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ABSTRACT

ZERO/FEW-SHOT DARK KINASE-PHOSPHOSITE ASSOCIATION
PREDICTION WITH BIOLOGICALLY GROUNDED DATA AUGMENTATION

MERT PEKEY

COMPUTER SCIENCE & ENGINEERING
MSc. THESIS

JULY 2025

Thesis Supervisor: Assoc. Prof. Öznur Taştan Okan

Keywords: Protein Sequence Classification, Zero/Shot Learning, Phosphorylation,
Dark Kinases, Post-translational Modifications, Conditional Generative Models,

Data Augmentation

Protein phosphorylation, a fundamental cellular process mediated by kinases, is
crucial for signaling, and its dysregulation is implicated in numerous human diseases.
A significant challenge persists in identifying substrate phosphosites for the vast
number of understudied ’dark’ kinases, for which conventional supervised machine
learning methods are ineffective due to data scarcity. To address this gap, this
thesis develops a zero- and few-shot learning framework and introduces biologically
grounded data augmentation strategies, all evaluated on the DARKIN benchmark.

We introduce two novel deep learning architectures: DARKIN-FT, a compatibility-
based model that enhances performance through end-to-end fine-tuning of phos-
phosite encoder, and DARKIN-Interact, a binary classification model that directly
captures kinase–substrate interactions via joint attention over sequence pairs. The
central contribution is a systematic investigation into biologically grounded data
augmentation, evaluating three distinct strategies: (i) kinase-conditional phospho-
site generation via a fine-tuned ProGen2 model, (ii) weak supervision using predic-
tions from the Kinase Substrate Specificity Atlas (KSSA), and (iii) augmentation
with homologous sequences.
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Our results demonstrate that DARKIN-FT and DARKIN-Interact significantly out-
perform existing baselines on the DARKIN benchmark. The investigation into
data augmentation yielded mixed results: while kinase conditional generation with
ProGen2 and weak labeling with KSSA degraded the performance, augmentation
with homologous sequences improved the Macro Average Precision of the DARKIN-
Interact model. While the results are promising, challenges persist in disambiguating
kinases with high sequence similarity.

Overall, this thesis establishes a framework for kinase–phosphosite interaction pre-
diction in low-data regimes and provides valuable insights into the strengths and
limitations of data augmentation in the dark kinase-phosphosite association task.
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ÖZET

BİYOLOJİK TEMELLİ VERİ ARTIRIMIYLA SIFIR/AZ ÖRNEKLİ
KARANLIK KİNAZ–FOSFOSİT İLİŞKİSİ TAHMİNİ

MERT PEKEY

BİLGİSAYAR BİLİMİ & MÜHENDİSLİĞİ
YÜKSEK LİSANS TEZİ

TEMMUZ 2025

Tez Danışmanı: Doç. Dr. Öznur Taştan Okan

Anahtar Kelimeler: Protein Dizisi Sınıflandırması, Sıfır/ Az Örnekli Öğrenme,
Fosforilasyon, Karanlık Kinazlar, Translasyon Sonrası Modifikasyonlar, Koşullu

Üretici Modeller, Veri Artırma

Protein fosforilasyonu, kinazlar tarafından düzenlenen temel bir hücresel süreç olup
hücre içi sinyal iletiminde kritik bir rol oynar. Bu sürecin bozulması, birçok in-
san hastalığında etkili olmaktadır. Ancak, geleneksel denetimli makine öğrenimi
yöntemleri, veri yetersizliği nedeniyle henüz yeterince çalışılmamış ’karanlık’ kina-
zlara ait substrat fosfositleri belirlemede yetersiz kalmaktadır. Bu eksikliği gidermek
amacıyla, bu tezde sıfır ve az örnekli öğrenmeye dayalı bir çerçeve geliştirilmiş ve
biyolojik temelli veri artırma stratejileri sunulmuştur. Tüm yöntemler DARKIN
karşılaştırma seti üzerinde değerlendirilmiştir.

Bu kapsamda iki yeni derin öğrenme mimarisi önerilmiştir: Fosfosit kodlayıcısını
uçtan uca ince ayar yoluyla optimize eden ve uyumluluğa dayalı bir model olan
DARKIN-FT, ile dizi çiftleri üzerinde ortak dikkat mekanizması kullanarak doğru-
dan kinaz-fosfosit etkileşimlerini modelleyen ikili sınıflandırma tabanlı DARKIN-
Interact. Tezin temel katkısı, biyolojik gerçekliğe dayanan veri artırma yak-
laşımlarının sistematik olarak incelenmesidir. Bu amaçla üç farklı strateji değer-
lendirilmiştir: (i) ProGen2 modelinin ince ayarlanmasıyla gerçekleştirilen kinaz-
koşullu fosfosit üretimi; (ii) Kinase Substrate Specificity Atlas (KSSA) kullanılarak
yapılan zayıf denetimli etiketleme; ve (iii) homolog sekanslarla veri artırımı.
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Elde ettiğimiz sonuçlar, DARKIN-FT ve DARKIN-Interact modellerinin DARKIN
karşılaştırma setindeki mevcut temel yöntemlere kıyasla anlamlı performans artışı
sağladığını göstermektedir. Veri artırma stratejilerinin etkisi ise karışıktır: ProGen2
ile yapılan üretim ve KSSA ile zayıf etiketleme performansı düşürürken, homolog
sekanslarla yapılan veri artırımı özellikle DARKIN-Interact modeli için Makro Or-
talama Kesinliği artırmada etkili olmuştur. Her ne kadar elde edilen sonuçlar umut
verici olsa da, yüksek dizi benzerliğine sahip kinazları ayırt etme konusunda zorluk-
lar devam etmektedir.

Genel olarak bu tez, düşük veri koşullarında kinaz–fosfosit etkileşimi tahmini için bir
çerçeve sunmakta ve karanlık kinaz–fosfosit ilişkisinin modellenmesinde veri artırma
stratejilerinin güçlü ve zayıf yönlerine dair önemli içgörüler sağlamaktadır.
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Chapter 1

INTRODUCTION

A key mechanism in cellular control is protein phosphorylation, which involves the
reversible attachment of a phosphate group to a protein (Hunter, 1995). This com-
mon post-translational modification (PTM) functions as a molecular switch, altering
a protein’s behavior, location, and stability. The reaction is mediated by protein
kinases, a large class of enzymes that catalyze the transfer of a phosphate group
from ATP onto specific serine, threonine, or tyrosine residues within their target
substrates. Because phosphorylation is integral to most cellular activities, from sig-
naling to division, its dysregulation is often associated with human diseases such
as cancer and neurodegenerative disorders (Ardito et al., 2017). The residue in the
target protein is called a phosphorylation site (phosphosite). Identifying the spe-
cific kinase responsible for modifying a given phosphosite is therefore essential for
advancing both basic biological research and the development of targeted therapies.

High-throughput phosphoproteomics methods can identify phosphosites on a mas-
sive scale (Hornbeck et al., 2012), but they cannot report the kinase that performs
the modification. Pinpointing which kinase catalyzes each site requires further ex-
perimentation, which is often costly and labour intensive. Although many phospho-
sites have been identified, most of them do not have a known kinase. Over 95%
of human phosphosites lack an experimentally confirmed kinase (Needham et al.,
2019). Also, around 25% of kinases have no known targets, and for about 35% of
kinases, only a few phosphosites are known. As a result, a large portion of the phos-
phoproteome and kinome remains in the dark (Needham et al., 2019; Moret et al.,
2020; Deznabi et al., 2020; Vella et al., 2022). This leaves a significant portion of the
human kinome unexplored, and its role in health and disease is poorly understood.

Because experimental techniques to find the associated kinase of a phosphosite are
labor-intensive, computational methods have been developed (Blom et al., 1999;
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Yaffe et al., 2001; Koenig and Grabe, 2004; Wong et al., 2007; Li et al., 2008; Saun-
ders et al., 2008; Gao et al., 2010; Xue, Z. Liu, et al., 2010; L. Zou et al., 2013; Horn
et al., 2014; Patrick et al., 2014; Qin et al., 2016; Song et al., 2017). While these
early approaches relied on sequence motifs or traditional machine learning, later
approaches rely on deep learning-based methods. In particular, Protein Language
Models (pLMs), pre-trained on vast databases of protein sequences, have shown a
remarkable ability to learn the complex sequence to protein structure and function,
capturing subtle sequence features far beyond simple motifs (Rives et al., 2021; El-
naggar et al., 2021; Lin et al., 2023; Madani et al., 2023; Nijkamp et al., 2023; Hayes
et al., 2025; Lv et al., 2025). These models have therefore been increasingly adopted
in phosphorylation-related tasks. However, their effectiveness remains constrained
by the scarcity of labeled data for understudied kinases. As a result, their perfor-
mance significantly drops when applied to the dark kinome, highlighting the need
for alternative modeling strategies.

Traditional supervised models fail when no labeled examples exist for a given kinase.
To handle this, the problem of finding the cognate kinase of a phosphosite have been
casted as a zero-shot learning problem for the first time in the DeepKinZero work.
Zero-shot learning (ZSL) enables prediction for dark kinases by learning a mapping
between the phosphosite sequence space and a semantic space of kinase attributes.
Instead of learning to classify kinases directly, the model learns to associate a phos-
phosite’s sequence patterns with generalizable kinase characteristics (e.g., features
from their own sequence, family, or group). This allows the model to predict inter-
actions for a kinase it has never encountered during training (the zero-shot scenario)
by projecting it into the shared semantic space. The framework naturally extends to
the few-shot scenario, where predictions for a novel kinase can be refined using just
a handful of available examples. This paradigm, which builds on prior work of Dezn-
abi et al. (2020), is particularly well-suited to exploring the dark kinome, offering
a principled way to generate hypotheses for thousands of unannotated phosphosites
and understudied kinases.

While the zero-shot framework provides a powerful foundation, its predictive accu-
racy is still limited by the diversity and volume of the initial training data. This
data scarcity problem is intensified by the very structure of the DARKIN bench-
mark introduced by Sunar et al. (2024), which is designed for rigorous zero-shot
evaluation. By assigning data-poor "dark" kinases to the training set while reserv-
ing well-characterized "light" kinases for testing, DARKIN creates an intentionally
challenging and sparse training environment. DARKIN is structured this way to
ensure a proper evaluation of zero- and few-shot models. This inherent limitation
necessitates strategies that go beyond the available data. The central and most
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novel contribution of this thesis is the design and systematic evaluation of biologi-
cally grounded data augmentation techniques tailored to this low-data problem. We
move beyond standard methods and introduce three distinct strategies to create a
large corpus of realistic, synthetic training instances.

First, we fine-tune a large generative pLM, as introduced by Nijkamp et al. (2023),
to perform kinase-conditional phosphosite generation, effectively learning to "write"
new substrate sequences for a given kinase. Second, we use the Kinase Substrate
Specificity Atlas, a massive experimental resource developed by Johnson et al. (2023)
and Yaron-Barir et al. (2024), as a source of weak supervision to assign plausible
kinase labels to thousands of otherwise unlabeled phosphosites. Third, we utilize
multiple sequence alignments to generate homologous sequence variants with an
established method proposed by Kuru et al. (2022), introducing evolutionarily plau-
sible diversity into the training set.

To test these ideas, this thesis introduces two distinct deep learning architectures,
DARKIN-FT and DARKIN-Interact, which use state-of-the-art pLMs and are eval-
uated on the rigorous DARKIN benchmark dataset (Sunar et al., 2024). We present
a comprehensive series of experiments that not only establish the performance of
these models but also analyze the impact of different model components and crit-
ically assess the effectiveness of each data augmentation strategy. Ultimately, this
thesis provides a robust framework for predicting kinase-substrate interactions in
data-scarce environments and offers a valuable investigation into the potential and
challenges of using biologically informed data augmentation in this domain, provid-
ing new insights into the dark kinome.

The main contributions of this thesis can be summarized as follows:

• Advancement of Zero-Shot Architectures: We introduce two deep learn-
ing models, DARKIN-FT and DARKIN-Interact, that significantly improve
upon existing zero-shot prediction framework for the dark kinase-phosphosite
association task. By incorporating novel strategies for the integration and end-
to-end fine-tuning of modern protein language models, our architectures are
demonstrated to substantially outperform the BZSM baseline on the DARKIN
benchmark. Furthermore, our models show superior predictive performance
on the DARKIN dataset compared to scores from the experimental Kinase
Substrate Specificity Atlas (KSSA) (Johnson et al., 2023).

• Systematic Investigation of Data Augmentation: We present a compre-
hensive study of biologically informed data augmentation for the dark-kinase
phosphosite prediction task. We design three distinct strategies: (1) condi-
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tional phosphosite generation using a fine-tuned generative model; (2) weak
supervision by labeling unannotated sites with predictions from the experi-
mental Kinase Substrate Specificity Atlas (KSSA) developed by Johnson et
al. (2023) and Yaron-Barir et al. (2024); and (3) data augmentation with ho-
mologous sequences.

• Rigorous Benchmarking and Analysis: All models and strategies are
evaluated on the DARKIN benchmark, a dataset specifically designed for re-
producible zero-shot evaluation. We provide a thorough analysis of the re-
sults, including extensive ablation studies, which yield valuable insights into
the strengths and weaknesses of each approach and provide a clear direction
for future work.

The remainder of this thesis is structured as follows:

Chapter 2 provides the necessary background on protein phosphorylation, kinase
biology, zero- and few-shot learning, the Transformer models, and the Protein Lan-
guage Models that underpin this work, and it also reviews related work in the fields
of phosphorylation site prediction, kinase-specific prediction, protein sequence gen-
eration, and data augmentation in protein modeling.

Chapter 3 details the methodology, including the formal problem definition, the ar-
chitecture of the proposed DARKIN-FT and DARKIN-Interact models, the datasets
used, the evaluation metrics, and the implementation of the data augmentation
strategies.

Chapter 4 presents the results of our experiments, including baseline model perfor-
mance, ablation studies, and a comprehensive evaluation of the data augmentation
techniques. The findings are discussed in detail.

Chapter 5 concludes the thesis by summarizing the key findings, discussing the
limitations of the current work, and suggesting directions for future research.
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Chapter 2

RELATED WORK

2.1 Background Information

2.1.1 Phosphorylation and Kinases

Post-translational modifications (PTMs) are chemical changes that proteins acquire
after translation, and they can profoundly influence a protein’s activity, localization,
and binding partners (Walsh and Jefferis, 2006). The most thoroughly investigated
PTM is phosphorylation, a reversible reaction in which a kinase transfers a phos-
phate group from ATP to a target residue—most often serine, threonine, or tyrosine
in eukaryotes (Cohen, 2002). To capture the local sequence context required for
reliable prediction, phosphorylation sites (“phosphosites”) are typically examined in
windows of 15 residues centered on the modified amino acid (D. Wang et al., 2017).

