a traditional supervised
machine learning classification framework, which uses hand-crafted features to dy-
namically predict the next node in a sequence. Conversely, the second framework is
transformer-based, predicting the next node using features extracted via a combina-
tion of convolutional neural networks (CNNs) and relational transformers. We will
begin this chapter by outlining the fundamental assumptions, geometric principles,
and foundational concepts that guided the design of both models.

5.1 Data Insights and Dynamic Ordering

In our experiments, brute-force enumeration proved practical for up to 13 goal nodes;
beyond that, computational limits became restrictive. To manage the complexity
of standard brute-force, we used a heuristic-driven brute-force technique, which was
significantly faster. We ran extensive tests with this improved method across various
goal node distributions and maps, analysing optimal path structures and behaviours
to find common patterns.

A key finding from these experiments is that in optimal paths, the next chosen
node from a current node is usually one of the two closest nodes in terms of actual
traversed distance, not just Euclidean distance. This aligns with human intuition,
where immediate proximity often guides navigation choices. This insight supports
the idea of dynamically ordering nodes: structuring the algorithm to iteratively pick
the next optimal goal node based on its context relative to the current one.

When we say "dynamically ordering," we mean the algorithm is structured around
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the current node and a set of potential next goal nodes. The ordering process repeats
for each chosen node, essentially building the closed path one goal node at a time.

However, dynamic ordering brings a "cost of locality". Focusing on immediate neigh-
bours during ordering risks sacrificing global path optimality. To counter this, our
approaches integrate global insights into the dynamic ordering process. These con-
cepts form the bedrock of our methodology, which we detail in later sections.

In essence, our methods advocate for ordering goal nodes one by one, based on the
current node’s context. This balances immediate proximity considerations with the
need for overall path coherence, aiming to blend the efficiency of local decisions with
strategic insights to improve the path’s quality.

5.2 Traditional Machine Learning Framework

In this section, we propose a traditional machine learning-based method designed to
dynamically order goal nodes, aiming to approximate an optimal visiting sequence
and, consequently, minimise overall distance costs. Our traditional model is trained
using hand-crafted features, which were meticulously developed after extensive test-
ing and observation of optimal paths. These optimal paths were generated through
brute-force techniques across various numbers of goal nodes and diverse map con-
figurations. Furthermore, our algorithm is optimised for computational efficiency,
a critical factor for real-world applications where dynamic environments necessitate
rapid, adaptive responses.

5.2.1 Distance-Related Features

Figure 5.1 highlights the distances central to our model. We incorporate local dis-
tances, which are the actual path lengths between the current node and each of
its two potential next nodes. These local distance features define the immediate
relationship between the current node and its prospective successors and are com-
puted efficiently using the improved A* algorithm at each iteration, adding no extra
computational overhead.
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Furthermore, we use the centroid to derive global distance features. These include
the distances from the current node to the centroid, and from each potential next
node to the centroid. These global features are Euclidean distances, intentionally
disregarding obstacles, as their purpose is solely to indicate proximity to the centroid
rather than representing navigable paths.

Figure 5.1 A visualisation that illustrates the distances used in our model’s structure.
Dashed lines represent Euclidean distances, while continuous lines denote distances
calculated using the improved A* algorithm.

5.2.2 Angle-Related Features

To effectively combine local and global ordering techniques, we need a computa-
tionally efficient approach, especially for both offline and online applications. Since
obstacles on the map make relying solely on distances impractical due to repeated,
intensive A* algorithm executions, we developed a distance-angle relational strategy
to boost efficiency. This strategy uses A* sparingly to find the three nearest nodes
to the current node based on distance cost. From these, the farthest node becomes
the temporary goal node, while the other two are potential next nodes. The centroid
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coordinates and the starting node are also vital global factors that help determine
the relevant angles for ordering.

Figure 5.2 displays angles α, β, γ, and ζ. Angle α shows the relationship between
the current node and each potential next node relative to the centroid, offering a
global perspective for ordering. Angle β illustrates the relationship between the
current node and each potential next node relative to the starting node. Angle
γ captures the relationship between the current node and each potential next node
with respect to the temporary goal node, providing crucial local information. Lastly,
angle ζ represents the relationship between the starting node and each potential next
node, independent of the current node, aiding in assessing preferred positions within
an assumed optimal closed path.

Figure 5.2 A visual illustration that shows the angles central to our proposed model’s
structure, depicting how each angle is formed by necessary factors in various sce-
narios.

The reason we use angles is their proportionality to distances between nodes, as
explained by the law of sines. This allows angles to offer a computationally efficient
way to assess node relationships without needing to run the A* algorithm repeatedly.
As a result, our distance-angle strategy significantly cuts down on computational
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complexity while keeping the ordering process effective.

5.2.3 Model Structure

We approach our problem as a classification task. First, the algorithm dynamically
identifies the three nearest nodes to the current node using an initial Euclidean-
based heuristic. Next, it computes both global and local features for the current
node and its potential next nodes. These features are then fed into our model, which
classifies the potential next nodes as either optimal or not.

The model outputs a probability indicating how likely each node is to be the next
in the sequence. If both nodes are classified as potentially optimal, the one with the
higher probability is chosen. If only one node is classified as the next, it is selected
directly, and the other is disregarded. This iterative process continues until only
two goal nodes remain unordered. At this point, a brute-force approach determines
the optimal order for these final two nodes, which is computationally trivial (since
2! = 2). Finally, the starting node is appended to complete the path, ensuring a
closed loop.

Figure 5.3 provides a flowchart of this ordering procedure, illustrating the steps from
the initial unordered input to the formation of the final closed path.
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Figure 5.3 A flowchart that illustrates the proposed learning-based multi-goal order-
ing algorithm, showing the complete process from receiving unordered goal nodes to
outputting the final ordered sequence.

5.3 Transformer-Based Framework

In this section, we present a Transformer-based framework developed to dynamically
establish the visiting order of multiple goal nodes, aiming to approximate the opti-
mal sequence that minimises the total path cost in a multi-goal ordering and path
planning scenario. As illustrated in Figure 5.4, the prediction pipeline begins with
the extraction of feature representations using convolutional neural networks in com-
bination with relational transformer modules. These initial features are computed
once and held constant throughout the entire node-ordering process.

Following this, an iterative loop of length N −1 (where N is the total number of goal
nodes) is initiated. In each iteration, context-dependent geometric features—such
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as the spatial relation of the current node to the remaining nodes—are dynamically
computed and concatenated with the static features. These combined features are
then used in a scoring phase, where the model selects the most probable next node
in the sequence. This selection is based either on evaluating all remaining nodes
or, for improved efficiency, limiting evaluation to the two closest nodes relative to
the current one. The node receiving the highest score is chosen as the next in the
sequence.

The model is trained on data generated using optimal solutions obtained from
Google’s OR-Tools and enhanced brute-force techniques across a diverse set of map
configurations and varying numbers of goal nodes. The overall architecture is care-
fully designed to prioritise computational efficiency, ensuring the model remains
responsive and robust in dynamic and potentially unpredictable real-world environ-
ments.

Figure 5.4 An illustration of the transformer-based framework used to determine
the visiting order of multiple goal nodes. The process begins with the extraction
of static feature representations using CNNs and relational transformer modules.
These features are combined with dynamically updated geometric information at
each step to score candidate nodes. The node with the highest score is selected
as the next in the sequence. This iterative procedure continues until all nodes are
ordered.

