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ABSTRACT

EFFICIENT AND NON-PROFILED SIDE-CHANNEL ATTACKS AGAINST
POST-QUANTUM CRYPTOGRAPHY

TOLUN TOSUN

Computer Science and Engineering, Ph.D. Dissertation, July 2025

Dissertation Supervisor: Prof. Erkay Savaş

Keywords: lattice-based cryptography, side-channel analysis, correlation power
analysis, kyber, dilithium

This dissertation explores side-channel attacks targeting Post-Quantum Cryptogra-
phy (PQC). The focus is on lattice-based PQC algorithms standardized by NIST
during the course of this research: the Dilithium digital signature scheme (ML-
DSA) and the Kyber key encapsulation mechanism (ML-KEM). Both unprotected
and protected implementations of these algorithms are considered. The study par-
ticularly focuses on the non-profiled class of attacks, which does not rely on access
to a clone of the target device.

Existing non-profiled attack methodologies are revisited and improved, particularly
in terms of the required number of traces and also the attack run-time. While both
aspects are addressed, the trace complexity is given greater emphasis. Regarding the
attack run-time efficiency, an attack methodology applicable to Kyber and specific
implementations of Dilithium is introduced, achieving speedups of up to three orders
of magnitude.

The thesis explores the application of higher-order non-profiled attacks to Lattice-
Based Cryptography (LBC). These attacks face unique challenges due to the so-
called arithmetic masking schemes employed in protected LBC implementations.
These challenges are analyzed in depth, and novel solutions are proposed. Per-
forming higher-order non-profiled attacks require to compute so-called the optimal
prediction function. This work presents efficient methods for deriving these func-
tions in the context of arithmetic masking and LBC, including explicit formulas in
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specific cases—namely, when modular reduction is performed in a signed fashion
centered around zero.

Importantly, the thesis demonstrates that using signed arithmetic introduces a sig-
nificant vulnerability by creating a strong dependency between the signs of interme-
diate variables and the observed leakage.

Experimental results are presented for both simulated and real-device settings, cov-
ering implementations from unprotected up to third-order masked. These results
are unique in the literature, representing the first demonstration of non-profiled
attacks against higher-order masked implementations of LBC. The findings reveal
that non-profiled side-channel attacks pose a serious threat to masked implemen-
tations. For example, third-order masked implementations of Dilithium and Kyber
are successfully attacked with only 2400 and 14500 traces, respectively.

Furthermore, the thesis addresses the scenario in which the attacker does not know
the leakage function of the device. A novel two-step attack combining generic SCA
distinguishers with lattice reduction techniques is proposed. Experimental results
show that this approach enables successful non-profiled attacks even when the victim
implementation employs masking protection and the device’s leakage characteristics
are unknown.
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ÖZET

KUANTUM-SONRASI KRİPTOGRAFİYE KARŞI VERİMLİ VE PROFİL
GEREKTİRMEYEN YAN KANAL SALDIRILARI

TOLUN TOSUN

Bilgisayar Bilimi ve Mühendisliği, Doktora Tezi, Temmuz 2025

Tez Danışmanı: Prof. Dr. Erkay Savaş

Anahtar Kelimeler: kafes-tabanlı kriptografi, yan kanal analizi, korelasyon güç
analizi, kyber, dilithium

Bu tez, Kuantum Sonrası Kriptografi’yi (PQC) hedef alan yan kanal saldırılarını in-
celemektedir. Çalışmanın odağında, bu araştırma süresince NIST tarafından stan-
dardize edilen kafes tabanlı PQC algoritmaları yer almaktadır: Dilithium dijital
imzalama şeması (ML-DSA) ve Kyber anahtar kapsülleme mekanizması (ML-KEM).
Bu algoritmaların hem korumasız hem de yan-kanal saldırılarına karşı korumalı
gerçeklemeleri ele alınmıştır. Çalışma, özellikle hedef cihazın bir kopyasına erişim
olmadan gerçekleştirilebilen, profil gerektirmeyen saldırı sınıfına odaklanmaktadır.

Mevcut profil gerektirmeyen saldırı yöntemleri yeniden ele alınmış ve bunlar özel-
likle ihtiyaç duyulan elektriksel güç izi sayısı ve saldırı çalışma süresi açısından
iyileştirilmiştir. Çalışmalarımızda her iki parametre iyileştirilmeye çalışılsa da, güç
izi karmaşıklığına daha fazla öncelik verilmiştir. Saldırı çalışma süresi açısından
ise, Kyber ve Dilithium’un belirli gerçeklemelerine uygulanabilen bir saldırı yöntemi
sunulmuş ve bu sayede çalışma süresinde bin kata kadar hız artışı sağlanmıştır.

Tez, yüksek dereceden, profil gerektirmeyen saldırıların kafes tabanlı kriptografi
(LBC) üzerindeki uygulanabilirliğini de incelemektedir. Bu tür saldırılar, korumalı
LBC gerçeklemelerinde kullanılan aritmetik maskeleme şemaları olarak bilinen ko-
ruma önlemleri nedeniyle özgün zorluklarla karşı karşıyadır. Bu zorluklar detaylı
olarak analiz edilmiş ve özgün çözümler önerilmiştir. Yüksek dereceden profil gerek-
tirmeyen saldırıların gerçekleştirilmesi, “eniyilenmiş tahmin fonksiyonu” olarak bi-
linen fonksiyonun hesaplanmasını gerektirir. Bu çalışma, aritmetik maskeleme ve
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LBC bağlamında bu fonksiyonların elde edilmesine yönelik verimli yöntemler sun-
makta; özellikle, modüler indirgeme işleminin sıfır etrafında merkezlenmiş işaretli
biçimde yapıldığı özel durumlar için açık formüller sağlamaktadır.

Yine önemli bir katkı olarak tezde, işaretli aritmetik kullanımının, ara değişkenlerin
işareti ile gözlemlenen sızıntı arasında güçlü bir bağımlılık oluşturarak ciddi bir
güvenlik açığına neden olduğu gösterilmektedir.

Hem simülasyon ortamında hem de gerçek cihazlarda gerçekleştirilen deneysel
sonuçlar, korumasız gerçeklemelerden üçüncü dereceden maskeleme kullanan gerçek-
lemelere kadar geniş bir yelpazeyi kapsamaktadır. Bu sonuçlar, literatürde bir ilk
olup, yüksek dereceden maskeleme içeren LBC uygulamalarına karşı gerçekleştir-
ilen profil gerektirmeyen saldırıların ilk başarılı gösterimini sunmaktadır. Bulgu-
lar, profil gerektirmeyen yan kanal saldırılarının maskeleme kullanan gerçeklemeler
için ciddi bir tehdit oluşturduğunu ortaya koymaktadır. Örneğin, üçüncü derece-
den maskeleme kullanılan Dilithium ve Kyber gerçeklemelerine karşı yan-kanal
saldırılarının, sırasıyla, yalnızca 2400 ve 14500 güç izi kullanılarak, başarıyla uygu-
lanabildiği gösterilmiştir.

Ayrıca tez, saldırganın cihazın sızıntı fonksiyonunu bilmediği senaryoyu da ele almak-
tadır. Bu bağlamda, genel yan-kanal analizi (SCA) ayrıştırıcıları ile kafes indirgeme
tekniklerini birleştiren özgün, iki aşamalı bir saldırı yöntemi önerilmiştir. Deney-
sel sonuçlar, bu yaklaşımın maskeleme koruması içeren ve sızıntı fonksiyonu bilin-
meyen durumlarda dahi başarılı, profil gerektirmeyen saldırılar yapılmasını mümkün
kıldığını göstermektedir.
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1. INTRODUCTION

Security of public-key cryptosystems relies on the hardness of well-known math-
ematical problems such as the discrete logarithm problem for the elliptic curve
cryptography (ECC) (Koblitz, 1987; Miller, 1986) and the digital signature algo-
rithm (DSA) (Schnorr, 1990) or the integer factorization problem for RSA (Rivest,
Shamir & Adleman, 1978). While those hard problems are conjectured to be secure
against known cryptanalytic algorithms running on classical computers, it has been
shown that Shor’s algorithm (Shor, 1994) can solve them in polynomial time on a
large-scale quantum computer.

To address the quantum threat, the National Institute of Standards and Technol-
ogy (NIST) has announced the standardization process for the public-key PQC
algorithms in 2016. The standardization process covers quantum-resistant digital
signature schemes, and public-key encryption and key-establishment algorithms.
Currently, the contest is at the fourth round with already standardized algorithms.
Lattice-based schemes, based on various hard lattice problems, facilitate the con-
struction of quantum resilient public-key cryptography with a promising level of ef-
ficiency. Among the winners, the lattice-based digital signature algorithm Crystals-
Dilithium Ducas, Kiltz, Lepoint, Lyubashevsky, Schwabe, Seiler & Stehlé (2018) is
based on the M-LWE (Langlois & Stehlé, 2015), and Module-SIS problems, while
Crystals-Kyber Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Seiler
& Stehlé (2018) is M-LWE based KEM. M-LWE is the module version of the R-
LWE problem (Regev, 2009). As Kyber and Dilithium are members of the same
family, Crystals, they have several building blocks in common. These algorithms
are standardized under the names ML-KEM and ML-DSA.

In cryptanalysis, SCA attacks are the ones that target the weaknesses in imple-
mentations rather than algorithm specifications, by collecting side information such
as running time or power consumption that can leak sensitive (intermediate) infor-
mation during the execution of the targeted cryptographic operation. Side-channel
attacks are considered as one of the main threats, particularly for embedded devices
because of the simplicity of side-information collection, such as IoT chips, which
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sign sensor data before transmission. Timing attacks are the first and simplest type
of side-channel attacks in the history of cryptography, presented by Kocher (1996),
which makes use of the fact that the execution time of an algorithm can reveal
sensitive information regarding the secret data; mostly occurred due to performance
optimizations such as branching, conditional statements, cache hits/misses. In a few
years after this breakthrough, The first power analysis-based attacks, namely Sim-
ple Power Analysis (SPA), and DPA were reported by Kocher, Jaffe & Jun (1999),
which take advantage of the fact that the power consumption of a device is related to
the running application and the processed data (Mangard, Oswald & Popp, 2008).
The CPA is proposed by Brier, Clavier & Olivier (2004), which models the power
consumption of the device under test and measures the correlation of the model
with real-world data to test secret value hypotheses. The power leakage of the de-
vice/implementation is often modeled with the HW of the intermediate data or HD
between the intermediate data. The Electromagnetic (EM) side-channels Agrawal,
Archambeault, Rao & Rohatgi (2002) are similar to power analysis as any attack
suit designed for power leakage can be practiced with EM leakage while it can supply
more precise information about the sensitive intermediate data. Masking is one of
the most promising countermeasures against power/EM attacks, which randomizes
the intermediate data with secret sharing, so that characteristics of sensitive data
are not reflected in power consumption.

The introduction of profiled attacks (also known as template attacks) by Chari, Rao
& Rohatgi (2002) marked the emergence of a new category of power-based SCA
attacks. These attacks assume access to an identical clone of the victim device for
power measurement and modeling, referred to as the profiling device. The profiling
device must be configurable by the attacker, i.e., the attacker must be able to set ar-
bitrary secret keys on it. By experimenting on this device, the attacker characterizes
the leakage model of the victim device. The resulting model can then be applied
to side-channel data collected from the actual victim device to recover the secret
key. In contrast, CPA and DPA are essentially non-profiled SCA attacks, which do
not require a profiling device. The attacker relies on generic statistical methods to
recover the secret key from the side-channel data.

Although the Hamming weight assumption usually holds for software implemen-
tations, the leakage characteristic of the victim device can be more complex for
hardware implementations (Gao, Marshall, Page & Oswald, 2020; Levi, Bellizia &
Standaert, 2019). In such cases, and especially when the leakage model cannot be
recovered through a profiling device, it remains unknown to the attacker. A common
approach to perform non-profiled attacks in this scenario is to use so-called generic
distinguishers, which perform the profiling on-the-fly. Efficient examples of generic
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distinguishers are MIA (Gierlichs, Batina, Tuyls & Preneel, 2008) and KW (Yan,
Oswald & Roy, 2023).

JIL Rating (Librabry, 2020) is a widely used metric to assess the complexity of side-
channel attacks; the higher the JIL score, the harder to perform the attack. As the
time needed to apply the attack is a factor in the overall rating, both the number
of traces and the attack run-time affect the rating of the attack, constituting an
important motivation for this work.

While lattice-based cryptographic algorithms are resistant to quantum attacks, pro-
tecting them against SCA attacks is a highly active research area, and potential
attack scenarios must be carefully considered. Since post-quantum algorithms are
intended to replace the existing public-key standards soon and the usage of public-
key cryptography in embedded devices will be potentially more extensive. For ex-
ample, a secure firmware update on an embedded device relies on the security of
the employed digital signature while embedded devices are open to timing, and
power/EM attacks by nature. With increasing interest, several attacks and counter-
measures have been proposed for PQC candidates in the literature. The majority of
the existing literature focuses on profiled attacks, with examples including Dubrova,
Ngo, Gärtner & Wang (2023); Primas, Pessl & Mangard (2017); Ravi, Roy, Chat-
topadhyay & Bhasin (2020). However, non-profiled attacks are also an important
area of study, as they offer a lower-cost attack path. Moreover, a profiling device
may not be available to the attacker in many scenarios. For example, when the
target device is a smart card issued by an authority, the attacker is unlikely to have
access to an identical open clone for profiling.

Polynomial multiplication is the core operation for practical constructions of LBC,
which is efficiently implemented using the NTT algorithm. This operation is also
the main target for non-profiled SCA attacks against LBC (Chen, Karabulut, Aysu,
Ma & Jing, 2021; Kuo & Takayasu, 2023; Mujdei, Wouters, Karmakar, Beckers,
Bermudo Mera & Verbauwhede, 2024; Qiao, Liu, Zhou, Shao & Sun, 2023; Ro-
driguez, Bruguier, Valea & Benoit, 2023; Steffen, Land, Kogelheide & Güneysu,
2023). This is expected, as polynomial multiplication involves both secret and pub-
lic data as input operands, which is a necessary condition for non-profiled attacks.
A technique referred as incomplete NTT is introduced to handle rings of special
structures as well as to improve efficiency Lyubashevsky & Seiler (2019a). Kyber
employs an incomplete NTT due to its parameter selection, whereas Dilithium’s
parameters allow for a regular NTT, referred to as complete. However, certain
implementations of Dilithium adopt an incomplete NTT for efficiency (Abdulrah-
man, Hwang, Kannwischer & Sprenkels, 2022). The characteristics of SCA attacks
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on incomplete-NTT-based implementations differ slightly from those on complete
NTT implementations (Mujdei et al., 2024). This study examines both scenarios in
detail.

An important building block that significantly impacts the efficiency of the NTT
algorithm is the modular reduction of integers, concerning the arithmetic for co-
efficients of polynomials. Classical techniques such as the Montgomery reduc-
tion (Montgomery, 1985) and Barrett reduction (Barrett, 1986) are already applied
to LBC by the existing literature (Abdulrahman et al., 2022; Alkim, Bilgin, Cenk
& Gérard, 2020; Botros, Kannwischer & Schwabe, 2019; Greconici, Kannwischer &
Sprenkels, 2021; Seiler, 2018). The same holds for the relatively new Plantard re-
duction scheme (Huang, Zhang, Zhao, Liu, Cheung, Koç & Chen, 2022; Plantard,
2021). One important distinction regarding the integer reduction in LBC compared
to the RSA and ECC is the bit-length of the number to be reduced. LBC requires
a reduction of relatively smaller numbers, that usually fit into a single computer
word. For instance, Kyber employs a 12-bit coefficient modulus and Dilithium a
23-bit one. Moreover, the signed representation of integers over a modulus instead
of the classical unsigned representation is more desired in LBC (Abdulrahman et al.,
2022; Alkim et al., 2020; Botros et al., 2019; Greconici et al., 2021; Huang et al.,
2022). That is to make a central reduction (a.k.a. centered reduction) to the range
[−q/2, q/2] instead of [0, q) for an odd modulus q. The Plantard and Montgomery
algorithms enable 2-cycle implementation of central reduction on the ARM Cortex-
M4 (Alkim et al., 2020; Greconici et al., 2021; Huang et al., 2022) while Plantard is
superior since the output of Montgomery reduction requires an additional subtrac-
tion or addition to be correct.

Overall, the central reduction improves the efficiency of LBC implementations; how-
ever, it also creates new possibilities for SCA attacks. Respectively, the sign of a
number in [−q/2, q/2] becomes the dominant factor influencing its power consump-
tion considering 2’s complement to represent negative numbers. Motivated by this,
we explore the characteristics of the central reduction in terms of SCA leakage.

To mitigate power based SCA attacks, masking Chari, Jutla, Rao & Rohatgi (1999)
is the state-of-the-art countermeasure, and its effectiveness is quantified by the mask-
ing order. Performing CPA attacks on masked implementations is referred to as the
HOCPA attacks. In this context, a function known as the optimal prediction func-
tion must be calculated to tackle the masking countermeasure (Prouff, Rivain &
Bevan, 2009). While this computation is straightforward for symmetric cryptogra-
phy, additional effort is required for attacking protected implementations of LBC.

Application of the generic distinguishers in the context of LBC is also challenging
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and remains relatively underexplored. This difficulty arises primarily from the fact
that the modular multiplications in the NTT based polynomial multiplication are
injective functions Heuser, Rioul & Guilley (2014). A known workaround is to use
the so-called bit-dropping trick; however, this method incurs information loss, and
we demonstrate that its efficacy against masked implementations of LBC remains
uncertain.

Table 1.1 Qualitative summary of the attack scenarios covered in this study. The
column "Run-Time" indicates improvements in the SCA attack’s execution time for
the corresponding scenario, while the column "#Traces" denotes exploration and
improvements of efficiency in terms of the number of traces required.

(Chapter)
Work

Victim
Algorithm

Device
Leakage
Function

Protected
(Masking)

Run-Time #Traces

(Chapter 5) Kyber HW ✓ ✓ ✗

Tosun & Savas
(2024)

Dilithium HW ✗ ✓ ✗

(Chapter 6) Kyber HW ✓ ✗ ✓

Tosun et al.
(2024)

Dilithium HW ✓ ✗ ✓

(Chapter 7) Kyber HW ✓✓ ✗ ✓

Tosun et al.
(2025)

Dilithium HW ✓✓ ✗ ✓

(Chapter 8) Kyber Non-HW ✓✓ ✓ ✓

Tosun et al.
(2025)

Dilithium Non-HW ✗ ✓ ✓

✓✓: Higher-Order Masking.

In this work, we study non-profiled SCA attacks on LBC across various scenarios.
The attack scenarios, including the victim algorithm, masking protection, device
leakage model, and the efficiency consideration addressed, are summarized in Ta-
ble 1.1, along with related publications and corresponding chapters. The rest of the
document is organized as follows. In Chapter 2 we present a brief literature review
on the SCA attacks on LBC. In Chapter 3 we provide the necessary background on
LBC and SCA. In Chapter 4 we present the outline for the non-profiled SCA attack
on NTT-based polynomial multiplication in LBC. In Chapter 5, Chapter 6, Chap-
ter 7, and Chapter 8 we present our contributions in detail. Finally, we conclude
the thesis in Chapter 9.
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1.1. Main Contributions

The contributions of this thesis are listed as follows:

• To the best of our knowledge, we present the first study in the literature that
is particularly developed to effectively exploit the leakage of SCA-protected
implementations of LBC without the need for profiling.

• In Chapter 5, we present a novel non-profiled power/EM attack against in-
complete NTT-based implementations of polynomial multiplication in LBC,
referred to as Zero-Value Filtering Attack (ZV-FA). Our approach improves
attack run-time by significantly reducing the number of hypotheses through a
filtering technique based on zero-value coefficients in the known input/output
polynomials of the operation targeted by the SCA attack.

• In Chapter 6, we show that the central reduction techniques that are widely
adapted in LBC lead to a source of effectively exploitable SCA leakage. Par-
ticularly, information about the sign of arithmetic shares would ease exploiting
the leakage and conducting successful key-recovery attacks.

• In Chapter 6, we show that the employed coefficient modulus as well as the re-
duction algorithm and the machine word size affect the SCA leakage of masked
implementations of LBC, particularly making non-profiled attacks easier to be
conducted. For the aforementioned scenarios, we particularly present the so-
called optimal correlation and the number of traces required for different noise
levels. Our study reveals that SCA attacks on masked implementations with
central reduction are significantly more noise-tolerant. In Chapter 7, we ex-
tend these results to higher-order masked implementations.

• In Chapter 7, we introduce a novel and efficient method for computing the
optimal prediction functions for higher-order SCA attacks using a recursive
approach. Our approach enables the derivation of closed-form expressions for
higher-order attacks when possible, while also offering advantages in scenarios
where closed-form solutions are infeasible, such as when the attacked device
uses unsigned modular arithmetic in LBC.

• In Chapter 6 and Chapter 7, we propose novel prediction functions for higher-
order SCA attacks against the arithmetic masking in LBC. These functions are
particularly effective when the modular arithmetic in the target implementa-
tion is signed. The absolute value prediction function introduced in Chapter 6
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is effective against first-order masking, whereas the sin and cos based predic-
tion functions introduced in Chapter 7 are effective for attacking second- and
higher-order masking.

• We provide practical SCA attack results against Kyber and Dilithium across
various scenarios. Our experiments cover both EM- and power-based SCA
attacks using different setups. We target unprotected and protected imple-
mentations of Kyber and Dilithium, including first-, second-, and third-order
masking. We focus on open-source implementations of those algorithms on
the ARM Cortex-M4. Our results are unique in the literature as these are the
first higher-order and efficient non-profiled attacks demonstrated against both
Kyber and Dilithium. Additionally, we made our attack scripts open-source
to ensure reproducibility.

• We experimentally show that only a few hundred traces are required to success-
fully mount a key-recovery attack on Kyber and Dilithium without profiling,
even in many protected scenarios. For example, in our experimental setup,
first-order masked implementations of Kyber and Dilithium can be broken
using just 250 (Chapter 6) and 190 (Chapter 7) traces, respectively.

• In Chapter 8, we explore application of generic distinguishers, such as MIA and
KW, for attacking lattice-based schemes when the leakage model of the victim
device is unknown. We present a novel two-step attack on incomplete NTT
multiplication (e.g. Kyber) by combining generic distinguishers with lattice
problems, namely solving instances of the SVP. We show that our approach is
particularly favorable against protected implementations.

• In Chapter 8, our study reveals that, recovering the deltas, the factors be-
tween the even and odd-degree coefficients of Kyber’s secret polynomials in
incomplete NTT domain, are sufficient to recover the entire secret polynomial.
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2. RELATED WORK

There exist many SCA attacks in the literature that target implementations of LBC,
which can be categorized into three classes:

• Profiled attacks.

• Non-profiled attacks.

• Public profiled attacks.

The majority of published SCA attacks on LBC are profiled. To this end, sev-
eral operations of LBC have been selected as the target of these attacks. Among
them, (Kim, Lee, Han, Sim & Han, 2020; Primas et al., 2017; Xu, Pemberton, Roy,
Oswald, Yao & Zheng, 2021) focus on the NTT transformation. The attack pre-
sented by Primas et al. (2017) is distinctive by revealing single-trace vulnerabilities
of LBC. The authors demonstrate that, under certain conditions, a single measure-
ment from the victim device is sufficient to recover the secret polynomial input to
the NTT. Their approach utilizes the belief propagation algorithm to combine leak-
age from different time points during the victim’s NTT computation. It should be
emphasized that if the masks during the profiling phase are known (i.e. they are also
considered in the profiles), single-trace profiling attacks cannot be avoided by mask-
ing, since SCA leakage of a single execution is measured, where the masks can also
be revealed via the profiles. Bronchain, Azouaoui, ElGhamrawy, Renes & Schneider
(2024) presents another profiled attack on NTT-based polynomial multiplication,
exploiting the fact that the coefficients of secret polynomials are sampled from a
small distribution rather than uniformly from the prime field. The sub-routines
targeted by the profiled class is not limited to NTT multiplication. Backlund, Ngo,
Gärtner & Dubrova (2023); Dubrova et al. (2023); Wang, Brisfors & Dubrova (2024);
Xu et al. (2021) target data conversion primitives between polynomial and binary
representations, such as those involving message encoding or decoding. These stud-
ies are essentially chosen-ciphertext attacks (CCA) against Kyber, which require
sending specially crafted ciphertexts to the decapsulation (i.e., decryption) function
of the attacked device. Notably, Dubrova et al. (2023) successfully attacks an open-
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source fifth-order masked implementation of Kyber using deep-learning techniques.
Another profiled attack targeting binary to polynomial conversion is presented in
Marzougui, Ulitzsch, Tibouchi & Seifert (2022), but in the context of Dilithium.
Karabulut, Alkim & Aysu (2021) targets the sampling of challenge polynomials in
Dilithium, which have a limited number of non-zero coefficients that are also small
in magnitude. Ravi et al. (2020) constructs a plaintext-checking oracle using side-
channel leakage from the so-called FO transform, which is employed in lattice-based
KEMs like Kyber to achieve chosen-ciphertext security from chosen-plaintext secu-
rity. This oracle is then queried with chosen ciphertexts, and by observing variations
in the decryptions, the secret polynomial is gradually recovered.

To the best of our knowledge, all non-profiled SCA attacks against LBC target the
NTT-based polynomial multiplication Chen et al. (2021); Kuo & Takayasu (2023);
Mujdei et al. (2024); Qiao et al. (2023); Rodriguez et al. (2023); Steffen et al. (2023),
where the secret polynomial is multiplied with a publicly known polynomial, which
corresponds to the ciphertext in Kyber and the challenge (part of the signature) in
Dilithium. Mujdei et al. (2024) shows that the performance of non-profiled attacks
against the polynomial multiplication directly depends on the employed multipli-
cation algorithm as well as on the parameters such as the polynomial coefficient
modulus. While non-profiled attacks on some instances of LBC may require a rel-
atively long time to recover secret polynomials, acceleration is possible in certain
scenarios by collecting more measurements, as demonstrated by Chen et al. (2021)
against Dilithium. Kuo & Takayasu (2023); Qiao et al. (2023) combines SCA at-
tacks and other cryptanalysis techniques such as lattice attacks. In particular, the
authors post-process the output of the SCA attack using lattice attacks, allowing
a significant number of incorrect predictions by the SCA to be tolerated and cor-
rected. For example, Kuo & Takayasu (2023) demonstrates that predicting 38 out
of 128 secret coefficients in Kyber is sufficient to recover the remaining coefficients
through the lattice attack. Besides, it is shown in Rodriguez et al. (2023); Steffen
et al. (2023) that the polynomial multiplication can be also effectively targeted in
the case of hardware implementations. Except Qiao et al. (2023), the aforemen-
tioned non-profiled attacks target unprotected implementations, i.e. not masked.
On the other hand, all of them assume Hamming Weight-based device leakage and
therefore study tools and methods suited for that leakage model.

In addition to the classical profiled and non-profiled attack settings, public profiled
attacks are a special case of profiled attacks, in which the profiling step can be
performed directly on the victim device. As a result, a configurable clone of the
victim device is not required. The authors also discuss that their methodology can
be considered as a public profiled attack. In this case, the attack still involves
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a profiling step, as in traditional profiled attacks. However, the profiling can be
performed directly on the target device, eliminating the need for a separate clone
device accessible to the attacker. Examples of this class are Backlund et al. (2023);
Dubrova et al. (2023); Karabulut et al. (2021); Ravi et al. (2020); Wang et al. (2024);
Xu et al. (2021).

The discussed SCA attacks are summarized in Table 2.1. It should be noted that
only the relevant target algorithms, Kyber and Dilithium, are listed, even if the
original publications included additional algorithms. Furthermore, although many
of the listed attacks could, in principle, be extended to masked implementations
by leveraging more traces, we only mark those that explicitly demonstrate such
an attack. For non-profiled attacks, the “polynomial multiplication” target refers
specifically to the element-wise multiplication (a.k.a. base multiplication) in the
NTT domain. In contrast, for profiled attacks, the “NTT” target refers to the
transformation itself, either entering or exiting the NTT domain.

Table 2.1 Qualitative summary of related state-of-the-art SCA attacks.
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Mujdei et al.
(2024)

NP ✗ ✗ ✗ K,D* Cortex-M4✭ poly. mult.

Chen et al.
(2021)

NP ✗ ✗ ✗ K*,D Ref. C poly. mult.

Rodriguez et al.
(2023)

NP ✗ ✗ ✗ Dilithium Hardware poly. mult.

Steffen et al.
(2023)

NP ✗ ✗ ✗ Dilithium Hardware poly. mult.

Qiao et al.
(2023)

NP LA ✗ ✓ K,D ✈,Cortex-
M4❧,

poly. mult.
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Kuo &
Takayasu (2023)

NP LA ✗ ✗ K,D* Cortex-M4✭ poly. mult.

Primas et al.
(2017)

P BP ✗ ✓ K,D Cortex-M4✧ NTT

Kim et al.
(2020)

P ✗ ✗ ✗ D Ref. C NTT

Kim et al.
(2020)

P ✗ ✗ ✓ D Ref. C✴ small
poly. mult.

Bronchain et al.
(2024)

P BP ✗ ✗ Dilithium ✤
small

poly.mult

Marzougui et al.
(2022)

P ILP ✗ ✗ D Ref. C bin. to poly.

Karabulut et al.
(2021)✉

PP ✗ ✗ ✓ D
Ref. C

Cortex-M4✭

small poly.
sampling

Ravi et al.
(2020)

PP ✗ ✗ ✗ K Cortex-M4✭ FO
Transform

Wang et al.
(2024)

PP ✗ ✓ ✗ K Cortex-M4♣ bin. to poly.

Backlund et al.
(2023)

PP ✗ ✓ ✓ K Cortex-M4❧ poly. to bin.

Xu et al. (2021) PP ✗ ✗ ✗ K Ref. C NTT

Xu et al. (2021) PP ✗ ✓ ✗ K Cortex-M4✭ bin. to poly.
Dubrova et al.

(2023)
PP ✗ ✓ ✓ K Cortex-M4❧ bin. to poly.

Classes: Non-Profiled (NP), Profiled (P), Public Profiled (PP)
Victim algorithms: Kyber (K), Applies to Kyber but not demonstrated (K*),
Dilithium (D), Applies to Dilithium but not demonstrated (D*)
Post-Processing: Lattice Attack (LA), Belief-Propagation (BP), Integer Linear
Programming(ILP)
Implementations:

✭ from Kannwischer, Rijneveld, Schwabe & Stoffelen (2019), ✧ from Reparaz,
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Roy, De Clercq, Vercauteren & Verbauwhede (2016)
❧ from Heinz, Kannwischer, Land, Pöppelmann, Schwabe & Sprenkels (2022), ♣

from Bronchain & Cassiers (2022)
✈ from Azouaoui, Bronchain, Cassiers, Hoffmann, Kuzovkova, Renes, Schönauer,

Schneider, Standaert & van Vredendaal (2022)
✴ attacks through an implementation submitted for another project by Alkim,

Barreto, Bindel, Krämer, Longa & Ricardini (2020)
✤ not reported

Misc: ✉ challenge polynomial recovery attack
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3. BACKGROUND

3.1. Notation

• Matrices and Vectors:

– Uppercase bold letters denote matrices, while lowercase bold letters de-
note vectors. Elements are accessed using lower indices in square brack-
ets, such as A[i,j] for the (i, j)-th entry of a matrix and a[i] for the i-th
entry of a vector. The notation [ai]mi=0 denotes a vector composed of the
elements a0,a1, . . . ,am.