Protein kinases, the enzymes that catalyze this transfer, share a conserved cat-
alytic core of roughly 250–300 residues embedded within otherwise diverse sequences
(Manning et al., 2002). By modulating protein activity, stability, localization, and
interaction networks, phosphorylation acts as a central switch in cellular signaling.
Consequently, irregular kinase activity or misregulated phosphorylation patterns
underpin many diseases, including cancer and neurological disorders (Ardito et al.,
2017). The human kinome comprises more than 500 kinases, each with its own
substrate spectrum, yet assigning the correct kinase to an experimentally detected
phosphosite remains challenging. High-throughput phosphoproteomics can identify
thousands of modified residues, but for most of them, the upstream kinase is still
unknown (Deznabi et al., 2020). This knowledge gap motivates research for (i) pre-
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dicting which residues in a protein can be phosphorylated and (ii) inferring which
kinase is most likely to target a given site.

2.1.2 Zero- and Few-Shot Learning

Zero-shot learning is the capability of a model to identify classes it has never en-
countered during training by leveraging additional information that connects these
unseen classes to those it has previously learned. In essence, the model uses its
understanding of known categories to make educated predictions about new, unfa-
miliar ones. Kinase identification is well suited to a zero-shot learning formulation:
many kinases still lack experimentally confirmed substrates, yet they share sequence
motifs and structural features with better-characterized family members. Zero-shot
learning tackles such situations by using auxiliary information, such as semantic at-
tributes, domain descriptors, or learned embeddings, to recognize classes that never
appear in the training set (Xian et al., 2017). By projecting phosphosite and kinase
information into a common embedding space, the model can infer associations for
kinases that have no direct training examples, relying on relationships encoded in
the shared representation rather than on class-specific labels.

Few-shot learning sits between conventional supervised and zero-shot settings. Here,
the model is given only a handful of labeled examples for a new class, and its decision
boundary must be adjusted using this sparse data. While zero-shot methods depend
solely on the auxiliary information, few-shot approaches refine the representation
with the limited examples provided.

Both paradigms are crucial for kinase annotation because a large fraction of the
human kinome lacks substrate data, leaving little or no pairing information for
many enzymes. By learning informative embeddings of phosphosite context and
kinase sequences, zero-shot models can generalize to completely unseen kinases,
whereas few-shot models can further improve predictions when a small number of
examples becomes available.

2.1.3 Transformers

Transformers were introduced as encoder-decoder models for sequence-to-sequence
tasks and quickly set new performance records in natural language processing by
replacing recurrence with multi-head self-attention and position-wise feed-forward
layers (Vaswani et al., 2017). In the encoder, each token embedding is combined
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with a positional signal and passed through several identical layers, allowing the
model to learn both short- and long-range relationships. The decoder generates one
token at a time using masked self-attention to look only at earlier outputs, while a
cross-attention module links these partial outputs to the encoder’s representations.

Variants that keep only the encoder, such as BERT and RoBERTa, introduced by
Devlin et al. (2019) and Y. Liu et al. (2019), specialize in learning contextual embed-
dings for classification and retrieval. Models that keep only the decoder, including
the GPT family introduced by Radford and Narasimhan (2018), Radford, Wu, et
al. (2019), and Brown et al. (2020), are designed for left-to-right text generation.
Architectures that retain both halves, for example, T5, balance these strengths and
are widely used for tasks like translation and summarization (Raffel et al., 2020).

The core idea behind all of these models is attention: each token can assign different
weights to every other token when building its representation. In the encoder, this
self-attention is bidirectional, whereas in the decoder, it is masked to preserve the
left-to-right generation order. In an encoder-decoder architecture, cross-attention
allows the decoder to attend to the input sequence by forming queries from its
current hidden states while drawing keys and values from the encoder’s outputs.
This enables the decoder to selectively focus on relevant parts of the input, effectively
guiding the generation process based on the encoded information.

Training objectives fall into two main categories. Masked language modeling hides
a fraction of input tokens and asks an encoder to recover them, promoting bidirec-
tional understanding (Devlin et al., 2019). Autoregressive language modeling trains
a decoder to predict the next token given all previous ones, which encourages fluent
generation (Radford, Wu, et al., 2019). Because attention can be computed in par-
allel across positions, Transformers make efficient use of modern hardware, though
the quadratic cost of self-attention with respect to sequence length has motivated
research into efficient sparse attention variants for very long sequences (Zaheer et al.,
2020).

2.1.4 Protein Language Models

Protein sequences can be viewed as sentences written in an alphabet of 20 stan-
dard amino acids, with special symbols such as ’X’ for unknown residues or ’-’ for
alignment gaps (Elnaggar et al., 2021). Depending on the task, tokenization may
operate at the single–residue level or on short sequence motifs, allowing models to
generalize to patterns not observed during training. With only minor adjustments,
Transformer architectures originally developed for text can process these sequences:
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amino acids replace word embeddings, and positional encodings preserve residue
order.

Like their natural-language counterparts, protein language models (pLMs) are
trained with objectives such as masked language modeling, where the network must
recover hidden residues from their context and thus learn biologically meaningful
features (Rives et al., 2021). Decoder-only pLMs can be optimized autoregressively
to generate new protein sequences that are likely to fold or function. However,
purely sequence-based approaches do not explicitly encode three-dimensional struc-
tures. Sequence-level pLMs have already advanced secondary-structure prediction,
contact mapping, and functional annotation, yet incorporating structural or evolu-
tionary signals remains an active challenge. Recent systems, including AlphaFold by
Jumper et al., 2021 and ESMFold by Lin et al., 2023, extend the Transformer frame-
work to predict or exploit 3D conformations, narrowing the gap between sequence
embeddings and structural biology.

2.2 Phosphosite-Kinase Association

2.2.1 Deep Learning Methods for Phosphorylation Site Pre-

diction

In the past decade, deep learning has revolutionized sequence-based protein predic-
tion tasks (D. Wang et al., 2017; Luo et al., 2019; Guo et al., 2021; Elnaggar et al.,
2021; Rives et al., 2021; Zhou, Yeung, Gravel, et al., 2023; Zhou, Yeung, Soleymani,
et al., 2024). Deep learning models can automatically extract complex features from
raw sequences without explicit manual feature design. One of the first deep learning
frameworks in this domain was MusiteDeep (D. Wang et al., 2017). MusiteDeep
implemented a multi-layer convolutional neural network (CNN) to identify phos-
phorylation sites from sequence windows, and it was capable of both general site
prediction and kinase-family-specific predictions. By applying an attention mecha-
nism on the CNN outputs, MusiteDeep aim to focus on important positions in the
sequence window. It achieved improved accuracy over earlier shallow models.

A notable advancement came with DeepPhos (Luo et al., 2019). DeepPhos intro-
duced densely connected convolutional blocks (inspired by DenseNet architectures)
to capture multi-scale sequence patterns effectively. Instead of a simple stacked
CNN, DeepPhos’s dense connections allowed information from earlier convolutional
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layers (detecting small local motifs) to be concatenated with later layers (detecting
broader patterns), yielding a rich representation of the sequence surrounding a can-
didate site. DeepPhos was applied to general S/T/Y site prediction and extended
to kinase-specific prediction at various levels such as kinase group, family, or indi-
vidual kinase. Similarly, DeepPSP combined global and local sequence information
using parallel CNN-LSTM modules: one module analyzed a wide window (global
protein context) while another focused on the immediate local sequence of the site
(Guo et al., 2021). By fusing global and local features, DeepPSP achieved higher
accuracy than MusiteDeep, particularly for tyrosine sites.

More recently, transformer-based architectures have been explored for phosphory-
lation prediction. Transformers can capture long-range dependencies in protein se-
quences using self-attention. Phosformer, developed by Zhou, Yeung, Gravel, et al.
(2023), fine-tunes a pre-trained protein-language model on 11-mer peptide windows
and full kinase-domain sequences, coupling them with a multi-head attention module
that learns cross-sequence interactions. Trained with hard- and easy-negative sam-
pling plus pLM-compatible augmentations, Phosformer outperforms family-specific
CNNs and achieves kinome-wide generalization. Building on the same design, Zhou,
Yeung, Soleymani, et al. (2024) introduced Phosformer-ST and extended coverage
to serine/threonine kinases profiled by Johnson et al. (2023). A multitask objec-
tive (masked-language modeling + kinase-substrate classification) and SHAP-based
interpretability reveal that the model captures both substrate-motif cues and evo-
lutionary signals. TransPhos is another transformer-based model that maps protein
sequence fragments into high-dimensional representations via a transformer encoder,
followed by densely connected CNN layers for the final prediction (X. Wang et al.,
2022). By using self-attention, TransPhos can model the influence of residues farther
away from the phosphosite, potentially identifying distant modulatory motifs. X.
Wang et al. (2022) showed that TransPhos outperformed earlier CNN/RNN mod-
els in general phosphosite prediction, suggesting that the attention mechanism adds
valuable context that simpler sliding-window models might miss. Our previous work,
DARKIN, curates balanced train/val/test splits emphasizing understudied (“dark”)
kinases and enforces sequence-identity exclusivity, providing a stringent benchmark
for zero-/few-shot prediction of pLMs (Sunar et al., 2024).

Along with these computational methods, large-scale experimental atlases have re-
cently mapped kinase substrate specificities. Johnson et al. (2023) generated more
than ten million quantitative measurements for 303 serine/threonine kinases using
exhaustive synthetic peptides. Yaron-Barir et al. (2024) took this further by study-
ing how 76 human tyrosine kinases naturally choose their targets.
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2.2.2 Kinase-Specific Prediction and Zero-Shot/Few-Shot

Learning

In this thesis, as opposed to the methods discussed in the previous problem, we aim
to predict the responsible kinase for a given phosphorylation site, which is still an
experimental challenge. Traditional kinase-specific predictors required training data
for each kinase or kinase family. For example, Scansite developed by Obenauer et al.
(2003), a computational tool that predicts short protein sequence motifs likely to be
phosphorylated by specific serine/threonine or tyrosine kinases, provided predictions
for specific kinase motifs, and MusiteDeep only produced kinase-specific models for
families with at least 100 known phosphosites (D. Wang et al., 2017). Many kinases,
however, have very few known substrates, making it infeasible to train individual
models. To address this data scarcity, researchers have developed methods that
generalize across kinases. One strategy is to group kinases by sequence similarity or
by classification (e.g., AGC, CAMK, etc.) and train a model per group, assuming
kinases in the same group have similar substrate preferences (Xue, Ren, et al., 2008).
This was the idea behind the GPS series and others, which improved coverage but
still left “orphan” kinases with no data unaddressed.

2.2.3 DeepKinZero: A Zero-Shot Approach

DeepKinZero was the first model that went beyond the supervised learning ap-
proaches. DeepKinZero is a zero-shot approach that can suggest a kinase for a
phosphosite even if that kinase had no known training examples (Deznabi et al.,
2020). DeepKinZero achieves this by learning vector embeddings for kinases and
phosphosite sequences in a shared space. During training, it uses kinases with
many known substrates to learn the relationship between a phosphosite’s sequence
features and the corresponding kinase’s features. Phosphosite sequences (typically
represented as a fixed-length window around the modified residue) are processed by
a bidirectional recurrent neural network to capture the site’s contextual features,
yielding a phosphosite embedding. For kinases, instead of one-hot class labels,
DeepKinZero derives kinase embeddings from multiple sources of information: it
incorporates the kinase domain protein sequence, the kinase’s family hierarchy, and
pathway membership to construct a continuous feature representation for each ki-
nase. A compatibility function is then learned between phosphosite embeddings
and kinase embeddings. In effect, the model learns what characteristics of a site
make it likely to be phosphorylated by a certain type of kinase. At test time, for a
novel kinase with no prior substrates (an unseen class), the model can still produce
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an embedding for that kinase (from its sequence and metadata) and then find the
phosphosite embedding that best matches it.

DeepKinZero was shown to significantly improve prediction accuracy for understud-
ied kinases (with zero or few known sites) compared to baseline methods that might
default to generic predictions (Deznabi et al., 2020). This zero-shot framework
expands the coverage of kinase–substrate predictions across the kinome. In this
study, we built our approach on the DeepKinZero framework, replacing the origi-
nal RNN/LSTM components with Transformer-based protein language models. We
also used an updated dataset, DARKIN, from our previous work, which provides
up-to-date information and carefully designed splits to enable more reliable zero-
and few-shot evaluation (Sunar et al., 2024).

2.3 Deep Learning Models for Protein Sequence

Generation

Over the past few years, deep learning has increasingly been applied to de novo
protein sequence generation, yielding a variety of model architectures. Early ap-
proaches took inspiration from natural language processing (NLP). For example,
recurrent neural networks were explored to model protein sequences, and variational
autoencoders (VAEs) demonstrated the ability to capture protein family variability.
Riesselman et al. (2018) trained one of the first deep generative models on protein
sequence alignments, showing that a VAE could model the distribution of natu-
ral variants in a protein family and predict mutational effects by sampling novel
variants that respected evolutionary constraints (Riesselman et al., 2018). Simi-
larly, Greener et al. (2018) applied a VAE to design new protein sequences with
specified attributes, such as metal-binding sites or novel fold topologies. Their
VAE-based framework generated sequences conditioned on desired properties (e.g.,
the presence of a metal-binding motif), and some designs were predicted to adopt
stable structures, illustrating the feasibility of VAE-driven protein design. Genera-
tive adversarial networks (GANs) have also been introduced: Repecka et al. (2021)
developed ProteinGAN, an unconditional GAN that learns protein sequence diver-
sity from a specific enzyme family. Trained on malate dehydrogenase sequences,
ProteinGAN was able to produce highly diverse variants, 24% of which were ex-
perimentally confirmed to be functional enzymes, including variants with over 100
amino acid differences from any natural sequence. These early studies established
that deep generative models could sample the protein sequence space in meaning-
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ful ways, often yielding sequences with realistic statistics and sometimes retaining
biological function.

A major breakthrough in protein sequence generation came with the adoption of
Transformer-based language models. Just as Transformers have excelled in natu-
ral language generation, they have proven powerful for modeling protein sequences.
Rives et al. (2021) trained a high-capacity Transformer on over 250 million sequences
(the ESM-1b model), reporting that “biological structure and function emerge” from
scaling up unsupervised learning on protein sequences. In other words, the latent
representations from such models captured meaningful protein features like sec-
ondary structure and family relationships. While ESM-1b was primarily a masked
language model used for representations, its success paved the way for autoregressive
sequence generators. Shortly thereafter, researchers introduced GPT-like models
for proteins. Madani et al. (2023) developed ProGen, a 1.2-billion-parameter Trans-
former decoder trained on 280 million sequences. Notably, ProGen was a conditional
language model: each training sequence was prepended with control tags (such as the
protein’s taxonomic origin or functional class), allowing the model to learn sequence
generation in context. ProGen demonstrated the ability to generate full-length pro-
tein sequences that not only resembled natural proteins but also exhibited functional
activity. In one striking result, Madani et al. showed that artificial enzymes gener-
ated by ProGen (fine-tuned to lysozyme families) had catalytic activity comparable
to natural enzymes despite as low as 30% sequence identity to any known protein.
Around the same time, Ferruz et al. (2022) introduced ProtGPT2, an unsupervised
protein language model based on GPT-2 architecture. They trained ProtGPT2
on the UniProt database to enable de novo protein sequence generation without
any conditioning. Despite the lack of explicit conditioning, ProtGPT2 learned to
generate sequences with realistic amino acid compositions and secondary structure
propensities. Ferruz and colleagues reported that 88% of ProtGPT2’s generated
sequences were predicted (by computational disorder predictors) to be well-folded,
mostly globular proteins, aligning with natural protein statistics.