42



5.3.1 CNN-Based and Relational-Transformer Features

To extract spatially-informed features (embedding vector) for each goal node, we em-
ploy a convolutional neural network (CNN) architecture, referred to as PatchCNN,
which processes local image patches around goal node coordinates. The grayscale
occupancy grid map is used as the input, from which square patches centred at each
goal node are extracted and padded to accommodate a fixed receptive field. These
patches are then fed into the PatchCNN as showsn in Figure5.5, a lightweight convo-
lutional model composed of three convolutional layers with progressively increasing
channel depths. The final output is a 62-dimensional feature vector for each node,
capturing relevant local spatial patterns within its vicinity.

Figure 5.5 Architecture of the PatchCNN used for visual feature extraction. The
network takes a local grayscale image patch of size 7×7 as input and processes it
through three convolutional layers, a 7×7 filter for spatial compression, followed
by two 1×1 convolutions for channel-wise transformations. The final output is a
62-dimensional feature vector representing the visual context of the patch.

To enhance the quality of the feature representations, we employ a
RelationalTransformer module that augments the features previously extracted
by the convolutional neural network. This module allows each goal node to attend
to the entire set of goal nodes simultaneously, thereby capturing global relational
context. Through self-attention mechanisms, the transformer updates each node’s
embedding by integrating information from its interactions with all other nodes in
the set. This relational reasoning process equips the model with a richer under-
standing of the spatial and structural dependencies among goal nodes, and it does
so in a manner that is invariant to the order in which nodes are presented.
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Figure 5.6 Architecture of the RelationalTransformer used for enriching the ex-
tracted visual features. The transformer takes the output feature vectors of the goal
nodes provided by the PatchCNN network and works on contextualising them by
attending to each goal node in the provided unordered set of goal nodes.

The final feature vector for each node is constructed by concatenating its trans-
formed embedding with its normalised two-dimensional spatial coordinates. For the
starting node, this feature vector is initialised as a zero vector, with only its coor-
dinates explicitly inserted. To generate the training dataset, we create numerous
problem instances by randomly selecting a starting node and a set of goal nodes
from within the environment. The correct sequence of node visits (i.e., the ground-
truth order) is computed using the Travelling Salesman Problem solver provided
by Google’s OR-Tools and an enhanced brute-force technique. For each goal node
that is visited—excluding the starting node—we extract the local image context and
encode it into a fixed-length feature vector.

Moreover, we enrich the constant CNN-derived features by appending geometric
descriptors specific to each problem instance. These include pairwise relative dis-
tances, angular orientations of nodes relative to the centroid of the goal node set,
and categorical quadrant-based location indicators. By combining these, each node
is represented by a consistent 72-dimensional feature vector, which is then used as
input to the transformer-based model introduced in the subsequent sections.

44



5.3.2 Hand-Crafted Features

In addition to the constant node embeddings extracted via CNN and refined by
the relational transformer, we incorporate a set of problem-specific, hand-crafted
geometric features to capture higher-level spatial relationships among nodes. These
features are designed to provide additional context beyond local appearance, en-
abling the model to make more informed sequential decisions during path planning.

For each candidate node at a given decision step, we compute the following variables:

• Distance to current node: The normalised A* path cost from the current node
to the candidate node.

• Distance to centroid: The Euclidean distance between the candidate node and
the centroid of all goal and starting nodes, normalised by the map diagonal.

• Distance to starting node: The normalised A* path cost between the candidate
node and the starting node.

In addition to distance-based metrics, we extract angular descriptors that provide
information about the relative orientation of nodes:

• Angle α: The angle formed at the candidate node between the centroid, current
node, and the candidate node.

• Angle β: The angle formed at the candidate node between the starting node,
current node, and the candidate node.

• Angle ζ: The angle between the centroid, starting node, and the candidate
node.

Each of these angles is normalised by dividing by 180◦, ensuring values fall within
a standardised range.

To further capture spatial layout, we assign quadrant labels to the starting node
and each candidate node relative to the centroid of the goal configuration. These
quadrant indices help encode coarse spatial location, which can aid the model in
generalising across different node configurations.

By concatenating these eight hand-crafted features with the constant 64-dimensional
features—comprising CNN-transformed appearance embeddings and raw coordinate
values—we construct a comprehensive 72-dimensional feature vector for each deci-
sion step. These vectors form the basis of our dataset and serve as input to the
learning framework for predicting the next node in the sequence.
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5.3.3 Transformer Model Structure

We utilise a transformer-based architecture to sequentially predict the next node in a
multi-goal ordering and path planning task, aiming to optimise the order of visits for
minimal travel cost. This model, referred to as the StepwiseNextNodeTransformer,
operates in an iterative manner: at each decision point, it receives a dynamically
assembled set of candidate nodes and assigns scores to identify the most suitable
next node to visit.

The architecture consists of two principal components: a transformer encoder and a
feedforward scoring module. The encoder is composed of a stack of N transformer
layers (with N = 4 in our implementation), where each layer incorporates 8 attention
heads and a model dimensionality of 72. This encoder performs self-attention across
the candidate nodes’ feature vectors to capture the contextual relationships and
spatial dependencies among them. The resulting embeddings are then passed to a
feedforward multilayer perceptron (MLP), which generates a scalar score for each
candidate node. The node associated with the highest score is greedily selected for
visitation.

Formally, for a given set of input feature vectors xi ∈ R72 corresponding to the
candidate nodes at a particular step, the model computes:

(5.1) scorei = MLP (TransformerEncoder(xi))

where the MLP denotes the feedforward scoring network. This process is repeated
in a loop until all goal nodes in the environment have been visited.
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Figure 5.7 Architecture of the StepwiseNextNodeTransformer. At each decision step,
a pair of candidate nodes is encoded using a 4-layer Transformer encoder to capture
contextual interactions. The output embeddings are passed through an MLP-based
scorer to evaluate each node. The node with the higher score is greedily selected as
the next in the visitation sequence. This process repeats until all nodes are visited.

5.3.3.1 Goal nodes masking

Rather than providing all unvisited goal nodes to the transformer for scoring and
selecting the highest-ranked one, an alternative is to supply only the nearest two
goal nodes to the current node—effectively masking the rest, as previously discussed.
This approach promotes local decision-making, potentially improving short-term
choices, but at the cost of global ordering. Additionally, it decreases computational
overhead, as only the features of the nearest two nodes must be identified at each
step. Conversely, scoring all remaining goal nodes enhances the model’s global
awareness, but increases computational complexity and risks less accurate scoring
due to the larger candidate pool. Ultimately, whether masking is applied should be
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determined based on empirical results.

5.3.4 Transformer Training

The transformer is trained using a custom dataset consisting of stepwise decision
states extracted from synthetic problem instances. Each problem instance involves
a fixed number of goal nodes (N), and is represented by a sequence of decision steps.
Each step includes the 72-dimensional feature vectors of the current node and its
remaining candidate nodes. The features include both static node-specific data and
dynamically computed variables like distances and angular relations.

We construct a TransformerTrainingDataset where each sample contains:

• The starting node coordinates,

• The ground-truth sequence of node coordinates (optimal visitation order),

• A list of feature matrices corresponding to each step in the ordering process.

At each step, the input is a matrix of shape [K,72] where K is the number of
candidate nodes at that step, and the target is the index of the optimal next node.
The model is trained to maximise the log-likelihood of selecting the correct node
among candidates using cross-entropy loss.

