DESIGN AND IMPLEMENTATION OF A THRESHOLD-BASED
LINKING SCHEME TO EXTEND BROWSER FINGERPRINT
LIFESPAN

by
ELiF ECEM SAMLIOGLU

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of

the requirements for the degree of Master of Science

Sabanci University
July 2025

DESIGN AND IMPLEMENTATION OF A THRESHOLD-BASED
LINKING SCHEME TO EXTEND BROWSER FINGERPRINT
LIFESPAN

Approved by:

Prof. ALBERT LEVI

(Thesis Supervisor)

Prof. CEMAL YILMAZ ...

Assoc. Prof. KUBRA KALKAN CAKMAKCITcoooo...

Date of Approval: July 9, 2025

ELiF ECEM SAMLIOGLU 2025 ©

All Rights Reserved

ABSTRACT

DESIGN AND IMPLEMENTATION OF A THRESHOLD-BASED LINKING
SCHEME TO EXTEND BROWSER FINGERPRINT LIFESPAN

ELiF ECEM SAMLIOGLU
Computer Science and Engineering, M.Sc. Thesis, July 2025

Thesis Supervisor: Prof. Albert Levi

Keywords: browser fingerprinting, user identification, authentication, privacy

Browser fingerprinting is a powerful tool for user identification in financial and other
security-critical applications that require strong authentication. However, due to the
instability of browser attributes, fingerprints often change rapidly, reducing their
lifespan and negatively impacting user convenience. We propose ThresholdFP, a
novel linking algorithm designed to extend the durability of browser fingerprints
without compromising precision.

Instead of replacing the fingerprint after even a small change, ThresholdFP com-
putes a difference score between fingerprints. If the total change remains below a
configurable threshold, the new fingerprint is linked to its predecessor, forming a lin-
eage over time. This allows minor attribute fluctuations to be tolerated, improving
persistence without triggering additional identity checks.

To ensure realistic performance evaluation, we collected and utilized two real-world
datasets: one institutional dataset with over 235,000 fingerprints and a labeled
volunteer dataset containing 5,774 fingerprints from known browser instances. The
best-performing variant of ThresholdFP achieved an average tracking duration (i.e.
fingerprint lifetime) of 55.7 days on the institutional dataset and 50.1 days on the
volunteer dataset, while maintaining over 98% estimated precision and 99.5% actual
precision, respectively. Compared to rival methods in the literature, ThresholdFP
improves average fingerprint tracking duration by 24.33% to 106.30%, demonstrating
its effectiveness and robustness under real-world conditions.

iv

OZET

TARAYICI PARMAK IZI OMRUNU UZATMAK ICIN ESIK TABANLI BiR
BAGLANTILAMA YONTEMININ TASARIMI VE UYGULAMASI

ELiF ECEM SAMLIOGLU
Bilgisayar Bilimi ve Miihendisligi, Yiiksek Lisans Tezi, Temmuz 2025

Tez Damigmani: Prof. Dr. Albert Levi

Anahtar Kelimeler: tarayici parmak izi, kullanici tanimlama, kimlik dogrulama,

mahremiyet

Tarayicit parmak izi alma, saglam bir kimlik dogrulamasimin gerekli oldugu finansal
ve diger giivenlik agisindan kritik uygulamalarda kullanici tanimlama igin giicli
bir aragtir. Ancak tarayici 6zniteliklerinin kararsizligi nedeniyle parmak izleri sik-
likla hizli bir gekilde degismekte, bu da omiirlerini azaltmakta ve kullanici ko-
layligin1 olumsuz etkilemektedir. Bu caligmada, parmak izi dogrulugunu zedeleme-
den tarayici parmak izlerinin dayanikliligini artirmak tizere tasarlanmig yeni bir
baglantilama algoritmasi olan ThresholdFP o6nerilmektedir.

ThresholdFP, kiiciik bir degisiklikten sonra parmak izini tamamen degistirmek yer-
ine parmak izleri arasinda bir fark skoru hesaplar. Eger toplam degisiklik ayarlan-
abilir bir egik degerin altinda kaliyorsa yeni parmak izi bir 6éncekine baglanir ve
zamanla bir soy zinciri olugturur. Bu yaklagim, kiiciik 6znitelik dalgalanmalarinin
tolere edilmesini saglar ve ek kimlik dogrulama kontrolleri tetiklenmeden izlenebilir-
ligi artirir.

Gergekei bir performans degerlendirmesi saglamak amaciyla biri 235.000’den fazla
parmak izi iceren kurumsal bir veri kiimesi, digeri bilinen tarayici 6rneklerinden
elde edilmis 5.774 parmak izine sahip etiketli bir goniillii veri ktimesi olmak tizere iki
gercek diinya veri kiimesi toplanmig ve kullanilmigtir. ThresholdFP’'nin en iyi per-
formans gosteren varyanti, kurumsal veri kiimesinde ortalama 55.7 giin, goniillii veri
kiimesinde ise 50.1 giin izleme siiresi (yani parmak izi 6mrii) elde etmis; sirasiyla
%98’in tizerinde tahmini dogruluk ve %99.5 gercek dogruluk saglamigtir. Liter-

v

atiirdeki rakip yontemlerle karsilagtirildiginda ThresholdFP ortalama parmak izi
izlenebilirligini %24.33 ile %106.30 arasinda artirarak gercek diinya kogullar: altinda
etkinligini ve dayanikliligini ortaya koymaktadir.

vi

ACKNOWLEDGEMENTS

Despite spending a long time searching for the right words, I am still not certain
I have succeeded in expressing the depth of my gratitude to my supervisor, Prof.
Albert Levi, as usual phrases feel too small to capture it. Without his unfaltering
support, not only this thesis, but many important steps I have taken in my academic
journey would not have been possible. During the many moments when I lost confi-
dence in myself and struggled to stay motivated, it was his constant encouragement,
endless patience, and invaluable guidance and wisdom that consistently grounded
me and helped me find my way forward. I am and will remain deeply grateful to

have had his guidance throughout this experience.

I would also like to express my sincere gratitude to Prof. Cemal Yilmaz, whose
courses I had the opportunity to take during both my undergraduate and graduate
studies, and with whom I had the privilege of working closely as a teaching assistant
for three semesters, an experience that greatly contributed to my academic and

professional growth.

Throughout every high and low, my family has been my unwavering foundation.
Their constant support and encouragement, and their way of turning even the small-
est achievement into a reason to smother me in love, lifted me and gave me strength
in ways they may not even realize. I also feel incredibly lucky to have shared this
path—both in life and in our field of study—with two brothers who are not only
family, but also my lifelong best friends, and whose insight, steady presence, and

companionship have been a constant source of inspiration and comfort.

Words feel too light to reflect Aysegiil’s place in my journey. Thank you for being
there for me, truly, for everything. Your presence is quietly stitched into everything

I have managed to accomplish, and I cannot even fathom doing this without you.

I would like to extend my thanks to Ada, Nil, Sinem, and Ziilal for their wholehearted
support and for believing in me with a conviction that I am still trying to live up

to, through every step I have taken since high school.

Lastly, I would like to thank the members of FENS 2014 for providing both an
intellectual and genuinely enjoyable environment that added warmth, support, and
perspective throughout this journey, and for the many friendships it brought into

my life.

vii

Dedicated to
my beloved family

viii

TABLE OF CONTENTS

LIST OF TABLES ... e xi
LIST OF FIGURES ... e xii
1. INTRODUCTION 1
2. BACKGROUND AND MOTIVATION ... 4
2.1. Fundamentals of Browser Fingerprinting 5
2.2. Related Work in Fingerprint Linking 9
2.3, Motivation i 10

3. METHODOLOGY ... 11
3.1. General Workflow 11
3.2. Obtaining the Fingerprint Hash 15
3.3. Threshold-based Algorithm i, 15
3.4. Categorizing Fingerprints.......... i 18
3.4.1. Appearance of an Active Fingerprint 18

3.4.2. Reappearance of an Outdated Fingerprint 18

3.4.3. Newly Introduced Fingerprints............. 19

3.5. Remediation Process............oo i 21

4. DATASETS AND RESULTS 23
4.1. Evaluation Metrics. ... 23
4.2. Datasets 24
4.2.1. Institutional Dataset 25

4.2.2. Volunteer Dataset i 26

4.3. Results on the Institutional Dataset 29
4.3.1. PreciSionc.oiiii 29

4.3.2. Tracking Time of Fingerprints 29

4.4. Results on the Volunteer (Labeled) Dataset 31
4410 PreciSionouiuiii 31

4.4.2. Tracking Time of Fingerprints 33

4.5. Comparative Analysis....... ... 34
4.5.1. Tracking Time and Precision................................... 36

4.5.2. Scalability 37

5. DISCUSSION AND ETHICAL ISSUES ..., 39
D.1. DiISCUSSION . . .o 39
5.1.1. Addressing the Research Questions 40

5.1.1.1. Research Question 1............. it 40

5.1.1.2. Research Question 2..........., 41

5.1.1.3. Research Question 3........... 41

5.2. Ethical Considerationscoiiiiii i 42
5.3. Ethical Implications i i 43
5.4. Threats to Validity 44

6. CONCLUSION .. 45
BIBLIOGRAPHY .. 47

LIST OF TABLES

Table 2.1. Fingerprint attributes (part 1) ..., 7
Table 2.2. Fingerprint attributes (part 2) ..., 8
Table 4.1. Distribution of operating systems across two datasets. 25
Table 4.2. Distribution of browsers across two datasets. 25

Table 4.3. Normalized Shannon entropy and calculated scores of attributes

in the institutional dataset. 27
Table 4.4. Normalized Shannon entropy and calculated scores of attributes

in the volunteer dataset. 28
Table 4.5. Comparison of the average tracking time obtained in number

of days by ThresholdFP and previous work 36

X1

LIST OF FIGURES

Figure 3.1. Overview of the decision-making flow in ThresholdFP.........

Figure 3.2. Overview of the threshold algorithm

Figure 3.3. An example sequence of fingerprints from a single user, illus-
trating how the threshold algorithm updates the active set and lineage
structure over time.

Figure 3.4. A remediation scenario,

Figure 4.1. Estimated precision of three threshold algorithm variants on
the institutional dataset
Figure 4.2. Average tracking time of three threshold algorithm variants on
the institutional dataset
Figure 4.3. Precision and estimated precision of three threshold algorithm
variants on the volunteer dataset
Figure 4.4. Average tracking time of three threshold algorithm variants on
the volunteer dataset
Figure 4.5. Average decision time of ThresholdFP and FP-Stalker’s rule-

based algoritm for one fingerprint

Xii

1. INTRODUCTION

Browser fingerprinting is a collection of methods used to gather various types of
information from a client’s browser in order to acquire a fingerprint that can be
associated with the user. Browser fingerprinting methods are considered harder to
detect, as they are stateless, unlike cookies, and do not store data in the client
browser. Many browsers have taken measures against third-party cookies to address
the controversies surrounding tracking (Igbal, Englehardt & Shafiq, 2021). As a
result of these recent adjustments, stateless techniques such as browser fingerprinting
have attracted significant popularity. Even though some browsers have also taken
measures against browser fingerprinting to mitigate concerns about the potential
threat it poses to user privacy, the use of browser fingerprinting by websites has

been gaining momentum.

