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ABSTRACT

ZERO- AND FEW-SHOT DARK KINASE-PHOSPHOSITE PREDICTION VIA
TASK-AWARE PROTEIN EMBEDDINGS

ZEYNEP ISIK

Computer Science and Engineering M.Sc. THESIS, JULY 2025

Thesis Supervisor: Assoc. Prof. OZNUR TASTAN
Thesis Co-supervisor: Assoc. Prof. RAMAZAN GOKBERK CINBIS

Keywords: Task Adaptation, Zero-shot Learning, Few-shot Learning,

Transformers, Protein Language Models, Kinases, Phosphorylation

Accurately mapping kinases to their substrate phosphosites is fundamental for
decoding cellular signaling and understanding disease mechanisms. While high-
throughput techniques can identify the phosphosites, finding the kinase that cat-
alyzes the phosphorylation is challenging. Thus, over 95% of experimentally de-
tected human phosphosites lack kinase annotations. It is possible to formulate
the kinase-phosphosite association problem as a supervised multi-class classifica-
tion task; however, a large portion of the human kinases are under-studied (dark
kinases) and have few or no phosphosites associated with them, thus dark kinases
fall outside the reach of conventional supervised learning methods. In this thesis, we
formulate kinase—phosphosite association as zero-shot and few-shot learning tasks:
in the zero-shot setting, the model must predict associations for kinases never seen
during training; in the few-shot setting, it may leverage only a handful of labeled
examples.

We employ transformer-based protein language models (pLMs) to embed both ki-
nase domains and phosphosite peptides, and we systematically explore domain-
adaptation strategies—ranging from full fine-tuning and partial layer re-initialization
to task-specific pre-training—under severe data constraints. Surprisingly, a de
novo—trained ESM-1b model outperforms its fully fine-tuned pretrained counterpart,
suggesting that general-purpose pLM embeddings may lack task-specific biochemical
context. Our best results are obtained by combining kinase- and phosphosite-aware
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pLMs with partial re-initialization of upper transformer layers. On the DARKIN
benchmark, this approach delivers state-of-the-art performance in both zero-shot
and few-shot kinase prediction, offering a promising direction for illuminating the
dark phosphoproteome.



OZET

GOREVE DUYARLI PROTEIN GOMULERIYLE SIFIR- VE AZ-ORNEKLI
KARANLIK KINAZ-FOSFOSIT TAHMINI

ZEYNEP ISIK
Bilgisayar Bilimi ve Miihendisligi Yiiksek Lisans TEZI, TEMMUZ 2025

Tez Damsmani: Doc. Dr. OZNUR TASTAN
Tez Es-Danismani: Do¢. Dr. RAMAZAN GOKBERK CINBIS

Anahtar Kelimeler: Goreve Uyarlama, Sifir-Ornekli Ogrenme, Az-Ornekli

Ogrenme, Déniistiiriiciiler, Protein Dil Modelleri, Kinazlar, Fosforilasyon

Hiicre igi sinyal iletimini ¢oziimlemek ve hastalik mekanizmalarini anlamak icin ki-
nazlarin substrat fosfositlerine dogru bir sekilde eglestirilmesi 6nemli bir problemdir.
Yiiksek verimli deneysel teknikler fosfositleri belirleyebilse de, bir fosfositin fosfori-
lasyonunu katalizleyen kinazi bulmak zordur. Bu nedenle, deneysel olarak tespit
edilen insan fosfositlerinin %95’ten fazlasi kinaz anotasyonundan yoksundur. Ki-
naz—fosfosit iligkisinin denetimli ¢ok smnifli bir siniflandirma problemi olarak for-
miile edilmesi miimkiindiir fakat insan kinazlarinin biiyiik bir kismi az ¢alisilmigtir.
Karanlik kinazlar adi verilen bu kinazlar i¢in ya c¢ok az fosfosit yeri vardir ya da
hi¢ yoktur; dolayisiyla karanlik kinazlar geleneksel denetimli 6grenme yontemlerinin
kapsaminda yer alamaz. Bu tezde, kinaz—fosfosit iligkilendirmesini sifir-6rnekli (zero-
shot) ve az-6rnekli (few-shot) 6grenme problemleri olarak ele aliyoruz: sifir-6rnek
diizeneginde model, egitim sirasinda hi¢ gortilmemis kinazlar igin iligki tahmin et-
mek zorundadir; az-6rnek diizeneginde ise elindeki sinirli sayida etiketli 6rnekten
yararlanabilir.

Doéniigtiiriicii mimarisine dayali protein dil modelleri (pDM’ler) kullanarak hem ki-
naz alanlarin1 hem de fosfosit peptitlerini géomiiyor ve siki veri kisitlari1 altinda
tam ince ayardan katmanlarin kismi yeniden baglatilmasina ve gorev-odakli 6n
egitime kadar uzanan alan uyum stratejilerini sistematik olarak arastiriyoruz. Il-
ging bir sekilde, sifirdan egitilmis bir ESM-1b modeli, tamamen ince ayarlanmig
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on egitimli muadilini geride birakarak, genel amach pDM gémme yontemlerinin
gorev-6zgiu biyokimyasal baglami yakalayamayabilecegini digiindiirmektedir. En iyi
sonuclarimizi, kinaz ve fosfosit farkindalikli pDM’lerin tist doénigtiirtici katman-
larinin kismi olarak yeniden baglatilmasiyla elde ettik. DARKIN kiyas setinde, bu
yaklagim sifir-ornekli ve az-6rnekli kinaz tahmininde en iyi performansi sunarak
karanlik fosfoproteomu aydinlatmak i¢in umut verici bir yaklagim oldugunu goster-
mistir.
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1. INTRODUCTION

Protein phosphorylation is an important post-translational modification that regu-
lates the functions of proteins (Hunter, [1995). Phosphorylation enables the transfer
of phosphate groups from high-energy molecules, such as adenosine triphosphate
(ATP), to the amino acids of a target protein. Kinases are the enzymes that cat-
alyze phosphorylation in a target-specific manner (Cohen|, [2002). Phosphorylation
can lead to a wide range of changes: activating and deactivating the target, alter-
ing the interaction between target proteins and other proteins, directing proteins to
their place in the cellular localization, and marking the target proteins for degrada-
tion (Pawson and Scott), 2005)). Through phosphorylation, kinases play crucial roles

in cellular signaling pathways.

During phosphorylation, in general, serine, threonine, and tyrosine (S/T/Y) amino
acids on the target proteins are phosphorylated (Cohen) 2002). However, there are
rare cases in which histidine (H) can be phosphorylated as well (Pesis et al., |1988)).
The amino acid in the target protein where the phosphate groups are added is called
phosphosite.

The human kinome comprises over 500 kinases, making them one of the largest gene
families in humans (Cohen, [2002)). Because kinases are one of the key regulators
of the cellular processes, dysregulation in kinase functions is associated with many
diseases, including cancer, neuro-degenerative diseases, cardiovascular diseases, and
many others (Blume-Jensen and Hunter, 2001; (Heineke and Molkentin, [2006; Gaestel
et al., 2009; Wang et al.| 2012; Miiller et al., 2015; Jiang et al., 2025). Drug resis-
tance in cancer is associated with kinases (O’Reilly et al., 2006; Klempner et al.,
2013)). Additionally, there are many diseases where a mutation in the phospho-
site is associated with the disease (Needham et all 2019). Due to these reasons,
kinases have become drug targets of many diseases, and 25% to 33% of designed
drugs target kinases (Ferguson and Gray, 2018; Roskoski Jr| 2022)). To understand
the normal and abnormal signaling in the cell, detecting phosphorylation sites and
finding the associated kinases playing a role in the phosphorylation of those regions

are necessary.
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Figure 1.1 The number of phosphosites associated with a kinase reported in the
PhosphoSitePlus dataset. For most of the kinases, there are no or few assigned
phosphosites. This figure is reproduced from our previous study DARKIN

et al| 021

Developments in mass spectrometry have enabled researchers to experimentally

identify phosphorylation sites (Manning et al., 2002)). Consequently, today, there

are more than 300,000 phosphosites reported in PhosphoSitePlus (Hornbeck et al.,
2012) (downloaded on March 18, 2024). After identifying where on a protein is phos-
phorylated, the next critical question is, “Which kinase phosphorylates this phos-

phosite?” Answering this question experimentally is challenging due to the transient
nature of kinase-target interactions. For this reason, despite kinases being the most
studied protein family due to their critical function in the cell, most of the phos-
phoproteome is in the dark. For 95% of the known phosphosites in human cells,
the cognate kinase has yet to be identified; therefore, the biological functions of
these phosphosites remain unknown. We will call the phosphosites which have not
been associated with any kinase orphan phosphosites. Moreover, approximately 150
kinases, which correspond to 25% of kinases, do not have known phosphorylation
targets, and approximately 195 kinases have only 1-10 identified target sites, which
correspond to around 35% of kinases (Needham et al. 2019). In Figure the

number of phosphosites per kinase is shown. Needham et al. (2019) named under-

studied kinases dark kinases, and kinases with plenty of known phosphosites light

kinases. In this thesis, we will use this terminology.

Phosphorylation sites and their cognate kinases are identified through experimen-
tal methods, which are not only costly but also time-consuming. For this reason,
numerous computational approaches have been proposed to accelerate research on
assigning kinases to orphan phosphosites. Several studies that focus on identifying

kinase-specific phosphosites and finding the cognate kinase of these phosphosites



have been conducted (Wong et al., 2007; Saunders et al., |2008; Xue et al. 2008;
Li et al) 2008; [Gao et al.l 2010 [Zou et al.| 2013} [Horn et all [2014; [Patrick et al.]

2015; Wang et all 2017a; [Song et al., 2017; [Wang et al., 2017b; [Qin et al. 2017}

Ma et al., [2020). Previous computational studies on phosphorylation have been

mostly based on position-specific weight matrices (PSWMs) or supervised learning
techniques (Altschul et al.| [1997; |Li et al., 2010; |Zou et al. |2013; Horn et al., 2014;
Patrick et al|, [2015; [Song et al), [2017; Wang et all, [2017allc). However, position-

specific matrices cannot capture the intrinsic features of phosphosite and kinase

sequences, and these representations fail to capture richer biological context, such
as site-specific roles, conformational and functional properties, interactions between
neighboring amino acids, and post-translational modifications. Supervised classifi-
cation techniques are powerful in predicting which kinase is associated with a given
phosphosite (Xue et all 2008; (Gao et al. 2010; Zou et al., 2013), yet they require

labeled training examples for each kinase. In the case of dark kinases, because there

are few or no phosphosites associated, the classical supervised learning setup falls
short for making predictions for dark kinases. Hence, we model this problem as

zero-shot and few-shot approaches.

Zero-shot learning is a machine learning approach that enables a model to classify
data samples whose classes were not observed during training. The main idea of zero-
shot learning is to establish a relationship between input samples and class attributes
(Larochelle et al.| 2008 Palatucci et al.,2009; Lampert et al.| 2013; Romera-Paredes|
and Torr} 2015, [Akata et all 2015a). For the first time in the literature,
formulated the dark kinase-phosphosite association task as a zero-shot

problem, and proposed a model called DeepKinZero. DeepKinZero transfers the

knowledge learned during training from light kinase-phosphosite pairs to the dark
phosphoproteome. Thereby, it can provide predictions for phosphosites whose as-
sociated kinases are very limited or unknown. In a kinase—phosphosite association
prediction task, zero-shot learning can utilize the information about well-studied
kinases and phosphosites to guide predictions for dark kinases and orphan phospho-

sites.

The few-shot formulation has not been explored for kinases yet. This could be
valuable for the many kinases where there are few phosphosites available. In the
few-shot formulation, a model leverages a small number of known phosphosites to
make predictions for under-studied kinases. Because training a model on very few
samples carries the overfitting risk, common few-shot strategies first train a model
on classes with sufficient data and then adapt the model to classes with only a
handful of samples (Koch et al. 2015; Qiao et al., 2018; Qi et al., |2018; Li et al.,

2021).




In this study, we approach the kinase-phosphosite prediction task as both a zero-
shot and a few-shot learning problem. To capture phosphorylation context, we

employ a transformer-based encoder, and we couple it with a bi-linear compatibility

model that links kinase and phosphosite embeddings (Vaswani et al. |2017; [Sumbul
2018]). We adapt the transformer to the task through fine-tuning strategies.

Additionally, we retain a single architecture across zero-shot and few-shot regimes,

ensuring a fair performance comparison.

We use the protein sequences of the kinase domains and the peptide sequence sur-
rounding the phosphosite. The amino acid sequences must be encoded as numerical
vectors before being fed into a machine learning based model. There are several
ways to encode proteins, some of which rely on hand-crafted features
et al., [1987; Henikoff and Henikoff, |1992; [Nanni and Lumini, 2011)), while others use
dense representations learned by neural networks (Asgari and Mofrad, 2015; Rao|
et all 2019; Rives et all, 2021} Meier et al., 2021} [EInaggar et al, 2021} [Lin et al),

2023} [Ferruz et all, 2022 Brandes et all, 2022} Nijkamp et al., 2023 Hayes et al.l
2024; ESM Team) 2024} |Ouyang-Zhang et al., 2024; Peng et al., 2025). Recently,

protein language models (pLMs) have been trained to capture complex biological

features in protein sequences by leveraging techniques from natural language pro-
cessing, and they have become a powerful source of protein sequence representations
for downstream tasks. In our previous study, called DARKIN (Sunar et al., 2024,
we compared the representability of various pLMs on a zero-shot kinase-phosphosite
prediction task by using [Sumbul et al. (2018))’s bi-linear model. Among them,
(2021))’s ESM-1b showed the best performance. Hence, in this thesis, we adopt
ESM-1b and its task-adapted variants to represent both kinase and phosphosite se-

quences.

pLMs provide general but task-agnostic representations of protein sequences, and

these representations may not encode the subtle biochemical context for accurate

kinase assignment in low-data regimes (Unsal et al., [2022). Therefore, many stud-

ies have focused on adapting general-purpose pLMs to their specific tasks to make
the models task-aware (Zhou et al., [2023; Schmirler et al., 2024; Zhou et al. 2024}
Esmaili et al., 2025)). Schmirler et al. (2024) fine-tuned five pLMs on eight down-
stream tasks, and reported that prediction accuracies increased compared to frozen
embeddings in almost all of the tasks. Zhou et al.| (2024), and Esmaili et al.| (2025))
fine-tuned existing pLMs directly, and Zhou et al.| (2023) firstly obtained a domain-
adapted transformer and then fine-tuned the output model for the target task. Re-

cently, layer-selective re-initialization has also emerged as a complementary adapta-

tion strategy (Zaidi et al., 2023)). In this strategy, at each training stage, the upper

layers of the network are randomly re-initialized, while the lower layers are retained
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and remain trainable. This preserves the general features learned by early layers,

yet allows the re-initialized upper layers to adapt to task-specific signals.