Data was aggregated from multiple synthetic datasets, amounting to over 1000 prob-
lem instances. The model is trained with mini-batch gradient descent using the
Adam optimiser and an initial learning rate of 1e-4.

5.3.5 Goal Nodes Order Inference

During inference, we apply a greedy policy where the model selects the next node
based on the highest score from the transformer output at each step. Starting from
the initial node, we iteratively evaluate the remaining candidate nodes using the
same 72-dimensional input feature representation as used in training.

The inference process incorporates a CNN model to extract fixed visual features from
local patches around each node location. These features are then passed through a
relational transformer to be enriched and contextualised. Then, they are combined
with geometric information such as relative distances, scaled coordinates, angular
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relationships, and quadrant-based spatial labels to form the complete input vector.
At each iteration:

1.1 The features of the remaining candidate nodes are computed.

1.2 The top 2 nodes with the smallest actual distances to the current node are
selected (if this was the choice of the user).

1.3 The 72-dimensional dynamic features of these nodes are passed to the trans-
former.

The node with the highest score is chosen as the next node to visit.

This process repeats until all goal nodes are visited. The final node is always the
starting node, closing the path into a tour. This inference pipeline is benchmarked
against a traditional TSP solver, demonstrating competitive performance in both
solution cost and computational efficiency.
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6. EXPERIMENTS, RESULTS AND DISCUSSIONS

This section thoroughly evaluates the efficiency, scalability, and reproducibility of
the improved A* algorithm, our proposed classical and learning-based ordering al-
gorithms, and other subsequent algorithms.

We will start by experimenting with the improved A* algorithm. Then, we will move
on to the two main variants of our classical ordering algorithm, followed by our
learning-based ordering algorithms—specifically, the traditional machine learning
framework and the transformer framework. Figures 6.1 and 6.2 provide a brief
visual example of the ordering algorithms’ input and output.
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(a) A satellite view from Google Maps
showing Ambarli Port in Istanbul,
Turkey. The image highlights a dense
arrangement of port containers, offer-
ing a realistic setting where mobile
robots could perform logistical oper-
ations.

(b) A formatted approximation of
the Ambarli Port map, prepared to
be compatible with the proposed
algorithms for conducting multi-goal
path planning tasks.

(c) A Google Maps satellite image of
the Ikitelli Sanayi industrial zone in
Istanbul, Turkey. The region features
various irregularly shaped industrial
buildings, presenting a complex en-
vironment where mobile robots could
perform advanced logistic tasks in-
volving intricate manoeuvres.

(d) A structured representation of
the Ikitelli Sanayi industrial map,
adapted for compatibility with the
proposed multi-goal path planning
algorithms.

Figure 6.1 Examples of real-world environments, such as ports and industrial zones,
where fully autonomous robots can carry out complex multi-goal path planning
tasks. Reproduced from Allus & Unel (2025)

We will assess the improved A* algorithm’s capabilities across various scenarios
and maps, including several publicly available ones. The ordering experiments are
designed for a comprehensive evaluation of our algorithms’ performance. We will
also compare our approaches against state-of-the-art methods to contextualize their
standing within current advanced ordering techniques. Finally, we will demonstrate
the applicability of the paths generated by our algorithms using distinct mobile

51



robots dynamics.

(a) Illustrative solution for a randomly
distributed set of goal nodes on the
Ambarli Port map.

(b) Illustrative solution for a ran-
domly distributed set of goal nodes
within the Ikitelli Sanayi industrial
area.

Figure 6.2 Demonstration of multi-goal path-planning solutions applied to real-world
environments. Each scenario features 30 randomly placed goal nodes along with a
designated starting point. Reproduced from Allus & Unel (2025)

6.1 Experimental Setup

To ensure our experimental results are reliable, we are providing the details of the
hardware and software environment we used. All experiments were run on a machine
with Windows 11, featuring an Intel(R) Core(TM) i7-12650H processor (2.30 GHz)
and 16.0 GB of RAM (15.7 GB usable). The system is a 64-bit operating system
with an x64-based processor. We executed all experiments using Python version
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3.12.2.

For a controlled and measurable environment, we primarily used the map shown in
Figure 6.3 for our experiments. This map includes polymorphic obstacles, which
allowed us to assess how well our approaches handle different obstacle scenarios.
Table 6.1 details the map’s specifications. The chosen spacing value meets the
specified condition, and the listed number of nodes represents only the navigable
ones.

Figure 6.3 The primary experimental map, used for most of our experiments and
comparisons. It adheres to the input format explained in previous sections.

The map and its specifications were crucial for creating a consistent and repeat-
able experimental setup. By keeping conditions uniform across all experiments, we
ensured that our results directly reflected the algorithms’ performance rather than
variations in the testing environment. We selected a spacing of 40 pixels between
nodes to achieve a high resolution of navigable paths while maintaining computa-
tional feasibility.

Table 6.1 The Adopted Experimental Map Specifications are the reference values for
all experiments conducted on the main map. We maintain these consistent values
across similar experiments to ensure reliability and consistency in our results. W:
Map Width, H: Map Height, CS: Conversion Scale, S: Spacing, NN: Number of
Navigable Nodes.

W [pixel] H [pixel] CS [m/pixel] S [pixel] NN
1280 720 1 10 9217
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In short, the precise details of our experimental map, combined with our robust
hardware and software setup, provided a reliable and consistent environment for
evaluating our algorithms. The careful selection of map parameters and the con-
trolled experimental conditions were key to obtaining valid and reproducible results.

6.2 Experiments on the Improved A* Algorithm: Efficiency, Scalability,
and Reproducibility Analysis

In this section, we aim to confirm the efficiency of our improved A* algorithm by
comparing it with some state-of-the-art algorithms. We will also assess its scalabil-
ity and reproducibility by incorporating various maps that feature diverse obstacle
distributions and topologies.

6.2.1 Comparison Between The Improved A* Algorithm and State-of-
the-art Algorithms

Using the experimental setup detailed in Table 6.1, we ran experiments to confirm
the superiority of our improved A* algorithm over the classical version.

Figure 6.4 displays examples of our improved A* algorithm’s implementation within
our ordering algorithm. The left side shows original paths from the classical A* algo-
rithm, while the right side presents corresponding paths generated by the improved
A* algorithm, which includes both online improvements and offline post-pruning.
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Figure 6.4 Visualisation of some experiments conducted on the improved A* al-
gorithm. The left-hand side images show the classical implementation, and the
right-hand side images display the improved implementation.

To quantify these improvements, we conducted 1000 experiments using randomly
selected starting and goal nodes. Across these experiments, we calculated the av-
erage distances, average execution time, and average number of path nodes. Table
6.2 demonstrates the improved A* algorithm’s superiority over other algorithms in
terms of both the number of path nodes and pixel cost. Our improved version
achieved a 3.828% reduction in pixel cost and an 89.44% reduction in the number
of path nodes compared to the classical A* algorithm over these 1000 experiments.
Furthermore, the improved algorithm significantly reduced turns, zigzags, manoeu-
vres, and abrupt changes, leading to smoother paths with fewer variations. This, in
turn, makes the robot’s motion planning task easier and more efficient.

The improved version did show a slight increase in average execution time compared
to the classical A* algorithm. This marginal rise is expected, as the post-pruning
process is applied after generating the classical A* output. However, this increase is
negligible when weighed against the significant enhancements in average path cost,
path smoothness, and the reduction in the average number of path nodes.