However, apart from its adversarial usage, browser fingerprinting has also been used
for benign purposes such as bot detection (Jonker, Krumnow & Vlot, 2019; Vastel,
Rudametkin, Rouvoy & Blanc, 2020; Wu, Sun, Zhao & Cao, 2023) and fraud de-
tection (Igbal et al., 2021). In particular, fraud detection is a prominent objective
that organizations pursue using industry-standard tools (Durey, 2022). Further-
more, browser fingerprinting has begun to be integrated into authentication schemes
as an additional security layer and typically as a triggering mechanism to induce
complementary security procedures in case of any discrepancy concerning the finger-
prints (Laperdrix, Avoine, Baudry & Nikiforakis, 2019; Lin, Ilia, Solanki & Polakis,
2022). These systems aim to find a balance between convenience and security, which

underscores the need for browser fingerprints to be both unique and stable.

To accurately identify users, fingerprints must be sufficiently distinctive. At the
same time, they must remain consistent over time to be useful for long-term track-
ing or authentication. On the other hand, Vastel, Laperdrix, Rudametkin, and
Rouvoy (2018) concluded that nearly half of fingerprints do not even last a week,

and around 80% only last a few days longer than a week. The authors point to a
series of reasons that can account for the evolution of fingerprints, including, but
not limited to, software updates, relocations that cause a change in timezones, and

some configuration changes made by users.

Although these problems have been widely acknowledged and amplifying the unique-
ness of browser fingerprints has been a central focus of many works in the do-
main (Cao, Li & Wijmans, 2017; Gémez-Boix, Laperdrix & Baudry, 2018; Laper-
drix, Rudametkin & Baudry, 2016), to the best of our knowledge, only a limited
number of studies—most notably Eckersley’s Panopticlick (2010) and Vastel et al’s
FP-Stalker (2018)—have investigated the means of extending the tracking time, i.e.,

the useful time of fingerprints, by associating them with one another.

Furthermore, given that browser fingerprinting attributes may vary in reliability
and also that some browsers have been interfering with or deprecating some of
the attributes to combat browser fingerprinting, a study addressing these recent

developments is needed.

To this end, in this thesis, we propose ThresholdFP, a threshold-based algorithm
to link a user’s fingerprints to increase tracking time. ThresholdFP calculates a
difference score between the fingerprints and tolerates changes up to a threshold.
To put it differently, new fingerprints with acceptable differences from previous ones
are linked and are not treated as unknown. The threshold is configurable, and a
threshold value suitable for the needs of a website can be selected, taking into ac-
count the trade-off between precision and tracking time. Additionally, ThresholdFP

carries out a remediation process if it detects that a previous decision was faulty.
This work was guided by the following research questions:

RQ1. Extending fingerprint lifespan via threshold-based linking: To what ex-
tent can a threshold-based algorithm extend the effective lifespan of

browser fingerprints?

RQ2. Tolerance to attribute changes without precision loss: Can benign
changes in fingerprint attributes be tolerated without compromising link-

ing precision?

RQ3. Comparison with existing approaches: How does a threshold-based link-
ing algorithm compare to existing methods in terms of tracking duration

and precision?

To address these research questions, two separate datasets with different sizes, pop-
ulations, frequencies, and collection intervals were employed. In addition to develop-
ing three variants of our algorithm, we adapted Vastel et al. (2018) and Eckersley’s
work (2010) to conduct a comparative analysis. All threshold algorithm variants
outperformed the other two algorithms, with optimal thresholds selected separately
for each dataset. The best-performing variant achieved an average tracking time of
55.7 days on the first dataset and 50.1 days on the second dataset.

The organization of the thesis is as follows: Section 2 provides a brief literature
review of the domain, elaborates on the state-of-the-art fingerprint linking studies,
and outlines the motivation behind this study. Section 3 explains our approach in
detail. Section 4 describes the datasets used in our study and presents the results
obtained. Section 5 discusses the results presented in the previous section and

addresses the threats to validity. Finally, Section 6 provides the concluding remarks.

2. BACKGROUND AND MOTIVATION

Despite ongoing improvements in web authentication, traditional systems remain
constrained by usability and security trade-offs. The use of passwords is still un-
avoidable in most cases, even though they are vulnerable to reuse, leakage, phish-
ing, and social engineering attacks (Abromaityte, Dubero, Kruger, Lucassen, Vos,
van den Hout, Bouma, Treur & Roelofsma, 2025; Durey, Laperdrix, Rudametkin &
Rouvoy, 2021). Typical two-factor authentication schemes are also generally consid-
ered inconvenient by end users (Marky, Ragozin, Chernyshov, Matviienko, Schmitz,
Miihlhduser, Eghtebas & Kunze, 2022). While biometrics may offer stronger as-
surance, they are still susceptible to replication attacks, raise user privacy concerns,
and require customized hardware (Alrawili, AlQahtani & Khan, 2024), making them
impractical for many web-based applications. SMS-based authentication introduces
several attack surfaces as well. Messages are transmitted unencrypted over mo-
bile networks, leaving them vulnerable to interception and man-in-the-middle at-
tacks (Alzomai, Josang, McCullagh & Foo, 2008). SIM swapping is another docu-
mented threat (Mulliner, Borgaonkar, Stewin & Seifert, 2013).

Time-based One-Time Passwords (TOTP), by contrast, eliminate many of these
network-related risks by generating codes locally on the user’s device. This makes
TOTP more secure than SMS in many respects. However, it is less universally
deployable, since it requires a smartphone and the setup of a dedicated app. In
addition, the short validity window of each code can create usability problems and
increase the likelihood of user error (Reese, Smith, Dutson, Armknecht, Cameron &
Seamons, 2019).

Given these challenges, browser fingerprinting offers an alternative to traditional
second factors for authentication. It requires no user interaction and can run silently
in the background to complement traditional methods, helping to verify the user’s
identity through their browser without disrupting the authentication experience.
Additional security checks are triggered only when an unrecognized fingerprint is
encountered (Alaca & van Oorschot, 2016; Senol, Ukani, Cutler & Bilogrevic, 2024).

The remainder of this section provides background on browser fingerprinting,
presents related work in the literature, including both foundational studies and
recent advancements, and outlines the motivation behind the approach proposed in
this study.

2.1 Fundamentals of Browser Fingerprinting

Browser fingerprinting is fundamentally a technique for identifying users based on
the configuration and behavior of their browsers. Instead of relying on stored iden-
tifiers, such as cookies, fingerprinting collects a combination of browser-exposed
attributes to construct a unique identifier (i.e., a fingerprint) (Laperdrix, Bielova,
Baudry & Avoine, 2020). These attributes may be gathered passively from network-
level observations, such as HT'TP headers, or actively through client-side JavaScript

calls to browser APIs (Ajay & Guptha, 2022).

The origins of browser fingerprinting date back to Mayer’s (2009) study, in which
he demonstrated that by collecting the values of a few JavaScript objects, 96.23% of
users could be uniquely identified. His small-sample work was followed by Eckersley
(2010), who launched a large-scale experiment by announcing it on his website and
inviting users to contribute their fingerprints. This effort resulted in the collection
of 470,161 fingerprints and became a widely recognized study that helped bring

browser fingerprinting into broader awareness.

Since then, numerous studies have been conducted in the field to point out the
crucial role JavaScript APIs play in browser fingerprinting by allowing access to
many browser-specific pieces of information such as installed fonts (Nikiforakis,
Kapravelos, Joosen, Kruegel, Piessens & Vigna, 2013), plugins (Eckersley, 2010;
Mayer, 2009), and screen attributes (Mayer, 2009; Nikiforakis et al., 2013). More-
over, JavaScript APIs also facilitate further identification through various APIs such
as the Canvas API (Acar, Eubank, Englehardt, Juarez, Narayanan & Diaz, 2014;
Mowery & Shacham, 2012), the WebGL API (Cao et al., 2017), and the Web Audio
API (Englehardt & Narayanan, 2016) by making the browser render complex images

and animations or process audio signals to produce specific outputs.

The fingerprint itself is typically formed by concatenating or hashing these attribute
values into a single identifier string. Each attribute contributes differently: some
offer high uniqueness but may change due to browser updates, for example, the
user-agent, or system modifications (such as installed fonts), while others, such as
the operating system platform, are more stable but less distinctive (Laperdrix et al.,
2020). The effectiveness of a fingerprinting system depends on balancing the trade-
off between entropy and stability (Andriamilanto, Allard, Le Guelvouit & Garel,
2021).

A widely adopted implementation of browser fingerprinting is FingerprintJS, an
open-source library used in many production systems (FingerprintJS, 2023). It
gathers a standardized set of fingerprinting attributes through both passive and
active techniques. Tables 2.1 and 2.2 provide an overview of the attributes used by

FingerprintJS, along with sample values.

Although the attributes used by libraries like FingerprintJS are effective for iden-
tification, the APIs that expose them are often employed for website functionality,
making the intention behind their usage unclear and fingerprinting detection diffi-
cult in practice (Boussaha, Hock, Bermejo, Rumin, Rumin, Klein, Johns, Compagna,
Antonioli & Barber, 2024). While users can disable JavaScript entirely, doing so of-
ten breaks site functionality and renders many websites unusable (Laperdrix et al.,
2020).

However, it would be misleading to reduce browser fingerprinting solely to JavaScript
APIs, as several studies have demonstrated that fingerprinting remains possible even
when JavaScript is disabled, for instance, through CSS-based techniques (Laperdrix,
Starov, Chen, Kapravelos & Nikiforakis, 2021; Lin, Araujo, Taylor, Jang & Polakis,
2023; Trampert, Weber, Gerlach, Rossow & Schwarz, 2025). Similarly, although
JavaScript does not provide an API for retrieving browser extensions, several studies
have reported various workarounds for fingerprinting browser extensions (Solomos,
Ilia, Nikiforakis & Polakis, 2022; Starov & Nikiforakis, 2017; Takei, Saito, Takasu
& Yamada, 2015).

Table 2.1 Fingerprint attributes (part 1)

Attribute Source Description Example
User agent HTTP User agent string | Mozilla/5.0 (Windows
header identifying browser | NT 10.0; Win64; x64)
and OS AppleWebKit/537.36
(KHTML, like Gecko)
Chrome/135.0.0.0 Sa-
fari/537.36
Fonts JavaScript | List of supported | Agency FB, Calibri...
system fonts
Font preferences | JavaScript | Measured text | "default": 149.3125...
widths using sample
fonts
Audio JavaScript | Sum of absolute sam- | 124.04
ple values from a ren-
dered audio buffer
generated with Web
Audio API
Screen resolu- | JavaScript | Width and height of | [720, 1280]
tion the screen
Screen frame JavaScript | Dimensions of the | [40, 0, 70, 0]
visible browser win-
dow frame
Color depth JavaScript | Number of bits used | 24
per pixel for color
Timezone JavaScript | Local time zone set- | Europe/Istanbul
ting
Session storage | JavaScript | Availability of | true
session-based stor-
age
Local storage JavaScript | Availability of persis- | true
tent local storage
DOM blockers | JavaScript | Detected content | adGuardBase
blockers
Platform JavaScript | Platform identifier | Win32
string
OS CPU JavaScript | Reported operating | Windows N'T 10.0
system and version
Architecture JavaScript | CPU architecture in- | 255
dicator
CPU class JavaScript | CPU classification | x86
(legacy attribute)
Hardware con- | JavaScript | Number of logical | 8
currency CPU cores
Device memory | JavaScript | Available device | 8
memory for browser
Indexed DB JavaScript | Support for In- | true
dexedDB API
Open database | JavaScript | Support for Web | true

SQL database

7

Table 2.2 Fingerprint attributes (part 2)