In this work, to solve the dark kinase-phosphosite association prediction task in
the zero- and few-shot settings, we explore several task-aware pLM backbones by
employing an existing pLM, ESM-1b. These backbone models are used to represent

phosphosite and kinase sequences.
The main contributions of this thesis are as follows:

o We presented and experimented with 11 task-aware pLMs by either fine-tuning
or pre-training ESM-1b on various auxiliary tasks related to phosphorylation.
These include kinase group prediction, contrastive learning to enforce clear
clustering of kinases within their families and within their groups, masked
language modeling for kinase- and phosphosite-representation learning, and
multi-task learning for optimizing phosphosite-representation learning with
phosphorylation prediction. We used these models in the kinase-phosphosite
prediction task to explore fine-tuning and pre-training strategies, and to obtain

task-aware representations for kinases and phosphosites.

o We proposed a transformer-based approach, which leveraged a transformer as a
phosphosite model in zero- and few-shot prediction setups, and applied partial
re-initialization and partial fine-tuning strategies to adapt the transformer

better to the kinase-phosphosite prediction task.

o We evaluated the prediction performance not only as zero-shot but also as
few-shot to show how the prediction model performs when having information
about kinases associated with a small number of phosphosites compared to

the zero-shot case.
The organization of this thesis is as follows:

o In Chapter [2, we provide the background information on phosphorylation.
Then, we present an overview of how proteins are represented as numerical
vectors by emphasizing both baseline and pLM-based representations. We
subsequently summarize some key deep learning concepts used in this the-
sis. Finally, we review previous work regarding computational approaches for

kinase-phosphosite association prediction.

 In Chapter [3| we detail the experimental setup for zero- and few-shot kinase-
phosphosite association prediction and describe the datasets we used. We then
detail how we obtained the task-aware pLMs, and in parallel, we explain the

datasets we used for every pLM.



o In Chapter [4 we present the zero- and few-shot prediction results. We addi-
tionally analyze the effect of distinct re-initialization configurations for two of

the adapted best-performing pLMs.

o Lastly, in Chapter [5], we conclude our study by highlighting the contributions
of task-aware model representations and the advantages of using transformer-

based architecture, and present directions for future work.



2. BACKGROUND AND LITERATURE

In this chapter, we establish the foundation for the work presented in this thesis.
We begin by reviewing essential biological concepts, particularly protein phosphory-
lation and the role of kinases. Next, we survey the principal methods for encoding
protein sequences in silico, dividing them into two categories: conventional (base-
line) feature-based encodings and recent embeddings derived from protein language
models. We then introduce the deep learning concepts that drive our approaches,
including zero- and few-shot learning, contrastive learning, masked language mod-
eling, and the transformer architecture, as well as the concepts of pre-training and
fine-tuning. Finally, we present an overview of the existing computational strategies
for phosphorylation and kinase-phosphosite association prediction, and the studies

on fine-tuning/pre-training the pLMs.

2.1 Phosphorylation and Kinases

Protein kinases are enzymes that catalyze the site-specific attachment of a phosphate
group to their substrate proteins (Hunter, [1995; |Cohen) 2002). It is a key post-
translational modification, where the specific residue at the target protein accepts a
phosphate. This residue is called a phosphosite. The type of phosphorylated residue
is generally one of serine, threonine, or tyrosine (S/T/Y) amino acids. (Cohen,
2002). However, there are rare cases in which histidine (H) is also phosphorylated
(Pesis et al., 1988)). Phosphorylation can induce conformational changes in the
substrate protein, modulating their activity, altering protein—protein interactions,
directing subcellular localization, and marking proteins for degradation (Pawson and
Scott, |2005). Dysregulated kinase activity might result in a wide range of diseases,
such as cancer and Parkinson’s disease. Due to their therapeutic significance, kinases

constitute a major class of drug targets (Miiller et al. 2015; Steger et al., 2016}
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Figure 2.1 Phosphorylation involves the transfer of a phosphate group from a high-
energy molecule, such as ATP, to an amino acid residue of the substrate protein.
Kinases are the enzymes that catalyze this reaction.

Ferguson and Gray, 2018)).

The human kinome comprises more than 500 kinases (the exact number is debatable
due to the definition of the kinase domain). The human kinases are organized into

10 groups and 116 families based on similarities in their kinase domain sequences

and substrate specificities (Manning et al., [2002). There are classification systems

such as the Enzyme Commission numbers (EC). EC numbers provide a numerical

categorization scheme for enzymes, based on the chemical reactions they catalyze.
EC numbers are available in the ENZYME Database (Bairoch) 2000).

In this study, each phosphosite sequence is represented as a 15-residue peptide se-
quence where the phosphorylated residue is located in the middle position, and each
kinase is represented by its domain sequence as well as its family, group, and EC

numbers.

2.2 Protein Representations

Proteins are linear polymers of amino acids, each drawn from a 20-letter alphabet.

Formally, a protein of length n is a sequence

S =1(81,52,---,5n),
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where each s; is one of the twenty canonical amino acids. A representation method
then maps S to a matrix in R"*¢ embedding each residue into a d-dimensional

feature space.
Broadly, such encodings fall into two categories:

(i) Baseline representations: handcrafted features capturing physicochemical
properties (e.g., hydrophobicity, charge), evolutionary substitution likelihoods
(e.g., BLOSUM or PAM scores), or simple statistics such as n-gram counts.

(ii) Representations based on deep learning models: representations
learned by shallow networks or representations derived from protein language
models capturing contextual information that reflects complex biochemical

and evolutionary patterns.

2.2.1 Baseline Representations

In one-hot encoding representation, a protein sequence
S =(s1,82,-..,5n)
is mapped to a binary matrix
X e {071}n><20’

where each row x; is a 20-dimensional vector with a single entry of 1 at the index
corresponding to amino acid s;, and 0Os elsewhere. The one-hot encoding does not

contain information beyond the amino acid identities.

A position-specific scoring matriz (PSSM) is an n x 20 matrix M whose entry M; ,
quantifies the log-odds of observing amino acid a at position ¢ within a protein
family. Given a multiple sequence alignment of N sequences, let f; , be the count of
amino acid a at column ¢ and ¢, its background frequency. Then, for each position

7 and residue a,
fia/N
g )
da

so that conserved residues receive positive scores, while variable residues receive

Mi,a =lo

negative scores (Gribskov et al., [1987)).
Another widely used encoding is the Blocks Substitution Matriz (BLOSUM), intro-
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duced by [Henikoff and Henikoffl (1992). A BLOSUM matrix B € R?*20 assigns each

amino-acid pair (a,b) a log-odds score

Byp = log 222,

qa b
where p,; is the observed probability of a aligning with b within conserved blocks
of related proteins, and g¢,,q, are their background frequencies. Scores above zero
indicate substitutions occurring more often than expected by chance (Henikoff and

Henikoft, [1992). The row for a particular amino acid is used as an encoding.

The Non-linear Fisher (NLF') representation maps amino-acid sequences into a
feature space by applying a non-linear Fisher transform to selected physicochem-
ical property vectors (Nanni and Lumini, [2011). A vector of length 18 represents
each amino acid. The position-specific NLF descriptors were computed by the Epi-
topepredict tool developed by (Farrell, 2021)).

2.2.2 Representations Based on Deep Learning Models

ProtVec trains a skip-gram neural language model on overlapping amino-acid tri-
peptides, producing 100-dimensional embeddings that encapsulate local sequence
motifs and their contextual co-occurrence patterns (Asgari and Mofrad, 2015). Al-
though ProtVec and NLF both augment traditional feature sets with richer motif-
and physicochemical-level information, neither approach explicitly captures context-

dependent relationships within protein sequences.

Protein language models (pLMs) leverage transformer architectures—specifically
multi-head self-attention—to learn rich, contextual embeddings of protein sequences.
By attending to all residue pairs simultaneously, pLMs capture both local motifs
and long-range dependencies, encoding nuanced biochemical and evolutionary sig-
nals into dense, high-dimensional vectors. To show how these representations have

progressed, we present the main pLM families emphasizing their design choices.

To address the absence of standardized benchmarks and evaluation protocols in
semi-supervised learning for proteins, TAPE (Tasks Assessing Protein Embeddings)
was introduced by Rao et al.| (2019). It comprises five biologically meaningful
tasks—secondary structure, residue-residue contact, remote homology, fluorescence,
and stability prediction—each with predefined data splits to evaluate and compare

model performance across diverse protein-biology challenges.
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Elnaggar et al. (2021)) introduced ProtTrans, a suite of transformer-based pro-
tein language models trained on massive datasets (BFD100, UniRef100, UniRef50)
(Bairoch et al., 2005), comprising two auto-regressive and four autoencoder architec-
tures. These models capture conserved motifs, structural classes, and phylogenetic
domains, and were benchmarked—against existing literature—on tasks including
secondary structure prediction, subcellular localization, and membrane-protein clas-

sification.

Meta AI’s Evolutionary Scale Modeling (ESM) family has advanced protein sequence
representations. ESM-1b (Rives et al., 2021) demonstrated that masked-language
pre-training on 250 million sequences captures structural information sufficient for
secondary-structure and contact-map prediction via linear projections and unsuper-
vised remote-homology retrieval via cosine similarity. Building on ESM-1b, ESM-
1v (Meier et al., [2021) enabled zero-shot mutational scanning—estimating variant
effects directly from sequence without retraining a model for every new protein.
ESM-2 (Lin et al., [2023)), released in model sizes from 8 million to 15 billion param-
eters, produces embeddings informative enough to predict atomic-level coordinates,
which shows that the model can be used as a structure predictor. ESM-IF (Hsu
et al. 2022) learned inverse folding from AlphaFold2 structures to predict sequence
from structure (Jumper et al., [2021). Very recently, ESM-3 (Hayes et al., |2024)
and ESM-C were released. ESM-3 (ESM Team, 2024) is a multi-modal generative
language model having knowledge about the sequence, structure, and function of
proteins from hundreds of millions of evolutionary years. ESM-C focuses on creat-

ing representations by scaling up data and making the training process efficient.

While the ESM family models mostly rely on large-scale training on a vast amount
of protein sequences, there are several models that were obtained by injecting ad-
ditional information, such as structure and post-translational modifications, into
pre-trained ESM-2. ISM-2 (Ouyang-Zhang et al., [2024) is one of such models that
distills structure tokens, generated via a self-supervised structure encoder, into ESM-
2’s pretrained weights. SaProt (Su et al.| [2023) builds a structure-aware vocabulary
by combining sequence tokens with Foldseek-derived 3Di tokens, then fine-tunes
on 40 million sequence—structure pairs, boosting performance on protein—protein
interaction, metal-binding, and thermostability benchmarks. PTM-Mamba (Peng
et al., [2025)(PTM stands for post-translational modification) augments the Mamba
architecture with bi-directional gated blocks and explicit PTM tokens (e.g., <N-
phosphoserine>), which makes it the first model to jointly embed wild-type and

modified residues.

Optimization and scaling are important issues in protein language learning to han-
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dle massive datasets efficiently, train models affordably, and reduce inference time.
DistilProtBert (Geffen et al. 2022) uses knowledge distillation to halve inference
time with minimal loss in accuracy. AMPLIFY (Fournier et al., 2024) questioned
the necessity of scaling and showed that, when the training corpus is well-curated
in terms of both data quality and quantity and the model architecture is carefully
designed, smaller models can outperform larger ones when measured in terms of
FLOPs. Ankh (Elnaggar et al. 2023) demonstrated that, with carefully optimized
hyperparameters and cautious data curation, a compact model can surpass much

larger transformers.

Beyond encoder-only architectures, decoder-only and diffusion-based models have
also been developed. ProtGPT-2 (Ferruz et al., 2022) adapts GPT-2 (Radford et al.|
2019) to protein sequences by training on 50 million examples, demonstrating the
ability to generate novel proteins whose amino-acid residue distributions closely

mirror those observed in nature.

Nijkamp et al. (2023) introduced ProGen2, decoder-only protein language models
scaled up to 6.4 billion parameters and trained on diverse sequence datasets drawn
from multiple omics repositories. ProGen2 models achieved state-of-the-art likeli-
hoods and fitness prediction without any downstream fine-tuning. Recently, DPLM
(Wang et al., [2024)) brought a new direction to protein modeling with discrete diffu-
sion. It unified generation and representation in a single framework without setting

an encoder-decoder architecture.

Finally, in ProteinBERT, Brandes et al.| (2022)) jointly masked amino acid tokens and
their Gene Ontology Annotations (GO Annotations), and trained a single network
to recover both of them. Thus, the final embeddings can encode the sequence and

functions learned from GO Annotations.

2.3 Fundamental Deep Learning Methods Employed in This Thesis

Zero-shot Learning: Zero-shot learning (ZSL) is a machine learning approach that
enables a model to classify data whose classes are not seen during training. Knowl-
edge learned during training is transferred through an auxiliary space such as at-
tribute vectors, an association matrix that links seen and unseen classes (Larochelle
et al.l 2008; Palatucci et al., [2009; Lampert et al., 2013} |Romera-Paredes and Torr,
2015; |Akata et al., 2015a)). In this thesis, ZSL appears when predicting the cognate
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kinase of orphan phosphosites.

Few-shot Learning: Few-shot learning (FSL) is a paradigm that enables models
to generalize to new classes given only a very small number of training examples
(Koch et al., 2015} Qiao et al., [2018; Qi et all 2018; |Li et al., 2021). Common
FSL approaches include metric-based, meta-learning, and non-episodic methods (Li
et al.,; 2021). In this thesis, we extend our ZSL approach into the few-shot setting

for dark kinases having a few known phosphosites.

Masked Language Modeling: Masked Language Modeling (MLM) is a self-
supervised technique that randomly masks tokens, the smallest units in a sequence,
and trains the network to recover them. Thereby, the model is forced to integrate
information from tokens and to learn bidirectional, context-aware representations
(Devlin et al 2019). When MLM is applied to protein sequences, the model learns
both local sequence motifs and long-range evolutionary signals, capturing biochem-

ical context.

Pre-training: Pre-training is a self-supervised stage where the model learns general
sequence patterns via any self-supervised objective such as MLM, next-token pre-
diction, or diffusion objectives on a huge amount of protein sequences. The resulting
models define an informative prior over sequence space (Ruder et al., 2019). Pre-
trained models can be adapted to specific tasks with comparatively small labeled

datasets by fine-tuning.

Fine-tuning: Fine-tuning is a form of transfer learning in which the weights of
a pre-trained model are updated on a task-specific dataset consisting of a smaller
amount of data compared to data used in pre-training (Pan, 2020; Howard and
Ruder}, 2018). The adaptation might be realized on various objectives and tasks,
such as masked-language modeling, binary or multi-class classification. During fine-
tuning, early transformer layers might be frozen, all layers might be updated, or
some layers might be re-initialized while the rest are fine-tuned. In the end, a task-

or context-aware model is obtained (Schmirler et al., 2024).

Contrastive Learning: Contrastive learning is a deep learning technique whose
objective is to learn a representation from data by bringing similar data samples
closer in the representation space, while pushing the dissimilar instances further
apart (Schroff et al., 2015). By maximizing the margin, this method yields rep-
resentations in which members of the same class form tight clusters and different

classes constitute well-separated regions.