The benefits of using the A* algorithm or its variants over the Rapidly-exploring
Random Tree Star (RRT*) algorithm are clear in such environments. A* and its
variants are informed search algorithms that use complete knowledge of the graph,
while RRT* and its variants are uninformed search algorithms that perform well in
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different scenarios. Although extended computation time and additional rewiring
processes might improve RRT*’s average performance, we set a threshold signifi-
cantly higher than A*’s average execution time. Even so, the RRT* algorithm still
produced noticeably higher average path distances.

Table 6.2 Details of the Improved A* experiments. These experiments were con-
ducted using 1000 randomly selected starting and goal nodes. We implemented and
compared the classical A*, Bidirectional A*, Rapidly-exploring Random Tree Star,
and Improved A* algorithms in terms of NN : Average Number of Nodes, D: Aver-
age Distance, ET : Average Execution Time, PI: Average Percentage Improvement.

Avg. of 1000 Paths NN D [pixel] ET [s]
Classical A* Path 56.363 2540.788 0.202

Bi-A* Path 55.490 2544.337 0.044
RRT* Path 39.279 3827.900 1.515

Improved A* Path 5.952 2443.530 0.290
PI 89.440% 3.828% -

6.2.2 Improved A* Experiments On Publicly Available Maps

In this section, we are testing the scalability and reproducibility of our improved
A* algorithm using several publicly available maps from Bhardwaj et al. (2017);
Sturtevant (2012). These maps, provided in the correct input format, offer varying
levels of complexity and environmental features. For each map, we set an appropriate
spacing, performed the necessary pre-processing steps, and then randomly selected
starting and goal nodes to apply our improved A* algorithm.

Figure 6.5 demonstrates that as long as the input format is suitable and the spacing
condition is satisfied, the improved A* algorithm performs flawlessly across any map
and environment. We used two categories of public maps:

• Maps with Dominating Obstacle Area

• Maps with Dominating Available Area

In both scenarios, our improved version consistently showed excellent performance
in finding the shortest path between given nodes, proving its robustness and adapt-
ability.
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Figure 6.5 An illustration that demonstrates the scalability of the improved A*
algorithm by applying it to various appropriate publicly available dataset maps.
This is achieved by randomly selecting starting and goal nodes and specifying a
suitable spacing value for each map. Reproduced from Allus & Unel (2025)

6.3 Experiments On The Proposed Classical Ordering Algorithm:
Performance Evaluation, Efficiency, Scalability, and Reproducibility

Analysis

In this section, we will evaluate the performance of our proposed classical ordering
algorithm, focusing on its two individual variants and a combined ensemble ap-
proach. We will conduct several thorough experiments and comparisons, measuring
key metrics like cost and time complexity.
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6.3.1 Comparison Between Combined Angle-Based, Sequential Angle-
Based Ordering and Optimal Ordering

For this experiment, we’re testing both variants of our proposed ordering algorithm
in a straightforward computational scenario involving five goal nodes. We’ll then
compare the goal node sequences generated by both algorithms against the optimal
order found using the brute-force technique, which is computationally feasible for
five goal nodes.

The results in Table 6.3 show promising outcomes regarding the average cost differ-
ence between our proposed ordering algorithm’s variants and the absolute optimal
cost over 100 experiments. As anticipated, the proposed algorithm’s time complex-
ity significantly outperforms the brute-force technique. However, testing with only
five goal nodes is not enough to draw strong conclusions about the algorithm’s over-
all performance. Therefore, we will increase the number of goal nodes in upcoming
experiments to properly evaluate scalability and derive more meaningful insights.

Table 6.3 A table that compares the optimal ordering, combined angle-based or-
dering, and sequential ordering. It shows their average distance cost and execution
time over 100 experiments with randomly selected starting nodes and sets of 5 goal
nodes. D: Average Distance, ET : Average Execution Time, CABO: Combined
Angle-Based Order, SABO: Sequential Angle-Based Order.

100 Exps on 5 GNs D [pixel] ET [s]
Optimal Order 11664.203 26.943
CABO 11931.566 0.829
SABO 12185.132 0.407

6.3.2 Experiments on The Scalability of The Proposed Classical
Algorithms in Highly Computational Scenarios

To evaluate our proposed algorithm’s capacity to handle highly computational sce-
narios, we conducted four experiments, each averaged over 100 iterations. These
experiments involved varying numbers of goal nodes, from 15 in low-complexity en-
vironments up to 100 in high-complexity settings. In each iteration, both the goal
nodes and the starting node were randomly selected from navigable areas. This ran-
dom selection introduced diverse distributions of goal nodes and varied the starting
node’s position relative to both the goal nodes and the centroid. By performing 100
iterations, we aimed to capture as many different scenarios as possible and iden-
tify any outliers or unexpected behaviours. We compared our proposed algorithms’
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output to the nearest neighbor algorithm, a basic model for solving the ordering
problem, and the MuGONA algorithm, an algorithm introduced by Allus et al.
(2024) that uses only distance criteria to order the nodes, as finding the optimal
order for a large number of goal nodes is computationally unfeasible. The nearest
neighbour algorithm served as a baseline ordering algorithm for comparison.

The results in Table 6.4 show that both variants of our proposed algorithm signif-
icantly outperform both the nearest neighbour algorithm and the MuGONA algo-
rithm in terms of time complexity. Regarding distance cost, both variants of our
algorithm generally outperformed the other algorithms, except in the scenario with
50 goal nodes, where the Combined Angle-Based Ordering variant was surpassed. To
achieve more consistently superior results, an ensemble of both variants was tested,
as discussed in Subsection 6.3.3. The comparison with MuGONA highlights the ef-
ficiency of the One-Distance-Two-Angles strategy, demonstrating its advantage over
solely relying on distance measurements for determining the order of goal nodes.

The Sequential Angle-Based Ordering variant outperformed both of the other al-
gorithms in all scenarios concerning both distance cost and time complexity. The
Combined Angle-Based Ordering variant came close to the nearest neighbour algo-
rithm in terms of distance cost in two of the highly complex scenarios.
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Table 6.4 Scalability experiments on both variants of the proposed algorithm. The
experiments were conducted on 100 batches of randomly selected starting and goal
nodes. The average quantities are calculated and displayed in the table. D: Average
Distance, ET : Average Execution Time, NGNs: Number of Goal Nodes, NNO:
Nearest Neighbour Order, CABO: Combined Angle-Based Order, SABO: Sequential
Angle-Based Order.