• Sets:

– Uppercase blackboard bold letters denote sets. Elements of those are ac-
cessed by the lower-index, such as A[i]. We use the notation {ai}mi=0 to
denote a set containing elements a0,a1, . . . ,am. We exclude standard sets,
such as the set of integers Z, from this notation.

• Variables and random variables:

– Lowercase italic letters denote variables, such as x. Uppercase letters
denote random variables, such as X. ← denotes sampling uniformly
at random, such as X ← X. Upper-index with round brackets denotes
samples of random variables, such as X(i).

– P(·) denotes the probability function and E[·] denotes the expected value
function.

• Secret shares in masking schemes:

– Upper-index with curly brackets denotes secret shares of variables used in
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masking schemes, such as X = X{0} +X{1}. We also use the shorthand
notation X{0:d−1} = {X{0},X{1}, ..,X{d−1}} to refer to all d shares.

• Polynomials:

– Polynomials are also denoted by lowercase italic letters, such as a(x).
For brevity, we often omit the indeterminate x and simply refer to the
polynomial as a. Coefficients of polynomials are accessed by the lower-
index with square brackets, such as a[i].

– "hat" denotes NTT domain representations of polynomials, such as â =
NTT(a).

• Functions:

– Sans-Serif letters denote functions, such as F.

– The function HWβ denotes the Hamming weight computed over a β-bit
number represented in 2’s complement form.

– Logarithm is base-2 unless otherwise stated.

• Multiplications:

– The polynomial multiplication is denoted by ·, as in a(x) · b(x) or a · b.
Occasionally, we also use · to indicate integer multiplication, depending
on context, to aid readability.

– We do not use an explicit operator for matrix-matrix or matrix-vector
multiplication. Examples include AB, Ab.

– For matrix-scalar or vector-scalar multiplication, we explicitly write ·,
e.g., A · b and a · b.

– We also frequently multiply coefficient vectors of polynomials with ma-
trices, and this is denoted similarly to matrix-vector multiplication: Ab.

– If we write A · b where A is a matrix and b is a polynomial, it means
the polynomial is treated as a scalar (not decomposed into its coefficient
vector).

– ⋆ denotes element-wise multiplication of vectors, such as a ⋆b. ◦ denotes
dot-product between vectors or a matrix and a vector. For instance, A◦b
is defined as ∑m−1

i=0 A[i]b where m denotes the number of rows in A.

• Sliced access to elements of matrices, vectors, sets and polynomials:
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– We write A[:][i] to access the i-th column of a matrix A. The same nota-
tion also applies to vectors of polynomials. For a vector of polynomials a,
a[:][i] denotes the vector formed by the i-th coefficient of each polynomial
in a.

– For elements of matrices, vectors, sets and polynomials, we write : m in
the sub-index to denote the first m elements, such as a[:m].

• Operators:

– || · ||∞ denotes the infinity norm, i.e., the largest absolute value among
the coefficients of a polynomial, as in ||a||∞, or the largest absolute value
among the elements of a vector, as in ||a||∞. In the case of nested struc-
tures, such as vectors of polynomials, the infinity norm is applied recur-
sively, following a maximum-of-maximums approach.

– || denotes the concatenation operator. For operands a and b, a||b repre-
sents the binary string formed by appending the binary representation of
b to that of a.

– Concatenation of matrices or vectors is denoted by |. For example, A|B
represents the matrix formed by concatenating the columns of A and B,
and a|b denotes the vector formed by concatenating a and b. In some
cases, the operator may be omitted for matrices when the context clearly
indicates both horizontal and vertical concatenation.

• Modular arithmetic:

– ±Zq denotes the set of centrally represented integers modulo q, that is,
the interval [−q/2, q/2] for odd q and [−q/2, q/2 + 1] for even q. The
notation mod±q refers to central (a.k.a. centered) modular reduction
onto this range. In contrast, Zq denotes the set of integers modulo q

with the standard (unsigned) representatives in [0, q). We use mod+q to
indicate reduction onto [0, q), and simply write modq when the reduction
range is unimportant.
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3.2. Lattice-Based Cryptography

Crystals-Kyber (Bos et al., 2018) and Crystals-Dilithium (Ducas et al., 2018) are
examples of Lattice-Based Cryptography (LBC). They are among the first Post-
Quantum Cryptography (PQC) standards selected by NIST, now standardized un-
der the names ML-KEM and ML-DSA, respectively. The main mathematical object
is the ring of polynomials Rq,n = Zq,n/(xn +1), where n is referred to as the ring
modulus which is a power-of-two, and q is referred to as the coefficient modulus
which is a prime number. In Rq,n, each element is a polynomial of degree n− 1
whose coefficients are in Zq. The security of Kyber and Dilithium relies on the
Module Learning With Errors (M-LWE) problem introduced in Langlois & Stehlé
(2015), which is a module-based generalization of the Ring Learning With Errors
(R-LWE) problem (Regev, 2009).

3.2.1. Crystals-Kyber

Crystals-Kyber (Bos et al., 2018) is a Post-Quantum Key Encapsulation Mechanism
(KEM). A KEM is a public-key cryptographic primitive designed to securely trans-
mit a symmetric key—hence the term key encapsulation. The encapsulated (i.e.,
encrypted) key is typically used for symmetric encryption of data. Encapsulation
is performed using the recipient’s public key, while decapsulation (i.e., decryption)
is performed using the corresponding private key. Kyber is based on the M-LWE
version of the well-known LPR scheme presented by Lyubashevsky, Peikert & Regev
(2010). Kyber provides two layers of functions for key generation, encryption, and
decryption: IND-CPA and IND-CCA functions. The IND-CCA functions internally
use the IND-CPA functions and apply the Fujisaki–Okamoto (FO) transform (Fu-
jisaki & Okamoto, 1999) to achieve IND-CCA security.
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Table 3.1 Kyber parameter sets

NIST Security Level n k q η1 η2 (du,dv)
Kyber512 1 256 2 3329 3 2 (10,4)
Kyber768 3 256 3 3329 2 2 (10,4)
Kyber1024 5 256 4 3329 2 2 (10,5)

Algorithm 1 Kyber.CPAPKE.KeyGen()
Output: Public Key pk
Output: Secret Key sk

1: d←{0,1}256

2: (ρ,σ) = G(d)
3: Â ∈Rk×k

q,n = Parse(XOF(ρ)) ▷ A is generated in NTT domain, Â = NTT(A)
4: s ∈Rk

q,n = CBDη1(XOF(σ||0))
5: e ∈Rk

q,n = CBDη1(XOF(σ||k)) ▷ Coefficients of s and e are in [−η1,η1]
6: t = As+ ê
7: pk = (̂t,ρ) ▷ t is stored in NTT domain, t̂ = NTT(t)
8: sk = ŝ ▷ s is stored in NTT domain, ŝ = NTT(s)
9: return (pk,sk)

Algorithm 1 presents the IND-CPA key generation, function of Kyber. The secret
and public key pair is generated using the M-LWE equation t = As+e where (t,A)
is public and s is the vector of secret polynomials. The vector of polynomials e rep-
resents the error term and is discarded after the key generation process. Coefficients
of s and e are short. In Kyber, such short coefficients are pseudo-randomly sampled
using a centered binomial distribution (CBD). Specifically, the output of CBDη1 lies
in the range [−η1,η1], with values closer to 0 being more likely to occur. Note that
the polynomial multiplications are performed using the NTT algorithm, which is
explained in Section 3.3. Indeed, t and s are returned in their NTT representations.
Table 3.1 demonstrates the parameter sets used by Kyber based on different NIST
security levels.
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Algorithm 2 Kyber.CPAPKE.Enc(pk,m,r)
Input: Public Key pk = (̂t,ρ)
Input: Plaintext m ∈ {0,1}256

Input: Random Coins r
Output: Ciphertext c

1: Â ∈Rk×k
q,n = Parse(XOF(ρ))

2: r ∈Rk
q,n = CBDη1(XOF(r||0)) ▷ Coefficients of r are in [−η1,η1]

3: e1 ∈Rk
q,n = CBDη2(XOF(r||k))

4: e2 ∈Rq,n = CBDη2(PRF(r||2k)) ▷ Coefficients of e1 and e2 are in [−η2,η2]
5: u = AT r+e1
6: v = tT r+ e2 +Decompressq(Decode1(m),1)
7: c1 = Compressq(u,du)
8: c2 = Compressq(v,dv)
9: return c= (c1, c2)

Algorithm 3 Kyber.CPAPKE.Dec(sk,c)
Input: Secret Key sk = (ŝ)
Input: Ciphertext c= (c1, c2)
Output: Plaintext m ∈ {0,1}256

1: u = Decompressq(c1,du)
2: v = Decompressq(c2,dv)
3: m= Encode1(Compressq(v− sT u),1))
4: return m

Algorithm 2 and Algorithm 3 present the IND-CPA encryption and decryption
functions of Kyber. During encryption, an ephemeral secret vector of polynomi-
als r ∈Rk

q,n is generated whose coefficients are also pseudo-randomly sampled using
CBDη1 . Observe that the equations in lines 5-6 form another M-LWE instances en-
suring the security of the output ciphertext. Both components of the ciphertext are
post-processed using specialized compression functions. In particular, Compressq,
Decompressq are helper functions designed to reduce the size of the ciphertext with-
out compromising the correctness of decryption. Observe that the output ciphertext
is compressed in lines 7-8 of Algorithm 2 and decompressed before processing in lines
1-2 of Algorithm 3. The compression ratio is decided by a parameter, which is du

or dv.

Similarly, the functions Encode and Decode are used to convert between polynomials
and binary strings. In particular, Decompressq(Decode1(m),1) maps m ∈ {0,1}256

to m′ ∈Rq,n as follows:

(3.1) m′
[i] =


⌊

q
2

⌋
, if m[i] = 1

0, otherwise
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The inverse transformation Encode1(Compressq(m′),1)) effectively rounds the input
to suppress noise introduced during encryption.

m[i] =

1, if
⌊

q
4

⌋
≤m′

[i] <
⌊

3q
4

⌋
0, otherwise

(3.2)

The correctness of the decryption is easy to notice. Omitting the compression and
decompression functions:

m′′ = v− sT u(3.3)

m′′ = tT r+ e2 +m′− sT (AT r+e1)(3.4)

m′′ = tT r+ e2 +m′− (sT AT )r+ sT e1(3.5)

m′′ = tT r+ e2 +m′− (tT −eT )r+ sT e1(3.6)

m′′ = tT r+ e2 +m′− tT r+eT r+ sT e1(3.7)

m′′ = e2 +m′ +eT r+ sT e1(3.8)

Round as explained above suppresses the terms with small coefficients (e2, eT r,
sT e1) leading to m′′ =m′.

Algorithm 4 Kyber.CCAKEM.KeyGen()
Output: Public Key pk
Output: Secret Key sk

1: z←{0,1}256

2: (pk,sk′) = Kyber.CPAPKE.KeyGen()
3: sk = (sk′||pk||H(pk)||z)
4: return (pk,sk)

Algorithm 5 Kyber.CCAKEM.Enc(pk)
Input: Public Key pk
Output: Ciphertext c
Output: Shared Key k

1: m←{0,1}256

2: m= H(m)
3: (k′, r) = G(m||H(pk))
4: c= Kyber.CPAPKE.Enc(pk,m,r)
5: k = KDF(k′||H(c))
6: return (c,k)
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Algorithm 6 Kyber.CCAKEM.Dec(c,sk,pk)
Input: Ciphertext c
Input: Secret Key sk
Output: Shared Key k

1: (sk′||pk||H(pk)||z) = sk
2: m′ = Kyber.CPAPKE.Dec(sk′, c)
3: (k′, r) = G(m′||h)
4: c′ = Kyber.CPAPKE.Enc(pk,m′, r)
5: if c= c′ then
6: return k = KDF(k′||H(c))
7: else
8: return k = KDF(k||H(c))
9: end if

Algorithm 4, Algorithm 5 and Algorithm 6 present the IND-CCA key generation,
encryption, and decryption functions of Kyber. Observe from Algorithm 6 that the
FO transform re-encrypts the initially decrypted m′ and compares the result of re-
encryption c′ with the input ciphertext c. In this way, chosen ciphertext attacks are
mitigated by preventing the acceptance of maliciously crafted ciphertexts.

H, G, XOF, PRF, and KDF are hash-based functions which are from the NIST FIPS-
202 standard (Dworkin & others, 2015). H and G are used for hashing, instantiated
as SHA3−256 and SHA3−512, respectively. XOF is instantiated as SHAKE−128;
PRF, and KDF are instantiated as SHAKE−256.

3.2.2. Crystals-Dilithium

Crystals-Dilithium (Ducas et al., 2018) is a Post-Quantum Digital Signature Algo-
rithm (DSA). A DSA is a public-key cryptographic scheme in which signatures are
generated using the secret key and verified using the corresponding public key.

Algorithm 7 presents the key generation function of Dilithium. As in Kyber, key
generation in Dilithium is also based on the M-LWE equation t = As1 + s2. In
contrast, the error term is retained as a part of the secret key in Dilithium and is
denoted by s2. The coefficients of the polynomials in s1 and s2 are short like Kyber.
In this case, they are sampled uniformly at random from the interval [−η,η]. The
uniform and pseudo-random sampling function used for this purpose is denoted
by Uη, as shown in line 3 of Algorithm 7. On the other hand, A is uniformly
distributed in Rq,n, pseudo-randomly generated using ExpandA function. Table 3.2
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Algorithm 7 Dilithium.KeyGen()
Output: Public Key pk
Output: Secret Key sk

1: ζ←{0,1}256

2: (ρ,ρ′,k) = H(ζ)
3: (s1,s2) ∈Rℓ

q,n×Rk
q,n = Uη(H(ρ′)) ▷ Coefficients of s1 and s1 are uniform in

[−η,η]
4: Â ∈Rk×ℓ

q,n = ExpandA(ρ) ▷ A is generated in NTT domain, Â = NTT(A)
5: t = As1 + s2
6: (t1,t0) = Power2Roundq(t,d)
7: tr = H(ρ||t1)
8: pk = (ρ,t1)
9: sk = (ρ,k, tr,s1,s2,t0)

10: return (pk,sk)

Table 3.2 Dilithium parameter sets. λ denotes the NIST security level.

λ n (k,ℓ) q η d γ1 γ2 β ω τ
Dilithium2 2 256 (4,4) 8380417 2 13 217 (q−1)/88 78 80 39
Dilithium3 3 256 (6,5) 8380417 4 13 219 (q−1)/32 196 55 49
Dilithium5 5 256 (8,7) 8380417 2 13 219 (q−1)/32 120 75 60

demonstrates the parameter sets employed by Dilithium, corresponding to different
security levels.

Algorithm 8 and Algorithm 9 present the signature generation and verification func-
tions of Dilithium, respectively. The signature process employs the rejection sam-
pling idea. This means, the main loop signature algorithm iterates (lines 6-23) until
a valid signature is found which passes the correctness and security checks. The first
check in line 14 ensures security, while the second check ensures both security and
correctness. At each iteration, a masking vector of polynomials y and a challenge
polynomial c are sampled. The coefficients of y are uniform in (−γ1,γ1]. On the
other hand, c has exactly τ number of non-zero coefficients, which are either 1 or
−1. A candidate signature is computed as z = y+c ·s1. The parameters are chosen
so that the expected number of iterations remains low, specifically, 4.25, 5.1, and
3.85 for Dilithium2, Dilithium3, and Dilithium5, respectively.

Power2Roundq is a supporting function that is used to split t into its lower-order bits
t0 and higher-order bits t1, satisfying t = t1 · 2d + t0. Similarly to compression in
Kyber, Power2Roundq(.,d) reduces the size of the public key based on the parameter
d. This optimization is based on the observation that Az−c ·t does not significantly
depend on the lower-order bits t0 of t. Therefore, the verifier only uses t1, as
shown in line 4 of Algorithm 9. Accordingly, the signer provides a set of "hints"
h in the output of the signature generation. The hint h correspond to the carry
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Algorithm 8 Dilithium.Sign(sk,m)
Input: Secret Key sk = (ρ,k, tr,s1,s2,t0)
Input: Message m
Output: Signature σ

1: Â ∈Rk×ℓ
q,n = ExpandA(ρ)

2: µ= H(tr||m)
3: ρ′ = H(k||µ)
4: κ= 0
5: (z,h) =⊥
6: while (z,h) =⊥ do
7: y ∈Rℓ

q,n = ExpandMask(ρ′,κ) ▷ Coefficients of y are in (−γ1,γ1]
8: w = Ay
9: w1 = HighBitsq(w,2γ2)

10: c̃= H(µ||w1)
11: c ∈Rq,n = SampleInBall(c̃) ▷ c has exactly τ #non-zero coefficients which

are ±1
12: z = y + c · s1
13: r0 = LowBitsq(w− c · s2,2γ2)
14: if (||z||∞ ≥ γ1−β) or (||r0||∞ ≥ γ2−β) then
15: (z,h) =⊥
16: else
17: h = MakeHintq(−c · t0,w− c · s2 + c · t0,2γ2)
18: if (||ct0||∞ ≥ γ2) or (# of 1’s in h> ω) then
19: (z,h) =⊥
20: end if
21: end if
22: κ= κ+ ℓ
23: end while
24: return σ = (c̃,z,h)

Algorithm 9 Dilithium.Verify(pk,m,σ)
Input: Public Key pk = (ρ,t1)
Input: Message m
Input: Signature (σ = (c̃,z,h))
Output: Boolean result indicating the input signature is valid or not

1: Â ∈Rk×ℓ
q,n = ExpandA(ρ)

2: µ= H(H(ρ||t1)||m)
3: c= SampleInBall(c̃)
4: w1′ = UseHintq(h,Az− ct1 ·2d,2γ2)
5: c̃′ = H(µ||w1′)
6: if (||z||∞ < γ1−β) and (# of 1’s in h< ω) and (c̃= c̃′) then
7: return True
8: else
9: return False

10: end if
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positions caused by the addition of the omitted term ct0. MakeHintq and UseHintq

complement each other for generating and using the hints. The checks in line 18 of
Algorithm 8 are needed for the correctness of this hint mechanism. For a,b ∈ Rq,n

with ||a|| ≤ α/2, MakeHintq, UseHintq and HighBitsq satisfy the following:

(3.9) UseHintq(MakeHintq(a,b,α), b,α) = HighBitsq(a+ b,α)

In a nutshell, for x ∈ Zq and positive integer α, the functions HighBitsq(x,α) and
LowBitsq(x,α) are defined as:

HighBitsq(x,α) =−⌊−x/α⌉(3.10)

LowBitsq(x,α) = x− (−⌊−x/α⌉) ·α (mod q)(3.11)

with a pre-defined special case for both.

The correctness of Dilithium’s verification is slightly more difficult to understand
compared to decryption of Kyber. The verifier computes:

w1
′ = UseHintq(h,Az− c · t1 ·2d,2γ2)(3.12)

w1
′ = UseHintq(h,A(y− c · s1)− c · t1 ·2d− c · t0 + c · t0,2γ2)(3.13)

w1
′ = UseHintq(h,w + c ·As1− c · t+ c · t0,2γ2)(3.14)

w1
′ = UseHintq(h,w + c · (As1− t)+ c · t0,2γ2)(3.15)

w1
′ = UseHintq(h,w− c · s2 + c · t0,2γ2)(3.16)

Applying line 23 of Algorithm 8 and Equation (3.2.2):

w1
′ = UseHintq(MakeHintq(−c · t0,w− c · s2 + ct0,2γ2),w− cs2 + c · t0,2γ2)(3.17)

w1
′ = HighBitsq(w− c · s2,2γ2)(3.18)

β satisfies ||c · s2||∞ ≤ β by definition and the signer checks ||LowBitsq(w− c ·
s2,2γ2)||∞ < γ2−β in line 14 of Algorithm 8. As a result:

||LowBitsq(w− c · s2,2γ2)+ c · s2||∞ < γ2(3.19)

Verbally, adding c · s2 to w− c ·s2 does not change its higher-order bits, considering
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decomposition with γ2:

HighBitsq(w− c · s2,2γ2) = HighBitsq(w− c · s2 + c · s2,2γ2)(3.20)

= HighBitsq(w,2γ2)(3.21)

= w1(3.22)

w1
′ = w1(3.23)

3.3. Number Theoretic Transform

Number Theoretic Transform (NTT) is a special form of Fast-Fourier Transform
(FFT) that operates over Zq instead of complex numbers C. NTT allows efficient
multiplication of polynomials over Rq,n. Representing a polynomial a(x) ∈ Rq,n in
the NTT domain can be viewed as an application of CRT. Polynomial multiplication
is achieved by element-wise multiplying the NTT representations of the operands:

(3.24) a(x) · b(x) = iNTT(NTT(a(x))⋆NTT(b(x)))

In order NTT to be defined in Rq,n, the following condition must be satisfied:

q ≡ 1 (mod 2n)(3.25)

This ensures a primitive 2n-th root of unity ψ2n exists in Zq for which ψn
2n = −1

mod q. This variant of NTT is also referred to as the negacyclic NTT. Dilithium’s
parameter selection (see Table 3.2) allows the use of a negacyclic NTT as 8380417≡ 1
(mod 256).

Using ψ2n, (xn +1) is factored in to ∏n−1
i=0 (x−ψ2i+1

2n ). NTT computes the following
isomorphism:

a(x)≈ NTT(a(x)) : Zq[x]/(xn +1)−→
n−1∏
i=0

Zq[x]/(x−ψ2i+1
2n )

Here, the i-th element of NTT(a(x)) is the remainder from dividing a(x) to (x−
ψ2i+1

2n ).

NTT can be computed by evaluating the polynomial at the powers of ψ2n. Let
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â= NTT(a(x)) for a(x) ∈Rq,n and â ∈ Zq. Then, forward and backward NTTs are
defined as follows:

â[i] =
n−1∑
j=0

a[j] ·ψ
j(2i+1)
2n = a(ψ2i+1

2n ) for 0≤ i < n(3.26)

a[i] =
n−1∑
j=0

â[j] ·ψ
−(j(2i+1))
2n for 0≤ i < n(3.27)

Notice that both the forward and inverse transformations can be viewed as matrix-
vector multiplication:

â= Ωq,na(3.28)

a= Ω−1
q,nâ(3.29)

where Ωq,n ∈ Zn×n
q and Ω−1

q,n ∈ Zn×n
q referred to as forward and backward NTT

matrices for Rq,n, respectively. Ωq,n[i][j] = ψ
j(2i+1)
2n and Ω−1

q,n[i][j] = ψ
−j(2i+1)
2n for

0≤ i, j < n.

These calculations require Θ(n2) steps. In case n is a power of 2, NTT can be
computed efficiently by splitting the polynomial to half of its size in a recursive
manner until a linear degree is reached. The transformation in each layer can be
efficiently implemented using Cooley-Tukey (CT) butterfly circuit (Cooley & Tukey,
1965). For degree-n/2i polynomial a(x) = a0(x) + a1(x) ·xn/2i+1 , the CT butterfly
is defined by the map

a0(x)+a1(x) ·xn/2i+1
−→
[
a0(x)+ δ ·a1(x),a0(x)− δ ·a1(x)

]
(3.30)

where δ is a power of ψ2n, called the twiddle factor. In this manner, full NTT
computation requires logn layers. For the inverse transformation, most applications
use the Gentleman-Sande (GS) butterfly (Gentleman & Sande, 1966):

[
a0(x),a1(x)

]
−→
(
(a0(x)+a1(x)) ·2−1

)
+
(
(a0(x)−a1(x)) ·2−1 · δ−1

)
·xn/2i+1

(3.31)

Using CT or GS when n is a power of 2, computing forward or backward NTT takes
Θ(n logn) steps.

As previously stated, multiplication in the NTT domain is performed element-wise.
This operation is often referred to as the base multiplication. For â = NTT(a),
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b̂= NTT(a), and ĉ= â ⋆ b̂:

c[i] = a[i] · b[i] (mod q) for 0≤ i < n(3.32)

3.3.1. Incomplete NTT

For efficiency reasons, or due to constraints imposed by the parameters q and n, the
NTT can be computed using only m < logn layers. In this case, polynomials are
recursively split into degree-n/2m polynomial factors, denoted by NTTm(a(x)). A
necessary condition for applying NTTm in the negacyclic setting is that

q ≡ 1 (mod n

2logn−m−1 )(3.33)

as discussed by (Lyubashevsky & Seiler, 2019b).

For instance, Kyber’s parameter selection (see Table 3.1) allows an incomplete NTT
of m= logn−1 = 7. Because 3329 ̸≡ 1 (mod 256) but 3329≡ 1 (mod 128).

When m= logn−1 as in Kyber, NTT representations of polynomials are vectors of
degree-1 polynomials with n/2 elements. Specifically, for a(x) ∈Rq,n:

â= NTTlogn−1(a(x)) ∈
n/2−1∏

i=0

Zq

(x2−ψ2i+1
n )(3.34)

As a result, the base multiplication refers to multiplication of degree-1 polynomials.
Let â= NTTm(a), b̂= NTTm(b) and ĉ= â ⋆ b̂. For 0≤ i < n/2:

ĉ[i][0] = â[i][0] · b̂[i][0] + â[i][0] · b̂[i][0] · ζi (mod q)(3.35)

ĉ[i][1] = â[i][0] · b̂[i][1] + â[i][1] · b̂[i][0] (mod q)(3.36)

where ζi = ψ2i+1
n .

In this setting, forward and backward NTTs are applied independently to even and
odd degree coefficients of a. Let a0 = ∑n/2−1

i=0 a[2i]x
2i and a1 = ∑n/2−1

i=0 a[2i+1]x
2i+1.
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Table 3.3 Carrier primes used in incomplete NTT based implementation of
Dilithium.

n q′

Dilithium2 256 257
Dilithium3 256 769
Dilithium5 256 257

Using Equation (3.29),

â[:][0] = Ωq,ma0 â[:][1] = Ωq,ma1(3.37)

a0 = Ω−1
q,mâ[:][0] a1 = Ω−1

q,mâ[:][1](3.38)

To unify the notation with Equation (3.29), these transformations can be merged
into a single operation by duplicating the elements of Ωq,m and Ω−1

q,m to form matrices
in Zn×n

q . When the NTT is incomplete, and we refer to Ωq,n or Ω−1
q,n, we mean the

matrix resulting from this duplication.

3.3.2. Dilithium’s Incomplete NTT based implementation

As previously discussed, incomplete NTT is sometimes preferred for efficiency rea-
sons, even when the parameter set would allow the use of a complete NTT. Ab-
dulrahman et al. (2022) presented an incomplete NTT based implementation of
Dilithium. In their approach, incomplete NTT arithmetic is used for certain opera-
tions, while others still rely on the complete NTT. In particular, the authors show
that the multiplications c ·s1 and c ·s2 can be carried out using a carrier prime and
incomplete NTT arithmetic. Recall that c is a challenge polynomial with exactly τ
non-zero coefficients, each equal to ±1. Meanwhile, the coefficients of polynomials
in s1 and s2 are bounded in absolute value by η. Consequently, the carrier prime,
denoted by q′, must satisfy:

q′ > 2τη(3.39)

The choice of carrier prime for each security level of Dilithium is shown in Table 3.3.
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Listing 3.1 Behavior of ARM SMUAD instruction

/∗
∗ SMUAD Rd, Rn, Rm
∗ Signed Mu l t i p l y Dual wi th Add
∗/

Rd = ( ( ( int16_t ) (Rn & 0xFFFF) ) ∗ ( ( int16_t ) (Rm & 0xFFFF) ) )
+ ( ( ( int16_t ) (Rn >> 16)) ∗ ( ( int16_t ) (Rm >> 1 6 ) ) ) ;

Listing 3.2 Behavior of ARM SMUADX instruction

/∗
∗ SMUADX Rd, Rn, Rm
∗ Signed Mu l t i p l y Dual wi th Add
∗/

Rd = ( ( ( int16_t ) (Rn & 0xFFFF) ) ∗ ( ( int16_t ) (Rm >> 16) ) )
+ ( ( ( int16_t ) (Rn >> 16)) ∗ ( ( int16_t ) (Rm & 0xFFFF ) ) ) ;

Abdulrahman et al. (2022) demonstrates that the incomplete NTT arithmetic of-
fers significant performance improvements on the Cortex-M4. For example, in the
case of Dilithium3, the number of clock cycles required for the forward NTT is
reduced from 8093 to 5200, resulting in a 1.56× speedup. We refer the reader to
Abdulrahman et al. (2022) for further benchmarking details. A key reason for this
improvement is that the incomplete NTT implementation leverages 16-bit arith-
metic, as both q′ = 257 and q′ = 769 are 16-bit primes. In contrast, the complete
NTT implementation for Dilithium relies on 32-bit arithmetic. Additionally, special
ARM instructions are employed for base multiplication. Specifically, the degree-1
polynomial multiplications in Equation (3.35) and Equation (3.36) are efficiently
implemented using the SMUAD(X)1 instruction. The behavior of these instructions
is presented in Listing 3.1 and Listing 3.2. The SMUAD instruction computes the
product of the lower 16 bits of two 32-bit integers and adds it to the product of the
upper 16 bits of the same integers. The SMUADX instruction computes the product
of the lower 16 bits of one integer with the upper 16 bits of another integer and
adds it to the product of the upper 16 bits of the first integer with the lower 16 bits
of the second integer. These instructions are used to compute Equation (3.35) and
Equation (3.36) efficiently.

1https://developer.arm.com/documentation/ddi0403/d/Application-Level-Architecture/Instruction-
Details/Alphabetical-list-of-ARMv7-M-Thumb-instructions/SMUAD–SMUADX
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3.4. Modular Arithmetic

As follows, we briefly review the modular reduction techniques that are adapted
in LBC, which serve as the core building blocks of arithmetic in Zq. Compared to
ECC or RSA, the modular arithmetic in LBC deals with relatively shorter integers.
Additionally, operating with signed integers in modular arithmetic proves to be more
efficient in LBC (Abdulrahman et al., 2022; Alkim et al., 2020; Botros et al., 2019;
Greconici et al., 2021; Huang et al., 2022). The main reason for this is due to the fact
that it simply eliminates the need for an extra addition for preventing negativeness
in the butterfly units (see Equation (3.3)). Performing signed arithmetic requires
the use of central modular reductions. For an odd modulus q, a central reduction is
explicitly denoted as

a′ = a mod±q(3.40)

which maps a to the unique representative a′ in the interval [−q/2, q/2]. In contrast,
the classical (unsigned) modular reduction maps elements to the range [0, q).