Subsequent efforts have pushed model sizes and training data further. ProGen2,
introduced by Nijkamp et al. (2023), is a suite of protein language models scaling
up to 6.4 billion parameters. By training on over a billion protein sequences (in-
cluding general and targeted datasets), ProGen2 achieved state-of-the-art perplex-
ity in modeling natural protein sequences and improved the fidelity of generated
sequences. The authors showed that increasing model size and training diversity en-
hanced the model’s ability to capture the distribution of evolutionary sequences and
even generalize to fitness prediction tasks without additional training. Meanwhile,
Meta AI’s team scaled their ESM models to 15 billion parameters in the ESM2
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family, demonstrating that extremely large protein LMs can produce embeddings
rich enough to infer protein structure directly (via the ESMFold system) (Lin et al.,
2023). Although ESM2 and ESMFold were aimed at structure prediction, the un-
derpinning language model’s capacity to model sequence constraints at atomic detail
underscores how far these models have progressed. In summary, recent years have
seen a progression from relatively small deep generative models to enormous protein
language models. These models can generate protein sequences that conform to
the complex statistical patterns of natural proteins, and a subset of the generated
sequences have been validated to fold properly or perform biochemical functions.

2.3.1 Conditional Protein Sequence Generation Approaches

An important aspect in protein generation is controlling the properties or attributes
of generated sequences. In practical protein design, one often seeks sequences that
not only are valid proteins but also have a specific function or structure. Thus,
researchers have developed conditional generation methods to guide models toward
desired outcomes (Zhu et al., 2024). One straightforward strategy is to incorporate
feature tags or prompts with the input sequence. As mentioned, ProGen was trained
with auxiliary tags (for instance, specifying a protein’s molecular function or organ-
ism) to enable controllable output. Madani et al. (2023) demonstrated that such
tag-based control, combined with fine-tuning on specific protein families, allowed
targeted design: ProGen could focus on generating members of a given enzyme
class with a high success rate. In a similar vein, Ferruz et al. (2022) discussed how
combining multiple control tags (e.g., a desired cellular compartment, enzyme class,
or ligand-binding property) can enable more nuanced design objectives. In their
perspective on controllable protein design, they envisioned that dedicated protein
Transformers could be fine-tuned or guided to produce sequences with specific func-
tional attributes, analogous to prompting an NLP model to write text in a certain
style or topic.

Beyond simple tags, more sophisticated conditional models have been developed for
functional control. Kucera et al. (2022) proposed ProteoGAN, a conditional GAN
that allows users to specify a protein’s function via Gene Ontology (GO) labels.
ProteoGAN was trained on millions of protein sequences annotated with GO terms,
learning a mapping from functional categories to sequence distribution. Likewise,
conditional VAEs have been applied to guide output properties: for example, earlier
work on peptide design used a conditional VAE (PepCVAE) to generate antimicro-
bial peptides by supplying the model with a target activity label during generation
(Das et al., 2018). These approaches show that by incorporating task-specific infor-
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mation (class labels, property values, etc.) into the generative process, we can bias
the random sequence generation toward sequences that meet design criteria.

The latest protein language models have begun to incorporate multi-faceted con-
trol in a single framework. A notable example is ProLLaMA, introduced by Lv
et al. (2025), which represents a multitask protein language model capable of both
generating sequences and interpreting them. ProLLaMA adapts a large general lan-
guage model (LLaMA) to protein sequences, training it with an instruction-tuning
paradigm on protein tasks. It was supplied with a diverse set of “prompts” and
tasks, for instance, prompts to “generate a protein with function X” or “predict the
family of this protein.” As a result, ProLLaMA can handle controllable sequence gen-
eration via natural-language-like prompts or instructions. Experiments showed that
it achieved state-of-the-art performance in unconditional sequence generation, and
importantly, in a controllable generation benchmark, it could design novel proteins
with specified functionalities on demand.

2.4 Data Augmentation Techniques in Protein

Modeling

2.4.1 Application to Low-Data and Zero-Shot/Few-Shot Sce-

narios

Augmentation strategies help by either bootstrapping additional examples or by
leveraging foundation models that have been pre-trained on enormous unlabeled
datasets (Rives et al., 2021). A popular approach is to pre-train a protein language
model on millions of sequences and then fine-tune it on the small task-specific data.
Even here, data augmentation can play a role: one can fine-tune in a multitask fash-
ion or with additional unlabeled data via semi-supervised learning. For instance,
ProLLaMA was trained on a multitask protein instruction set, effectively augment-
ing each task with information from others (Lv et al., 2025). In doing so, it achieved
strong performance across tasks, including protein generation and classification, de-
spite limited data per task, because it learned a rich shared representation. In
low-data regimes, it is also common to integrate multiple augmentation techniques.
For example, in a few-shot protein engineering experiment, Hie and Yang (2022)
combined a language model (to generate candidate sequences likely to have the
desired property) with an active learning loop.
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2.4.2 Weak Supervision and Other Augmentation Strategies

When direct labels are limited, weakly supervised learning can generate additional
pseudo-labeled data to train on. In weak supervision, one uses noisy or indirect
signals to label data automatically. An example in the protein context is to use
predictions from a pre-trained model or a heuristic as surrogate labels. A recent ap-
proach combined molecular simulation with a transformer-based zero-shot predictor
to label mutant sequences with predicted fitness effects, creating a large training
set that, in turn, improved a supervised model’s accuracy in data-scarce conditions
(Deguchi et al., 2025). From general machine learning, techniques like Mixup have
been adapted to protein sequences to a limited extent. Mixup typically takes two
training examples and creates a synthetic example that is an interpolation of the
two features and two labels (Zhang et al., 2018). In their work, Chen et al. (2023)
introduced a latent-space Mixup strategy during prompt-based meta-learning, inter-
polating between molecular structure embeddings and condition prompts to improve
sample efficiency and generalization in protein simulation models.
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Chapter 3

METHODOLOGY

3.1 Problem Formulation

Let X denote the set of phosphosite windows, where each x∈X is a 15-residue amino-
acid sequence whose central residue is experimentally verified to be phosphorylated.
Let Y be the catalog of human protein kinases. Because one site can be catalyzed
by several kinases, the problem is cast as multilabel classification: for any x, we aim
to recover the subset Y(x)⊆Y of its true associated kinases.

Following the zero-shot learning protocol of Xian et al. (2017), we split the kinases
into seen classes Ytr and unseen classes Yte, with Ytr ∩ Yte = ∅. During training,
labels are available only for Ytr, yet the trained model must score all kinases at test
time. In the few-shot regime, each unseen kinase contributes at most k ∈{1, . . . ,5}
labeled sites; the zero-shot setting corresponds to k = 0.

3.2 Modelling Framework

In this thesis, we tried two different approaches to model this problem:

(A) DARKIN-FT is a compatibility-based multiclass model which extends the
models introduced in our previous work (Sunar et al., 2024). The model
updates the pLM that generates the phosphosite embeddings in an end-to-end
manner. It computes a score for every kinase in a forward pass (see 3.3.1).

(B) DARKIN-Interact is a sequence-pair binary classifier model that predicts
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Figure 3.1 Schematic overview of DARKIN-FT, an extension of the BZSM baseline of
the DARKIN benchmark in which the phosphosite encoder is fine-tuned end-to-end
rather than kept frozen.

whether an individual (site,kinase) pair is compatible (see 3.6.1).

Both models are evaluated in the same data splits and evaluation metrics.

3.2.1 DARKIN-FT: Compatibility-Based Multiclass Model

DARKIN-FT framework, illustrated in Figure 3.1, is a modified version of Deep-
KinZero, developed by Deznabi et al. (2020) and the BZSM baseline of the DARKIN
benchmark. While DeepKinZero employs RNN/LSTM-based architectures for phos-
phosite encoding and BZSM uses frozen phosphosite embeddings, DARKIN-FT uti-
lizes a transformer-based encoder and updates phosphosite embeddings end-to-end
during training.

Representations. A protein language model embeds a phosphosite window as
θ(x)∈Rd. Each kinase y is represented by

ϕ(y) =
[
ϕseq(y) ∥ ffam(y) ∥ fgrp(y) ∥ fec(y)

]
∈ RM ,
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where ϕseq(y) ∈Rm is the pLM embedding of its catalytic domain and ffam, fgrp, and
fec represent the one-hot encodings of family, group, and EC number, respectively.

The dimensionality of ϕseq(y) depends on the chosen protein language model. For
instance, using ESM1B yields a 1280-dimensional embedding for the catalytic do-
main. The one-hot encodings for kinase family, group, and EC number together
contribute 144 additional dimensions, resulting in a total kinase embedding size of
1424 in this setting.

Compatibility functions. Two forms are considered:

i. Bilinear form with bias

sbil(x,y) =
[
θ(x)⊤ 1

]
W

[
ϕ(y)⊤ 1

]⊤
, W ∈ R(d+1)×(M+1) (3.1)

Here, W is a learnable compatibility matrix that captures the interaction
between phosphosite and kinase representations. This formulation is a variant
of Deznabi et al. (2020)

ii. Dot product
sdot(x,y) = θ(x)⊤ϕ(y). (3.2)

Learning objective. For a phosphosite xi with a multi-hot label vector yi ∈
{0,1}|Ytr|.

The model normalizes the scores over all kinases with a softmax and minimizes the
cross-entropy loss.

LCE = −
N∑

i=1

∑
y∈Ytr

yi,y log expsΘ(xi,y)∑
y′ expsΘ(xi,y′) , (3.3)

In the equation above, Θ = bil for Eq. (3.1) and Θ = dot for Eq. (3.2). Although
each site may have multiple correct kinases, Eq. (3.3) is applicable during training
since each (phosphosite, kinase) pair is treated as a separate training instance; that
is, multilabel annotations are converted into multiple single-label examples. At test
time, we do not split multilabel sites; instead, we retain the full label set and evaluate
the raw prediction scores sΘ(x,y) across all candidate kinases.
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3.2.2 DARKIN-Interact: Sequence-Pair Binary Classifier

DARKIN-Interact is an alternative method to DARKIN-FT, allowing for the ex-
amination of the attention mechanism’s power by reformulating the problem as a
binary classification task. In Section 3.6.1, we explain this approach.

Joint representation. The amino-acid sequence of kinase y is concatenated with
the phosphosite window x, separated by a [EOS] token, and fed to ESM2 (Lin et al.,
2023). The CLS token yields

z(x,y) = CLS
(
ESM2([CLS] ∥ x ∥ [EOS] ∥ y ∥ [EOS])

)
∈ Rh.

Scoring and loss. A linear head produces the logit spair(x,y) = w⊤z(x,y) + b. of
the [CLS] embedding. Given a positive pair (x,y+), n negative kinases {y−

j }n
j=1 are

sampled and the binary cross-entropy

LBCE = −
∑

(x,y+)
logσ

(
spair(x,y+)

)
−

n∑
j=1

log
(
1−σ(spair(x,y−

j ))
)

(3.4)

is minimized. We do not use explicit class balancing, but for each positive pair, we
sample n negatives randomly, which introduces variability and helps mitigate bias
in the zero-shot setting. During the evaluation, a given site is paired with every
kinase, the logits are ranked, and multilabel metrics are computed exactly as for
DARKIN-FT (see Figure 3.10).

3.2.3 Data Augmentation and Regularization

To address the severe scarcity of labeled examples, we augment the training set using
three complementary strategies: (i) kinase-conditioned phosphosite generation, (ii)
homology-based label transfer, and (iii) weak supervision through labeling of unla-
beled data using an external model. For either model, the objective is minimizing

Ltotal = Lcore(Dtr)+αLcore(D̃)+λ∥Θ∥2
2, (3.5)

where Lcore is LCE for DARKIN-FT and LBCE for DARKIN-Interact; α ∈ [0,1]
balances real and synthetic data, and λ is the weight-decay coefficient.
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3.3 Dataset Description and Preprocessing

3.3.1 Overview of the DARKIN Benchmark

A reliable evaluation of learning algorithms—especially in zero-shot and few-shot
scenarios—depends on a dataset that aligns with the characteristics of the task.
In the context of phosphosite–kinase prediction, this entails avoiding information
leakage, stratifying splits properly based on their class/group memberships, and
maintaining a sufficient number of positive instances per class to ensure reliable
evaluation of the test performance.

DARKIN (short for DARk KINase) benchmark dataset was introduced in our ear-
lier work to meet these challenges (Sunar et al., 2024). It integrates kinase and
phosphosite annotations from publicly available databases and partitions the dataset
into train, validation and test splits based on the problem characteristics avoiding
leakage. them into These predefined partitions are designed to support both con-
ventional zero-shot learning (ZSL) and the more demanding generalized zero-shot
learning (GZSL) framework.

The DARKIN set includes the human kinase list and their associated phosphosites.
The starting kinase list is the 557 human protein kinases that contain at least one
kinase domain, as reported by Moret et al. (2020). The following filtering steps are
applied:

• Removal of isoforms: Protein isoforms are alternative splice variants derived
from the same gene. Because isoforms may differ in non-catalytic regions or
include truncations that complicate sequence-level comparisons, we retained
only the canonical isoform recorded in UniProt.

• Removal of fusion proteins: The fusion kinases contain multiple kinase
domains. We removed them from the dataset.

• Retention of canonical sequences: UniProt designates one representative
protein per gene, the canonical sequence, which typically corresponds to the
most studied or functionally relevant form. Using these canonical sequences
provides consistency across analyses.

For each kinase that passed these filters, we extracted the following features:

• Kinase domain sequence: Rather than using the full-length protein, we
focused on the domain region responsible for catalytic activity, typically span-
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ning 250-300 amino acids. These domain-level sequences serve as the direct
input to protein language models (pLMs).

• Kinase group: We used the 11 major kinase groups defined by Manning
et al. (2002), which cluster kinases based on domain sequence similarity.
These groups reflect shared evolutionary relationships and functional simi-
larity. Missing group labels were inferred from sequence similarity, while any
remaining unassigned kinases were placed in a generic "Other2" group. During
model training, group labels were one-hot encoded.

• Kinase family: A more granular classification into 129 families, also based on
Manning et al. (2002), capturing finer distinctions in substrate specificity and
regulation. As with groups, missing family labels were inferred, and a fallback
category "otherFamily" was assigned to kinases that could not be classified.

• Enzyme Commission (EC) number: Each kinase was assigned a four-
level EC code that reflects its catalytic function (e.g., EC 2.7.11.* for ser-
ine/threonine kinases). Unknown EC codes were imputed via nearest-neighbor
transfer, and the resulting EC numbers were encoded as binary vectors.