Avg. of 100 Exps D [pixel] ET [s] NGNs
NNO 19262.138 38.163

15
MuGONA 19144.219 13.854
CABO 18444.863 7.521
SABO 18531.764 8.351
NNO 24777.373 96.970

25
MuGONA 24278.923 17.700
CABO 24256.323 12.718
SABO 23497.753 12.259
NNO 34987.693 348.962

50
MuGONA 35134.617 36.411
CABO 35310.502 32.607
SABO 34028.898 32.236
NNO 47751.578 1486.787

100
MuGONA 49464.362 98.752
CABO 44541.858 39.651
SABO 45254.434 68.737

These experiments suggest that the sequential angle-based ordering is the most
effective choice across all scenarios and conditions, while the combined angle-based
ordering ranks second. It is superior to the nearest neighbour algorithm in low-
complexity scenarios and nearly as effective in high-complexity scenarios in terms
of distance cost. Figure 6.6 provides a visual sample of the conducted experiments
with varying numbers of nodes. These experiments were performed on the raw
outputs of the proposed algorithm. However, in upcoming sections, we will present
the excellent post-pruned ensemble outputs, which remarkably outperform other
algorithms in terms of both distance cost and time complexity. It is important to
note that these experiments are averaged over 100 iterations; however, individual
iterations may vary depending on the specifics of the scenario. Consequently, we will
propose a solution to address this variability in the upcoming sections (Ensemble
Angle-Based Ordering).
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Figure 6.6 An illustration of the scalability of the proposed algorithm, showing
its proper functioning in varying complexity scenarios with different numbers of
goals (up to 100 goal nodes in this visual example). The first column displays
the solution generated by the Nearest Neighbour algorithm, while the second and
third columns show the results of the SABO and CABO variants of our proposed
algorithm, respectively. The first row corresponds to a scenario with 50 goal nodes,
whereas the second row illustrates a scenario involving 100 goal nodes.

6.3.3 Experiments On Angle-Based Ordering Ensemble and Post-Pruning

To confirm the effectiveness of our proposed modified 2-Opt algorithm for angle-
based ordering post-pruning, we conducted 100-iteration experiments across five
different scenarios, varying the number of goal nodes NG ∈ {5,10,20,50,100}. These
experiments were performed on a standard map where the obstacle area comprised
less than 30% of the total area.

The results, presented in Table 6.5, show that the post-pruning algorithm consis-
tently improved the distance cost in all scenarios. However, the improvement was
relatively minimal with a low number of nodes and became more significant as the
node count increased. This trend is because a higher number of nodes typically
leads to more self-intersections in the overall path. Consequently, the post-pruning
procedure is particularly beneficial in scenarios with a larger number of goal nodes,
as it effectively reduces the occurrence of self-intersections, thereby improving the
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overall path cost.

Table 6.5 Experiments on the post-pruned ensemble angle-based ordering and com-
parisons with the normal ensemble to show the effect of post-pruning. D: Aver-
age Distance, ET : Average Execution Time, IDC: Average Improvement in Dis-
tance Cost, NGNs: Number of Goal Nodes, EABO: Ensemble Angle-Based Order,
PPEABO: Post-Pruned Ensemble Angle-Based Order.

Avg. of 100 Exps D [pixel] ET [s] IDC NGNs
EABO 11543.783 3.458

2.228% 5
PPEABO 11286.625 0.248
EABO 15883.275 3.340

5.857% 10
PPEABO 14953.017 0.116
EABO 21598.737 7.438

7.851% 20
PPEABO 19903.008 0.176
EABO 33693.100 35.864

10.377% 50
PPEABO 30196.603 1.386
EABO 47512.601 122.363

11.637% 100
PPEABO 41983.669 11.815

These findings emphasize the importance of the post-pruning algorithm, especially
in complex scenarios with numerous goal nodes. They also highlight its capability
to enhance path efficiency without incurring excessive computational costs.

For a clearer visual understanding of how post-pruning affects the output path of
the proposed ensemble angle-based ordering algorithm, Figure 6.7 provides some
extreme examples where the post-pruning procedure significantly reduced the total
path distance cost of the ensemble algorithm’s output.
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Figure 6.7 A visualisation of some severe post-pruning samples. The first column
displays the ensemble angle-based ordered paths, while the second column shows
the corresponding post-pruned ensemble angle-based ordered paths. The first row
corresponds to a scenario with 10 goal nodes, the second row corresponds to a
scenario with 50 goal nodes, whereas the third row illustrates a scenario involving
100 goal nodes.

63



6.3.4 Experiments On Publicly Available Datasets

To demonstrate the reproducibility of our proposed angle-based ordering algorithm,
we tested it on various publicly available maps. Figure 6.8 showcases some of these
experiments, featuring different numbers of goal nodes (10, 20, and 30). The results
consistently show that our algorithm performs effectively on all maps, provided they
adhere to the proper input format and meet the specified spacing condition.
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Figure 6.8 A figure that displays the visual outputs from some experiments con-
ducted with the Ensemble Angle-Based Ordering Algorithm on publicly available
dataset maps. These maps vary in complexity and the number of goal nodes. The
first column illustrates results with 10 goal nodes, the second with 20, and the third
with 30 goal nodes. Reproduced from Allus & Unel (2025)
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6.3.5 Comparisons With the State-Of-The-Art Algorithms

In this section, we compare the ensemble algorithm, comprising both variants of our
proposed angle-based ordering algorithm and a post-pruned version of that ensem-
ble, against solutions obtained by Google’s OR-Tools’ adapted Traveling Salesperson
Problem (TSP) solver and an enhanced brute-force technique, the nearest neighbour
algorithm, and the MuGONA algorithm introduced by Allus et al. (2024). The solu-
tions from Google’s TSP solver and the enhanced brute-force technique are consid-
ered optimal reference solutions. Therefore, we calculated the percentage optimality
gap between these optimal solutions and those provided by the other algorithms.
The MuGONA algorithm, being one of the most recent ordering algorithms, has
shown very strong results against several state-of-the-art ordering algorithms in its
own experiments.
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Table 6.6 Numerical results comparing the proposed post-pruned ensemble angle-
based ordering with other state-of-the-art algorithms. These comparisons involved
100 iterations across four different goal node scenarios, except for the 100-goal node
scenario, which was limited to 10 iterations. D: Average Distance, ET : Average
Execution Time, OG%: Optimality Gap, NGNs: Number of Goal Nodes, NNO:
Nearest Neighbour Order, EABO: Ensemble Angle-Based Order, PPEABO: Post-
Pruned Ensemble Angle-Based Order.

Avg. of 100 Exps D [pixel] ET [s] OG% NGNs
Google TSP Solver 14742.469 32.611 -

10
NNO 16289.859 9.885 10.496
MuGONA 16210.014 2.457 9.955
EABO 15596.771 2.449 5.795
PPEABO 15520.665 1.710 5.279
Google TSP Solver 19900.676 133.380 -

20
NNO 23039.265 37.741 15.771
MuGONA 23108.713 5.967 16.120
EABO 22423.495 6.146 12.677
PPEABO 22180.451 5.641 11.456
Google TSP Solver 29399.812 838.138 -

50
NNO 34913.124 231.408 18.753
MuGONA 35134.617 36.411 19.506
EABO 34090.373 37.854 15.954
PPEABO 33434.428 32.451 13.723
Google TSP Solver 40113.300 3188.712 -

100
NNO 48542.393 848.058 21.013
MuGONA 49464.362 98.752 23.312
EABO 48382.892 123.693 20.616
PPEABO 46832.874 127.893 16.751

The results presented in Table 6.6 confirm the superiority of our proposed angle-
based ordering algorithms in terms of both pixel cost and computational complexity
across all scenarios and varying numbers of goal nodes. The only exception is the
pixel cost of the TSP solver, which we treat as the optimal solution. Our pro-
posed algorithm significantly reduced pixel cost and maintained a relatively small
optimality gap, even in highly computational scenarios involving 100 goal nodes.
Without a doubt, the time complexity of our proposed algorithm is the best among
all compared algorithms.
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6.4 Experiments with Various Robot Dynamics

To confirm the robotic applicability of the paths generated by our proposed algo-
rithms, we performed a series of experiments using a map from OpenStreetMap.org,
processed with QGIS.org. These experiments involved three distinct dynamic mod-
els of mobile robots: a differential drive robot (DDR), a four-wheeled robot with
zero-sideslip steering, and a three-wheeled omnidirectional robot.