We should also note that, beyond implementation considerations, both Kyber and
Dilithium employ signed modular arithmetic at the algorithmic level. For instance,
the infinity norms frequently used in Dilithium operate on the signed modulo-q
representatives of polynomial coefficients. Table 3.4 summarizes state-of-the-art
reduction schemes implemented on the ARM Cortex-M4.

3.4.1. Barrett Reduction

The Barrett reduction was originally proposed by Barrett (1986). Its main idea is
to subtract a factor of the modulus q from the number to reduce by approximating
the division of the number by q through a pre-computed factor q′ and shifting. To
perform a′ = a mod q using Barrett reduction:

t= a · q′≫ 2β(3.41)

a′ = a− t · q(3.42)
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where q′ is precomputed as q′ =
⌊

22β

q

⌋
, and β is the machine word-size that satisfies

q < 2β.

A signed version of Barrett reduction adapted for LBC is proposed by Seiler (2018).
The input range of the signed Barrett reduction is [−β/2,β/2), and the output
range is [0, q]. A 9-cycle implementation of the signed Barrett reduction for packed
integers dedicated to ARM Cortex-M4 is presented by Alkim et al. (2020). Packing
of integers refers to storing two β = 16-bit integers in a 2β = 32-bit register, which
is then passed to the packed reduction function. Later, a 6-cycle implementation of
Barrett reduction for packed integers was reported by Abdulrahman et al. (2022),
which performs a central reduction with an output range [−q/2, q/2].

3.4.2. Montgomery Reduction

The Montgomery reduction is first proposed by Montgomery (1985). Similar to the
Barrett reduction, it enables a constant time reduction by eliminating the need for
division. To perform a′ = a (mod q) using the Naive Montgomery reduction, the
following steps are performed:

t= a · q′ mod 2β(3.43)

a′ = (a+ t · q)≫ β(3.44)

where q′ is a precomputed constant computed as q′ = −q−1 mod 2β, and β is the
machine word size that satisfies q < 2β. Note that the Montgomery reduction actu-
ally returns a′ ·2−β, where 2−β is referred to as the Montgomery factor.

A signed version of Montgomery reduction is presented by Seiler (2018), with an
input range [−qβ/2, qβ/2) and output range (−q,q). While a 3-cycle implementation
on ARM Cortex-M4 was initially given by Botros et al. (2019) for β = 16, the state-
of-the-art implementation of Montgomery reduction (Alkim et al., 2020; Greconici
et al., 2021) takes 2 cycles for both β = 16 and β = 32. 2-cycle implementation of
Alkim et al. (2020) is provided in Listing 3.3. Also, an 8-cycle implementation of
Montgomery reduction for packed integers was presented by Alkim et al. (2020).
We would like to note that a final correction may be required after the signed
Montgomery reduction to find the residue in the signed range [−q/2, q/2] which is
the ultimate goal.
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Listing 3.3 2-cycle signed Montgomery reduction on the Cortex-M4 (Alkim et al.,
2020). β = 16. Input: −8 · q ≤ a < 8 · q. Output: −q < a′ < q where a′ · 2−16 ≡
mod q .

1 SMULBB t, a, q’ ; t = a.q’

2 SMLABB a’, t, q, a ; a = a + t.q

3.4.3. Plantard Reduction

The Plantard reduction (Plantard, 2021) is a more recent algorithm compared to its
counterparts, Montgomery and Barrett. While the original Plantard reduction oper-
ates on unsigned integers, Huang et al. (2022) proposed an improved version, which
operates on signed integers to be employed in LBC. The output range of the signed
version is [−q/2, q/2], the same as the state-of-art Barrett reduction. One advan-
tage of the Plantard reduction is that it enables 2-cycle modular multiplication by
a constant, outperforming the 3-cycle Montgomery multiplication. The multiplica-
tion by a constant is beneficial for implementing the butterfly units during the NTT
transformations (see Equation (3.3)). On the other hand, the improved Plantard
reduction also takes 2 cycles on ARM Cortex-M4, the same as Montgomery. How-
ever, Plantard’s 2-cycle implementation enables a larger input range and a smaller
output range that is desirable. Specifically, the Plantard reduction generates the
output in the exact range [−q/2, q/2]. In other words, it does not require any final
correction. This is a significant improvement over the 2-cycle Montgomery reduction
whose output range is (−q,q). As a side note, packed reduction takes 5 cycles.

31



Table 3.4 Summary of state-of-the-art reduction implementations on ARM Cortex-
M4.

Scheme β Input
Range

Output
Range

Packed Cycles

Montgomery (Alkim
et al., 2020)

16 [−qβ/2, qβ/2) (−q,q) ✗ 2

Montgomery (Greconici
et al., 2021)

32 [−qβ/2, qβ/2) (−q,q) ✗ 2

Montgomery (Alkim
et al., 2020)

16 [−qβ/2, qβ/2) (−q,q) ✓ 8

Barrett (Seiler, 2018)✴ 16 [−β/2,β/2) [0, q] ✗ 3
Barrett (Abdulrahman

et al., 2022)
16 [−β/2,β/2) [−q/2, q/2] ✓ 6

Plantard (Huang et al.,
2022)

16 [−q222α′
, q222α′ ]✰ [−q/2, q/2] ✗ 2

Plantard (Huang et al.,
2022)

16 [−q222α′
, q222α′ ]✰ [−q/2, q/2] ✓ 5

✴ gives the definition of the algorithm but does not present an implementation on
ARM Cortex-M4.
✰ α′ is a parameter of Plantard reduction that satisfies q < 2β−α′−1. β denotes the
machine word size.

3.5. Side-Channel Analysis

In this section, we briefly discuss SCA attacks, focusing on the non-profiled class,
along with their countermeasures and attacks targeting those countermeasures.

3.5.1. Overview

In general, an attacker records side-channel leakage from a victim device during
the execution of cryptographic operations involving secret keys, such as symmet-
ric key encryption/decryption, keyed hashing, signature generation (e.g., Dilithium,
see Algorithm 8), or secret key decryption (e.g., Kyber, see Algorithm 6, Algo-
rithm 3). Typically, the attacker also has access to metadata associated with the
cryptographic process—this may be inputs or outputs such as ciphertext, plaintext,
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or messages to be signed. Leveraging the side-channel data alongside this metadata,
the attacker applies statistical analysis to infer the secret key. An overview of this at-
tack methodology is illustrated in Figure 3.1. Common side-channels include timing
information (Kocher, 1996), power consumption (Kocher et al., 1999), and electro-
magnetic (EM) emanations (Agrawal et al., 2002). This study focuses on power
leakage, though the techniques discussed are also applicable to EM side-channel
attacks.

One of the most important characteristics of SCA attacks is that they allow partial
recovery of the secret key. These portions, referred to as subkeys, are small enough
to make brute-force guessing feasible. Each subkey is attacked individually, and the
process is typically repeated until the entire key is recovered. For example, in a
common scenario, a 128-bit secret key is targeted in 8-bit subkeys, resulting in 16
independent sub-attacks.

3.5.2. Leakage Model

Power leakage-based SCA attacks exploit the fact that a processor’s power con-
sumption depends on the data it processes. We model the side-channel leakage
L as a random variable composed of two parts: a data-dependent leakage function
L(X), where X ∈ X is a random intermediate variable, and independent noise N(µ,σ)
following a Gaussian distribution. Formally, this can be expressed as:

L= L(X)+N(µ,σ)(3.45)

The most commonly observed and utilized leakage functions are the Hamming
Weight and Hamming Distance functions.

3.5.3. Non-Profiled SCA Attack

In the non-profiled SCA attack setting, the attacker has access to ν side-channel
leakages L = {L(i)}ν−1

i=0 and the corresponding publicly known and varying input-
s/outputs to the attacked algorithm C = {C(i)}ν−1

i=0 . Each index i corresponds to a
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Figure 3.1 General model for power leakage based SCA attacks.
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different execution of the cryptographic algorithm under attack. The known data,
consisting of L and C, are collectively referred to as traces. The steps of the non-
profiled SCA attacks is summarized as follows:

• The attacker chooses a target function G that involves both the unknown secret
s and known data C, with X = G(s,C).

• The attacker prepares a set of hypotheses (a.k.a. predictions) for the attacked
secret, K. For each K[t], the attacker computes the set of hypothetical interme-
diates Xt = {X(i)

t }ν−1
i=0 where X(i)

t = G(K[t],C
(i)).

• To test each hypothesis K[t], the attacker statistically compares L with Xt over
the observations L and Xt, resulting in a score: Score(K[t]) = D(L,Xt). The
statistical method D used by the attacker is known as distinguisher in the SCA
literature. Distinguishers studied in this study are explained in Section 3.5.4.

• The hypothesis with the best statistical score is the output of the attack:
K[t′] | t′ = argmaxt(Score(K[t])).

Notice that we treat X as a random variable defined as X = G(s,C), since it depends
on the randomness of C. Also, above steps are simplified as if the attacker recorded a
single power leakage for each execution of the attacked algorithm, which is typically
not true. Usually, the attacker records multiple samples for each execution and takes
the maximum during scoring: Score(K[t]) = maxj(D(Lj ,Xt)). In the literature, the
set of leakage samples used in the attack is referred to as the point-of-interest (PoI).

At times, we use X ′ to denote the hypothetical intermediate value, and X′ to denote
the corresponding set of hypothetical intermediate values, in order to simplify the
notation.

Example: We illustrate the application of the non-profiled attack framework
described above as well as each distinguisher presented in the next section using
a toy running example. This example further serves to demonstrate the masking
countermeasure and the corresponding attacks against it.

Consider a toy cryptosystem where the partial secret key s is a 2-bit integer. Suppose
an intermediate variable X in this scheme is computed as:

X = (C mod 4) · s+(C/4) (mod 4)(3.46)

In this example, 20 artificial traces were generated by simulating the power leakage.
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The simulated traces are shown in Table 3.5. Each of the 20 traces contains four
simulated leakage samples: one sample corresponds to the intermediate variable
X as defined above, while the remaining samples correspond to random data. All
samples were generated according to Equation (3.45) using the Hamming Weight
leakage model L = HW2, with parameters µ= 8 and σ = 0.25. The trace generation
procedure described here follows the approach outlined in Section 4.7, adapted for
the toy encryption scheme.

Table 3.5 Simulated traces for the toy encryption scheme.

Trace Index
(i)

C[i] L0[i] L1[i] L2[i] L3[i]

0 0 9.282 9.148 8.109 9.424
1 2 8.237 10.050 9.121 8.334
2 5 9.221 8.803 8.502 9.108
3 14 8.350 8.471 9.394 9.245
4 2 10.048 9.927 9.082 9.899
5 15 9.144 8.985 7.902 9.169
6 5 8.888 8.976 8.296 7.982
7 12 7.940 9.819 10.075 9.300
8 15 8.161 8.977 8.010 8.441
9 12 7.961 8.992 9.644 7.972
10 6 9.154 10.269 9.595 10.189
11 15 8.206 9.215 8.096 8.829
12 7 8.137 9.902 8.990 8.870
13 10 8.925 9.171 7.732 9.650
14 5 8.932 8.711 7.793 8.998
15 10 9.821 7.999 8.217 9.000
16 15 9.656 8.598 7.999 9.443
17 1 10.140 8.210 9.912 10.020
18 0 9.160 8.960 7.720 9.227
19 6 9.089 9.622 9.892 9.492

In this example, the secret key s was randomly selected as 3, and the leakage sample
associated with the intermediate variable X was randomly selected as 2.

Since s is a 2-bit value, the set of hypotheses for s is K = {0,1,2,3}. Table 3.6 shows
the computed sets of hypothetical intermediate values Xt for each hypothesis K[t]
across all traces.
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Table 3.6 Hypothetical intermediate variables Xt for each hypothesis K[t] in K =
{0,1,2,3} in the toy example.

Xt[i] = G(K[t],C[i])

i
t 0 1 2 3

0 0 0 0 0
1 0 2 0 2
2 1 2 3 0
3 3 1 3 1
4 0 2 0 2
5 3 2 1 0
6 1 2 3 0
7 3 3 3 3
8 3 2 1 0
9 3 3 3 3
10 1 3 1 3
11 3 2 1 0
12 1 0 3 2
13 2 0 2 0
14 1 2 3 0
15 2 0 2 0
16 3 2 1 0
17 0 1 2 3
18 0 0 0 0
19 1 3 1 3

3.5.4. SCA Distinguishers

3.5.4.1. Correlation Power Analysis

Correlation Power Analysis (CPA) (Brier et al., 2004) is a widely-used side-channel
distinguisher, based on Pearson’s correlation. The attacker estimates the correlation
coefficient between X ′ and L as follows:

(3.47) ρ̂(L′(X ′),L) = ˆcov(L′(X′),L)
ˆstd(L′(X′)) · ˆstd(L)

CPA requires the attacker to predict the device’s leakage function, denoted by L′.
The most common choices for L′ are the Hamming Weight function (HW) and the
Hamming Distance function (HD), which model the state transitions in CMOS cir-
cuits.

Example: The computed hypothetical leakages L′(Xt) for the running example
are presented in Table 3.7 for each hypothesis K[t], using L′ = HW2, along with
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their standard deviations ˆstd(HW2(Xt)). Table 3.8 shows the estimated covariance
ˆcov(Xt,Lj) for each K[t] and sample index j, with the standard deviation of each

sample ˆstd(Lj) shown in the last column. The estimated correlation coefficients
ρ̂(HW2(Xt),Lj) for each hypothesis and sample are summarized in Table 3.9. Observe
that the correlation coefficient for the correct hypothesis K[3] and j = 2 is significantly
higher than the others, demonstrating that CPA successfully recovers the secret key
in this running example.

Table 3.7 Hypothetical leakages L′(Xt) for each hypothesis Kt and the standard de-
viation of the hypothetical leakages in the toy example.

L′(G(K[t],C[i])) = HW2(Xt[i])

i
t 0 1 2 3

0 0 0 0 0
1 0 1 0 1
2 1 1 2 0
3 2 1 2 1
4 0 1 0 1
5 2 1 1 0
6 1 1 2 0
7 2 2 2 2
8 2 1 1 0
9 2 2 2 2
10 1 2 1 2
11 2 1 1 0
12 1 0 2 1
13 1 0 1 0
14 1 1 2 0
15 1 0 1 0
16 2 1 1 0
17 0 1 1 2
18 0 0 0 0
19 1 2 1 2

ˆstd(HW2(Xt)) 0.788 0.686 0.745 0.865

Table 3.8 Estimated covariance between the hypothetical leakages HW2(Xt) and the
observed leakages Lj for each hypothesis K[t] and sample index j in the toy example.
The last column shows the estimated standard deviation of the observed leakages
Lj .

ˆcov(HW2(Xt),Lj)

j
t 0 1 2 3 ˆstd(Lj)

0 -0.279 -0.119 -0.214 -0.083 0.684
1 -0.080 0.140 -0.096 0.222 0.621
2 -0.012 0.376 0.134 0.682 0.822
3 -0.145 -0.005 -0.147 0.131 0.611
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Table 3.9 Estimated correlation coefficients ρ̂(HW2(Xt),Lj) between the hypothetical
leakages HW2(Xt) and the observed leakages Lj for each hypothesis K[t] and sample
index j in the toy example.

ρ̂(HW2(Xt),Lj)

j
t 0 1 2 3

0 -0.517 -0.253 -0.420 -0.140
1 -0.163 0.329 -0.208 0.413
2 -0.019 0.666 0.219 0.960
3 -0.302 -0.011 -0.323 0.247

maxj(|ρ̂(HW2(Xt),Lj)|) 0.517 0.666 0.420 0.960

3.5.4.2. Mutual Information Analysis

Mutual Information Analysis (MIA) (Gierlichs et al., 2008) is a generic and
information-theoretic side-channel distinguisher. Unlike CPA, a generic distin-
guisher such as MIA does not require the attacker to predict a specific device leakage
function L′. Let H(L) denote the entropy of L, and let H(L|X ′) denote the condi-
tional entropy for L and X ′. The mutual information (MI) between L and X ′ is
defined as

I(X ′,L) = H(L)−H(L|X ′)(3.48)

Verbally, the entropy in L not covered by X ′, namely H(L|X ′), is subtracted from
H(L) to formulate the mutual information in between. The entropy H(L) is defined
as:

H(L) =−
∑
l∈L

P(L= l) log(P(L= l))(3.49)

while the conditional entropy H(L|X ′) is defined as:

H(L|X ′) =−
∑
x∈X′

P(X ′ = x)
∑
l∈L

P(L= l|X ′ = x′) log(P(L= l|X ′ = x))(3.50)

Computing H requires the probability density functions of its input. In practice, the
attacker estimates Ĥ over observations L and X′. A common practice to estimate
probabilities over observations is to use the histogram method, which partitions the
observed data into bins and estimates the probabilities of each bin.

39



A limitation of generic distinguishers is that they can’t distinguish if the target
function G is an injective function. For instance, the modular multiplication, which
is involved in the base multiplication in NTT domain (see Equation (3.32)) is an
injective function. A solution to address this challenge to apply bit-dropping to the
output of the target function, so it is no longer injective. For example, if the output
of G is 8 bits, the attacker can discard the most significant 4 bits, retaining only
the lower 4 bits. This modification ensures that G is no longer injective, allowing
generic distinguishers to be effectively applied.

Example: Let BinE(Lj) denote the function mapping observed leakage Lj[i] to
bin indexes in the histogram method, with respect to the bin edges E. We use
E = {7.5,8.5,9.5,10.5}, leveraging the knowledge that µ = 8; intuitively, E = {µ−
0.5,µ−0.5+HW2(1),µ−0.5+HW2(2),µ−0.5+HW2(3)}. In practice, the attacker
does not know µ and σ, and thus the bin edges are typically selected based on the
observed data. Table 3.10 shows the estimated histogram of the observed leakages
Lj for each sample index j in the running example. For example, the bin index
for the sample L0[0] is 1, since this value satisfies 8.5 ≤ 9.282 < 9.5. The estimated
probabilities for each bin are also shown in Table 3.10. The last row presents the
estimated entropy Ĥ(Lj) for each j, calculated from the estimated probabilities using
Equation (3.49). Table 3.11 presents the estimated joint probabilities P̂(BinE(Lj),Xt)
between the observed leakages Lj and the hypothetical intermediate values Xt for
each hypothesis K[t] and sample index j. For example, for j = 0 and hypothesis
K[t] = 0, the estimated probability of observing BinE(Lj) = 0 and Xt = 0 is 0.05. Note
that each 4×3 rectangle in the table sums to 1. Table 3.12 shows the corresponding
conditional probabilities P̂(BinE(Lj) | Xt). Each 3×1 row in these tables sums to 1.
Table 3.13 presents the estimated conditional entropies, calculated using the joint
and conditional probabilities together with Equation (3.50). Finally, Table 3.14
presents the estimated mutual information Î(Xt,Lj), calculated using the entropy
estimates for each K[t] and j. Observe that the mutual information corresponding to
the correct hypothesis K[3] at j = 2 is substantially higher than the others, illustrating
that MIA effectively recovers the secret key in this example.
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Table 3.10 Histograms of the observed leakages Lj for each sample index j and
the estimated probabilities in the toy example. The last row shows the estimated
entropy Ĥ(Lj) for each j.

BinE(Lj[i])

i
j 0 1 2 3

0 1 1 0 1
1 0 2 1 0
2 1 1 1 1
3 0 0 1 1
4 2 2 1 2
5 1 1 0 1
6 1 1 0 0
7 0 2 2 1
8 0 1 0 0
9 0 1 2 0
10 1 2 2 2
11 0 1 0 1
12 0 2 1 1
13 1 1 0 2
14 1 1 0 1
15 2 0 0 1
16 2 1 0 1
17 2 0 2 2
18 1 1 0 1
19 1 2 2 1

b P̂(BinE(Lj) = b)

0 0.35 0.15 0.50 0.20
1 0.45 0.55 0.25 0.60
2 0.20 0.30 0.25 0.20

Ĥ(Lj) 1.05 0.97 1.04 0.95

Table 3.11 Estimated joint probability distributions P̂(BinE(Lj) = b,Xt = x) for each
hypothesis K[t] and sample index j in the toy example.

P̂(BinE(Lj) = b,Xt = x)

j 0 1 2 3

b 0 1 2 0 1 2 0 1 2 0 1 2

t x

0 0 0.05 0.10 0.10 0.05 0.10 0.10 0.10 0.10 0.05 0.05 0.10 0.10
0 1 0.05 0.25 0.00 0.00 0.15 0.15 0.10 0.10 0.10 0.05 0.20 0.05
0 2 0.00 0.05 0.05 0.05 0.05 0.00 0.10 0.00 0.00 0.00 0.05 0.05
0 3 0.25 0.05 0.05 0.05 0.25 0.05 0.20 0.05 0.10 0.10 0.25 0.00
1 0 0.05 0.15 0.05 0.05 0.15 0.05 0.20 0.05 0.00 0.00 0.20 0.05
1 1 0.05 0.00 0.05 0.10 0.00 0.00 0.00 0.05 0.05 0.00 0.05 0.05
1 2 0.15 0.20 0.10 0.00 0.35 0.10 0.30 0.15 0.00 0.15 0.25 0.05
1 3 0.10 0.10 0.00 0.00 0.05 0.15 0.00 0.00 0.20 0.05 0.10 0.05
2 0 0.05 0.10 0.05 0.00 0.10 0.10 0.10 0.10 0.00 0.05 0.10 0.05
2 1 0.10 0.15 0.05 0.00 0.20 0.10 0.20 0.00 0.10 0.05 0.20 0.05
2 2 0.00 0.05 0.10 0.10 0.05 0.00 0.10 0.00 0.05 0.00 0.05 0.10
2 3 0.20 0.15 0.00 0.05 0.20 0.10 0.10 0.15 0.10 0.10 0.25 0.00
3 0 0.10 0.35 0.10 0.05 0.50 0.00 0.50 0.05 0.00 0.10 0.40 0.05
3 1 0.05 0.00 0.00 0.05 0.00 0.00 0.00 0.05 0.00 0.00 0.05 0.00
3 2 0.10 0.00 0.05 0.00 0.00 0.15 0.00 0.15 0.00 0.05 0.05 0.05
3 3 0.10 0.10 0.05 0.05 0.05 0.15 0.00 0.00 0.25 0.05 0.10 0.10
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Table 3.12 Estimated conditional probability distributions P̂(BinE(Lj) = b | Xt = x)
for each hypothesis K[t] and sample index j in the toy example.

P̂(BinE(Lj) = b | Xt = x)

j 0 1 2 3

b 0 1 2 0 1 2 0 1 2 0 1 2

t x

0 0 0.20 0.40 0.40 0.20 0.40 0.40 0.40 0.40 0.20 0.20 0.40 0.40
0 1 0.17 0.83 0.00 0.00 0.50 0.50 0.33 0.33 0.33 0.17 0.67 0.17
0 2 0.00 0.50 0.50 0.50 0.50 0.00 1.00 0.00 0.00 0.00 0.50 0.50
0 3 0.71 0.14 0.14 0.14 0.71 0.14 0.57 0.14 0.29 0.29 0.71 0.00
1 0 0.20 0.60 0.20 0.20 0.60 0.20 0.80 0.20 0.00 0.00 0.80 0.20
1 1 0.50 0.00 0.50 1.00 0.00 0.00 0.00 0.50 0.50 0.00 0.50 0.50
1 2 0.33 0.44 0.22 0.00 0.78 0.22 0.67 0.33 0.00 0.33 0.56 0.11
1 3 0.50 0.50 0.00 0.00 0.25 0.75 0.00 0.00 1.00 0.25 0.50 0.25
2 0 0.25 0.50 0.25 0.00 0.50 0.50 0.50 0.50 0.00 0.25 0.50 0.25
2 1 0.33 0.50 0.17 0.00 0.67 0.33 0.67 0.00 0.33 0.17 0.67 0.17
2 2 0.00 0.33 0.67 0.67 0.33 0.00 0.67 0.00 0.33 0.00 0.33 0.67
2 3 0.57 0.43 0.00 0.14 0.57 0.29 0.29 0.43 0.29 0.29 0.71 0.00
3 0 0.18 0.64 0.18 0.09 0.91 0.00 0.91 0.09 0.00 0.18 0.73 0.09
3 1 1.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
3 2 0.67 0.00 0.33 0.00 0.00 1.00 0.00 1.00 0.00 0.33 0.33 0.33
3 3 0.40 0.40 0.20 0.20 0.20 0.60 0.00 0.00 1.00 0.20 0.40 0.40

Table 3.13 Estimated conditional entropy Ĥ(Lj | Xt) for each hypothesis K[t] and
sample index j in the toy example.

Ĥ(Lj | Xt)

j
t 0 1 2 3

0 0.75 0.92 0.85 0.86
1 0.82 0.59 0.76 0.41
2 0.93 0.48 0.80 0.17
3 0.80 0.82 0.77 0.85

Table 3.14 Estimated mutual information values Î(Xt,Lj) for each hypothesis K[t] and
sample index j in the toy example.

Î(Xt,Lj)

j
t 0 1 2 3

0 0.30 0.13 0.20 0.19
1 0.15 0.39 0.22 0.57
2 0.11 0.56 0.24 0.87
3 0.15 0.13 0.18 0.10

maxj (̂I(Xt,Lj)) 0.30 0.56 0.24 0.87
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3.5.4.3. Kruskal-Wallis test

Kruskal-Wallis (KW) test (Yan et al., 2023) is another generic distinguisher based
on ranked side-channel leakages. Initially, the observed leakages L are ranked from
smallest to largest while the ties are resolved by assigning the average of the ranks
that the ties would have received, denoted by R = rank(L). The ranked data are
partitioned based on hypothetical intermediates X′:

(3.51) Rx = {R[i] | X′
[i] = x,0≤ i < ν}

which contains the ranks of leakages corresponding the traces where the intermediate
X ′ = x.

Then, KW statistic is defined as

(3.52) KW(X′,R) = (ν−1)
∑

x∈X′ νx(Rx− (ν+1)/2)2∑
x∈X′

∑νx
i=0(Rx[i]− (ν+1)/2)2

where νx denotes the number of elements in the set Rx and Rx = (∑νx
i=0 Rx[i])/νx.

Example: Table 3.15 shows the ranks of the observed leakages Lj for each sample
index j in the running example. We explicitly include the sample index j in the
notation to distinguish the ranks, denoted by Rj . For example, the rank R0

[7] is 0
since L0[7] is the smallest among L0 in Table 3.5. Table 3.16 shows the partitioning
of the traces with respect to the hypothetical intermediates Xt, for each hypothesis
K[t]. As an example, consider the partition corresponding to hypothesis K[0] = 0 and
hypothetical intermediate value Xt = 0. In this case, the traces {0,1,4,17,18} are
grouped together (also see Table 3.6). Notice that number of partitions is 4 since
the hypothetical values Xt take values x ∈ {0,1,2,3}. This partitioning is necessary
to construct the sets of ranks Rj,t

x , as shown in Table 3.17 for each x, j, and K[t].
Note that the notation explicitly includes the hypothesis index t and sample index
j for clarity. The partitions are constructed by mapping the trace indices from
Table 3.16 to their corresponding rank values for each j. The average ranks Rj,t

x

for each partition are summarized in Table 3.18. Finally, Table 3.19 presents the
computed KW statistics KW(Xt,R) for each hypothesis K[t] and sample index j,
calculated using Equation (3.52) and the partitioned ranks Rj,t

x . Observe that the
KW statistic for the correct hypothesis K[3] is significantly higher than the others,
demonstrating that KW successfully recovers the secret key in this running example.
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Table 3.15 Ranks Rj of the observed leakages Lj for each sample index j in the toy
example.

Rj
[i] | Rj = rank(Lj)

i
j 0 1 2 3

0 15 11 7 13
1 5 18 13 2
2 14 5 10 8
3 6 2 14 11
4 18 17 12 17
5 11 9 3 9
6 7 7 9 1
7 0 15 19 12
8 3 8 5 3
9 1 10 16 0
10 12 19 15 19
11 4 13 6 4
12 2 16 11 5
13 8 12 1 16
14 9 4 2 6
15 17 0 8 7
16 16 3 4 14
17 19 1 18 18
18 13 6 0 10
19 10 14 17 15

Table 3.16 Partitioning of the traces with respect to the hypothetical intermediates
Xt for each hypothesis K[t] in the toy example.

{i | Xt[i] = x,0 ≤ i < ν}

x
t 0 1 2 3

0 0, 1, 4, 17,
18

0, 12, 13,
15, 18

0, 1, 4, 18 0, 2, 5, 6,
8, 11, 13,
14, 15, 16,

18

1 2, 6, 10,
12, 14, 19

3, 17 5, 8, 10,
11, 16, 19

3

2 13, 15 1, 2, 4, 5,
6, 8, 11,
14, 16

13, 15, 17 1, 4, 12

3 3, 5, 7, 8,
9, 11, 16

7, 9, 10, 19 2, 3, 6, 7,
9, 12, 14

7, 9, 10,
17, 19
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Table 3.17 Partitioned ranks Rj,t
x with respect to hypothetical intermediates x for

each hypothesis K[t] and sample index j in the toy example.

Rj,t
x = {Rj

[i] | Xt[i] = x,0 ≤ i < ν} | Rj = rank(Lj)

j 0 1 2 3

t x

0 0 15, 5, 18,
19, 13

11, 18, 17,
1, 6

7, 13, 12,
18, 0

13, 2, 17,
18, 10

0 1 14, 7, 12,
2, 9, 10

5, 7, 19,
16, 4, 14

10, 9, 15,
11, 2, 17

8, 1, 19, 5,
6, 15

0 2 8, 17 12, 0 1, 8 16, 7
0 3 6, 11, 0, 3,

1, 4, 16
2, 9, 15, 8,
10, 13, 3

14, 3, 19,
5, 16, 6, 4

11, 9, 12,
3, 0, 4, 14

1 0 15, 2, 8,
17, 13

11, 16, 12,
0, 6

7, 11, 1, 8,
0

13, 5, 16,
7, 10

1 1 6, 19 2, 1 14, 18 11, 18
1 2 5, 14, 18,

11, 7, 3, 4,
9, 16

18, 5, 17,
9, 7, 8, 13,

4, 3

13, 10, 12,
3, 9, 5, 6,

2, 4

2, 8, 17, 9,
1, 3, 4, 6,

14
1 3 0, 1, 12, 10 15, 10, 19,

14
19, 16, 15,

17
12, 0, 19,

15

2 0 15, 5, 18,
13

11, 18, 17,
6

7, 13, 12, 0 13, 2, 17,
10

2 1 11, 3, 12,
4, 16, 10

9, 8, 19,
13, 3, 14

3, 5, 15, 6,
4, 17

9, 3, 19, 4,
14, 15

2 2 8, 17, 19 12, 0, 1 1, 8, 18 16, 7, 18
2 3 14, 6, 7, 0,

1, 2, 9
5, 2, 7, 15,
10, 16, 4

10, 14, 9,
19, 16, 11,

2

8, 11, 1,
12, 0, 5, 6

3 0 15, 14, 11,
7, 3, 4, 8,
9, 17, 16,

13

11, 5, 9, 7,
8, 13, 12,
4, 0, 3, 6

7, 10, 3, 9,
5, 6, 1, 2,

8, 4, 0

13, 8, 9, 1,
3, 4, 16, 6,
7, 14, 10

3 1 6 2 14 11
3 2 5, 18, 2 18, 17, 16 13, 12, 11 2, 17, 5
3 3 0, 1, 12,

19, 10
15, 10, 19,

1, 14
19, 16, 15,

18, 17
12, 0, 19,

18, 15

45



Table 3.18 Average ranks Rj,t
x with respect to hypothetical intermediates x for each

K[t] and j in the toy example.