Transformer: Transformer architecture, first introduced by [Vaswani et al.| (2017)),

is a deep neural network model based entirely on self-attention mechanisms. At its
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core, it contains:

o Multi-Head Self-Attention: In each transformer layer, self-attention computes
weights that allow every token (e.g., an amino-acid residue in a protein se-
quence) to attend to all other tokens, enabling the model to capture both
short- and long-range dependencies. Multiple attention heads learn comple-

mentary patterns, yielding richer representations.

o Positional Encodings: Self-attention does not have prior information of to-
ken order, thus positional encodings are added to input embeddings to inject

sequence order information.

o Position-Wise Feed-Forward Networks: The output of the attention layers is
fed into a fully-connected network, which enables the transformer encoder to

extract non-linear features.

e Residual Connections and Layer Normalization: Residual connections facili-
tate training multi-layered networks by providing shortcut paths which pre-
serve gradient signals during backpropagation, thus they mitigate the problem
that gradients become very small. On the other hand, layer normalization
maintains normalized feature distributions across layers so that updates on

model weights remain consistent.

These components constitute an architecture that enables learning of rich and
context-sensitive representations in parallel through multi-head attentions and scal-

ing a deep neural network.

In addition to its architectural power, transformer encoders can be trained on se-
quential data to learn domain-specific representations by optimizing language mod-
eling objectives. Moreover, pre-trained transformer encoders can be fine-tuned on
specific tasks through task-specific components such as classification heads, MLM
heads, and decoders, so that encoders can be adapted to distinct tasks. An example
of transformer encoder adaptation is Phosformer-ST (Zhou et al. 2024). In that
study, the ESM-2 encoder was fine-tuned in a multi-task manner to learn richer

kinase representations for kinase-specific phosphorylation prediction.

2.4 Computational Methods on Phosphorylation and
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Kinase-Phosphosite Prediction

Computational research on protein phosphorylation has significantly evolved since
the early 2000s, with each new generation of methods improving prediction per-
formance and uncovering deeper biological insights. In this section, we review
the major computational methods developed for predicting phosphorylation and
kinase—phosphosite relationships, including general phosphosite prediction, kinase-

substrate assignment, and recent advances in zero-shot learning frameworks.

2.4.1 General Phosphosite Prediction Model

As an early work in phosphosite prediction, NetPhos (Blom et al., 1999 demon-
strated that a simple neural network trained on sliding windows of amino acids pre-
dicts phosphosite residues (S/T/Y) at rates far above random chance. It achieved
a true positive rate ranging from 69% to 96%, depending on the organism. The

identification of cognate kinase was out of this study’s scope.

PhosphoSVM (Dou et all |2014) was introduced as a phosphorylation site predic-
tion tool based on support vector machines (SVM). PhosphoSVM used eight dis-
tinct sequence-level features, including Shannon Entropy (Shannon, 1948), Relative
Entropy (Kullback and Leibler, |1951)), Secondary Structure (Garnier et al., |1978)),
Protein Disorder (Dunker et al., |2000), Solvent Accessible Area (Lee and Richards,
1971), Overlapping Properties (Wu and Brutlag, 1995)), Averaged Cumulative Hy-
drophobicity (Sweet and Eisenberg, |1983), and k-Nearest Neighbor (Cover and Hart,
1967) to predict phosphorylation sites by a single SVM (Cortes and Vapnik, 1995)).

After the transformer architecture (Vaswani et al.| [2017) was introduced in the field
of natural language processing, it has become a powerful tool in computational
biology. TransPhos (Wang et all 2022) was the first to apply a transformer en-
coder to phosphosite prediction using contextual windows of 33 and 51 residues,
thereby capturing long-range dependencies that convolutional (LeCun et al., |1995)
and feed-forward networks (Rosenblatt} |1958) overlook. The two windows share an
embedding layer and are processed by separate four-layer, four-head transformer
encoders; their outputs are refined by parallel 1-D CNN blocks, concatenated, and
passed to a softmax classifier. This hybrid attention—convolution design achieved

state-of-the-art performance on the Phospho.ELM benchmark.
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2.4.2 Kinase-Specific Phosphosite Prediction Models

NetworKIN (Linding et al., [2007)) is among the earliest tools to predict the cognate
kinase of a given phosphosite. The resulting model was capable of identifying not
only if a given phosphosite was phosphorylated or not, but also that it’s likely
phosphorylated by kinase X, which physically associates with that region of the
substrate in cells. NetworKIN’s power came from being substrate-aware. To capture
the biological context of a substrate, NetworKIN used a network of associations
extracted from the STRING database (Mering et al. |2003). NetworKIN is the first

effort to bridge motif recognition with real biology.

Around the same time, GPS 2.0 (Xue et al, [2008)) introduced a hierarchical, family-
aware scoring system such that kinases were grouped by sequence similarity, and each
new prediction benefited from transferring strength across well-studied relatives.
GPS 2.0 predicted kinase-specific phosphorylation sites for 408 human kinases in
hierarchy and showed remarkable accuracy on a large-scale prediction of more than

13,000 mammalian phosphorylation sites.

Building on these foundations, Musite (Gao et al., [2010) aimed to predict both gen-
eral and kinase-specific phosphosites. They approached the phosphosite prediction
problem as a binary classification problem. They trained separate SVMs for each
organism, enriched with amino acid frequency around phosphorylation site, k-NN
scores, and a protein disorder predictor. k-NN scores were obtained by finding the k
most similar samples from both phosphorylated (positive) and non-phosphorylated
(negative) samples. The percentage of the positive closest neighbors gives the k-NN
score. To test query samples, they took the average of the results of all the trained

SVMs.

Another study for predicting kinase-phosphosite association is PKIS (Zou et al.,
2013), which employed the composition of monomer spectrum (CMS) encodings
and SVMs. It achieved a 73% sensitivity score, which was the highest score of the

period among other studies in the same category.

PhosphoPick (Patrick et al., [2014) came up with a new idea that kinase-substrate
phosphorylation can be found in the surrounding cellular context in addition to the
substrate sequence. To realize this, Patrick et al. (2014]) combined cellular context
signals into a probabilistic Bayesian Network. They used protein—protein interaction
data and cell-cycle profiles. Their model attained a mean AUC of ~ 0.86 across 59

human kinases, outperforming motif-only baselines.

Traditional phosphorylation predictors rely on hand-engineered features—statistical,
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biological, or disorder-based—derived from peptide sequences. With the rise of deep
learning (DL), many models now leverage its ability to learn complex, non-linear
representations directly from data, eliminating the need for manual feature engi-
neering. DeepPhos (Luo et all 2019)), an earlier DL based study, aimed to uncover
richer, non-linear motifs automatically. The authors designed a densely connected
CNN architecture that learned high-dimensional representations of protein sequences
to use for phosphorylation site prediction. Then, an additional layer-transfer fine-
tuning step adapted the phosphorylation prediction model to kinase-specific tasks.
For kinase-specific evaluation, the model obtained AUC ~ 0.92 on the CMGC group
and =~ 0.91 on CAMK, clearly surpassing GPS 2.0.

GPS 2.0 was improved by |Wang et al. (2020), called GPS 5.0, to obtain better pre-
diction performance and wider coverage. Until 2020, no single tool could handle 479
human kinases and provide multi-species support. To improve the performance for
predicting kinase-specific phosphorylation sites, they proposed two novel methods:
i) position weight determination (PWD), which learned position-specific amino-acid
weights via logistic-regression fitting, and ii) scoring matrix optimization (SMO),
which refined the 300-pair BLOSUMG62 scores by logistic regression to produce a
kinase-specific substitution matrix. It demonstrated better performance compared
to NetPhos and GPS 2.0.

While GPS 5.0 covered 479 human kinases, users needed a broader taxonomic scope,
richer annotations, and higher accuracy, especially for Y kinases. GPS 6.0 (Chen
et al., 2023) emerged to meet these needs. GPS 6.0 utilized ten sequence-derived
feature sets from GPS 5.0 and iLearnPlus (Chen et al., 2021) and fed them into
penalized logistic regression (Hosmer Jr et all) [2013), deep neural network, and
Light Gradient Boosting Machine (Ke et al., [2017)). Then, via transfer learning,
they obtained 577 protein kinase-specific predictors at the group, family, and single
protein kinase levels by employing a dataset consisting of 30,043 known site-specific
kinase-substrate relations in 7041 proteins. Phosphorylation site prediction accuracy

improved over previous versions of GPS.

2.4.3 Kinase Assignment Prediction Models

Ma et al. (2020) presented KSP, whose novelty relied on the fact that most of

the predictors merge sequence motifs with protein-protein-interaction (PPI) data,

yet KSP used only simple sequence similarity and ignored richer network topology.

Ma et al.| (2020) noted that capturing neighbor structure in a PPI graph could
17



boost kinase assignment, especially when motif information was weak. They built
a single interaction network as a weighted bipartite graph. Then, they calculated a
KSPScore for each kinase—substrate pair such that a four-term similarity score was
computed and down-weighted by a degree factor to reduce bias towards well-studied
kinases. They also provided an optional overall score by including the frequency
and similarity features of sequences. KSP reached ~ 83 - 86% top-10 accuracy on

each fold among 10-fold cross-validation over all pairs.

Ma et al. (2023)) introduced a holistic similarity-based prediction approach for un-
derstudied kinases. In the study, they drew attention to the issue that greater
than 50% of human kinases have fewer than 15 labeled sites. Thus, the supervised
methods may not build reliable per-kinase models. The authors built a merged
kinase—kinase similarity graph combining the sequence, functional, contextual, and
STRING-related similarities. Then, they leveraged positive sites from the most
similar family/group neighbors by the top-k rule to train predictive models. Easy
negatives were down-sampled to balance training. For 116 human kinases with
5-14 known sites, they achieved a balanced accuracy for kinase group: TK-0.81 ,
Other-0.78, STE-0.84, CAMK-0.84, TKL-0.85, CMGC-0.82, AGC-0.90, CK1-0.82
and Atypical-0.85.

Recently, |Aman et al.[(2025)) developed a tool, KinAID, which serves as an orthology-
based kinase-substrate prediction and analysis tool, not a prediction algorithm.
While most of the analysis tools remain human-only, the authors wanted a sim-
ple, multi-species utility that assigns kinases, infers kinase-activity shifts, and draws
ready-to-publish plots. They collected PWMs for 303 human S/T kinases and 93
human Y kinases from studies conducted by |Johnson et al.| (2023); Yaron-Barir et al.
(2024)), respectively. To map one-to-one or ambiguous orthologs in 10 species, they
used DIOPT-grouping (Hu et al., 2011) multiple paralogs under a single “family”
when necessary. For each input peptide of at least ten residues centered on S/T/Y,
they computed the PWM score and kept matches in the top 10% of that kinase’s
background distribution. The resulting tool can output match tables, kinase-activity
z-tests, volcano plots, heat-map clustering of sites by kinase preference, and inter-

active kinase—kinase networks as downloadable.

2.4.4 Zero-Shot Based Kinase Prediction Models

DeepKinZero (Deznabi et al., 2020) is the first study in the literature framing ki-
nase—phosphosite association as a zero-shot learning problem. DeepKinZero takes
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pairs of kinases and 15-residue peptides centered on phosphorylation sites as inputs.
Phosphosite sequences are embedded using ProtVec—a 3-mer Word2Vec model
trained on Swiss-Prot (Asgari and Mofrad, [2015; Bairoch et al., 2005)). Kinases are
represented by hierarchical labels (family and group), Enzyme Commission class
(Bairoch 2000), and Kin2Vec embeddings (Asgari and Mofrad, |2015)). A bi-linear
compatibility model (Sumbul et al., [2018) learns to score kinase-phosphosite pairs;
meanwhile, phosphosite sequence representations are refined by an LSTM module
(Hochreiter and Schmidhuber, [1997). In the inference phase, the knowledge learned
by the bi-linear model is transferred to make predictions for phosphosite sequences
among kinases-entirely unseen during training-. DeepKinZero reached 21.52% top-1
accuracy on a test set containing kinases never seen during training. The result is

far better than a random guess of 0.89%.

Phosformer (Zhou et al., 2023)) asked if a single, sequence-only transformer was ca-
pable of learning kinase-family specificity end-to-end and remained interpretable.
The authors first pre-trained a 6-layer encoder—-decoder transformer on masked-
language modeling (MLM) of roughly 300,000 kinase domains and 5,000 substrate
proteins. Then they fine-tuned it on kinase-peptide pairs with “whether this phos-
phosite is phosphorylated by this kinase” binary objective using a novel multi-level
negative-sampling; hard negatives (peptides having experimentally proven phospho-
rylation site but lacking the paired kinase) and easy negatives (peptides having
S/T/Y residue yet there is no evidence of being phosphorylated by any kinase).
They employed focal loss to handle 1:16 class imbalance ratio. Across 106 test ki-
nases, Phosformer reached 0.86 AUC-ROC score with false-positive rates less than
2%. The authors noted that Phosformer was theoretically capable of zero-shot pre-
diction, yet they would present the details of zero-shot prediction in a forthcoming

study.

Later on, the authors extended Phosformer to create Phosformer-ST (Zhou et al.,
2024)), which is a transformer-based kinase-substrate predictor fine-tuned on a vast,
balanced dataset. This dataset, which was curated by the Phosformer-ST study
using |Johnson et al.| (2023)’s kinase atlas as its source, consisted of roughly one mil-
lion positive/negative peptide—kinase pairs covering 300 S/T kinases. They aimed
to reach a powerful zero-shot generalization and explainable outputs. In their ap-
proach, an ESM-2 (Lin et al., |2023) backbone was fine-tuned in a multi-task setup:
i) masked-language modeling over 295,000 kinase domains from 18,832 organisms,
ii) binary classification of phosphorylation between 15-residue peptides and kinase
domains. To handle overfitting, they used data augmentation strategies including
shifting of domain boundaries, token masking, and negative-sampling. In a zero-

shot split where all pairs for 10% of unseen kinases were excluded during training,
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Phosformer-ST obtained a 0.886 AUC-ROC score.

In DARKIN (Sunar et all 2024), our previous study, we presented a dataset and
established a benchmark for assessing protein language models on the dark kinase-
phosphosite prediction task with zero-shot learning. To evaluate the representability
of pLMs on the task, we adapted a k-NN classifier to zero-shot evaluation as a
baseline predictor. We further employed |Sumbul et al.| (2018)’s bi-linear model to
learn associations between kinase-phosphosite pairs. The results showed that ESM-
1b (Rives et all [2021), ProtT5-XL (Elnaggar et al., 2021)), and SaProt (Su et al.,
2023) provided the best representations in this task.