The specifications for our simulated robots were as follows: The map scale was set
to 1 pixel per meter, and the actuated wheels had a radius of 0.1 meter. For the
differential drive robot, the wheelbase length was 0.5 meter. For the four-wheeled
robot, the distances from the center of gravity to the front and rear wheels were 0.25
meter and 0.2 meter, respectively. The omnidirectional robot had a radius of 0.4
meter, with wheel angles set at [0,2 ∗ π/3,−2 ∗ π/3]. All robots shared a maximum
linear velocity of 3 meters per second and a maximum angular velocity of 1.5 radians
per second. A geometric-based controller was implemented for the differential drive
robot and four-wheeled robots, while a model predictive controller was used for the
omnidirectional robot. The controller parameters were meticulously tuned to ensure
near-optimal performance.

Figure 6.9 showcases several experiments validating our proposed algorithms’ per-
formance. In 6.9a, the simulated differential drive robot successfully tracks the
generated path, with minor inaccuracies attributed to map scaling issues. Despite
the lack of path smoothing, the differential drive robot effectively navigates sharp
edges, as seen in the zoomed view, with minimal oscillations due to precise param-
eter tuning. Similarly, using a different set of nodes, the simulated four-wheeled
robot navigates the designated path with ease. The zoomed view in 6.9b shows
minimal oscillations at a sharp turn, further demonstrating the effectiveness of pa-
rameter tuning. Lastly, 6.9c illustrates the trajectory followed by an omnidirectional
robot. While minor inaccuracies are observed due to the parameter tuning of the
model predictive controller, the overall trajectory exhibits satisfactory performance,
even at sharp corners and challenging manoeuvres, as depicted in the zoomed view.
Collectively, these experiments validate the applicability of our proposed algorithms
across various mobile robot dynamics, highlighting their robustness and encouraging
their adoption in real-world mobile robotics scenarios.
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(a) An image that illustrates a trajectory followed by a differential
drive robot. The left side shows the simulated robot navigating the
given path, indicating its position and heading. The right side dis-
plays the complete trajectory after navigation, highlighting control
behaviours used for sharp turns.

(b) An image that illustrates a trajectory followed by a four-wheeled
robot with zero-sideslip steering. The left side shows the simulated
robot navigating the given path, indicating its position and heading.
The right side displays the complete trajectory after navigation,
highlighting control behaviours used for sharp turns.

(c) An image that illustrates a trajectory followed by a three-
wheeled omnidirectional robot. The left side shows the simulated
robot navigating the given path, indicating its position. The right
side displays the complete trajectory after navigation, highlighting
control behaviours used for sharp turns.

Figure 6.9 An illustration that shows the navigation procedure performed by sim-
ulated robots with three distinct dynamics. The paths are generated using the
proposed algorithms on a map of a residential area in Istanbul, Turkey. The map,
sourced from OpenStreetMap.org and processed with QGIS.org, displays the trajec-
tories of the robots visiting 5 goal nodes and returning to the starting node, with
each robot having a unique set of nodes. Reproduced from Allus & Unel (2025)
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6.5 Experiments On The Proposed Learning-Based Framework:
Performance Evaluation, Efficiency, Scalability, and Reproducibility

Analysis

This section details the procedures for data generation, analysis, model development,
evaluation, and case study results specifically for the supervised machine learning
framework.

6.5.1 Data Generation

To train our models to identify patterns in optimal closed paths based on predefined
features, we selected appropriately formatted maps and randomly assigned starting
and goal nodes among the navigable points. Due to computational limitations,
we capped the number of goal nodes at 10. We then used an enhanced brute-
force technique and Google’s OR-Tools’ TSP Solver to find the optimal order for
connecting these goal nodes and the starting node, aiming for the least costly closed
path.

6.5.1.1 Traditional Machine Learning Framework Training Dataset

For the traditional machine learning framework, we used the enhanced brute-force
method that starts with a Euclidean heuristic for initial ordering. We generate all
possible permutations of the goal node sequence and compare their Euclidean dis-
tances, ignoring obstacles. If a permutation results in a lower Euclidean cost than
the current minimum, we then calculate its actual cost, accounting for obstacles,
using an improved A* algorithm. This process repeats for all permutations, ulti-
mately identifying the optimal order while minimising reliance on the A* algorithm.
Combining A* with Euclidean calculations significantly reduces the brute-force tech-
nique’s computational complexity.

To ensure precise classification, we introduced several hand-crafted features, metic-
ulously designed after extensive testing and observation of optimal paths. For each
pair of potential next nodes, we defined a set of features and added boolean indica-
tors to show if specific angles of the nearest potential next node were greater than
those of the second node. This approach, along with quantitative features like angles
and distances, provides descriptive features that effectively relate pairs of potential
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next nodes.

This data generation method yields 2 · (N − 2) data points per ordering scenario,
where N is the total number of goal nodes.

Finally, to maintain a global perspective on the ordering process, we introduced a
feature called orderedNodesRatio, which indicates the stage of the ordering process
by referencing the position of the current node relative to the already ordered goal
nodes.

6.5.1.2 Transformer Framework Training Dataset

To generate the training dataset for the transformer framework, we employed
Google’s OR-Tools TSP Solver to obtain exact optimal visiting sequences. For
each problem instance, we first compute the exact A* distances between every pair
of goal nodes, storing the results in a distance matrix. This involves N ·(N−1)

2 A*
computations for N goal nodes, as distances are symmetric and only the upper (or
lower) triangular part of the matrix is needed. The resulting matrix is then provided
to the TSP solver to determine the shortest possible tour. Although this method is
slower than the enhanced brute-force technique used previously, it guarantees opti-
mality and allows us to diversify the data generation strategies, thereby enriching
the training set with high-quality examples.

After determining the optimal visiting order for a given problem, we extract the
CNN and relational transformer features for each goal node. Since these features are
independent of the ordering steps, they are computed once and stored immediately.
For a problem with N goal nodes, there are N −1 ordering steps. We treat each step
as a distinct decision scenario and, for each, generate the corresponding step-specific
features for every goal node. These are then combined with the previously extracted
CNN and relational transformer features to form the complete input representation
for that step.

Feature Normalization

Because feature generation occurred across different maps and scenarios, all fea-
tures were normalised to the range [0,1] based on their corresponding maximum
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values. Angles were normalised by dividing by 180◦, distances and coordinates by
the maximum dimension of their respective map or the diagonal of the map, and
the orderedNodesRatio by the total number of goal nodes.

6.5.2 Performance Comparison of Enhanced vs. Standard Brute-Force
Techniques

Table 6.7 clearly demonstrates the significant advantages of our enhanced brute-
force technique over the standard approach. This superiority is evident in both the
number of A* algorithm executions and the overall time needed to find optimal
orders. The standard brute-force method requires the A* algorithm to be run (N +
1)! times (where N is the number of goal nodes), causing the computation time to
grow factorially as more goal nodes are added. In contrast, our enhanced brute-force
technique strategically executes the A* algorithm only when a genuinely better order
is likely. Each experiment was repeated 100 times with different starting and goal
nodes, and the results presented are the approximate averages across these trials.

Table 6.7 A table that compares the number of A* algorithm executions and the
time taken between Standard Brute-Force and Enhanced Brute-Force Techniques.