Rj,t
x | Rj,t

x = {Rj
[i] | Xt[i] = x,0 ≤ i < ν},Rj = rank(Lj)

j 0 1 2 3

t x

0 0 14.00 10.60 10.00 12.00
0 1 9.00 10.83 10.67 9.00
0 2 12.50 6.00 4.50 11.50
0 3 5.86 8.57 9.57 7.57
1 0 11.00 9.00 5.40 10.20
1 1 12.50 1.50 16.00 14.50
1 2 9.67 9.33 7.11 7.11
1 3 5.75 14.50 16.75 11.50
2 0 12.75 13.00 8.00 10.50
2 1 9.33 11.00 8.33 10.67
2 2 14.67 4.33 9.00 13.67
2 3 5.57 8.43 11.57 6.14
3 0 10.64 7.09 5.00 8.27
3 1 6.00 2.00 14.00 11.00
3 2 8.33 17.00 12.00 8.00
3 3 8.40 11.80 17.00 12.80

Table 3.19 KW(Xt,Lj) statistics for each hypothesis K[t] and sample index j in the
toy example.

KW(Xt,Lj)

j
t 0 1 2 3

0 227662.469 215077.797 229324.719 210240.250
1 211289.641 229222.797 221460.922 237664.609
2 212490.125 248967.859 211358.531 260071.203
3 213211.719 218429.406 220725.281 214513.781

maxj(KW(Xt,Lj)) 227662.469 248967.859 229324.719 260071.203
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3.5.5. Masking Countermeasure

Masking (Chari et al., 1999) is the state-of-the-art countermeasure against power
leakage based SCA attacks. The masking countermeasure operates as a secret shar-
ing scheme through the cryptographic execution. The level of protection is deter-
mined by the masking order. Specifically, a (d−1)-th order masking scheme utilizes
d shares to provide resistance against d−1 simultaneous leakages.

Various types of masking exist in the literature, which are distinguished by the op-
erator used to combine the shares. The most frequently employed masking schemes
are boolean and arithmetic masking. In boolean masking, for a sensitive variable X,
the shares X{0},X{1}, . . . ,X{d−1} satisfy:

X =X{0}⊕X{1}⊕ · · ·⊕X{d−1}(3.53)

where ⊕ denotes the bit-wise exclusive-or operation.

On the other hand, in arithmetic masking, the secret value is shared as:

X =X{0} +X{1} + · · ·+X{d−1} (mod q)(3.54)

Masking is effective because the power leakages corresponding to any d−1 shares,
e.g., {L(X{i})}d−2

i=0 , are statistically independent of the sensitive intermediate value
X.

In masked implementations, sensitive variables such as secret keys, nonces, and
seeds are split into d shares as described above at the start of execution. The
entire algorithm is then executed independently over these shares. Specifically, to
mask a secret s, the shares S{0}, . . . ,S{d−2} are sampled uniformly at random, and
the final share is computed as S{d−1} = s

⊕(⊕d−2
i=0 S

{i}) for boolean masking, or
S{d−1} = s−∑d−2

i=0 S
{i} (mod q) for arithmetic masking. Throughout execution, the

shares of intermediate variables maintain the secret sharing relationship defined
by Equation (3.53), Equation (3.54), or any other relevant secret sharing relation,
depending on the masking scheme employed.

Running the algorithm independently over the shares is straightforward for oper-
ations that are linear with respect to the masking scheme. For example, boolean
operations such as XOR and bit shifts are compatible with boolean masking, while
arithmetic operations such as addition and multiplication are compatible with arith-
metic masking. However, masking non-linear operations presents significant chal-
lenges and has been the subject of extensive research. Examples of non-linear opera-
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tions in boolean masking include the AES S-Box (Canright & Batina, 2008) and the
chi transformation in Keccak (Groß, Schaffenrath & Mangard, 2017). In arithmetic
masking, non-linear operations such as polynomial compression and decomposition
in LBC are particularly challenging to mask efficiently and securely (Coron, Gérard,
Trannoy & Zeitoun, 2023; D’Anvers, Van Beirendonck & Verbauwhede, 2022).

Example:

To illustrate masking in the context of the running toy encryption scheme, consider
arithmetic masking with two shares (d = 2). The 2-bit secret s is split into two
shares, S{0} and S{1}, such that s = S{0} +S{1} (mod 4). The computation of the
intermediate variable X can then be expressed as:

X{0} = (C mod 4) ·S{0} +(C/4) (mod 4)(3.55)

X{1} = (C mod 4) ·S{1} (mod 4)(3.56)

Notice that X{0} +X{1} = (C mod 4) · s+ (C/4) (mod 4) aligning with Equa-
tion (3.46).

Table 3.20 presents the simulated traces for the masked execution of the toy en-
cryption scheme, where the intermediate variable X is computed from the shares
X{0} and X{1} as described above. The secret shares S{0:1} are also demonstrated
for each trace. In this setting, each trace contains eight samples: two correspond
to the leakages of X{0} and X{1}, while the remaining samples represent simulated
leakages from unrelated random data. Observe from Table 3.20 that the first-order
CPA can’t distinguish the correct key from the others, as the leakages of X{0} and
X{1} are statistically independent of the secret key s.
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Table 3.20 Simulated traces for the toy encryption scheme with masking.

Trace
Index (i)

C[i] S
{0}
[i] S

{1}
[i] L0[i] L1[i] L2[i] L3[i] L4[i] L5[i] L6[i] L7[i]

0 0 1 2 9.385 10.425 8.026 8.006 8.809 9.260 8.237 8.050
1 10 0 3 8.753 9.249 9.484 8.880 8.954 7.923 9.191 9.314
2 13 1 2 7.933 10.351 8.234 7.755 10.183 7.954 9.041 10.226
3 13 0 3 8.886 9.762 9.884 8.607 9.798 7.755 9.644 9.116
4 12 2 1 9.010 9.441 9.954 7.996 9.166 8.889 8.222 7.783
5 2 3 0 8.154 9.269 8.595 10.189 8.804 9.847 8.101 10.213
6 0 3 0 9.199 7.790 8.137 9.902 7.990 7.870 7.728 7.597
7 13 1 2 7.907 10.384 8.109 8.347 8.932 8.711 8.793 8.998
8 10 0 3 8.112 9.446 8.828 9.908 9.109 10.198 9.656 8.598
9 9 3 0 9.988 8.334 9.336 10.248 8.039 10.071 7.980 7.690
10 5 1 2 9.219 8.737 8.958 10.166 10.302 7.743 9.086 7.914
11 9 2 1 9.088 9.156 7.998 9.965 10.304 10.078 8.863 10.114
12 15 3 0 8.428 8.860 7.961 9.129 10.391 8.843 7.811 10.477
13 3 0 3 8.186 8.030 7.828 9.005 8.011 8.097 9.001 9.954
14 1 2 1 8.554 10.286 8.718 7.861 10.044 9.711 9.291 9.189
15 0 2 1 9.965 8.152 7.915 7.719 9.154 7.769 7.885 8.835
16 14 0 3 8.834 7.880 9.830 7.921 8.502 8.779 8.915 9.267
17 13 0 3 9.874 8.718 10.174 8.105 8.096 8.104 9.827 7.981
18 6 3 0 8.067 9.266 9.962 8.409 9.061 10.845 7.823 10.443
19 11 1 2 9.374 10.207 9.036 8.602 8.855 10.060 9.229 10.230

Table 3.21 Estimated correlation coefficients ρ̂(HW2(Xt),Lj) between the hypothet-
ical leakages HW2(Xt) and the observed leakages Lj for each hypothesis K[t] and
sample index j in the toy example with masking.

ρ̂(HW2(Xt),Lj)

j
t 0 1 2 3

0 -0.134 -0.027 -0.305 -0.160
1 0.165 -0.240 -0.046 0.333
2 0.477 0.130 0.474 0.426
3 -0.255 0.258 -0.265 -0.334
4 0.248 0.005 0.236 -0.018
5 -0.154 0.508 -0.288 0.466
6 0.307 -0.300 0.339 0.116
7 0.057 0.229 -0.103 0.291

maxj(|ρ̂(HW2(Xt),Lj)|) 0.477 0.508 0.474 0.466
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3.5.6. Attacks on Masking

Next, we discuss how SCA distinguishers are extended to be effective in the pres-
ence of masking countermeasures. In general, attacking a (d−1)-th order masked
implementation requires a d-th order SCA attack. A d-th order attack utilizes the
leakages of d secret shares, denoted as L0,L1, . . . ,Ld−1.

3.5.6.1. Higher-order CPA

To perform a higher-order CPA (HOCPA) attack on a masked implementation, a
function that combines the leakage of shares L0,L1, ..,Ld−1 must be used. The most
frequently used combination function is the mean-free product (Prouff et al., 2009),
which is defined as follows for a d-th order attack:

(3.57) C(L0,L1, ..,Ld−1) =
d−1∏
i=0

(
Li−E[Li]

)

To simplify the notation, we use C({Li}d−1
i=0 ) for the above definition. A challenge

here is to find the subset of samples to combine through the mean-free product or
another combination function. In most circumstances, performing the combination
exhaustively for all leakage samples may be infeasible.

To efficiently perform a HOCPA attack by means of a combination function, an
optimal prediction function must be calculated (Prouff et al., 2009). Specifically, for
a d-th order attack:

(3.58) Fd
opt(x) = E

[
C
(
{L′(X{i})}d−1

i=0
)∣∣∣X = x

]
where X =∑d−1

i=0 X
{i} thus the expectation is taken over the random shares X{0:d−2}.

The attacker then estimates ρ̂(Fd
opt(X ′),C({Li}d−1

i=0 )). The correlation achieved by
the optimal prediction function fd

opt is called optimal correlation denoted by ρopt:

ρopt = ρ(Fd
opt(X),C({L′(X{i})}d−1

i=0 ))(3.59)

In the case of boolean masking, it has been shown that Fd
opt = HWβ for all d and

β (Prouff et al., 2009). However, for arithmetic masking, deriving Fd
opt is generally

more involved and may not have a simple closed-form expression. In such cases, the
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optimal prediction function must often be computed numerically or approximated
based on the statistical properties of the shares and the leakage function.

Another commonly used combination function is the absolute value combination
function (Joye, Paillier & Schoenmakers, 2005), defined as follows for d= 2:

(3.60) Cabs
(
L(X{0}),L(X{1})

)
=
∣∣∣L(X{0})−L(X{1})

∣∣∣
Note that we omit the subscript when referring to the mean-free product combi-
nation function C, whereas we explicitly include it when referring to the absolute
value combination function Cabs. This is because the mean-free product is used
much more frequently in this study.

Example: Table 3.22 illustrates the application of the mean-free product combi-
nation function C to the simulated traces from the toy example, as previously shown
in Table 3.20. For clarity, not all possible combinations of the simulated samples
are included. Since each trace contains 8 samples, there are 64 possible pairwise
combinations. Here, we present only the combinations where the sample at index
j0 = 0 is combined with each sample at indices 0 ≤ j1 < 8. In this setting, The
optimal prediction function is defined (by considering L′ = HW2) as:

F2
opt(0) = 0.25, F2

opt(1) = 0, F2
opt(2) = 0.25, F2

opt(3) =−0.5(3.61)

For example, for x= 0:

F2
opt(0) =

∑3
i=0 C(HW2(i),HW2(4− i mod 4))

4(3.62)

=
∑3

i=0(HW2(i)−1) · (HW2((4− i mod 4)−1))
4(3.63)

= (−1) · (−1)+0 ·1+0 ·01 ·0
4(3.64)

= 0.25(3.65)

Notice that E[HW2(X)] = 1 when X is uniformly distributed over {0,1,2,3}.

For brevity, we omit the detailed computations for HOCPA, as they follow the same
procedure as CPA, with HW2 replaced by F2

opt and Lj replaced by C({Lj0 ,Lj1}).
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Table 3.22 Combinations of the observed leakages in the toy example with masking.
Leakages for sample index j0 = 0 is combined to all 0≤ j1 < 8.

C(Lj0 ,Lj1 )

i
j1 0 1 2 3 4 5 6 7

0 0.291 0.667 -0.443 -0.447 -0.170 0.181 -0.258 -0.566
1 0.009 -0.006 -0.059 -0.004 0.016 0.093 -0.044 -0.020
2 0.832 -1.062 0.560 0.986 -0.965 0.886 -0.296 -1.028
3 0.002 0.023 0.041 -0.009 0.027 -0.047 0.037 0.001
4 0.027 0.042 0.182 -0.138 0.007 -0.006 -0.081 -0.217
5 0.479 -0.057 0.175 -0.936 0.223 -0.638 0.426 -0.771
6 0.125 -0.494 -0.252 0.377 -0.402 -0.373 -0.349 -0.531
7 0.882 -1.125 0.694 0.459 0.182 0.201 -0.072 0.095
8 0.539 -0.190 0.015 -0.787 0.012 -0.934 -0.690 0.368
9 1.305 -0.975 0.557 1.613 -1.241 1.309 -0.841 -1.610
10 0.140 -0.168 0.041 0.497 0.440 -0.442 0.138 -0.443
11 0.058 -0.008 -0.206 0.273 0.285 0.279 0.035 0.245
12 0.175 0.137 0.371 -0.123 -0.529 0.034 0.379 -0.576
13 0.435 0.763 0.673 -0.111 0.735 0.547 -0.188 -0.563
14 0.085 -0.321 0.038 0.284 -0.268 -0.229 -0.168 -0.026
15 1.253 -1.159 -1.044 -1.251 0.032 -1.295 -0.931 -0.295
16 0.000 0.016 -0.012 0.011 0.007 0.002 -0.002 -0.002
17 1.058 -0.482 1.364 -0.752 -1.058 -0.845 1.142 -1.150
18 0.607 -0.061 -0.867 0.332 0.050 -1.495 0.696 -1.046
19 0.279 0.538 0.099 -0.124 -0.143 0.599 0.271 0.597

3.5.6.2. Multivariate Mutual Information Analysis

MIA trivially generalizes to a higher-order attack, known as Multivariate Mutual
Information Analysis (MMIA). For d= 2:

(3.66) I(L0,L1,X
′) = I(L0,L1)− I(L0,L1|X ′)

the conditionally mutual information is defined as:

(3.67) I(L0,L1 |X ′) =
∑
x∈X′

P(X ′ = x) · I(L0,L1 |X = x)

In this setting, the probability distributions of both L0 and L1 are estimated.
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Example: Table 3.23 shows the histogram of the observed leakages Lj for each
sample index j in the masked toy example. We omit the detailed calculations for
MMIA due to their complexity. However, the process is a straightforward extension
of the MIA procedure, applying the above formulation and using the histograms of
two leakage samples.

Table 3.23 Histograms of the observed leakages Lj for each sample index j and the
estimated probabilities in the toy example with masking.

BinE(Lj[i])

i
j 0 1 2 3 4 5 6 7

0 10 18 2 4 6 13 5 6
1 2 12 5 10 11 12 10 13
2 15 2 16 18 2 18 4 3
3 1 14 10 9 12 8 13 15
4 3 15 13 5 8 9 8 11
5 12 10 12 1 16 4 17 4
6 6 4 3 15 4 6 3 8
7 16 1 18 16 15 14 9 16
8 13 7 7 2 10 2 2 18
9 19 3 15 19 0 19 1 0
10 7 8 9 17 18 5 14 9
11 4 11 4 12 17 15 12 17
12 8 16 14 7 3 11 16 5
13 11 19 17 8 19 16 6 7
14 5 6 8 13 5 7 7 12
15 18 0 0 0 13 1 0 10
16 0 13 6 11 9 10 11 14
17 17 5 19 3 1 3 19 1
18 14 9 1 14 14 0 18 2
19 9 17 11 6 7 17 15 19

3.5.6.3. Higher-order KW

Like CPA, a higher-order attack using KW is performed using a combination
function such as C. The attacker computes the ranks of the combined leakages
C({Li}d−1

i=0 ):

R = rank(C({Li}d−1
i=0 ))(3.68)

The remainder of the procedure follows as detailed in Section 3.5.4.3.

Example: As an illustrative example, Table 3.24 presents the ranks of the com-
bined leakages for the masked toy example. Note that we show only the ranks
corresponding to combinations where the sample at index j0 = 0 is combined with
each sample at indices 0 ≤ j1 < 8. We skip the subsequent computations for the
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second-order KW since they follow exactly the same procedure as the first-order
KW described in Section 3.5.4.3, but are applied to the ranks of the combined
leakages.

Table 3.24 Ranks Rj0,j1 of the combinations of the observed leakages C(Lj0 ,Lj1) in
the toy example with masking. Leakages for sample index j0 = 0 is combined to all
0≤ j1 < 8.

Rj0,j1
[i] | Rj0,j1 = rank(C(Lj0 ,Lj1 ))

i
j 0 1 2 3 4 5 6 7

0 11 19 3 5 7 14 6 7
1 3 13 6 11 12 13 11 14
2 16 3 17 19 3 19 5 4
3 2 15 11 10 13 9 14 16
4 4 16 14 6 9 10 9 12
5 13 11 13 2 17 5 18 5
6 7 5 4 16 5 7 4 9
7 17 2 19 17 16 15 10 17
8 14 8 8 3 11 3 3 19
9 20 4 16 20 1 20 2 1
10 8 9 10 18 19 6 15 10
11 5 12 5 13 18 16 13 18
12 9 17 15 8 4 12 17 6
13 12 20 18 9 20 17 7 8
14 6 7 9 14 6 8 8 13
15 19 1 1 1 14 2 1 11
16 1 14 7 12 10 11 12 15
17 18 6 20 4 2 4 20 2
18 15 10 2 15 15 1 19 3
19 10 18 12 7 8 18 16 20
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4. NON-PROFILED SCA ON NTT MULTIPLICATION

In this chapter, we briefly describe how non-profiled SCA attacks are applied to
NTT-based polynomial multiplication as used in Dilithium and Kyber.

4.1. Adversary Model

Recall that SCA attacks target cryptographic function executions that involve secret
keys. In this context, we focus on the signature generation function in Dilithium
(Algorithm 8), which involves secret vectors of polynomials s1 and s2. Likewise, we
target the secret key decryption function in Kyber (Algorithm 6), which uses the
secret polynomial vector s.

Throughout this study, we denote the targeted secret polynomial in LBC by s, and
its NTT domain representation by ŝ. This notation can refer to any individual
polynomial s[i] in Kyber, or s1[i] or s2[i] in Dilithium, for any index i. The described
methodology is applied repeatedly to recover all polynomials within these secret
vectors.

To perform a non-profiled SCA attack on s, a natural choice for the target operation
is the NTT-based polynomial multiplication (Chen et al., 2021; Mujdei et al., 2024;
Tosun et al., 2024,2; Tosun & Savas, 2024). In Kyber, this corresponds to one of
the polynomial multiplications u[i] · s[i] (see line 3 of Algorithm 3) for some index i.
Similarly, in Dilithium, it may refer to one of the polynomial multiplications c · s1[i]
or c · s2[i] (see lines 12–13 and 17 of Algorithm 8).

We denote the publicly known operand involved in the NTT-based polynomial multi-
plication by c, and its NTT representation by ĉ. Specifically, in Kyber, c corresponds
to any of the ciphertext polynomials u[i], and in Dilithium, c refers to the challenge
polynomial (also denoted as c in Algorithm 8). In both cases, c is publicly known
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and varies across executions of the attacked function.

More precisely, the target of the attack is the base multiplication ŝ ⋆ ĉ performed in
the NTT domain, which reduces to a set of independent products ŝ[i] · ĉ[i], enabling
each ŝ[i] to be attacked individually. In the following two sections, we present the de-
tails of these attacks in the context of complete and incomplete NTTs, corresponding
to Dilithium and Kyber, respectively.

4.2. Attack on Complete NTT

First, we describe the attack when the NTT is complete as in Dilithium. As previ-
ously mentioned, the base multiplication in the NTT domain is performed element-
wise. Consequently, each coefficient ŝ[i] can be treated as a subkey and attacked
independently using the corresponding public value ĉ[i]. Under a complete NTT,
this operation reduces to a set of independent modular multiplications of the form
G(ŝ[i], ĉ[i]) = ŝ[i] · ĉ[i] (mod q) (see Equation (3.32)). Naturally, this results in a total
of n independent attacks. To recover ŝ[i], the attacker tests q hypotheses. However,
this number can be reduced to q/2 by leveraging the fact that the additive inverse
of the correct secret coefficient also tends to produce statistically distinguishable
scores during the SCA attack (Chen et al., 2021; Tosun et al., 2024,2; Tosun &
Savas, 2024).

4.3. Attack on Incomplete NTT

For the (log(n)−1)-level incomplete NTT case as in Kyber and specific implementa-
tions of Dilithium (Abdulrahman et al., 2022), the base multiplication is presented
in Equation (3.35)-Equation (3.36), which consists of independent multiplications of
degree-1 polynomials. Consequently, the attacker performs n/2 independent attacks.
The attacker can target

• The output lower degree-coefficient from these multiplications G(ŝ[i], ĉ[i]) =
r̂[i][0] (computed in Equation (3.35))
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• The output higher degree coefficient G(ŝ[i], ĉ[i]) = r̂[i][1] (computed in Equa-
tion (3.36))

• Or both G(ŝ[i], ĉ[i]) = r̂[i][0]||r̂[i][1].

For any of these target functions, both r̂[i][0] and r̂[i][1] depend on both ŝ[i][0] and
ŝ[i][1], so these must be predicted together (Mujdei et al., 2024; Tosun et al., 2024;
Tosun & Savas, 2024). As a result, the attacker must evaluate q2 hypotheses. Similar
to the complete NTT case, this number can be reduced to q2/2 by exploiting the
fact that additive inverses of the tested hypotheses yield similarly distinguishable
leakage characteristics.

4.4. Lattice Attacks

Prior research has demonstrated that recovering a subset of the NTT domain secret
coefficients ŝi through the SCA attack is sufficient to efficiently compute the entire
normal domain secret polynomial s (Kuo & Takayasu, 2023; Qiao et al., 2023) using
lattice attacks. Intuitively, this is due to the fact that the attack in the NTT
domain leads to an overdetermined system. While the search space for the NTT
domain secret polynomial is qn, it is significantly smaller in the normal domain
due to the small coefficient distributions, as explained in Section 3.2. In particular,
it is (2 · η+ 1)n for both Kyber and Dilithium, where coefficients are drawn from
different distributions. We use the η to unify the notation between Kyber and
Dilithium; specifically, η corresponds to η1 in the Dilithium algorithm definition.
Refer to Section 3.2 for the specific values of η.

The idea is to encode the inverse of forward NTT transformation as a lattice problem,
such as SIS or LWE. In particular, Kuo & Takayasu (2023) consider the inverse
NTT transformation s = Ω−1

q,nŝ (see Equation (3.29)). To simplify notation, let
Φ = Ω−1

q,n. Then, let Φkŝk and Φuŝu denote the known and unknown parts of this
transformation, respectively:

s=
[
Φk | Φu

][
ŝk | ŝu

]
(4.1)

s= Φkŝk +Φuŝu(4.2)
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Table 4.1 Minimum number of known NTT domain secret coefficients ŝ[i] needed to
recover whole s for Kyber768 with 1.0 success rate, using BKZ-50 (Kuo & Takayasu,
2023).

Algorithm Υ (min. # known ŝ[i])
Kyber512 39
Kyber768 38
Kyber1024 38

where Φk ∈ Zn×k
q , Φu ∈ Zn×u

q and n= k+u. Given the known vector v =−Φkŝk ∈
Zn

q and s being short by definition, the following becomes an LWE instance,

v = Φuŝu− s(4.3)

The LWE problem is solved by lattice reduction algorithms, such as BKZ. The num-
ber of NTT domain coefficients that is required to compute s depends on the block
size used in BKZ, which also increases the run-time of the algorithm For instance,
recovering Υ = 38 NTT domain coefficients out of 128 is needed for Kyber768 when
BKZ-50 is used Kuo & Takayasu (2023), as shown in Table 4.1. Here, we use Υ to
denote the minimum number of correctly recovered NTT domain coefficients. Also
note that BKZ-50 refers to applying the BKZ algorithm with a block size of 50.

Recall that for Kyber’s incomplete NTT, the transform is applied independently to
the even and odd degree coefficients. Therefore, we consider a total of 128 coefficients
instead of 256, and the process described in this section is applied independently to
the even and odd degree coefficients of s, as explained in Equation (3.38). Therefore,
in terms of notation, we have Φ = Ω−1

q,n/2 for Kyber. Accordingly, Equation (4.4)
becomes:

v[:][j] = Φuŝu[:][j]− s[:][j](4.4)

for j ∈ {0,1}.

The method in Qiao et al. (2023) differs slightly, as it leverages the forward NTT.
For Dilithium3 with BKZ-50, their approach requires Υ = 79 out of 256 secret co-
efficients. Readers may refer to the cited work for a detailed exploration of various
trade-offs regarding the block size and run-time.
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4.5. Masking Polynomial Arithmetic

In this section, we briefly explain how arithmetic masking is applied to the polyno-
mial operations including the NTT-based polynomial multiplication, with examples
from Dilithium and Kyber. Following the notation from Section 4.1, consider the
polynomial multiplication s · c.

The arithmetic shares s{0:d−1} of s are generated by sampling each coefficient uni-
formly at random:

s
{j}
[i] ← Zq for 0≤ i < n, 0≤ j < d(4.5)

and then computing the remaining shares as follows:

s
{j}
[i] =

s[i]−
d−2∑
j=0

s
{j}
[i]

 (mod q) for 0≤ i < n(4.6)

Then, the multiplication s · c can be easily performed through the arithmetic shares
s{0:d−1} of s. The output shares of the multiplication are computed as follows:

r{j} = s{j} · c for 0≤ j < d(4.7)

Notice that:

s · c=
d−1∑
j=0

s{j} · c(4.8)

This approach naturally extends to computations in the NTT domain:

r{j} = iNTT(NTT(s{j})⋆NTT(c))(4.9)

We frequently use the following equality for the masked base multiplication:

ŝ ⋆ ĉ=
d−1∑
j=0

ŝ{j} ⋆ ĉ (mod q)(4.10)

Polynomial addition can be performed similarly. One of the output shares, e.g.,
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r{0}, of the result are computed as follows:

r{0} = iNTT(NTT(s{0})⋆NTT(c))+ b(4.11)

= iNTT(NTT(s{0})⋆NTT(c)+NTT(b))(4.12)

where b is the polynomial added to the multiplication result. We assume that b is
public and does not require masking. The other output shares are computed as in
Equation (4.5). Notice that:

s · c+ b=
d−1∑
j=0

r{j}(4.13)

In case b is a sensitive value, it can be masked as well. In this case, the output
shares are computed as follows:

r{j} = iNTT(NTT(s{j})⋆NTT(c))+ b{j} for 0≤ j < d(4.14)

or equivalently:

r{j} = iNTT(NTT(s{j})⋆NTT(c)+NTT(b{j})) for 0≤ j < d(4.15)
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Algorithm 10 Simplified Masked Kyber.CPAPKE.Dec(sk,c)
Input: Secret Key sk = (ŝ)
Input: Ciphertext c= (c1, c2)
Input: Number of shares d
Output: Plaintext shares m{0:d−1} where mj ∈ {0,1}256 and m = m{0}⊕m{1}⊕
·· ·⊕m{d−1}

1: u = Decompressq(c1,du)
2: v = Decompressq(c2,dv)
3: for i= 0 to k−1 do ▷ Masking
4: s{d−1}

[i] = s[i]
5: for j = 0 to d−2 do
6: s{i}

[i] ←Rq,n

7: s{d−1}
[i] = s{d−1}

[i] − s{j}
[i]

8: end for
9: end for

10: for i= 0 to k−1 do ▷ Forward NTT
11: for j = 0 to d−1 do
12: ŝ{j}

[i] = NTT(s{j}
[i] )

13: end for
14: end for
15: for i= 0 to k−1 do
16: û[i] = NTT(u[i])
17: end for
18: for j = 0 to d−1 do ▷ Multiplication
19: r̂{j} = 0
20: for i= 0 to k−1 do
21: r̂{j} = r̂{j} + ŝ{j}

[i] ⋆ û[i]
22: end for
23: r{j} = iNTT(r̂{j})
24: end for
25: r{0} = v− r{0}

26: for j = 1 to d−1 do
27: r{j} =−r{j}

28: end for
29: m{0:d−1} = MaskedCompressAndEncode1(r{0:d−1},1)
30: return m{0:d−1}

A simplified version of the masked Kyber decryption algorithm (Algorithm 3) is
shown in Algorithm 10. We explicitly demonstrate the backward and forward NTTs
calculations through the shares as well as the accumulation during the multiplica-
tion sT u. While masking of polynomial operations such as multiplication and addi-
tions are straightforward, some operations require special attention. These masking
friendly operations are referred to as linear operations in masking literature while
the others are referred to as non-linear operations. In Kyber’s decryption algorithm
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Algorithm 3, the Compress operation is non-linear. Many studies discuss how to
mask this operation, e.g., Bronchain & Cassiers (2022); Fritzmann, Van Beiren-
donck, Roy, Karl, Schamberger, Verbauwhede & Sigl (2022). On the other hand,
Decompress and polynomial comparison other are non-linear operations from Algo-
rithm 2 and Algorithm 6, which must be masked in CCA setting. In this thesis, we
do not focus on masking of these operations, but rather on the masking of the NTT
based polynomial multiplication since this is the target operation for the presented
SCA attacks. In Algorithm 10, the masked computation of the compression and
encoding operations are abstracted by the function MaskedCompressAndEncode.

Masking of the multiplications c · s1 and c · s2 in Dilithium signature generation
algorithm (Algorithm 8) is similar to the Kyber decryption algorithm. Also, in
Dilithium’s signature generation algorithm, there are non-linear operations which
are the LowBitsq, the ExpandMask and bound checking operations.

4.6. Evaluated Implementations

We briefly summarize the real-device implementations of Kyber and Dilithium eval-
uated in this thesis. Consistent with the literature, our focus is on the ARM Cortex-
M4 architecture, which is widely adopted in embedded devices and SCA research.
We consider both unprotected and protected (masked) implementations of these
algorithms. The unprotected implementations are from the well-known pqm4 li-
brary (Kannwischer et al., 2019), which provides state-of-the-art implementations
of PQC algorithms for the ARM Cortex-M4 platform. The protected implemen-
tations are also based on the pqm4 library, inheriting the polynomial arithmetic
routines.

