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ABSTRACT

CRYPTOGRAPHIC SECURITY AND KEY MANAGEMENT IN
MULTI-PLATFORM 10T SYSTEMS: IMPLEMENTATION AND
PERFORMANCE ASPECTS

ALPEREN DOCAN

Computer Science and Engineering, M.S. Thesis, May 2025

Thesis Supervisor: Prof. Albert Levi

Keywords: key management, elliptic curve cryptography, internet of things,

trusted platform module, performance measurement

Smart-city services rely on many small sensors that send data about traffic, energy,
and air quality. Each message must stay private and unaltered, yet the devices that
send them have little memory, slow CPUs, and limited power. This thesis builds and
tests a light but strong key-management system that fits these limits. The protocol
uses elliptic curve certificates and elliptic curve Diffie-Hellman key exchange to set
up a shared secret. Then, for every message between client and server, a symmetric
key is derived from the shared secret. The shared secret, and elliptic curve keys on
the server are renewed periodically to decrease the damage in case of compromise.
The proposed protocol is formally verified using Tamarin Prover. Long-term keys
on the server sit inside a TPM 2.0 chip, which adds an extra layer of security for
storage of the keys. The protocol is deployed in a web-API, and performance tests
on the protocol and individual cryptographic operations used by the protocol are
carried out on a set of single-board computers representing generic [oT devices. The
results show that by the proposed protocol, the key exchange operations complete
in reasonable amounts of time where majority of the time is spent by the TPM.
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OZET

COK PLATFORMLU IOT SISTEMLERINDE KRIPTOGRAFIK GUVENLIK
VE ANAHTAR YONETIMI: GERCEKLESTIRME VE PERFORMANS
HUSUSLARI

ALPEREN DOGAN
Bilgisayar Bilimi ve Miithendisligi, Yiiksek Lisans Tezi, Mayis 2025

Tez Damigmani: Prof. Dr. Albert Levi

Anahtar Kelimeler: anahtar yonetimi, eliptik egri kriptografisi, nesnelerin interneti,

glivenilir platform modili, performans 6l¢iimii

Akilli-gehir hizmetleri, trafik, enerji ve hava kalitesi hakkinda veri gonderen cok
sayida kiigiik sensore dayanir. Gonderilen her mesaj gizli kalmali ve degisiklige
ugramamalidir; ancak bu cihazlarin bellegi az, islemcileri yavag ve giicleri sinir-
hidir. Bu tez, bu kisitlamalara uyan hafif ama giiclii bir anahtar-yonetim sistemi
tasarlar ve test eder. Protokol, ortak bir ana anahtar olusturmak igin eliptik egri
sertifikalar1 ve eliptik egri Diffie-Hellman anahtar degisimini kullanir. Daha sonra,
istemci ile sunucu arasindaki her mesaj i¢in bu ortak sirdan bir simetrik anahtar
tiretilir. Ortak sir ile sunucudaki eliptik egri anahtarlari, olasi bir ihlal durumunda
zarar1 azaltmak amaciyla periyodik olarak yenilenir. Onerilen bu protokol, Tamarin
kanitlayicist kullanilarak bicimsel olarak dogrulanmigtir. Sunucudaki uzun vadeli
anahtarlar, anahtar depolamasina ek bir giivenlik katmam saglayan TPM 2.0 yon-
gasi i¢ginde tutulur. Protokol bir web API’sine yerlegtirilmigtir. Protokoliin kendisi
ve kullandigi kriptografik iglemler, jenerik IoT cihazlarini temsil eden cesitli tek
karth bilgisayarlar tizerinde performans testlerine tabi tutulmustur. Sonuclar, 6ner-
ilen protokolde, anahtar degigimi islemlerinin makul bir siirede tamamlandigini, ve
bu siirenin ¢ogunlugunun TPM tarafindan harcandigini goéstermektedir.
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1. INTRODUCTION

Smart cities use connected sensors and devices, such as traffic cameras, smart meters,
and air quality monitors, to improve public services, use resources more efficiently
and lower operational costs (Zanella, Bui, Castellani, Vangelista & Zorzi, 2012). But,
many loT systems have been subject to cyber attacks. In 2021, attackers obtained
administrator credentials for Verkada’s cloud-managed CCTV platform, exposing
live video from more than 150,000 cameras deployed in hospitals, prisons and facto-
ries (Randolph & Hunt, 2021). In 2015, researchers remotely took control of a Jeep
Cherokee by exploiting a unit that accepted unsigned over-the-air firmware updates,
underscoring the risks of insecure automotive IoT (Miller & Valasek, 2015). In 2017,
a U.S. FDA (United States Food and Drug Administration) advisory revealed that
Abbott (formerly St. Jude) implantable pacemakers accepted unauthenticated ra-
dio commands capable of altering therapy parameters or draining batteries (U.S.
Food and Drug Administration, 2017). Therefore, security surveys warn that any
smart city system must guarantee confidentiality, integrity and authenticity of the
data all the way from field device to cloud, even when the devices are small and
resource-constrained (Alaba, Othman, Hashem & Alotaibi, 2017). Mostly due to
performance concerns, different forms of symmetric cryptosystems are used for such
protection, which requires both parties, the client and the server, possessing the
same key. Thus, distributing these keys, and periodically renewing them are also
needed to be performed in a secure way. To this end, the most practical approach in-
volves using long-term private keys in a protocol employing public-key cryptography

to derive short-term session keys.

If an attacker later extracts the server’s long-term private key, every past data flow
secured with its derived session keys can be decrypted offline. The solution to
this problem is referred to as forward secrecy (or perfect forward secrecy): expo-
sure of long-term credentials must not reveal earlier session keys (Boyd & Gellert,
2019). Modern transport security protocols such as TLS 1.3 achieve this property by
combining an authenticated certificate with an ephemeral Diffie-Hellman exchange;

once both sides discard the per-session secret, recordings of the handshake cannot



be brute-forced even if the certificate is stolen years later (Springall, Durumeric &
Halderman, 2016).

Given storage and bandwidth limitations of [oT (Internet of Things) devices, the
most prominent public-key cryptosystem seems to be ECC (Elliptic Curve Cryp-
tography) and its key agreement scheme, namely, ECDH (Elliptic Curve Diffie-
Hellmann) key exchange scheme (Barker, Chen, Roginsky, Vassilev & Davis, 2018).

In this thesis, in order to address the abovementioned security issues of smart city
applications and IoT systems, we developed an end-to-end key agreement proto-
col based on ECC. Our protocol computes a shared secret between client and the
server using ephemeral elliptic curve key pairs. This shared secret is used to derive
single-use symmetric keys that provide confidentiality, integrity, and authentication
of messages sent between the client and the server. As a result, forward secrecy
is achieved since if a key encrypting transmitted data gets compromised, the rest
of the communication remains confidential. Similarly, if a master key or its corre-
sponding elliptic curve private key is compromised, only the session associated with
that master key is affected. In addition to these, cryptoperiods! are assigned to
each key based on the recommendations of NIST (National Institute of Standards
and Technology) (Barker, 2020). Storage of the secrets on the server utilize TPM
(Trusted Platform Module) which is a chip on the processor (Trusted Computing
Group, 2008). The TPM encrypts the secrets while they are not used, and decrypts
them only when they are to be used in the application which makes the keys being

compromised more challenging.

We complement implementation testing with symbolic analysis of our key-exchange
protocol using the Tamarin prover. In the symbolic Dolev—Yao attacker model,
cryptography is abstracted as perfect operations and the network is controlled
by an active adversary who can intercept, replay, and synthesize messages from
known components. Tamarin supports unbounded sessions, equational theories for
Diffie-Hellman, signatures, and symmetric encryption, and proof obligations ex-
pressed as temporal lemmas (Basin, Cremers, Dreier & Sasse, 2025) (The Tamarin
Team, 2024). Using this framework we prove secrecy of keys, confidentiality and
authenticity of data, server and client authentication, agreement on both master

and derived keys, and perfect forward secrecy.

This thesis also presents the performance measurements of some cryptographic op-
erations on three different devices, a Raspberry Pi 3, a Raspberry Pi 4, and a laptop

computer. These operations include symmetric encryption, message authentication,

1A cryptoperiod of a key is a limitation on the duration in which it can be used.
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authenticated symmetric encryption, ECDH, and ECDSA (Elliptic Curve Digital
Signature Algorithm). Each of these operations are benchmarked as standalone
operations with respect to different key sizes and data sizes (except for ECDH for
which key size is the only variable), using pycryptodome (Anonymous, 2025d) and
cryptography (Anonymous, 2025¢) libraries on Python programming language. The
performance of the TPM operations are measured on the server by the time it takes
to take the ownership of the TPM, generating encryption keys, and encrypting/de-
crypting data using the generated keys. Finally, a web API (Application Program-
ming Interface) implementation is built and the durations of request-response cycles
to complete key exchange operations are decomposed into client computations, net-

work latency and server processing.

Each component of the implementation has been analyzed using static code ana-
lyzers. The client library that is implemented in python is analyzed using bandit
(Anonymous, 2025b), ruff (Astral, 2025), and pylint (Anonymous, 2025a) tools.
The server library that is implemented in C is analyzed using the cppcheck tool
(Marjaméki, 2025). Finally, the application layer that is implemented in .NET is
analyzed using .NET’s built-in RoslynSecurityGuard package (Arteau, 2025), and
CodeQL tool (GitHub Inc., 2025). According to the results, no valid security issues

were detected.

The rest of this thesis is organized as follows: Chapter 2 provides an overview of
the specifications for cryptographic algorithms used, definitions of different types of
keys used in these algorithms, and the frequency at which the keys are regenerated.
Chapter 3 describes the performance test setups for the cryptographic operations on
different platforms, and presents the results of these tests for each device. Chapter 4
discusses the design and implementation of the proposed key management protocol,
including the issues related to key distribution and storage of the keys in the server
and formal verification of the protocol. Chapter 5 details the integration of the key
exchange protocol to a server application and evaluates end-to-end performance of
the web API. Finally, Chapter 6 concludes the thesis.



2. BACKGROUND

This chapter provides theoretical knowledge about cryptographic primitives, oper-
ations, technologies, and platforms that are used. First, a list of definitions about
different types of keys used by cryptographic algorithms along with definitions of
some operations and technologies. Then, the algorithms to be tested and used along
with the test platforms are specified. Also, algebraic definitions and operational de-
tails of these algorithms are provided. Lastly, usage limits of the mentioned keys,

and suggestions about their lifetimes are made.

2.1 Cryptographic Operations and Test Platforms

Cryptographic primitives, which will be used for secure storage and transmission of
data, are divided into three groups. First group is the pure symmetric encryption
and MAC (Message Authentication Code) operations that consists of AES - CBC
(Advanced Encryption Standard - Cipher Block Chaining) mode of operation and
HMAC (Hash-based Message Authentication Code). AES - CBC is a confidentiality
mode of operation, that requires an IV (initialization vector), for which encryption
and decryption operations are defined in equations 2.1 and 2.2 respectively. For
encryption, first an exclusive or operation is applied to the IV and the first block
of the plaintext. The cipher function is applied to the result of the exclusive or
operation and the output is the first block of the ciphertext. For all the following
blocks of the plaintext, the exclusive or operation is applied to the plaintext block
and the ciphertext of the previous block. The result is given to the cipher function to
obtain the corresponding ciphertext block. To decrypt the first ciphertext block, an
exclusive or operation is applied to the IV and output of the inverse cipher function
on the first ciphertext block, and the result is the first block of the plaintext. For the

remaining ciphertext blocks, the exclusive or operation is applied to the previous
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ciphertext and the output of the inverse cipher function on the ciphertext block

itself to obtain the corresponding plaintext block (Dworkin, 2001).