Recently, [Esmaili et al.| (2025) introduced their study, having the same objective as
DeepKinZero, which approaches kinase-phosphosite association as a zero-shot classi-
fication problem. They proposed a solution similar to Phosformer and Phosformer-
ST did; i.e., to find an answer “whether phosphosite X is phosphorylated by kinase
Y”. The architecture included ESM-2 (Lin et al., [2023)) (having 650 million param-
eters) as encoder, where full kinase and substrate sequences were fed into, and a
four-layer decoder that output a binary interaction score in an auto-regressive man-
ner. While preparing hard-negative examples, they followed this strategy: for every
positive pair, negatives were chosen among kinases whose ESM-2 embeddings were
located closest in Euclidean space, which forced the network to learn specificity. On
the authors’ benchmark, the proposed model outperformed both Phosformer and
GPS 6.0 in terms of F1-score.

In summary, computational methods for kinase—phosphosite association prediction
have significantly evolved over the past two decades, transitioning from simple
sequence-based predictors to complex deep-learning frameworks capturing long-

range dependencies and kinase specificity.

2.5 Task-Aware Fine-Tuning and Re-initialization Strategies

Protein language models provide rich but task-agnostic embeddings. These rep-
resentations may not capture the subtle biochemical context to correctly predict
kinase-phosphosite association in low-data regimes (Unsal et al., 2022). Recent
studies demonstrated that pre-training and/or fine-tuning backbone models to en-
code task-specific nuances has improved prediction performances (Schmirler et al.,

2024; |Zhou et all 2023| 2024; Esmaili et al., [2025)).
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Schmirler et al| (2024) conducted a comprehensive evaluation of supervised fine-
tuning for pLMs. They fine-tuned ESM-2 (different versions with various parameter
sizes), ProtT5-XL, and Ankh (base and large versions) on eight benchmark tasks,
such as secondary structure, intrinsic disorder, subcellular localization, stability,
and mutational-scanning fitness landscape. They compared fine-tuned models with
predictors that kept the pLMs frozen. They observed that supervised fine-tuning

numerically improved performance for almost every model.

Zhou et al.| (2023) (Phosformer) pre-trained a transformer with masked language
modeling on peptide sequences from the Uniprot database (Bairoch et al. 2005) to
understand the “language of life”. Then, it used the pre-trained encoder to fine-tune
it on the kinase-phosphosite prediction task. Zhou et al.| (2024) (Phosformer-ST)
leveraged fine-tuning rather than pre-training. It extended Phosformer’s idea with a
multi-task learning approach. Phosformer-ST optimized ESM-2’s encoder on both
masked language modeling objective and the kinase-phosphosite association task.
Esmaili et al.| (2025) also employed the ESM-2 encoder as a backbone, yet it re-
placed the classifier in Phosformer-ST with an auto-regressive decoder. Then, it fully
fine-tuned ESM-2, and the resulting model was capable of making zero-shot gen-
eralization on kinase-specific predictions. All three studies demonstrated improved
prediction and, except for Phosformer (which did not report zero-shot results), effec-
tive generalization to unseen kinases, which suggests that incorporating task-specific

biochemical context improves the understanding of models and predictive ability.

Previous studies have explored different ways of adapting transformer layers for
downstream tasks. For instance, ESM-Effect (Glaser and Braegelmann, [2025) com-
pared freezing versus fine-tuning various layers to increase efficiency. It fine-tuned
only the last two layers of ESM-2 and matched the accuracy of full-model fine-tuning
on four datasets, while training faster and without requiring LoRA (Hu et al., 2022
or other adapters. The results highlighted that unfreezing a slice of the transformer
often suffices for downstream tasks. Another technique to adapt deep networks to
downstream tasks is layer-wise re-initialization. In the image domain, Zaidi et al.
(2023)) showed that re-initializing the deeper layers of ResNet (He et al., 2016)) mod-

els improves accuracy and generalization in data-scarce settings.
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3. METHODS

This chapter describes the zero- and few-shot kinase—phosphosite association pre-
diction models developed in this thesis. In Sections [3.1] and [3.2] we introduce the
architectures for zero-shot and few-shot prediction and detail the kinase—phosphosite
datasets used. Section [3.3] defines the evaluation metric used to quantify model per-
formance. Sections [3.4 and present our approaches for enhancing phosphosite
and kinase representations, respectively, together with the datasets underpinning
each method. Finally, Section [3.6| outlines the experimental design, including zero-
and few-shot training protocols, hyperparameter tuning procedures, integration of
additional kinase features, and the configuration of transformer layers employed in

our prediction models.

3.1 Zero-shot Learning Approach

3.1.1 Problem Definition

We defined the zero-shot kinase-phosphosite prediction task as follows:

Let X be the space of 15-residue peptide sequences, in which the phosphorylated
residue is located in the central position, and let ) be the set of human kinases. This
constitutes the classes in the machine learning task. Kinase-phosphosite association
prediction task seeks the kinase y € ) that is most likely to catalyze the phospho-
rylation at the central residue of a given 15-residue peptide window z € X'. Since a
phosphosite can be phosphorylated by multiple kinases, we framed the problem as

a multi-label classification task.
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The classes in the training and test sets do not overlap. We denoted the kinases seen
during training as )y C Y and test kinases reserved for testing as Vi C Y, where
Ve includes the zero-shot classes, and is disjoint from )},.. The training dataset,
Dy = (24,5),i=1,..., Ny, contains training kinase-phosphosite pairs, where y; €
Yy Similarly, the test dataset, Dy = (2,9;),7 =1,..., Nge, contains phosphosite

pairings of the test kinases V..

3.1.2 Dataset

The dataset used in the zero-shot learning approach was taken from our previ-
ous work, DARKIN benchmark (Sunar et al., |2024)). This dataset contains kinase-

phosphosite pairs and train, validation, and test splits.

The set of human kinases in DARKIN was obtained from the curated resource of
Moret et al.| (2020)). Experimentally validated phosphosites for each kinase were
obtained from PhosphoSitePlus as of May 2023 (Hornbeck et all [2012)). To align
the zero-shot learning set and prevent information leakage, we clustered all kinase
domain sequences at a global sequence-identity threshold of 90%. Each resulting
cluster was assigned in its entirety to one of three disjoint partitions—training,
validation, or test. The data is partitioned as 80:10:10 split at the kinase level for
training, validation, and test. Kinases with fewer than 15 associated phosphosites
were retained exclusively in the training partition to ensure that the test data include
enough phosphosite examples. This is different than what was done in|[Deznabi et al.
(2020). Thus, the dark and light kinases are switched. The DARKIN’s partitioning
algorithm was performed with four random seeds to report the splitting sensitivity
of the models.

There are a total of 392 human kinases in the original DARKIN splits. We used ki-
nase domain sequences, families, groups, and Enzyme Commission (EC) numbers as
kinase features. Family and group memberships were obtained from Manning et al.
(2002). EC classifications were retrieved from the ENZYME Database (Bairoch,
2000).

After hyperparameter optimization by using train and validation splits, we retrained
zero- and few-shot learning approaches by merging training and validation sets. (For
hyperparameter optimization details, please see Section |3.6.1.1))

Table summarizes the number of kinase—phosphosite pairs in each DARKIN par-
tition. To ensure a fair comparison between zero-shot and few-shot evaluations, we
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held out the same set of test samples in both settings. Specifically, the counts shown
for the test split in Table show the remaining kinase—phosphosite associations
after removing the few-shot samples from the original DARKIN test set.

Table 3.1 The number of kinase-phosphosite pairs in four different DARKIN splits
obtained by running DARKIN’s partitioning algorithm with four distinct random
seeds for zero-shot setup.

Seed 0 Seed 42 Seed 87 Seed 12345
Training+ Validation Data 9855 9941 9921 10043

Test Data 1254 1190 1288 1268
Total 11109 11131 11209 11311
Training+ Validation Kinases 352 352 353 354
Test Kinases 40 40 39 38
Total 392 392 392 392

3.1.3 Architecture

In this study, the core of the kinase-phosphosite association prediction model we
adopted is the Bi-linear Zero-shot Model (BZSM). BZSM aims to estimate the com-
patibility between a given pair of phosphosite sequence x and kinase y. Although
numerous zero-shot learning approaches have been developed—especially in the con-
text of image classification—, bi-linear compatibility models remain among the most
widely adopted (Xian et al., 2017; Akata et al., 2016; Romera-Paredes and Torr,
2015; [Frome et al., 2013; [Akata et al., |2015b; Kodirov et al., [2017; Sumbul et al.
2018; Deznabi et al.,|2020). In this thesis, we adopt the specific bi-linear formulation
introduced by [Sumbul et al.|(2018) and later applied by Deznabi et al.| (2020)).

The bi-linear compatibility function is defined as:

(3.1) Flzy)=10(x)" UWoly)' 1"

where 0(x) € R? corresponds to the representation for a 15-residue peptide sequence

containing phosphosite, and ¢(y) € R™ corresponds to the kinase representation.
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BZSM is trained by minimizing the regularized cross-entropy loss:

(52) min— Y logp(yla) + AlIV?
(m,y)EDt,«

where the summation is carried out over all kinase-phosphosite pairs in the training

set Dy = (24,v5), and p(y|x) is the softmax of F' over the light kinases:

exp F(z,y)
Yyevi, expF(z,y")

(3-3) plyle) =

The (5 regularization term A||W||? in Eq. is implemented as weight decay in

practice. At test time, p(y|x) is calculated via softmax over the test kinases.

The BZSM framework was applied in DeepKinZero (Deznabi et al. [2020]), where
phosphosite representations were refined via an LSTM layer. In contrast, our ap-
proach leverages a transformer module to fine-tune the phosphosite embeddings:
by employing multi-head self-attention, the transformer selectively attends to key
residues within each sequence and captures richer contextual relationships (Vaswani
et al., [2017). Figure depicts the overall architecture of our zero-shot prediction

model.

In this thesis, we used the ESM-1b—a 650 million-parameter transformer
model—and its fine-tuned and further pre-trained variants as our phosphosite em-
bedding module. This choice is made based on our previous work, where we evalu-

ated different pLMs’ representational power Sunar et al.| (2024]).

ESM-1b is a 33-layer transformer model with an embedding dimension of 1280 per
residue and 20 attention heads per layer. It was pre-trained on the UniRef50 protein
sequence database using a masked language modeling (MLM) objective (Rives et al.
2021). Variants of ESM-1b and their specific configurations for zero- and few-shot
kinase-phosphosite prediction are described in Sections [3.4] 3.5 and [3.6.2]

25



Kinase

Kinase Embedding Predicted One-hot True
Kinase Probabilities ~ Kinase Labels
A — — ==~ o
Encoder o . o
...VMGKMMNGAARLTALRIK... [01] Akt [0 |
CDK2
Bi-linear
Zero/Few-shot _—
— Model
) Phosphosite 071 =
Phosphosite Embedding e oKz o
. CK2A1
o Phosphosite — [ [ [~ [ [] i R
Encoder
...VETSPLL...

_________

Cross Entropy Loss

Both Bi-linear model and Transformer are updated ‘

Figure 3.1 Architecture of the Bi-linear Zero-shot Model (BZSM) and its few-shot
variant (BFSM). Phosphosite sequences are encoded by a transformer module whose
parameters are updated during training, while kinase profiles are embedded via a
fixed encoder. A bi-linear layer computes compatibility scores between phosphosite
and kinase embeddings, and the model is trained using cross-entropy loss over light
kinases (kinases with many known phosphosites). Depending on the evaluation
setting, the transformer is either randomly initialized, fully fine-tuned, or partially
re-initialized. In inference, the learned bi-linear weights are used to rank phosphosite
candidates for dark kinases (under-studied kinases).

3.2 Few-shot Learning Approach

3.2.1 Problem Description

In the few-shot learning approach, X denotes the space of 15-residue peptide se-
quences in which phosphorylated amino acids reside in the central position, and )
denotes the set of all human kinases. The set of kinases is split into a training set
of light kinases )y, and a few-shot set of under-studied kinases Y C Y for which

only a handful of labeled examples are available:

ytrcy; yfscy’ ytrﬂnyZQ-
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For each few-shot kinase y € Vi we supplied at most K labeled phosphosite sequences
(with K < Ny;), forming the support set:

Sy - {(xy,lay)a"w(xy,K?y)}a and st - U Sy
yeyfs

Therefore, the complete training dataset is:

Dyrain = Dy U st> Dy, = {(xu yz)}i\irp Yi € Vir.

At evaluation time we used a query set:

Diest = {(zj,y) 1%, i € Vi, (25,95) € Sk,

and the model should predict kinase y in Vg that is likely to catalyze the phos-
phorylation of a given 15-residue peptide centered on the phosphorylated residue
x € X. The prediction task remains a multi-label classification problem, but un-
der the constraint that only K examples per few-shot kinase are available during

training.

3.2.2 Dataset

In our few-shot experiments, we derived the dataset from the DARKIN benchmark
by adopting a 5-shot-per-kinase protocol—a setting that is standard in the few-shot
learning literature (Snell et al., 2017; |Li et al., [2021; Oreshkin et al. 2018} Finn
et al., [2017). This choice balances the scarcity of available phosphosites per kinase
in the zero-shot test set against the need for enough examples to enable effective

model adaptation.

Since some phosphosites in DARKIN are annotated with multiple kinases (i.e., multi-
labeled samples), we first decomposed each into separate kinase—phosphosite pairs.
Then, for every kinase in the DARKIN test partition, we randomly selected five phos-
phosites and moved them into the combined training—validation set. This procedure
converts the original zero-shot split into a few-shot learning scenario. Table

summarizes the resulting counts of kinase—phosphosite pairs in each few-shot split.
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Table 3.2 The number of kinase-phosphosite pairs in four distinct few-shot DARKIN
splits. Since our few-shot prediction model sees all classes, including the few-shot
ones, the number of training kinases became 392 in this setup.

Seed 0 Seed 42 Seed 87 Seed 12345
Train+Validation Data 10055 10141 10116 10233

Test Data 1254 1190 1288 1268
Total 11309 11331 11404 11501
Train+Validation Kinases 392 392 392 392
Test Kinases 40 40 39 38
Total 392 392 392 392

Kinase features were the same as in the zero-shot setup: kinase domain sequence,

family, group, and EC number.

3.2.3 Architecture

In the few-shot experiments, we employed the same transformer-based architecture
introduced for zero-shot learning (Section [3.1.3), but trained it on the few-shot
dataset defined in Section [3.2.2] To avoid ambiguity between the two protocols, the
Bi-linear Zero-shot Model (BZSM) shown in Figure [3.1]is referred to as the Bi-linear
Few-shot Model (BFSM) when applied in the few-shot setting.

3.3 Evaluation Metric

To assess both zero-shot and few-shot models, we employed macro-averaged average
precision (AP). Average precision measures the area under the precision-recall curve
across all decision thresholds, thereby capturing the full trade-off between precision
and recall. By computing AP separately for each class and then averaging (macro-
averaging), we ensured that classes with few examples contribute equally, mitigating
the effects of class imbalance. Unlike accuracy, AP does not depend on a single
threshold and directly evaluates the model’s ranking ability in multi-label or multi-
class settings. Formally, if there are C' classes and AP, denotes the area under the

precision-recall curve for class ¢, then the macro-averaged AP is defined as:
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C
(3.4) Macro-AP = éZAPC,

c=1

3.4 Approaches to Enhance Phosphosite Representations

Protein language models (pLMs) provide general representations for peptide se-
quences. However, they perform better on specialized tasks after domain adaptation
(Zhou et al., 2024} Schmirler et al., 2024). To check if there is benefit in a task-aware
pLM, we trained several phosphosite-aware variants optimized under four distinct

objectives:

e Fine-tuning on Phosphorylation Prediction Task — discriminating between

phosphorylated and non-phosphorylated sites.