Phosphosite data were obtained from the PhosphoSitePlus database as of May 2023
(Hornbeck et al., 2012). Each phosphosite is represented as a 15-residue peptide se-
quence centered on the modified residue: Serine (S), Threonine (T), or Tyrosine (Y).
If a site occurs within seven residues of the protein’s N- or C-terminus, "_" is used as
padding to maintain a consistent window length. After filtering out entries involving
non-human kinases, the dataset comprises approximately 14,000 unique phospho-
sites and around 25,000 kinase–phosphosite interaction pairs. Notably, about 20% of
phosphosites are annotated with multiple kinases, making them multilabel examples
and highlighting the complexity of kinase-substrate relationships.

3.3.2 Construction of Zero-Shot Learning Splits

In the DARKIN dataset, kinases with abundant phosphosite annotations are as-
signed to the validation and test splits, while understudied "dark" kinases are re-
served for the training split. This design choice ensures that each held-out class
(i.e., each kinase in the validation or test set) has a sufficient number of positive
examples to support the computation of reliable performance metrics, such as aver-
age precision and top-k accuracy. Consequently, the evaluation is both reliable and
meaningful.

Beyond this dark/light kinase separation, the dataset is further partitioned by ap-
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plying a set of constraints to a random split procedure. This enables the genera-
tion of multiple reproducible dataset variants. Unless otherwise stated, all exper-
iments in this thesis are conducted using Split 1. Each split assigns 80% of the
kinase–phosphosite interactions to training, and 10% each to validation and test
while adhering to the following constraints:

• Minimum support: Every kinase in the validation and test splits must be
associated with at least ten annotated phosphosites, ensuring the reliability of
per-class evaluation metrics.

• Stratified groups: The distribution of the 11 high-level kinase groups is pre-
served across training, validation, and test sets, maintaining representational
balance.

• Sequence identity exclusivity: Kinases that share 90% or more sequence
identity within their kinase domains are assigned to the same split. This pre-
vents knowledge leakage through highly similar sequences and avoids inflating
performance via trivial transfer.

For DARKIN Split 1, the final dataset comprises 8,560 training, 1,485 validation,
and 1,415 test examples. Kinases with fewer than ten associated phosphosites are
always placed in the training set, whereas those with richer annotation are pref-
erentially used in validation and testing. This approach increases the difficulty of
generalization, placing a greater burden on the model to perform well on truly un-
seen and well-characterized classes while minimizing overfitting to rare patterns.

3.4 Evaluation Metrics

To evaluate the proposed methods and interpret their outcomes rigorously, we rely
on a small set of core metrics complemented by task-specific variants tailored to the
DARKIN dataset.

Macro Average Precision (Macro-AP): Macro-AP is the principal metric. For
each kinase class, we rank all test phosphosites, compute the Average Precision (AP)
for that class, and then take the unweighted mean across classes. DARKIN places
dark kinases (classes with very few examples) in the training set and reserves light
kinases for testing (see Section 3.3 for details). Macro-AP offers a balanced view:
every kinase, regardless of how many sites it phosphorylates, contributes equally to
the final score, preventing well-represented kinases from obscuring performance on
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rarer ones.

Top-k Accuracy: To complement kinase-centric Macro-AP with a
phosphosite-centric perspective, we report Top-k Accuracy for k ∈ {1,3,5}. A
prediction is counted as correct if any of the true kinase labels of the site appear
within the top-k positions. This metric naturally accommodates the multilabel
nature of the task and highlights how far down the ranked list a user must look
before encountering a correct kinase.

Phosphosite Average Precision (Phosphosite AP): Phosphosite AP is com-
puted analogously to Macro-AP but in the opposite direction: for each phosphosite,
we rank all candidate kinases, compute the AP, and average the resulting APs.
This metric captures how accurately the model ranks kinases for a given phospho-
site, aligning closely with the retrieval experience of an end user. However, we do not
report Phosphosite AP as the primary evaluation metric because the kinase label
space in the test set is relatively small. In such settings, site-level AP can be dispro-
portionately affected by the number of true labels per phosphosite or the frequency
of certain kinases, which can lead to misleading impressions of model performance.

Attribute-level Metrics: Kinases can be grouped by broader functional or evo-
lutionary attributes, and these coarse labels often have practical significance. We,
therefore, aggregate the model’s per-site predictions at three levels, family, group,
and fine-grained cluster (abbreviated as F.grain), and report both AP and Accu-
racy at each level. After aggregation, the same ranking-based formulas used for
Macro-AP and Top-k Accuracy are applied to the attribute labels.

Fine-grained clusters extend the family and group hierarchies with an additional
layer derived from phylogenetic proximity. Using the kinase phylogenetic tree pub-
lished by KinBase (2024), we convert branch lengths into pairwise similarity scores,
normalize them, and form clusters of kinases that share a high evolutionary simi-
larity. These clusters typically contain few kinases. Thus, only very similar kinases
are grouped together. Kinases may not be very specific in certain cases. Very
similar kinases can indeed associate with the same phosphosite, and the available
experimental data might not always show this specificity accurately due to a lack of
experimentation on both kinases’ association with the same site.

The aggregated AP and accuracy scores provide users with an alternative perspec-
tive: a model may misidentify the exact kinase yet still recover the correct family,
group, or cluster, offering biologically meaningful guidance even when fine-grained
predictions are uncertain.
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3.5 Data Augmentation Strategies

DARKIN addresses phosphosite–kinase prediction in a zero-shot learning scenario.
To obtain a realistic evaluation, the dataset holds out well-characterized “light” ki-
nases for testing while training on dark kinases that possess far fewer annotated
phosphosites. Light kinases are fewer in number but have more annotated sites,
whereas dark kinases are more numerous but less well studied. Although this split
highlights the model’s ability to generalize to unseen classes, it amplifies class imbal-
ance and reduces the diversity of training examples. In this section, we investigate
several augmentation strategies to enrich the training set, broaden class coverage,
and ultimately improve the zero-shot performance.

Data augmentation is a widely adopted practice in machine learning because it in-
creases sample diversity, improves generalization, and mitigates overfitting (Perez
and J. Wang, 2017; C. N. Vasconcelos and B. N. Vasconcelos, 2017). In computer
vision tasks, for example, an image may be rotated, blurred, or color-shifted; in
natural-language processing, augmentation often involves deleting words or substi-
tuting them with synonyms (Wei and K. Zou, 2019). Crucially, augmented instances
must preserve the true structure of the data so that the model is not misled. This
is even more critical for protein sequences. Arbitrarily deleting or swapping amino
acids can disrupt functional motifs and produce incorrect labels. In the DARKIN
dataset, every phosphosite sequence is exactly fifteen residues long, with the phos-
phosite residue at the middle position. Preserving this structural prior is critical for
downstream phosphosite–kinase association.

3.5.1 Kinase–Conditional Phosphosite Generation

Generative protein language models aim to capture the grammatical and functional
regularities of natural sequences by training on extensive corpora. Recent work has
adapted many of the training strategies that propelled progress in natural language
processing, yet protein models remain an active area of development with notable
limitations (Rives et al., 2021; Elnaggar et al., 2021; Hayes et al., 2025; Lv et al.,
2025). ProGen and its successor, ProGen2, belong to the family of autoregressive
Transformer decoders for protein design. Both models share a similar architectural
blueprint, but ProGen2 was trained on substantially larger datasets and is available
in several parameter sizes. Figure 3.2 illustrates the inference procedure of ProGen2.
Throughout this study, we employ the 650M parameter ProGen2–Base variant,
whose increased capacity has been linked to stronger sequence modeling performance
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Figure 3.2 Illustration of ProGen2 inference: given a kinase-conditioned prompt, the
model autoregressively generates the remaining amino-acid sequence.

(Nijkamp et al., 2023).

In ProGen2, the special token 1 signals the beginning of the sequence, and 2 marks
the end of the sequence. Supplying 1 initiates left-to-right generation until the
model decides to emit 2 or a user-specified length limit is reached. Conditioning is
straightforward: any sequence placed before 1 provides additional context. Decoding
quality and diversity can be tuned by switching from greedy selection to stochastic
schemes such as temperature scaling, top-k, or nucleus (top-p) sampling.

Fine-tuning protocol. To generate synthetic phosphosites, we fine-tuned Pro-
Gen2 on the training split of the DARKIN dataset. Each training sample combined
a 15-residue phosphosite with its cognate kinase in two complementary orientations:

[
kinase tokens

]
1

[
phosphosite tokens

]
2

[
kinase tokens

]
2

[
reverse phosphosite tokens

]
1

During fine-tuning, the loss was computed only on the phosphosite tokens together
with 1 and 2; kinase residues served purely as non-trainable contexts. Therefore,
the model learned that (i) the kinase information precedes the first special token,
(ii) exactly fifteen residues should appear between 1 and 2, and (iii) the central
position must carry the target phosphorylatable amino acid. The reverse orienta-
tion exposes the same constraints in the opposite direction, encouraging the model
to capture both N-to-C and C-to-N dependencies within the site. We refer to the
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Figure 3.3 Fine-tuning workflow of ProGen2–Phospho for kinase-conditioned phos-
phosite generation, supporting either cross-entropy or BLOSUM loss.

resulting model as ProGen2–Phospho. The complete fine-tuning procedure of Pro-
Gen2–Phospho is illustrated in Figure 3.3.

LoRA is a parameter-efficient fine-tuning technique (PEFT), which keeps all original
weights frozen while injecting trainable low-rank adapters into linear layers (Hu et
al., 2022). The rank and scaling factor α were tuned to balance expressiveness
against overfitting and compute cost. Higher ranks increase the number of trainable
parameters but can diminish generalization if chosen unwisely.

Because ProGen2–Phospho is evaluated by generation rather than classification, we
removed from the training split any phosphosite that also appeared in validation or
test sets. This precaution prevents the model from memorizing specific sites and
inflating downstream performance. Using DARKIN splits for ProGen2–Phospho
also eliminates leakage when synthetic sequences are later merged with DARKIN
for data augmentation.

We first trained ProGen2–Phospho with the token-level autoregressive cross-entropy
(CE) loss

LCE = − 1
|M|

∑
i∈M

logpθ

(
xi

∣∣∣x<i

)
, (3.6)

where xi is the ground-truth token at position i, pθ is the model’s predictive dis-
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tribution, and M is the set of positions on which the loss is evaluated (the 15-mer
phosphosite window and the two delimiter tokens “1”,“2”). Although (3.6) is widely
used in language modeling, it penalizes based on amino acid mismatch, even though
some substations (e.g. S↔T) are known to be structurally and functionally tolerated
(Betts and Russell, 2003).

BLOSUM smoothed loss: To encourage the model to (i) respect biochemical
similarity encoded in BLOSUM62, introduced by S. Henikoff and J. G. Henikoff
(1992), and (ii) focus on the central residue while remaining strong to mild peripheral
variations, we replace the one-hot target in (3.6) with a smoothed target distribution
qi(·) built from BLOSUM scores. The resulting loss is

LBLOSUM = − 1
|M|

∑
i∈M

∑
t∈V

qi(t) logpθ

(
t
∣∣∣x<i

)
, (3.7)

where V is the amino-acid vocabulary and qi depends on (a) whether position i is
the central residue in the 15-mer window and (b) the true amino-acid a⋆

i .

(i) Non-central amino-acids: For every amino-acid position i ̸= imid we compute

qi(t) = softmax
(
αB[a⋆

i , t]
)
,

where B[·, ·] is the BLOSUM62 score matrix shifted to non-negative values and α > 0
controls how close qi is to a one-hot vector (α→∞ recovers CE).

(ii) Central phosphosite residue: Let r ∈ {S,T,Y} be the true phospho-
acceptor. We assign three scalar weights before normalization:

qimid(t) ∝



β, t = r,

β, r∈{S,T}, t∈{S,T}\{r},

γ, r∈{S,T}, t = Y or r = Y, t∈{S,T},

δ, otherwise,

with β > γ > δ > 0. After normalization, the central target distribution rewards S↔T
confusions mildly, penalizes any S/T↔Y confusion more strongly and discourages
all other substitutions.

(iii) Delimiter tokens: For the delimiter tokens “1” and “2” we keep the original
one-hot CE targets, ensuring the model learns their exact identities.

Unless stated otherwise, we keep the implementation defaults α=1.0, β=1.0, γ=0.4,
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and δ =0.01. A brief grid search on the validation set showed that raising α pushes
the objective back toward vanilla cross-entropy while lowering it over-smooths the
targets; the chosen value, therefore, preserves informative gradients without ignoring
biochemical similarity. Setting γ to 40% of β and δ two orders of magnitude smaller
balances the cost of S↔T confusions (about half that of an S/T↔Y error) and
makes all other substitutions comparatively negligible.

Sequence generation and filtering: After training ProGen2–Phospho, we used
it to 100 candidate phosphosite sequences for each kinase across all DARKIN dataset
splits, using the prompt format

[
kinase_tokens

]
1

The generated sequences underwent a multi-step filtering process to ensure bio-
logical plausibility and consistency with the modeling objectives. Sequences were
excluded if they did not have a length of exactly 15 amino acids, lacked a phos-
phorylatable residue (S, T, or Y) at the central position, or contained non-standard
amino acid symbols. Additionally, a binary classifier based on the ESM1B model
fine-tuned as part of our TÜBİTAK project (122E500) was employed to further as-
sess sequence validity. This classifier was trained on a dataset comprising known
15-length phosphosites and randomly sampled non-phosphorylated sequences using
a binary classification objective. The model achieved a test accuracy of 94% and an
F1-score of 94%. We retained only those sequences for which the classifier assigned
a positive-class probability greater than 90%. Figure 3.4 illustrates the distribution
of predicted positive-class probabilities for ProGen2–Phospho-generated sequences,
as scored by the fine-tuned classifier trained with a standard cross-entropy loss. Fol-
lowing this filtering process, the remaining synthetic phosphosites were selectively
integrated into the DARKIN dataset in controlled amounts to evaluate their impact
on downstream performance. An illustration of this process is shown in Figure 3.5.
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Figure 3.4 Distribution of positive-class probabilities assigned by an ESM1B phos-
phorylation predictor to synthetic phosphosites produced by ProGen2–Phospho
(cross-entropy loss).
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Figure 3.5 Pipeline for generating and filtering synthetic phosphosite–kinase pairs
with ProGen2–Phospho prior to downstream training.

29



3.5.2 Leveraging Kinase Atlas Predictions as Synthetic

Training Data

Johnson et al. (2023) and Yaron-Barir et al. (2024) systematically profiled substrate
specificities for 303 human Ser/Thr kinases and 78 human Tyr kinases, respectively,
by screening each enzyme against millions of synthetic 15-mer peptides. The result-
ing position-weighted motif score matrices permit high-resolution predictions: for
any query phosphosite, the interface returns a percentile score (0–1) that ranks the
likelihood of phosphorylation across the surveyed kinome. Percentiles correspond
to − logP values, so larger scores indicate stronger model support. For clarity,
throughout this thesis, we refer to their method as the Kinase Substrate Specificity
Atlas (KSSA).