In Chapter 5, we target the Kyber and Dilithium implementations from the pqm4
library, following the optimizations of Abdulrahman et al. (2022) (explained in Sec-
tion 3.3.2), as well as an in-house masked version for Kyber. In Chapter 6 and
Chapter 7, we target the masked Kyber implementation by Bronchain & Cassiers
(2022). In Chapter 6, we also consider a modified version of this implementation,
where the Plantard arithmetic proposed by Huang et al. (2022) is integrated from
the pqm4 library into this masked implementation. In Chapter 7, we target the
masked Dilithium implementation by Coron, Gérard, Lepoint, Trannoy & Zeitoun
(2024). Further details on all target implementations are provided in the respective
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chapters. Needless to say, our methods are applicable to any platform, although our
experiments were conducted on the ARM Cortex-M4 architecture.

4.7. Simulated Traces

Throughout this thesis, we will be using simulated traces to evaluate the performance
of presented SCA attacks. The generation of these traces is based on the principles of
base multiplications in masked implementations. Algorithm 11 outlines the process
for generating traces under d-share masking.
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Algorithm 11 Simulated trace generation procedure for base multiplication under
masking with d shares.
Input: Number of shares d, modulus q, dimension m, number of traces ν
Input: A flag f1 indicating whether to use incomplete NTT arithmetic of not
Input: Noise mean µ and standard deviation σ, leakage function L
Input: A flag f2 indicating whether to use central reduction or not
Output: Traces (s,C,L)

1: Sample secret vector s← S, where

S =

Zm
q , f1

Zm×2
q , else

2: C = {}
3: L = {}
4: for 0≤ i < ν−1 do
5: c← S ▷ Sample public vector
6: s{j}← S for 0≤ t < d−1 ▷ Sample d−1 random secret shares
7: s{d−1} = s−∑d−2

t=0 s{j} (mod q)
8: if f1 then ▷ Complete NTT arithmetic
9: for 0≤ t < m, 0≤ j < d do ▷ Compute intermediate matrix

10: if f2 then
11: x{j}

[t] = s{j}
[t] ·c[t] mod±q

12: else
13: x{j}

[t] = s{j}
[t] ·c[t] mod+q

14: end if
15: end for
16: else ▷ Incomplete NTT arithmetic
17: for 0≤ t < m, 0≤ j < d do
18: if f2 then
19: g{j}

[t] = s{j}
[t][0] ·c[t][1] + s{j}

[t][1] ·c[t][0] mod±q ▷ as in Equation (3.36)
20: else
21: g{j}

[t] = s{j}
[t][0] ·c[t][1] + s{j}

[t][1] ·c[t][0] mod+q ▷ as in Equation (3.36)
22: end if
23: end for
24: end if
25: e∼ N(µ,σ) ▷ Sample noise vector
26: for 0≤ t < m, 0≤ j < d do ▷ Compute leakage
27: l[t+tm] = L(g{j}

[t] )+e[t+tm]
28: end for
29: C = C∪{c}, L = L∪{l} ▷ Record trace
30: end for
31: return s, C, L
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5. FASTER ATTACKS ON INCOMPLETE NTT

This chapter is based on the publication (Tosun & Savas, 2024).

We present a novel, efficient methodology that accelerates the non-profiled pow-
er/EM side-channel attack targeting polynomial multiplication based on the incom-
plete NTT algorithm. Our attack applies to Kyber and certain Dilithium implemen-
tations (Abdulrahman et al., 2022). We demonstrate that the method accelerates
attack run-time when compared to the existing approaches. While a conventional
non-profiled side-channel attack tests a much larger hypothesis set, i.e. O(q2), be-
cause it needs to predict two coefficients of secret polynomials together, we propose
a much faster zero-value filtering attack (ZV-FA), which reduces the size of the hy-
pothesis set by targeting the coefficients individually. To achieve that, we utilize
the zero-values in the publicly known vector c. We also propose an effective and
efficient validation and correction technique employing the inverse NTT to estimate
and modify the mispredicted coefficients. Our experimental results show that we
can achieve a speed-up of 958×over brute-force1.

5.1. Zero-Value Filtering for Acceleration

In this section, we first show a straightforward baseline attack and then give the
details of a more efficient zero-value filtering attack. Figure 5.1 presents a high-level
overview of the side-channel attacks discussed in this section. The baseline scheme
corresponds to the attack detailed in Section 4.3, which tests q2/2 hypotheses for
each pair of secret coefficients {ŝ[i][0], ŝ[i][1]} by leveraging the additive inverse trick2.

1The speed-up reported in this chaper differs from that in the publication, as it is calculated against a
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Baseline Attack
Test q2/2

hypotheses

for ±{ŝ[i][0], ŝ[i][1]}
±{ŝ[i][0], ŝ[i][1]}

Zero-Value

Attack

Test q/2
hypotheses

for ±ŝ[i][0]

±ŝ[i][0]

Test q/2
hypotheses

for ±ŝ[i][1]

±ŝ[i][1]

Zero-Value

Filtering Attack

Test q/2
hypotheses

for ±ŝ[i][0]

Test q/2
hypotheses

for ±ŝ[i][1]

Test d2

hypotheses

for ±{ŝ[i][0], ŝ[i][1]}

±{ŝ[i][0], ŝ[i][1]}

Attack requires traces
with special condition

Attack does not re-
quire traces with
special condition

top-d

top-d

Figure 5.1 Overview of the presented attacks.

5.1.1. Decreasing the Number of Hypotheses: Zero-Value Attack

A more practical scheme compared to the baseline in terms of the attack run-time
can be constructed by attacking the coefficients ŝ[i][0] and ŝ[i][1] individually, referred
here as Zero-Value (ZV) Attack. To achieve this, we need to eliminate the effect of
one of the secret coefficients from the reduction step during the NTT multiplication,
whose output constitutes the chosen target function G (see Section 4.3). This can be
accomplished by including only the traces to the attack that contain zeros in their
coefficients, which multiply one of the secret coefficients. Consider Equation (3.35)
to develop intuition for the proposed method. Let r̂ = ĉ ⋆ ŝ and assume ĉ[i][1] = 0
mod q for some 0 ≤ i < n/2. Then ŝ[i][1] · ĉ[i][1] · ζi mod q becomes 0 and r̂[i][0] =
ŝ[i][0] · ĉ[i][0] mod q. With sufficient number of traces meeting the condition ĉ[i][1] = 0

different baseline

2In the published work (Tosun & Savas, 2024), the baseline refers to the scheme without the additive inverse
trick, whereas the variant employing it (considered the baseline in this chapter) is denoted as baseline+.

All reported performance metrics have been adjusted accordingly.

66



mod q, predictions on ŝ[i][0] can be made independently of ŝ[i][1] for the specific value
of i. The prerequisites for the ZV attack are referred to as zero-value conditions.
Table 5.1 lists the four attacking scenarios that can be adopted. For instance, to
attack ŝ[i][0], we need the condition ĉ[i][1] = 0 mod q and use ĉ[i][0] or ĉ[i][0] = 0 mod q
and use ĉ[i][1]. As the conditions are identical with attack scenarios 1 and 4, both
ŝ[i][0] and ŝ[i][1] will show peaks in the results.

Table 5.1 ZV-Attack Scenarios. Probabilities are equal to 1/n.

Attacking Scenario Target Condition Used Meta Probability
1 ŝ[i][0] ĉ[i][1] = 0 ĉ[i][0] 0.0039
2 ŝ[i][0] ĉ[i][0] = 0 ĉ[i][1] 0.0039
3 ŝ[i][1] ĉ[i][0] = 0 ζi · ĉ[i][1] 0.0039
4 ŝ[i][1] ĉ[i][1] = 0 ĉ[i][0] 0.0039

This approach results in a brute-force search space of size q per coefficient ŝ[i][j],
which is reduced to q/2 by exploiting the additive inverse trick. The drawback of
this method is the hardness of finding traces meeting the mentioned conditions. We
mark a trace as valid for the attack if at least one coefficient in ĉ is 0; namely,

(ĉ[0][0] = 0) ∨ (ĉ[0][1] = 0) ∨ . . .

. . . ∨ (ĉ[n/2−1][0] = 0) ∨ (ĉ[n/2−1][1] = 0) (mod q)(5.1)

The probability for a random ĉ to be valid depends on q and n, and can be computed
by the following

1−
(
q−1
q

)n

(5.2)

which leads to 0.283 for Dilithium and 0.074 for Kyber. Recall that, Dilithium’s
signature function applies rejection sampling, which means the target operation c ·s1

is performed several times for each signature generation, with challenge polynomials
that are thrown away since the corresponding signature is rejected. However, one
can retrieve the unused challenge polynomials through another side-channel attack
and include them in the attack to c · s1. We would like to note that, c is usually
unprotected in the existing works from literature (Azouaoui, Bronchain, Cassiers,
Hoffmann, Kuzovkova, Renes, Schneider, Schönauer, Standaert & van Vredendaal,
2023; Migliore, Gérard, Tibouchi & Fouque, 2019) and the same assumption is
made by Bronchain et al. (2024). The polynomial c from rejected signatures can
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be attacked using the method presented in Primas et al. (2017), which targets the
calculation NTT(c). Moreover, since the coefficients of c are in {−1,0,1}, it would be
relatively easier to distinguish between those. By multiplying the expected number
of iterations presented in Section 3.2.2 by the probability 0.283, we find out that
each signature operation contains 1.2, 1.44, 1.09 valid challenges, i.e. known c, on
average.

On the other hand, in Kyber, the ciphertext vector of polynomials u is generated by
the key encapsulation function (see Algorithm 2), which operates on publicly known
inputs. Therefore, an attacker can brute-force the seeds used by key encapsulation
to find u that satisfies the validity condition given in Equation 5.1.

The individual probabilities for the coefficients ĉ[i][j] being 0 mod q, for a valid ĉ

are another crucial factor of attack performance. Table 5.1 lists the probabilities for
the aforementioned conditions, which is 1/n = 0.0039 for any i and j. Note that,
each ŝ[i][j] is attacked with the ones ensuring the corresponding zero-value conditions
among the collected traces. The listed probabilities suggest that the conditions are
not met very often. Intuitively, assuming that the SNR in the leakages L requires 200
traces for the attack to converge, the attacker must perform approximately 51.2K
measurements on the victim’s device considering the probabilities of conditions in
Table 5.1. Although the attacking phase of the presented scheme is significantly
faster than the baseline by a factor of q, a more optimal strategy exists, in terms of
both the number of traces and the attack run-time, as presented in the next section.

5.1.2. Decreasing the Number of Traces: Zero-Value Filtering

While the ZV scheme introduced in Section 5.1.1 requires a large number of traces
to retrieve the correct key exactly, alternatively having the correct key fall in top-d
candidate list is relatively inexpensive in terms of the number of traces, depending on
the value of d. Therefore, the ZV attack method can be used as a filtering mechanism
for the following hypothesis testing, forming a two-stage attacking scheme, referred
to as Zero-Value Filtering Attack (ZV-FA), which is formalized in Figure 5.2.

In the first stage (a.k.a. filtering stage), ŝ[i][0] and ŝ[i][1] are attacked individually
using the ZV attack scheme as presented in the preceding section. The outcomes of
these ZV attacks are denoted by K0 and K1, the sorted set of predictions for ŝ[i][0]
and ŝ[i][1], respectively, based on the scores assigned by the employed distinguisher
in ZV attacks. Then, in the second stage (a.k.a. scoring stage), a set of predictions
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START

ZV-Attack(ŝ[i][0]) ZV-Attack(ŝ[i][1])

ZV-FA.Score
(
{ ŝ[i][0], ŝ[i][1]},K0[:d]×K1[:d]

)

filtering stage

scoring stage

λ > υ

Return { ŝ′
[i][0], ŝ

′
[i][1]} increase d

K1K0

{ ŝ′
[i][0], ŝ

′
[i][1]} with score λ

Yes No
K0[:d]×K1[:d]
is expanded

Figure 5.2 Flowchart of ZV-FA(ŝ[i])

K = K0[:d]× K1[:d] of size d2 is formed for the pair {ŝ[i][0], ŝ[i][1]}. Notice that K0[:d]
(K1[:d]) stands for the top scoring d predictions in K0 (K1). Afterward, K is scored by
one of the distinguishers presented in Section 3.5.4 and Section 3.5.6. Compared to
the baseline scheme, a relatively small number of hypotheses, d2 is used for attacking
{ŝ[i][0], ŝ[i][1]}, as opposed to O(q2).

By the filtering stage, this method assumes that the correct key is in the top-d
list of predictions of the highest scores for the ZV attack. A threshold mechanism,
denoted by υ, validates the assumption through the attack output. The value of d
is iteratively increased and naturally K0[:d] and K1[:d] get larger, until a prediction
scoring greater than υ is found. By increasing d, more candidates are evaluated by
the second stage, which increases the probability of having the correct key in the top-
d list; naturally, the second stage takes longer to evaluate more candidates. A trivial
strategy for increasing d can be doubling it. Intuitively, doubling d is acceptable for
Dilithium as q is relatively small, regarding the RAM usage and response times from
scoring each set of candidates. However, reducing the rate of increasing d for Kyber
can be desirable, as the search space can grow quite large, considering q2 is 23.4-bit.
We explicitly state how d is updated in our experiments in Section 5.2. Needless
to say, the evaluated candidates from previous trials are not included during the
attack. The attack becomes identical to the baseline attack, for which the threshold
is not taken into account if the scores remain below υ until d covers the whole search
space.

The number of hypotheses to be tested by ZV attacks in the filtering stage is q/2.
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Then, for each α ∈ K0, we insert −α to K0, with the same rank as α. In this manner,
either {ŝ[i][0], ŝ[i][1]} or its additive inverse {−ŝ[i][0],−ŝ[i][1]} is retrieved through the
hypothesis testing in the scoring stage.

Compared to the ZV attack scheme, the new ZV-filtering attack is more effective
with a significantly smaller number of traces. The number of traces included in the
filtering stage is denoted by νf , while the second stage can be carried out without
the zero-value conditions. As a result, it can be carried out with a sufficient number
of traces to ensure that its output is reliable rather than using the entire set of valid
traces, which is excessive for evaluating the score.

5.1.3. Improving ZV-FA by Using Inverse NTT to Validate Predictions

The zero-value filtering attack introduced in Section 5.1.2 relies on the assumption
that a precise threshold can be found for all attacks on ŝ[i] for 0 ≤ i < n/2, which,
however, may not hold in practice as a non-profiled attack is performed blindly. A
possible solution to this problem is to use a conservative threshold. However, this
approach is computationally expensive, and a conservative threshold can still result
in false positives, albeit with a lower probability. Therefore, the attacker needs to
verify the found secrets, s for Kyber, s1, s2 for Dilithium, by the M-LWE equation
presented in Section 3.2.1 (see line 6 of Algorithm 1) and Section 3.2.2 (see line 5 of
Algorithm 4), respectively. Note that this verification can only be performed after
all the mentioned secrets have been attacked in all vector indices.

A more reasonable strategy for the attacker is to make use of the fact that s =
iNTT(ŝ) is a short polynomial. Recall that for both Dilithium and Kyber, the
normal domain secret coefficients s[i] are in [−η,η]. Therefore, a small error in the
prediction will diffuse through the inverse NTT computation and ruin the coefficients
of the output polynomial, empowering the attacker to efficiently validate the attack
output.

Figure 5.3 illustrates the flowchart of the ZV-FA from a higher-level perspective
with validation using the inverse NTT. Let ŝ′ denote a prediction to ŝ, formed
after completing the individual ZV attacks to ŝ[i][0] and ŝ[i][1] for all i at Step 1.
To validate ŝ′, iNTT(ŝ′) is computed, and the shortness property is sought in the
resulting polynomial. If the found polynomial is not validated the mispredicted pair
of coefficients in ŝ′ is approximated and re-attacked to correct it. The approximation
is performed by selecting the pair of coefficients with the minimum score. The
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current score for the prediction ŝ′
[i] is denoted by λi. Observe that the outputs of

ZV attacks are immediately scored at Step 2 if the shortness check fails. This initial
scoring step is needed to be able to compare the ZV scores with ZV-FA scores, which
are originally in distinct scales. The same distinguisher with ZV-FA.Score is applied
to ŝ′

[i] using the top scorer candidates from Step 1, Ki,0[0] and Ki,1[0], with the same
number of traces to get a comparable score with ZV-FA. In this manner, the attack
terminates without re-attacking predictions which are already correctly predicted
by ZV. Note that Ki,0 (Ki,1) is the set of predictions for ŝ[i][0] (ŝ[i][1]) sorted for the
ZV attack scores, slightly modifying our notation from the previous section, as the
coefficient index i is added to superscript.

START

1.
ZV-Attack(ŝ[i][0])
ZV-Attack(ŝ[i][1])
∀ i

||iNTT(ŝ′)||∞ ≤ η

2. ZV-FA.Score (ŝ′
[i],Ki,0[0]×Ki,1[0])

∀ i

i′ = argmini(λi) 3. ZV-FA.Score
(
ŝ′

[i′],Ki′,0[:di′ ]×Ki′,1[:di′ ]
)

||iNTT(ŝ′)||∞ ≤ η Return ŝ′

ŝ′

update ŝ′
[i′],λi′ increase di′

No

Yes

No

Yes
Ki′,0,Ki′,1

Figure 5.3 ZV-FA for the whole vector of polynomials ŝ with the application of
inverse NTT validation

The index of the minimum scoring pair from ŝ′ is found by computing i′ = argmini(λi)
and ZV-FA.Score is performed on ŝ[i′] at Step 3 to replace ŝ′

[i′]. Here, we skip the
filtering stage of ZV-FA (see Figure 5.2) because it is indeed performed at Step 1
and therefore Ki′,0 and Ki′,1 are known. ŝ′

[i′] is updated if a better scoring predic-
tion is found at the current invocation of ZV-FA.Score. At the same time, di′ is
updated as in Figure 5.2 (Again, the coefficient index i is included in the notation
to differentiate between d for ŝ[i]). Notice that the ZV-FA.Score can be performed
for the same ŝ[i] multiple times. However, the scoring is performed with distinct di

at each invocation of ZV-FA.Score to expand the search for the actual secret. Recall
that from the previous section, predictions for ŝ′

[i] that are evaluated previously are
71



not included in the attack. The prediction ŝ′
[i] is guaranteed to be corrected by

subsequent applications of ZV-FA.Score if the correct value for ŝ′
[i], is the top-scorer

among q · q/2 candidates.

The scheme is equivalent to ZV attack in terms of run-time if the found polynomial
is validated after Step 1. On the other hand, in the worst case, the scheme tests
q ·(q/2) ·(n/2) hypotheses in total for all i, via iterations of Step 3, thus it’s becoming
equivalent to the baseline. The differentiation between both directions depends on
the number of filtering traces, νf . Note that the threshold υ presented in the previous
section is not needed in the improved scheme thanks to inverse NTT validation.
The application of inverse NTT as a reliable and efficient method of verification
renders the ZV-FA fault-tolerant. This method ensures the preservation of accuracy
regardless of the choice of νf , enhancing the attack performance.

5.2. Results

In this section, we present the results obtained after implementing the above-
mentioned attacks in a realistic experimental setting, on Dilithium3 and Kyber768.
Moreover, we apply our attack on a masked version of Kyber768.

5.2.1. Target Implementation

We targeted the widely used pqm4 library (Kannwischer et al., 2019)3, which offers
state-of-the-art implementations of post-quantum cryptographic (PQC) algorithms
for the ARM Cortex-M4 platform. The specific version of the library analyzed
incorporates the optimizations described by Abdulrahman et al. (2022). Notably,
this implementation employs incomplete NTT arithmetic for the operations c · s1

and c · s2 in Dilithium, as detailed in Section 3.3.2. Both Kyber and Dilithium
implementations are extensively optimized using Cortex-M4 specific instructions,
which are further discussed in Section 3.3.2.

3https://github.com/mupq/pqm4, commit hash: 3bfbbfd
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5.2.2. Experimental Setup

We employed Analog Devices’ MAX325204 as the victim device to run pqm4’s
Dilithium signature and Kyber key decapsulation implementations. The first-order
masked implementation of Kyber is developed on top of the pqm4’s implementation
by randomly splitting s. For EM trace collection, LeCroy WavePro HD oscilloscope5

and Langer ICR HH500-66 nearfield micro-probe were used. Sampling rate of the os-
cilloscope was set to 10 GS/s and 1 GS/s, yielding 83.33 and 8.33 samples per clock,
for unprotected and protected implementations, respectively. We set up a trigger at
the start of the base multiplication in the target implementations of both Dilithium
and Kyber to record the timing samples relevant to our attack. The scared library7

is used for analysis and attack, running on a computer equipped with 64 GB RAM
and AMD Ryzen 9 5900X 12-Core Processor clocked at 3.70 GHz.

5.2.3. Pre-processing and Analysis

To cope with the adverse effects of misalignment over time, we performed the follow-
ing pre-processing steps for both algorithms: 1) pattern detection, 2) signal filtering,
and 3) extraction around peaks. A reference pattern is set by band-pass filtering
the first trace between 100 MHz and 140 MHz and applying moving variance to it.
The traces are aligned based on the reference pattern. Then, 64 peaks (128 for first-
order protected Kyber), which correspond to iterations of the base multiplication
(Equation (3.35), Equation (3.36)) (loop is unrolled by a factor of two), are detected
and sequential points after each peak are combined. Figure 5.4 highlights the iter-
ations over the average of pre-processed traces for Dilithium, conforming with the
pre-knowledge on the implementation. On the other hand, iterations of the base
multiplication for (masked) Kyber, are observed (for both shares) in Figure 5.5.
Given the clear visibility of the iterations of the base multiplication over time sam-
ples, it is possible to conduct individual attacks on ŝ[i] in time regions associated
with each iteration. Note that, partitioning the attack range over time is critical for

4https://www.analog.com/en/products/max32520.html

5https://teledynelecroy.com/oscilloscope/wavepro-hd-oscilloscope

6https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh500-6-near-field-
microprobe-2-mhz-to-6-ghz/108

7https://pypi.org/project/scared/
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(a) Full EM trace.

(b) Zoomed area.

Figure 5.4 The mean EM trace associated with the execution of the base multiplica-
tion function of the attacked incomplete NTT-based implementation of Dilithium,
_asymmetric_mul_16_loop. Iterations of the function are highlighted.

Figure 5.5 The mean EM trace associated with the execution of the
base multiplication function of the attacked implementation of Kyber,
frombytes_mul_asm_acc_32_16. Iterations of the function are highlighted for both
shares.

the presented performance results of all schemes.

Upon observation, we use the concatenation of r̂[i][0] and r̂[i][1] (see Section 4.3) as
the PoI for attacking Dilithium, while we use r̂[i][0] for Kyber. As an initial analysis,
we performed the baselineCPA on ŝ[0] and ŝ[1]. Note that we use the subscript to
denote the distinguisher used for the baseline attack. The convergence patterns of
the retrieved secrets are presented in Figure 5.6.
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ν

ρ̂

(d) Kyber, ŝ[1]

Figure 5.6 Key convergence of baselineCPA on Dilithium and Kyber for ŝ[0] and ŝ[1].
Green lines denote the correct hypothesis while the blue line denotes its additive
inverse.

5.2.4. Attack and Performance

In this section, we present the performance of the proposed attacks. We start with
the first-order attacks on unprotected implementations of Kyber and Dilithium,
followed by the second-order attacks on the masked implementation of Kyber.

5.2.4.1. First-order

For the first-order attacks that target unprotected implementations of Dilithium
and Kyber, we use CPA as the distinguisher. We start the evaluation by the per-
formance of the baselineCPA scheme. Figure 5.7 illustrates the distribution of the
required number of traces ŝ[i] needed to converge in our experiments. Note that,
the histograms are computed based on a single ŝ and varying i. Accordingly, 220
and 150 traces are needed the retrieve whole ŝ for Dilithium and Kyber, respec-
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Figure 5.7 Histograms of the required number of traces ν for the baselineCPA on
Kyber and Dilithium to to succeed.

tively. Notice that, these numbers are the maximums of the values presented in the
histograms. However, a significant portion of the secret coefficients, ŝ[i], are indeed
revealed with fewer traces, around 50. The performance of the baselineCPA scheme
is reported in Table 5.2. In terms of accuracy, it exhibits flawless performance and
do not pose any concerns regarding accuracy. However, in terms of run-time, the
performance of the attack is moderate. Nevertheless, retrieving s1 and s2 requires
approximately 4.37 hours for Dilithium while it takes 22.4 hours to attack s for
the Kyber case. Note that the baselineCPA is equivalent to the attack presented by
Mujdei et al. (2024) against the same implementation of Kyber. Our application of
the conventional approach is slightly better than that work both in terms of attack
run-time and number of traces.

For the application of ZV-FA to Dilithium (to Kyber), the attack scenarios 1 and 2
(scenario 1 for Kyber) from Table 5.1 are employed for attacking the lower degree
coefficients of the polynomials, specifically ŝ[i][0] for any 0 ≤ i < 128, while the sce-
narios 3 and 4 (scenario 3) are utilized for the higher degree coefficients ŝ[i][1]. It
should be noted that scenarios 1 and 4 are not independently executed, as they
represent the same attack. The outcomes of different scenarios are combined by

Table 5.2 Run-time performance of the baselineCPA attack on unprotected imple-
mentations of Kyber768 and Dilithium3.

Algorithm Method ν Runtime(ŝ[i]) Runtime(ŝ)
Runtime(s1,s2)

Dilithium3 This Work 220 11.18 s 24 m ≈4.37 h
Runtime(s)

Kyber768 This Work 150 3.5 m 7.45 h ≈22.4 h
Kyber (Mujdei et al., 2024) 200 5 m 10.7 h
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Figure 5.8 Histograms of the ranks of correct hypotheses for ŝ[i][j] in Ki,j during
filtering stage of ZV-FA on Kyber and Dilithium, i.e. the correct secret among
results of ZV attacks, w.r.t. νf .

multiplying their respective results. For both schemes, we use ν = 500 traces for
ZV−FA.Score, and di is doubled to increase it after each call to ZV−FA.Score (see
Figure 5.3). Note that, we use slightly more traces compared to the convergence
of the baselines (see Figure 5.6). This is needed to have the score of ŝ[i] converged
and become comparable with the scores of predictions to other secret coefficients.
Observe from Figure 5.6 that the SNR of even and odd coefficients are different in
Dilithium. Therefore, we scale the scores onto the same range by multiplying the
odd coefficients by λ0/λ1 ≈ 5/7.

Thanks to the inverse NTT validation and correction mechanism presented in Sec-
tion 5.1.3, The ZV-FA’s accuracy is independent of the number of traces used for
filtering νf , which, however, determines its performance. Recall that, the perfor-
mance of the ZV-FA scheme strongly depends on the effectiveness of the filtering
stage. Figure 5.8 shows that, even with moderate values of νf , the correct value
for the attacked secret pair is discovered within the top-d for a significant portion
of the secret coefficients and practical values of d in terms of performance. Partic-
ularly for Dilithium and νf = 5K, 203 of 256 (80%) secret coefficients are retrieved
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in top-64, which corresponds to (769−64)/769 (92%) reduction in the search space
from the baseline to ZV−FA.Score. Similarly, for Kyber and the same value of νf ,
202 coefficients are in the top-256, leading to (92%) reduction in the search space.

Experimental results indicate that the ZV filtering can substantially decrease the
attack response time up to three orders of magnitude, depending on the number of
filtering traces νf available in the system. The trade-off between νf and speed-up
is illustrated in Figure 5.9 for both attacked algorithms. Observe that the trade-off
suggests the same pattern for Dilithium and Kyber. The ZV-FA approaches to the
ZV attack as νf increases and approaches to the baseline as νf decreases. Notably,
even a small number of traces can significantly improve baseline performance. For
example with νf = 5K the collection of which is feasible, the ZV-FA provides a
speed-up of 9× and 15× for Dilithium and Kyber, respectively.

When more valid traces are available in the system, particularly with νf = 18K,
ZV-FA achieves a speed-up of 181× for Dilithium over the baselineCPA. We un-
derline that, the achieved speed-up can save approximately 261 minutes (≈ 4.35
hours) considering the retrieval of whole s1 and s2. Recall that k = 6 and l = 5
for Dilithium3, which means s1 and s2 consist of 5 and 6 secret polynomials, re-
spectively. As for Kyber (recall that k = 3 for Kyber768, which means ŝ has 3
elements.), our scheme is more favorable as q is roughly 2-bit larger compared to
Dilithium3. With νf = 17K, ZV-FA achieves 958× speed-up over the baselineCPA.
It saves roughly 22.38 hours of computation time, considering all the elements of
Kyber’s secret vector of polynomials ŝ.

On the other hand, ZV-FA reduces the number of traces needed for the ZV attack
while the run-time performance is slightly improved. Observe that the ZV attack
is successful with νf = 30K for Dilithium which brings up a speed-up of 157×.
The same speed-up is achieved by ZV-FA with νf ≈ 14K. Similarly for Kyber, the
ZV attack is successful with νf = 26K accelerating the baselineCPA by 754× while
ZV-FA reaches the same speed-up with νf ≈ 14.5K.

Recall also that another study by Chen et al. (2021) targets Dilithium with a non-
profiled attack. However, the target implementation uses the original 23-bit coeffi-
cient modulus of Dilithium. Therefore, our study is not comparable to Chen et al.
(2021) as the target implementations are different. On the other hand, while their
method accelerates the baseline approach about 16 times, ours provides a speedup
of more than two orders of magnitude. Consequently, we expect their method would
not be as effective as ours when an incomplete NTT method is used in the imple-
mentation.
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Figure 5.9 Speed-up of ZV-FA on Kyber and Dilithium w.r.t. νf . The performance
of baselineCPA and ZV attack are marked.

Table 5.3 Run-time performance of baseline attacks with MMIA and HOCPA on
first-order masked Kyber768

Method i ν Runtime(ŝ[i]) Runtime(ŝ[i])·n/2 ·k
≈Runtime(ŝ)

BaselineHOCPA 0 14K 78 m ≈21 d
BaselineHOCPA 1 23K 129 m ≈34 d
BaselineMMIA 0 7K 182 m ≈48.5 d

5.2.4.2. Second-order

To discuss the efficiency of our attack in the protected case, we first present the
performance of the baseline schemes thereof in Table 5.3. Due to long running times,
we perform the evaluation only for ŝ[0] and ŝ[1]. The last column approximates the
required amount of time to break whole secret key ŝ, based on the statistics of the
attacks to ŝ[0] and ŝ[1]. For instance, retrieving ŝ would roughly take 68 days if
all coefficients were retrieved by 23K traces as ŝ[1]. Therefore, the baseline scheme
stands as an impractical option. The speed-up of ZV-FA is computed based on the
average number of traces needed by baselineHOCPA over the analyzed coefficients,
(23+14)/2 = 18.5K.