 Fine-tuning on Masked Language Modeling (MLM) Objective — adapting the
backbone model to the phosphosite domain with MLM

o Multi-Task Fine-tuning - jointly optimizing the pLM on phosphorylation pre-
diction task and MLM objective.

e Pre-training from scratch on MLM Objective — training a new model de novo
on MLM objective.

These efforts yielded six domain-adapted models, each of which has been published
on HuggingFace along with full training metadata. The subsections below describe,
for each model, the source datasets, training objectives and protocols, and the se-

lected hyperparameters.

3.4.1 Fine-Tuning ESM-1b on Phosphorylation Prediction Task

To tailor ESM-1b to phosphorylation biology, we fine-tuned it on a binary classifica-
tion task: predicting whether a serine, threonine, or tyrosine (S/T/Y) is phosphory-

lated or not, given the surrounding residues (a 15-residue window was used). There
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are many phosphosites whose cognate kinases are unknown, which we referred to
as unlabeled phosphosites. We used these unlabeled phosphosites to fine-tune the
ESM-1b model. By optimizing a binary cross-entropy loss and focusing the model’s
self-attention on local sequence context, we fine-tuned the ESM-1b to recognize

phosphorylation sites.

3.4.1.1 Dataset

We assembled a dataset of unlabeled phosphosites—residues experimentally con-
firmed as phosphorylated but without kinase annotations—from PhosphoSitePlus
(March 2024 release) (Hornbeck et all) 2012). Each site is encoded as a 15-residue
peptide with the phosphorylated serine, threonine, or tyrosine in the middle. These
15-residue peptides comprise the positive class in our binary phosphorylation pre-

diction task.

Negative samples were constructed following the protocol of (Gao et al.| (2010). For
each phosphosite peptide in PhosphoSitePlus, we retrieved its substrate sequence
and identified another residue of the same type (S, T, or Y). We then extracted
a 15-residue window (seven residues upstream and downstream) around this non-
phosphorylated site and verified that this peptide does not appear in Phospho-
SitePlus as a known phosphosite. These sequences were labeled as negative examples

for the binary phosphorylation classification task.

In total, we obtained 730,149 15-residue peptides. The overall count is odd because,
in some cases, the substrate protein contained only one S, T, or Y residue, making
it impossible to generate a corresponding negative example. We named this dataset
BinaryPhPrediction.

3.4.1.2 Fine-tuning Details

We employed the curated dataset described in Section [3.4.1.1] to fine-tune ESM-
1b with an added binary classification head to predict whether a given phosphosite
sequence is phosphorylated or not. The model was trained by minimizing the binary

cross-entropy loss:
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Figure 3.2 Peptide sequences prepared by leveraging PhosphoSitePlus dataset are fed
into ESM-1b and a following binary classification layer (classification head) which
generates probabilities of whether each sequence is “phosphorylated” (1) or “not
phosphorylated” (0). The difference between predictions and true labels is calculated
by using Binary Cross-Entropy Loss (See Equation .

! . i
(3.5) Lrer =~ 2 [vilog i+ (1—yi) log(1—4y)]
1=1

where y; € {0,1} is the true label and ¢; the model’s predicted probability for sample
i. Figure [3.2]illustrates the fine-tuning scheme.

Training was performed with the AdamW optimizer (learning rate 5 x 1072, batch
size 512) for three epochs, holding out 10% of the dataset as an internal test set.
The model achieved 94% accuracy on this internal test. To evaluate generalization,
we tested on the DARKIN split generated with random seed 12345—ensuring no

overlap with training sites—and obtained 88% accuracy.

3.4.2 Fine-Tuning of ESM-1b on Masked Language Modeling Objective

To further specialize ESM-1b for phosphorylation biology, we fine-tuned the pre-
trained model on the MLM objective using datasets of phosphosite sequences. Dur-
ing MLM training, random residues in each peptide were masked, and ESM-1b

was trained to recover the masked residues from their surrounding context. This

31



targeted adaptation encourages the model to internalize phosphorylation-specific

sequence patterns such as position-dependent residue preferences.

3.4.2.1 Dataset

We prepared two distinct datasets to produce two versions of fine-tuned ESM-1b.

3.4.2.1.1 UnlabeledPS: We curated a dataset of unlabeled phosphosite-
containing peptide sequences from PhosphoSitePlus. Beginning with substrate pro-
tein sequences containing phosphosites, we truncated each sequence to a maximum
length of 128 amino acids, ensuring that the phosphosite remained within this win-
dow. This truncation was done to accommodate hardware constraints. After pro-

cessing, the dataset comprised 352,453 peptides. We refer to this collection as Un-
labeledPS.

3.4.2.1.2 DARKINHomologs: We constructed a second dataset by first col-
lecting the substrate protein sequences that contain the 15-residue phosphosite win-
dows in DARKIN, and by extending each peptide with up to 250 homologous se-
quences identified via PSI-BLAST (two iterations, > 30% identity, E-value < le-5)
(Kuru et al., [2022). To avoid redundancy, among the fully conserved homologs, we
select a single representative sequence. Each homologous sequence was then cen-
tered on the annotated phosphosite and truncated to a maximum length of 128 amino
acids, ensuring the phosphosite remained within the window. This procedure yielded

702,468 unique peptide sequences, hereafter referred to as DARKINHomologs.

3.4.2.2 Fine-tuning Details

We used the two phosphosite-focused datasets introduced in Section [3.4.2.1}
o UnlabeledPS: 352,453 truncated sequences from PhosphoSitePlus
o DARKINHomologs: 702,468 homolog-augmented sequences via PSI-BLAST

We appended a masked-language-modeling head to ESM-1b’s encoder and fine-tuned
the entire network on two distinct datasets by minimizing cross-entropy over masked
tokens:
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(3.6) LyEM = — 55 Z log o (; | I\M)7
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where M is the set of masked token indices in each input sequence, x; the true amino
acid, and z\ s the sequence with those positions masked with a 0.15 masking ratio.

Figure visualizes the fine-tuning process.
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Figure 3.3 Peptide sequences containing masked positions ([MASK]) are fed into
ESM-1b having an MLM head on top. The model is fine-tuned to predict masked
amino acids via an MLM header. The predictions of the model are compared with
the real sequences using the Cross-Entropy Loss function (See Equation , which
minimizes loss to fine-tune ESM-1b.

Both models were fine-tuned for 100 epochs using the AdamW optimizer (learning
rate 5x 107°). We employed a per-GPU batch size of 64 with gradient accumulation
over four steps, yielding an effective batch size of 256. A random 10% of each dataset
was held out for validation, and we tracked perplexity on this split: it decreased from
5.42 to 2.27 on UnlabeledPS and from 7.05 to 2.69 on DARKINHomologs.

3.4.3 Multi-Task Fine-Tuning of ESM-1b on Masked-Language Modeling

and Phosphorylation Prediction Objectives

Another approach to specialize ESM-1b for phosphorylation biology, we performed
multi-task fine-tuning of ESM-1b with two concurrent objectives: i) MLM on ex-
tended, phosphosite-centered peptides to capture global protein language patterns,
and ii) binary classification of phosphorylation status over 15-residue windows to em-

phasize local phosphosite motifs. We optimized the average of cross-entropy losses
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for both branches on a shared encoder, aiming to obtain representations that are

both broadly informed and task-aware.

3.4.3.1 Dataset

We used two datasets derived from PhosphoSitePlus; their curation was detailed
in Sections and (BinaryPhPrediction and Unlabeled PS, respectively).
For the classification branch, we randomly sampled 175,000 positive and 175,000
negative examples (seed 42) to make both datasets balanced in the MLM and binary

classification fine-tuning.

3.4.3.2 Fine-tuning Details

We augmented the ESM-1b encoder with two task-specific heads; an MLM head
and a binary classification head. We then fine-tuned ESM-1b jointly on both tasks

to optimize a combined loss. The loss function is formulated as:

1 1
(3.7) Liotal = 5 Lyim + 3 LBCE.

where Lym and Lpcg are defined in Equations and [3.5

For task scheduling, at each batch step, a Bernoulli trial (p = 0.5) selected either
the unmasking or the classification task. We fine-tuned the model for three epochs,
employing the AdamW optimizer with learning rate 1 x 10~°, masking probability
0.15, per-GPU batch size 64, and gradient-accumulation as 4. To evaluate masked
token prediction and classification performance, we tested on the DARKIN split
generated with random seed 12345. The classification head reached an accuracy of
0.77, and in the MLM branch, the perplexity decreased from 11.25 to 5.38.

Fine-tuning process is illustrated in Figure [3.4]
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Figure 3.4 15-residue peptides and substrate protein sequences containing masked
specific positions ([MASK]) are fed into ESM-1b with a Bernoulli trial p = 0.5.
ESM-1b is fine-tuned to predict masked amino acids via the MLM head and phos-
phorylation via the classification head. The predictions of the model are compared
with the real labels using a combined loss function (See Equation which mini-
mizes loss to fine-tune ESM-1b.

3.4.4 Pre-Training of ESM-1b on Masked Language Modeling Objective

Until now, our fine-tuning strategies have used the original ESM-1b model pre-
trained on UniRef50, and thus inherited biases from that broad protein cor-
pus. To explore whether a language model trained exclusively on phosphosite-
focused data could yield more specialized embeddings, we pre-trained ESM-1b
from scratch—randomly initializing all weights—and optimized the masked language
modeling objective using a corpus composed solely of phosphosite-related peptide

sequemnces.

3.4.4.1 Dataset

For this task, we employed two datasets described in Section [3.4.2.1) those are:
UnlabeledPS and DARKINHomologs (For details please see Paragraph [3.4.2.1.1|and

Paragraph |3.4.2.1.2))
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3.4.4.2 Pre-Training Details

We trained two separate ESM-1b models, one on UnlabeledPS dataset and
the other on DARKINHomologs dataset, by loading ESM-1b’s configuration
(via AutoConfig.from_ pretrained(’facebook/esmlb_t33_650M_UR50S’)), en-
suring that no pre-trained weights were loaded and all parameters were randomly
initialized. Models were then trained for 100 epochs on the MLM objective by op-
timizing Ly computed over masked tokens (please see Equation . Figure

demonstrates the pre-training process.

Predicted Peptides [ =0} [ ¢ [\ K 1 B G B H M V R :
MLM Head P

3

2

e

1

ESM-1b is pre-trained | © :

Re-initialized ESM-1b on MLM objective. ;

nputPeptides (=) L) £ [MASK] Mask)) - (el OF) & 0 ;

Figure 3.5 Randomly initialized ESM-1b model is pre-trained to predict masked
amino acids. The model’s predictions are compared with the real sequences using the
MLM loss (See Equation , and the model is updated until the loss is minimized.

We used the AdamW optimizer with a learning rate of 5 x 107, a batch size of
64 (4-step gradient accumulation for an effective batch size of 256), and a masking
ratio of 0.15. 10% of each dataset was held out for evaluation, and performance was
tracked via perplexity. Perplexity decreased from 13.51 to 2.20 on UnlabeledPS and
from 12.32 to 1.44 on DARKINHomologs.

3.5 Approaches to Enhance Kinase Representations

As noted in Section 3.4 pLMs encode general biological information about a peptide

sequence, which may result in overlooking domain-specific knowledge. To integrate

kinase-specific information, we developed five variants of kinase-aware models by

leveraging ESM-1b, kinase domain sequences, and additional features of kinases.
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o Group Classification Fine-tuning — a multi-class classification task that focuses

on predicting the group of a given kinase.

o Family-level Contrastive Learning — contrastive fine-tuning to increase the

intra-family similarity while maximizing inter-family separation.

o Group-level Contrastive Learning — contrastive fine-tuning designed to boost

intra-group cohesion while maximizing inter-group separation.
o Kinase-specific MLM Fine-tuning — adapting ESM-1b on MLM objective

o Kinase-specific MLM Pre-training — training ESM-1b from scratch on MLM

objective.

These experiments output five models, and we shared them on HuggingFace. We

detailed datasets and training protocols in the following sections.

3.5.1 Fine-Tuning of ESM-1b on Kinase Group Prediction

Kinases within the same phylogenetic group exhibit conserved catalytic mechanisms,
activation-loop motifs, and substrate specificities. To encourage ESM-1b’s encoder
to capture these higher-order patterns, we introduced an auxiliary multi-class clas-
sification task: given a kinase’s primary sequence, predict its membership among
the ten established kinase groups. This objective guides the model to learn repre-
sentations that reflect both sequence-level features and group-level functional rela-

tionships.

3.5.1.1 Dataset

We used the domain sequences of 392 human kinases belonging to ten kinase groups.
The kinase group information was obtained from [Manning et al.| (2002). We named

the dataset KinaseGroups.

3.5.1.2 Fine-tuning Details
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We fine-tuned ESM-1b by appending a classification head that predicted the kinase
group from a given kinase sequence. Model parameters were updated with the stan-
dard softmax cross-entropy loss computed between the predicted group probabilities

and the ground-truth labels. Softmax cross-entropy loss is formulated as:

LN
(3.8) Lcg = —N;bgpe (gi | wz‘),

?

where g¢; is the true group of given kinase z;.

Training was performed with the AdamW optimizer (learning rate 5 x 107°, batch
size 8) over three epochs. On the held-out 15% test split of the kinase dataset,
the model achieved an Fl-score of 0.82 and an accuracy of 0.92. The network

architecture is shown in Figure [3.6]

Predicted True
Probabilities Labels

0.1 AGC

0.2 TK

Kinases Labels
[ =
2
® 2,
cmec ———»  General Purpose 28
...VYDLSTLFVQ... ESM-1b § ae
(5}

0.6 [evete

0.1 TKL

Cross Entropy Loss

ESM-1b is fine-tuned on kinase group prediction task. |

Figure 3.6 General-purpose ESM-1b model receives kinase domain sequences as in-
put. A classification head on top of the encoder predicts the kinase group. Predicted
class probabilities are compared with ground truth labels by cross entropy loss, Lcg
(See Equation ). ESM-1b encoder is updated until the loss value is converged.

3.5.2 Contrastive Fine-Tuning of ESM-1b on Family /Group Based Kinase

Triplets

To reveal the distinctive features of kinases and to increase the distance between
family(or group) clusters, we fine-tuned the ESM-1b on triplets of kinase sequences:
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an anchor kinase, a positive kinase from the same family (or group), and a negative
kinase drawn from a different family (or group). In this way, we aimed to have the
model learn more discriminative kinase representations by pushing the embeddings
of different families (or groups) farther apart and clustering the embeddings of the

same families (or groups) more tightly through contrastive loss.