We exploited this experimental resource to label previously unlabeled phosphosites
collected from PhosphoSitePlus (Hornbeck et al., 2012). Each sequence was sub-
mitted to the KSSA interface, and the best two kinases whose scores exceeded the
0.99-percentile threshold were retained. These kinase–phosphosite pairs were then
added to the DARKIN training split as synthetic examples. This labeling procedure
is depicted in Figure 3.7. The model generates its predictions based on either a pre-
defined kinase set provided as input or, alternatively, by considering all valid kinases
available to it. Because the KSSA can only consider kinases profiled in the origi-
nal experiments, its accessible kinase set does not fully overlap with the DARKIN
kinases. In some cases, KSSA includes kinases that are not in DARKIN due to
filtering steps applied during DARKIN construction (see Section 3.3.1). Figure 3.6
illustrates the difference between the number of kinases in DARKIN and those ap-
plicable within the KSSA for the training, validation, and test sets, highlighting the
distinct experimental designs of the two studies. Johnson et al. (2023) focus exclu-
sively on Ser/Thr kinases, whereas Yaron-Barir et al. (2024) examine Tyr kinases;
therefore, the model can generate predictions separately for these two kinase groups.

Before applying augmentation, we collected all DARKIN kinases that were compat-
ible with the KSSA, enabling the construction of alternative configurations com-
prising (i) training kinases only, (ii) training and validation kinases, and (iii) the
union of all three. This design allows us to investigate the impact of synthetic
data originating from distinct class categories. Each phosphosite was restricted to
its top two predicted kinases to reduce the risk of false positives while preserving
kinase diversity. These synthetic examples were subsequently integrated into the
DARKIN dataset and used to train the DARKIN-FT and DARKIN-Interact mod-
els. Although including predictions involving validation and test kinases introduces
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Figure 3.6 Coverage of DARKIN kinases by the KSSA.

supervised information for otherwise unseen classes, no explicit kinase–phosphosite
pairs were presented to the prediction interface. This strategy prevents information
leakage while offering a rigorous test of the model’s generalization capabilities.
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Figure 3.7 Procedure for weakly labeling unannotated phosphosite–kinase pairs us-
ing the Kinase Substrate Specificity Atlas (KSSA).

3.5.3 Using Homologous Sequences for Data Augmentation

Homologous sequences refer to evolutionarily related protein sequences originating
from a common ancestor and often retaining similar functions. In this section, we
aimed to augment the training dataset by incorporating homologous variants of
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phosphosite sequences to enrich the data with biologically plausible evolutionary
variants, thereby increasing the diversity and size of the training set. We obtained
the homologous sequences from the study by Kuru et al. (2022). For multiple
sequence alignment construction, PHACT identifies homologous sequences using
PSI-BLAST against the UniProtKB/Swiss-Prot reference proteomes (The UniProt
Consortium, 2021). The retrieved sequences are aligned with MAFFT FFTNS devel-
oped by Katoh and Standley (2013), and the alignments are trimmed using trimAl
to remove poorly aligned regions.

In this application, we leveraged the homologous sequences of human proteins. Con-
sequently, we excluded isoforms and sequences from non-human organisms from the
reference sequences list. For each 15-mer phosphosite sequence in the training set,
we located the corresponding aligned position in the full-length protein alignments.
We then extracted up to five most similar aligned 15-mer windows from homologous
sequences, using global alignment scores computed via the globalxx method from
Biopython (Cock et al., 2009). These homologous sequences were treated as aug-
mented phosphosite candidates. Each synthetic sequence retained the label of its
original kinase association, assuming functional equivalence among close homologs.
This approach assumes that evolutionarily close substitutions maintain similar bio-
chemical roles. Through this method, we incorporated approximately 40,000 syn-
thetic samples into the dataset. This homology-driven augmentation strategy not
only expanded the data volume but also introduced evolutionary diversity aligned
with biological relevance.

3.6 Reassessing and Extending DeepKinZero

3.6.1 Reformulating Kinase–Phosphosite Association as Bi-

nary Classification

Transformer encoder protein language models leverage self–attention to weigh non-
local relationships within an input sequence. Inspired by the sentence-pair architec-
ture of BERT and its Next Sentence Prediction (NSP) task introduced by Devlin et
al. (2019), we rethink the kinase–phosphosite association problem as a binary clas-
sification: given a phosphosite and a kinase sequence, the model predicts whether
the kinase can phosphorylate the site. We call this method DARKIN-Interact.

All experiments begin from a pre-trained ESM2 backbone, chosen for its family
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Figure 3.8 Histogram of active-site residue indices within kinase domain sequences
in the DARKIN dataset.

of models at various parameter sizes, which allows us to probe the influence of
representational capacity. Inputs are constructed as

<CLS> phosphosite︸ ︷︷ ︸
15 aa

<EOS> kinase[:200]︸ ︷︷ ︸
≤200 aa

<EOS>,

where the kinase sequence is truncated to 200 residues to conserve GPU memory
while retaining most active-site motifs (see Figure 3.8). The output embedding of
<CLS> is passed through a two-layer classifier to predict the binary label.

Training Phase. Because DARKIN contains only positive kinase–phosphosite
pairs, we augment each positive instance with n randomly chosen negative kinases.
Negative sampling is refreshed every epoch, exposing the model to diverse coun-
terexamples and encouraging it to learn both binding and non-binding patterns.
Training minimizes binary cross-entropy over the positive and negative pairs. Fig-
ure 3.9 illustrates the training framework of DARKIN-Interact.

We investigate two parameter-efficient strategies: (i) partial fine-tuning, where only
the top l Transformer layers and the classification head are updated while earlier
layers remain frozen and (ii) LoRA adapters proposed by Hu et al. (2022) inserted
into every linear projection, which keeps the original weights intact and trains only
low-rank matrices. Varying l or the LoRA rank allows us to balance task-specific
adaptation against overfitting and computational cost.

Evaluation Phase. For evaluation, each phosphosite in the validation or test set
is paired with every kinase present in that split, and the classifier’s scores are ranked
from highest to lowest. Macro Average Precision (AP) and top-k accuracy are then
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Figure 3.9 Training scheme of DARKIN-Interact, a binary compatibility model for
phosphosite–kinase interaction prediction.

computed in the same multiclass setting used by DARKIN-FT, enabling a like-for-
like comparison. The desired behavior is a high score for true kinase partners and
a low score for unrelated kinases; AP is particularly diagnostic because it rewards
correct ordering across all classes. An overview of the evaluation process is shown
in Figure 3.10.

Incorporating Kinase Family, Group, and EC Information. DeepKinZero
and DARKIN benchmarks show that concatenating one-hot encodings of kinase
family, group, and EC annotations to sequence embeddings boosts performance
(Deznabi et al., 2020; Sunar et al., 2024). We adopt a similar strategy: the family,
group, and EC vectors are appended to the pooled <CLS> representation immedi-
ately before the final linear layer in the two-layer classifier. The first linear layer
thus acts as a pooler for the sequence embedding, while the second integrates both
sequence and kinase attribute information. DeepKinZero and DARKIN studies have
demonstrated that these attributes capture functional similarity beyond primary se-
quence and consistently enhance predictive accuracy; for fairness, we include them
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Figure 3.10 Multiclass evaluation with DARKIN-Interact obtained by ranking binary
compatibility scores, analogous to the DARKIN-FT evaluation protocol.

in all models unless stated otherwise.

3.6.2 Ablation Studies and Representation Improvements

DeepKinZero originally demonstrated that learning a bilinear compatibility ma-
trix W between phosphosite and kinase embeddings is an effective strategy for
zero-shot interaction prediction (Deznabi et al., 2020). Building upon this idea, our
DARKIN benchmark systematically evaluates the impact of alternative protein lan-
guage model embeddings on the same architecture (Sunar et al., 2024). Because the
model comprises several modular components, it provides a convenient test-bed for
dissecting how each module contributes to overall performance. In this section, we
report ablation experiments that replace or remove individual blocks and investigate
improved projection strategies for the underlying representations.

3.6.2.1 Removing W Bilinear Compatibility Function

The bilinear compatibility function W maps phosphosite and kinase vectors into
a shared latent space and returns a scalar compatibility score. While expressive,
this layer adds many parameters and places no constraint on the embedding dimen-
sions. To investigate its necessity, we removed W and replaced it with a simple dot
product, which requires that phosphosite and kinase embeddings share the same
dimensionality.

Adding a Projection to Phosphosite Representations. To satisfy the equal-
dimension requirement introduced by the dot product, we first project phosphosite
embeddings to the kinase dimension using a single linear layer, followed by a tanh
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activation. The transformed phosphosite vector is then combined with kinase em-
beddings through the dot product to yield compatibility scores. This configuration
allows us to isolate the contribution of a lightweight projection from that of the
bilinear form.

Adding a Projection to Kinase Representations. Unlike phosphosite embed-
dings, kinase vectors concatenate sequence information with one-hot encodings of
family, group, and EC attributes. We tested two projection schemes:

• Single-stage projection: Sequence and attribute vectors are concatenated
and passed through one linear layer plus tanh, mimicking the role previously
played by W.

• Two-stage projection: Sequence and attribute parts are processed sepa-
rately by their own linear+tanh layers, then merged. At merge time, we
evaluated both simple concatenation and a gated fusion that learns adaptive
weights for the two sources. Gated fusion is implemented as follows:

z = s⊙σ(Wg[s;a])+ (Waa)⊙ (1−σ(Wg[s;a])) (3.8)

Here, s ∈ Rd is the sequence embedding, a ∈ Rd′ is the attribute embedding,
and [s;a] denotes their concatenation. The gating weights are computed by
passing this concatenation through a learned linear transformation Wg fol-
lowed by a sigmoid activation σ(·). The attributes are first projected into
the sequence embedding space using Wa ∈ Rd×d′ . The final merged vector z
blends information from both sources, where the learned gate softly controls
each dimension’s contribution. This allows the model to emphasize either the
sequence or the attribute features based on context.

These experiments clarify how best to integrate categorical kinase metadata with
sequence embeddings when the bilinear compatibility function is absent.
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3.6.2.2 Regularization on W Matrices

The bilinear compatibility function W is a crucial component in this zero-shot frame-
work: it projects phosphosite and kinase embeddings into a joint space where their
compatibility is scored. Because W must implicitly encode kinase family, group, and
EC information while generalizing beyond the training split of DARKIN, regular-
izing this layer is essential for strong performance. We already apply weight decay
during the training of all modules. In addition, we explore three complementary
regularization strategies: i) Ranked Dropout, ii) ℓ1 regularization, and iii) spectral
norm regularization, and analyze their effects on model performance.

Ranked Dropout: Classical dropout randomly masks a subset of activations dur-
ing training, preventing co-adaptation and encouraging the model to rely on dis-
tributed cues rather than memorizing specific dimensions (Srivastava et al., 2014).
Targeted dropout improves stability by ranking weights (or activations) by abso-
lute magnitude and stochastically masking a fixed fraction of the smallest ones
(A. N. Gomez et al., 2019). We adopt the same magnitude-ranking mechanism
but invert the selection: at every update step, we zero the top-γ fraction of the
largest-magnitude elements, a variant we call Ranked Dropout. When applied to
the bilinear compatibility matrix W, this strategy prevents the model from concen-
trating signal in a few dominant directions, compels information to flow through
lower-magnitude dimensions, and thus improves generalization from the limited set
of training kinases to the full human kinome.

ℓ1 Regularization: Adding an ℓ1 penalty to the loss encourages sparsity in W,
effectively selecting a compact subset of informative interactions while driving irrel-
evant entries toward zero. A sparser W is less prone to capturing noise from limited
training data and is easier to interpret biologically.

Spectral Norm Regularization: Spectral norm regularization constrains the
largest singular value of the weight matrices in a neural network (Yoshida and Miy-
ato, 2017). This method reduces the sensitivity of the model to input perturbation,
ensuring that a trained model exhibits slight sensitivity to the perturbation of test
data. This contributes to better generalizability.
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Chapter 4

RESULTS AND DISCUSSION

In this chapter, we first present the results of DARKIN-FT and DARKIN-Interact
methods, analyze their strengths and weaknesses, evaluate how modifying differ-
ent components affects model performance, and assess the impact of incorporating
synthetic data along with the performance of models used to generate such data.
While doing so, we also discuss the evaluation metrics used (refer to 3.4) and how
we interpret them to better understand model behavior.

4.1 Experimental Setup

For the approaches, we report not only the zero-shot results but also their few-shot
performance. To evaluate the latter, we conduct 5-shot experiments, in which five
test examples are randomly selected from each test class and added to the training
set. This sampling process is repeated ten times to generate a pool of 50 examples.
After removing any potential duplicate entries from this pool, the final 5-shot dataset
is formed by randomly selecting five unique examples. Although the primary goal of
these methods is to learn the phosphosite-kinase association in a zero-shot setting so
that predictions can be made for kinases not seen during training, which would be
particularly valuable in cases of novel kinase discoveries, few-shot performance offers
additional insights and another perspective from which to analyze the problem.

The hyperparameter search space explored for all models discussed in this section
is detailed in Appendix Table A.15. Hyperparameter optimization was conducted
under a zero-shot learning setting, using Macro AP as the evaluation metric. The
optimal hyperparameters, highlighted in bold in the table, were subsequently uti-
lized for the few-shot learning experiments. For the DARKIN-FT and DARKIN-
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Interact models, training was performed for 100 and 50 epochs, respectively. The
ProGen2–Phospho models were trained for 5000 steps. In all instances, the model
checkpoint corresponding to the best validation performance was selected for sub-
sequent analysis. After identifying the optimal hyperparameters, the training and
validation sets were merged, and the models were retrained using the same number of
epochs (100 for DARKIN-FT and 50 for DARKIN-Interact). For ProGen2–Phospho,
the final training was limited to 2000 steps, as performance consistently declined be-
yond this point in the initial training runs.

4.2 Performance of the Compatibility-Based Zero-

Shot Model

Inspired by the DeepKinZero framework proposed by Deznabi et al. (2020) and
extended in the DARKIN study introduced by Sunar et al. (2024), the method,
DARKIN-FT, learns a phosphosite-kinase compatibility function through a learned
compatibility matrix W, applied to phosphosite and kinase embeddings. In the
BZSM method of DARKIN, the matrix W is trained using fixed pLM embeddings,
which are projected into a shared space where compatibility is evaluated. For the
DARKIN-FT, we also fine-tuned the phosphosite encoder during training to better
adapt its representations to the task. The goal is to assess whether end-to-end
fine-tuning leads to more informative phosphosite embeddings. To that end, both
randomly initialized and pre-trained versions of the pLM were evaluated in order to
observe the role of prior knowledge in learning this association. These experiments
not only aim to assess baseline model performance but also inform the selection of
phosphosite encoders for subsequent methods introduced in the following sections.