Attribute Source Description Example
Plugins JavaScript | Installed browser | { "name": "PDF Viewer",
plugins with MIME | "description": "Portable
info Document Format",
"mimeTypes": ['"type":
"application/pdf', "suf-
fixes": "pdf' , "type":
"text/pdf", "suffixes":
pdf] }
Languages JavaScript | Preferred languages | [en]
list
Canvas JavaScript | Encoded image ren- | "geometry":
dered on HTML can- | "data:image/png;base64,..."
vas
Touch support | JavaScript | Touch capability in- | {"maxTouchPoints": 0,
dicators "touchEvent": false,
"touchStart": false}
Vendor JavaScript | Reported browser | "Google Inc."
vendor
Vendor flavors | JavaScript | Distinguishes chrome
browsers with
same engine
Cookies enabled | JavaScript | Whether cookies are | false
enabled
Color gamut JavaScript | Supported color | srgh
space
Inverted colors | JavaScript | Whether display col- | inverted
ors are inverted
Forced colors JavaScript | Whether a forced | false
color palette is active
Monochrome JavaScript | Whether device uses | 0
monochrome display
Contrast JavaScript | Preferred contrast | more
mode
Reduced motion | JavaScript | Whether reduced | reduce
motion is enabled
HDR JavaScript | High dynamic range | false
display support
Math JavaScript | Results of floating- | "acos": 1.44..., "acosh":
point operations 709...
Video card JavaScript | GPU vendor and | "vendor": "Google Inc.", ...
renderer details
PDFViewer en- | JavaScript | Support for in- | true

abled

browser PDF view-
ing

2.2 Related Work in Fingerprint Linking

The recent developments have escalated the privacy concerns of internet users and
increased the demands for anti-tracking measures. Several major browsers took
concrete steps in order to address these concerns. For example, Brave started to
interfere with Canvas API output (Brave Privacy Team, 2020). As a result, fin-
gerprints became more prone to changes. This shift has, in turn, led to greater
significance for fingerprinting methods that introduce mitigation strategies against

these kinds of anti-tracking measures.

One of the ways to improve the durability of fingerprints is by associating evolved
fingerprints with matching candidates selected from the set of previous fingerprints.
In his large-scale study, Eckersley (2010) formulated a basic fingerprint matching
algorithm, which constituted the first attempt to link fingerprints. Each new finger-
print was compared with the set of previously encountered fingerprints. If a single
candidate differed by only one attribute, the algorithm further checked whether the
differing attribute belonged to either: (1) the set of attributes allowed to change
regardless of value, or (2) the set of attributes allowed to change only if the string
similarity ratio exceeded 85%. The study did not measure the tracking time; how-

ever, the accuracy and precision rates were reported as 65% and 99.1%, respectively.

Eight years later, Vastel et al. (2018) proposed FP-Stalker, which used 16 browser
attributes and aimed to improve on Panopticlick through a rule-based and a hybrid
fingerprint matching algorithm. They imposed seven constraints in the rule-based
algorithm, deeming the first three rules non-negotiable. Although the remaining
four were more flexible, the rules were collectively overly tailored to the available
data. Moreover, covering all possibilities exhaustively with predetermined rules was
found to be infeasible. Therefore, they employed a machine learning model in the
second step of the hybrid algorithm, which was preceded by the enforcement of the
first three rules of the rule-based algorithm as the first step. They also implemented
Eckersley’s (2010) simple algorithm to compare with their approaches. The hybrid
algorithm attained the best performance, while the rule-based approach managed

to outperform Eckersley’s algorithm.

Later, one study evaluated the effect of optimizing feature sets and removing version
information on fingerprint stability (Pugliese, Riess, Gassmann & Benenson, 2020).

They were able to double the tracking time of FP-Stalker on average.

2.3 Motivation

However, the gains reported by Pugliese et al. (2020) came with a significant trade-
off: tailoring the feature set to maximize tracking time rendered more than 10
browser types less trackable. Moreover, Li and Cao’s (2020) million-scale measure-
ment study, in which they tested the performance of FP-Stalker, demonstrated that
the hybrid algorithm suffered from significant scalability issues. Furthermore, al-
though the rule-based algorithm was relatively more scalable, it was still infeasible

for practical use.

The limitations and scalability issues of rule-based approaches and learning-based
methods suggest that there is still room for a practical, flexible, and accurate linking
mechanism to improve fingerprint durability. Rule-based algorithms often rely on
fixed, handcrafted constraints that are tightly coupled to the attribute set used. Asa
result, their performance may degrade when applied to different datasets, attribute
sets, or real-world conditions where certain attributes may be noisy, missing, or
manipulated by privacy-preserving browsers. On the other hand, learning-based
approaches such as classification models require large volumes of labeled training
data and often incur significant computational overhead, making them difficult to

deploy in time-sensitive or resource-constrained environments.

This motivates the development of a method that is both flexible and efficient, capa-
ble of tolerating natural variation without relying on rigid assumptions or resource-
intensive models. To this end, we propose ThresholdFP, a threshold-based linking
algorithm that allows for minor changes in browser attributes, provided they remain
within a configurable threshold. This offers a more adaptable and context-aware
linking strategy, enabling system designers to tune the trade-off between fingerprint
persistence and linking precision. Unlike prior work, ThresholdFP is not tightly
coupled to a specific attribute set and does not require fingerprint collection at fixed
intervals, allowing it to operate effectively under realistic usage patterns. These
design choices make ThresholdFP well-suited for use in large-scale, security-focused
systems that require reliable recognition of browser instances while maintaining ac-

ceptable execution time.

10

3. METHODOLOGY

In this section, we describe the implementation of ThresholdFP and how it is em-
ployed to achieve a longer tracking time, that is, the period for which a fingerprint

is traced.

3.1 General Workflow

In this section, the general workflow of the system will be explained. To provide
a clear and comprehensive understanding of the workflow, a flowchart is shown in
Figure 3.1, which summarizes the decision-making process in a compact manner. For
a more detailed representation, Figure 3.2 provides a visual diagram that illustrates
the interactions between the different stages of ThresholdFP.

The set of active fingerprints is the collection of a user’s up-to-date fingerprints
and is initially empty. Once a fingerprint is introduced, our framework first checks
whether it lies in the set of active fingerprints. If so, it is marked as safe. Else, we
check whether it is a previously encountered fingerprint. If this is true, then it points
out that the fingerprint was an active one before, but was later discarded from the
set, meaning that until now, it was considered to be an outdated fingerprint that
has been succeeded by a newer one. To follow up, a remediation process is applied
to take corrective measures. The remediation process is explained in more detail
in Section 3.5. If the fingerprint is neither an active nor an outdated one, then it
must be recorded for the first time. It can be (a) an evolved version of a previous
fingerprint or (b) an unknown fingerprint from a completely new browser instance.

To decide if the fingerprint can be linked to a previous fingerprint, a threshold-based

11

10w €
active fin-

gerprints?

yes

ey €
known fin-

gerprints?

no

Remediate

A\

Elf pparent €
active

Add fppew yes fingerprints
to active |€— such that

fingerprints [Pnew 18
linkable

to f Pparent

Remove
f pparent
from active
fingerprints

A

no

Mark as
unknown

\ 2 A 4

to active

Mark as e
benign '\Egd/i

fingerprints

Figure 3.1 Overview of the decision-making flow in ThresholdFP

12

algorithm is employed. If the algorithm is able to find candidates, then the candidate
that shares the greatest similarity with the fingerprint is regarded as the predecessor
of the fingerprint. Thereafter, the predecessor fingerprint is removed from the set of
active fingerprints and the successor fingerprint is added in its place. Otherwise, if

no such candidate is found, the fingerprint is treated as a new one.

13

4!

y HTTP headers
JavaScript

client browser

visitorld: d90z8h

user agent: ...
timezone: ...
fonts: ...

video card: ...

Score Heuristic

[} 1
: comparing with active fingerprints :
: visitorld: d90z8h visitorld: a1b43f :
i selecting the most similar candidate -
1 user agent: — user agent: ... H 1

i i B am ti candidates == @? LH
1 fonts: ... —> fonts: ... 1
: video card: ... «—— ") video card: ... > no l :
1 1
1
: fPparent = fpi such that fp; € candidates 1
: and difference(fp, fpi)) = min(candidate_difference_scores) :
1 H 1
I i 1
1 . H 1
: pnew fpactr’ve € :
I ¥ 1
1 o ; . : . s [T 1
I changed = the set of attributes of which values differ updating fingerprint lineage 1
1
: between fp"ew and fp J— .
1 1
1 1
1 1
i T) |
| calculating difference score T i
: lookup :
1 new link 1
1 1
: attribute :
| difference_score, = E poorelatirioute) scores (a1ba3f: o) [b58k2n :o) [cv67e5: o) i
1 0 1
I attribute € changed 1
1 na I I I 1
1 1
! l (d90z8h: x [fwlja: y J (kOsy48: w) -
1 1
A 0 1
: determining candidates 1
1 . 1

difference score < threshold?

: ' g6r3vi: y + Z| :
| [es :
1 — 1
: candidates = candidates U fp .. :
H candidate_diff_scores = candidate_diff_scores U 1
1 difference_score 1
1 (2 1

\ 4 L4

Figure 3.2 Overview of the threshold algorithm

decision:
unknown

decision:
linked

3.2 Obtaining the Fingerprint Hash

First, FingerprintJS, which is an open-source JavaScript library for fingerprinting,
is loaded into the client’s browser (FingerprintJS, 2023). The default settings do
not include the user agent header in the hash; however, the user agent header holds
crucial information regarding the browser brand, version, operating system, and
operating system version. Furthermore, several large-scale studies such as Panop-
ticlick by Eckersley (2010), AmIUnique by Laperdrix et al. (2016), and Hiding in
the Crowd by Gomez-Boix et al. (2018) investigated the individual uniqueness of
fingerprint attributes using Shannon’s entropy and suggested that high entropy val-
ues implied higher uniqueness. The user agent was ranked as the second, third, and
second most unique attribute in these studies, respectively. In light of these factors,
the user agent header was deemed valuable enough to be incorporated into the final

hash in our work.

3.3 Threshold-based Algorithm

Fingerprint hashes offer an efficient way to compare client information. However,
even a single change that stems from the unstable nature of a browser attribute
can result in a completely new hash. Hence, hashes provide little information on
the amount and significance of the changes that have occurred. Consequently, we
formed a heuristic algorithm which is based on a scoring system that tolerates the
changes until the threshold is exceeded. In other words, the algorithm connects new
fingerprint instances to previously observed ones in order to extend the tracking time.

Algorithm 1 is provided to display a high-level implementation of the approach.

To put this heuristic algorithm into practice, each attribute is associated with a dy-
namic score that is inversely proportional to the number of times it evolves through-
out user logins. Each individual score is intended to quantify the instability of a
given attribute. The exact calculation of the attribute scores is demonstrated in
Algorithm 2.