Ci = CIPHK<P1@[V)
Cj = C[PHK<P]'€BCJ;1) for j=2..n

P =CIPHCY) @IV

2.2
Pj:CIPHl}l(P]’)@Cj71 for j=2.n (22)

HMAC is used to check the integrity of a message using a key K and a hash function
H as specified in equation 2.3. The inputs to the HMAC function are K and text,
where K is the key used for generating the MAC and tezt is the data for which
the MAC is generated. Kj is obtained from K, and has the same length as the
block size. The pads, ipad and opad, are the inner and outer pads that have the
bytes 2’36” and z’5¢” repeated block size times respectively (National Institute of
Standards and Technology, 2008).

MAC (text) = HMAC (K, text) = H((Ko®opad)||H ((Ko ®ipad)||text)  (2.3)

The second group is the authenticated symmetric encryption operations that in-
cludes AES - GCM (Galois Counter Mode) and AES - CCM (Counter with Cipher
Block Chaining Message Authentication Code) mode. The authenticated encryption
function, GCM — AEg, of GCM mode of operation generates a ciphertext C, and
a tag T of length ¢ as shown in 2.4 where IV is the initialization vector, P is the
plaintext, and A is the additional authenticated data. The authenticated decryption
function, GCM — ADg, returns the plaintext if authentication succeeds, and FAIL
otherwise, which is represented by equation 2.5 (Dworkin, 2007).

C= GCTRK(in632(J0),P)
T = MSBy{(GCTRg(Jo,S)) (2.4)
GCM_AEg(IV,P,A) = (C,T)



T = MSB{(GCTRk(Jy,S))
P =GCTRgk(incsa(Jp),C)
P, if T=T

GCM_ADg(IV,C,A,T) =
FAIL, else

(2.5)

The definitions of additional variables, Jy and S, that are used to generate C' and

T in the encryption function or P and T’ in the decryption function are shown
in 2.6. The functions GCTRy and GHASHp are defined in equations 2.7 and

2.8 respectively. For a bit string X, the result of incrementing its rightmost s bits

regarded as a binary integer is defined as incs(X), and its leftmost s bits is defined

as M SBg(X) (Dworkin, 2007).

H = CIPH(0'%)
s =128 [len(IV)/128] —len(IV)
o {IV|O311, it len(IV) =96
GHASH(IV]|05+54 |[len(IV)]es), if len(IV) # 96
u=128-[len(C)/128] —len(C)
v =128 [len(A)/128] — len(A)
S =GHASHg (A0°]|C[|0%||[len(A)]e4l[[len(C)]6a)

n = [len(X)/128]

X = X[ 5ol] X7
CBy=ICB
CB¢:in032(CB¢_1) for 1=2..n
Yi=X;®CIPHKg(CB;) for i=1..n
Y: == X:;EBMSBlen(X;{)<C[PHK(CBn))
Y =vi|[Yall...[|Yyy
GCTRi(ICB,X)=Y

Yy = o128
YVi=(YiaeXi)-H
GHASH(X1)|Xa||--[| Xom) = Yin

(2.6)

(2.7)

(2.8)

The generation and encryption function along with the verification and decryption

function of the other authenticated symmetric encryption mode, AES - CCM, are
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defined in equations 2.9 and 2.10 where N is the nonce, A is the associated data, P
is the plaintext, and C'is the ciphertext. In the generation and encryption function,
the CBC-MAC mechanism generates a MAC on the formatted data, and counter
mode encryption is applied to the plaintext and the MAC individually to result in
the ciphertext. In the decryption function, the plaintext and the MAC are obtained
by applying counter mode decryption on the ciphertext, and CBC-MAC mechanism
verifies the MAC on the formatted data. The decryption and verification function
returns the plaintext if the verification succeeds, otherwise it returns INVALID
(Dworkin, 2004).

T = MSBTlen(Y;")
C = (P& MSBpien(5)||(T & MSBrien(So)) (2.9)
CCM_GEx(N,P,A)=C

P= MSBClen—Tlen<C) D MSBClen—Tlen(S)

T = LSBTlen(C) S5 MSBTlen<SO)
(2.10)
: if T =MSBrien(Yr)

INVALID, else

CCM VDg(N,A,C)=

The extra variables that are computed within these functions, Y and S, are defined
in equation 2.11. The formatted data blocks from By up to B, are produced by
the formatting function applied to the inputs; and the counter blocks from Ctrg
to Ctry, where m = [Plen/128] are generated by the counter generation function.
Rightmost s bits of a bit string X is defined as LSBs(X) (Dworkin, 2004).

S;=CIPHK(Ctr;) for j=0..m
S = S1|92]].--[|Sm
Yo = CIPHy(Bo)
Y; = CIPHk(B;®Yi_1) for i=1l.r

(2.11)

The last group is public-key infrastructure using elliptic curves, and it contains
ECDH key exchange scheme (Barker et al., 2018) and ECDSA operations (National
Institute of Standards and Technology, 2023). The inputs to the ECDH function
that is defined in equation 2.12 are, the domain parameters ¢, FR,a,b, SEED,G,n,h
for the curve that is used, the private key d 4 of the party that computes the shared
secret, and the public key Q)p of the other party; and it returns the shared secret
Z which is a byte string. The element-to-bytes function used within the ECDH
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function converts the field element to byte string. Before returning, either an error
or Z, all intermediate calculation results such as P and z and the corresponding

intermediate results while computing them are destroyed (Barker et al., 2018).

P = hdQyp
Z=Xp
Z = element_to_bytes(z) (2.12)
Z, if P#(
ECDH((q,FR,a,b,SEED,G,\n,h),dA,Qp) =
ERROR, else

The ECDSA signature generation function is defined in equation 2.13, and it takes
the message M to be signed, the private key d of the signing party, and a hash
function Hash as inputs, and generates an integer pair (r, s) as the output. Equation
2.14 defines the ECDSA signature verification function, which takes a message M,
a pair of integers (r,s) which is the signature on M, and a public key @ belonging
to the private key that signed the message. The intermediate functions, bytes-to-int
and element-to-int are used to represent a byte string as an integer and converting
a field element to an integer respectively. The integer n is a domain parameter that
belongs to the curve used in the operation (National Institute of Standards and
Technology, 2023).

H = Hash(M)
) bytes_to_int(H), if len(n) > hashlen
o bytes_to_int(MS Bijog,(n)](H)), else
R = [k]|G

(2.13)
r1 = element_to_int(zR)

r=r; modn
s=((k"' modn)-(e+r-d)) modn
ECDSA sign(M,d,Hash) = (r,s)



H = Hash(M)
bytes_to_int(H), if len(n) > hashlen
bytes_to_int(MSBrjog,my (H

e =
), else

)
u=(e- (s~ modn)) modn
v=(r-(s ! modn)) modn

R = [u]G+[v]Q (2.14)
r1 = element_to_int(zR)
reject, ifrg[l,n—1jors¢[1,n—1]
reject, if R is the identity element

ECDSA_wverify(M,(r,s),Q) =
reject, ifr#mr

accept, if r=rq

ECDH and ECDSA operations are applied on the curves P-256, P-384, and P-
521. The domain parameters of these curves consist of the values p,a,b,G,n, and h
where the curve equation is y?> = 234+ ax +b modp with p being a prime number
that specifies the finite field. G is the base point of the curve, h is the cofactor
and n is the order of G (Chen, Moody, Randall, Regenscheid & Robinson, 2023)
(Standards for Efficient Cryptography Group, 2010).

2.2 Definitions

The following list contains the definitions of some key types, algorithms, or compo-

nents that will be referred to in the following chapters.

o Private Signature Key: The private key of the key pair used by public-key

cryptosystems to generate digital signatures for authentication purposes.

o Public Signature-Verification Key: The public key of the key pair used by
public-key cryptosystems to verify digital signatures for authentication pur-

poses.



Private Ephemeral Key-agreement Key: The private key of the tem-
porary key pair used by public-key cryptosystems to generate a symmetric

key.

Public Ephemeral Key-agreement Key: The public key of the temporary

key pair used by public-key cryptosystems to generate a symmetric key.

Symmetric Master Key / Key-derivation Key: The key responsible for
deriving other symmetric keys that will be used for purposes such as encrypting
data.

Symmetric Data Encryption Key - Data Transport: A key used by
symmetric-encryption algorithms to encrypt and decrypt the data transmitted

over the network to protect its confidentiality.

Symmetric Data Encryption Key - Data Storage: A key used by
symmetric-encryption algorithms to encrypt and decrypt the data stored on

the server to protect its confidentiality.

HKDF (Hash Based Key Derivation Function): A function used with
the symmetric master key to generate symmetric keys that will be employed

for purposes such as encrypting data.

TPM: A computer chip (microcontroller) on which passwords, certificates,
and encryption keys that can be used for platform security can be stored

securely.

2.3 Key Types and Cryptoperiods

To secure the communication between the client and the server, various crypto-

graphic primitives and their associated keys will be employed. For the elliptic curve

based operations of the public-key infrastructure that will be used in key distribu-

tion, the server side will make use of a private signature key, a public signature-

verification key, a private ephemeral key-agreement key, and a public ephemeral

key-agreement key. On the client side, only a private ephemeral key-agreement key

and a public ephemeral key-agreement key will be used.

As a result of the elliptic curve based key exchange, both the server and the client

will generate the same symmetric master key. A key derivation function will use
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this master key to produce symmetric data encryption keys. These symmetric data
encryption keys will be used by the client and the server to encrypt the messages
to be sent, and decrypt the received messages. In addition, a different symmetric
data encryption key will be used by the server to store data received from clients

securely.

The usage periods of the different key types that will be employed on the server and
the clients are shown in Table 2.1. The periods of use were chosen on the basis of

the key management recommendations published by NIST (Barker, 2020).

Table 2.1 Cryptoperiods of Key Types Used in Client and Server

Key Type Originator-Usage Period Recipient-Usage Period
Private Signature Key 1-3 Years -

Public Signature-Verification Key - Many Years

Private Ephemeral Key-agreement Key One Key-agreement

Public Ephemeral Key-agreement Key One Key-agreement

Symmetric Master Key 1 day - 1 week -

Symmetric Data Encryption Key - Data Transport Connection period Originator-Usage period + 3 years
Symmetric Data Encryption Key - Data Storage 2 years 5 years

11



3. TESTING FOR CRYPTOGRAPHIC UNITS

Some cryptographic primitives such as pure symmetric encryption operations, MAC
operations, authenticated encryption operations, and elliptic curve based operations

are implemented and tested on the following platforms with the given specifications:
1. Laptop: Lenovo ThinkPad E14 - Intel Core i5 processor @ 2.40 GHz

2. Raspberry Pi 4: Arm Cortex-A72 processor @ 1.80 GHz (Raspberry Pi Ltd,
2025b)

3. Raspberry Pi 3: Arm Cortex-A53 processor @ 1.40 GHz (Raspberry Pi Ltd,
2025a)

These tests consist of correctness and performance tests on the operations of the
algorithm. To test the correctness, the outputs to the NIST test vectors (National
Institute of Standards and Technology, 2016) (National Institute of Standards and
Technology, nda) (National Institute of Standards and Technology, ndb) (National
Institute of Standards and Technology, ndc) as inputs are examined. Then, using
pairwise connection between each device pair is established and the compatibility
of implementations on different platforms and libraries is checked. Upon successful
completion of correctness tests, the performance of the libraries on different plat-
forms were recorded with respect to changes in size of input data making use of the

pairwise connections between devices.

3.1 Test Setup

All tests for all algorithms were developed on all devices in the Python programming

language using two different libraries, pycryptodome (Anonymous, 2025d) and cryp-
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tography (Anonymous, 2025¢). The operations whose performance was measured

are:
o encryption and decryption for pure symmetric-encryption primitives

e code generation and code verification for pure message authentication code

primitives

 encryption and tagging (generation of the authentication code), decryption

and tag verification for authenticated symmetric-encryption primitives, and

o key generation, key exchange, message signing, and message verification for

public-key infrastructure primitives.

Before testing operational correctness on different platforms using the same or dif-
ferent libraries, the correctness of the libraries themselves was verified with the test
vectors published by NIST (National Institute of Standards and Technology, 2016)
(National Institute of Standards and Technology, nda) (National Institute of Stan-
dards and Technology, ndb) (National Institute of Standards and Technology, ndc).
These vectors contain predetermined inputs together with the outputs that the al-
gorithms were expected to produce for those inputs. The libraries used produced

the expected outputs for the inputs in these test vectors.