Avg. of 100 Experiments Goal Nodes # Avg. A* Executions Avg. Time [s]
A* Brute-Force

5
6! 65

Euclidean-A* Brute-Force 30 1.5
A* Brute-Force

7
8! 3600

Euclidean-A* Brute-Force 90 5
A* Brute-Force

10
11! -

Euclidean-A* Brute-Force 172 73

6.5.3 Traditional Machine Learning Model Selection and Evaluation

We generated 18,926 data points by ordering random sets of 10 goal nodes along
with a starting node across various maps. This dataset was then split into training
and test sets using an 80/20 ratio. We trained several models using grid search
and 5-fold cross-validation. Afterward, each model was evaluated on the test set,
and the one with the highest F1 score was chosen for ordering goal nodes in new
scenarios and for all subsequent experiments.

Table 6.8 presents the evaluation metrics for the top four best-performing models on

72



the test set. While the differences are small, ensemble learning methods performed
best overall. The XGBoost model, which achieved the highest F1 score, was se-
lected as the primary model for the upcoming experiments. Figure 6.10 displays the
normalized confusion matrix for the XGBoost model.

Table 6.8 Test set evaluation metrics for the top 4 models.

Test Set of 18,926 Data Points Accuracy Precision Recall F1 Score
Logistic Regression 82.96% 79.53% 81.24% 80.38%
Decision Tree 83.52% 81.35% 79.95% 80.65%
Random Forest 85.63% 85.59% 80.01% 82.71%
XGBoost 85.74% 84.19% 82.23% 83.2%

Figure 6.10 Normalised confusion matrix of the XGBoost model.

In 86% of the generated data, the next node was one of the two nearest goal nodes,
which aligns with our methodological assumption. Therefore, the model’s accuracy
can be directly correlated with this percentage.

6.5.4 Traditional Machine Learning Model Evaluation on Workspace
Maps

After training our model and evaluating its performance on test data, we conducted
further tests on workspace maps. This involved determining the order of goal nodes
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and comparing the total path cost generated by our model against the optimal closed
path cost. This step is crucial because evaluating the model on individual data points
can be misleading; the multi-goal path-planning problem aims to optimise the entire
path, not just the selection of the next node.

We performed this evaluation on two maps that were also used during the training
process. These maps featured diverse obstacle shapes and sizes. Although these
maps were part of the training data, we made sure the sets of goal nodes used in
this evaluation were entirely distinct from those in the training and test datasets.
Therefore, the results still provide valuable insights into the model’s capabilities in
novel scenarios.

Figure 6.11 shows comparisons between optimal and model-predicted goal node
orders on two different maps. Due to computational limitations, the number of goal
nodes in these experiments was limited to 10.
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Figure 6.11 A figure that compares optimal and model-predicted goal node orders on
the workspace map. The left column displays optimal orders, while the right column
shows orders predicted by the model. The first row corresponds to a scenario with
5 goal nodes, the second row corresponds to a scenario with 10 goal nodes, whereas
the third row illustrates a scenario involving 15 goal nodes.

Table 6.9 presents promising results regarding the accuracy of the learned orders.
The increase in the average optimality gap as the number of goal nodes grows is
because the model orders (N −2) goal nodes, with the final two ordered using brute-
force, as explained in the methodology section. Consequently, the optimality gap is
smaller with fewer goal nodes, though this effect largely diminishes after seven goal
nodes. In the worst case, the model’s average accuracy is approximately 92.46%.
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The model significantly improves ordering time because it only needs to calculate
features to predict the next node, unlike the brute-force method, which computes all
goal node permutations. This time improvement increases factorially as the number
of goal nodes rises.

The consistency of results across maps of varying sizes indicates the model’s robust-
ness in diverse workspace settings.

Table 6.9 Comparison of optimal and learned orders on maps used during training.

Avg. of 100 Experiments Map Size [pixel] Goal Nodes # Avg. Optimal Cost [pixel] Avg. Ordering Time [s]

Big Map (4800, 3840)
5 11346.09 5.523
7 12736.91 9.501
10 14744.88 98.377

Small map (960, 720)
5 2157.115 2.354
7 2465.553 3.659
10 2880.93 86.937

Avg. of 100 Experiments Avg. Model Cost [pixel] Avg. Ordering Time [s] Avg. Cost Optimality Gap Ordering Time Improvement

Big Map
11626.823 3.468 2.47% 37.21
13324.04 4.918 4.61% 48.24
15857.287 9.437 7.54% 90.41

Small map
2217.628 1.529 2.81% 35.05
2604.105 2.007 5.62% 45.15
3087.085 3.72 7.16% 95.72

6.5.5 Transformer Evaluation

A total of 13,160 data points were generated by solving randomly sampled prob-
lems consisting of 10 goal nodes and a designated starting node across diverse map
environments. The optimal orderings were obtained using Google’s Operations Re-
search Tools Travelling Salesperson Problem solver. The resulting dataset was then
partitioned into training and testing subsets using a 90/10 split. We trained a
transformer-based model and evaluated its inference performance using two distinct
approaches:

• Selecting from all remaining unvisited goal nodes

• Selecting from only the two nearest unvisited goal nodes

In the first method, the model receives all currently unvisited goal nodes at each
step. The transformer scores each one based on its features, assigning a probability
that reflects the likelihood of it being the next node to visit. In contrast, the second
approach first identifies the two closest goal nodes to the current node based on Eu-
clidean distance. Only these two candidates are then passed to the transformer for
scoring and selection. Both methods employed the same transformer architecture
and training configuration and were trained for 50 epochs under identical hyperpa-
rameters.
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Subsequent evaluation on the test set revealed a clear advantage for the second ap-
proach. Feeding only the nearest two nodes into the transformer led to significantly
better performance across all key metrics, especially the F1 score, which is criti-
cal in imbalanced decision scenarios. As a result, this method was selected as the
standard approach for goal node ordering in all further experiments.

Table 6.10 summarises the performance comparison between the two inference
strategies on the held-out test set.

Table 6.10 Test set evaluation metrics for both transformer training and inference
approaches.

Test Set of 13,160 Data Points Accuracy Precision Recall F1 Score
All remaining goal nodes 73.44% 100% 73.44% 84.69%
Nearest two goal nodes 94.69% 100% 94.69% 97.27%

6.5.6 Transformer Evaluation on Workspace Maps

After training our transformer model and evaluating its performance on test data, we
conducted further tests on workspace maps. This involved determining the order of
goal nodes and comparing the total path cost generated by the transformer against
the optimal closed path cost found using the enhanced brute-force technique. This
step is crucial because evaluating the transformer on individual data points can be
misleading; the multi-goal ordering and path-planning problem aims to optimize the
entire path, not just the selection of the next node.

We performed this evaluation on a map that was used during the training process.
This map featured diverse obstacle shapes and sizes. Although the map was part of
the training data, we made sure the sets of goal nodes used in this evaluation were
entirely distinct from those in the training and test datasets. Therefore, the results
still provide valuable insights into the model’s capabilities in novel scenarios.

Figure 6.12 shows comparisons between optimal and model-predicted goal node
orders on the chosen map. Due to computational limitations, the maximum number
of goal nodes in these experiments was limited to 10.
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Figure 6.12 A figure that compares optimal and transformer-predicted goal node
orders on a selected workspace map. The left column displays optimal orders, while
the right column shows orders predicted by the model. The first row corresponds to
a scenario with 5 goal nodes, the second row corresponds to a scenario with 7 goal
nodes, whereas the third row illustrates a scenario involving 10 goal nodes.