15

Algorithm 1: Linking Fingerprints to the Most Relevant Predecessor

Function differenceScore (fpAttributes, fpAttributes2):
sum <=0
for attribute € fpAttributes do
vall < fpAttributes|attribute]
val2 < fpAttributes2[attribute]
if vall # val2 then
| sum < sum + attributeScores|attribute]
end

end

return sum

Data: newF P # null
minChangeScore < 100
parentF'P <— None
for activeFP € ActiveFPs do
score < currentScoreactive ' P]+dif ferenceScore(newF P,activeF' P)
if score < threshold then
if score < minChangeScore then
minChangeScore < score
parent ' P < active’ P
end

end
end

if parentF P is not None then
ActiveF Ps < ActiveFPs —{parentF P}
descendant Dict[parentF P| <— newF P
currentScore[newF P < score

else
currentScore[newF P| < 0

end
ActiveF Ps < ActiveF Ps+{newF P}

Apart from the attribute scores, we also keep the scores of fingerprints. At the

time of their introduction, the score of each fingerprint is initialized to zero.

the algorithm can link the new fingerprint to a preceding fingerprint, that is, if the

sum of the current score of a preceding fingerprint and the difference score between

that and the new fingerprint is smaller than the threshold, a parent-child relation

is formed between the previous and the new fingerprint, and the score is passed on

to the child fingerprint. Later on, the child fingerprint can have its own descendant

fingerprint if a new fingerprint can be linked to it. Then, the new fingerprint inherits

the accumulated score and joins the lineage. The chronologically linear sequence of

16

Algorithm 2: Calculating Individual Attribute Scores
Data: attributes < set of all fingerprinting attributes
attributeScores < {}

attributeChanges < {a : 0,Ya € attributes}
totalChanges < 0

for fpAttributes! € userFPs do

for fpAttributes2 € userFPs—{ fpAttributesl} do

anyChanges < false

for attribute € fpAttributes! do

vall « fpAttributesl|attribute]

val2 « fpAttributes2[attribute]

if vall # val2 then
attributeChanges|attribute] < attributeChanges|attribute] + 1
anyChanges < true

end

end

if anyChanges then
‘ totalChanges < totalChanges + 1
end

end
end

for attribute € attributes do

attributeChange < attributeChanges|attribute]

attributeChange
totalChanges 100

attributeScores|attribute] < 100 — percentage

percentage <—

end

fingerprints that were found related to each other will be addressed as a lineage
throughout this thesis. If there are multiple candidates that satisfy the conditions,
the one which produces the minimum difference score with the new fingerprint is
selected. Formally, the transmission of score to descendants could be described as

the following:

SCOT€child = SCOT€parent + f(child, parent) (3.1)

where f is a function that corresponds to differenceScore in Algorithm 1. It finds
the set of attributes whose values differed between the two fingerprints and calculates

the overall change score by summing the individual scores of the attributes.

17

3.4 Categorizing Fingerprints

The fingerprints of a user are classified into one of the following three categories:
(1) appearance of an active fingerprint, (2) reappearance of an outdated fingerprint,

and (3) a new fingerprint.

3.4.1 Appearance of an Active Fingerprint

The set of active fingerprints is familiar to the system and is not considered a

potential threat. They are marked as benign upon their arrival.

3.4.2 Reappearance of an Outdated Fingerprint

A fingerprint is a part of outdated fingerprints if it is among the set of fingerprints
encountered so far but is not included in the set of active fingerprints. Such a case
occurs if the threshold algorithm determines that fpjpe, is linked to some fpprevious
in the set of active fingerprints. The algorithm’s finding relevance between a previous

fingerprint and a more recent one has two implications:
« Both fingerprints have originated from the same browser instance.

o There has been a relatively small change in the attributes of the browser
instance since the previous fingerprint last appeared. The more recent fin-
gerprint is the newer version of the browser instance’s fingerprint and there
is a predecessor-successor relation between the two fingerprints. The terms
"predecessor-successor' and "parent-child" are used interchangeably in this the-

sis.

In this work, we assume that each browser instance has at most one active fingerprint
at any given time. However, if a fingerprint that was previously labeled as outdated
reappears, it suggests that although a newer fingerprint had been marked as its
successor based on similarity—leading to the original being marked as outdated—the
two were not actually related. This indicates that the threshold algorithm reached

a wrong conclusion about their connection. This category of fingerprints will be

18

addressed as mislinked fingerprints for the remainder of the thesis. Such cases may
result from frequent or reversible changes, whether intentional or unintentional,
that initially do not exceed the algorithm’s tolerance threshold, leading it to infer a
successor relationship. However, the fingerprint may occasionally revert to its former
state, resulting in a reappearance. Ultimately, this category requires a remediation
process, but, similar to the first category, it does not raise concerns surrounding
an unfamiliar new browser instance. The remediation process will be elaborated in
Section 3.5.

3.4.3 Newly Introduced Fingerprints

This category includes fingerprints that have not previously been encountered. New
fingerprints could result from two different reasons: a familiar browser instance pro-
ducing a new fingerprint due to system evolution or an unfamiliar browser instance
being introduced. Differentiating the former and the latter cases is not a straight-
forward task and demands a more complex approach than simple predetermined
rules. Consequently, we employed the threshold algorithm to decide whether the
new fingerprint can be associated with a previous fingerprint. In that case, the new
fingerprint is marked as the successor of the previous one. These fingerprint pairs
will be referred to as linked throughout this work. Otherwise, an unknown browser
instance is believed to be used, and the website is informed in case any additional
security measures need to be imposed. Finally, this new fingerprint is integrated

into the set of active fingerprints of the user.

An illustrative example of how these fingerprint categories emerge in practice is
provided in Figure 3.3. The figure demonstrates a sequence of fingerprints collected
from a single user over five discrete time steps, and how each is classified into one of
the three defined categories. It also shows how these classifications affect the set of

active fingerprints and the lineage structure maintained by the threshold algorithm.

In both Figures 3.3 and 3.4, each box represents a fingerprint collected at time
step t (indicated in the top-left corner), with the fingerprint hash shown inside.
Below each box, active indicates the current active fingerprints after processing,

and lineages shows the updated lineage structure.

o t=1: Fingerprint “a” is observed for the first time. Since there are no previous
fingerprints, it is classified as a new fingerprint (Category 3). It is added to

the active set, and a new root node is created for it in the lineage structure.

19

[1

a } [a J ______ [Sua’)], ______ { c J ______ { a }

active: E active: E active:@ active: E active: EE
Iineages:@ Iineages:@ Iineages: Iineages: Iineages:@

<] [b]

Figure 3.3 An example sequence of fingerprints from a single user, illustrating how
the threshold algorithm updates the active set and lineage structure over time.

t = 2: Fingerprint “a” appears again. This fingerprint exactly matches the
current active fingerprint from the previous step. It is therefore classified as
an appearance of an active fingerprint (Category 1). No updates are

made to the active set or the lineage.

t =3: A new fingerprint (Category 3) “b” arrives. The algorithm determines
that “b” is sufficiently similar to the active fingerprint “a”, and considers it a
possible update. As a result, the active set is updated by replacing “a” with

“b”, and the lineage structure is updated by linking “b” as a successor of “a”.

t =4: Another new fingerprint (Category 3), “c”, is received. However, it is
not similar enough to any existing fingerprint in the active set. Since it cannot
be linked to a known fingerprint, it is marked as unknown, and this status is
returned to the caller. Then, it is added to the active set, and a new root node

is created for it in the lineage structure.

[l

t = 5: Fingerprint “a” reappears. At this point, “a” was previously removed
from the active set after being linked to “b” as its assumed successor. However,
the reappearance of “a” indicates that this assumption was incorrect. If “b”
had truly been a successor of “a”, then no further instances of “a” would be
expected. Therefore, “a” is classified as a reappearance of an outdated
fingerprint (Category 2). The algorithm adds “a” back to the active set and
removes the previously established parent-child link between “a” and “b” in

the lineage structure, treating them as independent root fingerprints.

20

3.5 Remediation Process

As mentioned in Section 3.4.2, the comeback of a fingerprint that was marked as

outdated necessitates some corrections. Such a fingerprint can have:
e no ancestors but descendants
e both ancestors and descendants

No case without descendants is possible, because then, the reappeared fingerprint

would not have been labeled as outdated in the first place.

The treatment of both cases is identical. Firstly, the parent-child relationship be-
tween the reappeared fingerprint and the descendant is broken. Then, the current
score of the descendant, which is the sum of the scores of the changed attributes
between the reappeared fingerprint and the descendant, is reverted back to 0. If
the descendant has descendants itself, then throughout the whole lineage, the same
amount is subtracted from the scores of remaining descendants to negate the effect
of the parent fingerprint. The reason why the same resolution applies to the second
case is that the relationship between the ancestor and the reappeared fingerprint
is not a part of the erroneous decision. Consequently, ancestor fingerprints should

preserve the link to the reappeared fingerprint.

difference score: 10 difference score: 15 difference score: 20

active: | a active: @ active: E active: @ active: Em

IineageS:E Iineages:FH b ‘ lineages: lineages: Iineages:E—E—MO
| [aHbH¢e] [EHeHeHd]
score:0 score:10 l l 20
score: 25 score: 45

Figure 3.4 A remediation scenario

Figure 3.4 is provided to depict a scenario in which the reappeared fingerprint has
both an ancestor and a chain of descendants. At ¢t =2, Fingerprint “b” is linked to
Fingerprint “a” and is assigned the difference score between them, which is calcu-
lated as 10. After that, Fingerprint “c” arrives. Likewise, it is linked to Fingerprint
“b”. It inherits the score of Fingerprint “b”, and a difference score of 15 is added on

top of that, accumulating Fingerprint “c”’s score to 25 as demonstrated in the fig-

21

ure. This score is passed on to Fingerprint “d” after it gets linked to Fingerprint “c”,
with an addition of 20 in regards to their difference score. At the end, Fingerprint
“b” is observed to make a reappearance. This does not disrupt its logical relevance
to Fingerprint “a”; therefore, its score and link to Fingerprint “a” are preserved.
On the other hand, although the bond between Fingerprint “c” and Fingerprint “d”
remains intact, they are revealed to be unrelated to Fingerprint “b” by this recent
development. Thereafter, the link between Fingerprint “b” and Fingerprint “c” is
broken, creating another lineage with Fingerprint “c” as the root and Fingerprint
“d” as its child. Finally, the score of Fingerprint “c” is subtracted from the score of
Fingerprint “d”, and then Fingerprint “c”’s score is reset to 0 in order to cancel the

contribution of the erroneous link.

22

4. DATASETS AND RESULTS

In this section, a comprehensive view of the datasets is offered, and the results of
the study are delivered. In this context, "linking" refers to the act of associating a
newly received fingerprint with a previously seen one, forming a continuity chain or

lineage of fingerprints that are presumed to belong to the same browser instance.

4.1 Evaluation Metrics

The evaluation metrics that are used to assess the performance of this work are as

follows:

o True Positive (TP): Number of linked fingerprint pairs where the parent
and child have the same browser label, in other words, number of accurate

links established between fingerprints.

o Estimated True Positive (ETP): Number of linked fingerprints minus

number of mislinked fingerprints.

o False Positive (FP): Number of linked fingerprint pairs where the parent
and child have different browser labels, in other words, number of pairs between

which the threshold algorithm formed an inaccurate link.

o Precision: The ratio of the number of true positives (TP) to that of all

positive predictions, i.e., the sum of TP + F'P.

TP
Precision = —— 4.1
recision TP LD (4.1)

23

o Estimated Precision: The ratio of the number of estimated true positives
(ETP) to that of all positive predictions, i.e., the sum of TP + FP.

ETP
Estimated Precision = TPLFP (4.2)

o Tracking Time: Time passed between the first encounter of the root ancestor
and the last encounter of the latest descendant in a fingerprint lineage. To
put it differently, the amount of time that a fingerprint, specifically the root

ancestor in a lineage, can be identified.

e Matching Time: Time to process and return a decision for a single finger-
print, that is, a decision on whether it can be linked to a previous one or

not.

Our hypothesis is that as the threshold increases, the algorithm tolerates more
changes, which in turn extends the tracking time. However, this increased tolerance
might lead to the establishment of inaccurate links between fingerprints. As a result,
both precision and estimated precision are expected to deteriorate. This trade-off
highlights the importance of optimizing the threshold value to achieve a balance

between the metrics. This, in fact, is what we analyze in the rest of this section.