Observe from Table 5.3 and Figure 5.10 that MMIA is superior to HOCPA in terms
of the number of traces while HOCPA runs faster. Therefore, we use MMIA as
the distinguisher in the filtering stage, differently from the unprotected case. We
utilize MMIA with two bins and select the bins such that it partitions the samples
into equal parts, i.e. halves. As the iterations of the base multiplication are easily
distinguishable through the mean trace as depicted by Figure 5.5, we use constant
offset for combining points over time samples. We would like to note that we observe
that the MMIA is quite efficient in this setting. However, we leave a comprehensive
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Figure 5.10 Key convergence of baselineHOCPA and baselineMMIA on masked Kyber
for ŝ[0]. Blue line denotes the additive inverse of the correct hypothesis.
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Figure 5.11 Histograms of the ranks of the correct hypotheses for ŝ[i][j] in Ki,j during
filtering stage of ZV-FA on masked Kyber, with respect to νf .
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Figure 5.12 Speed-up of ZV-FA on Masked Kyber w.r.t. νf .

study on MMIA in comparison with HOCPA regarding arithmetic masking as a
future work. On the other hand, we use HOCPA in the scoring stage, considering
its superior run-time performance, and we employ ν = 50K traces for scoring. Recall
that, significantly more traces are available during scoring as zero-value conditions
are not sought therein.
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Figure 5.11 demonstrates the distribution of the ranking of the correct hypothesis for
ŝ[i][j], among the sorted results from the filtering stage of ZV-FA, Ki,j . We observe
that the filtering stage is quite effective as in the unprotected case. Particularly
with νf = 480K, for 213 out of 256 secret coefficients, the correct hypothesis is
in top−256, i.e. Ki,j[:256], leading to 92% reduction in search space. Figure 5.12
depicts the speed-up values achieved over the baselineHOCPA. We observe that ZV-
FA reaches 508× speed-up over baselineHOCPA, with νf = 1.6M . If those many
traces are not available to the attacker, ZV-FA is still more practical compared to
the baselineHOCPA. For instance, a speed-up of 18× is observed with a relatively
less number of filtering traces, νf = 640K.

5.2.4.3. Notes on HOCPA and MMIA

We note that the HOCPA applied in this chapter is not efficient in terms of the
required number of traces. Specifically, we employ the mean-free product combina-
tion described in Section 3.5.6.1, but use HWβ as the prediction function instead of
the optimal prediction function F2

opt. Nevertheless, this choice does not affect the
relative performance of ZV-FA compared to the baseline, since both approaches rely
on the same prediction function. A study of the optimal prediction functions Fd

opt
has been conducted in Chapter 6 for d = 2 and in Chapter 7 for d > 2. Employing
these optimal functions would further improve the performance of ZV-FA.

For MMIA, on the other hand, we used the prediction function HWβ, which is un-
common given that MMIA is a generic distinguisher. Conducting these experiments
without a prediction function—while employing a clever histogram binning strategy
(potentially leveraging the results presented in Chapter 6) could further improve the
accuracy of MMIA.
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6. EXPLOITING THE CENTRAL REDUCTION

This chapter is based on the publication (Tosun et al., 2024).

We question the side-channel security of central reduction technique, which is
widely adapted in efficient implementations of LBC (see Section 3.4). We show
that the central reduction leads to a vulnerability by creating a strong dependency
between the power consumption and the sign of sensitive intermediate values. We
exploit this dependency by introducing the novel absolute value prediction func-
tion, which can be employed in higher-order non-profiled multi-query SCA attacks.
Our results reveal that – compared to classical reduction algorithms – employing the
central reduction scheme leads to a two-orders-of-magnitude decrease in the num-
ber of required SCA measurements to exploit secrets of masked implementations.
We particularly show that our approach is valid for the prime moduli employed
by Kyber and Dilithium, the lattice-based post-quantum algorithms selected by
NIST. We practically evaluate our introduced approach by performing second-order
non-profiled attacks against an open-source masked implementation of Kyber on
an ARM Cortex-M4 micro-processor. In our experiments, we revealed the full se-
cret key of the aforementioned masked implementation with only 250 power traces
without any forms of profiling or choosing the ciphertexts.

6.1. Leakage of Signed Integers Modulo q

In this section, we study the distribution of HW of the signed representation of inte-
gers modulo q, i.e. the effect of central reduction on HW. Accordingly, we compare
signed and unsigned arithmetic in terms of SCA leakage. Throughout this chapter,
we assume that device leakage is a function of HW, L = HW in Equation (3.45):

L= HWβ(X)+N(µ,σ)(6.1)
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where β denotes the machine word size.

We evaluate the primes that are employed in Kyber and Dilithium with q = 3329
and q = 8380417, respectively, and study the carrier primes that are employed
for Dilithium to perform short polynomial arithmetic (Abdulrahman et al., 2022),
namely q = 257 for Dilithium2 and Dilithium5, and q = 769 for Dilithium3. We
should note that masking the short polynomials in their range is possible (Aikata,
Basso, Cassiers, Mert & Roy, 2023). One important factor for computing the HW
of negative integers is the machine word size β which does not have any effect on
the HW of positive integers. The machine word size is usually β = 16 for q = 257,
q = 769, and q = 3329 while β = 32 for q = 8380417 in software implementations.
Unless otherwise stated, we take these values for β in the studied adversary model.
However, we discuss the role of distinct values of β in the SCA leakages.

6.1.1. HW as a Sign Indicator

The main observation that led to this study is the clear separation of HW of the
non-negative side of ±Zq, namely [0, q/2] and the negative side [−q/2,0). As an
intuition, consider q = 257; the positive interval of ±Z257 corresponds to [0,128],
for which the maximum HW is HWβ(127) = 7. In other words, the HW of integers
[0,128] lies in [0,7]. On the other hand, the negative side of ±Z257 corresponds
to [−128,0), where the HW are in the range of [9,16] assuming 2’s complement
representation with machine word size β = 16. Consequently, the HW of a number
in ±Z257, reveals its sign immediately. Figure 6.1 visualizes our observation for all
the primes analyzed in this study. Note that there is an overlap between the HW
ranges [−q/2,0) and [0, q/2], for q = 769, q = 3329, and q = 8380417. For instance,
the HW of non-negative integers in ±Z3329 are distributed in [0,10] while that of
negative integers are in the range [6,16]. Therefore, there is an overlap for five
possible HWs in the interval [6,10] out of a total of 17 possible values assuming the
machine word size β = 16.

Based on our observation in Figure 6.1, we write the following equality for HWβ(x)
where x ∈ ±Zq.

HWβ(x) = S(x) ·γ+(1−S(x)) · (β−γ)+ e,(6.2)
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Figure 6.1 Distribution of HW of integers in [−q/2, q/2] in 2’s complement repre-
sentation for different moduli q.

for some inner-cluster error term e ∈ E where E[e] = 0 and 0< γ < β/2. S is defined
to be the sign function:

S(x) =

1, if x≥ 0

0, otherwise
(6.3)

γ stands for the mean of HWs given a uniformly random X ∈ ±Zq is non-negative,
i.e. γ = E[HWβ(X) | S(X) = 1]. Similarly, let γ− denote the mean HW given
X is negative, γ− = E[HWβ(X) | S(X) = 0]. Table 6.1 demonstrates the values
of γ and γ− depending on q. Note that γ− ≈ β− γ, which allows us to simplify
Equation (6.2). Naturally, γ− approaches γ as the so-called gap M(q,β) = β− log(q)
decreases. On the other hand, the expected value E[|e|] is not affected by β while it
slightly increases as q gets larger. Additionally, whether the integers modulo q are
represented in signed or unsigned form has no impact on this expected value.

We would like to note that the argument made in this section does not apply to the
unsigned representation of integers modulo q, namely Zq. It can be seen in Figure 6.2
that no clear ranges can be identified for unsigned integers when observing their HW.
In LBC, the upper half of Zq is considered as negative, namely [−q/2 + q,q− 1].
However, Table 6.1 shows that the mean of HW of negative side, denoted by γ∗, is
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Figure 6.2 Distribution of HW of integers in [0, q) for q = 257.

Table 6.1 The mean and standard deviation of HW for positive and negative in-
tegers with different q. γ denotes the mean of HWs for positive integers in ±Zq,
namely [0, q/2]. γ− denotes the mean of HWs for negative integers in ±Zq, namely
[−q/2,−1]. γ∗ denotes the mean of HWs for [q/2 + 1, q− 1], the set of integers in
Zq which are considered to be negative in LBC, and e is the error term defined in
Equation (6.2).

q 257 769 3329 8380417

γ 3.48 4.16 5.19 10.99

γ− β−3.5 β−4.17 β−5.2 β−11

γ∗ 4.5 5.16 6.19 11.99

E[|e|] 1.33 1.4 1.55 2.34
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approximately γ+1, independent of β and q.

6.1.2. Impact of Signed Arithmetic on Optimal Correlation

To formally assess the impact of signed arithmetic on SCA leakages, we compare the
optimal correlation achieved by the state-of-the-art combination function, mean-free
product, between the cases when the modular reduction is central and when it is
non-central. For consistency and comparison purposes, we also provide correlation
results for the unprotected scenario. Figure 6.3 presents the estimated (optimal)
correlation for distinct prime q and machine word size β and reduction scenarios.
It can be seen that ρ̂opt estimated for central reduction achieves more than twice of
the one estimated for the non-central reduction, particularly for β = 16 and β = 32.
Indeed, ρ̂opt is an increasing function of β for a given q when the reduction is central,
complying with our initial observation in Table 6.1. As β decreases, ρ̂opt for the
central reduction reaches that of the non-central case as the limit. More importantly,
the correlation shows a strong resistance to noise for the signed case. For instance,
when σ = 5 and q = 257 and β = 16 (such as a masked software implementation of
Dilithium), ρ̂opt reaches ρ̂ = 0.24 while we observe ρ̂ = 0.017 for the unsigned case.
We should refer to Table 3.4 showing that β increases the input range of the reduction
algorithms. However, our analysis shows that it further increases the associated SCA
leakages. It also makes sense to compare the optimal correlation achieved in case
of Boolean masking with the other results. Similar to what presented by Prouff
et al. (2009), the correlation for Boolean masking reaches ρ̂ = 0.35 for an 8-bit
implementation in a noiseless scenario. Similar to the non-central reduction case,
this drops rapidly with the noise, e.g. to ρ̂= 0.02 for σ = 5.

The same pattern is being observed in the unprotected scenario. Notably, the cor-
relation is significantly greater when the reduction is central beyond certain values
of σ. In particular for σ = 4 and q = 3329, the correlation reaches ρ̂ = 0.62 with
the signed representation whereas it is ρ̂ = 0.37 with the unsigned representation.
However, it is important to highlight that, for the same level of σ and q, the central
reduction increases the optimal correlation by ≈ 64×. More generally, as illustrated
in Figure 6.3, the impact of signed arithmetic on SCA leakage is more prominent
in the protected case. An interesting result is that the optimal correlation with
the central reduction is relatively close to the correlation observed in unprotected
case with non-central reduction, depending on the margin M(q,β). Specifically, for
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Figure 6.3 Estimated correlation with respect to the noise standard deviation σ
for different q, β, reduction ranges and protection scenarios. For the first-order
masked case, estimations are performed with 1 million samples uniformly taken
for X{0} and X{1} and optimal correlation ρ̂opt is reported in y-axis. Otherwise,
estimations are performed with the same number of samples uniformly taken for X
and ρ̂(HWβ(X),L(X)) is reported.

⋆ Masked (solid), unprotected (dashed).
⋆ Reduction to [−q/2, q/2] for q = 257, q = 769 and q = 3329: β = 16 (black),

β = 15 (blue), β = 14 (violet), β = 13 (brown), β = 12 (red), β = 11 (gray),
β = 10 (purple), β = 9 (cyan).

⋆ Reduction to [−q/2, q/2] for q= 8380417: β = 32 (black), β = 31 (blue), β = 30
(violet), β = 29 (brown), β = 28 (red), β = 27 (gray), β = 26 (purple), β = 25
(cyan), β = 24 (magenta), β = 23 (green).

⋆ Reduction to [0, q) (teal).
⋆ Boolean masking only in (a) for β = 8 and q = 256 (dotted).

q = 257 and σ ≥ 3, the difference in correlation between the masked unsigned and
unprotected signed cases is less than 0.05. This leads to the conclusion that the
effect of masking can diminish when central reduction is applied.

We replicated the same analysis for the absolute difference combination function
Cabs (Joye et al., 2005), as detailed in Figure 6.14 (in Section 6.4). Although the
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estimated optimal correlations are slightly lower across all values of q, β, and σ, the
impact of β and σ follows the same pattern observed for the mean-free product.

For this evaluation, we computed F2
opt as a look-up table for each case. The proce-

dure for generating this table is detailed in Algorithm 12. This has a time complexity
of O(q2) to create F2

opt, which can be costly for large q, such as q = 8380417. In
Section 6.2, we deal with explicit formulas for F2

opt dedicated to central reduction.

Algorithm 12 Computation of F2
opt as a look-up table.

Input: Modulus q
Input: Predicted Leakage Function L′

Output: Look-up table F representing the function F2
opt

1: for x= 0 to q−1 do
2: F[x] = 0
3: for x0 = 0 to q−1 do ▷ or x0 =−q/2 to q/2
4: x1 = x−x0 (mod q) ▷ mod+q or mod±q
5: F[x] = F[x] +L′(x0) ·L′(x1)
6: end for
7: F[x] = (F[x]/q)−

(∑q−1
i=0 (L′(i))

q

)2
▷ or

(∑q/2
i=−q/2(L′(i))

q

)2
, this step can be

omitted
8: end for
9: return F

6.1.3. Information Theoretic Analysis

Additionally, we investigate the MI between X and the HW leakage. In particular,
we compute Î(X,HWβ(X)), as introduced in Section 3.5.4.2, for the unprotected
case. For the first-order masked case, we compute the multivariate MI presented in
Section 3.5.6.2, Î

(
X,HWβ(X{0}),HWβ(X{1})

)
. Figure 6.4 presents numerical results

for the MI, across different values of q, β and reduction scenarios1. Aligning with our
observations from the previous section, MI between X and the HW is higher when
the signed representation is employed, which depends on the gap M(q,β). This result
holds true for both masked and unprotected cases. In the unprotected scenario, the
increase in MI is nearly 1, reflecting the leakage introduced by the sign. On the
other hand, with masking, the increase in MI is up to ≈ 4× with β. Recall that the
correlation-based analysis also indicates that negative impact of central reduction
is more pronounced in the masked case. Recall that, MIA (Gierlichs et al., 2008)

1MI results for q = 8380417 with masking enabled are not provided due to the computational complexity of
the experiments. Nevertheless, they can be inferred from the results of the other primes studied.
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Î

(a) q = 257, q = 769, q = 3329

24 26 28 30 320

2

4

β

Î
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Figure 6.4 Mutual information for different q, β, reduction ranges, and protection
scenarios. For the unprotected case, Î(X,HWβ(X)) is reported while for the first-
order masked case Î

(
X,HWβ(X{0}),HWβ(X{1})

)
is reported in y-axis.

⋆ Reduction to [−q/2, q/2]: masked (solid), unprotected (dashed). Reduction to
[0, q): masked (circle), unprotected (star).

⋆ Moduli: q= 257 (cyan), q= 769 (purple), q= 3329 (blue). q= 8380417 (black).

is a generic distinguisher where the attacker is not required to predict the device’s
leakage model. Given that the leakage model in our case is linear with HW as
defined in Equation (6.1), and results with MIA are consistent with our previous
findings, we stick with CPA for the remainder of the chapter.

6.2. Absolute Value Prediction Function

When the target operation is protected using Boolean masking and the underlying
circuit is a noisy Hamming weight of intermediates (as in Equation (6.1)), it is shown
by Prouff et al. (2009) that HWβ can be effectively used as the optimal prediction
function for HOCPA attacks. However, this is not necessarily the case when mask-
ing is arithmetic. To provide an intuition, we estimated ρ̂(HWβ(X),F2

opt(X)), as
proposed by Prouff et al. (2009), to measure the accuracy of prediction functions for
the studied adversary model, presented in Table 6.2. The results indicate a signifi-
cant correlation loss in all scenarios. Hence, in this section, we search for an explicit
formula for the optimal prediction function in case of arithmetic masking. Precisely,
we show that the absolute value function can be used as the optimal prediction
function when targeting arithmetic masking where central reduction is employed.

89



Table 6.2 Estimated correlation between the Hamming Weight and optimal predic-
tion functions, ρ̂(HWβ(X),F2

opt(X)), for different moduli q and β. The estimations
are performed with 1 million uniformly random samples for X while the reduction
is central.

β
q 257 769 3329

β
q 8380417

16 −0.741 −0.732 −0.661 32 −0.706
15 −0.723 −0.706 −0.607 31 −0.684
14 −0.698 −0.671 −0.527 30 −0.655
13 −0.665 −0.621 −0.405 29 −0.618
12 −0.618 −0.545 −0.223 28 −0.570
11 −0.548 −0.427 27 −0.507
10 −0.442 −0.241 26 −0.424
9 −0.273 25 −0.314

24 −0.173
23 −0.003

6.2.1. Distribution of the Secret Knowing the Sign of Shares

Consider two uniformly random variables X{0},X{1} ∈± Zq and their modular addi-
tion X{0} +X{1} mod±q. Given the signs of both variables, Figure 6.5 demonstrates
the probability distribution of X{0} +X{1} mod±q. As depicted in the figure, there
are two cases for the distribution given the sign of both random variables. If the sign
of X{0} and X{1} are the same, namely S(X{0}) = S(X{1}), then the probability is
distributed around ±q/2. Otherwise, it is centered around 0. Indeed, the distri-
butions correspond to the convolution of probability distribution functions. More
precisely, one of

P(X{0} = x{0} | X{0} < 0), P(X{0} = x{0} | X{0} ≥ 0)

is convoluted to one of

P(X{1} = x{1} | X{1} < 0), P(X{1} = x{1} | X{1} ≥ 0).

Now suppose thatX{0} andX{1} are arithmetic shares representing a secret interme-
diate variable X =X{0} +X{1}. Then, the above discussion shows that information
about the sign of the individual shares leads to a strong effect on the distribution
of the secret X.
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−q/2 q/2 x

P(X = x
∣∣∣ S(X{0}) = S(X{1}))

(a) Case 1:
(X{0} < 0 and X{1} < 0) or (X{0} ≥ 0

and X{1} ≥ 0)
i.e. S(X{0}) = S(X{1})

−q/2 q/2 x

P(X = x
∣∣∣ S(X{0}) ̸= S(X{1}))

(b) Case 2:
(X{0} ≥ 0 and X{1} < 0) or (X{0} ≥ 0

and X{1} < 0)
i.e. S(X{0}) ̸= S(X{1})

Figure 6.5 Probability distributions of X =X{0} +X{1} mod±q for X{0},X{1} ∈± Zq

6.2.2. A Model for Mean-Free Product

In the previous section, we showed that the HW of 2’s complement representation
of an integer in [−q/2, q/2] is a noisy indicator of its sign. Also, recall the leakage
in CMOS circuits which is highly relevant to the HW of processed data (see Equa-
tion (6.1)). Now, let L0 = L(X{1}) and L1 = L(X{1}) denote the leakage associated
to the random shares X{0} and X{1}. The mean-free product can be written as
follows.

C(L0,L1) =
(
α0 ·HWβ(X0)+N(µ0,σ0)−E

[
α0 ·HWβ(X0)+N(µ0,σ0)

])
·(6.4) (

α1 ·HWβ(X1)+N(µ1,σ1)−E
[
α1 ·HWβ(X1)+N(µ1,σ1)

])
(6.5)

For the sake of simplicity, we assume α = α0 = α1, µ = µ0 = µ1, and σ = σ0 = σ1.
As X{0} and X{1} are uniformly random signed integers in ±Zq and represented by
β bits in the computer memory, E

[
X{0}

]
= E

[
X{1}

]
= β/2. Then, we can write

C(L0,L1) =
(
α ·HWβ(X0)+N(µ,σ)− (α ·β/2+µ)

)
·(6.6) (

α ·HWβ(X1)+N(µ,σ)− (α ·β/2+µ)
)

(6.7)

and by distributing the terms and as N(0,σ) = α ·N(0,σ/α),

C(L0,L1) = α2
(

HWβ(X0)−β/2+N(0,σ/α)
)
·
(

HWβ(X1)−β/2+N(0,σ/α)
)(6.8)
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By plugging Equation (6.2) into Equation (6.8) we have

C(L0,L1) = α2
(

S(X{0}) · (γ−β/2)+
(
1−S(X{0})

)
· (β/2−γ)+ e0 +N(0,σ/α)

)
·

(6.9)

(
S(X{1}) · (γ−β/2)+

(
1−S(X{1})

)
· (β/2−γ)+ e1 +N(0,σ/α)

)
(6.10)

6.2.3. Conditional Probability of Sign Equality

As explained above and shown by Figure 6.5, we conclude that

P
(
X = x

∣∣∣ S(X{0}) = S(X{1})
)

= (2/q) ·
(
|x|/(q/2)

)
(6.11)

= |x| · (4/q2).(6.12)

Based on the dependency ofX on S(X{0}) and S(X{1}), we show that the conditional
probability P

(
S(X{0}) = S(X{1})

∣∣∣ X = x
)

is a multiple of |x|.

P
(

S(X{0}) = S(X{1})
∣∣∣∣ X = x

)
=(6.13)

P
(
X = x

∣∣∣∣ S(X{0}) = S(X{1})
)
·P
(

S(X{0}) = S(X{1})
)

P
(
X = x

)(6.14)

= |x| · (4/q
2) ·1/2

1/q = (2/q) · |x|(6.15)

6.2.4. Estimating the Optimal Prediction Function

We make use of the conditional probability to formally estimate E
[
C(L0,L1)

∣∣∣X = x
]

as
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E
[
C(L0,L1)

∣∣∣X = x,S
(
X{0}

)
= S

(
X{1}

)]
·(6.16)

P
(
S
(
X{0}

)
= S

(
X{1}

)∣∣∣X = x
)

+(6.17)

E
[
C(L0,L1)

∣∣∣X = x,S
(
X{0}

)
̸= S

(
X{1}

)]
(6.18)

P
(
S
(
X{0}

)
̸= S

(
X{1}

)∣∣∣X = x
)

(6.19)

Considering the terms including e0 and e1 as error, we can write E
[
C(L0,L1)

∣∣∣X = x
]

as

E
[
C(L0,L1)

∣∣∣X = x
]

=(γ−β/2)2 · (2/q) · |x| (γ−β/2) · (β/2−γ) · (1−2/q · |x|)+ eC

(6.20)

=(γ−β/2)2 · (4/q) · |x|− (γ−β/2)2 + eC(6.21)

where

eC =E
[
e0 · e1

∣∣∣ X = x
]

(6.22)

+2E
[
e1 ·S

(
X{0}

)
· (γ−β/2)+

(
1−S

(
X{0}

))
· (β/2−γ) |X = x

]
(6.23)

=E [e0 · e1 |X = x]+4(γ−β/2) ·E
[
e0 ·S

(
X{1}

)
|X = x

]
(6.24)

Note that eC can be derived for any valid β when E
[
e0 · e1

∣∣∣ X = x
]

and
E
[
e0 ·S(X{1})

∣∣∣ X = x
]

are pre-computed. This approach is beneficial particularly
if q is large (e.g. 8380417) and the attacker does not know β in advance. Intuitively,
eC is relatively small, and its impact decreases as the margin M(q,β) increases. With
sufficient M(q,β), Equation (6.21) is accurately approximated by

E
[
C(L0,L1)

∣∣∣ X = x
]
≈ c0 · |x|+ c1(6.25)

where c0 = (γ−β/2)2 ·4/q and c1 =−(γ−β/2)2. Figure 7.1 visualizes these estima-
tions and the corresponding error for two distinct cases of q and β. Since constants
c0 and c1 do not affect the correlation, Fabs(x) = |x| can be used as the optimal
prediction function.
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Figure 6.6 Visualization of optimal prediction function for the central reduction
range [−q/2, q/2] for q and β. F2

opt(x) (black), eC (gray), c0 · |x|+ c1 (pink).

6.2.5. On the Accuracy of Fabs

Since Equation (6.24) does not allow to give an exact explicit formula for eC, we
proposed approximating F2

opt(X) using the absolute value function. In order to
evaluate the accuracy loss as a result of using Fabs instead of Equation (6.21), we
estimated ρ̂

(
Fabs (X) ,F2

opt (X)
)
. Table 6.3 presents the estimations, indicating ρ̂ >

0.99 for all studied q and β couples mentioned in Section 6.1. Therefore, we conclude
that the absolute value prediction function is highly accurate for the attacks we
consider in this work. However, for any other settings (q and β couples), where
the absolute value prediction function leads to an undesired accuracy, the F2

opt(X)
function can be computed for all possible values of X as E

[
C(L0,L1)

∣∣∣X] (e.g.
Equation (6.21)).

The Fabs can also be used with the absolute difference combination function Cabs.
The corresponding results for this configuration are presented in Section 6.4.
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Table 6.3 Estimated correlation between the absolute value and optimal prediction
functions, ρ̂(Fabs(X),F2

opt(X)), for different moduli q and β. The estimations are
performed with 1 million uniformly random samples for X while the reduction is
central.

β
q 257 769 3329

β
q 8380417

16 0.999 0.997 0.992 32 0.998
15 0.999 0.996 0.984 31 0.998
14 0.998 0.993 0.961 30 0.997
13 0.997 0.987 0.877 29 0.995
12 0.994 0.970 0.546 28 0.992
11 0.985 0.908 27 0.983
10 0.956 0.635 26 0.961
9 0.825 25 0.892

24 0.659
23 0.214

6.2.6. Alternative Prediction Function

As the chosen target function is a multiplication for this study, one can fine-tune the
optimal prediction function by considering zero-value public data, i.e. ĉi = 0. Notice
that for the complete NTT, X = 0 if and only if ĉi = 0 (assuming ŝi ̸= 0), because
of the specialty of 0 in multiplication. Then, X{0} and X{1} become 0 as X{j} =
ŝj

i ·0 and F2
opt(0) = E[C(Y0,Y1)|X{0} = 0,X{1} = 0] = α2 · (E[Wβ(X)+N(µ,σ)])2, see

Equation (6.1). When the NTT is incomplete, X can be 0 even though ĉi is non-
zero, because the target X is the addition of two multiplications which can sum
up to 0. Recall that X is a function of r̂[i][j] in this case, which is formulated in
Equation (3.35) and Equation (3.36). However, since having ĉi = 0 is less likely for
the incomplete NTT (1/q2 for ĉi,0 = ĉi,1 = 0, assuming uniformly random ĉi) we do
not concentrate on this case.

To take the advantage of zero-value public data, we define the alternative absolute
value prediction function as follows.

(6.26) F∗
abs(X) =


(
(β/2)2− c1

)
/c0, if X = 0

|X| otherwise

Recall that E
[
C(L0,L1)

∣∣∣X{0} = 0,X{1} = 0
]

= (β/2)2.
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6.3. Results

We provide experimental results through simulations and real-device traces.

6.3.1. Simulation Results

In this section, we present the result of HOCPA attacks explained in Chapter 4
making use of simulated traces. In our simulations, we consider different noise levels
and various reduction scenarios for each of the studied q. We particularly compare
the required number of traces with and without central reduction. Needless to say
that Fabs and F∗

abs are used as the prediction function when the reduction is central
while F2

opt is computed as a look-up table otherwise (as done in Section 6.1.2).

We generated simulated traces for the base multiplication using Algorithm 11 ex-
plained in Section 4.7. We set L = HWβ since we consider Hamming Weight leakage.
The masking order was set to d= 2 since we evaluate first-order masking, while d= 1
was also considered as a reference to assess the impact of masking. For all simula-
tions, we used m = 100, which defines the number of sub-keys, and µ = 0. Recall
from Section 3.3 that while q = 8380417 allows a complete NTT with the ring di-
mension n= 256, other moduli q = 257, q = 769, and q = 3329 do not allow complete
NTT but allow an incomplete NTT. However, the simulations aim to benchmark
our introduced absolute value prediction function and compare leakage of different
reduction schemes. Therefore, there is no harm in doing the simulations as if the
NTT is complete (f1 = 0 in Algorithm 11), which only affects the number of hy-
potheses. The comparison between the hypothetical and observed leakages is not
affected by this behavior.

Figure 7.2 presents the corresponding results, with respect to q, ν, and σ, while the
success rate refers to (# correctly predicted s[i]/m). It should be noted that the number of
traces is displayed on a logarithmic scale. As evident by the results, the implementa-
tions with central reduction are significantly more vulnerable to these non-profiled
HOCPA attacks in terms of the number of traces. For instance, when q = 3329
and σ = 0, the attack against non-central reduction needs 1500 traces to succeed,
which is 6× more than the number of traces needed when the reduction is central.
Moreover, the noise σ has a greater impact on the attacks on implementations with
non-central reduction compared to the central case. When q = 3329 and σ = 4, the
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attack on non-central reduction needs 45 k traces to succeed, which is 31× more
than what is required in case of central reduction. The difference with respect to
the number of traces reaches 123× for q = 257 and σ = 4. We conclude that HOCPA
with Fabs targeting central reduction remains a major threat in different noise levels
conforming with the observation shown in Figure 6.3. Based on the aforementioned
decrease in the number of traces required to attack, employing central reduction in
masked LBC might be not the best choice from the SCA perspective. Although cen-
tral reduction is sometimes preferred for efficiency purposes, non-central reduction
can harden higher-order SCA attacks in security-demanding applications.

In general, the attack on central reduction needs relatively small number of traces
to succeed. However, the number of traces for a successful attack depends on the
margin M(q,β), which is slightly worse for q = 3329 compared to the other primes
considered here. For q= 3329 and σ= 4, HOCPA with F∗

abs requires only 1400 traces
to succeed. In a noiseless scenario, where q = 257 and σ = 0, the attack only needs
around 110 traces. As previously stated, we consider only two cases β = 16 and
β = 32. However, we anticipate from Figure 6.3 that, as β decreases, the number of
required traces to attack the central reduction schemes gets closer to that when a
non-central reduction scheme is employed. As anticipated, the advantage of using
F∗

abs over Fabs highly depends on the number of times when ci = 0. For instance
when q = 257 and σ = 4, F∗

abs leads to %13 reduction in the number of required
traces in our experiments. As the chance of observing zero-values decreases when q
increases, the advantage of F∗

abs decreases as well. For example, when q = 3329 and
σ = 4, F∗

abs reduces ν by %9 compared to Fabs.

The disadvantage of signed arithmetic is also evident in the unprotected but noisy
scenario, where the number of required traces increases by up to two orders of
magnitude. For example, when q = 257 and σ = 4, the number of traces required
with the central reduction is 9.5× higher than the non-central reduction case. Notice
that the increase in ν when using signed arithmetic is smaller compared to the
protected case, by a factor of 13× for q = 257. Consequently, the simulation results
align with our observation in Section 6.1, indicating that the negative impact of
signed arithmetic is more significant in masked schemes. Also observe the statistical
results for first-order attacks on unsigned arithmetic and second-order attacks on
signed arithmetic are closely aligned. In the extreme case of q = 257, the number
of required traces for these two attacks, despite their different orders, is nearly
identical. For q = 8380417, the difference in ν for a successful attack between these
two scenarios is only 2.8×.
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Figure 6.7 Success rates of first-order and second-order CPA attacks on simulated
traces generated with different q, σ and reduction ranges with respect to ν. For each
point in the curves, 100 experiments have been performed with random data.