To test operational correctness when the same or different libraries were used on
different platforms, data had to be transferred between two platforms. For this
purpose, the Python’s socket library was used. By means of this library, one platform
assumes the role of server and the other of client. After the client connects to the

server, the following test methods are applied for the respective building blocks:

e Pure symmetric-encryption operations: The server generates three ran-
dom keys, one 128 bits, one 192 bits, and one 256 bits, and a 128 bits IV
to send to the client. Then it generates a random plaintext and shares it
with the client. Both platforms encrypt this plaintext with the library in use.
The client sends its ciphertext to the server; if the ciphertexts produced on
both platforms are identical, the encryption operation is considered correct.
After that, each platform sends its ciphertext to the other, both decrypt the
received ciphertexts, and return the resulting plaintexts. If the decrypted
plaintext matches the original predefined plaintext, the decryption operation

is also accepted as correct.

e Pure message authentication code operations: he server generates a
random 512-bit key and shares it with the client. The server and the client

each generate a random message and, using the previously generated key,
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compute a MAC for the message. In turn, the server and the client send the
message to each other by appending the MAC. The recipient attempts to verify
the received message and the MAC with the predefined key; If the verification

succeeds, the generation and verification of the MAC are considered successful.

Authenticated encryption modes: The server generates three random
keys, one 128 bits, one 192 bits, and one 256 bits, a 96 bits IV and 160 bits of
associated data, and shares them with the client. Then it produces a random
plaintext and shares it as well. Both platforms perform encryption and tagging
on this plaintext. The client sends the ciphertext and authentication tag it
produced to the server; If the ciphertexts and tags generated on both platforms
are identical, the encryption and tagging operations are accepted as correct.
Each platform then sends its ciphertext and authentication tag to the other.
Decryption and verification are performed on these data; if the decrypted
plaintext matches the original predefined plaintext and the tag is verified, the

decryption and verification operations are considered successful.

Elliptic curve based operations: On both the server and the client, a
private key and a public key are generated using the selected elliptic curve. The
public keys are exchanged between the server and the client. Using its private
key and the other party’s public key, each side derives a 256-bit key using the
ECDH key exchange scheme (Barker et al., 2018). Then, the server and the
client each generate a random message and, using the derived key, compute
an HMAC using the SHA3-512 (Secure Hash Algorithm) hash function. Each
side sends its message together with the HMAC to the other. If both parties
can verify the received code with the derived key, the key-exchange operation

is deemed successful.

To test digital-signature generation and verification (National Institute of
Standards and Technology, 2023), both platforms generate a random mes-
sage, sign this message with their own private key, and send the message and
the digital signature to the other side. If the received message and signature
can be verified with the sender’s public key, digital-signature generation and

verification are accepted as correct.

During the performance analysis, the time elapsed while executing the operations

was measured with Python’s built-in time library. Because the duration of a single

operation was very short, the same operations were repeated 1 000 times; the elapsed

time was measured in seconds, multiplied by 1 000 to express it in milliseconds, and

then divided by the repetition count of 1 000, so that the time spent for a single

operation was calculated in milliseconds.
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In addition, to observe the time each operation spends working on different data
sizes, the same operations were carried out on data whose sizes are multiples of 1
000 bytes and fall between 5 000 bytes and 50 000 bytes. These different data sizes
were not used for the key-generation and key-exchange operations present in elliptic
curve based procedures, because in those operations the size of the key produced

depends only on the size of the curve.

3.2 Test Results

The performance tests were run on multiple devices; a laptop, a Raspberry Pi 4,
and a Raspberry Pi 3. The results for each device is presented separately. For each
device, the performance of each operation using different libraries are compared to
each other. The change in performance with respect to input size and with respect

to key size are also evaluated.

3.2.1 Test Results on Laptop

The performance results of the AES-CBC mode used for pure symmetric-encryption
operations on the laptop can be seen in Figure 3.1. The graphs at the top left and
bottom left show the encryption and decryption performance, respectively, obtained
with the pycryptodome library, while the graphs at the top right and bottom right
show the corresponding performance obtained with the cryptography library.From
these graphs it can be observed that the pycryptodome library performs better in
both encryption and decryption, and that in both libraries the decryption operation
is faster. However, because the measured times fall in the 0.0002 — 0.05 millisecond
range owing to the speed of the device used, they are highly sensitive to noise.
For this reason, a clear linear increase in processing time with increasing data size
cannot be observed, although a general linear rise is still visible within certain error

margins.

The performance results of the AES-CCM mode used for authenticated-encryption
operations on the laptop are presented in Figure 3.2. The graphs at the top left
and bottom left show, respectively, the encryption-plus-tagging and the decryption-
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Figure 3.1 Processing time of cryptographic operations using AES-CBC mode with
respect to data size (results obtained with pycryptodome library: charts on top left
and bottom left; results obtained with cryptography library: charts on top right and
bottom right)

plus-tag-verification performance obtained with pycryptodome, while the graphs at
the top right and bottom right show the same operations obtained with cryptogra-
phy. According to these graphs, for both encryption-plus-tagging and decryption-
plus-tag-verification the cryptography library exhibits better performance than py-
cryptodome, and in both libraries decryption-plus-tag-verification takes less time.
As in CBC mode, the processing times in CCM mode fall in the 0.005 — 0.1 millisec-
ond range and are therefore very sensitive to noise. Nevertheless, a general linear

increase in processing time with increasing data size can be mentioned.

The performance results of the other authenticated-encryption mode, AES-GCM,
on the laptop are shown in Figure 3.3. The graphs at the top left and bottom
left display, respectively, the encryption-plus-tagging and the decryption-plus-tag-
verification performance obtained with pycryptodome, while the graphs at the top
right and bottom right present the corresponding results obtained with cryptography.
As with CCM mode, the cryptography library shows better performance in both
operations with GCM mode. Although encryption takes less time compared to
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Figure 3.2 Processing time of cryptographic operations using AES-CCM mode with
respect to data size (results obtained with pycryptodome library: charts on top left
and bottom left; results obtained with cryptography library: charts on top right and
bottom right)

decryption when pycryptodome is used and decryption takes less time compared to

encryption when cryptography is used, the difference is not significant.

In all three AES modes, because the processing times are extremely short, no sig-

nificant effect of key size on performance has been observed.

The performance findings obtained for elliptic curve based operations on the laptop
with different curves can be seen in Figures 3.4 and 3.5. Figure 3.4 shows, on the
left the times obtained with pycryptodome and on the right those obtained with
cryptography for generating private and public key pairs for each curve and for de-
riving a symmetric key using the ECDH protocol. As the size of the elliptic curve
increases, the time taken to generate private and public key pairs increases with
both libraries, but this increase is more clear with cryptography. Similarly, the time
required to derive the symmetric key also rises with curve size, an increase that is
evident in both libraries. Although cryptography runs faster for key generation with

the P-256 curve, the difference is not significant; for the other curves, however, py-
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Figure 3.3 Processing time of cryptographic operations using AES-GCM mode with
respect to data size (results obtained with pycryptodome library: charts on top left
and bottom left; results obtained with cryptography library: charts on top right and
bottom right)

cryptodome completes the operation in a shorter time. In symmetric-key derivation,

the cryptography library spends less time for every curve.

Figure 3.5 contains graphs that show the ECDSA operation performance obtained
with pycryptodome (left-hand side) and cryptography (right-hand side) for the P-256,
P-384 and P-521 curves (top, middle and bottom rows, respectively). As the curve
size increases, the time required for both signature generation and verification also
increases. For operations on the same curve, the cryptography library completes
the task in less time for every curve. Because ECDSA operations involve time-
consuming steps that are unrelated to data size, a linear increase in processing time
with increasing data size is not expected at small data sizes. Nevertheless, with the
smallest curve tested (P-256) a linear rise in processing time with increasing data
size can be observed, and this rise is greater when cryptography is used, because the
total time is shorter and the data-size-dependent increase in processing time thus
becomes more prominent. In four of the graphs—those at the top left, middle left,
bottom left and top right—the time taken to verify the signature is, as expected,

longer than the time taken to generate it. In the middle right and bottom right
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graphs, however, contrary to expectations, signature generation takes longer than

signature verification.
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Figure 3.4 Processing time of elliptic curve key pair generation and 256-bit
symmetric-key exchange for each curve (results obtained with pycryptodome library:
left; results obtained with cryptography library: right)

Figures 3.6, 3.7, 3.8, 3.9 and 3.10 contain the graphs showing the performance of
HMAC generation and verification on the laptop using the SHA3-256, SHA-384,
SHA3-384, SHA-512 and SHA3-512 hash functions, respectively. In each figure the
graph on the left presents the findings obtained with pycryptodome, and the graph on
the right presents those obtained with cryptography. When the same hash algorithm
is used, operations complete in a shorter time with the cryptography library. In
addition, SHA-3 hash algorithms take more time than SHA-2 hash algorithms, and
within the same category the processing time increases as the output length of the
hash function grows. This increase in processing time becomes more pronounced as
the data size increases; that is, the ratio of the linear rise in processing time to the
growth in data size rises with the hash-output length. When the same library and
the same hash function are used, no significant performance difference is observed
between HMAC generation and HMAC verification.
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Figure 3.6 Processing time for HMAC generation and verification using SHA3-256
with respect to data size (result obtained with pycryptodome library: left; result
obtained with cryptography library: right)
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Figure 3.7 Processing time for HMAC generation and verification using SHA384
with respect to data size (result obtained with pycryptodome library: left; result
obtained with cryptography library: right)
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Figure 3.8 Processing time for HMAC generation and verification using SHA3-384
with respect to data size (result obtained with pycryptodome library: left; result
obtained with cryptography library: right)
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Figure 3.9 Processing time for HMAC generation and verification using SHA512
with respect to data size (result obtained with pycryptodome library: left; result
obtained with cryptography library: right)
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Figure 3.10 Processing time for HMAC generation and verification using SHA3-512
with respect to data size (result obtained with pycryptodome library: left; result
obtained with cryptography library: right)

22



3.2.2 Test Results on Raspberry Pi 4

The performance results of the AES-CBC mode used for pure symmetric-encryption
operations on the Raspberry Pi 4 device can be seen in Figure 3.11. The graphs
at the top left and bottom left show, respectively, the encryption and decryption
performance obtained with the pycryptodome library, while the graphs at the top
right and bottom right show the encryption and decryption performance obtained
with the cryptography library. In these operations the pycryptodome library exhibits
better performance and spends similar times on both encryption and decryption. On
the other hand, with the cryptography library the decryption operation is completed
faster than the encryption operation. Because processing times on the Raspberry
Pi 4 are longer than on the laptop, the influence of the noise factor is smaller; as a
result, a linear increase in processing time with increasing data size can be observed.
For small data sizes, no significant effect of key size on processing time is observed.
However, as data size increases, the rate of the linear rise in processing time grows
as the key size increases, and the impact of key size on processing time becomes

stronger.

The performance results of the AES-CCM mode used for authenticated-encryption
operations on the Raspberry Pi 4 device are shown in Figure 3.12. The graphs
at the top left and bottom left present, respectively, the encryption-plus-tagging
and the decryption-plus-tag-verification performance obtained with pycryptodome,
while the graphs at the top right and bottom right present the corresponding per-
formance obtained with cryptography. In these operations the pycryptodome library
displays better performance. There is no notable difference between the time spent
on encryption-plus-tagging and the time spent on decryption-plus-verification, and
this holds for both libraries. Since processing times on the Raspberry Pi 4 are longer
than on the laptop, the effect of the noise factor is smaller and, as a result, a linear
increase in processing time with increasing data size can be observed. For small
data sizes no significant effect of key size on processing time is observed. However,
as data size increases, the rate of the linear rise in processing time increases with
key length, and the influence of key size on processing time becomes more clear as
in CBC.