3.5.2.1 Dataset

We constructed two kinase triplet datasets. One of them was based on family

membership, and the other one was based on group membership.
Each triplet (z4,2p,%y) consisted of the domain sequences of:
e an anchor kinase x,

« a positive kinase z;, that shared the same family (or group) with z,, and

phosphorylated the same residue type (S, T, or Y),

* a negalive kinase z,, that was from a different family (or group) yet phospho-

rylated the same type of residue.

Putting a negative kinase into a triplet in which the anchor and positive kinase
phosphorylated a different type of amino acid than the negative one would provide
us with easy combinations. To prevent this and obtain hard negatives, we set the
“same type of residue” criterion. We truncated them into 128-length sequences due
to hardware constraints. As a result, we generated 83,000 family-based triplets and
79,000 group-based triplets. We named the dataset containing family-based triplets
FamilyTriplets and the dataset involving group-based triplets Group Triplets.

3.5.2.2 Fine-tuning Details

By using family-based and group-based triplet datasets, we fine-tuned two ESM-1b
models. The triplets (24,2p,z,) were fed into models to maximize the similarity
between z, and x,, while maximizing the distance of z, to them. The learning

process was controlled by InfoNCE Loss. This loss function is formulated as:
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1Y exp (Sim(hamhpi)/T)
(3.9)  Linfonce = —— > _log . /
e Ni= “exp (am(hai,hpi)/T) 5 exp (mm(hai,hnj)/T)

Y

where hg, hy, hy, € R? correspond to the L2-normalized final hidden representations
produced by ESM-1b for the anchor, positive, and negative samples respectively,

sim(-,-) corresponds to cosine similarity function and 7 corresponds to temperature.

We fine-tuned the models for six epochs by employing the AdamW optimizer. Learn-
ing rate was set to 1 x 107, and the batch size was 512. Figure shows the

fine-tuning process.

&
— T
Output Kinase Triplets . dar ‘

AKT1 AKT2 ALK

Kinases from Same Family (Group) Kinase from Distinct Family (Group)

I ESM-1b is fine-tuned to minimize
intra-family(group) distance and
maximize inter-family(group) distance.

General Purpose ESM-1b

|

— o e~ %
d: /—\
Input Kinase Triplets

AKT1 AKT2 ALK

InfoNCE Loss

Kinases from Same Family (Group) Kinase from Distinct Family (Group)

Figure 3.7 ESM-1b, having pre-trained weights, takes kinase triplets as inputs. Two
of the kinases are from the same family (or group), and the other is from a distinct
family (or group). The model is fine-tuned to maximize inter-family (or group)
and minimize intra-family (or family) distance. Input and output similarities are
compared by InfoNCE Loss, LmfoncE (See Equation . Model is updated until
the loss converges.

3.5.3 Fine-Tuning of ESM-1b on Masked Language Modeling Objective

To specialize ESM-1b for kinase domains, we fine-tuned its transformer encoder on
the masked language modeling (MLM) objective using both kinase domain sequences

and their homologs. This targeted MLM training enables the model to internalize
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residue-level conservation patterns and activation-loop motifs that underlie kinase
function. By incorporating homologous variants, the resulting embeddings capture
subtle functional distinctions across the kinome while retaining the broad contextual

knowledge acquired during the original pre-training.

3.5.3.1 Dataset

For each kinase domain sequence employed in DARKIN, we obtained 1000 homolo-
gous sequences identified via PSI-BLAST (two iterations, > 30 % identity, E-value
< le-5) (Kuru et al, [2022)). To prevent duplication, identical homologs were consol-
idated into one representative sequence. Moreover, due to hardware constraints, we
truncated the sequences to a maximum of 200 amino acids long, taking into account
the inclusion of kinase active sites. In the end, the kinase homologs dataset contains

204,437 sequences. We named this dataset KinaseHomologs.

3.5.3.2 Fine-tuning Details

We fine-tuned ESM-1b on the kinase homologs dataset with an MLM objective
(masking probability 0.15), using an MLM head to predict masked tokens and up-

dating all encoder parameters by minimizing cross-entropy loss over masked tokens.

(Section [3.4.2] Eq. [3.6).

We employed the AdamW optimizer (a learning rate of 5x 107°). The batch size
was set to 64 with a gradient accumulation of 4, resulting in an effective batch size
of 256. The model was trained for 100 epochs. Fine-tuning process is visualized in
Figure |3.8

To monitor fine-tuned model performance, we held 10% of the dataset out as test
set. The final model achieved a decrease in perplexity from 1.37 to 1.22 on the

evaluation set.

3.5.4 Pre-Training of ESM-1b on Masked Language Modeling Objective
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Figure 3.8 ESM-1b’s weights are fine-tuned on the MLM objective. Kinase homolo-
gous sequences are randomly masked, and the model is trained to predict the masked
amino acids by minimizing cross-entropy loss over masked positions.

Cross Entropy Loss

To obtain representations that reflect kinase-specific biochemistry, we trained a ran-
domly initialized ESM-1b model on the MLM objective using only human kinase
domain sequences and their homologs. This domain-focused pre-training was ex-
pected to enable the transformer layers to internalize sequence motifs and conserved

patterns that were characteristic of kinase catalytic domains.

3.5.4.1 Dataset

We used the KinaseHomologs dataset described in Section for pre-training.

3.5.4.2 Pre-Training Details

We initialized the ESM-1b transformer architecture with random weights and pre-
trained it from scratch on the MLM objective. Training ran for 100 epochs, op-
timizing the cross-entropy loss over masked residues (see Equation , using the
same optimizer, learning rate, batch size, and validation protocol detailed in Sec-
tion [3.5.3.2] The overall pre-training workflow is illustrated in Figure [3.9

We held out 10% of the data as an internal test set, on which perplexity dropped
from 1.77 to 1.35.
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Figure 3.9 ESM-1b is pre-trained from scratch on the MLM objective by using kinase
homologous sequences. The model’s parameters are randomly initialized and then
optimized to reconstruct masked amino acids by minimizing cross-entropy loss.

Before moving on to the next section, we summarized phosphosite- and kinase-aware
models in Table 3.3]
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3.6 Experimental Setup

The experimental setup was designed to assess the effects of:
o peptide representations obtained from the adapted pLMs
o progressively re-initializing transformer layers
« employing a transformer for representation learning

in our zero- and few-shot kinase-phosphosite prediction approaches.

3.6.1 Zero- and Few-shot Learning Setups

The zero- and few-shot prediction models—whose architectures are detailed in Sec-
tions [3.1) and [3.2}—each accept two inputs: a 15-residue peptide sequence centered

on the phosphosite and the corresponding kinase.

In both the zero-shot and few-shot experiments, kinase embeddings were precom-
puted using the domain-adapted ESM-1b variants described in Section and held
fixed throughout training. Consequently, no gradient updates were applied to the
kinase representations. Phosphosite sequences were encoded by a transformer ini-
tialized with weights from the adapted ESM-1b models (Section [3.4)). Unlike kinase
embeddings—which remained fixed—both the phosphosite encoder and the bi-linear
interaction parameters were updated during training according to the configurations
detailed in Section As a result, task-specific gradient updates continually re-
fined the phosphosite representations throughout both learning paradigms.

BZSM and BFSM were trained for 100 epochs by employing hyperparameters, of
which the best combinations were found by random search. The hyperparameter
tuning process was detailed in the following Section [3.6.1.1]

3.6.1.1 Hyperparameter Tuning
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Table 3.4 Hyperparameters and their ranges used to tune BZSM.

Hyperparameter Values (in a range)

Batch Size 64, 128, 256

Optimizer Adam, SGD, RMSProp

Learning Rate [1x1076  0.1]

Learning Rate Scheduler ExponentialL.R, StepLLR, CosineAnnealinglL.LR
Momentum [0.95 , 0.9999]

Weight Decay [1x107°, 0.01]

We optimized training hyperparameters via a randomized search over the DARKIN
Splitl (seed 12345) training and validation sets. Throughout tuning, both phos-
phosite and kinase inputs were encoded using the base ESM-1b model. Candidate
configurations were sampled from the ranges listed in Table [3.4] Hyperparameter
optimization was conducted exclusively on the BZSM, and the optimal settings were
then applied to the BFSM.

The hyperparameter configuration that achieved the highest AP on the validation
set consisted of a batch size of 64, the SGD optimizer with a learning rate of 0.01, a

CosineAnnealingLR scheduler, momentum of 0.97, and a weight decay of 1 x 1074

3.6.1.2 Kinase Additional Features

In Section we described the datasets for our zero- and few-shot frameworks and
noted that we augmented kinase embeddings with additional features: kinase family,
kinase group, and Enzyme Commission (EC) number. Each feature was encoded as
a one-hot vector and concatenated to the corresponding kinase domain embedding

to enrich the representation.

3.6.2 Configurations of Transformer Module in Zero- and Few-Shot Pre-

diction Setup

To optimize phosphosite-aware models for our zero- and few-shot prediction tasks,

we designed a series of experiments across multiple protocols:

o Random initialization: All transformer weights were reset and trained from
scratch.
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o Full fine-tuning: All transformer weights were updated during downstream

training.

o Partial re-initialization: Six cumulative reset experiments were designed. In
each experiment k € {1,...,6}, we reset the top k transformer layers to random

weights and loaded the remaining layers from the adapted checkpoints:
— k=1: reset layer 32
— k =2: reset layers 31-32
— k= 3: reset layers 30-32
— k =4: reset layers 29-32
— k =05: reset layers 28-32
— k =6: reset layers 27-32

For each re-initialized layer, we used Xavier (Glorot) uniform initialization (Glorot

and Bengio, 2010)), sampling each weight W;; from

6
1 o~ U(— S R B
(3.10) Wij Z/{( «, a), o Fan T fan”

Y

where fan;, and fang, are the number of input and output units of the layer.
Xavier initialization preserves the variance of activations and back-propagated gra-
dients in a roughly constant manner across layers, which prevents vanishing or ex-

ploding gradients.
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4. RESULTS

This chapter presents performance results obtained with models trained in zero-
and few-shot settings for the dark kinase-phosphosite association task. First, we
benchmark phosphosite-aware adaptations of ESM-1b—holding kinase embeddings
fixed—to quantify their impact on prediction performance. Next, we fix the two
top-performing phosphosite models as backbones and introduce kinase-aware adap-
tations to evaluate their benefit. Together, these experiments identify the optimal
pairing of phosphosite and kinase language models. We compare our best setups
with state-of-the-art approaches and present ablation studies on the components of
the final model.

Throughout this section, we will use abbreviations to refer to each adapted model.
We encoded the name of each model as Objective(or Task)- Training Method—Dataset.
Abbreviations for each of them are provided in Table 1. The adapted models

evaluated in this section are listed in Table [4.2]

Table 4.1 Adapted model name components and their abbreviations.

Component Abbreviation Description
BC Binary Classification
MC Multi-class Classification
L MT Multi-task Learning
Objective / Task 1\ Masked Language Modeling
CL Contrastive Learning
GP General-purpose ESM-1b
.. FT Fine-tuning on the task dataset
Training Method PT Pre—trainingg from scratch
BinaryPhPrediction 15-residue peptides (positive/negative phosphorylation labels)
UnlabeledPS Unlabeled phosphosite-containing peptides
Dataset DARKINHomologs DARKIN phosphosite peptides plus homologs
KinaseGroups 392 human kinase domain sequences with group labels
KinaseHomologs Kinase domains plus their homologous sequences
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Table 4.2 Adapted phosphosite- and kinase-aware ESM-1b models released on Hug-

ging Face.

Domain Model Name (Abbrv.) Hugging Face Link
BC-FT-BinaryPhPrediction ESM-1b Fine-Tuned Phosphorylation Prediction
MLM-FT-UnlabeledPS ESM-1b Fine-tuned on MLM Objective (UnlabeledPS)

Phosphosit MLM-FT-DARKINHomologs ESM-1b Fine-tuned on MLM Objective (DARKINHomologs)

OSPHOSIE [T FT_Binary& UnlabeledPS  ESM-1b Fine-tuned on Multi-task Objective

MLM-PT-UnlabeledPS ESM-1b Pre-trained on MLM Objective (UnlabeledPS)
MLM-PT-DARKINHomologs ESM-1b Pre-trained on MLM Objective (DARKINHomologs)
MC-FT-KinaseGroups ESM-1b Fine-tuned on Kinase Group Prediction Task
CL-FT-FamilyTriplets Contrastive Fine-tuning of ESM-1b on Family-wise Triplets

Kinase CL-FT-GroupTriplets Contrastive Fine-tuning of ESM-1b on Group-wise Triplets

MLM-FT-KinaseHomologs
MLM-PT-KinaseHomologs

ESM-1b Fine-tuned on MLM Objective (Kinase Homologs)
ESM-1b Pre-trained on MLM Objective (Kinase Homologs)

4.1 Baseline

We conducted two baseline experiments to establish a reference point so that we
could understand the impact of adapted ESM-1b models on zero- and few-shot
prediction performance. In these experiments, we obtained the phosphosite and
kinase representations from general-purpose (GP) ESM-1b. We ran the experiments
by: i) resetting the ESM-1b and training from scratch on phosphosites in parallel
with BZSM (or BFSM) training; ii) fully fine-tuning the ESM-1b for phosphosites

while simultaneously training BZSM (or BFSM). The results are shown in Table

Table 4.3 Zero- and few-shot AP scores for baseline kinase-phosphosite models.
Kinase embeddings are frozen, while phosphosite sequence embeddings are either
i) randomly re-initialized and trained from scratch (denoted “—”) or ii) fully fine-
tuned.)

Phosphosite Model ZSL-AP FSL-AP
Model(ESM-1b) Config

- All Layers Re-init. | 0.2192 | 0.2208
GP Full-F'T 0.1808 0.2140

Surprisingly, the ESM-1b initialized with random weights outperformed the general-
purpose ESM-1b, which was fine-tuned on our zero- and few-shot classification tasks.
This showed that the general representations learned by ESM-1b may not capture

the subtle domain-specific features required for our task.
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https://huggingface.co/isikz/phosphorylation_binaryclassification_esm1b
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4.2 Impact of Task-Aware Phosphosite Representations

This section evaluates the impact of phosphosite-aware embeddings on zero- and
few-shot kinase—phosphosite prediction. Kinase sequences were encoded with frozen,
general-purpose (GP) ESM-1b embeddings, while phosphosite embeddings were var-
ied across alternative embeddings. In this way, the contributions of task awareness

in the phosphosite representations on performance changes were evaluated.

Table 4.4 Zero- and few-shot kinase—phosphosite prediction AP scores using various
phosphosite encodings. “Model Config” denotes whether the phosphosite ESM-1b is
initialized randomly (from scratch) or fully fine-tuned. Kinase embeddings remain
fixed to GP ESM-1b encodings. The first two rows are baseline models; subsequent
rows show task-aware phosphosite variants.