To perform this analysis, we selected four pLMs that performed well in the DARKIN
benchmark: ESM1B, ESM2-150M, ESM2-650M, and ProtT5-XL (Elnaggar et al.,
2021; Rives et al., 2021; Lin et al., 2023). ESM2-150M, the smallest among these,
was included to examine how the number of parameters, and hence the model’s
prior knowledge, affects performance on this specific problem. As demonstrated
in our earlier work Sunar et al., 2024; Deznabi et al., 2020, incorporating kinase
family, group, and EC information with the kinase domain embeddings significantly
improves performance. Thus, these attributes are included in the kinase representa-
tions for all models in this study. Each model was run with three different random
seeds, and the average results were reported. All results are based on the DARKIN
Split 1 unless otherwise noted.
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Table 4.1 and 4.2 compare the results of the BZSM approach across the four mod-
els, with both fixed W compatibility learning and end-to-end fine-tuning of the
phosphosite encoder. As expected, when the phosphosite encoder is fine-tuned, thus
introducing more trainable parameters, performance improves notably over the fixed
BZSM setting. This highlights the limitations of relying solely on static embeddings
and the W matrix for learning phosphosite-kinase associations. While ESM2-150M
performed significantly worse than ESM2-650M in the BZSM setting due to its
smaller size, this gap is reduced substantially once fine-tuning is enabled. This sug-
gests that learning task-specific embeddings compensates for the lack of pre-trained
knowledge in the smaller model. Interestingly, models with randomly initialized
weights outperformed those initialized with pre-trained weights. This counterintu-
itive result indicates that protein language models trained on unrelated tasks may
struggle to converge when repurposed for phosphosite-kinase prediction, whereas
randomly initialized models adapt more easily. Among the four models, ProT5-XL
uses an encoder-decoder structure in its original task. Since this setup only trains
the encoder component, its performance lags behind the other three encoder-only
models. Consistent with previous findings in the DARKIN study, ESM1B again
yields the best performance when its embeddings are fine-tuned for this specific
task.

Table 4.1 and 4.2 also include phosphosite-level Phosphosite AP scores, which are
important when considering practical use cases. The macro-averaged AP scores
(Kinase AP) represent the average of AP scores calculated separately for each test
kinase class. Ultimately, the goal is to provide a model that, given a phosphosite
input, can predict the most likely responsible kinase. While Phosphosite AP is
included for completeness, we place less emphasis on it during performance inter-
pretation due to the relatively small number of test kinase classes, which can make
this metric less reliable. Still, we observe that Phosphosite AP scores follow trends
consistent with those of the Macro AP scores reported across models.

Appendix Table A.1 and A.2 present the performance of the four pLMs on kinase
attribute-level metrics. Specifically, the AP and Accuracy scores are computed by
grouping predictions based on kinase attributes such as family, group, or EC num-
ber. To compute these values, predictions for kinases sharing the same attribute
were pooled, and evaluation was performed at the attribute level. This analysis
reveals some of the challenges faced by the models. While models achieve good
discrimination between broad kinase groups, they struggle to differentiate between
kinases within the same group. This difficulty likely stems from high sequence sim-
ilarity among kinases in the same group, making it hard for the model to learn
fine-grained distinctions. Figure 4.1 shows the distribution of cosine similarity be-
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Table 4.1 Zero-shot performance of four pLM backbones under three strategies:
BZSM (DARKIN benchmark), DARKIN-FT, and DARKIN-FT–PT (the phospho-
site encoder is initialized with pre-trained weights).

Model Method Macro AP Top 1 Acc Top 3 Acc Top 5 Acc Phosphosite AP

ESM1B
BZSM 0.1746 0.1320 0.3314 0.4698 0.2879
DARKIN-FT 0.2250 0.1751 0.3977 0.5228 0.3321
DARKIN-FT - PT 0.1822 0.1648 0.3819 0.5177 0.3191

ProtT5XL
BZSM 0.1673 0.1339 0.2953 0.4394 0.2790
DARKIN-FT 0.1710 0.1376 0.2720 0.3936 0.2631
DARKIN-FT - PT 0.1637 0.1188 0.2744 0.4894 0.2705

ESM2-650M
BZSM 0.1659 0.1280 0.3128 0.4429 0.2744
DARKIN-FT 0.1966 0.1673 0.3717 0.4868 0.3113
DARKIN-FT - PT 0.1865 0.1471 0.3847 0.5127 0.3149

ESM2-150M
BZSM 0.1325 0.1058 0.3177 0.4448 0.2629
DARKIN-FT 0.1862 0.1416 0.3465 0.4835 0.2915
DARKIN-FT - PT 0.1713 0.1174 0.2892 0.4314 0.2617

Table 4.2 Few-shot (5-shot) performance of four pLM backbones under three strate-
gies: BFSM (DARKIN benchmark BZSM, renamed for few-shot), DARKIN-FT, and
DARKIN-FT–PT (the phosphosite encoder is initialized with pre-trained weights).

Model Method Macro AP Top 1 Acc Top 3 Acc Top 5 Acc Phosphosite AP

ESM1B
BFSM 0.1894 0.1443 0.3202 0.4582 0.2965
DARKIN-FT 0.2386 0.1830 0.4132 0.5457 0.3465
DARKIN-FT - PT 0.1956 0.1616 0.3967 0.5315 0.3298

ProtT5XL
BFSM 0.1766 0.1285 0.3139 0.4377 0.2835
DARKIN-FT 0.1797 0.1514 0.3052 0.4211 0.2858
DARKIN-FT - PT 0.1759 0.1167 0.2847 0.4448 0.2740

ESM2-650M
BFSM 0.1866 0.1325 0.2934 0.4251 0.2776
DARKIN-FT 0.2272 0.1885 0.3785 0.5102 0.3330
DARKIN-FT - PT 0.1859 0.1593 0.3257 0.4740 0.3025

ESM2-150M
BFSM 0.1431 0.0946 0.2981 0.4613 0.2589
DARKIN-FT 0.2055 0.1601 0.3841 0.5331 0.3188
DARKIN-FT - PT 0.1740 0.1254 0.3044 0.4361 0.2739

tween test kinases, illustrating that many kinase sequences are highly similar. Given
the available training data, conveying these subtle differences to the model remains
a challenging task.

4.3 Reformulating Kinase–Phosphosite Associa-

tion as Binary Classification

PLMs, trained on massive protein sequence databases, inherently contain structural
and functional information about proteins. Therefore, leveraging the prior knowl-
edge embedded in these models is particularly valuable. Although the DARKIN-FT
framework achieved strong results even when training the phosphosite encoder from
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Figure 4.1 Pairwise cosine-similarity distribution of DARKIN kinase embeddings
extracted from ESM1B, shown over the full range [–1, 1].

scratch, it relied on pre-trained kinase embeddings combined with a learned W
compatibility matrix to project them into a shared embedding space.

In contrast, the binary classification approach, DARKIN-Interact, described in this
section, aims to model the interaction between kinase and phosphosite sequences
directly using a joint input representation. Consequently, we only used pre-trained
pLMs in this setup. This method differs significantly from DeepKinZero, BZSM
baseline of DARKIN, and DARKIN-FT by explicitly modeling the sequence-level
interaction between kinase and phosphosite and taking full advantage of the atten-
tion mechanism and transformer architecture. Reformulating the task as binary
classification provided a complementary perspective on the kinase–substrate associ-
ation problem.

This approach also allowed us to examine different aspects of the problem through
its modular design. One key distinction was reframing the original multilabel clas-
sification task as a binary classification problem. Since all kinase–phosphosite pairs
in the DARKIN dataset represent positive associations, we had to generate nega-
tive samples during training. The negative samples were randomly drawn from a
pool of non-interacting kinase–phosphosite pairs in the DARKIN dataset. This sam-
pling was performed randomly during each training batch. The number of negative
samples per positive instance, denoted as n, plays a significant role in both per-
formance and computational cost. For each batch, the effective batch size becomes
batch_size×(n+1). During evaluation, each validation or test phosphosite is paired
with all candidate kinases, leading to a batch size of batch_size×#test kinases.

A major difference between this method and the DARKIN-FT is the inclusion of
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Table 4.3 Zero-shot performance of DARKIN-Interact with different pLM encoders
fine-tuned via LoRA.

Model n Layers Macro AP Top 1 Acc Top 3 Acc Top 5 Acc Phosphosite AP

ESM1B 4 LoRA 0.1880 0.1464 0.2871 0.4194 0.2740
ESM2-650M 4 LoRA 0.1701 0.1350 0.2892 0.4045 0.2658
ESM2-150M 4 LoRA 0.1594 0.1145 0.2638 0.3918 0.2415
ESM2-35M 4 LoRA 0.1278 0.1124 0.2397 0.3564 0.2342

Table 4.4 Few-shot (5-shot) performance of DARKIN-Interact with different pLM
encoders fine-tuned via LoRA.

Model n Layers Macro AP Top 1 Acc Top 3 Acc Top 5 Acc Phosphosite AP

ESM1B 4 LoRA 0.1699 0.1593 0.3320 0.4574 0.2978
ESM2-650M 4 LoRA 0.1814 0.1553 0.3541 0.4700 0.2958
ESM2-150M 4 LoRA 0.1486 0.1301 0.2878 0.4164 0.2639
ESM2-35M 4 LoRA 0.1229 0.1332 0.2792 0.3975 0.2597

the kinase domain sequence as part of the model input. To construct the input, the
kinase and phosphosite sequences are concatenated. Since kinase sequences can be
long, they were truncated to the first 200 amino acids, with the aim of preserving the
active domain regions as much as possible. Figure 3.8 shows the locations of kinase
active domains within their sequences. This input formulation, like the choice of n,
also poses computational challenges.

4.3.1 Baseline Model Performance Analysis

To evaluate the baseline performance of this approach and select a model for deeper
analysis, we trained four encoder-only protein language models: ESM1B, ESM2-
35M, ESM2-150M, and ESM2-650M. We excluded ProT-T5-XL from this section
because, as discussed in Section 4.2, its encoder-decoder architecture underperforms
in this encoder-only setup. Moreover, to better understand how model size affects
performance, we included the smaller 35M variant of ESM2.

All models were trained using Low-Rank Adaptation (LoRA), with the rank hy-
perparameter set to 32. This allowed us to fine-tune models while keeping the
number of trainable parameters manageable, which is particularly important given
the increased input length and computational demand due to negative sampling. In
Section 4.3.3, we explore alternatives to LoRA for fine-tuning.

We fixed the number of negative samples per positive instance to n = 4 for all models.
This value provided a balance between dataset size and informativeness, enabling
a reasonable number of negative samples without making the dataset excessively
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Table 4.5 Effect of the number of negative samples per positive (n) on
DARKIN-Interact’s zero-shot performance. The ESM1B encoder is utilized and
fine-tuned via LoRA.

Model n Layers Macro AP Top 1 Acc Top 3 Acc Top 5 Acc Phosphosite AP

ESM1B 1 LoRA 0.1847 0.1584 0.3685 0.5085 0.3088
ESM1B 2 LoRA 0.1899 0.1506 0.2772 0.4045 0.2730
ESM1B 4 LoRA 0.1880 0.1464 0.2871 0.4194 0.2740
ESM1B 8 LoRA 0.1910 0.1534 0.3210 0.4561 0.2909
ESM1B 12 LoRA 0.1868 0.1407 0.2793 0.3769 0.2604

imbalanced or computationally intensive. Table 4.5 and 4.6 show the effect of varying
n values on performance, which we will discuss in the following section. Table 4.3 and
4.4 reports model-wise metrics. A notable observation is that ESM2 models exhibit
consistent improvement with increasing size. As shown in Appendix Table A.3 and
A.4, attribute-level metrics also improve with larger model sizes for both zero- and
few-shot cases. Among all models, ESM1B again achieved the best performance.

A striking result is that when we train the model in a binary classification setting
and then evaluate it in the same multilabel setting used in DARKIN-FT, the perfor-
mance remains comparable. One key reason for this success is the use of attention
mechanisms to model phosphosite–kinase interactions directly. In addition, unlike
previous methods where kinase attribute information (e.g., family, group, EC) is
embedded prior to training, here we append these attributes after processing the
sequence pair through the transformer. Together, these observations point to the
utility of alternative modeling strategies in this task. Based on these findings, we
selected ESM1B for further experiments.

4.3.2 Impact of Negative Sample Count on Model Perfor-

mance

The number of negative samples (n) is a critical hyperparameter in this task. In-
creasing n exposes the model to more non-interacting kinase–phosphosite pairs dur-
ing training, potentially improving its ability to discriminate true interactions. How-
ever, as previously mentioned, larger n values also increase the computational load.

To analyze the impact of n, we fixed all other settings and evaluated model perfor-
mance with n ∈ {1,2,4,8,12}. An n of 1 yields a balanced dataset, while an n of 12
leads to a highly imbalanced dataset but greatly increases the number of training
examples.

As shown in Table 4.5 and 4.6, performance does not vary dramatically across
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Table 4.6 Effect of the number of negative samples per positive (n) on
DARKIN-Interact’s few-shot (5-shot) performance. The ESM1B encoder is utilized
and fine-tuned via LoRA.

Model n Layers Macro AP Top 1 Acc Top 3 Acc Top 5 Acc Phosphosite AP

ESM1B 1 LoRA 0.1816 0.1790 0.3375 0.4408 0.3052
ESM1B 2 LoRA 0.1777 0.1506 0.3147 0.4211 0.2824
ESM1B 4 LoRA 0.1699 0.1593 0.3320 0.4574 0.2978
ESM1B 8 LoRA 0.1830 0.1624 0.3233 0.4219 0.2816
ESM1B 12 LoRA 0.1834 0.1695 0.3351 0.4227 0.2976

different values of n. The attribute-level metrics, presented in Appendix Table A.5
and A.6, also reflect this stability, indicating only a marginal improvement at n =
1. While incrementing n increases the number of training instances, the resulting
imbalance and the high similarity among kinase classes (see Figure 4.1) likely limit
the benefits of additional negatives. Therefore, for all subsequent experiments, we fix
n = 4 to maintain computational feasibility while ensuring adequate representation
of negative examples.

4.3.3 Effect of Fine-Tuning Different pLM Layers

Fine-tuning a pre-trained model typically involves updating all model parameters.
However, with the increasing size of modern language models, parameter-efficient
fine-tuning strategies have gained popularity. LoRA, which we used in prior experi-
ments, updates only low-rank matrices injected into frozen layers, enabling efficient
training with fewer trainable parameters.

In earlier sections, we fine-tuned ESM1B using LoRA with rank 32. This setup
helped manage memory usage due to long inputs and negative sampling. However,
performance remained slightly below that of the BZSM baseline of DARKIN. To
investigate whether this gap was due to limited parameter updates or differences in
modeling strategy, we compared LoRA with another fine-tuning approach: updating
only the top l layers of the model. We hypothesized that lower layers of pLMs capture
general protein features, whereas higher layers can be better adapted to task-specific
learning. Therefore, we selected l ∈ {1,2,4,8,12} and retrained the model, updating
only the top l layers.

Table 4.7 and 4.8 compare the LoRA and layer-wise fine-tuning strategies. Results
indicate that updating the top layers improves performance, with results approach-
ing those of Section 4.2. Performance gains plateau after two layers, but show a
slight increase in both Accuracy and AP when extended to the last 12 layers. This
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Table 4.7 Zero-shot impact of unfreezing the last l ESM1B encoder layers versus
LoRA on DARKIN-Interact.