The performance results of the other authenticated-encryption mode, AES-GCM,
on the Raspberry Pi 4 device are presented in Figure 3.13. The graphs at the top left
and bottom left show, respectively, the encryption-plus-tagging and the decryption-
plus-tag-verification performance obtained with pycryptodome, while the graphs at

the top right and bottom right show the corresponding performance obtained with
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Figure 3.11 Processing time of cryptographic operations using AES-CBC mode with
respect to data size (results obtained with pycryptodome library: charts on top left
and bottom left; results obtained with cryptography library: charts on top right and
bottom right)

cryptography. In these operations the cryptography library achieves better perfor-
mance. There is no major difference between the time spent on encryption-plus-
tagging and the time spent on decryption-plus-verification, and this applies to both
libraries. Since processing times on the Raspberry Pi 4 are longer than on the
laptop, the impact of the noise factor is smaller and, consequently, a linear rise in
processing time with increasing data size can be observed. For small data sizes no
significant effect of key size on processing time is observed. However, as data size
increases, the effect of key size on the rate of the linear increase in processing time is
not as pronounced in this mode as in the other symmetric-encryption modes: using
128-bit and 192-bit keys does not have a noteworthy impact on processing time,
whereas the use of a 256-bit key consumes more time than the other key lengths but

the difference is negligible.

The performance findings obtained on the Raspberry Pi 4 device for elliptic curve
based operations with different curves are shown in Figures 3.14 and 3.15. Figure
3.14 depicts, on the left using pycryptodome and on the right using cryptography,

the times spent for generating private and public key pairs and deriving a symmetric
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Figure 3.12 Processing time of cryptographic operations using AES-CCM mode with
respect to data size (results obtained with pycryptodome library: charts on top left
and bottom left; results obtained with cryptography library: charts on top right and
bottom right)

key using the ECDH key-exchange protocol for each curve. Except for the private
and public key pair generation times with the P-384 curve, pycryptodome spends
more time on all operations, and the difference between the private and public key
pair generation times with the P-384 curve is not significant. As the elliptic curve
size increases, the processing times with pycryptodome also increase. However, with
cryptography, contrary to expectations, the P-384 curve has longer processing times

than the other two curves.

Figure 3.15 contains graphs showing the performance of ECDSA operations on the
Raspberry Pi 4, where in the top, middle and bottom rows, the P-256, P-384 and
P-521 curves are used respectively; the graphs on the left use pycryptodome and
those on the right use cryptography. As the curve size grows, the time required for
signature generation and verification with pycryptodome increases, whereas, when
cryptography is used, the P-256 curve completes both operations in the shortest
time; however, while the signature-verification performance of the P-384 and P-
521 curves is similar, the P-521 curve has a shorter signature-generation time. For

operations on the same curve, the cryptography library completes the task in less
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Figure 3.13 Processing time of cryptographic operations using AES-GCM mode with
respect to data size (results obtained with pycryptodome library: charts on top left
and bottom left; results obtained with cryptography library: charts on top right and
bottom right)

time for every curve. In ECDSA operations, because majority of the time is spent
on steps unrelated to data size, a linear increase in processing time with increasing
data size is not expected at small data sizes. Nevertheless, when cryptography is
used, a linear increase in processing time with increasing data size can be observed
for the smallest curve tested, P-256, because the total time is sufficiently small and
the processing time increase dependent on data size becomes more noticeable. In
the top right and bottom right graphs of this figure, as expected, the time taken for
signature verification is greater than that for signature generation. However, in the
top left, middle left, bottom left and middle right graphs, contrary to expectations,

the signature-generation time exceeds the signature verification time.

Figures 3.16, 3.17, 3.18, 3.19 and 3.20 contain the graphs showing the performance of
HMAC generation and verification on the Raspberry Pi 4 device using the SHA3-256,
SHA-384, SHA3-384, SHA-512 and SHA3-512 hash functions, respectively. In each
figure the graph on the left presents the results obtained with pycryptodome, and the
graph on the right presents those obtained with cryptography. When the same hash

algorithm is used, operations finish in a shorter time with the cryptography library,
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Figure 3.14 Processing time of elliptic curve key pair generation and 256-bit
symmetric-key exchange for each curve (results obtained with pycryptodome library:
left; results obtained with cryptography library: right)

and this difference is more notable when hash functions from the SHA-2 category are
used. Moreover, with the cryptography library, the processing time when algorithms
from the SHA-2 category are used is lower than when algorithms from the SHA-3
category are used, whereas no similar difference exists for pycryptodome. With both
libraries, no distinct performance difference is observed among the algorithms in the
SHA-2 category, while in the SHA-3 category the processing time increases as the
hash-output length grows.
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Figure 3.19 Processing time for HMAC generation and verification using SHA512
with respect to data size (result obtained with pycryptodome library: left; result
obtained with cryptography library: right)
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Figure 3.20 Processing time for HMAC generation and verification using SHA3-512
with respect to data size (result obtained with pycryptodome library: left; result
obtained with cryptography library: right)
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3.2.3 Test Results on Raspberry Pi 3

The performance results of the AES-CBC mode used for pure symmetric-encryption
operations on the Raspberry Pi 3 device can be seen in Figure 2.21. The graphs at
the top left and bottom left show, respectively, the encryption and decryption per-
formance obtained with the pycryptodome library, while the graphs at the top right
and bottom right show, respectively, the encryption and decryption performance ob-
tained with the cryptography library. In these operations, the pycryptodome library
exhibits better performance. There is no obvious difference between the time spent
on encryption and the time spent on decryption, and this holds for both libraries.
Because processing times on the Raspberry Pi 3 are longer than on the laptop, the
influence of the noise factor is smaller; consequently, a linear increase in processing
time with increasing data size can be observed. For small data sizes no significant
effect of key size on processing time is observed. However, as data size increases,
the rate of the linear rise in processing time grows as the key size increases, and the

impact of key size on processing time becomes more evident.
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Figure 3.21 Processing time of cryptographic operations using AES-CBC mode with
respect to data size (results obtained with pycryptodome library: charts on top left
and bottom left; results obtained with cryptography library: charts on top right and
bottom right)
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The performance results of the AES-CCM mode used for authenticated-encryption
operations on the Raspberry Pi 3 device can be seen in Figure 2.22. The graphs at
the top left and bottom left show, respectively, the encryption-plus-tagging and the
decryption-plus-tag-verification performance obtained with pycryptodome, while the
graphs at the top right and bottom right show, respectively, the encryption-plus-
tagging and the decryption-plus-tag-verification performance obtained with cryp-
tography. In these operations the cryptography library exhibits better performance.
There is no significant difference between the time spent on encryption-plus-tagging
and the time spent on decryption-plus-verification, and this is true for both libraries.
Because processing times on the Raspberry Pi 3 are longer than on the laptop, the
effect of the noise factor is smaller and, as a result, a linear increase in processing
time with increasing data size can be observed. For small data sizes no significant
effect of key size on processing time is observed. However, as data size increases,
the rate of the linear rise in processing time grows as the key size lengthens, and

the influence of key size on processing time becomes more evident.
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Figure 3.22 Processing time of cryptographic operations using AES-CCM mode with
respect to data size (results obtained with pycryptodome library: charts on top left
and bottom left; results obtained with cryptography library: charts on top right and
bottom right)
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The performance results of the other authenticated-encryption mode, AES-GCM, on
the Raspberry Pi 3 device can be seen in Figure 2.23. The graphs at the top left and
bottom left show, respectively, the encryption-plus-tagging and the decryption-plus-
tag-verification performance obtained with pycryptodome, while the graphs at the
top right and bottom right show, respectively, the encryption-plus-tagging and the
decryption-plus-tag-verification performance obtained with cryptography. In these
operations the cryptography library exhibits better performance. The difference
between the time spent on encryption-plus-tagging and the time spent on decryption-
plus-verification is negligible, and this situation applies to both libraries. Because
processing times on the Raspberry Pi 3 are longer than on the laptop, the impact
of the noise factor is smaller and, consequently, a linear increase in processing time
with increasing data size can be observed. For small data sizes no significant effect
of key size on processing time is observed. However, as data size increases, the rate
of the linear rise in processing time grows as the key size lengthens, and the impact

of key size on processing time becomes stronger.

AES-GCM Encryption and Tagging AES-GCM Encryption and Tagging
— 128-hit — 128-bit
=== 192-bit === 192-bit
2.0

o+ 256-bit | e 256-bit

1.5

Processing Time {ms)
Processing Time {ms)

0.5 4

10000 20000 30000 40000 50000 10000 20000 30000 40000 50000
Data Size (bytes) Data Size (bytes)
AES-GCM Decryption and Verification AES-GCM Decryption and Verification
51 — 128-bit — 128-bit
—--- 192-bit ——- 192-bit

=== 256-bit o 2.0 4 weeee 256-bit

sing Time (ms)

1.0

Processing Time (ms)

Proces:

0.5

10600 20000 oate Smsﬁ?;::sl 40000 50000 o0 10000 20000 bt s‘lj?s;[:eﬂsj 40000 50000
Figure 3.23 Processing time of cryptographic operations using AES-GCM mode with
respect to data size (results obtained with pycryptodome library: charts on top left
and bottom left; results obtained with cryptography library: charts on top right and

bottom right)
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The performance findings obtained on the Raspberry Pi 3 device for elliptic curve
based operations with different curves can be seen in Figures 3.24 and 3.25. Figure
3.24 shows, on the left using pycryptodome and on the right using cryptography, the
times taken for generating private and public key pairs and deriving a symmetric key
using the ECDH key-exchange protocol for each curve. Except for the private and
public key pair generation times with the P-384 curve, pycryptodome spends more
time on all other operations, and the difference between the private and public key
pair generation times with the P-384 curve is not significant. As the elliptic curve
size increases, the processing times with pycryptodome also increase. However, with
cryptography, contrary to expectations, the P-384 curve has longer processing times

than the other two curves.

Figure 3.25 contains graphs showing the performance of ECDSA operations on the
Raspberry Pi 3, where in the top, middle and bottom rows, the P-256, P-384 and
P-521 curves are used respectively; the graphs on the left use pycryptodome and
those on the right use cryptography. As the curve size grows, the time required for
signature generation and verification with pycryptodome increases; however, when
cryptography is used, both operations are completed in the shortest time on the
P-256 curve, but the operations performed on the P-521 curve finish in less time
than those performed on the P-384 curve. For operations on the same curve, the
cryptography library completes the task in less time for every curve. In ECDSA
operations, because considerable time is spent on steps unrelated to data size, a
linear increase in processing time with increasing data size is not expected at small
data sizes. Nevertheless, when cryptography is used, a linear increase in processing
time with increasing data size can be observed for the smallest curve tested, P-
256, because the total time is sufficiently small and the processing-time increase
dependent on data size becomes more noticeable. In the top right and bottom right
graphs of this figure, as expected, the time taken for signature verification is greater
than that for signature generation. However, in the top left, middle left, bottom left
and middle right graphs, contrary to expectations, the signature-generation time

exceeds the signature-verification time.