4.2 Datasets

The same set of fingerprint attributes was collected for both of the datasets. Ta-
bles 2.1 and 2.2 provide an explanatory overview of the fingerprint attributes used.
The descriptions and examples provided for the attributes in the table are prepared
in accordance with the source code of FingerprintJS library and the "Web APIs" page
of Mozilla Developer Network (2024), and may correspond to different information
in different resources. In addition, Tables 4.1 and 4.2 summarize the operating sys-
tem and browser distributions observed in the two datasets, offering further context

about the user environments represented in the data.

Moreover, individual scores of attributes that are used in the threshold algorithm, as
well as the normalized Shannon entropy for each of them, were computed separately
for each dataset and are listed in Table 4.3 and Table 4.4.

24

The individual attribute scores are calculated based on how frequently each attribute
changes across a user’s fingerprint visits. Attributes that change less frequently are

assigned higher scores, reflecting their stability and their contribution to fingerprint

durability.

The Shannon entropy values, in contrast, are included for descriptive purposes only
and are not used in the scoring process. Entropy is computed from the distribution
of attribute values across all users in the dataset and reflects attribute uniqueness.
A loose inverse relationship between the attribute scores and the Shannon entropy
values has been observed. This is an expected trend, though not guaranteed, as the
two metrics capture different aspects: temporal stability for attribute scores and

global uniqueness for entropy.

Table 4.1 Distribution of operating systems across two datasets.

Operating System

Institutional (%)

Volunteer (%)

Windows 79.0 64.6
MacOS 14.9 34.2
Linux 6.1 1.2

Table 4.2 Distribution of browsers across two datasets.

Browser | Institutional (%) | Volunteer (%)
Chrome 68.6 61.3
Firefox 14.2 3.4

Safari 5.1 21.1
Edge 7.6 5.1
Opera 3.8 9.1
Other 0.7 -

4.2.1 Institutional Dataset

This dataset was collected through the website of an ICT (Information and Commu-

nications Technology) company based in Tiurkiye. The dataset consists of 271,000

fingerprints of 32,052 users that were collected over a period of 5.5 months be-

tween May 2023 and October 2023. 35,578 out of 271,000 fingerprints that were

retrieved from mobile devices were excluded from the study, leaving 28,467 users.
25

Every fingerprint instance in the dataset has a unique user identifier of the account
owner; however, the dataset does not include browser identifiers such as cookies. Al-
though many browser fingerprinting studies in the domain rely on cookies as ground
truth (Eckersley, 2010; Gomez-Boix et al., 2018; Laperdrix et al., 2016), they were
recently shown to be unreliable for use as identifiers (Li & Cao, 2020). Similarly,
Pugliese et al.(2020) emphasized the inadequacy of cookies for constituting reliable
identifiers and employed a user-level identifier instead. Nevertheless, due to the
lack of browser identifiers, the performance of the threshold algorithm on the in-
stitutional dataset was evaluated via an estimation metric, which will be further
elaborated in Section 4.3.1.

Table 4.3 features the scores and normalized Shannon entropy values calculated for

attributes with respect to this dataset.

4.2.2 Volunteer Dataset

This labeled dataset of 5,774 fingerprints was collected from volunteers at an aca-
demic institution, most of whom were undergraduate students. The participants
were instructed to visit a fingerprinting website that collects the same fingerprinting
attributes as those present in the former dataset on a daily basis from two different
devices between March 7 and May 19, 2024. Unlike the former dataset, each fin-
gerprint was labeled with the name of the device by the participants themselves, in
efforts to compile a dataset with which not the estimated but the exact performance
of the threshold algorithm could be measured. The dataset was filtered to exclude 70
instances where different browsers were utilized on the same device, to ensure that
the labels identify single browser instances and establish a reliable ground truth,

with each device label also serving as a browser label/identifier.

The individual scores and normalized Shannon entropy values computed for the

fingerprint attributes based on this dataset are presented in Table 4.4.

26

Table 4.3 Normalized Shannon entropy and calculated scores of attributes in the
institutional dataset.

Attribute ‘ Score ‘ Shannon entropy (normalized) ‘
architecture 92.48 0.49
audio 66.29 0.18
canvas 20.08 0.65
colorDepth 93.42 0.21
colorGamut 82.40 0.30
contrast 97.05 0.03
cookiesEnabled 0 0.00
cpuClass 0 0.00
deviceMemory 70.05 0.48
domBlockers 95.47 0.08
fontPreferences 68.96 0.22
fonts 40.95 0.64
forcedColors 98.69 0.08
hardwareConcurrency | 57.33 0.48
hdr 89.35 0.31
indexedDB 99.99 0.00
invertedColors 96.39 0.29
languages 66.35 0.29
localStorage 0 0.00
math 78.63 0.20
monochrome 0 0.00
openDatabase 80.61 0.52
osCpu 81.41 0.10
pdfViewerEnabled | 95.08 0.14
platform 76.62 0.24
plugins 82.77 0.10
reducedMotion 92.91 0.24
screenFrame 44.92 0.35
screenResolution 49.51 0.36
sessionStorage 0 0.00
timezone 94.63 0.10
touchSupport 93.82 0.10
userAgent 9.60 0.51
vendor 79.80 0.40
vendorFlavors 79.51 0.23
videoCard 39.84 0.65

27

Table 4.4 Normalized Shannon entropy and calculated scores of attributes in the
volunteer dataset.

Attribute ‘ Score ‘ Shannon entropy (normalized) ‘
architecture 70.42 0.87
audio 48.37 0.53
canvas 19.99 0.82
colorDepth 84.09 0.52
colorGamut 68.11 0.94
contrast 94.96 0.15
cookiesEnabled 0 0
cpuClass 0 0
deviceMemory 69.81 0.51
domBlockers 80.14 0.53
fontPreferences 58.77 0.55
fonts 4491 0.68
forcedColors 90.57 0.31
hardwareConcurrency | 51.75 0.71
hdr 67.63 0.58
indexedDB 0 0
invertedColors 80.14 0.79
languages 58.23 0.75
localStorage 0 0
math 71.77 0.55
monochrome 0 0
openDatabase 97.56 0.11
osCpu 95.93 0.28
pdfViewerEnabled 89.64 0.32
platform 64.388 0.69
plugins 80.11 0.21
reducedMotion 91.63 0.45
screenFrame 31.12 0.67
screenResolution 35.26 0.71
sessionStorage 0 0
timezone 89.48 0.15
touchSupport 92.85 0.20
userAgent 15.56 0.82
vendor 77.80 0.67
vendorFlavors 77.80 0.67
videoCard 36.45 0.82

28

4.3 Results on the Institutional Dataset

This section presents the performance of ThresholdFP on the institutional dataset

measured by precision and tracking time.

4.3.1 Precision

As mentioned in Section 3.4.2; the threshold algorithm may occasionally establish
incorrect bonds between fingerprints. However, since the fingerprints were received
without any label or attribute that could act as ground truth, another way of mea-
surement was needed to unravel the errors of the threshold algorithm. Hence, the
number of reappeared outdated fingerprints, which account for errors that had ob-

servable consequences, was measured as an estimation of the number of errors.

In order to test how ancestor selection in cases of multiple candidates performs, three
variants of the threshold algorithm were implemented. The earliest variant selects
the fingerprint that comes first in chronological order, the min variant selects the fin-
gerprint that has the minimum difference score with the successor, and lastly, the max
variant selects the fingerprint that has the maximum difference score with the succes-

sor. Figure 4.1 displays the precisions of all three variants of the threshold algorithm.

The reason behind the similar results has been observed to be that there is a single
parental candidate in most of the cases. Therefore, the method of ancestor selection
does not matter significantly. Nevertheless, we proceeded with the min variant for
the comparative analysis, as it was both the most intuitive and the best-performing

variant.

4.3.2 Tracking Time of Fingerprints

The tracking time is calculated for fingerprint lineages consisting of at least two
fingerprints. The root fingerprint’s first recorded arrival time and the leaf finger-
print’s last recorded arrival time constitute the boundaries for the calculation, and

the duration between them is measured as the tracking time of the root fingerprint.

29

100

98 |-

96 |-

94 |- i

Estimated precision (%)

—4— min variant
92 —O6— max variant |
—s— earliest variant

90 \ \ \ \ \ \ \ \
10 20 30 40 50 60 70 80

Threshold

Figure 4.1 Estimated precision of three threshold algorithm variants on
the institutional dataset

In order to compare the results of our work to a baseline, the average duration
of the fingerprints without any algorithmic intervention was calculated. For every
fingerprint, its initial appearance marked the kickoff time. After that, the time until
a completely new fingerprint that was not encountered before arrived was measured.
The time calculated was regarded as the original duration of the fingerprint. The
process was repeated for every fingerprint, and the average time was obtained as 19.1
days. Here, we assumed that all of the previously seen fingerprints are remembered
and not treated as new, allowing for the maximization of the measurements, which

yields the best-case performance of the baseline.

Figure 4.2 displays the performance of all three variants of the threshold algorithm
across different thresholds. The baseline duration is a constant value that is not

dependent on the threshold.

In line with the precision results, the average duration of the fingerprints did not
remarkably differ between the algorithm variants. The curve followed a generally
increasing trend, and the best performance was obtained by the min variant. An
average tracking time of 40.6, 55.7 and 57.6 days was recorded when threshold was
set to 10, 40 and 80, respectively. All three versions managed to extend the tracking
time to more than two to three times the original duration of 19.1 days, depending
on the threshold.

30

60 - N
B
S 50 N
Q
E —o— min variant
50 —H— max variant
E 40 |- . . N
S —— earliest variant
< .
B baseline
0]
&
§ 30 |- N
<
20 - N
\ \ \ \
10 20 30 40 50 60 70 80

Threshold

Figure 4.2 Average tracking time of three threshold algorithm variants on
the institutional dataset

4.4 Results on the Volunteer (Labeled) Dataset

This section presents the performance of ThresholdFP on the volunteer dataset in
terms of precision and tracking time. Unlike the figures for the previous dataset, the
figures for the volunteer dataset start the threshold from 16 instead of 10. Since the
smallest attribute score is 15.56, the difference scores calculated between fingerprints
always exceed the limit when the threshold is set to values lower than this score,
and consequently, no link gets established. Therefore, precision and tracking time

were measured only for threshold values larger than 15.

4.4.1 Precision

Besides the precision estimation in Section 4.3.1, an exact measurement of the
ThresholdFP’s precision on this dataset was made possible by the availability of

browser labels.

31

100

98 |- -
S 96| N
=
R
72}
B3
£ 94l |
—<— min variant
92 - —6— max variant ||
—s— earliest variant
90 | | | | | | |
20 30 40 50 60 70 80
Threshold
100
90 |]
S
g 80| R
72}
B3}
g
a.
£ 0
< 70 —
E
M —4— min variant
60 |- —6— max variant ||
—s— earliest variant
I I I I I I I

20 30 40 50 60 70 80
Threshold

Figure 4.3 Precision and estimated precision of three threshold algorithm
variants on the volunteer dataset

As evident in Figure 4.3, the actual precision and the estimated precision differed
significantly. the actual precision never dropped below 99%, whereas the estimated
precision experienced sharp declines before stabilizing around 70%. On the in-
stitutional dataset, however, the estimated precision remained consistently higher,
exceeding 94% even at high thresholds, as depicted in Figure 4.1. A possible expla-
nation for such dissimilar observations in the results of two datasets may lie in the
population of the datasets, more specifically, the distribution of operating systems

and browser brands, featured in Table 4.1 and Table 4.2, respectively. Consid-

32

ering that estimated precision decreases as the number of mislinked fingerprints
increase, some operating systems or browser brands with built-in privacy features
(e.g., Safari), which are more prevalent in this dataset, might be interfering with
the fingerprinting results, leading to an escalated number of mislinked fingerprints.