⋆ SCA Protection: first-order masked (solid), unprotected (dashed).
⋆ Reduction ranges: [−q/2, q/2] (black, gray), [0, q) (teal).
⋆ Prediction functions for HOCPA: Fabs (black), F∗

abs (gray), F2
opt (teal).
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6.3.2. Practical Results: Application to Kyber

In this section, we present the result of applying our proposed approach to perform
successful HOCPA attacks on a protected implementation of Kyber. It is important
to note that we have previously compared the SCA leakage between central and
non-central reduction. Therefore, the motivation of this section is to evaluate the
difficulty of conducting successful HOCPA attacks targeting central reduction using
real data. Source code of the implementations and the attack scripts as well as the
simulations presented in the previous section are publicly available.2

6.3.2.1. Target implementation

We focus on the ARM Cortex-M4 specific open-source and first-order masked imple-
mentation of Kyber from Bronchain & Cassiers (2022)3. The polynomial arithmetic
of the implementation is mostly in assembly, ported from the pqm4 project Kan-
nwischer et al. (2019) and employs the Montgomery reduction that we illustrated
in Section 3.4. We also created a second version of the victim implementation
by integrating the latest iteration of polynomial arithmetic from pqm4 which em-
ploys the Plantard reduction based on Huang et al. (2022)4. Hereafter, we denote
the untouched target implementation with Montgomery reduction by ΨM and the
in-house version with Plantard reduction by ΨP . In particular, we focus on the
function basemul_asm which implements the base multiplication ŝ ⋆ ĉ in the incom-
plete NTT domain for both Montgomery and Plantard versions. We should note
that – to the best of our knowledge – all masked implementations of post-quantum
algorithms on the ARM Cortex-M4 that have been reported in the literature are
built on top of pqm4 by directly porting the linear operations including polynomial
arithmetic (Azouaoui et al., 2023; Beirendonck, D’anvers, Karmakar, Balasch & Ver-
bauwhede, 2021; Bos, Gourjon, Renes, Schneider & Van Vredendaal, 2021; Heinz
& Dreo Rodosek, 2023; Heinz et al., 2022). Therefore, we believe that assessing
the most recent iteration of pqm4, featuring state-of-the-art polynomial arithmetic,
would be beneficial. The open-source Kyber implementation (Bronchain & Cassiers,
2022) employs the Montgomery reduction since the more efficient Plantard reduction

2https://github.com/toluntosun21/ExploitingCentralReduction

3https://github.com/uclcrypto/pqm4_masked/ commit hash: 5fe90ba

4https://github.com/mupq/pqm4 commit hash: 3743a66
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did not exist when the polynomial implementation was imported from pqm4. Our
experiments are centered around the medium security level, i.e. Kyber768, though
it does not affect our approach and results.

6.3.2.2. Setup

Our measurement setup is presented in item 6.8. We used NewAE ChipWhisperer
CW1200 together with the CW308 UFO board to collect power traces. The victim
program was running on a STM32F303, which is equipped with an ARM Cortex-
M4, as shown in Figure 6.9. The frequency of the core is set to 7.3 MHz by an
external reference clock which is also given to the power-collecting facility (analog-
to-digital converter) while 4 power samples are recorded at each clock cycle. We
provided a trigger signal for the power-collecting module to indicate the beginning
of the function basemul_asm for the first share. Hence, only the samples related to
the base multiplication were recorded. The attacks have been performed using the
scared library, with an in-house developed Python model that mimics the intended
Kyber implementation, as in Chapter 5. A laptop equipped with an AMD Ryzen™ 7
7840HS5 8-core processor and 64 GB RAM was used for running the attack.

6.3.2.3. Attack details

A mean trace over 1000 traces is presented in Figure 7.3. It should be noted that the
iterations of the function basemul_asm are visible through the mean trace for both
shares. In order to reveal each ŝ[i], in the corresponding attacks we have only taken
into account the relevant part of the power traces based on the iterations. The
point-of-interest (PoI) selection follows the method explained in Section 7.2.5.3.
We used a constant offset to combine the leakages associated to two shares (by
mean-free product as explained in Section 3.5.6.1) based on the pattern observed in
Figure 7.3. It is noteworthy to mention that the same strategy can be easily adapted
via educated guesses without prior knowledge of the specific implementation. Recall
that ŝ[i] is a degree-1 polynomial in Kyber, and two coefficients must be predicted
together based on the outline presented in Chapter 4. We tested q · q/2 hypotheses

5https://www.amd.com/en/products/processors/laptop/ryzen/7000-series/amd-ryzen-7-7840hs.html
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Figure 6.8 ChipWhisperer CW1200 Trace Collection Setup.

(A) Victim microcontroller device.
(B) CW1200 capture hardware, acting as the oscilloscope and handling data trans-

fer.
(C) Programming and I/O data transfer cable.
(D) Power leakage measurement cable.
(E) CW308-UFO motherboard hosting the victim device.
(F) USB cable connected to the host PC.
(G) Power cable for the CW1200.

(≈ 222.4 as q = 3329) with Fabs as the prediction function, so that either the actual
secret or its additive inverse is found (for both ΨM and ΨP ). The target of the attack
is the higher-degree coefficient of each ŝ[i] · ĉ[i], precisely G(ŝ[i], ĉ[i]) = r̂[i][1] computed
in Equation (3.36) (also see Section 4.3). When Fabs is used as the prediction
function, a hypothesis and its additive inverse, ±ŝ[i], gets the same correlation score
due to the nature of absolute value function.6

6One option to distinguish the correct hypothesis from its additive inverse is to re-run the same HOCPA
attack on two hypotheses ±ŝ[i] using the sign function S, see Equation (6.1.1). This intuition is based
on the fact that not every bit of the intermediate values equally contributes in the amount of power
consumption, i.e. not an ideal HW model. This leads Fopt to be not fully symmetric with respect to the
y axis, see Figure 7.1.
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Figure 6.9 Microcontroller STM32F303 running the victim program.
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Figure 6.10 The mean power trace associated with the execution of the base mul-
tiplication function basemul_asm in ΨM for both shares, ŝ{0} ⋆ ĉ and ŝ{1} ⋆ ĉ. The
iterations of the function are marked by interleaving black and gray colors. Due to
loop unrolling, 64 iterations are observed for each share instead of n/2 = 128. Recall
that the ring dimension n= 256 for Kyber and 7-layer NTT is performed. The first
iterations of basemul_asm for both shares are marked and zoomed in (a) and (b).
The same observation applies to ΨP .
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Figure 6.11 Result of HOCPA on Kyber with ν = 1000 and Fabs targeting ŝ0 for
both ΨM and ΨP . The correlation scores of incorrect hypotheses are in gray, and
for the correct hypothesis in black.
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Figure 6.12 Success rates of the CPA and HOCPA attacks on Kyber. The success
rate refers to (# correctly predicted ŝ[i]/128). Retrieving ±ŝ[i] is considered as success.
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6.3.2.4. Evaluations

Let us start the evaluations by exemplary presenting the result of the individual
attacks on ŝ[0] for both ΨM and ΨP in Figure 7.5. The correlation peaks for the
correct hypotheses are observed in the corresponding time samples for the secret
coefficient. Observe that the correlation for the correct hypotheses are around 0.3,
which can be considered a major correlation for a higher-order attack. Needless
to say, the correlation coefficient changes for different values of i. From a better
perspective, Figure 6.12a and Figure 6.12b present the efficiency of our introduced
prediction function Fabs in terms of the number of traces needed to succeed. Con-
sistent with the simulation results, Fabs is very effective against arithmetic masking
with central reduction. In particular, the attacks require 850 and 550 traces to fully
recover the secret of the evaluated implementations. The reason why the attack on
ΨM requires more traces to succeed is that the secret coefficients ŝ[i] for even values
of i lead to lower correlation scores in general compared to the rest of the attack.
While this observation can be micro-architecture and implementation specific, we
did not concentrate on improving it as the overall attack still leads to a reasonably
low number of traces. We should also remark that the aim of this study is not to
compare ΨM and ΨP since both implementations employ central reduction; rather
the goal is to show that the approach generalizes to central reduction techniques.

As a reference, we also included the success rate of a classical first-order CPA by the
HWβ prediction function performed on the same but unprotected implementations
in Figure 6.12c and Figure 6.12d. In order to keep the consistency, we used the
same part of the power traces as those considered in HOCPAs. Distinctively, we
used both lower- and higher-degree coefficients from the output of each ŝ[i] · ĉ[i] as the
target function, namely G(ŝ[i], ĉ[i]) = r̂[i][0]||r̂[i][1] (see Section 4.3). We should also
note that Fabs is designed to work with a single coefficient, and we leave construction
of a prediction function which takes multiple coefficients as the future work.

6.3.2.5. Combining with lattice attack

We also applied the lattice attack described in Section 4.4, iteratively executing the
attack until a successful instance was found. The attacks were launched starting
from the subset of NTT domain coefficients corresponding to the highest correlation
scores. Each execution of the lattice attack takes 20 seconds, returning success in
case of the included subset of coefficients was correctly retrieved by the preceding
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Figure 6.13 Time required for the lattice attacks to successfully retrieve the whole
secret polynomial s in Kyber768, using the predictions for ŝ[i] which are obtained
by HOCPAs.

SCA attack. Additional details about this process are provided in Section 7.2.5.5.
Figure 6.13 depicts the relationship between the number of traces and the time
needed by the lattice attack to succeed in our experiments. In particular for ΨM ,
the attack succeeds after 643 trials (≈ 3.5 hours) with 400 traces while it succeeds
with 250 traces for ΨP after 27 trials (≈ 10 minutes)7. Indeed, ν = 250 is considered
as a very small number to conduct a successful non-profiling higher-order SCA attack
on a masked implementation. The lattice attack is implemented using fpylll library8.
A more detailed discussion about the application of the lattice attack can be found
in the next chapter.

6.4. Absolute Difference Combination Function

In the following analysis including Figure 6.14, Figure 6.15, Table 6.4, Table 6.5, and
Table 6.6, for the sake of simplicity we took µ0 = µ1 = 0 regarding the noise terms
in L(X{0}) and L(X{1}) (see Equation (3.45)). Note that, our results hold as long
as µ0 = µ1. Estimation of the corresponding optimal prediction function – so-called
F̂2

opt(i) – is performed with 100 K samples uniformly taken for X{0}, X{1}, and the
noise taken from N(0,σ) for each i. Results that depend on the F̂2

opt for q = 8380417
are not presented due to the computational complexity of experiments. However,

7Except for ν = 250 for ΨP and ν = 400 for ΨM , the timing of lattice attacks are approximations.

8https://pypi.org/project/fpylll/
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Figure 6.14 Estimated optimal correlation for Cabs with respect to the noise standard
deviation σ for different q, β and reduction algorithms. Estimations are performed
with 1 million samples uniformly taken for X{0} and X{1}.

⋆ Reduction to [−q/2, q/2] for q = 257, q = 769 and q = 3329: β = 16 (black),
β = 15 (blue), β = 14 (violet), β = 13 (brown), β = 12 (red), β = 11 (gray),
β = 10 (purple), β = 9 (cyan)

⋆ Reduction to [0, q) (teal)

they can be anticipated from the results for the other studied primes presented in
this section and the ones corresponding to the mean-free product (Figure 6.3 and
Table 6.3).

6.4.1. Optimal Correlation for Cabs

Demonstrated in Figure 6.14.

6.4.2. Accuracy of Absolute Value Prediction Function for Cabs

It can be seen in Figure 6.15 that F̂2
opt for Cabs, is an affine function of Fabs

with some noise. Table 6.4, Table 6.5, and Table 6.6 present the estimations for
ρ̂
(
Fabs (X) ,F2

opt (X)
)

in this configuration. Observe that |ρ̂| > 0.99 for the evalu-
ated q and β couples mentioned in Section 6.1, allowing us to conclude that Fabs

can be effectively used with Cabs.

Additionally, we provide the correlation results for q = 8380417 in Figure 6.16.
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Figure 6.15 Visualization of optimal prediction function F̂2
opt for the central reduction

range [−q/2, q/2] for different q and σ with respect to absolute difference combination
function. F̂2

opt(X) (black), c′0 · |X|+ c′1 (pink) for some c′0 and c′1.

Table 6.4 Estimated correlation between the absolute value and optimal prediction
functions, ρ̂(Fabs(X), F̂2

opt(X)) for Cabs, q = 257 and different β and σ. The esti-
mations are performed with 1 million uniformly random samples for X while the
reduction is central.

β
σ 0 2 4 6 8 10

16 −0.999 −0.999 −0.999 −0.999 −0.999 −0.999
15 −0.999 −0.999 −0.999 −0.999 −0.999 −0.998
14 −0.998 −0.998 −0.998 −0.998 −0.998 −0.998
13 −0.998 −0.998 −0.997 −0.997 −0.996 −0.996
12 −0.996 −0.996 −0.994 −0.993 −0.993 −0.992
11 −0.992 −0.990 −0.986 −0.984 −0.983 −0.982
10 −0.975 −0.964 −0.957 −0.952 −0.949 −0.947
9 −0.864 −0.834 −0.818 −0.809 −0.801 −0.793
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Table 6.5 Estimated correlation between the absolute value and optimal prediction
functions, ρ̂(Fabs(X), F̂2

opt(X)), for Cabs, q = 769 and different β and σ. The esti-
mations are performed with 1 million uniformly random samples for X while the
reduction is central.

β
σ 0 2 4 6 8 10

16 −0.998 −0.998 −0.998 −0.998 −0.998 −0.998
15 −0.997 −0.998 −0.997 −0.997 −0.996 −0.996
14 −0.996 −0.996 −0.995 −0.994 −0.994 −0.994
13 −0.993 −0.992 −0.990 −0.989 −0.988 −0.988
12 −0.985 −0.979 −0.974 −0.972 −0.971 −0.970
11 −0.941 −0.923 −0.912 −0.908 −0.905 −0.902
10 −0.673 −0.645 −0.632 −0.626 −0.620 −0.614

Table 6.6 Estimated correlation between the absolute value and optimal prediction
functions, ρ̂(Fabs(X), F̂2

opt(X)) for Cabs, q = 3329 and different β and σ. The esti-
mations are performed with 1 million uniformly random samples for X while the
reduction is central.

β
σ 0 2 4 6 8 10

16 −0.996 −0.995 −0.993 −0.993 −0.992 −0.992
15 −0.992 −0.989 −0.986 −0.985 −0.984 −0.983
14 −0.978 −0.971 −0.965 −0.962 −0.961 −0.959
13 −0.913 −0.893 −0.882 −0.877 −0.872 −0.869
12 −0.562 −0.551 −0.544 −0.539 −0.534 −0.529
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Figure 6.16 Estimations of ρ̂(Fabs(X),Cabs(X{0},X{1})) with respect to the noise
standard deviation σ for q= 8380417 and different β. The estimations are performed
with 1 million samples uniformly taken for X{0} and X{1}.

⋆ Reduction to [−q/2, q/2] for q= 8380417: β = 32 (black), β = 31 (blue), β = 30
(violet), β = 29 (brown), β = 28 (red), β = 27 (gray), β = 26 (purple), β = 25
(cyan), β = 24 (magenta).
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7. HIGHER-ORDER ATTACKS

This chapter is based on Section 3 an Section 5.1 of the publication (Tosun et al.,
2025).

We develop efficient higher-order HOCPA attacks in which the attacker must com-
pute a function known as the optimal prediction function. We revisit the definition
of the optimal prediction function (see Equation (3.58)) and introduce a recursive
method for computing it efficiently. Our approach is particularly useful when a
closed-form formula is unavailable, as in LBC. Then, we introduce sin and cos
prediction functions, which prove optimal for HOCPA attacks against second and
higher-order masking. We validate our methods through simulations and real-device
experiments on open-source masked implementations of Dilithium and Kyber on
an Arm Cortex-M4. On the real device, we achieve full secret-key recovery using
only 700 and 2400 traces for second and third-order masked implementations of
Dilithium, and 2200 and 14500 traces for second and third-order masked imple-
mentations of Kyber, respectively.

7.1. New Prediction Functions for HOCPA

7.1.1. Recursive Computation of OPF

In this section, we present an efficient approach for the computation of the opti-
mal prediction function Fd

opt(x) presented in Equation (3.58) based on recursion.
Consider masking with d shares.

In case Equation (3.58) does not have an explicit formula, as in the case of arithmetic
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Algorithm 13 Computation of Fd
opt as a look-up table for masking with d shares.

Input: Modulus q
Input: Predicted Leakage Function L′

Input: Number of shares d
Output: Look-up table F representing the function Fd

opt
1: for x= 0 to q−1 do
2: F[x] = 0
3: for all (x0,x1, . . . ,xd−2) ∈ {0, . . . , q−1}d−1 do ▷ or ∈ {−q/2, . . . , q/2}d−1

4: xd−1 =
(
x−∑d−2

i=0 xi

)
(mod q) ▷ mod+q or mod±q

5: p= 1
6: for i= 0 to d−1 do
7: p= p ·L′(xi)
8: end for
9: F[x] = F[x] +p

10: end for
11: end for
12: return F

masking, Fd
opt(x) can be calculated using a computer in O(qd). The computation

procedure is presented in Algorithm 131. Needless to say, this can be very expensive
for higher-order masking. For instance, with d = 4 and logq = 23 (e.g. third-order
masking for Dilithium), qd ≈ 292. We present a better solution by a recursive ap-
proach. For d≥ 2, we apply the following formula:

(7.1) Fd
opt(x) = E

[
C
(
f

⌈d/2⌉
opt (T ),f ⌊d/2⌋

opt (X−T )
)∣∣∣X = x

]

where random variables X and T take values in the discrete space X, e.g. Zq, and
T is uniformly distributed. As the base case of the recursion, F1

opt(x) is defined
to be the predicted device leakage function, F1

opt(x) = L′(x). This approach takes
O(logdq2) computational time with dynamic programming. The computation of the
optimal prediction function becomes feasible for large d with our recursive approach.
Notice that logdq2 ≈ 247 for the running example.

Proof: We begin by reformulating the definition of the optimal prediction function
Fd

opt(x) for the mean-free product:

Fd
opt(x) = E

d−1∏
i=0

L′(X{i})

∣∣∣∣∣∣X = x

+Γ(7.2)

1Additions by constants and divisions by constants are omitted. Therefore, both Algorithm 13 and Algo-
rithm 14 compute Fd

opt(x) · c0 + c1 for some constants c0 and c1 which are the same for all x.
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where Γ accumulates the constant terms arising from E[L′(X{i})]. We omit this
term, as it is independent of x and does not influence the correlation.

Next, we prove Equation (7.1) using induction. The base case F1
opt(x) corresponds

to a prediction function for an unprotected target, which is naturally L′(x) itself as
in the first-order CPA. For simplicity, consider even d≥ 2 and assume that Fd/2

opt(x)
is correct. Plugging in Equation (7.1):

Fd
opt(x) = E

C
(

E
[d/2−1∏

i=0
L′(X{i})

∣∣∣∣∣X0 = T

]
,E
[

d−1∏
i=d/2

L′(X{i})
∣∣∣∣∣X1 =X−T

])∣∣∣∣∣∣X = x


(7.3)

where X =∑d/2−1
i=0 X{i}, X0 =∑d/2−1

i=0 X{i} and X1 =∑d−1
i=d/2X

{i}. X{0:d−1} are uni-
formly random over X. By re-writing the inner expectations as the sum of products,

Fd
opt(x) = E

 1
qd/2−1

( ∑
x{0}∈X

∑
x{1}∈X

..
∑

x{d/2−2}∈X

d/2−1∏
i=0

L′(x{i})
)
·

1
qd/2−1

( ∑
x{d/2}∈X

∑
x{d/2+1}∈X

..
∑

x{d−2}∈X

d−1∏
i=d/2

L′(x{i})
)∣∣∣∣∣∣X = x

(7.4)

where x{d/2−1} = T −∑d/2−2
i=0 x{i} and x{d−1} =X−T −∑d−2

i=d/2x
{i} =X−∑d−2

i=0 x
{i}.

Combining the products, we have:

Fd
opt(x) = 1

qd−2 E
[( ∑

x{0}∈X

∑
x{1}∈X

..
∑

x{d/2−2}∈X

∑
x{d/2}∈X

..
∑

x{d−2}∈X

d−1∏
i=0

L′(x{i})
)∣∣∣∣∣X = x

](7.5)

Taking the expectation over T completes the missing summation term over x{d−2}:

Fd
opt(x) = 1

qd−1
∑

x{0}∈X

∑
x{1}∈X

..
∑

x{d−2}∈X

(d−2∏
i=0

L′(x{i})
)
·L′
(
x−

d−2∑
i=0

x{i}
)(7.6)

which is equivalent to the definition of the optimal prediction function given in
Equation (3.58). ■
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Table 7.1 Estimations of the optimal correlation, ρ̂(C({HWβ(X{i})}d−1
i=0 ),Fd

opt(X)),
for different q, β, d, σ and modular reduction strategies (i.e. central or not). The
estimations are performed with 1 million uniformly random samples for X{0:d−1}

drawn from the discrete space X. The rows are ordered based on correlation magni-
tudes. Estimated values are rounded to nearest.

(a) q = 3329, β = 16

σ

X d 0 2 4 6 8 10

[−q/2, q/2] 1 1.00 0.85 0.63 0.47 0.37 0.31
[−q/2, q/2] 2 0.41 0.30 0.16 0.09 0.06 0.04
[−q/2, q/2] 3 0.21 0.13 0.05 0.02 0.01 0.01
[−q/2, q/2] 4 0.11 0.06 0.02 0.01 0.00 0.00
[−q/2, q/2] 5 0.06 0.03 0.01 0.00 0.00 0.00

[0, q) 1 1.00 0.63 0.38 0.26 0.20 0.16
[0, q) 2 0.17 0.07 0.03 0.01 0.01 0.01
[0, q) 3 0.03 0.01 0.00 0.00 0.00 0.00
[0, q) 4 0.01 0.00 0.00 0.00 0.00 0.00
[0, q) 5 0.00 0.00 0.00 0.00 0.00 0.00

(a) q = 8380417, β = 32

σ

X d 0 2 4 6 8 10

[−q/2, q/2] 1 1.00 0.94 0.81 0.68 0.57 0.48
[−q/2, q/2] 2 0.47 0.42 0.31 0.22 0.15 0.11
[−q/2, q/2] 3 0.27 0.22 0.14 0.08 0.05 0.03
[−q/2, q/2] 4 0.16 0.12 0.07 0.03 0.02 0.01
[−q/2, q/2] 5 0.09 0.07 0.03 0.01 0.01 0.00

[0, q) 1 1.00 0.77 0.51 0.37 0.29 0.23
[0, q) 2 0.12 0.07 0.03 0.01 0.01 0.00
[0, q) 3 0.02 0.01 0.00 0.00 0.00 0.00
[0, q) 4 0.00 0.00 0.00 0.00 0.00 0.00
[0, q) 5 0.00 0.00 0.00 0.00 0.00 0.00
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Algorithm 14 Computation of Fd
opt as a look-up table using the recursive formula

Equation (7.1).
Input: Modulus q
Input: Predicted Leakage Function L′

Input: Number of shares d
Output: Look-up table Fd representing the function Fd

opt
1: if d= 1 then
2: for x= 0 to q−1 do
3: F1

[x] = L′(x)
4: end for
5: return F1

6: end if
7: F⌈d⌉ =Algorithm 14(q, L′, ⌈d⌉)
8: F⌊d⌋ =Algorithm 14(q, L′, ⌊d⌋) ▷ Recursive computations not repeated for the

same d.
9: for x= 0 to q−1 do

10: F2
opt[x] = 0

11: for x0 = 0 to q−1 do ▷ or x0 =−q/2 to q/2
12: x1 = x−x0 (mod q), ▷ mod+q or mod±q

13: Fd
[x] = Fd

[x] +F⌈d⌉
[x0] ·F

⌊d⌋
[x1]

14: end for
15: end for
16: return Fd

7.1.2. Optimal Correlation

Using the presented recursive computation approach, we computed a set of optimal
prediction functions Fd

opt for the SCA attack targeting NTT multiplication, as out-
lined in Section 3.5.3. Recall that the target function is modular multiplication, and
the target intermediate X is masked as X = ∑d−1

i=0 X
{i} (mod q). Specifically, for

this scenario, we computed Fd
opt(x) as a look-up table for all x ∈ Zq. The computa-

tion procedure is presented in Algorithm 14. We consider Hamming weight leakage
function HWβ. The computations of look-up table based Fd

opt(x) were carried out
for 2 ≤ d ≤ 5, ∀q ∈ {3329,8380417} and under both central and non-central mod-
ular reduction. Let β denote the machine word size in bits, which is typically 16
or 32 in software implementations. We consider β = 16 for q = 3329 and β = 32
for q = 8380417, consistent with the configurations used in Kyber and Dilithium
implementations (Bronchain & Cassiers, 2022; Coron et al., 2024; Heinz et al., 2022;
Kannwischer et al., 2019). Then, we computed the optimal correlation using these
functions, demonstrated in Table 7.1. We studied both the noiseless case, where
σ = 0, and scenarios with increasing noise levels, up to σ = 10. Observe that em-
ploying a central reduction range increases the correlation confirming the results
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presented in Chapter 6 and extending them to higher-order. Interestingly, it signifi-
cantly decreases the impact of masking order. For instance, for q = 83801417, d= 4
with central reduction leads to higher correlation amounts compared to d = 2 with
the unsigned reduction.
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Figure 7.1 Visualization of optimal prediction function Fd
opt for the central reduction

range [−q/2, q/2] and different q, d, β.

7.1.3. Explicit Formulas

When the reduction is central, i.e. the secret shares X{0:d−1} ∈ X where X =
[−q/2, q/2], the device leakage corresponds to the Hamming weight, and there is
a sufficient margin between β and logq, which is the case for {q = 3329,β = 16} and
{q = 8380417,β = 32}, it is possible to approximate Fd

opt with an explicit formula,
denoted by F∗d

opt. It is shown in Chapter 6 that F∗2
opt(x) = Fabs = |x|. In this section,

we present explicit formulas for higher-orders, d > 2, and show that these formulas
are optimal. In fact, these formulas are derived from Equation (7.1). Figure 7.1
visualizes the Fd

opt for d = 3 and d = 4, providing an intuition for finding closed
formulas. Table 8.1 presents the closed-form formulas for the estimations F∗d

opt. A
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common technique to compute the accuracy of a prediction function is to compute
its correlation to the optimal prediction function (Prouff et al., 2009). Observe
that presented formulas are highly accurate for the moduli employed by Kyber and
Dilithium.
Table 7.2 Estimated correlation between the optimal prediction function and its
proposed approximation, ρ̂(F∗d

opt(X),Fd
opt(X)), for different q, β, d when the modular

reduction is central. The estimations are performed with 1 million uniformly random
samples for X.

q β q β

d f∗d
opt(x) 3329 16 8380417 32

3 sin(2πx/q) 0.997 0.999
4 cos(2πx/q) 0.999 0.999
5 −sin(2πx/q) 0.999 0.999
6 −cos(2πx/q) 0.999 0.999
7 sin(2πx/q) 0.999 0.999
8 cos(2πx/q) 0.999 0.999

7.2. Results

In this section, we present experimental results for the side-channel attacks
introduced in Section 7.1. To support reproducibility, the source code for
trace acquisition, attack scripts, and the simulations presented in the previ-
ous section are made publicly available in https://github.com/toluntosun21/
HighOrderNonProfiledSCALBC.

7.2.1. Attack Setup

For the analysis and attack, we utilized a modified version of the open-source side-
channel analysis library scared. In particular, we ported scared to GPU using cupy2,

2https://pypi.org/project/cupy/
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and made it publicly accessible at https://github.com/toluntosun21/scaredcu.

We run the experiments on a supercomputer with NVIDIA RTX4090 GPU. For the
application of lattice attacks, we use the fpylll library.

7.2.2. Attack Results

We perform the side-channel attacks presented in Section 7.1. We begin with sim-
ulated traces, where power samples are intentionally crafted to reflect Hamming
weight leakage. Subsequently, we conduct real-device experiments using publicly
available implementations of Kyber and Dilithium in an embedded setting.

Table 7.3 Summary of prediction functions employed in our (HO)CPA attacks.

Reduction Range d Prediction Function

[−q/2, q/2] 1 Hamming weight
[−q/2, q/2] 2 abs (this work, Chapter 6)
[−q/2, q/2] 3 sin (this work)
[−q/2, q/2] 4 cos (this work)

[0, q) 1 Hamming weight
[0, q) 2 OPF (Prouff et al. (2009))
[0, q) 3 Recursive OPF (this work)
[0, q) 4 Recursive OPF (this work)

7.2.3. (HO)CPA Details

We perform (HO)CPA attacks for d ∈ {1,2,3,4}. For attacking the base multi-
plication with central reduction, we employ the prediction functions with explicit
formulas discussed earlier. Specifically, for d = 2, we use the absolute value pre-
diction function from Chapter 6. For d = 3 and d = 4, we apply the sin and cos
prediction functions introduced in Section 7.1.3. In the case of the non-central
reduction, we follow the methodology described in Section 7.1.1 to compute the
prediction functions computationally and recursively. Note that in certain scenarios
(e.g. d = 4, q = 8380417), computing the prediction function and performing the
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HOCPA would not be computationally feasible possible without such optimization.
For d = 1, we employ the Hamming weight as the prediction function, which is a
common practice in the literature, especially for attacking software implementations.
Table 7.3 summarizes the prediction functions used in our (HO)CPA attacks. For
all masked scenarios, we employed the mean-free product combination C. The tar-
get intermediate is chosen as the higher-degree coefficient r̂[i][1] from the output of
base multiplication for attacking Kyber’s incomplete NTT for d > 1. For d= 1, we
employ r̂[i][0]||r̂[i][1]. For both Kyber and Dilithium, and when the reduction range
is central, we reduce the hypothesis space by half by leveraging the observation that
additive inverse of the actual secret also produce peaks in the HOCPA results, as
discussed in Chapter 4. This optimization has a negligible impact on attack accu-
racy. Consequently, we tested q/2 hypotheses for Dilithium and q2/2 hypotheses for
Kyber due to incomplete NTT arithmetic.

7.2.4. HOCPA Attacks through Simulations

The simulated traces for the base multiplication operation were generated using the
routine described in Algorithm 11. We considered various values for the noise stan-
dard deviation, σ ∈ {0,4}, and the number of shares, d ∈ {2,3,4}. As in Section 6.3,
we set m = 100 and µ = 0 for all simulations, and evaluated both central (using
f2 = 1 in Algorithm 11) and unsigned reduction (f2 = 0). The leakage function was
set to Hamming weight, L = HWβ. For q = 3329, we simulated incomplete NTT
arithmetic (by setting f1 = 1 in Algorithm 11), while for q = 8380417, we simulated
complete NTT arithmetic (f1 = 0).