Figures 3.26, 3.27, 3.28, 3.29 and 3.30 contain the graphs showing the performance
of HMAC generation and verification on the Raspberry Pi 3 device using the SHA3-
256, SHA-384, SHA3-384, SHA-512 and SHA3-512 hash functions, respectively. In
each figure the graph on the left presents the results obtained with pycryptodome,
and the graph on the right presents those obtained with cryptography. When the
same hash algorithm is used, operations finish in a shorter time with the cryptog-
raphy library, and this difference is more pronounced when hash functions from the

SHA-2 category are used. Moreover, with the cryptography library, the processing
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Figure 3.24 Processing time of elliptic curve key pair generation and 256-bit
symmetric-key exchange for each curve (results obtained with pycryptodome library:
left; results obtained with cryptography library: right)

time when algorithms from the SHA-2 category are used is lower than when algo-
rithms from the SHA-3 category are used, whereas no similar difference exists for
pycryptodome. With both libraries, no distinct performance difference is observed
among the algorithms in the SHA-2 category, while in the SHA-3 category the pro-

cessing time increases as the hash-output length grows.
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Figure 3.25 Processing time of ECDSA operations on different curves with respect
to data size (results obtained with pycryptodome library: charts on top-left, middle-
left and bottom-left; results obtained with cryptography library: charts on top-right,
middle-right and bottom-right)
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Figure 3.26 Processing time for HMAC generation and verification using SHA3-256
with respect to data size (result obtained with pycryptodome library: left; result

T T T
30000 40000 50000

Data Size (bytes)

T T
10000 20000

obtained with cryptography library: right)

14

HMAC Generation and Verification with SHA384

0.8 1

0.6 §

Processing Time (ms)

0.4 4

0.2 1

0.0

— HMAC Generation
——- HMAC Verification

Figure 3.27 Processing time for HMAC generation and verification using SHA384
with respect to data size (result obtained with pycryptodome library: left; result
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Figure 3.28 Processing time for HMAC generation and verification using SHA3-384
with respect to data size (result obtained with pycryptodome library: left; result
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4. KEY MANAGEMENT

Symmetric encryption and MAC algorithms require both communicating parties to
have the same symmetric key, and this symmetric key must be unknown to third
parties. To achieve this, a key management protocol must be employed. This key
management protocol can be decomposed into two parts. The distribution of keys
between the server and clients is the first part. ECDH will be used for this purpose as
outlined in the first section. The second part is the secure storage of the distributed
keys. The clients do not need additional measures to store the keys since only the
root certificate will be stored permanently in the clients, and it is a public data which
requires no security. On the other hand, the server needs to store some secrets in
the permanent non-volatile memory. To securely store these keys, TPM will be
utilized as detailed in the second section. The designed protocol is implemented
in the C programming language using OpenSSL (OpenSSL Foundation, Inc., 2025)
and tpm2-tss (tpm2-software, 2024) (Trusted Computing Group, 2025) libraries, and

the implementation details are described in the third section.

4.1 Key Distribution

Communication between the client and the server will be secured by symmetric
encryption methods. The key to be used in symmetric encryption must be known
to the server and the client but must remain unknown to third parties. To ensure
this, the ECDH key agreement scheme (Barker et al., 2018) will be employed. The
steps to be followed for the key exchange, which will be carried out at the start of

every session, are shown in Figure 4.1.

Before the key exchange begins, the server already possesses a static private and
public key pair that will be used for ECDSA operations. This public key is con-
tained in a digital certificate (Temoshok & Abruzzi, 2018) signed by a certificate
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authority (Akram, Barker, Clatterbuck, Dodson, Everhart, Gilbert, Haag, John-
son, Kapasouris, Lam, Pleasant, Raguso, Souppaya, Symington, Turner & Wilson,
2020). When communication starts, the server sends this certificate to the client.
The client verifies the certificate received from the server by using the root certificate
(Akram et al., 2020), which contains the certificate authority’s public key. This root
certificate has been embedded in the client during its installation. If the client can
verify the server’s certificate, it will generate an ephemeral private and public key
pair that will be used in the key exchange. Next, the client sends the ephemeral
public key and a random salt value it has generated to the server along with an
HMAC of the message which is computed using a pre-shared key between the client
and the server. Upon successful verification of the HMAC, the server generates its
own ephemeral private and public key pair. Using the client’s ephemeral public key
and its own ephemeral private key, the server computes a master key. From this
master key, it derives a connection key using the salt value received from the client
and a salt value it generates. HKDF (Barker, Chen & Davis, 2018) is used for key
derivation. Finally, the server responds to the client with its own ephemeral public
key, the signature for the ephemeral public key, a random salt value, and an HMAC
(Chen et al., 2023) generated for these messages using the derived key.

Based on the response, the client verifies the server’s ephemeral public key. Then,
using the server’s ephemeral public key and its own ephemeral private key, the client
computes the master key. After that, using the salt value it sent to the server along
with the salt received from the server, a connection key is derived from the master
secret. Finally, using this key, the HMAC of the response message is verified. If all

verifications succeed, then the key exchange operation is completed successfully.
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Figure 4.1 Master Key Exchange Between Server and Client

41



4.2 Formal Verification of the Proposed Key Distribution Protocol

The key exchange protocol that is defined in the previous section is formally verified
using the Tamarin prover. The Tamarin prover (Basin et al., 2025) is a model-
checking tool that is mainly used for formal verification of security protocols. It
has been used to verify protocols such as TLS 1.3 (Cremers, Horvat, Hoyland, Scott
& van der Merwe, 2017), and iMessage PQ3 Messaging Protocol of Apple (Linker,
Sasse & Basin, 2024). The Tamarin prover supports unbounded protocol sessions,
multiset-rewriting rules with states and events, and built-in support for some cryp-
tographic primitives that our key exchange protocol rely on such as Diffie-Hellman,
symmetric encryption, signature generation and verification (Basin et al., 2025) (The
Tamarin Team, 2024). It features a symbolic Dolev-Yao attacker model (Dolev &
Yao, 1983) that controls the network and can intercept, replay and synthesize mes-

sages based on known components.

Each step of the protocol is specified using rules in Tamarin. The rules of Tamarin
consist of three parts, which are input facts, actions, and output facts. The input
facts are consumed upon the transition, and output facts are produced. The actions
do not change the state of the model, but they represent the actions taken by
the parties, and they are used in property satisfaction. Our model uses the facts
to generate random data, store the keys in client and server states, and to write
messages to and read messages from the network. The actions are used to mark
security related properties, such as declaring terms as a secret, declaring terms
as equals, and logging events of sending a message, computing a master key and
deriving a connection key. The rules are also used to give attackers more capabilities

by revealing the secrets on the network.

After specifying the protocol using the multiset-rewriting rules, the claims for secu-
rity properties are verified using temporal lemmas over actions. The list of lemmas
that are proven, the claim that these lemmas make, and the corresponding security
property that they verify can be found in Table 4.1. The security properties that
are verified are key confidentiality, data confidentiality, data authenticity, client au-
thenticity, server authenticity, and perfect forward secrecy. To prove key and data
confidentiality corresponding lemmas state that if a term is declared as secret or
logged in the actions as being sent over the network, then the adversary never
knows the term value. For data authentication, corresponding lemmas states that
whenever a data is logged in the actions as being received, then it must be logged

as being sent by the other party. For server authenticity, the corresponding lemmas
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states that if there is an action logging that the client completes a key exchange or
key derivation, there must be a corresponding action logging that the server also
completes the key exchange or key derivation resulting with the same key. For client
authenticity, the corresponding lemmas states that if there is an action logging that
the server completes a key exchange or key derivation, then there must be actions
logging that the client initiated a key exchange or derivation. Finally, for the perfect
forward secrecy, the corresponding lemma states that if a key exchange is completed
before the long term signature key of the server is exposed, then the exchanged key
is never known to the adversary, even after the long term signature key is exposed.
The entire theory written in Tamarin can be found in Appendix. Figure 4.2 shows

that all lemmas are verified successfully.

secrecy_keys (all-traces): verified (44 steps)
agree_master (all-traces): verified (15 steps)
agree_connkey (all-traces): verified (15 steps)
agree_master_rev (all-traces): verified (6 steps)
agree_connkey_rev (all-traces): verified (6 steps)

upload_conf (all-traces): verified (13 steps)
upload_auth (all-traces): verified (17 steps)
download_auth (all-traces): verified (21 steps)
download_conf (all-traces): verified (10 steps)
forward_secrecy (all-traces): verified (45 steps)

Figure 4.2 The output of the Tamarin prover on the protocol specification

Table 4.1 List of Proven Lemmas in Tamarin

Lemma Name Claim Requirement

secrecy_keys Claims that the master key, and | Key Confidentiality
connection key are never known
by the adversary

upload__conf Claims that the data uploaded | Data Confidentiality

from the devices to the server are

never known by the adversary
download conf Claims that the data downloaded | Data Confidentiality

from the server to the client are

never known by the adversary

agree_master rev | Claims that if a master key is | Client Authenticity

computed by the server, the pro-

cess is initiated by the client
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Lemma Name

Claim

Requirement

agree_connkey rev

Claims that if a connection key is
computed by the server, the pro-

cess is initiated by the client

Client Authenticity

agree master

Claims that if a master key is
computed by the client, the server

computes the same master key

Server Authenticity

agree__connkey

Claims that if a connection key
is computed by the client, the
server computes the same connec-

tion key

Serve Authenticity

upload__auth

Claims that if data is uploaded to
the server, it is received from the

client

Data Authenticity

download auth

Claims that if data is downloaded
to the client, it is downloaded

from the server

Data Authenticity

forward__secrecy

Claims that if the signature key
of the server is exposed, all the
master keys and connection keys
computed before the exposing are

never known to the adversary

Perfect Forward Se-

crecy

4.3 Storing the Keys and Data

On the server side, the methods by which different keys are stored in memory vary.

The private and public key pair to be used in ECDSA operations (Standards for

Efficient Cryptography Group, 2010) requires non-volatile memory, because the life-

time of these keys is relatively long. No security measure is required for storing

the public key. For permanently storing the private key in memory, however, the
TPM (Trusted Computing Group, 2008) will be employed. After the private key is

generated, it is sent to the TPM to be stored in non-volatile memory, as depicted

in Figure 4.3, and the TPM encrypts this key internally and returns the ciphertext.

This ciphertext is then written to disk for storage, and, when the key is needed, it

is sent to the TPM for decryption, as shown in Figure 4.4, and the TPM returns
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the plaintext form of the key. The plaintext version of the key is kept in volatile
memory only while it is being processed, and it is deleted from volatile memory once

the digital signature generation is finished.

While this key is stored in volatile memory, it is written to a region that has
been securely allocated by the OpenSSL_secure_malloc (OpenSSL Foundation, Inc.,
2016a) function of the OpenSSL library. Memory regions allocated with this func-
tion do not appear in memory dumps and are inaccessible to any process other than
the allocating one. In addition, when memory allocated with this function is freed,

the memory cells are not left intact; zeros are written to all cells.

\?Slcalglz Static TPM Encrypted Static| Non-volatile
Memory Private Key Private Key Memory

Figure 4.3 Secure Storage of the Private Signature Key

Non-volatile | Encrypted StatiE TPM Static R 3;3'(:;:'1
Memory Private Key Private Key Nl

Figure 4.4 Secure Usage of the Private Signature Key

The ephemeral private and public key pair used for the key agreement requires no
non-volatile storage because it is used only once and then deleted from memory.
Using the OpenSSL__secure _malloc function is sufficient for storing the ephemeral
private key. Non-volatile storage is required for the master key produced by the key
agreement, and this key will also be stored in the TPM, as shown in Figure 4.5.
When a connection is established with the client, the plaintext form of the master
key obtained from the TPM is written to a region of volatile memory allocated
with OpenSSL__secure_malloc, as shown in Figure 4.6, and is used there; once the
connection key has been generated, the master key is deleted from memory. The
connection key does not need non-volatile storage, because it is valid only while an
active connection exists and will be used continuously during that period; it will be

stored in a region of volatile memory allocated with OpenSSL__secure malloc.
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Figure 4.6 Secure Usage of the Master Key

As devices used as clients are not expected to contain a TPM, the master key and
connection keys will be written to, and stored in, regions of volatile memory allocated

with the OpenSSL_secure malloc function.

Symmetric encryption methods will be used to store the static data —that is, the
data collected by the client devices and securely transmitted to the server— and the
symmetric key that will be employed to encrypt the stored data will be generated by
the server using the RAND _bytes function of the OpenSSL library (OpenSSL Foun-
dation, Inc., 2020c). Next, that symmetric key is sent to the TPM, its ciphertext
is obtained, and this ciphertext is written to non-volatile memory for storage. The
storage process of the data is illustrated in Figure 4.7. The data received from the
client, encrypted with the connection key, are first decrypted and kept in a securely
allocated region of volatile memory. Then, the ciphertext of the symmetric storage
key will be sent to the TPM to be decrypted, and the actual key will be stored
in a securely allocated region of volatile memory. The data are then re-encrypted
with the symmetric storage key and written to non-volatile memory. After that, the

plaintext form of the symmetric storage key is deleted from volatile memory.