Model n Layers Macro AP Top 1 Acc Top 3 Acc Top 5 Acc Phosphosite AP

ESM1B 4 Last 1 0.1541 0.1711 0.3302 0.4371 0.2933
ESM1B 4 Last 2 0.2005 0.1916 0.3395 0.4455 0.3062
ESM1B 4 Last 4 0.2078 0.1732 0.3154 0.4491 0.3006
ESM1B 4 Last 8 0.2041 0.1810 0.2935 0.4186 0.2899
ESM1B 4 Last 12 0.2078 0.1669 0.3501 0.5035 0.3109

ESM1B 4 LoRA 0.1880 0.1464 0.2871 0.4194 0.2740

Table 4.8 Few-shot (5-shot) impact of unfreezing the last l ESM1B encoder layers
versus LoRA on DARKIN-Interact.

Model n Layers Macro AP Top 1 Acc Top 3 Acc Top 5 Acc Phosphosite AP

ESM1B 4 Last 1 0.1604 0.1672 0.3572 0.4763 0.3066
ESM1B 4 Last 2 0.1935 0.1806 0.3336 0.4290 0.2968
ESM1B 4 Last 4 0.2010 0.1806 0.3754 0.4976 0.3142
ESM1B 4 Last 8 0.2179 0.1932 0.3706 0.4850 0.3179
ESM1B 4 Last 12 0.2284 0.1885 0.4077 0.5260 0.3383

ESM1B 4 LoRA 0.1699 0.1593 0.3320 0.4574 0.2978

trend is also observed in the attribute-level metrics, shown in Appendix Table A.7
and A.8.

These findings demonstrate that effective performance can be achieved even with a
fundamentally different modeling strategy from DeepKinZero and the BZSM base-
line. The goal of these experiments was to observe how various training strategies
and architectural decisions affect performance. The results underscore the effective-
ness of transformer-based architectures, and particularly the attention mechanism,
in modeling phosphosite–kinase associations.

4.4 Ablation Studies and Representation Improve-

ments

Building upon the best-performing model identified in Table 4.1, where we jointly
trained the phosphosite encoder and the W compatibility matrix in an end-to-end
manner as in the BZSM baseline of DARKIN framework, we conducted a series of ab-
lation studies to examine how replacing or modifying individual components affects
performance. These experiments are particularly valuable for understanding the role
and strength of the W compatibility function in capturing the kinase–phosphosite
relationship.
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4.4.1 Removing the W Bilinear Compatibility Function

In the absence of the W function, we compute the compatibility between phos-
phosite and kinase vectors via a simple dot product. However, one challenge in
this approach is that the dimensions of the phosphosite and kinase vectors may not
match. Although both vectors are generated from the same pLM, the kinase em-
beddings include additional metadata such as family, group, and EC number, which
results in a dimensional mismatch.

Throughout the DARKIN study and previous experiments, we used the CLS token
from the last layer of the encoder to represent each sequence. While the DARKIN
paper compared using CLS token embeddings versus averaging all token embeddings
and reported minor differences, the CLS token generally led to slightly better results
and was, therefore, preferred.

Projecting the phosphosite embeddings: To address the dimensional mis-
match between phosphosite and kinase embeddings, we first applied a projection
step on the phosphosite side. Specifically, we introduced a "pooler" module con-
sisting of a linear layer followed by a Tanh activation function, which projects the
CLS token embedding of the phosphosite into the same dimensional space as the
kinase embeddings. This projection module was trained jointly with the model. As
shown in Table 4.9, although this approach resulted in a slight drop in performance
compared to the W matrix, the decrease was minimal, suggesting that dot prod-
uct compatibility serves as a feasible alternative, although with a small decrease in
effectiveness.

Projecting the kinase embeddings: Next, we applied a similar projection op-
eration to the kinase embeddings to assess whether symmetric projection would
further improve performance. On the kinase side, additional modeling flexibility
was possible due to the inclusion of structured attributes. We explored two designs:
a single-stage and a two-stage projection. In the single-stage approach, the kinase
domain sequence embedding and the attribute embedding were concatenated and
passed through a single projection layer. In the two-stage approach, each compo-
nent, the domain sequence, and the attribute embedding were projected separately
through independent layers before being merged.

For both projection strategies, we tested two fusion mechanisms: simple concate-
nation and gated fusion. While concatenation preserves the structure of individual
vectors, gated fusion combines the two representations via element-wise addition
with learned weights, enabling the model to emphasize or suppress components dy-
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Table 4.9 Ablation study of zero-shot DARKIN-FT exploring alternative compati-
bility projections, merging strategies (concatenation vs gated fusion), kinase-pooler
designs, and optional attribute projections.

Phosphosite
Pooler

Kinase
Pooler Merging Attribute

Projection
Macro

AP
Top 1
Acc

Top 3
Acc

Top 5
Acc

Phosphosite
AP

Default Model Setting 0.2250 0.1751 0.3977 0.5228 0.3321

✓ − − − 0.2218 0.1732 0.4045 0.5304 0.3330

✓

Single
Stage

Concat − 0.2220 0.1831 0.3925 0.5220 0.3364
✓ 0.2092 0.1782 0.3932 0.5092 0.3304

Gated − 0.1990 0.1676 0.3592 0.5063 0.3125
✓ 0.2154 0.1824 0.3911 0.5240 0.3341

Two
Stage

Concat − 0.2120 0.1697 0.3826 0.5014 0.3275
✓ 0.2116 0.1782 0.3621 0.4823 0.3211

Gated − 0.2124 0.2125 0.3868 0.4957 0.3236
✓ 0.2053 0.1782 0.3642 0.4929 0.3241

namically.

According to the results in Table 4.9 and the attribute-level performances provided
in Appendix Table A.9, adding a projection layer to the kinase embedding did not
lead to a significant performance improvement. Interestingly, gated fusion outper-
formed concatenation in the two-stage setup but underperformed in the single-stage
setup. We believe this discrepancy arises because, in the single-stage design, fusion
occurs before projection. If the fusion weights are not well-initialized or optimized,
the quality of the resulting representation may suffer, thus degrading projection
performance.

To further explore the representation power of the kinase attributes, we experi-
mented with projecting the binary attribute vectors to higher-dimensional represen-
tations using an additional linear layer. This was followed by the same sequence of
projection and fusion operations as before. The results, also shown in Table 4.9, in-
dicate that projecting attribute vectors to higher dimensions generally led to slightly
worse performance compared to using the binary vectors directly. However, when
gated fusion was applied in the single-stage design, performance improved, suggest-
ing that projection prior to fusion can be more effective when using high-dimensional
representations instead of one-hot encodings. A similar trend is observed in the
attribute-level metrics presented in Appendix Table A.9.

Overall, this section shows that while the W matrix remains the most effective
compatibility mechanism, alternative formulations using projection and dot product
can approximate its performance. These findings also illustrate the nuanced trade-
offs between representation learning and architecture design in phosphosite–kinase
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Table 4.10 Regularization strategies for the compatibility matrix W in zero-shot
DARKIN-FT.

Regularization Macro AP Top 1 Acc Top 3 Acc Top 5 Acc Phosphosite AP

L2 (Default) 0.2250 0.1751 0.3977 0.5228 0.3321

L2 + L1 0.1711 0.1223 0.3487 0.5042 0.2871
L2 + Ranked Dropout 0.2240 0.1817 0.4087 0.5297 0.3383
L2 + Spectral Norm 0.2287 0.1768 0.3981 0.5233 0.3336

association modeling.

4.4.2 Regularization on W Matrices

The W matrix plays a central role in modeling the interaction between phosphosite
and kinase embeddings, directly influencing prediction quality. As observed in Ap-
pendix Table A.1, while the model achieves strong performance at the group level,
it struggles to distinguish between kinases within the same group. This suggests
that the model may overfit to certain group-level patterns, raising concerns about
generalization and stability. To address this, we applied three different regulariza-
tion techniques to the W matrix and evaluated their effect on model performance.
These methods were designed to constrain or stabilize the learning process in differ-
ent ways, potentially mitigating overfitting.

The comparison of performance with and without regularization is presented in Ta-
ble 4.10. As with previous analyses, the attribute-level results presented in Appendix
Table A.10 follow a similar behavior to the main performance metrics reported in
Table 4.10. Among the methods tested, L1 regularization produced a clear degrada-
tion in performance. We hypothesize that this is due to L1 penalizing many features
too harshly, effectively shrinking informative weights to near zero and impairing the
model’s ability to learn from limited data.

Ranked Dropout, in contrast, yielded strong results in terms of Phosphosite AP and
Accuracy, even though its Macro AP was similar to the baseline. These results sug-
gest that Ranked Dropout is particularly effective in improving phosphosite retrieval
by helping the model avoid over-reliance on specific features.

Spectral Norm regularization slightly outperformed the baseline in both Macro AP
and Accuracy. This performance gain suggests that constraining the largest singular
value of the weight matrices effectively improves generalizability, likely by limiting
the model’s sensitivity to input perturbations and encouraging smoother decision
boundaries.
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These results demonstrate that carefully selected regularization techniques can bring
modest but meaningful improvements to compatibility-based models. While the W
matrix is undoubtedly powerful, it is also sensitive to overfitting. Regularization
can play a critical role in balancing this power and ensuring better generalization,
especially across kinase subtypes with high sequence similarity or small sample sizes.

4.5 Data Augmentation Strategies

In this section, we first evaluate the performance of the models used or trained for
data augmentation. Then, we assess the impact of incorporating the synthetic data
generated by these methods into the DARKIN dataset.

4.5.1 Finetuning ProGen2 for Kinase-Conditional Phospho-

site Generation

ProGen2 is an autoregressive protein generation model trained on a large-scale pro-
tein sequence database (Nijkamp et al., 2023). Its training mechanism resembles
that of natural language models. It uses special tokens analogous to [CLS] and
[EOS], represented as "1" and "2", respectively. Since ProGen2 was originally trained
to generate entire protein sequences, we adapted it to this work by applying task-
specific fine-tuning.

The aim was to augment the training data for kinase classes with limited examples
in the DARKIN dataset by generating phosphosite sequences that could plausibly
be phosphorylated by specific kinases. To achieve this, we constructed the input
sequence as follows: the kinase sequence was placed at the beginning, followed by the
special "1" token, then the phosphosite sequence, and finally the "2" token. During
fine-tuning, the loss was computed only on the phosphosite segment, ensuring that
the model focused on generating this region while conditioning on the kinase.

The model was trained using the DARKIN Split 1 to ensure consistency with previ-
ous experiments. However, unlike the zero-shot design in DARKIN, which ensures
kinase classes are split across training and test sets, the same phosphosite sequences
can appear in both training and testing sets due to the dataset’s multilabel nature.
Although this overlap is not problematic for most of the experiments, it may lead to
overfitting in generative modeling. To prevent data leakage, we removed overlapping
sequences from the train set during ProGen2 training. This resulted in the removal
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Table 4.11 Position-wise negative-log-likelihood for DARKIN test phosphosites un-
der vanilla ProGen2 and ProGen2–Phospho trained with cross-entropy or BLOSUM
loss.

Finetuning
Method

Positions

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

No Finetuning 17.09 3.24 2.96 2.94 2.91 2.91 2.87 2.72 2.79 2.77 2.78 2.74 2.74 2.71 2.71
Cross Entropy Loss 2.83 2.81 2.79 2.56 2.32 2.21 2.19 0.53 1.75 2.05 1.98 2.00 1.86 1.99 1.98
BLOSUM Loss 2.84 2.82 2.79 2.62 2.36 2.24 2.22 0.95 1.80 2.01 2.01 1.93 1.92 1.92 1.92

of 1054 sequences.

Table 4.11 compares the position-wise loss values on the test set for the fine-tuned
ProGen2 models and the original pre-trained ProGen2 model. We experimented
with two loss functions: standard cross-entropy and a modified version we refer to
as "BLOSUM Loss," which adjusts the cross-entropy loss using a BLOSUM-based
amino acid similarity matrix. The goal was to encourage the model to generate
amino acids with similar biochemical properties when mistakes occur. Synthetic se-
quences generated from both training regimes were later used for data augmentation,
and their downstream effects are discussed in the following subsection.

As shown in Table 4.11, the fine-tuned models outperformed the original ProGen2.
This is expected, as the goal of fine-tuning was to adapt a general-purpose model
trained on diverse proteins to the specific phosphosite generation task. While Pro-
Gen2 may not have captured detailed phosphosite-specific knowledge from general
training alone, it was able to learn kinase–phosphosite associations more effectively
during fine-tuning. The model successfully learned that phosphosites must be 15
amino acids long and that the phosphorylation site must appear in the center of
the sequence. Figure 4.2 presents the confusion matrix for the central residue pre-
dictions. The BLOSUM Loss, which imposes softer penalties for confusing serine
(S) and threonine (T), reflects these similarities while effectively distinguishing S/T
from tyrosine (Y). The results show that the model trained with standard cross-
entropy loss performs better at discriminating the phosphosite residue, likely due
to the sharper penalties it applies for incorrect predictions. Although the impact
of BLOSUM Loss on overall performance appears more limited due to its milder
penalization, it plays an important role in preserving biological plausibility. Since
this approach aims to generate entirely novel protein sequences, we consider preserv-
ing realistic phosphosite structures a critical factor, and BLOSUM Loss contributes
meaningfully to that goal.
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Figure 4.2 Residue-level confusion matrices at the phosphosite position comparing
ProGen2–Phospho trained with (a) Cross-Entropy loss and (b) BLOSUM loss.
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Table 4.12 Zero-shot effect of augmenting DARKIN-FT with synthetic phosphosites
from ProGen2–Phospho using either loss function (Cross Entropy, CE, and BLO-
SUM) and three kinase sets (Train, Train + Val, Train + Val + Test).

Augmentation
Method

Kinase
Set

Macro
AP

Top 1
Acc

Top 3
Acc

Top 5
Acc

Phosphosite
AP

− − 0.2250 0.1751 0.3977 0.5228 0.3321

ProGen BLOSUM
Train 0.1713 0.1570 0.3302 0.3995 0.2291
Train + Val 0.1740 0.1591 0.3281 0.4399 0.2313
Train + Val + Test 0.1565 0.1478 0.2765 0.4526 0.2039

ProGen CE
Train 0.1924 0.1711 0.3670 0.4759 0.2509
Train + Val 0.1887 0.1704 0.3642 0.4710 0.2473
Train + Val + Test 0.1731 0.1598 0.3090 0.4201 0.2276

Table 4.13 Zero-shot effect of augmenting DARKIN-Interact with synthetic phos-
phosites from ProGen2–Phospho using either loss function (Cross Entropy, CE, and
BLOSUM) and three kinase sets (Train, Train + Val, Train + Val + Test).