We performed a series of HOCPA attacks for d ∈ {2,3,4} for both the central and
non-central reduction range. Figure 7.2 demonstrates the results of the HOCPA
simulations, in terms of the success rate with respect to ν. The success rate is
defined as the number of correctly predicted elements of the secret vector, ±s[i],
divided by m. The results confirm the findings of Chapter 6 and extend them
to higher orders, i.e. d > 2, the central reduction is significantly easier to attack.
Our findings further suggest that the hardness gap between central and non-central
reduction strategies widens at higher orders. Observe that attacking Dilithium’s
modulus for d = 4 under central reduction requires fewer traces than the case for
d= 2 under the unsigned reduction range. A similar trend is observed for q = 3329.
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Figure 7.2 Success rates of HOCPA attacks on simulated traces generated with
different q, d, σ and reduction ranges with respect to ν. For each point in the
curves, 100 experiments have been performed with random data.

⋆ Reduction ranges: [−q/2, q/2] (solid), [0, q) (dashdotted).
⋆ Number of shares: d= 2 (blue), d= 3 (red), d= 4 (green).
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7.2.5. HOCPA Attacks on Real Traces

7.2.5.1. Target implementations

We targeted the Kyber implementation of Bronchain & Cassiers (2022)3, which is
specific to ARM Cortex-M4 and supports masking at arbitrary orders, as we did
in Chapter 6. This implementation inherits the polynomial arithmetic routines
from the pqm4 library Kannwischer et al. (2019), which offers the state-of-the-art
implementations of PQC algorithms on the Cortex-M4. Those parts are highly
optimized and mostly written in assembly. For example, the degree-1 polynomial
multiplications in Equation (3.35) and Equation (3.36) (during the base multiplica-
tion in incomplete NTT domain) are implemented using the SMUAD(X) instruction
explained in Section 3.3.2. The function that implements the base multiplication in
incomplete NTT domain is named basemul_asm, which is executed for each share.
The modular reduction is performed using Montgomery reduction, which takes 2
clock cycles and outputs in the central range (−q,q). For Dilithium, we targeted
the open-source implementation of Coron et al. (2024)4. The polynomial arithmetic
in this implementation is written in C language and compiled for the Cortex-M4,
in contrast to the target Kyber implementation. The function that performs the
base multiplication is named poly_pointwise_montgomery. As the name suggests,
it employs Montgomery reductions similar to the to target Kyber implementation.
However, these are more costly due to Dilithium’s parameters requiring 32-bit arith-
metic. For both Kyber and Dilithium, we focus on the medium security levels, i.e.
Kyber768 and Dilithium3. It is important to note that our methods are applicable
to all security levels. Additionally, our analysis focuses on attacking a single secret
polynomial s, although the secret key in both Kyber and Dilithium contains a vector
of polynomials. The methodology we present can be applied iteratively to target
each polynomial in the vector.

3https://github.com/uclcrypto/pqm4_masked/ commit hash: 5fe90ba

4https://github.com/fragerar/tches24_masked_Dilithium/tree/master commit hash: 5b5fd32
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7.2.5.2. Trace collection

We used the same trace collection setup introduced in Section 6.3.2.2, with the
CW1200 capturing traces and an STM32F303 microcontroller executing the victim
implementations. A trigger signal was provided to the power-collection module to
mark the beginning of the base multiplication function corresponding to the first
share for both Kyber and Dilithium. The power samples are sampled at a rate of
four samples at each clock cycle. Exceptionally, we decreased the sampling rate
to one sample per clock cycle for Dilithium and d = 4. This limitation arises from
the insufficient buffer size of the employed oscilloscope CW1200, which could not
accommodate all samples from the beginning of the base multiplication for the first
share to the end of the last share when capturing four samples per clock cycle. To
maintain consistency in the presented results, we implicitly multiply the sample
indices by four in the affected case.

7.2.5.3. Point-of-Interest detection

Figure 7.3 demonstrates the mean traces collected from the victim implementations
for both Kyber and Dilithium. Observe that the iterations of the base multiplica-
tions are clearly distinguishable as the same pattern repeats consistently throughout
the loop. Each iteration corresponds to 140 samples for Kyber and 96 samples for
Dilithium. Note that the target implementation employs loop-unrolling; thus 140
samples actually cover two iterations of the base multiplication resulting in 64 to-
tal iterations instead of the expected 128. The pattern remains identical across all
shares, thereby making the combination of leakage from different shares straight-
forward. As in Chapter 6, we used a constant offset to combine the leakage from
different shares. The offset is equal to the total number of power samples that the
base multiplication takes, along with additional samples due to loop overhead. We
determined this offset through pattern matching. In particular, to attack the secret
coefficient ŝ[i] in Dilithium, we focused on the set of power samples with indexes
{150+96i+24420j+δ}0≤j<d as input to the combination function C for 0≤ δ < 96.
To further refine the focus of the attack to a specific value of δ, we performed the
HOCPA attack for all possible values of δ and identified the one that maximized the
product of the highest correlation scores across all hypotheses and all i. Formally, we
computed δ′ = argmaxδΠn−1

i=0 Ψi
[δ] where Ψi

[δ] = maxκ(Scoreδ(Hi
[κ])), Hi denotes the set

of hypotheses for ŝ[i] and Scoreδ outputs the correlation score for the given hypoth-
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esis and δ. Recall that each ŝ[i] is attacked independently. δ′ identifies the point of
interest (PoI), most strongly associated power sample with the targeted operation,
namely ŝ[i] · ĉ[i]. Figure 7.4 illustrates the process. The same process is applied to
Kyber by adjusting the power sample offsets corresponding to each iteration and
the offset between shares. Notice that we leverage the fact that δ′ must remain the
same across attacks on each ŝ[i]. The Point-of-Interest (PoI) detection mechanism
explained in this section does not require profiling.
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Figure 7.3 The mean power trace associated with the execution of the base multi-
plication functions of the attacked implementations of Kyber and Dilithium. The
plots demonstrates the first eight iterations of main loops of the base multiplications,
focusing on the first two shares (note that Sub-figures b and d are not relevant for
implementations with d = 1). The observed pattern repeats consistently across all
iterations and shares.

7.2.5.4. Evaluation of (HO)CPA attacks

Figure 7.5 presents the HOCPA results against ŝ0 as an example for d= 3 and d= 4.
Observe that the actual secret is clearly distinguishable for each case. The correla-
tion amounts comply with our estimations presented in Table 7.1. For Dilithium,
the peaks are observed for significantly lower number of traces compared to Kyber.
Figure 7.6 presents the success rates of attacks with respect to the available num-
ber of traces, measured as the ratio of successfully retrieved NTT domain secret
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Figure 7.4 Illustration of PoI identification for Dilithium for d= 3 and ν = 1000.
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Figure 7.5 Results of HOCPA attacks on the victim Kyber and Dilithium imple-
mentations targeting ŝ[0] for the given d with respect to ν. The correlation scores
corresponding to incorrect hypotheses are shown in gray, score for the correct hy-
pothesis is shown in black.
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Figure 7.6 Success rates of (HO)CPA attacks on (masked) Kyber and Dilithium im-
plementations by Bronchain & Cassiers (2022) and Coron et al. (2024), respectively.
Attacks are performed against different number of shares in the target implementa-
tion. The success rate refers to (# correctly predicted ± ŝ[i]/n′) with respect to the given
ν, where n′ is 128 for Kyber and 256 for Dilithium.

⋆ Number of shares: d= 1 (black), d= 2 (blue), d= 3 (red), d= 4 (teal).

coefficients in our experiments. For Kyber, the (HO)CPAs achieve full success with
ν = 37, ν = 900, ν = 7000, ν = 40000 traces for d = 1, d = 2, d = 3 and d = 4, re-
spectively. In the case of Dilithium, full success is observed with ν = 35, ν = 350,
ν = 1300, ν = 4400 for the corresponding masking orders. The reported success rates
are based on (HO)CPA attacks conducted at the PoI identified using the method-
ology described in the previous paragraph.

7.2.5.5. Post-Processing with lattice attack

Recall from Section 4.4 that recovering Υ = 38 NTT domain coefficients out of
128 is needed for Kyber768 by using the approach of Kuo & Takayasu (2023).
We also adapted the methodology of Kuo & Takayasu (2023) to Dilithium3 and
experimentally found out (by performing 100 experiments with uniformly random
data) that Υ = 130 coefficients out of 256 are sufficient when BKZ-20 is used. The
runtime of BKZ in the mentioned scenarios and our test equipment is roughly 30
seconds and 19 seconds for Kyber768 and Dilithium3, respectively. Our approach
was to employ a block-size for which the overall post-processing using BKZ finishes
in practical time based on the results in the literature and in-depth optimization of
this step is out of the scope of our work. A critical aspect in applying the lattice
attack is determining which NTT domain coefficients have been correctly predicted,
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as only these should be included in the process. That is to decide a subset of
{0,1, ..,n′− 1} of length Υ. If any of the input coefficients is incorrect, the lattice
attack fails (the output is larger than η in absolute value) and it must be executed
with another subset of coefficients. For this purpose, we make use of the correlation
scores of the attacks outputs for each ŝ[i]. Formally, let {ŝ′

[0], ŝ
′
[1], .., ŝ

′
[n′−1]} denotes

the predicted set of NTT domain secret coefficients by the (HO)CPA attacks. Let
Ω = {Ω0,Ω1, ..,Ωn′−1} be the corresponding set of confidence scores, where each Ω[i] =
Scorei(ŝ′

[i]) reflects the score assigned to ŝ′
[i] during the attack on ŝ[i]. We then sort

Ω in descending order to obtain Ω′ and define Γ = argsort(Ω) as the permutation of
coefficient indices that sorts the scores. Starting from the subset of size Υ with
the highest-scoring predictions according to Ω, we incrementally consider less likely
subsets (as ranked by Ω) until the lattice attack succeeds. Figure 7.7 illustrates
an example of this process based on our experimental results. We then sort Ω in
descending order to obtain Ω′. Starting from the subset of size Υ with the highest-
scoring predictions according to Ω′, we incrementally consider less likely subsets
(as ranked by Ω) until the lattice attack succeeds. Table 7.4 presents the overall
results of the executed (HO)CPA combined with the lattice attack against Kyber
and Dilithium. Notice that only 2400 traces are needed in our experiments to break
Dilithium with d= 4.5 Notice that, in all cases, the lattice attack recovers the entire
s with less than half of the number of traces that the HOCPA requires to achieve
full security.

7.2.5.6. Comparison to literature

While no work performs non-profiled SCA attacks for d > 2 against the NTT mul-
tiplication of Kyber and Dilithium, the attack presented by Dubrova et al. (2023)
can be considered an alternative to ours for Kyber, since profiling is done directly
on the victim device. Although we acknowledge that the authors do not aim to
aggressively minimize the number of traces, they report a total of ν = 40K traces
to break masked Kyber for d = 3 and d = 4, which is significantly higher than our
trace requirements. Moreover, unlike (Dubrova et al., 2023), our approach does not
require sending chosen ciphertexts to the victim device.

5In the case of Dilithium, for attack orders d = 2 and d = 4, it was not possible to distinguish the secret from
its additive inverse because the prediction functions used are symmetric (see Figure 6.6d). Therefore, we
assume that the attacker obtains this sign information from another point in the SCA traces. For Kyber,
we did not need to make this assumption.

125



Table 7.4 Number of traces ν and the amount of time required for the lattice attack
successfully retrieve s in our experiments. Results are presented for distinct values
of d in the target implementations of both Kyber768 and Dilithium4. Note that ν
affects the number of known NTT domain coefficients, denoted by #ŝ[i], obtained
through the SCA attack, which serve as inputs to the lattice attack. We report
the minimum ν that allows the subsequent lattice attack finishes in practical time,
i.e. under a day. #LA denotes the number of executions of the lattice attack (with
different subset of NTT domain coefficients) until it succeeds. νCPA denotes the
number of traces the (HO)CPA attack achieved 1.0 success rate in our experiments.

Algorithm d νCPA ν #ŝ[i] #LA Time (m)

Kyber768 1 37 21 92 4 2
Kyber768 2 900 380 65 700 350
Kyber768 3 7000 2200 59 64 32
Kyber768 4 40000 14500 67 70 35

Dilithium3 1 35 25 243 1 0.31
Dilithium3 2 350 190 201 5 1.58
Dilithium3 3 1300 700 198 1 0.31
Dilithium3 4 4400 2400 198 782 247.6
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Figure 7.7 The sorted set of scores for different coefficient indexes, Ω′, for HOCPA
with d= 4. Correctness of ŝ′

[i] is visualized, ŝ′
[x] = ŝ[x] in green, otherwise in red. For

instance for Dilithium, ŝ′
[235] led to Ω[235] = 0.19 correlation score during attack on

ŝ[235]. This correlation value is the highest among the set of scores Ω. Therefore its
rank is the smallest, Γ[0] = 235.
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8. ATTACKING NON-HW LEAKAGE

This chapter is based on Section 4 and Section 5.2 of the publication (Tosun et al.,
2025).

We study the scenario where the device leakage model is not Hamming weight based
and unknown to the attacker. To perform first and higher-order SCA attacks in this
scenario, we leverage generic SCA distinguishers (see Section 3.5.4). A key chal-
lenge here is the injectivity of modular multiplications in NTT based polynomial
multiplication, typically addressed by bit-dropping in the literature. However, we
experimentally show that bit-dropping is largely inefficient against protected imple-
mentations of LBC. To overcome this limitation, we present a novel two-step attack
to Kyber, combining generic distinguishers and lattice reduction techniques. Our
approach decreases the number of predictions from q2 to q and does not rely on
bit-dropping. Our experimental results demonstrate a speed-up of up to 23490×
in attack run-time over the baseline along with improved success rate. In certain
scenarios, higher-order attacks become feasible only through the proposed approach,
as classical methods are shown to be unsuccessful.

8.1. A Novel Attack On Incomplete NTT

In this section, we explain a novel two-step attack strategy targeting incomplete
NTT-based polynomial multiplication, such as Kyber’s NTT or certain optimized
implementations of Dilithium (Abdulrahman et al., 2022). Recall from Chapter 4
that, when attacking the base multiplication in the incomplete NTT domain, the
secret coefficients are predicted in pairs of the form {ŝ[i][0], ŝ[i][1]}.

Our attack strategy is as follows. We consider each attacked pair as {ŝ[i][0], ŝ[i][0]δi}.
Then, we efficiently retrieve each δi using generic SCA distinguishers. Once the full
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vector ∆ = [δi]n/2−1
i=0 is obtained, we perform a lattice attack to recover the even-

degree secret coefficients ŝ[:][0], effectively reconstructing the full secret. We would
like to underline that since our attack employs generic distinguishers, the attacker
does not need to predict a device leakage function.

8.1.1. SCA to find Deltas

In this section, we explain how to efficiently find out the relationship between secret
coefficients within a pair, i.e. δi, as defined previously. We re-write the formula for
the base multiplication for the higher-order term (see Equation (3.36)) as:

r̂[i][1] = ĉ[i][0] · ŝ[i][0] · δi + ĉ[i][1] · ŝ[i][0] (mod q)

= ŝ[i][0] · (ĉ[i][0] · δi + ĉ[i][1]) (mod q)(8.1)

As the modular multiplication with a prime modulus is an injective function, ŝ[i][0]
can’t be distinguished through side-channel attacks with generic distinguishers. In
particular, for a fixed value of δi, the all the elements in set of hypotheses for ŝ[i][0],
which correspond to Z∗

q , get exactly the same score. The attacker can take the
advantage of this feature to retrieve δi, by considering the following set of hypotheses
{(1,1),(1,2), .., ,(1, q−1)} for (ŝ[i][0], δi). Note that δi can be distinguished for a fixed
value of ŝ[i][0] since ĉ[i][0] · δi + ĉ[i][1] (mod q) is non-injective. The prediction with
the highest score is expected to be (1, δi).

We should underline that the explained attack must be carried out without using a
prediction function (which is meaningful when a generic distinguisher is used). For
instance, the attack will not work if the distinguisher is MIA, and it is used with
the Hamming weight prediction function.

Notice that such an approach decreases the number of hypotheses from q2 to q for
the studied incomplete NTT based polynomial multiplication, and without the need
for traces with specially chosen ciphertexts.
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8.1.2. Lattice Attack Using Deltas

In this section, we construct a lattice attack using the knowledge of ∆ from the
previous section to find out ŝ[:][0]. We consider the inverse NTT as a matrix mul-
tiplication as described in Section 4.4 (following the approach of Kuo & Takayasu
(2023)). Recall that the transformation is defined as s[:][0] = Φŝ[:][0] and for the
even-degree and odd-degree coefficients, respectively. Also note that n′ = n/2.

First, we integrate ∆ into Φ as follows:

Φ∆ = Φ(In′∆)(8.2)

where In′ denotes the identity matrix of size n′. Consequently, we have s[:][1] =
Φ∆ŝ[:][0]. Based on this modification, we construct the following basis:

B =


ΦT ΦT

∆
qIn′ 0

0 qIn′

(8.3)

The lattice Λ(B) contains all the linear combinations of the row vectors in B, Λ(B) ={∑3n′−1
i=0 ζi ·B[i] | ζi ∈Z

}
. Then, [ŝ[:][0] | κ0 | κ1] generates the short vector [s[:][0] | s[:][1]]

in Λ(B), for some κ0,κ1. Therefore, finding ŝ[:][0] is an SVP in Λ(B), which can be
efficiently solvable for n′ = 128, using the well-known lattice reduction algorithms
LLL or BKZ.

The lattice reduction algorithm returns false positives along with the actual [s[:][0] |
s[:][1]]. In particular, it returns n′ possible solutions. We show that all of these
solutions are short and comply with our ∆ constraint. Consider the ring Rq,n′ and
let s[:][0](x), s[:][1](x) ∈Rq,n′ denote the polynomials corresponding to the coefficient
vectors s[:][0], s[:][1], respectively. Indeed, these solutions are cyclic rotations of s[:][0]
and s[:][1] over Rq,n′ . Rotation in Rq,n′ refers to multiplication by the monomial xα

where α denotes the rotation amount.

Multiplication by xα preserves the shortness property of s[:][0] and s[:][1]. Let t0 =
s[:][0] ·xα and t1 = s[:][1] ·xα. Then for j ∈ {0,1}
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tj[i] =

s[i−α][j], if i−α≥ 0

−s[n′−i−α][j], otherwise
(8.4)

We can consider the ∆ constraint in the NTT domain for Rq,n′ as ŝ[:][1] = ŝ[:][0] ⋆∆.
Taking the inverse NTT of both sides, we get s[:][1] = s[:][0] ·δ, where δ ∈Rq,n′ denote
the polynomial corresponding to the inverse NTT of ∆, with δ = Φ∆. When both
sides are multiplied by xα, we get xα · s[:][1] = xα · s[:][0] · δ. Therefore, t1 = t0 · δ,
which shows that t0 and t1 also satisfy the ∆ constraint thus forming valid yet false
positive solutions.

Since there are only n′ valid solutions as explained above, the attacker can brute-
force to distinguish the actual one. Recall that there exists k secret polynomials
in the secret key of Kyber s, where k is a parameter based on the target security
level, e.g. k = 4 for Kyber1024. The attacker can efficiently test n′ possibilities for
each secret polynomial using the public key equation, leading to (n/2)k possibilities.
That is to brute-force 228 possibilities for Kyber1024, and even less for instances of
Kyber with lower security levels.

In practice, one can use θ out of n′ columns of both ΦT and ΦT
∆. For instance, when

first θ columns are used, ΦT
[:][:θ] and ΦT

∆[:][:θ], the lattice reduction returns vectors of
size 2θ instead of 2n′. Note that these vectors are formed by corresponding elements
of the form [s[:θ][0] | s[:θ][1]]. While using a smaller θ reduces the complexity of the
lattice reduction, aggressively reducing it causes the results to be incorrect, i.e. not
slices of [s[:][0] | s[:][1]]. Also note that since the last n′− θ elements of both s[:][0]
and s[:][1] are not retrieved, a complementary second attack is needed. A trivial
strategy for this second phase is to target [s[n′−θ:n′][0] | s[n′−θ:n′][1]] using ΦT

[:][n′−θ:n′]
and ΦT

[:][n′−θ:n′].

8.2. Results

Next, we execute the attack presented in Section 8.1. Since -to the best of our
knowledge- there is no publicly available implementation where the device leakage
is not a function of Hamming weight, we study this case only through simulations.
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Figure 8.1 Success rates of first- and second-order SCA attacks on simulated traces
generated with different leakage functions, q = 3329, SNR = 1, with respect to ν.
The attack target is to recover δi in incomplete NTT domain. For each point in
the curves, 100 experiments have been performed with random data. Different
distinguishers are used in the SCA attacks.

⋆ Distinguishers: KW (blue), MIA (red).
⋆ Number of shares: d= 1 (dashed), d= 2 (solid).

8.2.1. Simulating Unknown Device Leakage

The simulated traces were generated according to the procedure described in Al-
gorithm 11. Consistent with Section 6.3 and Section 7.2.4, we set m = 100 and
µ = 0. All experiments were conducted with q = 3329 and setting the incomplete
NTT arithmetic by f1 = 1 in Algorithm 11. We restrict our analysis to unsigned
reduction (f2 = 0), as comparing signed and unsigned modular arithmetic is not
relevant in this context. To model unknown device leakage, rather than using only
L = HWβ, we also considered the following device leakage functions from Yan et al.
(2023) in our experiments:

2.1 Randomly weighted bits: L(x) =∑β−1
i=0 wix[i] with wi← [−1,1].

2.2 Strongly non-linear: L(x) = B(x[3:0]), with B defined to be the Present S-box.
2.3 Binary: L(x) = B(x[3:0]) mod 2, with B defined to be the Present S-box.

where x[i] denotes the i-th bit of x and the number of bits in x is denoted by t.
x[3:0] denotes the least-significant four bits of x. σ for each set of simulated traces
is selected based on the desired signal-to-noise ratio (SNR) for each L. The SNR is
defined as SNR = E[L(x)2]

E[σ2] .

131



8.2.2. Evaluation of SCA Attack on Deltas

First, we executed the SCA attack on deltas δi as explained in Section 8.1.1. As this
approach specifically targets incomplete NTT, we evaluate it only for q = 3329. We
only considered the classical unsigned modular reduction case but the methodology
applies to the central reduction case as well. We selected the σ in the simulated
traces based on the desired the signal-to-noise (SNR) ratio for each L. As the de-
scribed methodology requires using a generic distinguisher, we employ both KW
and MIA in our experiments. Figure 8.1 demonstrates the results for SCA attack
on deltas, revealing the effectiveness of our approach in various leakage character-
istics. Although we performed the attacks for d ∈ {1,2}, the method generalizes to
higher orders given a sufficient number of traces based on our results. KW outper-
formed MIA in terms of the number of traces required for a successful attack in our
experiments.

8.2.3. Application of Lattice Attack using Deltas

Next, we evaluate the lattice reduction approach proposed in Section 8.1 which aims
to recover secret coefficients ŝ[i][0] using deltas δi obtained from the aforementioned
SCA attacks. To validate the approach, we performed 100 experiments with ran-
domly generated s with short coefficients as explained in Section 3.2, considering
η = 2, e.g., Kyber768. For the lattice reduction, we used the BKZ-50 algorithm,
which successfully solved the resulting SVP instances for all instances. Through
experimentation, we used θ = 96. Our aim here is not to optimize the attack pa-
rameters, but rather to demonstrate the feasibility of recovering ŝ[i][0] via lattice
reduction. In our experimental setup, the lattice reduction process took an average
of 884 seconds to complete, with a minimum of 264 seconds, a maximum of 4941
seconds, and a standard deviation of 701 seconds.
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Table 8.1 Comparison of attack runtime (in seconds) between the proposed approach
and the baseline. Results are demonstrated for d = 2 using the distinguishers KW
and MIA. Two bins are used to estimate probabilities in the histogram model for
MIA.

Distinguisher KW MIA
# Dropped bits 4 6 8 4 6 8

Baseline 23490 12900 860 33060 25740 10010
Proposed 10 88
Speed-up 2349× 1290× 86× 429× 292× 113×

8.2.4. Comparison with Existing Approach

Recall that our approach reduces the number of hypotheses from q2 to q compared
to the baseline approach, which predicts the pair {ŝ[i][0], ŝ[i][1]} simultaneously (as
explained in Section 3.2), and uses bit-dropping. We compare our method to this
baseline in terms of attack run-time, demonstrated in Table 8.1 for the distinguishers
KW and MIA. For both distinguishers, the speed-up depends on the number of bits
dropped. For instance, when half of the bits are dropped, our approach achieves
speed-ups of 1290× and 292× speed-up, for KW and MIA, respectively. Determining
which bits to drop remains an open question, and typically several configurations
are tested. Due to the long run-times required by the baseline method, we omit an
in-depth comparison of success rates. However, Figure 8.2 provides evidence that
(1) the bit-dropping scheme significantly affects the success rate, and (2) in most bit-
dropping configurations and under various device leakage assumptions, the baseline
exhibits very low and unstable success rates. In a few specific cases, the baseline
achieves promising success rates, but even in those cases, our proposed method
performs comparably. In fact, the only scenario where the baseline’s success rate
approaches 1.0 (though never fully reaching it) is under the device leakage model
with randomly weighted bits. Particularly, the accuracy of the baseline with KW
and LSB6 is 0.94 for ν = 196608 while it is 1.0 for proposed approach. This analysis
is performed as if the NTT is complete to reduce the run-time, which we believe
does not impact the conclusion we get from these results.

Additionally, we include experimental results for the unprotected case (i.e., d = 1)
in Figure 8.3, which serve as evidence that our implementations of KW and MIA
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are correct and perform well with bit-dropping when d= 1.
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Figure 8.2 Success rates of SCA attacks on simulated traces generated with different
device leakage functions, q = 3329, SNR= 1, d = 2, with respect to ν. Different
distinguishers and bit-dropping strategies are used in the SCA attacks. For each
point in the curves, 100 experiments have been performed with random data.

⋆ Bit-dropping strategies: LSB4 (Least significant 4 bits) (triangle), LSB6
(square), LSB8 (diamond), MSB4 (asterisk), MSB6 (x), MSB8 (+).

⋆ Distinguishers: KW (blue), MIA (red).
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Figure 8.3 Success rates of first-order SCA attacks on simulated traces generated
with different device leakage functions, SNRs, q = 3329, with respect to ν. For each
point in the curves, 100 experiments have been performed with random data.

⋆ Distinguishers: KW (blue), MIA (red).
⋆ Bit-dropping: LSB1 (binary leakage), LSB4 (non-linear leakage), MSB11 (ran-

domly weighted bits).
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9. CONCLUSION

This thesis reveals the capabilities of the non-profiled SCA attacks against lattice-
based PQC. The study concentrated on the NTT-based polynomial multiplication,
as it served as a common and natural target for such attacks. The challenges of
adapting existing techniques from the literature to the non-profiled setting in LBC
were investigated. To address these challenges, novel solutions were proposed. Both
unmasked and masked implementations were studied, including those with higher-
order masking. In addition, the scenario in which the leakage function of the device
was unknown to the attacker was considered. Overall, the discussions and pro-
posed techniques provided both a technical contribution and a practical guide for
conducting non-profiled SCA attacks on LBC implementations.

In Chapter 5, we demonstrated that for incomplete NTT-based implementations of
LBC, a speed-up is possible by individually targeting secret coefficients using special
public polynomials, specifically, ciphertexts in Kyber and challenge polynomials in
Dilithium. In particular, we introduced the zero-value filtering attack, which offers
a trade-off between the number of traces and the overall attack run-time. With an
appropriate number of traces, this attack can achieve a speed-up of two orders of
magnitude over the baseline. Additionally, we proposed an efficient way of verifica-
tion of predictions on short polynomials, utilizing the inverse NTT transformation.
It makes the proposed scheme accurate independent of the number of filtering traces.
It was shown that the presented attack is effective in the presence of masking by
applying it against a first-order protected implementation of Kyber.

In Chapter 6, we demonstrated that the signed arithmetic that is widely adopted in
implementations of LBC such as Abdulrahman et al. (2022); Bronchain & Cassiers
(2022); Coron et al. (2024); Heinz et al. (2022); Kannwischer et al. (2019) leads to
a vulnerability by making the non-profiled SCA attack significantly easier. State-
of-the-art masking LBC, e.g. Azouaoui et al. (2023); Beirendonck et al. (2021); Bos
et al. (2021); Bronchain & Cassiers (2022); Coron et al. (2024); Fritzmann et al.
(2022); Heinz & Dreo Rodosek (2023); Heinz et al. (2022); Migliore et al. (2019);
Reparaz et al. (2016), concentrated on developing gadgets to handle non-linear op-
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erations and considered the linear part of the algorithms such as the polynomial
arithmetic as relatively trivial to mask due to its transparency to arithmetic mask-
ing (i.e. repeating the operation on each share individually). However, our study
revealed that the design decisions such as the reduction technique for the linear
parts have a significant impact on the exploitability of the associated SCA leakages
and hence on the number of traces required for a successful attack. We also effi-
ciently exploited this source of leakage, by introducing the absolute value prediction
function. We further have showcased our approach targeting a first-order masked
implementation of Kyber. As our attack does not require profiling and is successful
with only 250 traces (in our experiments and using our measurement setup), we
claim that utilization of the central reduction in masked implementations indeed
may ease SCA attacks.

In Chapter 7, we demonstrated that certain higher-order masked implementations
of LBC can be efficiently exploited using non-profiled attacks, which pose a signifi-
cant threat. We enabled efficient HOCPA attacks against second- and higher-order
masked implementations of LBC, by revisiting the formulation of the optimal pre-
diction function. When signed modular arithmetic is used in the victim device,
we provided explicit formulas involving sin and cos functions. These prediction
functions are particularly effective for attacking second- and higher-order masked
implementations. Otherwise, when unsigned modular arithmetic is used, the optimal
prediction function can be efficiently computed via our recursive formula. Addition-
ally, the results from Chapter 6 on the impact of using signed arithmetic on SCA
leakage were extended to higher-order masking scenarios. We performed HOCPA
attacks using the proposed prediction functions against open-source masked imple-
mentations of Kyber768 and Dilithium3. We recovered the full secret polynomial
with 2200 and 14500 traces against Kyber for second- and third-order masking, and
700 and 2400 against Dilithium, respectively.

In Chapter 8, we demonstrated that non-profiled SCA attacks are feasible even
when the device leakage function is unknown to the attacker. In this case, a novel
two-step attack was presented that combines generic distinguishers such as MIA
and KW with lattice reduction algorithms. Our approach is tailored specifically for
incomplete NTT as in Kyber. In particular, we showed that recovering deltas δi

between pairs of secret coefficients of odd and even degree in the incomplete NTT
domain is sufficient for full recovery of secret polynomials. Our approach is more
efficient than existing techniques as it reduces the brute-force space from q2 to q

and avoids the bit-dropping trick that leads to information loss and poor success
rate. We observed a speed-up in attack run-time ranging from 86× to 2349× in
our experiments while the success rate of proposed method is significantly better
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in most cases and comparable in some cases. In fact, in some cases, higher-order
attacks became feasible only by the proposed approach.
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