Table 6.11 presents promising results regarding the accuracy of the orders predicted
by the transformer. The increase in the average optimality gap as the number of
goal nodes grows is because the model orders ((N-2)) goal nodes, with the final two
ordered using brute-force, as explained in the methodology section. Consequently,
the optimality gap is smaller with fewer goal nodes, though this effect largely di-
minishes after seven goal nodes. In the worst case, the model’s average accuracy as

78



presented in Table 6.10 is approximately 94.69%, which is significantly higher than
all average accuracies of the models in Table 6.8, boosting the superiority of the
transformer model over traditional machine learning models.

Nonetheless, the model suffers from the drawback of ordering time, as it requires
calculating a huge number of features, some of which necessitate many Euclidean
distance calculations and orderings, to predict the next node. However, it is still
considerably better than the average ordering time of the enhanced brute-force or-
dering (not to mention Google’s TSP solver that takes even more time, or the normal
brute-force ordering that takes significantly more time). Additionally, since the or-
dering time needed by brute-force techniques increases factorially as the number
of goal nodes rises, the improvement in ordering time achieved by the transformer
becomes more evident with an increasing number of goal nodes.

Table 6.11 Comparison of optimal and transformer orders on maps used during
training.

Avg. of 100 Experiments

Map Size [pixel] Goal Nodes # Avg. Optimal Cost [pixel] Avg. Ordering Time [s]

(4800, 3840)
5 11095.250 29.319
7 12597.715 50.455
10 14636.881 139.854

Avg. Model Cost [pixel] Avg. Ordering Time [s] Avg. Cost Optimality Gap Ordering Time Improvement
11761.551 26.337 5.67% 10.171%
13668.596 49.369 7.83% 2.152%
16113.848 99.685 9.17% 28.722%

6.5.7 Experiments On Publicly Available Datasets

To confirm the reproducibility of our trained models, we ran a series of experiments
on publicly available maps that were not used during the training process. Figure
6.13 displays two such maps from Sturtevant (2012). On these maps, we generated
optimal orders for randomly selected goal and starting nodes and then used our
trained model to order the same sets of goal nodes.
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Figure 6.13 A figure that illustrates the evaluation of our trained model on publicly
available maps. The left-hand column shows the optimal orders, while the right-
hand column displays the corresponding model-predicted orders. Reproduced from
Allus & Unel (2025)

Table 6.12 presents numerical results comparing the optimal orders to the model-
predicted orders. Tested with three different sets of goal nodes, the results align
with our earlier findings from the workspace maps section. Notably, the average
cost optimality gap on these publicly available maps is even smaller than that on
the training maps, which suggests a higher accuracy than our previously estimated
92.46%. Nevertheless, we continue to consider that estimate as the worst-case sce-
nario.
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Table 6.12 Comparison of optimal orders to model-predicted orders on publicly
available maps.

Avg. of 100 Experiments Map Size [pixel] Goal Nodes # Avg. Optimal Cost [pixel] Avg. Ordering Time [s]

lt_undercityserialkiller (1073, 1073)
5 3472.19 7.19
7 3806.47 35.72
10 4202.31 196.13

Paris_1_256 (1073, 1073)
5 2873.43 10.71
7 3327.56 18.83
10 3764.91 93.59

Avg. of 100 Experiments Avg. Model Cost [pixel] Avg. Ordering Time [s] Avg. Cost Optimality Gap Ordering Time Improvement

lt_undercityserialkiller
3516.45 3.04 1.27% 57.76%
3905.09 4.50 2.59% 87.40%
4348.11 7.74 3.47% 96.06%

Paris_1_256
2940.14 7.02 2.32% 34.48%
3444.15 9.82 3.50% 47.88%
4018.75 15.07 6.74% 83.90%

6.5.8 Experiments On the Scalability of the Learned Model

Due to computational complexity, our training process was limited to scenarios with
a maximum of 10 goal nodes. However, we hypothesized that this limit was sufficient
for the model to learn common patterns in optimal closed paths. To test the model’s
scalability, we ran experiments with more than 10 goal nodes and compared the
learned orders to those generated by an adapted version of the 2-Opt heuristic Chen
et al. (2017). As shown in Table 6.13, the average cost of the learned orders is
almost identical to that of the 2-Opt orders, indicating that our model’s scalability
is competitive with state-of-the-art techniques.

Table 6.13 This table compares 2-Opt orders and learned orders to validate the
scalability of the trained model.

Avg. of 100 Experiments Map Size [pixel] Goal Nodes # Avg. Opt-Two Cost [pixel] Avg. Model Cost [pixel] Avg. Cost Difference

Small Map (960, 720)
20 4263.12 4251.18 0.28%
50 6585.61 6585.81 0.00%
100 9020.72 9074.35 0.59%
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7. CONCLUSION

In this work, we proposed a comprehensive set of solutions to the multi-goal path
planning problem by integrating classical heuristics and modern learning-based ap-
proaches. We began by enhancing the classical A* algorithm to improve the qual-
ity of individual path segments. Our enhancement introduces a post-processing
technique that applies image-based filtering—using methods such as Bresenham’s
line algorithm—to remove redundant intermediate nodes and eliminate unneces-
sary zigzag movements. This significantly improves the smoothness and realism of
planned paths, especially in grid-based environments, without incurring additional
computational overhead.

Following this, we introduced a novel ordering algorithm, the Angle-Based Multi-
Goal Ordering and Path-Planning Using an Improved A-Star Algorithm (AMu-
GOPIA), which includes two distinct variants, an ensemble approach, and a post-
pruning mechanism. These heuristics leverage geometric reasoning based on inter-
node distances and angles to propose an efficient visiting order for multiple goals.
Evaluated across various maps with different obstacle densities and goal node counts,
AMuGOPIA consistently outperforms several state-of-the-art methods in terms of
path cost, path smoothness, and runtime, positioning it as a reliable and computa-
tionally efficient solution for real-world robotic applications.

Building upon these algorithmic contributions, we further introduced a learning-
based framework that leverages hand-crafted geometric features—such as distances,
angles, and spatial relationships—to learn goal ordering patterns. This model suc-
cessfully predicted near-optimal visitation sequences with a high average accuracy,
and it generalised effectively to previously unseen environments and large-scale sce-
narios. Compared to traditional heuristics, the model consistently produced com-
petitive or superior results.

To further improve ordering performance in more complex environments, we de-
veloped a Transformer-based learning framework that predicts the optimal visiting
sequence of goal nodes. This model, trained on synthetic data derived from optimal
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TSP solutions, integrates spatially-informed CNN features, relational transformer
embeddings, and hand-crafted geometric descriptors—including distances, angles,
and quadrant-based spatial indicators—into a 72-dimensional feature vector. The
model operates in a stepwise fashion using a Transformer encoder and a feedforward
scoring network to select the next node at each step. During inference, the frame-
work demonstrates competitive performance compared to traditional solvers, while
offering significant improvements in scalability, flexibility, and generalisation across
unseen environments.

Together, these contributions present a hybrid pathway to robust multi-goal path
planning, combining the interpretability and efficiency of classical methods with the
adaptability of learning-based techniques. The modularity of the proposed frame-
work allows for flexible integration into autonomous robotic systems that demand
efficient, smooth, and intelligent navigation across dynamic and structured environ-
ments.
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