Phosphosite Model ZS1L-AP FSL-AP
Model (ESM-1b) Config

- All Layers Re-init. | 0.2192 0.2208

GP Full-FT 0.1808 0.2140

BC-FT-BinaryPhPrediction 0.1967 0.2090

MLM-FT-UnlabeledPS 0.1953 | 0.2052

MLM-FT-DARKINHomologs FUllFT 0.2079 | 0.2157

MT-FT-BinaryPhPrediction&Unlabeled PS 0.2066 0.2136

MLM-PT-UnlabeledPS 0.2197 | 0.2418
MLM-PT-DARKINHomologs 0.2267 | 0.2295

As Table shows, phosphosite-specific pre-training yielded the strongest embed-
dings for both zero- and few-shot prediction. Both of these outperformed the task-
agnostic ESM-1b baseline. We interpreted these results as showing that phosphosite-
dedicated pre-training enabled pLMs to produce more informative and richer phos-

phosite embeddings than fine-tuning.

Considering all phosphosite-aware pLMs together, each outperformed GP ESM-
1b under both zero- and few-shot regimes. These findings demonstrated that
task-aware phosphosite embedding contributes to improving the prediction of ki-

nase—phosphosite association by capturing nuances related to phosphosites that GP
ESM-1b may overlook.

4.3 Impact of Task-Aware Kinase Representations
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This subsection evaluates the effect of varying kinase embeddings on zero- and
few-shot kinase—phosphosite prediction. For kinases, we substituted frozen rep-
resentations from each of our kinase-aware pLMs in turn. For phosphosites, we
employed the two best-performing phosphosite models from Section (MLM-PT-
UnlabeledPS and MLM-PT-DARKINHomologs), and fully fine-tuned them in our
zero- and few-shot prediction tasks. Comparing the resulting AP scores revealed

which kinase-focused model delivers the best performance.

Table [4.5] and Table [4.6|show that the MLM-FT-KinaseHomologs pLM provided the
best representations to BZSM and BFSM.
Table 4.5 Impact of kinase-aware embeddings on zero- and few-shot AP scores.

The phosphosite model (MLM-PT-UnlabeledPS) is fully fine-tuned, while kinase
embeddings are frozen and replaced by six kinase-aware pLM variants.

Phosphosite Model Kinase ZSL-AP FSL-AP

Model (ESM-1b) Config Model (ESM-1b)

- All Layers Re-init. ap 0.2192 0.2208

MLM-PT-UnlabeledPS | Full-FT 0.2197 | 0.2418
MC-FT-KinaseGroups 0.1317 0.1421
CL-FT-GroupTriplets 0.2158 0.2367

MLM-PT-UnlabeledPS | Full-FT CL-FT-FamilyTriplets 0.2234 | 0.2389
MLM-FT-KinaseHomologs | 0.2359 | 0.2729
MLM-PT-KinaseHomologs | 0.0797 0.0983

Table 4.6 Impact of kinase-aware embeddings on zero- and few-shot AP scores. The
phosphosite model (MLM-PT-DARKINHomologs) is fully fine-tuned, while kinase
embeddings are frozen and substituted from six kinase-focused frozen pLM variants.

Phosphosite Model Kinase ZSL-AP FSL-AP

Model (ESM-1b) Config Model (ESM-1b)

- All Layers Re-init. GP 0.2192 0.2208

MLM-PT-DARKINHomologs | Full-FT 0.2267 | 0.2295
MC-FT-KinaseGroups 0.1326 0.1021
CL-FT-GroupTriplets 0.2209 0.2237

MLM-PT-DARKINHomologs | Full-FT CL-FT-FamilyTriplets 0.2305 | 0.2318
MLM-FT-KinaseHomologs | 0.2404 | 0.2488
MLM-PT-KinaseHomologs | 0.1016 0.1782

While pre-training on the MLM objective resulted in better representations for phos-
phosites, the same strategy did not work for kinases. The reason might be data di-
versity: our corpus—a392 human kinase domains plus their homologs— may lack the
diversity needed for the model to learn discriminative catalytic features. Fine-tuning
GP ESM-1b on the kinase homologs set, however, leveraged the broad contextual
prior and yielded the stronger kinase representations, raising performance in both

evaluation regimes.

Family-level contrastive fine-tuning (CL-FT-FamilyTriplets) clustered kinases
within the same family while separating different families and outperformed the
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general-purpose baseline, presumably by reducing mis-assignments across families.
However, group-level contrastive learning (CL-FT-GroupTriplets) underperformed.
The reason may be that merging many biologically distinct families into only ten
broad groups forced the model to pull together kinases that differ in catalytic mo-
tifs and substrate preferences. This may blur family-specific cues in the embedding

space and ultimately lower AP.

Similarly, the multi-class group classifier (MC-FT-KinaseGroups) offered no benefit,
indicating that 392 sequences spread across ten classes provide insufficient signal for

meaningful adaptation.

4.4 Experiments with Best Combinations of Task-Aware Models on

Distinct DARKIN Splits

This section presents the results of experiments that we conducted to test the ro-
bustness to zero- and few-shot class distributions of our approach. Until this point,
we used one DARKIN split (Split 1 - seed 12345) for experiments. To verify that
the gains observed in Split 1 were not valid for a single training-test partition, we
repeated the evaluation on three additional DARKIN splits generated with seeds 0,
42, and 87. The results are shown in Table [£.7]

For each split, the two task-aware pLMs combinations; MLM-PT-UnlabeledPS
& MLM-FT-KinaseHomologs and MLM-PT-DARKINHomologs & MLM-FT-
KinaseHomologs outperformed the GP ESM-1b baselines in both zero-and few-shot
predictions, which confirmed that the improvements were robust to zero- and few-

shot class distributions.
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Table 4.7 Zero- and few-shot AP scores on four DARKIN splits. Experiments are
conducted by leveraging the two best task-aware model combinations. The phospho-
site models are fixed to MLM-PT-UnlabeledPS and MLM-PT-DARKINHomologs,
and both are fully fine-tuned. The kinase representations are provided by MLM-
FT-KinaseHomologs pLM and frozen. The first two rows for the results of each split
provide the baseline.

Split Phosphosite Model Kinase ZSL-AP FSL-AP
Model (ESM-1b) Config Representation
- All Layers Reinit. ap 0.2192 0.2208
GP Full-FT 0.1808 | 0.2140
Split 1 | MLM-PT-UnlabeledPS Full-FT , - 0.2359 | 0.2729
MLM-PT-DARKINHomologs | Full-FT MLM-FT-KinaseHomologs | 5104 | 2488
- All Layers Reinit. aP 0.2352 0.2308
GP Full-FT 0.1907 | 0.2004
Split 2 [ MLM-PT-UnlabeledPS Full-FT , _ 0.2459 | 0.2501
MLM-PT-DARKINHomologs | Full-FT MLM-FT-KinaseHomologs | 5 156 | 2518
- All Layers Reinit. aP 0.2099 0.2173
GP Full-FT 0.1878 | 0.1886
Split 3 | MLM-PT-UnlabeledPS Full-FT , . 0.2198 | 0.2386
MLM-PT-DARKINHomologs | Full-FT MLM-FT-KinaseHomologs | o964 | .2307
- All Layers Reinit. ap 0.2389 0.2294
GP Full-FT 0.2231 | 0.2213
Split 4 [ MLM-PT-UnlabeledPS FullFT . 0.2604 | 0.2542
MLM-PT-DARKINHomologs | Full-FT MEM-FT-KinaseHomologs | o505 | 9481

4.5 Ablation Study on Partial Fine-tuning and Partial Re-initialization

This section presents the experiments conducted to understand whether re-
initializing only the top transformer layers (from layer 32 to 27) of the phospho-
site encoder could enable phosphosite-aware models to adapt better specifically
our zero- and few-shot prediction task. We employed the two task-aware pLMs
combinations; MLM-PT-UnlabeledPS & MLM-FT-KinaseHomologs and MLM-PT-
DARKINHomologs & MLM-FT-KinaseHomologs.

Tables [£.§ and [4.9 show that fully fine-tuning the phosphosite-aware models already
outperformed the baseline results. Re-initializing just the top 1-6 layers delivered

small additional gains under a few re-initialization setups.

MLM-PT-UnlabeledPS backbone reached the best zero-shot AP of 0.2447 on the
experiment conducted by resetting layers [27-32]; the best few-shot AP of 0.2746 in
the resetting layers [29-32] setup. MLM-PT-DARKINHomologs backbone obtained
0.2438 zero-shot AP when layers [30-32] were re-initialized; 0.2610 few-shot AP by
resetting [27-32] layers.

Figures [4.1] and [4.2] reflect the changes in AP scores.
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Table 4.8 Effect of partial layer re-initialization in the phosphosite model MLM-PT-
UnlabeledPS. We reset the top transformer layers (e.g. “32-Reinit.” means only layer
32 is re-initialized) and the remaining layers are fine-tuned. AP scores are reported
for zero-and few-shot evaluation.

Phosphosite Model Kinase ZSL-AP FSL-AP
Model (ESM-1b) Config Model (ESM-1b)
- All Layers Reinit. GP 0.2192 0.2208
GP Full-FT 0.1808 0.2140
- All Layers Re-init. . 0.2284 0.2292
MIMLPT UnlabeledPS | Full FT MLM-FT-KinaseHomologs | - 9359 | 9729
32-Reinit. 0.2408 0.2688
31,32-Reinit. 0.2393 0.2704
30,31,32-Reinit. . 0.2391 0.2736
MLM-PT-UnlabeledPS 99.30.31 32-Reinit. MLM-FT-KinaseHomologs 0.2408 | 0.2746
28,29,30,31,32-Reinit. 0.2364 0.2700
27,28,29,30,31,32-Reinit. 0.2447 0.2732

o 3(I)Effect of Partial Re-initialization (MLM-PT-UnlabeledPS Backbone)
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Figure 4.1 Effect of partial re-initialization of top transformer layers using the MLM-
PT-UnlabeledPS phosphosite backbone. The x-axis labels indicate which layers
(from layer 32 downward) are re-initialized. “[32]” means resetting only layer 32,
“[31-32]” means resetting layers 31-32, and so on; “[0-32]” means resetting all layers.
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Table 4.9 Effect of partial layer re-initialization in the phosphosite model MLM-PT-
DARKINHomologs. We reset the upper layers of the transformer, and the remaining
layers are fine-tuned. AP scores are reported for zero-and few-shot evaluation.

Phosphosite Model Kinase ZSL-AP FSL-AP
Model (ESM-1b) Config Model (ESM-1b)

- All Layers Reinit. ap 0.2192 0.2208

GP Full-FT 0.1808 | 0.2140

- All Layers Re-init. . 0.2284 0.2292

MLM-PT-DARKINHomologs | Full-FT MLM-FT-KinaseHomologs | o154 | () 9488

32-Reinit. 0.2405 0.2554

31,32-Reinit. 0.2366 | 0.2545

, 30,31,32-Reinit. . . 0.2438 | 0.2564

MLM-PT-DARKINHomologs 29.30.31,32-Reinit. MLM-FT-KinaseHomologs 0.2353 0.2568

28,29,30,31,32-Reinit. 0.2372 | 0.2557

27,28,29,30,31,32-Reinit. 0.2422 | 0.2610
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Figure 4.2 Effect of partial layer re-initialization in the phosphosite model MLM-
PT-DARKINHomologs. We reset the upper transformer layers and the rest of the
layers are fine-tuned. AP scores are reported for zero- and few-shot evaluation.

The effect of re-initialization is modest across the two best-performing phosphosite
backbones. Resetting only the final layers may allow phosphosite-aware pLMs to
specialize in the high-level features of phosphosites such as kinase-specific recognition

motifs, while preserving residue-level bias learned from MLM pre-training.

4.6 Comparison with the Literature
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There is only one deep learning based study that handles kinase-phosphosite as-
sociation prediction as a zero-shot multi-class classification problem, DeepKinZero
(DKZ), proposed by our lab (Deznabi et al., [2020). DKZ takes the representa-
tions of kinase and 15-residue peptides containing phosphosites as input. During
training, it refines the phosphosite representations by employing an LSTM module
during the training of BZSM. We also consider the Kinase Library, which focuses
on kinase-substrate relationships. This library was developed based on the studies
conducted by [Johnson et al. (2023); Yaron-Barir et al.| (2024)). |Johnson et al.| (2023))
and Yaron-Barir et al. (2024) experimentally determined substrate specificities for
S/T and Y kinases, respectively. These studies generated Position-Specific Scor-
ing Matrices (PSSMs) reflecting kinase motif preferences. For a given phosphosite
sequence, these motif PSSMs allow matching of the phosphosite to its most likely

upstream kinase.

To compare our method with the literature, we designed three comparison protocols:
i) evaluating task-aware representations on DKZ; ii) comparing our transformer-
based pipeline with DKZ; iii) evaluating S/T kinases and Y kinases predictions
separately by employing the Kinase Library, DKZ, and our method.

i) Evaluating task-aware representation on DeepKinZero: In DKZ, we
used our best-performing task-aware phosphosite and kinase representations (MLM-
PT-UnlabeledPS, MLM-PT-DARKINHomologs, and MLM-FT-KinaseHomologs),
which resulted in higher AP scores compared to the DKZ experiment leveraging
general-purpose ESM-1b representations. Table demonstrates the prediction

performances.

Table 4.10 Effect of using phosphosite-and kinase-aware representations on DKZ’s
performance. The DKZ architecture remains unchanged, while the phosphosite and
kinase representations are swapped among ESM-1b variants. AP is reported for
zero-shot and few-shot evaluation.

Phosphosite Kinase ZSL-AP FSL-AP
Model (ESM-1b) Model (ESM-1b)

GP GP 0.1966 0.2167
MLM-PT-UnlabeledPS MLM-FT-KinaseHomologs | 0.2015 | 0.2206
MLM-PT-DARKINHomologs | MLM-FT-KinaseHomologs | 0.2041 | 0.2298

These results confirmed that phosphosite- and kinase-aware peptide representations

provide richer information to the kinase-phosphosite prediction downstream task.

ii) Comparing our transformer-based pipeline with DeepKinZero: Us-

ing exactly the same task-aware phosphosite and kinase embeddings (MLM-PT-

UnlabeledPS, MLM-PT-DARKINHomologs, and MLM-FT-KinaseHomologs), our
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transformer-based prediction method consistently outperformed the original DKZ
pipeline. The results are shown in Table 4.11}

Table 4.11 Comparison of our prediction method with DKZ using identical
task-aware embeddings (MLM-PT-UnlabeledPS, MLM-PT-DARKINHomologs, and

MLM-FT-KinaseHomologs). AP is reported for both zero- and few-shot settings.