46



1-Sensor
Data

2-Data Encrypted

Non-volatile

Client

by Connection Key

A Memory
12 E“d\]p‘e
D32 ey
Sto(age\/\
Secure | o 3-Encrypted
» Volatile Storage Key
Memory

4~DeCrypte \
€ Key TPM

Figure 4.7 Secure Storage of the Static Data

When the static data must be decrypted for use, as shown in Figure 4.8, the sym-

metric key stored in non-volatile memory as ciphertext is decrypted via the TPM

and placed in securely allocated memory. This key is then used to decrypt the

required portion of the static data, which is written to securely allocated memory

for use, and the plaintext form of the symmetric storage key is erased from volatile

memory. Finally, the data is encrypted using the connection key and sent to the

client and the plaintext data is removed from volatile memory.
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4.4 Implementation Details of Key Management
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To demonstrate the usability of the proposed structures and technologies for se-
curing processes such as key exchange, key storage and static data storage, these
processes have begun to be developed in appropriate programming languages. In
this section, the core application components and the relevant libraries will be men-
tioned. Also, the performance of the operations are evaluated in this section. The
implementation and performance evaluations are carried out on a computer with
Intel Core i5 processor running at 1.60 GHz. All applications and the related APIs

will be discussed in the next chapter.

The prototype in question has been developed in the C programming language
using the OpenSSL (OpenSSL Foundation, Inc., 2025) and tpm2-tss (tpm2-software,
2024)(Trusted Computing Group, 2025) libraries. The functions of these libraries

that are used in the application, and their roles, are listed in Table 4.2.

Table 4.2 Details of Libraries and Functions used in Implementation

Library Function Details
EVP_PKEY_ keygen Generates a key described by the parameters
X509 _sign Signs a certificate with the key, using a hash function
RAND_ bytes Generates a random byte array of the requested length
i2d_ PUBKEY Serializes the public key of a key object
d2i_ PUBKEY Deserializes a public key into a key object
EVP_PKEY_ derive Derives a symmetric key from a private and a public key
EVP_KDF_ derive Derives a symmetric key from another symmetric key
OpenSSL HMAC Init ex Generates an HMAC for the data using a
HMAC_Update symmetric key and a hash function specified
HMAC_Final by the parameters
EVP_ Encryptlnit ex Encrypts the data using a symmetric
EVP__EncryptUpdate encryption algorithm, key, and IV specified
EVP_ EncryptFinal ex by the parameters
EVP_ Decryptlnit_ex Decrypts the ciphertext using a symmetric
EVP_ DecryptUpdate encryption algorithm, key, and IV specified
EVP_ DecryptFinal ex by the parameters
Esys_ Initialize Takes ownership of the TPM for subsequent use
Esys_ CreatePrimary Creates a primary key whose attributes are set by the parameters
fpm-tss Esys_ EvictControl Makes a TPM key persistent through an external handle
Esys TR FromTPMPublic | Loads a key to TPM from a persistent handle
Esys_ RSA_ Encrypt Encrypts the data using an RSA key loaded into TPM
Esys_ RSA_ Decrypt Decrypts the ciphertext using an RSA key loaded into TPM

TPM operations have been carried out by using the ESAPI (Enhanced System
Application Programming Interface) layer (Trusted Computing Group, 2020) of the
tpm2-tss library. When the server program starts, the TPM is first initialised with
the Esys Initialize (Trusted Computing Group, 2020) function. For this function
to complete successfully, the server program must be run with the sudo command
and the user password must be entered. Then, if the server is being started for the
first time, a primary RSA (Rivest-Shamir-Adleman) encryption key is generated
with the Esys CreatePrimary (Trusted Computing Group, 2020) function. If the
server shuts down for any reason and needs to be restarted, this key is bound to
a persistent handle by using the Esys FuvictControl (Trusted Computing Group,
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2020) function so that the files encrypted with this key can be decrypted. If the
server program is closed and run again, the same RSA key becomes accessible to
the server with the Esys TR__FromTPMPublic (Trusted Computing Group, 2020)
function. In this way encryption and decryption can be carried out with the same
RSA key.

The OpenSSL library is used first to generate the root key and root certificate that
will be employed to authenticate the server’s identity. For this purpose, an elliptic
curve key is generated with the EVP_PKEY keygen (OpenSSL Foundation, Inc.,
2020a) function. This key is then used with the X509 sign (OpenSSL Foundation,
Inc., 2016b) function to create a self-signed root certificate, and the key and the
certificate are written to files for later use. Subsequently, the elliptic curve key
that the server will use to sign messages is generated with the EVP_PKEY keygen
function, and a CSR (Certificate Signing Request) file is created to generate the
certificate that the clients will use to verify these messages. The CSR file is then
signed with the root key, and the resulting certificate is stored in a file to be sent
to the clients. After a certificate has been created for the signing key, this key is
encrypted by the TPM with the primary key generated at program start-up or loaded
from the persistent handle, by using the Esys RSA_Encrypt (Trusted Computing
Group, 2020) function, and its encrypted form is written to a file. The server
generates a symmetric storage key with the RAND bytes (OpenSSL Foundation,
Inc., 2020c) function of the OpenSSL library to encrypt the messages it receives
from the clients and stores in non-volatile memory. This key is also encrypted with
the TPM by means of the Esys RSA__Encrypt function, and its encrypted form is

written to a file.

When a connection is then established between the server and the client, an elliptic
curve key pair is generated on both sides with the EVP _PKEY keygen function,
and the public keys are serialised with the i2d_ PUBKEY] (OpenSSL Foundation,
Inc., 2022b) function. After the serialised public keys have been exchanged, both
parties compute the master key by using their own private key and the other party’s
public key, obtained by deserialising with the d2; PUBKEY (OpenSSL Founda-
tion, Inc., 2022b) function, in the EVP_PKEY derive (OpenSSL Foundation, Inc.,
2022a) function. The EVP_KDF _derive (OpenSSL Foundation, Inc., 2024b) func-
tion then derives the connection key from the master key and a salt that is generated
randomly by the server and shared with the client. The purpose of using this salt
is to enable many different connection keys to be produced from the same mas-
ter key. To verify that the derived connection key is the same on both the server
and the client, the client concatenates the messages exchanged since the connection
was established and generates an HMAC by using the HMAC _Init_ex (OpenSSL
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Foundation, Inc., 2020b), HMAC _Update (OpenSSL Foundation, Inc., 2020b) and
HMAC' _Final (OpenSSL Foundation, Inc., 2020b) functions, then sends this HMAC
to the server. The server likewise concatenates the messages exchanged since the
connection was established and generates an HMAC with the same functions. If the
HMAC it has created matches the one received from the client, the identity of the
derived connection key is confirmed. When the derivation of the connection key is
complete, the master key is encrypted by the TPM with the Fsys RSA_Encrypt
function for storage in non-volatile memory, and its encrypted form is written to a

file.

From this point on, the messages to be sent over the connection are en-
crypted with the connection key by using the EVP_Encryptinit_ex (OpenSSL
Foundation, Inc., 2024a), EVP_EncryptUpdate (OpenSSL Foundation, Inc.,
2024a) and EVP_EncryptFinal _ex (OpenSSL Foundation, Inc., 2024a) func-
tions, and are decrypted with the EVP_Decryptinit _ex (OpenSSL Founda-
tion, Inc., 2024a), EVP_ DecryptUpdate (OpenSSL Foundation, Inc., 2024a) and
EVP_DecryptFinal_ex (OpenSSL Foundation, Inc., 2024a) functions. The server
decrypts, with the Esys RSA_ Decrypt (Trusted Computing Group, 2025) function
in the TPM, the storage key that it wrote to a file in order to encrypt the data it
receives from the clients, and uses this key to encrypt the static data. After the

static data have been encrypted, the storage key is deleted from volatile memory.

The impact of the TPM is analyzed by recording the time it takes to complete
operations in the TPM. Figure 4.9 shows the time it takes to initialize the TPM
module and obtain the ownership by the program, to create a 2048-bit primary RSA
encryption key, storing the created key in persistent storage of the TPM, and finally
loading a persistent key to be used in encryption operations. The results indicate
that RSA key generation is the most costly operation while initialization is the least

costly operation.

Figures 4.10 and 4.11 show the time taken for encryption and decryption operations
with the TPM’s primary RSA key across different data sizes. A 2048-bit RSA key
can encrypt at most 245 bytes in a single operation; larger inputs must therefore
be split into 245-byte chunks. The results show that processing time rises with
the number of chunks to encrypt or decrypt, yet stays nearly constant for different
overall data sizes when the chunk count is the same. Decryption operations take

longer than encryption operations for data of the same size.

Of these tasks, TPM initialization, loading the persistent RSA key, and the en-
cryption and decryption will run most frequently. Because the inputs to encryption

and decryption are themselves keys, the data blocks remain small. Even so, these
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Figure 4.9 Performance of TPM Startup
TPM based operations are more expensive than the purely software based symmet-

ric encryption, message authentication, authenticated encryption, and elliptic-curve

cryptosystem operations reported in Chapter 3.
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5. SERVER APPLICATION

Libraries implementing the key management protocol for both the client and server
are developed, and integrated into a server-client application. This application runs
on the computer described in Chapter 4.3, which features an Intel Core i5 processor
running at 1.60 GHz. The operations to be carried out by the server are implemented
using C programming language where the operations to be carried out by the client
are implemented using Python programming language. The library developed for
the server is integrated with an application developed with .NET framework. Some
API endpoints are determined for the key agreement operations and when a request
arrives these endpoints, appropriate functions from the library are called, and the
outputs are sent to the client as response. The cryptoperiods of the keys are also
realized in this application, where an expired key is replaced by a new key using
necessary requests to specific endpoints. The client library contains functions that
sends requests to endpoints in the correct order and use the responses to derive
symmetric keys. During operations, if an erroneous response is received from the
server indicating either the certificate or the master key is expired, the key agreement

operations start over to keep the keys up to date.

5.1 Implementation of Server Library

The encryption, authentication and key agreement functions to be used by the server
application are implemented in C programming language using OpenSSL (OpenSSL
Foundation, Inc., 2025) and tpm2-tss (tpm2-software, 2024)(Trusted Computing
Group, 2025) libraries. These functions and their descriptions are listed in Table 5.1.
A static code analysis is executed on this library implemented in C in order to make

sure that it is robust against buffer overflows, improper access controls, and injecting
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attacks. This analysis is carried out by using the cppcheck tool (Marjaméki, 2025).

The results presented only style issues, which were fixed subsequently.