We leave this as future work.

4.4.2 Tracking Time of Fingerprints

The tracking time of ThresholdFP on the volunteer dataset was measured with the

same approach discussed in Section 4.3.2.

50 -

40 |-

—¢— min variant
—s— earliest variant

Average tracking time (days)
(8]
S
\
\

20 |- —O6— max variant | |
baseline

10 |- —
i i i i i i |
20 30 40 50 60 70 80

Threshold

Figure 4.4 Average tracking time of three threshold algorithm variants on
the volunteer dataset

Figure 4.4 displays that the min variant and the earliest variant alternately took
the leading position, unlike the corresponding results for the first dataset where the
min variant consistently maintained the top position. At the smallest and largest
thresholds, the average tracking time attained with the min variant was 42.1 and
52.4 days. In between, it was observed to peak around threshold values 32 and 52,

corresponding to 50.1 and 50.5 days of average tracking time, respectively.

33

4.5 Comparative Analysis

For our comparative analysis, we picked two major studies, namely FP-Stalker by
Vastel et al. (2018) and Panopticlick by Eckersley (2010). This section outlines the
process of applying their methods to our datasets and presents a comparison of the
results. A common contributing characteristic of both studies is their exploration of
methods for linking fingerprints to extend tracking duration. Although other studies
on linkability exist (Li & Cao, 2020; Pugliese et al., 2020), they primarily focus
on optimizations and empirical observations rather than introducing algorithmic
novelties. While some commercial fingerprinting tools have been mentioned in prior
work (Durey, 2022), they are not specifically designed for linkability analysis and

are not replicable in practice, as their implementation details are proprietary.

Eckersley (2010) proposed a simple algorithm that determines whether an earlier fin-
gerprint has evolved into a newly observed one. The algorithm used eight attributes,
namely user agent, accept, cookies enabled, screen resolution, timezone,
plugins, fonts, and local storage. It compared the previous fingerprints with
the new fingerprint to check which attribute values had changed. If only one at-
tribute had changed, it considered the previous fingerprint as a candidate. After
all of the previous fingerprints were considered, if there was a single candidate,
the new fingerprint was linked to it if one of the following held: (1) the changed
attribute belonged to the set cookies enabled, screen resolution, timezone,

local storage, or (2) the attribute values had a similarity score above 0.85.

Later, Vastel et al. (2018) proposed FP-Stalker, introducing one completely rule-
based algorithm and one hybrid algorithm, which combines the rule-based one with
machine learning methods to match new fingerprints with already encountered ones.
The rule-based algorithm applies a predetermined set of seven rules, whereas the
hybrid algorithm first applies the first three rules of the rule-based algorithm and
then employs a random forest model. The hybrid algorithm was observed to perform
better, but it lacked scalability (Li & Cao, 2020). Therefore, we proceeded with the

rule-based algorithm in the comparative analysis.

There were a number of fundamental differences between the previous studies and
our approach. Firstly, while a few attributes, namely DoNotTrack, accept and
encoding are not available within our datasets, they include significantly more at-
tributes than FP-Stalker and Panopticlick. Thus, not only do the studies not share
the same set of attributes, but also the algorithms of Vastel et al. and Eckersley were

heavily dependent on the collected attributes. For instance, a subset of attributes is

34

allowed to change, whereas another subset of attributes is permitted to change only
if the change ratio is below a certain threshold, and for some attributes, the algo-
rithm mandates no changes. Thus, assigning the extra attributes collected in our
study to one of such subsets arbitrarily, in an effort to make a complete adaptation
would have introduced subjectivity and risked inconsistency. As a result, in order
to implement both algorithms accurately, the dataset was cleared of the extra at-
tributes, leaving only the set of attributes present in each of the studies. Both of the
algorithms were adapted from the GitHub repository referenced in the FP-Stalker
study.!

Secondly, Panopticlick leveraged HTTP cookies for browser identification that were
persistent up to three months. In FP-Stalker, the users had installed browser exten-
sions that uniquely identified the browser instance. As mentioned earlier, the insti-
tutional dataset includes a user identifier number, but unlike the volunteer dataset,
it does not contain a device or browser identifier. As the estimated precision metric
proposed earlier is specific to the threshold algorithm, the precision measurement
of previous work was only applicable to the volunteer dataset. Additionally, under
some conditions, the rule-based algorithm of FP-Stalker imposes an additional ho-
mogeneity check for the browser identifiers of the candidates, which was suitable for
the volunteer dataset but not for the institutional dataset. Therefore, to be able to
compare the performances of all algorithms on the institutional data, two variants
of the rule-based algorithm were evaluated, one yielding an upper bound and the
other yielding a lower bound on the tracking time. The first variant is configured
to always act as if the candidates belong to the same browser. This results in a
maximum tracking duration. Conversely, the second variant proceeds as if the ho-
mogeneity check always fails, which keeps the number of links and the tracking time

at a minimum.

Finally, Eckersley and Vastel et al. compare the new fingerprint with the whole set
of fingerprints received so far, whereas, due to our use case, we only compare the
new fingerprint to the previous fingerprints of the corresponding user. Thus, the
algorithms proposed by Eckersley and Vastel et al. were modified to incorporate

this consideration.

1 Open source at: https://github.com/Spirals-Team/FPStalker

35

https://github.com/Spirals-Team/FPStalker

4.5.1 Tracking Time and Precision

Table 4.5 summarizes the average tracking time of the algorithms on both datasets.
For the comparison, ThresholdFP’s threshold value was set to 40 and 32 for the
institutional dataset and the volunteer dataset, respectively. These threshold val-
ues were determined independently for each dataset based on the empirical testing
presented in the Datasets and Results section, balancing the trade-off between pre-
cision and tracking time to achieve optimal performance. The best performance for
the average tracking time on the institutional dataset was achieved by ThresholdFP
with 55.7 days and over 98% estimated precision. Since the estimated precision
was specifically designed to account for the mistakes of the threshold algorithm,
it was not applicable to the other linking algorithms. Panopticlick surpassed the
lower bound of FP-Stalker by 7.5 days, but FP-Stalker’s upper bound managed to
outperform Panopticlick by 10.3 days. Regarding the analysis with the volunteer
dataset, the algorithms were observed to perform better than on the institutional
dataset, relative to the span of the data collection. This might be rooted in the
frequency and the regularity of the data collection: fingerprints in the volunteer
dataset were collected almost every day. Similar to the results for the institutional
dataset, ThresholdFP outperformed the other two studies with 50.1 days of average
tracking time. In the volunteer dataset, as the ground truth was available, FP-
Stalker could be adapted faithfully, allowing for the homogeneity check mentioned
above and therefore, rendering the exact performance measurement possible. In
contrast to the findings of Vastel et al. (2018), Panopticlick displayed better perfor-
mance than FP-Stalker, exceeding it by 6.8 days. On the other hand, the findings
demonstrated that FP-Stalker achieved a precision of 97.6%, whereas Panopticlick
achieved a precision of 92.3%. Surpassing both, ThresholdFP obtained an almost
perfect precision of 99.5%.

Table 4.5 Comparison of the average tracking time obtained in number of days by
ThresholdFP and previous work

FP-Stalker (Vastel et al., 2018
Dataset ThresholdFP | Panopticlick (Eckersley, 2010) alker (Vastel et al,)
lower upper
bound bound
Institutional 55.7 34.5 27 44.8
Volunteer 50.1 45.6 38.8

Across both datasets and all three prior methods (Panopticlick, FP-Stalker-upper,
FP-Stalker-lower), ThresholdFP consistently achieved longer tracking durations.
The relative increase ranged from 24.33% (compared to the FP-Stalker upper bound)

36

to 106.30% (compared to the FP-Stalker lower bound) on the institutional dataset,
with Panopticlick comparisons and all corresponding results from the volunteer
dataset also falling within this range. This thesis reports this as a representative

performance range in the Abstract.

4.5.2 Scalability

Li and Cao (2020) demonstrated that FP-Stalker is not scalable in a large-scale
setting. Their experiments show that with as few as 200,000 fingerprints, the rule-
based algorithm struggles to meet the latency expectations of real-time bidding
(RTB), where ad decisions are typically required in under 100 milliseconds (Wang,
Zhang & Yuan, 2017).

In our setting, as the user identifiers are provided together with the fingerprints,
a new fingerprint is only compared to the user’s previous fingerprints. Therefore,
we evaluated scalability based on the number of users instead of the number of
fingerprints, since the latter did not consistently impact algorithm runtime in this
setting. Matching time was measured in a realistic environment by adapting both

algorithms to include database connections and associated overhead.

The experiments were run on an AWS EC2 m6i.2xlarge instance with 32 GB DDR4
memory and an Intel® Xeon® Platinum 8375C (Ice Lake) processor with up to
3.5GHz turbo boost frequency.

We used the lower-bound variant of FP-Stalker’s rule-based algorithm, although this
choice does not affect the matching time measurements reported in our scalability

evaluation.

The average matching time remained consistently low for both algorithms, with
values generally below 1 ms and only occasionally exceeding it, significantly under
the 100 ms threshold required by RTB systems. To enable comparison with Li et
al’s (2020) findings, we note that at the 28k user mark on the x-axis, over 230,000
data points were processed in total for calculating the "average matching time" on

the y-axis.

While our approach introduces only a marginal increase in latency compared to FP-
Stalker, it delivers a significant improvement in performance, extending the average
tracking time by at least 24.3%. This notable gain highlights the effectiveness of

our algorithm, especially given that the average matching time remains consistently

37

5 - |
é 4 o ThresholFP min variant |
g —k— FP-Stalker rule-based algorithm
53 |
=
=
2
<
€ 2 n
()
o0
<
5
= M |
O - |
\ \ \ \ \ \ \ \ \ \ \ \ \ \
2 4 6 8 10 12 14 16 18 20 22 24 206 28

Number of users (x103)

Figure 4.5 Average decision time of ThresholdFP and FP-Stalker’s
rule-based algoritm for one fingerprint

within just 0.3-0.4 ms of FP-Stalker. The slight latency overhead is thus a minimal

cost for a substantial enhancement in tracking longevity, making our method a

compelling alternative.

38

5. DISCUSSION AND ETHICAL ISSUES

This section discusses the implications of our findings, revisits the research questions,
and addresses ethical considerations, implications and potential limitations of the

study.

5.1 Discussion

Although it is intuitive to expect a monotonically increasing trend in average track-
ing time as the threshold increases, our models occasionally demonstrated fluctu-
ating behavior. We identified several cases that contributed to such an outcome.
For instance, larger thresholds bear an elevated chance of one fingerprint getting
associated with another one that would not normally be considered similar. Con-
sequently, as the difference scores that the threshold algorithm allows grow larger,
the threshold merit of the lineage might get used up sooner, resulting in a shorter
tracking time. Similarly, since the algorithm becomes more tolerant, the number
of inaccurate links, which later get broken in remediation processes, increases and
it gives rise to shorter fingerprint lineages. The combined effect of these cases may

explain the formation of local minima in the curves.

An important observation was that, even though the volunteer dataset was gathered
over a shorter period of time, the measurements of average tracking time on this
dataset turned out to be close to, or even better than, those conducted on the
institutional dataset for all of the algorithms. This outcome is in support of the
finding of Vastel et al. (2018) that higher collection frequency results in a higher

average tracking time for both Panopticlick and the rule-based variant of FP-Stalker.