Phosphosite Model Kinase ZSL-AP FSL-AP
Model (ESM-1b) Config Model (ESM-1b)

(DKZ) Full-FT | | - . 0.2015 | 0.2206

MLM-PT-UnlabeledPS (Our) Full-FT MLM-FT-KinaseHomologs 0.2359 | 0.2729

| (DKZ) Full-FT o | 0.2041 | 0.2298

MLM-PT-DARKINHomologs (Our) Full-FT MLM-FT-KinaseHomologs 0.2404 | 0.2488

These results demonstrated that our transformer—based prediction strategy can ben-
efit from the same embeddings more effectively than an LSTM-based prediction
pipeline, which is thanks to the ability of transformers to attend and encode to

long-range residue dependencies.

iii) Evaluating S/T kinases and Y kinases predictions separately by em-
ploying the Kinase Library, DeepKinZero, and our method: Since the
Kinase Library performs the kinase-phosphosite predictions for S/T and Y kinases
separately, we partitioned our test set into S/T-only and Y-only subsets. S/T-only
subset contains 1046 kinase-phosphosite associations, while the Y-only subset con-
tains 199. We verified that none of the evaluation kinases appear in the original
Kinase Library motif catalogue. Then, each subset was used to evaluate: i) Ki-
nase Library, ii) DKZ employing the best-performing task-aware embeddings, and
iii) our transformer pipeline leveraging the best-performing task-aware embeddings.
The results are reported in Table[d.12] Since we could not provide few-shot samples
to the Kinase Library beforehand the evaluation, we did not report the few-shot

evaluation for it.

Table 4.12 Comparison of our prediction model with the literature on S/T and Y
subsets. AP is reported separately for S/T and Y test sets under zero- and few-shot
setups.

Phosphosite Model Kinase ZSL-AP FSL-AP
Model (ESM-1b) Config Model (ESM-1b) S/T Y S/T Y

- Kinase Library | - 0.1524  0.3294 - -
T (DKZ) Full-FT | - . 0.1977  0.3424 | 0.2182  0.3898
MLM-PT-UnlabeledPS (Our) Full-FT MLM-FT-KinaseHomologs 0.2258 0.4345 | 0.2578 0.4793
T | (DKZ) Full-FT | | - S | 0.2005 0.3396 | 0.2213  0.3853
MLM-PT-DARKINHomologs (Our) Full-FT MLM-FT-KinaseHomologs 0.2291 0.4222 | 0.2301 0.4865

The results showed that learning-based approaches, DeepKinZero and our method
surpassed the motif-based approach Kinase Library on S/T and Y test sets. The

motif-based approach depends its decision on phosphosite motif similarity so that
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it might not capture the distinctive signals on phosphosite sequences. However,
learning-based approaches can optimize the kinase and phosphosite representations
and encode broader context, which caused higher prediction performance for S/T

and Y kinases.

AP scores on the S/T subset are consistently lower than AP scores on the Y subset.
Johnson et al.| (2023); |Yaron-Barir et al.| (2024) supported the intuition that the S/T
branch is intrinsically harder because of motif overlap in S/T kinases and sharper
specificity in Y kinases. In the study presented by |Johnson et al. (2023), more than
half of all S/T kinases fall into three broad classes (CAMK, acidophilic, and pro-
directed). When many kinases map to the same short motif, the decision boundaries
become unsharpened, which causes lower AP scores. In contrast, the profile of Y
kinases shows that their intrinsic substrate motifs are more discriminative (Yaron-
Barir et al., 2024), which yielded higher AP scores on the Y subset.

In all comparison protocols, our approach reached the highest AP scores. Two main

elements supported this success:

o Task-aware peptide embeddings that encode phosphosite- and kinase-specific

signals

o Fine-tuning task-aware peptide embeddings on the kinase-phosphosite predic-

tion task via transformer

4.7 Comparison with DARKIN Benchmark

In our previous study, DARKIN, we evaluated zero-shot dark-kinase prediction with
frozen pLM embeddings for both kinase and phosphosite sequences. For reference,

those baseline results are reproduced in Table [4.13

The results show the limitation of frozen general-purpose embeddings in low-data
settings: for ESM-1b, AP reached 0.1746. When we replaced it with task-aware
embeddings obtained through MLM fine-tuning and pre-training, and retrained the
phosphosite encoder within our transformer-based pipeline, zero-shot prediction per-
formance rose to 0.2359 for MLM-PT-UnlabeledPS & MLM-FT-KinaseHomologs
pLM combination and to 0.2404 for MLM-PT-DARKINHomologs & MLM-FT-
KinaseHomologs pLM combination (please see Tables and . Applying the

layer-wise re-initialization strategy on the top transformer blocks yielded a further
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Table 4.13 The bi-linear zero-shot model performance trained with phosphosite and
kinase sequence embeddings-enriched with additional kinase information. The mean
macro APs are shown. Of CLS and embedding averaging, only the best-performing
model results are listed.

Embedding ‘ Base ‘ + Family ‘ + Group ‘ + EC ‘ + Family + Group + EC
OneHotEnc 0.0634 0.1107 0.0832 0.0802 0.1098
Blosum62 0.0327 0.0318 0.0310 0.0337 0.0323
NLF 0.0419 0.0391 0.0425 0.0400 0.0426
ProtVec 0.0959 0.1262 0.1129 0.1214 0.1354
ProtBERT (cls) 0.0842 0.1170 0.1077 0.1132 0.1273
ProteinBERT 0.1236 0.1506 0.1215 0.1367 0.1359
ProtT5-XL 0.1552 0.1701 0.1531 0.1674 0.1731
ESM1B (cls) 0.1631 0.1740 0.1688 | 0.1680 0.1769
ESM1v (cls) 0.1640 | 0.1737 0.1653 0.1652 0.1734
ESM2 (avg) 0.1391 0.1588 0.1453 0.1496 0.1638
DistilProtBERT (cls) 0.1167 0.1360 0.1292 0.1287 0.1441
ProtGPT2 0.1333 0.1476 0.1412 0.1419 0.1557
Ankh-Large 0.0840 0.1417 0.1135 0.1178 0.1594
ProtAlbert (cls) 0.1281 0.1269 0.1276 0.1285 0.1372
SaProt (cls) 0.1292 0.1696 0.1424 0.1434 0.1800
TAPE 0.1237 0.1379 0.1333 0.1310 0.1455
ISM2 (cls) 0.1200 0.1275 0.1260 0.1333 0.1374
DPLM (avg) 0.1299 0.1427 0.1318 0.1368 0.1420
AMPLIFY (avg) 0.0896 0.0968 0.0944 0.0969 0.1066
ESM3 (cls) 0.0881 0.1484 0.1220 0.1238 0.1611
ESMC (cls) 0.0866 0.1672 0.1136 0.1401 0.1754
PTM-Mamba (phosphosite)* 0.1218 0.1432 0.1292 0.1346 0.1471

“PTM-Mamba represents kinases with ESM-2 embeddings. Because the architecture
has no CLS token and assigns a dedicated special token to the phosphorylated residue,
we took the embedding of that residue as the sequence representation.

gain to 0.2447 and 0.2438, respectively. These jumps confirmed: i) task-specific
adaptation of pLMs captures biochemical cues that frozen models overlook; ii) se-
lectively re-initializing upper layers can squeeze out additional task-relevant signals

even under severe data scarcity.

4.8 Embedding Similarity Analysis

To understand how representation learning impacts the separability of peptide se-
quences in the embedding space, we computed pairwise cosine-similarity distri-
butions for both phosphosite and kinase embeddings that we used in this the-
sis. We compared the frozen general-purpose ESM-1b model against the best-
performing task-aware models we obtained; MLM-PT-UnlabeledPS and MLM-FT-

KinaseHomologs.
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For phosphosite sequences, in the general-purpose ESM-1b model, almost all phos-
phosite pairs cluster in a range of similarity score of [0.9-1.0], indicating that the
model failed to capture motif-level diversity (Figure a). After task-aware fine-
tuning, the distribution widened and shifted leftwards, revealing a greater spread of

similarities and thus improved discriminability among sites (Figure b).

Histogram of Pairwise Phosphosite Similarities (General Purpose ESM-1b) Histogram of Pairwise Phosphosite Similarities (MLM-PT-UnlabeledPS)
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Figure 4.3 Pairwise cosine-similarity histograms for phosphosite sequence embed-
dings before and after task adaptation.

For kinase domain sequences, the embeddings exhibit a narrower change, but the
mode shifts slightly to lower similarities with a longer left tail, which is shown in Fig-
ure [£.4ka and [£.4}b. This subtle shift suggests that task-aware training introduced

finer-grained distinctions between kinases while preserving coarse-grained similarity.

Histogram of Pairwise Kinase Similarities (General Purpose ESM-1b) Histogram of Pairwise Kinase Similarities (MLM-FT-KinaseHomologs)
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Figure 4.4 Pairwise cosine-similarity histograms for kinase domain sequence embed-
dings before and after task adaptation.

These findings confirmed that the task-aware models encode more informative fea-
tures, and correlated with the performance gains reported in Sections [4.2] and [4.3]
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where the task-aware models yielded the highest AP scores.

4.9 Additional Evaluations on the Best Setup

To provide a complementary view, we evaluated our best-performing setup by em-
ploying additional metrics. Thereby, when the prediction model misses the exact
kinase, considering the correct family, group, or cluster can still deliver biologically
meaningful insights, especially where fine-scale annotations are uncertain. These

metrics are:

Top@k Accuracy: As a phosphosite-focused counterpart to the kinase-centric
macro-AP, we also report Top@k Accuracy for k= 1,3, and 5. A phosphosite was
scored as correct whenever at least one of its ground-truth kinases appears within
the first k& positions of the model’s ranked list. Because a phosphosite might have
multiple valid kinases, this measure fits the multi-label setting of our task and
indicates how far a user typically needs to scan down the list to encounter a correct

prediction.

Phosphosite Average Precision (Ph-AP): Phosphosite AP is calculated in a
mirror-image fashion to macro-AP, detailed in Section For each phosphosite, we
sorted all candidate kinases according to their predicted scores, computed the AP
for that ranking, and then took the mean of these AP values across phosphosites.
This reflects how well the model orders kinases for a single phosphosite—essentially

mimicking the query experience of an end-user.

Attribute-level Metrics (Family-AP, Group-AP, and F-Grain AP): Be-
cause kinases are organized into broader functional and evolutionary categories, it is
often useful to assess predictions at those coarser levels. Accordingly, we pooled per-
phosphosite scores at three hierarchical levels—Family, Group, and a Fine-grained
Cluster level (F-Grain)—and reported both AP scores for each. After pooling, we

applied the same ranking-based formulas used for macro-AP to these attribute la-

bels.

The Fine-grained Clusters add an extra level below families and groups, defined
by phylogenetic closeness. Starting from the kinase phylogenetic tree of KinBase

(2024)), we transformed branch lengths into pairwise similarity scores, normalized
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the scores, and then clustered the kinases based on the similarity scores so that only
highly related kinases shared a cluster. Because each cluster held just a handful of

kinases, only very close relatives were grouped.

The results are shown in Table and for zero-shot and few-shot evaluations,

respectively.

Table 4.14 Zero-shot prediction results on our transformer-based prediction model.
In the general-purpose (GP) setup, both kinase and phosphosite representations
are obtained by task-agnostic ESM-1b. In the “Best” setup, phosphosite repre-
sentations are obtained from the best-performing phosphosite-aware model, MLM-
PT-UnlabeledPS, and kinase representations are obtained from the best-performing
kinase-aware model, MLM-FT-KinaseHomologs. The phosphosite encoder is fully
fine-tuned, and the kinase encoder is frozen.

Setup AP Top@l Top@3 Top@5 Phosphosite Family Group F.Grain
Acc Acc Acc AP AP AP AP

GP 0.1808 | 0.1356 | 0.3588 | 0.5386 0.3025 0.2334 | 0.4377 | 0.2008
Best | 0.2359 | 0.1601 | 0.3588 | 0.4614 0.3118 0.3113 | 0.4728 | 0.2712

Table 4.15 Few-shot performance of our transformer-based model under two evalua-
tion setups. General-purpose (GP) setup uses task-agnostic ESM-1b embeddings for
both kinases and phosphosites. The best setup uses the best-performing task-aware
embedding combination (MLM-PT-UnlabeledPS and MLM-FT-KinaseHomologs).
In both setups, phosphosite encoders are fully fine-tuned and kinase encoders are
frozen.

Setup AP Top@l Top@3 Top@5 Phosphosite Family Group F-Grain
Acc Acc Acc AP AP AP AP

GP 0.2140 | 0.1979 | 0.4117 | 0.5513 0.3573 0.2867 | 0.4382 | 0.2341

Best | 0.2729 | 0.2129 | 0.4298 | 0.5536 0.3669 0.3582 | 0.5117 | 0.3124

In zero- and few-shot experiments, the results show that Top@1 improves while
Top@3 remains unchanged or improves, and Top@5 declines or slightly improves,
indicating that early ranks become more precise (Top@1) while fewer alternative
true kinases remain inside the top five (Top@5). Phosphosite-centric AP (Ph-AP)
increases modestly, consistent with the limited kinase label space per site; however,
the large gains at family /group/cluster levels show that even when the exact kinase
is missed, the model is more often “locally correct” within the evolutionary hierarchy;,

providing still-actionable biological guidance.

Overall, the task-aware representations deliver both higher early precision and richer
hierarchical signal beyond what is obtainable from the frozen general-purpose en-

coder.
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5. CONCLUSION & FUTURE WORK

In this thesis, we proposed a novel approach for kinase-phosphosite association pre-
diction under zero-shot and few-shot settings. We leveraged several task-aware
pLMs. Our methodology addresses the key limitations in existing computational
approaches, particularly those related to effectively capturing kinase-specific and
phosphosite-specific contextual features, and improves predictions under low-data

constraints.

Firstly, we demonstrated the utility of specialized pre-training and fine-tuning
strategies in producing task-aware representations. Our experiments demonstrated
that adapting the general-purpose ESM-1b model through the MLM objective on
phosphosite- and kinase-specific datasets yielded superior embedding quality. This
context-awareness significantly improved prediction performance for zero-shot and

few-shot kinase-phosphosite predictions.

Secondly, our work revealed the advantages of using transformer-based architectures
over LSTM-based and motif-based models. The inherent capacity of transformers
to model long-range dependencies and contextual cues within protein sequences en-
abled a significant improvement in predictive performance. Furthermore, we intro-
duced a layer-selective re-initialization strategy, which further enhanced the adapt-
ability of transformers to task-specific nuances. Through this strategy, transformers

showed modest but promising improvements.

Comparisons with the literature show the effectiveness of our approach. Specif-
ically, our task-aware transformer models achieved higher predictive performance
than experiment-based approaches (Kinase Library) and the LSTM-based model
(DeepKinZero).

These advancements offer promising directions for future research:

o Further improvements might be achieved for protein representations by in-
corporating structural annotations directly into pLMs, extending beyond

sequence-based context.
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o Distinct few-shot learning techniques, such as meta-learning, prototype learn-
ing, might further enhance the prediction performance for kinases with very

limited associated phosphosites.

» Future work may also focus on the integration of our computational predictions
with experimental validations, which may establish the utility and accuracy

of our approach in biological contexts.

Overall, this thesis demonstrates the significant potential of task-aware peptide rep-
resentations to enhance kinase-phosphosite prediction, laying a foundation for fur-

ther innovations in elucidating the dark phosphoproteome.
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