Table 5.1 Functions Defined in the Library Implemented in C for the Server

Function

Details

init_ OpenSSL

Loads the error codes and algorithms pro-

vided by the OpenSSL library

generate  EC_key pair

Generates an elliptic curve key pair

generate__csr

Creates a certificate signing request to be
signed by root key to generate the server cer-
tificate

save csr_to file

Saves the certificate signing request to a file

sign_ csr

Generates the server certificate by signing

the certificate signing request by root key

save cert to file

Saves the server certificate to a file

base64 encode

Encodes an output to base 64 for it to be

used by different programs

base64 decode

Decodes an input that is encoded to base 64

sign__message

Generates a signature for a message using the

static private key

compute ecdh shared secret

Computes a master key by ECDH using
ephemeral private key of the server and

ephemeral public key of the client

keyExchange

Takes the client ephemeral public key and
client salt as an input to create a master key
using other functions, and returns the server
ephemeral public key with its signature, a

salt, and a HMAC as a response to the client

generate_random_ salt

Generates a salt with a length specified in

the parameters

derive from master secret

Derives a connection key using a master key

and a salt

create _hmac

Generates a HMAC for a message using a key

generate_symmetric_ key

Creates a symmetric key with the desired

length

saveCiphertextToFile

Saves a ciphertext to a file

readCiphertextFromFile

Reads a ciphertext saved in a file to memory
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Function Details

createCertificate Generates a static private signature genera-
tion key and static public signature verifica-
tion key (certificate) and saves them to a file

sendCert Reads the server certificate from a file and

returns it in PEM format to respond to the

client

OpenSSLSymmetricEncrypt

Encrypts a message with a key and an IV
taken as input using 256 bit AES-CBC

OpenSSLSymmetricDecrypt

Decrypts a message with a key and an IV
taken as input using 256 bit AES-CBC

receiveData

Takes the ciphertext, salt, and hmac for the
message as input, derives a decryption key
from previously computed master key using
the salt, and decrypts the ciphertext, and fi-
nally stores the received data by encrypting

with the storage key

sendData

Reads the stored data, decrypts it using stor-
age key, derives a connection key from pre-
viously computed master key using a newly
generated salt, and returns the encrypted

message as a response to the client

TPMLoadPersistentKey

Loads the persistent RSA key using a handle

TPMEncrypt

Encrypts a message using a key in TPM

TPMDecrypt

Decrypts a ciphertext using a key in TPM

The server application is developed using .NET framework and C# programming
language. As a result, the functions in Table 5.1 cannot be used directly. To be
able to use these functions, the source code must be compiled into shared objects.
Then, the functions defined in the shared objects can be called from a C# class. To

accommodate the need for new functionality, some new functions are defined in this

class, which are listed in Table 5.2 along with their descriptions.
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Table 5.2 Functions Used by the Server Implemented in C#

Function Details

createCertificateLib Calls the createCertificate function from C
library

createCertificate Calls the createCertificateLib function and
records the time of server certificate creation

sendCertLib Calls the sendCert function from C library

sendCert Called upon certificate request from a client,
checks the certificate creation time and if it
is expired, creates another certificate; if it is
not expired, generates the response message
to the client

keyExchangeLib Calls the keyFExchange function from C li-
brary

keyExchange Arranges the return type of the keyEz-

changeLib function before calling it

APIkeyExchangeHandler

Called upon client request, checks the certifi-
cate creation time and if it is expired, gen-
erates the response message with an error
code; if it is not expired, calls the keyEz-
change function and returns the result after

updating the master key creation time

receiveDatal.ib Calls the receiveData function from C library
receiveData Called upon receiving a message, decrypts
the incoming message, and stores it securely
by calling the encryptLib function
sendDataLib Calls the sendData function from C library
sendData Called upon client request, reads data from

the storage, encrypts it by calling the de-
cryptLib function, and returns the ciphertext

as a response to the client

Among these functions, APlkeyFExchangeHandler returns a specific error code in
case the server certificate is expried. If the clients receive this error code, they are
directed to restart the key exchange protocol to update the certificate and master
key. On the other hand, receiveData and sendData respond with a different error
code in case the master key attempted to be used is expired, which directs the client
to carry out a new key exchange operation.
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The communication between the server and the client is established using HT'TP
(Hypertext Transfer Protocol). The endpoints which are listened by the server
application that are responsible for the key exchange and data transfer operations

are:

/crypto/cert

/crypto/keyExchange

/crypto/upload

/crypto/download

After the user connects to the server, to complete the key exchange protocol, first, a
GET request is sent to /crypto/cert endpoint, and the sendCert function is triggered
in the server. If the certificate does not exist or it is expired, the server creates a
certificate and sends it to the client as a response. If the certificate exists and it is

not expired, then the server responds with the existing certificate.

After receiving the server certificate, the client sends the ephemeral public key with
a random salt to the server by a POST request to /crypto/keyFEzchange endpoint.
This request has the HMAC of the message body in the headers, which is computed
by the pre-shared key between the client and the server. Upon receiving the request,
server application verifies this HMAC. If it is not verified, then it returns with a
special error code. Otherwise, this request runs the A PlkeyFExchangeHandler func-
tion which checks the validity of the certificate. If it is expired, it informs the client
about this by responding with an error code. If it is valid, then the server computes
a master key using the received ephemeral public key of the client along with its
ephemeral private key. After that, a connection key is derived from the master key
using the received salt along with a new salt generated in the server. Finally, the
server responds to the client with its ephemeral public key with a signature of it,
the salt generated by the server, and an HMAC for the response message to verify

that key exchange is successful.

After a successful key exchange, the clients can upload their data to the server, or
request to download their data from the server. In order to upload data to the server,
the client must generate a salt, derive a connection key from the master key using
that salt, encrypt the message, and generate an HMAC for the message, and send
these in a POST request to /crypto/upload endpoint which runs the receiveData
function. As a result, the server decrypts the message, verifies the HMAC, and if
it is successful, stores the message after encrypting it with storage key. In order to

download data from the server, the client must send a GET request to /crypto/-
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download endpoint which runs the sendData function. The server reads the client’s
data by decrypting it with storage key and derives a connection key from the master
key using a newly generated salt to encrypt the data. Finally, it responds with the
ciphertext, the salt to be used for connection key derivation, and an HMAC of the
data.

The static code analysis of the server application is done using the .NET’s built-
in RoslynSecurityGuard package (Arteau, 2025), and Code@L tool (GitHub Inc.,
2025). CodeQ@L did not identify any issues with the application. On the other hand,
the RoslynSecurityGuard found that the /crypto/keyEzchange and /crypto/upload
endpoints are vulnerable to CSRF (Cross-Site Request Forgery) attacks. However,
this vulnerability is only a problem when the application is accessed through a web
browser, and the credentials are stored in the cookies (Hasan & Anderson, 2024).
Therefore, this vulnerability is marked as a false positive since this application is

not accessed through web browsers, but from IoT devices only.

5.2 Implementation of Client Library

The functions that will be used by the client in both the key-agreement and data-
encryption operations while communicating with the server are implemented in the
Python programming language by means of the cryptohraphy library. These func-
tions are listed in Table 5.3. For the static code analysis, the bandit (Anonymous,
2025b), ruff (Astral, 2025), and pylint (Anonymous, 2025a) tools are used. The
results only included issues regarding style and refactoring, and no security issues

were detected.

In order to connect to the server, client application runs the keyFxchange function,
and within this function an HTTP GET request is first sent to the /crypto/cert
endpoint. In response, the server certificate is obtained, and this certificate is verified
by means of the root certificate. Next, an elliptic curve ephemeral key-agreement
key pair is generated along with a random salt. The public key of this pair and the
salt is sent to the server in a POST request to the /creypto/keyFEzchange endpoint
by attaching the HMAC of the message body to the headers which is computed
using the pre-shared key between the client and the server. In return, the server’s
ephemeral public key-agreement key, the digital signature belonging to this key, a

salt, and an HMAC are received. This digital signature is verified by using the server
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certificate. Then a master session key is produced by using the client’s ephemeral
private key and the server’s ephemeral public key. Finally, a connection key is
derived from master key using the salt generated by the client and server, and the
received HMAC is verified.

After a successful key exchange, if the client wants to send a data to the server, it will
call the sendData function. This function will generate a salt, derive a connection
key from master key using the salt, encrypt the data, and generate an HMAC of
the data. Then, sends the ciphertext, the salt, and the HMAC to the server with a
POST request to the /crypto/upload endpoint.

On the other hand, if the client wants to read data from the server, it will call the
receiveData function. This function will send a GET request to /crypto/download
endpoint. As a response, it will obtain a ciphertext, a salt, and an HMAC. Using
the salt, it can generate a connection key from master key, and use it to decrypt the
ciphertext and verify the HMAC.

Table 5.3 Functions Used by the Client Implemented in Python

Function Details

load_certificate from_ file | Loads the elliptic curve root certificate stored
in PEM (Privacy Enhanced Mail) or DER
(Distinguished Encoding Rules) format to

memory

verify certificate_ chain Verifies the server certificate using the root
certificate

verify _signature Verifies a given signature using the server cer-
tificate

encrypt_ data Encrypts a message using the connection key

decrypt_ data Decrypts a ciphertext using the connection
key

keyExchange To establish key agreement with the server,

sends HT'TP requests to two endpoints

sendData Derives a connection key, encrypts the mes-
sage and sends it to the server by sending

requests to appropriate endpoints

receiveData Derives a connection key and receives data
from the server by sending requests to appro-
priate endpoints, and decrypts the incoming

message
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5.3 Testing Methods for Application Performance

The performance of the server application is measured in term of the time taken
to complete operations of each endpoint that is responsible for the key exchange
process. Three different measurements are recorded for each endpoint: The time
it takes to carry out operations related to the endpoint in the client including the
request itself, the time it takes to send the request and receive the response without
any additional operations, and the time it takes to carry out operations in the server
when a request arrives to an endpoint. The duration of opeartions are recorded with

the following settings for each endpoint:

« /crypto/cert: The certificates are generated on three different curves, P256,
P384, and P521. The certificates are used for signature verification in each

operation that follows.

» /crypto/keyExchange: The ECDH operations are carried out for ephemeral
keys on the curves P256, P38/, and P521. The durations are recorded for all

combinations of certificate and ephemeral key size.

o /crypto/upload: Data of various sizes are sent to the server after HMAC

generation and encryption.

» /crypto/download: Data of various sizes are received from the server. The

data is decrypted, and the corresponding HMAC is verified.

For each of test settings in key agreement operations, the processes are repeated
1000 times, and the means of these samples are reported. Elapsed times for each
operation are measured in three parts. First is the duration of the operations on only
the client that does not include the time it takes for sending the request and receiving
a response. Second is the time spent on the network without any operation, neither
on the client nor the server. Third is the time it takes on the server to receive
a request and return a response. For the upload and download operations, data
with size ranging from 50,000 bytes to 3,000,000 bytes are sent to the server, and
received from the server respectively. For each data size, the processes are repeated

250 times, and the means of these samples are reported.
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5.4 Test Results for Application Performance

The performance of the key exchange operation is reported for two endpoints, /cryp-
to/cert and /crypto/keyExchange, separately in terms of time spent for both re-
quests. For each of the endpoints on different devices, a bar chart is presented
that includes timings of the client, network, and server separately. Also, perfor-
mance of certificate retrieval is measured for three different curves, P256, P384, and
P521. Performance of key exchange operation is measured for each combination of
certificate size, and ephemeral key size. The throughput of upload and download
operations on each device can be found in Figure 5.1 and 5.2 respectively. These
results show that, the throughput of upload and download operations are heavily
dependent on the size of the data that is being transferred. For small data, most of
the time is spent by the TPM as it is the most time consuming part of the protocol
which creates an equal overhead for all data sizes. Therefore, as the network latency
dominates the time it takes to upload data, the throughput increases. The increase
in the throughput diminishes as data size increases and it is because the change in
the significance of the overhead reduces as it is dominated by the network latency.
This makes the protocol more useful for applications where data is transferred from

clients to servers or from servers to clients in bulk.
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Figure 5.1 Upload throughput with respect to data size
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Download Throughput vs. Data Size
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Figure 5.2 Download throughput with respect to data size

5.4.1 Test Results on Laptop

When the client is the laptop, the performance results of the key agreement opera-
tions for each endpoint in the server application, /crypto/cert and /crypto/keyFEz-
change, can be seen in Figures 5.3 and 5.4 respectively. Time spent to acquire the
server certificate by the client is small compared to the rest of the operations, and it
is heavily dominated by the duration of the messages being transported on the net-
work. The certificate is generated once for each curve, and is used for the remaining
runs. Therefore, the time spent on the server is only for reading the file, and on the
client, the certificate is verified by the root certificate. Hence, the duration of actual
processes carried out by the client and the server are not significant. As a result,

there is no notable difference of performance between different curves.

For computing the master key by ECDH and verifying it, the majority of the time
is spent by the server as depicted in Figure 5.4. The effect of the client on the total
time elapsed for this operation is minimal. The change in the size of the curve of
certificate and the ephemeral keys have a slight impact on the performance, and it

is only visible in the client processes.

The time elapsed during the client receiving the server certificate is mainly on the

network, and for the rest of the operations, the majority of the time is spent on the

server. This is because for the server to send the certificate to the client, it does not

carry out any cryptographic operations, but just reads a file after the first request.