39

Analyses across different datasets also show that individual attribute scores and
optimal threshold values may vary. Thus, ThresholdFP is also dependent on data,
just as the rival mechanisms it was compared to. However, this dependency is not
continuous. When integrating ThresholdFP into a live system, default scores and a
provisional threshold value can be used initially. As the system runs, the collected
data can be used for fine-tuning as an offline process, and then the parameters can
be updated. Alternatively, the system can first collect data to determine attribute

scores and a threshold, and then initialize the algorithm using these values.

The expected trade-off between precision and tracking time is evident in the results.
In other words, while tracking time increases, precision decreases with threshold.
The non-monotonic behavior of both tracking time and precision metrics may even
be helpful to choose optimal threshold values based on the system administrator’s

preference by picking threshold values of the right edges of the target metric value.

5.1.1 Addressing the Research Questions

This section discusses the findings in relation to the three research questions posed
at the outset of the study. Each question is addressed in turn to show how the

results contribute to the overall objectives of the research.

5.1.1.1 Research Question 1

To what extent can a threshold-based algorithm extend the effective lifespan of

browser fingerprints?

The results in Section 4 show that our algorithm significantly increases the effective
lifespan of browser fingerprints. In particular, ThresholdFP achieves an average
tracking duration of 55.7 days on the institutional dataset and 50.1 days on the
volunteer dataset, which represents a 24.33% to 106.30% improvement over prior
schemes (Table 4.5). These findings indicate that a threshold-based linking approach

can indeed extend fingerprint lifespan effectively under real-world conditions.

40

5.1.1.2 Research Question 2

Can benign changes in fingerprint attributes be tolerated without compromising link-

ing precision?

ThresholdFP was able to tolerate benign changes across multiple fingerprinting at-
tributes while maintaining high linking precision. As reported in Section 4, the
algorithm achieved estimated precision above 98% on the institutional dataset. On
the volunteer dataset, as browser instance-level ground truth was available, both
estimated and actual precision could be measured. The results showed that the
algorithm achieved an estimated precision of over 80% and an actual precision of
99.5%. The difference between actual and estimated precision suggests that the
estimation method does not overstate performance and may, in fact, underestimate
it in some cases. Moreover, the lower estimated precision observed on the volun-
teer dataset compared to the institutional dataset may stem from differences in the
subject populations of the two datasets, as discussed in Section 4. These findings
suggest that the approach can tolerate natural fluctuations in browser configurations

without introducing significant mislinking.

5.1.1.3 Research Question 3

How does a threshold-based linking algorithm compare to existing methods in terms

of tracking duration and precision?

When compared to adapted versions of existing algorithms by Vastel et al. (2018)
and Eckersley (2010), ThresholdFP consistently outperformed them in tracking du-
ration. On the institutional dataset, ThresholdFP achieved an average tracking
time of 55.7 days, compared to an upper bound of 44.8 days and a lower bound of
27 days using the adapted FP-Stalker algorithm, and 34.5 days with the adapted
Panopticlick algorithm. On the volunteer dataset, ThresholdFP reached 50.1 days,
outperforming FP-Stalker (38.8 days) and Panopticlick (45.6 days).

In terms of precision, ThresholdFP demonstrated strong performance where browser

instance-level ground truth was available. On the volunteer dataset, it achieved an

actual precision of 99.5%. The baseline methods, evaluated only using actual pre-

cision due to metric constraints, achieved 97.6% (FP-Stalker) and 92.3% (Panop-

ticlick). While the estimated precision metric was designed specifically for Thresh-

oldFP and is not applicable to the baseline algorithms, it was shown to serve as
41

a conservative proxy for linking precision. On the volunteer dataset, the actual
precision of ThresholdFP was consistently higher than its estimated precision (e.g.,
99.5% vs. ~80%), indicating that our method’s link decisions were more accurate

than the estimation suggests. This further reinforces the reliability and robustness
of ThresholdFP.

While prior measurement studies have raised concerns about the scalability of finger-
print linking methods (Li & Cao, 2020), we note that these concerns were based on
large-scale web-wide fingerprinting without access to user identifiers. In our exper-
imental setup, user-level ground truth (user IDs) was available, which significantly
reduced the candidate space and execution time for all methods. As a result, in
our setting, all three algorithms demonstrated similar scalability in terms of run-
time. We do not contradict earlier scalability findings, but show that in contexts
where some user identity information is available (as is common in security-oriented

applications), fingerprint linking, including ThresholdFP, can scale efficiently.

These results confirm that ThresholdFP not only improves tracking persistence sig-
nificantly in a scalable way but also maintains high linking precision, making it
a more robust and adaptive solution than existing rule-based or static fingerprint

comparison schemes.

5.2 Ethical Considerations

The attributes were obtained via FingerprintJS, which is a well-known open-source
browser fingerprinting library that is widely utilized by websites all around the
world (Solomos et al., 2022). Apart from the attributes retrieved by FingerprintJS,
no personal information was gathered from the users. Hence, none of the datasets
contain any private information. The attributes were already being collected for
a browser fingerprinting product employed by the ICT company due to security
reasons. Data collection for our experiment was conducted under the existing con-
sent agreements and setup. With regard to the volunteer dataset, the participants
became a part of the experiment voluntarily after being informed about the data
collection and providing their consent. Moreover, our system was designed in ac-
cordance with data minimization principles, and the fingerprint attributes collected
are unrelated to the services provided on the websites, thereby not facilitating any

behavioral or personal profiling.

42

5.3 Ethical Implications

This work aims to improve the persistence of browser fingerprints to support legiti-
mate security use cases, such as fraud detection, device verification, and secondary
authentication. By increasing the effective lifespan of a fingerprint under benign
changes (e.g., software updates, configuration shifts), services can maintain conti-
nuity of user recognition without over-relying on fragile or user-resettable identifiers

like cookies.

However, we acknowledge that improving fingerprint durability also raises privacy
concerns. In particular, more stable fingerprints may be exploited to facilitate long-
term user tracking without consent, especially in contexts outside security or au-
thentication. In the wrong hands, these techniques could contribute to cross-site

tracking, profiling, or surveillance that the user is not aware of.

To mitigate these concerns, we emphasize that this method should only be deployed
in trusted, security-sensitive environments where users already expect some form of
browser recognition. It should not be used for behavioral advertising or user profil-
ing. Fingerprint histories should be stored securely, with limited retention and scope.
Developers and organizations applying this method should ensure transparency and

allow users to inspect or reset browser associations when applicable.

Additionally, users who wish to avoid fingerprint-based tracking may opt for
browsers that actively interfere with or randomize fingerprint attributes. For exam-
ple, Brave implements fingerprinting defenses by altering or reducing the stability
of key attributes Brave Privacy Team (2020). Although we have not empirically
tested the effectiveness of these browsers against our algorithm due to their absence
in our dataset, their design philosophy aligns with efforts to reduce linkability over

time and is therefore expected to reduce ThresholdF'P’s durability.

We believe that publishing this technique contributes to the broader understanding
of browser fingerprinting, both to improve defenses and to inform ethical deploy-
ment. Our intention is to support more robust and user-friendly authentication sys-
tems, not to enable covert tracking. Continued dialogue among browser developers,
privacy advocates, and the research community is essential to ensure fingerprinting

technologies are used responsibly.

43

5.4 Threats to Validity

In order to address possible limitations, we considered threats to internal, external

and construct validity:

Threats to internal validity: For the reasons discussed in Section 4.5, the algorithms
of Eckersley (2010) and Vastel et al. (2018), in their original shape, were not suitable
for our analyses, rendering our intervention inevitable. Despite efforts to faithfully
replicate the original algorithms, it is possible that unintentional errors were intro-
duced during adaptation. Furthermore, the GitHub repository provided in Vastel
et al’s work was considered as the source material. If there was a bug in the source

code, it might have propagated to our adaptations.

Threats to external validity: We analyzed the performance of all algorithms on two
separate datasets that were collected independently. The institutional dataset was
gathered by an ICT company, and the volunteer dataset had all of its participants
from an academic environment. In addition to the population, the frequency of
the data differed remarkably, reducing the chance of bias. The volunteer dataset
consisted of fingerprints collected daily, with occasional exceptions, unlike the insti-
tutional dataset, which was composed of fingerprints collected at arbitrary times.
Regardless of such differences, our approach performed the best in both of the com-
parative analyses employing either one of the datasets, and the performances of
other algorithms were consistent with our results. Nevertheless, the participants in
our study may not represent the broader user population, and our approach might

not yield the same performance with different datasets.

Additionally, the time span of data collection was 2.5 months and 5.5 months, which
might be deemed short in comparison to the prominent studies in the field. Finally,
due to privacy reasons, we are unable to share the datasets, and that prevents the re-
producibility of this work. Nonetheless, this is a common limitation in fingerprinting

studies.

Threats to construct validity: Since the fingerprints in the institutional dataset did
not contain browser identifiers, we formulated an "estimated precision" metric, as ex-
plained in Section 4.1 and Section 4.3.1. There is a possibility that this metric might
not model the actual precision successfully or that it might cause inflated results.
However, the analysis on the volunteer dataset revealed that actual precision was sig-
nificantly better than the estimated precision, as illustrated in Figure 4.3, indicating

that the estimated precision was not an overestimate of the actual precision.

44

6. CONCLUSION

In this thesis, we proposed ThresholdFP, a threshold-based fingerprint linking al-
gorithm that associates new fingerprints with previously encountered ones. Finger-
prints can change due to factors such as attribute instability, system evolution, and
user intervention. ThresholdFP aims to mitigate these challenges in order to achieve

an extended tracking time for the fingerprints.

To evaluate ThresholdFP’s performance, two datasets were generated and used.
The first dataset was composed of 235,422 fingerprints collected over a span of
5.5 months. The second data collection phase, lasting a total of 2.5 months, was
initiated to form a secondary dataset. Unlike the first dataset, this dataset included
manually labeled browser identifiers as ground truth. In the end, the second dataset

contained 5,774 fingerprints in total.

To decide which strategy to follow when multiple candidates are present to asso-
ciate with a fingerprint, three variants of our threshold-based algorithm were created.
Furthermore, all three variants were compared against two previous studies (Eck-
ersley, 2010; Vastel et al., 2018), which also put forward rule-based algorithms to
link fingerprints. A separate analysis was conducted for each of the datasets. In
the analysis of the first dataset, instead of an exact measurement, upper and lower
bounds were calculated for FP-Stalker. This is due to the fact that the original
algorithm applied a check that was not applicable to our dataset. Therefore, we
mimicked its behavior to maximize and minimize the average tracking time, obtain-
ing the upper and lower bounds, respectively. The ThresholdFP variant that selects
the candidate with the least difference to the new fingerprint yielded the best per-
formance on the first dataset when the threshold was set to 40. At this threshold
value, the algorithm achieved an average tracking time of more than 55 days with
an estimated precision exceeding 98%, compared to 34.5 days by Panopticlick and
27 to 44.8 days by FP-Stalker.

45

The same variant of ThresholdFP also achieved the best performance on the second
dataset, with 50.1 days and 99.5% precision, surpassing Panopticlick and FP-Stalker,
which attained an average tracking time of 45.6 and 38.8 days, and a precision of
92.3% and 97.6%, respectively.

46

BIBLIOGRAPHY

Abromaityte, M., Dubero, E., Kruger, Q., Lucassen, B., Vos, T., van den Hout,
N. J., Bouma, D., Treur, J., & Roelofsma, P. H. M. P. (2025). Computa-
tional analysis of user experience of password-based authentication systems.
In Singh, D., van 't Klooster, J.-W., & Tiwary, U. S. (Eds.), Intelligent Human
Computer Interaction, (pp. 341-352)., Cham. Springer Nature Switzerland.

Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., & Diaz, C. (2014).
The web never forgets: Persistent tracking mechanisms in the wild. In Proceed-
ings of the 2014 ACM SIGSAC conference on computer and communications
security, (pp. 674-689).

Ajay, V. L. & Guptha, A. M. (2022). A defense against javascript object-based
fingerprinting and passive fingerprinting. In 2022 International Conference on

Computing, Communication, Security and Intelligent Systems (IC3SIS), (pp.
1-6).

Alaca, F. & van Oorschot, P. C. (2016). Device fingerprinting for augmenting web
authentication: classification and analysis of methods. In Proceedings of the
32nd Annual Conference on Computer Security Applications, ACSAC 16, (pp.
289-301)., New York, NY, USA. Association for Computing Machinery.

Alrawili, R., AlQahtani, A. A. S., & Khan, M. K. (2024). Comprehensive survey:
Biometric user authentication application, evaluation, and discussion. Com-
puters and FElectrical Engineering, 119, 109485.

Alzomai, M., Josang, A., McCullagh, A., & Foo, E. (2008). Strengthening sms-based
authentication through usability. In 2008 IEEE International Symposium on
Parallel and Distributed Processing with Applications, (pp. 683—688).

Andriamilanto, N., Allard, T., Le Guelvouit, G., & Garel, A. (2021). A large-scale
empirical analysis of browser fingerprints properties for web authentication.
ACM Trans. Web, 16(1).

Boussaha, S., Hock, L., Bermejo, M., Rumin, R. C., Rumin, A. C., Klein, D.,
Johns, M., Compagna, L., Antonioli, D., & Barber, T. (2024). Fp-tracer:
Fine-grained browser fingerprinting detection via taint-tracking and entropy-
based thresholds. Proceedings on Privacy Enhancing Technologies, 2024 (3),
540-560.

Brave Privacy Team (2020). Fingerprint randomization.

Cao, Y., Li, S., & Wijmans, E. (2017). (cross-) browser fingerprinting via os and
hardware level features. In Proceedings of the 2017 Network and Distributed
System Security Symposium (NDSS), (pp. 1-15). Internet Society.

Durey, A. (2022). Leveraging browser fingerprinting to strengthen web authentica-
tion. PhD thesis, Université de Lille.

Durey, A., Laperdrix, P., Rudametkin, W., & Rouvoy, R. (2021). Fp-redemption:

47

Studying browser fingerprinting adoption for the sake of web security. In Bilge,
L., Cavallaro, L., Pellegrino, G., & Neves, N. (Eds.), Detection of Intrusions
and Malware, and Vulnerability Assessment, (pp. 237-257)., Cham. Springer
International Publishing.

Eckersley, P. (2010). How unique is your web browser? In Privacy Enhancing
Technologies: 10th International Symposium, PETS 2010, Berlin, Germany,
July 21-23, 2010. Proceedings 10, (pp. 1-18). Springer.

Englehardt, S. & Narayanan, A. (2016). Online tracking: A 1-million-site measure-
ment and analysis. In Proceedings of the 2016 ACM SIGSAC' conference on
computer and communications security, (pp. 1388-1401).

FingerprintJS (2023). Fingerprintjs: The most advanced browser fingerprinting
library. https://github.com/fingerprintjs/fingerprintjs.

Goémez-Boix, A., Laperdrix, P., & Baudry, B. (2018). Hiding in the crowd: an anal-
ysis of the effectiveness of browser fingerprinting at large scale. In Proceedings
of the 2018 world wide web conference, (pp. 309-318).

Igbal, U., Englehardt, S., & Shafiq, Z. (2021). Fingerprinting the fingerprinters:
Learning to detect browser fingerprinting behaviors. In 2021 IEEE Symposium
on Security and Privacy (SP), (pp. 1143-1161). IEEE.

Jonker, H., Krumnow, B., & Vlot, G. (2019). Fingerprint surface-based detection
of web bot detectors. In Computer Security-ESORICS 2019: 2jth Furopean
Symposium on Research in Computer Security, Lurembourg, September 25—
27, 2019, Proceedings, Part II 24, (pp. 586-605). Springer.

Laperdrix, P., Avoine, G., Baudry, B., & Nikiforakis, N. (2019). Morellian analysis
for browsers: Making web authentication stronger with canvas fingerprinting.
In Detection of Intrusions and Malware, and Vulnerability Assessment: 16th
International Conference, DIMVA 2019, Gothenburg, Sweden, June 19-20,
2019, Proceedings 16, (pp. 43-66). Springer.

Laperdrix, P.; Bielova, N., Baudry, B., & Avoine, G. (2020). Browser fingerprinting:
A survey. ACM Transactions on the Web (TWEB), 14(2), 1-33.

Laperdrix, P., Rudametkin, W., & Baudry, B. (2016). Beauty and the beast: Di-
verting modern web browsers to build unique browser fingerprints. In 2016
IEEE Symposium on Security and Privacy (SP), (pp. 878-894). IEEE.

Laperdrix, P., Starov, O., Chen, Q., Kapravelos, A., & Nikiforakis, N. (2021). Fin-
gerprinting in style: Detecting browser extensions via injected style sheets. In
30th USENIX Security Symposium (USENIX Security 21), (pp. 2507-2524).

Li, S. & Cao, Y. (2020). Who touched my browser fingerprint? a large-scale mea-
surement study and classification of fingerprint dynamics. In Proceedings of
the ACM Internet Measurement Conference, (pp. 370-385).

Lin, X., Araujo, F., Taylor, T., Jang, J., & Polakis, J. (2023). Fashion faux pas: Im-
plicit stylistic fingerprints for bypassing browsers’ anti-fingerprinting defenses.
In 2023 IEEE Symposium on Security and Privacy (SP), (pp. 987-1004).

Lin, X., llia, P., Solanki, S., & Polakis, J. (2022). Phish in sheep’s clothing: Ex-
48

https://github.com/fingerprintjs/fingerprintjs

ploring the authentication pitfalls of browser fingerprinting. In 31st USENIX
Security Symposium (USENIX Security 22), (pp. 1651-1668).

Marky, K., Ragozin, K., Chernyshov, G., Matviienko, A., Schmitz, M., Mihlh&user,
M., Eghtebas, C., & Kunze, K. (2022). “nah, it’s just annoying!” a deep
dive into user perceptions of two-factor authentication. ACM Transactions on
Computer-Human Interaction, 29(5).

Mayer, J. R. (2009). Any person... a pamphleteer”: Internet anonymity in the age
of web 2.0. Undergraduate Senior Thesis, Princeton University, 85.

Mowery, K. & Shacham, H. (2012). Pixel perfect: Fingerprinting canvas in html5.
In Proceedings of the Web 2.0 Security and Privacy Workshop (W2SP), (pp.
1-12).

Mozilla Developer Network (2024). Web apis. https://developer.mozilla.org/
en-US/docs/Web/API. Accessed: 2024.

Mulliner, C., Borgaonkar, R., Stewin, P., & Seifert, J.-P. (2013). Sms-based one-
time passwords: Attacks and defense. In Rieck, K., Stewin, P., & Seifert, J.-P.
(Eds.), Detection of Intrusions and Malware, and Vulnerability Assessment,
(pp. 150-159)., Berlin, Heidelberg. Springer Berlin Heidelberg.

Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., & Vigna,
G. (2013). Cookieless monster: Exploring the ecosystem of web-based device

fingerprinting. In 2013 IEEE Symposium on Security and Privacy, (pp. 541
555). IEEE.

Pugliese, G., Riess, C., Gassmann, F., & Benenson, Z. (2020). Long-term observa-
tion on browser fingerprinting: Users’ trackability and perspective. Proceedings
on Privacy Enhancing Technologies, 2020(2), 558-577.

Reese, K., Smith, T., Dutson, J., Armknecht, J., Cameron, J., & Seamons, K. (2019).
A usability study of five Two-Factor authentication methods. In Fifteenth
Symposium on Usable Privacy and Security (SOUPS 2019), (pp. 357-370).,
Santa Clara, CA. USENIX Association.

Senol, A., Ukani, A., Cutler, D., & Bilogrevic, 1. (2024). The double edged sword:
Identifying authentication pages and their fingerprinting behavior. In Pro-
ceedings of the ACM Web Conference 2024, WWW 24, (pp. 1690-1701).,
New York, NY, USA. Association for Computing Machinery.

Solomos, K., Ilia, P., Nikiforakis, N., & Polakis, J. (2022). Escaping the confines of
time: Continuous browser extension fingerprinting through ephemeral modi-
fications. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, (pp. 2675-2688).

Starov, O. & Nikiforakis, N. (2017). Xhound: Quantifying the fingerprintability of
browser extensions. In 2017 IEEE Symposium on Security and Privacy (SP),
(pp. 941-956). IEEE.

Takei, N., Saito, T., Takasu, K., & Yamada, T. (2015). Web browser fingerprint-
ing using only cascading style sheets. In 2015 10th International Confer-
ence on Broadband and Wireless Computing, Communication and Applications

49

https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API

(BWCCA), (pp. 57-63). IEEE.

Trampert, L., Weber, D., Gerlach, L., Rossow, C., & Schwarz, M. (2025). Cascading
spy sheets: Exploiting the complexity of modern css for email and browser

fingerprinting. In Proceedings of the Network and Distributed System Security
Symposium (NDSS), (pp. 1-20)., Reston, VA, USA. Internet Society.

Vastel, A., Laperdrix, P., Rudametkin, W., & Rouvoy, R. (2018). Fp-stalker: Track-
ing browser fingerprint evolutions. In 2018 IEEE Symposium on Security and
Privacy (SP), (pp. 728-741). IEEE.

Vastel, A., Rudametkin, W., Rouvoy, R., & Blanc, X. (2020). Fp-crawlers: Studying
the resilience of browser fingerprinting to block crawlers. In Proceedings of the
MADWeb’20—NDSS Workshop on Measurements, Attacks, and Defenses for
the Web, (pp. 1-13).

Wang, J., Zhang, W., & Yuan, S. (2017). Display advertising with real-time bidding
(rtb) and behavioural targeting. Foundations and Trends® in Information
Retrieval, 11(4-5), 297-435.

Wu, S., Sun, P., Zhao, Y., & Cao, Y. (2023). Him of many faces: Characteriz-
ing billion-scale adversarial and benign browser fingerprints on commercial

websites. In Proceedings of the Network and Distributed System Security Sym-
posium (NDSS), (pp. 1-16).

20

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND AND MOTIVATION
	Fundamentals of Browser Fingerprinting
	Related Work in Fingerprint Linking
	Motivation

	METHODOLOGY
	General Workflow
	Obtaining the Fingerprint Hash
	Threshold-based Algorithm
	Categorizing Fingerprints
	Appearance of an Active Fingerprint
	Reappearance of an Outdated Fingerprint
	Newly Introduced Fingerprints

	Remediation Process

	DATASETS AND RESULTS
	Evaluation Metrics
	Datasets
	Institutional Dataset
	Volunteer Dataset

	Results on the Institutional Dataset
	Precision
	Tracking Time of Fingerprints

	Results on the Volunteer (Labeled) Dataset
	Precision
	Tracking Time of Fingerprints

	Comparative Analysis
	Tracking Time and Precision
	Scalability

	DISCUSSION AND ETHICAL ISSUES
	Discussion
	Addressing the Research Questions
	Research Question 1
	Research Question 2
	Research Question 3

	Ethical Considerations
	Ethical Implications
	Threats to Validity

	CONCLUSION
	BIBLIOGRAPHY