In contrast, the master key exchange, connection key derivation, and the HMAC
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Figure 5.3 Time elapsed for acquiring certificate of different sizes
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Figure 5.4 Time elapsed for computing master key using different sizes of elliptic
curve key and certificate

verification operations require the server to use cryptographic operations, especially
the TPM. The time difference between the server and the client is also the result of
using TPM on the server but not on the client.
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5.4.2 Test Results on Raspberry Pi 4

When the client is Rapsberry Pi 4, the performance results of the key agreement op-
erations for each endpoint in the server application, /crypto/cert and /crypto/keyEz-
change, can be seen in Figures 5.5 and 5.6 respectively. The results for acquiring the
certificate present similar properties to that of the laptop, as the time spent by the
client and the server is insignificant compared to the time spent for communication

on the network and the change in curve size does not affect the performance.

For the key exchange operation, the performance of the client processes have a
slightly higher effect compared to that of the laptop. But the difference is not large
enough to have a strong impact on the total elapsed time for each operation. Also,
the results following the use of TPM on the difference in length of time for receiving

the certificate and key exchange duration is similar to that of laptop.

Certificate Curves - Mean Timing Breakdown
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Figure 5.5 Time elapsed for acquiring certificate of different sizes
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Figure 5.6 Time elapsed for computing master key using different sizes of elliptic
curve key and certificate

5.4.3 Test Results on Raspberry Pi 3

When the client is Raspberry Pi 3, the performance results of the key agreement
operations for each endpoint in the server application, /crypto/cert and /cryp-
to/keyExchange, can be seen in Figures 5.7 and 5.8 respectively. The certificate
retrieval presents similar results to that of the laptop and Raspberry Pi 4, as the
time spent by the client and the server is insignificant compared to the time spent

for communication on the network.

For the key exchange operation, the performance of the client processes have a
slightly higher effect compared to that of the laptop, which is very similar to the
performance on Raspberry Pi 4. But the difference is not large enough to have a
strong impact on the total elapsed time for each operation. The strongest impact
on the total duration of the key exchange operation is the network latency for
Raspberry Pi 3. The duration of the operation fluctuates as the curve of certificate
and ephemeral key changes. However, this change is not due to the difference in
server or client performance. It is dictated by the time spent on network. Also, the
results following the use of TPM on the difference in length of time for receiving the

certificate and key exchange duration is similar to that of laptop and Raspberry Pi
4.
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Figure 5.8 Time elapsed for computing master key using different sizes of elliptic
curve key and certificate
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6. CONCLUSION

With the emergence of smart cities, data produced by IoT devices deployed are
collected and processed for various services. Confidentiality, integrity and authen-
ticity of the data must be guaranteed while being transferred from devices to the
server and for the still data stored in databases. This thesis presented the design,
implementation, formal verification via Tamarin prover, and performance evaluation
of a key management framework that can be deployed on resource-constrained IoT
devices and achieves the fundamental goals of confidentiality, integrity, authenticity,

and forward secrecy.

This work comprised three stages. First, suitable cryptographic primitives were
selected and benchmarked on representative hardware. Second, an ECC-based key
agreement and key storage mechanism was designed and developed, incorporating
a server-side TPM, with its performance subsequently measured. Finally, a proof-
of-concept client—server application was built, and its performance was evaluated in
detail.

Benchmarks for cryptographic primitives are carried out using two different libraries,
pycryptodome and cryptography. Based on the results, one library is not faster
than the other with significant differences for symmetric key operations. On the
other hand, the performance of cryptography library is significantly better than the
performance of pycryptodome for ECC operations. Linear increase in duration of
the operations is observed with increasing input sizes for symmetric key operations

while the impact of input size on ECC operations was not significant.

The key exchange operations are compiled in a library, and this library is used in
a server application. These operations are performed in four steps, which are im-
plemented as four requests from client to four endpoints at the server side. Overall,
this practical deployment showed approximately 0.45 - 0.6 seconds end-to-end delay
that is mostly dominated by TPM operations. However, one should note that this
time-consuming operation is to be performed once in a cryptoperiod of a symmetric

master key, which typically ranges from one day to one week as given in Table 2.1.
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The upload and download speeds can exceed 2.5 MB per second and 2.0 MB per
second on large data respectively. These findings confirm that an ECC based key-
management architecture supported by a TPM can serve as a practical, efficient,

and secure foundation for IoT deployments in smart-city infrastructures.
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APPENDIX

Full Tamarin Model

keyExchange.spthy

theory FinalKeyExchange
begin
builtins: diffie-hellman, signing, hashing, symmetric-encryption

functions: hkdf/2, hmac/2
/* Client Rules */

rule Client_Init:
[ Fr(eskC), Fr(saltC), Fr(hmackey) ]
--[ClientHello(’C’,’S’, ’g’~eskC, saltC, hmac(hmackey, <’g’~eskC, saltC>))]->
[ Out(<’g’~eskC, saltC, hmac(hmackey, <’g’~eskC, saltC>)>), St_Client(eskC,
saltC), !HmacKey(hmackey) ]

rule Client_Finish:
[St_Client (eskC,saltC),
IRC(’S’, rc),
In(<1ltc, ltcsig>),
In(<epkS, sigS, saltS, macS>)]
--[Eq(verify(ltcsig, <’S’, ltc>, rc), true),
Eq(verify(sigS, epkS, 1ltc), true),
Eq(macS, hmac(hkdf (epkS~eskC, <saltC, saltS>), <epkS, sigS, saltS>)),
Commit_Client(’C’, ’S’, epkS~eskC),
Commit_ClientCK(’C’, ’S’, hkdf (epkS~eskC, <saltC, saltS>)),
Secret (epkS~eskC) ,
Secret (hkdf (epkS~eskC, <saltC, saltS>))]->
[St_Client_masterkey(epkS~eskC)]

rule Client_Upload:
[Fr(data), St_Client_masterkey(mkey), Fr(nonce)]
--[Secret(data), Sent(’C’,’S’, data), UseNonce(mkey, nonce)]->
[Out (<’UPLOAD’, nonce,
senc(data, hkdf (mkey, <nonce>)),
hmac (hkdf (mkey, <nonce>), <nonce, senc(data, hkdf(mkey, <nonce>))>)>)]

rule Client_Download:
[ St_Client_masterkey(mkey),
In( < ’DOWNLOAD’, nS, ct, mac > ) ]
--[ Eq( mac, hmac(hkdf (mkey, <nS>), <’DOWNLOAD’, nS, ct>) ), /* binds the tag

too */
Eq( ct, senc(sdec(ct, hkdf (mkey, <nS>)), hkdf (mkey, <nS>)) ), /* shape
check */
Delivered(’C’,’S’, sdec(ct, hkdf(mkey, <nS>))) ]1->

[1]
/* Server Rules */
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(6]
76
(s
78

79
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90
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rule Register_root:
[Fr(zrk)]
-—->
['RK(’S’, rk), 'RC(’S’, pk(rk))]

rule Register_ltk:
[Fr(1tk), 'RK(’S’, rk)]
-=[->
['Ltk(’S’, 1tk), Out(<pk(ltk), sign(<’S’, pk(1ltk)>, rk)>)]

rule Server_Resp:

['Ltk(’S’, 1tk), !HmacKey(hmackey), In(<epkC, saltC, mac>), Fr(eskS), Fr(
saltS)]

--[Eq(mac, hmac(hmackey, <epkC, saltC>)),

HelloVerified(’S’,’C’, epkC, saltC, mac),

Witness_Server(’S’,’C’, epkC ~ eskS),

Witness_ServerCK(’S’,’C’, hkdf (epkC~eskS, <saltC, saltS>))]->

[Out(<’g’~eskS, sign(’g’~eskS, 1tk), saltS, hmac(hkdf (epkC~eskS, <saltC,
saltS>), <’g’~eskS, sign(’g’~eskS, 1ltk), saltS>)>),

St_Server (epkC~eskS)]

rule Server_Receive:
[ St_Server(mkey), In(<’UPLOAD’, nonce, ct, mac>) ]
--[ Eq(mac, hmac(hkdf (mkey, <nonce>), <nonce, ct>)),
Eq(ct, senc(sdec(ct, hkdf(mkey, <nonce>)), hkdf (mkey, <nonce>))),
Delivered(’S’,’C’, sdec(ct, hkdf(mkey, <nonce>))) ]1->
[1]

rule Server_Download:
[ St_Server(mkey), Fr(sdata), Fr(nS) 1]
-—[ Secret(sdata), /* optional: lets you prove payload secrecy */
Sent(’S’,’C’, sdata),
UseNonceSC (mkey, nS) ]1->
[ Out( < ’DOWNLOAD’, nS,
senc(sdata, hkdf(mkey, <nS>)),
hmac (hkdf (mkey, <nS>), <’DOWNLOAD’, nS, senc(sdata, hkdf (mkey, <nS>))
> >) 1

/* Compromise Rules */

rule Reveal LTK:
['Ltk(’S’, 1tk)]
—-[ReveallLTK(’S’)]->
[Out (1tk)]

/* Restrictions and Lemmas */

restriction Equality:
"All x y #i. Eq(x, y) @i ==> x = y"

restriction NoncePerKeyUnique:
"All k n #i #j. UseNonce(k,n) @ #i & UseNonce(k,n) @ #j ==> #i = #j"

restriction NoncePerKeyUnique_SC:
"All k n #i #j. UseNonceSC(k,n) @ #i & UseNonceSC(k,n) @ #j ==> #i = #j"

lemma secrecy_keys:
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"All k #i. not (Ex #t. RevealLTK(’S’) @ #t) & Secret(k) @ #i ==> not (Ex #j.
K(k) @ #j)"
lemma agree_master:
"All s ¢ mk #i. not (Ex #t. RevealLTK(’S’) @ #t) & Commit_Client(c,s,mk) @ #i
==> (Ex #j. Witness_Server(s,c,mk) @ #j)"
lemma agree_connkey:
"All s ¢ ck #i. not (Ex #t. RevealLTK(’S’) @ #t) & Commit_ClientCK(c,s,ck) @
#i ==> (Ex #j. Witness_ServerCK(s,c,ck) @ #j)"
lemma agree_master_rev:
"All s ¢ mk epkC saltC mac #i. not (Ex #t. RevealLTK(’S’) @ #t) &
Witness_Server(s,c,mk) @ #i & HelloVerified(s,c,epkC,saltC,mac) @ #i
==> (Ex #j. ClientHello(c,s,epkC,saltC, mac) @ #j)"
lemma agree_connkey_rev:
"All s ¢ ck epkC saltC mac #i. not (Ex #t. RevealLTK(’S’) @ #t) &
Witness_ServerCK(s,c,ck) @ #i & HelloVerified(s,c,epkC,saltC,mac) @ #i
==> (Ex #j. ClientHello(c,s,epkC,saltC, mac) @ #j)"
lemma upload_conf:
"All d #i. not (Ex #t. RevealLTK(’S’) @ #t) & Sent(’C’,’S’, d) @ #i ==> not (
Ex #t. K(d) @ #t)"
lemma upload_auth:
"All 4 #i. not (Ex #t. RevealLTK(’S’) @ #t) & Delivered(’S’,’C’, d) @ #i ==
(Ex #j. Sent(’°C’,’S’, d) @ #j)"
lemma download_auth:
"All d #i. not (Ex #t. RevealLTK(’S’) @ #t) & Delivered(’C’,’S’, d) @ #i ==
(Ex #j. Sent(’S’,’C’, d) @ #j)"
lemma download_conf:
"All 4 #i. not (Ex #t. RevealLTK(’S’) @ #t) & Sent(’S’,’C’, d) @ #i ==> not (
Ex #t. K(d) @ #t)"
lemma forward_secrecy:
"All mk #i #j. Secret(mk) @ #i & RevealLTK(’S’) @ #j & #i < #j & not (Ex #k.
#k < #i & RevealLTK(’S’) @ #k) ==> not (Ex #t. K(mk) @ #t)"
end
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