Augmentation
Method

Kinase
Set

Macro
AP

Top 1
Acc

Top 3
Acc

Top 5
Acc

Phosphosite
AP

− − 0.2078 0.1669 0.3501 0.5035 0.3109

ProGen BLOSUM
Train 0.1997 0.1612 0.3359 0.4936 0.3046
Train + Val 0.1782 0.1591 0.2998 0.4392 0.2866
Train + Val + Test 0.1506 0.1393 0.2609 0.3564 0.2469

ProGen CE
Train 0.1959 0.1676 0.3218 0.4760 0.3013
Train + Val 0.1282 0.1117 0.2461 0.3239 0.2198
Train + Val + Test 0.1397 0.1202 0.2298 0.3232 0.2282

4.5.2 Incorporating ProGen2-Phospho Generated Phospho-

sites into the DARKIN Dataset

After fine-tuning, we used the ProGen2–Phospho models to generate 100 phospho-
site sequences for each kinase. These sequences were then filtered to remove invalid
or low-quality samples. One of the key filtering steps involved the use of a phos-
phorylation predictor model based on ESM1B, (detailed in 3.5.1). We retained only
those generated phosphosites that received a predicted phosphorylation probability
greater than 90%. As the generation process was performed for all kinases, includ-
ing the unseen test kinases from the DARKIN dataset, we were able to explore the
effect of adding kinases from different splits into the training set.

Contrary to expectations, we observed a decrease in Macro AP following the appli-
cation of the augmentation for both approaches (refer to Table 4.12 for DARKIN-FT
and Table 4.13 for DARKIN-Interact). This decline is more apparent in the detailed
attribute-level results, presented in Appendix Tables A.11 and A.12 for DARKIN-
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FT and DARKIN-Interact, respectively.

We interpret this outcome in three ways. First, the inclusion of synthetic examples
with potentially low confidence may have introduced noise into the training set,
hindering the model’s ability to learn effectively. These synthetic samples may have
disrupted the modeling process, leading to confusion that ultimately degraded test-
time performance. Second, we hypothesize that the increased diversity of training
samples caused the model to shift its focus from memorizing protein-specific patterns
to attempting to generalize across a broader structural space. While this could be
beneficial in theory, it may have diluted the model’s ability to specialize in certain
kinases, resulting in reduced performance. Since Macro AP treats all kinase classes
equally, strong performance on a few specific kinases can improve the overall score.
A redistribution of attention across many kinases, without learning them effectively,
may therefore lead to a drop in this metric. Lastly, the quality and biological plausi-
bility of the synthetic phosphosites generated by ProGen2–Phospho inevitably affect
the utility of the augmented data. While current performance is limited, we believe
that continued improvements in protein sequence generation models will make them
valuable for data augmentation pipelines in phosphosite–kinase prediction tasks.

4.5.3 KSSA Evaluation on DARKIN

Before using the KSSA to label unlabeled phosphosite sequences obtained from
PhosphoSitePlus, we first evaluated the performance of this method on the DARKIN
dataset to benchmark it against the models developed in this work.

One important distinction of the KSSA method is that it separately handles S/T
kinases and Y kinases. Moreover, predictions must be made using only the kinase list
originally included in the KSSA. The two versions of the KSSA, developed in studies
by Johnson et al. (2023) and Yaron-Barir et al. (2024), restrict scoring such that S/T
phosphosites are evaluated only with S/T kinases, and similarly for Y phosphosites.
To perform a fair comparison, we excluded any kinases not present in the KSSA
from the DARKIN dataset. The resulting subsets were divided into two separate
datasets: DARKIN-KL-ST and DARKIN-KL-Y. Figure 4.3 illustrates the difference
in data quantity resulting from this split. The only kinase that is not shared with
the DARKIN test kinases is Q38SD2, which belongs to the serine/threonine (S/T)
kinase family.

To maintain consistency, the ESM1B model (the best-performing model from Ta-
ble 4.1) was evaluated separately on DARKIN-KL-ST and DARKIN-KL-Y. Predic-
tions were scored using both models and the KSSA. To assess KSSA predictions, the
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Figure 4.3 Dataset sizes before and after KSSA filtering, with serine/threonine ki-
nases (S/T) separated from tyrosine kinases (Y).

Table 4.14 Performance of DARKIN-FT, DARKIN-Interact, and Kinase Substrate
Specificity Atlas (KSSA) on the filtered DARKIN-KL-ST and DARKIN-KL-Y sub-
sets.

Kinase
Type Method Macro AP Top 1 Acc Top 3 Acc Top 5 Acc Phosphosite AP

S/T
DARKIN-FT 0.2240 0.1760 0.3410 0.4700 0.3101
DARKIN-Interact 0.2073 0.1772 0.3339 0.4666 0.3097
KSSA 0.1600 0.2320 0.4521 0.5908 0.3870

Y
DARKIN-FT 0.3810 0.1800 0.7730 1.0000 0.4915
DARKIN-Interact 0.3389 0.1342 0.6991 1.0000 0.4259
KSSA 0.1259 0.4213 0.8056 1.0000 0.6338

log-scores produced were treated as logits and evaluated with ranking-based metrics
like AP and accuracy.

Table 4.14 compares the performance of the KSSA with the compatibility-based and
binary classification models. The KSSA achieved lower AP scores than the models
introduced in this work, but surprisingly delivered better Accuracy. This discrepancy
likely stems from the reduced complexity of the problem: the KSSA operates over
smaller candidate sets, making the task inherently easier. Nevertheless, even when
evaluating KSSA on these smaller datasets, the models developed in this work,
applied to the more challenging standard DARKIN dataset, demonstrated superior
performance in terms of AP, as shown in Table 4.1 and 4.7. Despite this, we opted to
use the KSSA to label the unlabeled phosphosites due to its experimental knowledge
and demonstrated strength in the phosphosite-kinase association problem.
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Table 4.15 Impact of KSSA-labeled unlabeled phosphosite sequences on
DARKIN-FT and DARKIN-Interact.

Model Augmentation
Method

Kinase
Set

Macro
AP

Top 1
Acc

Top 3
Acc

Top 5
Acc

Phosphosite
AP

DARKIN-FT − − 0.2250 0.1751 0.3977 0.5228 0.3321
KSSA Train (Filtered) 0.1676 0.1739 0.3522 0.4957 0.3167

DARKIN-Interact − − 0.2078 0.1669 0.3501 0.5035 0.3109
KSSA Train (Filtered) 0.1993 0.2008 0.3925 0.5283 0.3481

4.5.4 Augmenting DARKIN with KSSA–Labeled Unlabeled

Data

We began by filtering the unlabeled phosphosite sequences obtained from Phospho-
SitePlus to remove those that did not meet basic criteria, such as having a central
residue other than S, T, or Y or containing invalid amino acids. This filtering re-
duced the unlabeled dataset size from 379.029 to 311.081 sequences. The KSSA’s
integrated data preprocessing tool performed this filtering.

The remaining sequences were grouped based on the central residue and scored using
the appropriate kinase subset from the intersection of the KSSA and DARKIN kinase
classes. Unlike the ProGen2–Phospho experiments, we did not perform a special
split-based selection for the kinase subsets. The primary concern is that, during the
construction of the KSSA model, some phosphosite–kinase interactions from the test
set were included in its training, leading to potential data leakage if not properly
controlled. This issue was not present in ProGen2–Phospho, which is why we were
able to explore various split generations in that setting.

For each phosphosite, the top two kinases with scores above the 99th percentile
were selected, as shown in Figure 3.7. These multilabel predictions were compati-
ble with the structure of the DARKIN dataset, which already contains multilabel
examples. During training, these multilabel examples are decomposed into multiple
rows, allowing the model to see diverse pairings and label combinations.

Table 4.15 reports the performance of the compatibility-based and binary classifica-
tion models after augmenting DARKIN with kinase-labeled synthetic data. The cor-
responding attribute-level results are also provided in Appendix Table A.13. These
results show that, although we significantly increased the size of the dataset by
labeling previously unlabeled data using a model that had already demonstrated
acceptable performance (see Table 4.14), this augmentation did not improve overall
model performance.

While the decrease was less pronounced in the binary classification approach, the
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results once again highlight the importance of learning from real, high-quality data.
Unlike the phosphosites generated by ProGen2–Phospho, the samples used in this
augmentation were real phosphosites, so we expected to observe a more notable
performance gain. We believe the limited improvement may stem from the fact
that learning from a much larger and more diverse dataset makes it harder for the
model to focus on key discriminative patterns. When trained on kinase classes
with only a few phosphosite examples, the model tends to focus more effectively
on specific patterns. While this behavior could be interpreted as overfitting, it also
reflects the model’s ability to capture structural similarities between phosphosites
and kinases. Although increasing the number of training samples allows the model
to learn from a broader range of examples, it appears to struggle more with unseen
data. Additionally, due to the similarities among embeddings produced by protein
language models, the new information introduced by the augmented data may not
be sufficiently distinguishable to the model, limiting its contribution to training.

4.5.5 Homologous Sequences and Integration into the

DARKIN Dataset

The key distinction between the homologous sequences added to the dataset and
the synthetic sequences generated by ProGen2–Phospho or weakly labeled unlabeled
data lies in their origin: homologous sequences are derived from alignments with real
phosphosite sequences. As a result, they closely resemble actual phosphosites but
contain small variations. This makes the added data both biologically plausible and
high-quality, as it primarily reflects minor sequence differences while preserving core
phosphosite characteristics. Additionally, this augmentation strategy increases the
number of samples for certain kinase classes that originally had very few training
instances. Introducing homologous sequences with subtle modifications encourages
the model to learn discriminative patterns for these underrepresented classes better.

As shown in Table 4.16, among the three data augmentation strategies tested, using
homologous sequences produced the most effective results. In the binary classifica-
tion setting, this method led to an improvement in Macro AP. While kinase-level
performance metrics improved, we observed a drop in phosphosite-level accuracy
and AP scores, suggesting that the model became better at distinguishing among
kinase classes but struggled more in retrieving the correct kinase for a given phos-
phosite. For the DARKIN-FT approach, even though there was a minor decline in
overall performance, the Macro AP stayed above 0.20. Appendix Table A.14 further
illustrates the effect of adding homologous sequences on the attribute-level results.
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Table 4.16 Effect of augmentation with homologous sequences on DARKIN-FT and
DARKIN-Interact.

Model Augmentation
Method

Kinase
Set

Macro
AP

Top 1
Acc

Top 3
Acc

Top 5
Acc

Phosphosite
AP

DARKIN-FT − − 0.2250 0.1751 0.3977 0.5228 0.3321
Homologous Train 0.2060 0.1648 0.3614 0.4872 0.2687

DARKIN-Interact − − 0.2078 0.1669 0.3501 0.5035 0.3109
Homologous Train 0.2131 0.1640 0.3048 0.4165 0.2901

Compared to the other two approaches, the synthetic data produced via homologous
sequences exhibited stronger biological relevance and greater similarity to real data,
resulting in better model performance. In contrast, ProGen2–Phospho generates
entirely new phosphosite sequences, and the KSSA strategy relies on labeling real
phosphosites using a predictive model, which may or may not assign biologically
accurate kinase labels. The homologous sequence approach is conceptually similar
to data augmentation techniques in natural language processing, where parts of
the input are randomly altered to improve generalization. Overall, this method
yielded more stable and reliable improvements compared to the other augmentation
strategies.
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Chapter 5

CONCLUSION

While it is possible to detect phosphosites through high-througput experiments,
it is a challenge to figure out which kinase is the catalyzing kinase. Therefore,
computational models to associate phosphosites with their cognate kinases is useful.
The available data for the kinases-phosphosites association pairs show that there
are many kinases that are understudied, with no or few phosphosites known from
them. This problem was casted as a zero-shot learning problem earlier in Deznabi
et al., 2020. This thesis extends this set up to few-shot learning as well. In the
zero-few shot learning set ups, we developed new deep learning models and tested
several data augmentation methods designed for this specific biological problem to
deal with the lack of labeled data for a large number of classes.

This work has three main contributions. First, we built two new zero-shot learn-
ing models, DARKIN-FT and DARKIN-Interact. DARKIN-FT improves on older
models Deznabi et al., 2020; Sunar et al., 2024 by finetuning the protein language
model embeddings for phosphosites from end to end. DARKIN-Interact changes
the problem to a binary classification task to assess the compatibility of kinase and
phosphosite interaction. Both models performed much better than the baselines on
the DARKIN benchmark. Second, we designed and tested three data augmentation
strategies: (i) generating new phosphosites for a given kinase using a finetuned Pro-
Gen2 model, (ii) labeling unlabeled data using scores from the experimental Kinase
Substrate Specificity Atlas (KSSA), and (iii) creating new training examples using
homologous sequences. Third, through many experiments and ablation studies, we
analyzed the strengths and weaknesses of the models and augmentation methods,
providing valuable insights for this research area.

Experiments in this study showed a few important things. The DARKIN-FT model
proved that finetuning phosphosite embeddings for this task works much better
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than using static, pre-trained embeddings. This illustrates the importance of task-
specific representations. Interestingly, models that started with random weights
often learned the task better than models that were pre-trained on general protein
data. The second main model of this study, DARKIN-Interact, showed that using
cross-sequence attention to compare a kinase and a phosphosite directly is a very
effective strategy, with performance close to the DARKIN-FT model. This demon-
strates the power of modern transformers to find the small but important patterns
in these sequence pairs. Ablation studies also showed that while a learned compat-
ibility matrix W works well, it can be replaced with simpler projection layers, and
its performance can be slightly improved with regularization techniques like spectral
norm regularization.

Data augmentation methodologies yielded mixed results. The strategies of generat-
ing entirely new phosphosites with ProGen2 or labeling data with KSSA predictions
made the models perform worse. Adding this synthetic or weakly-labeled data, even
after filtering, introduced noise that confused the models. This prevented them from
learning the specific features needed to distinguish between very similar kinases. In
contrast, using homologous sequences for augmentation proved to be the most suc-
cessful strategy. These sequences are very similar to real ones and introduced useful
variety into the training data, improving the Macro AP for the DARKIN-Interact
model. This suggests that for this problem, the most effective data augmentation
methods are those that closely adhere to real biological examples, such as making
meaningful minor changes to known positives.

While the results are promising, several limitations remain. The quality of the
synthetic data is still a challenge, as today’s generative models may not fully capture
what makes a phosphosite functional. Also, all models still struggle to distinguish
between kinases from the same family or group since their sequences are often very
similar. This suggests that sequence data alone might not be enough to solve this
problem completely.

Looking forward, this research opens up several possibilities for future work. Future
efforts should focus on improving the quality of generated phosphosites by using
models that consider sequence and 3D structure to create more realistic synthetic
data. Adding 3D structural information to current sequence-only models, using
graph neural networks or geometric deep learning, could provide the extra infor-
mation needed to distinguish closely related kinases. We could also explore more
advanced data augmentation techniques, such as contrastive learning, which may
help the model learn more effective representations. A self-supervised task explic-
itly designed for kinase-substrate pairs could also be very effective. Finally, given
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how hard it is to tell kinases apart at the family level, a hierarchical model that
works in steps, such as first predicting the group, then the family, and finally the
specific kinase, might perform better, as could a multi-task model that also learns
to predict other site properties.

In summary, this thesis presents a deep learning framework for addressing the dark
kinome problem and provides a practical examination of how data augmentation is
applied to low-data biological tasks. By showing the promise of both new model
architectures and smart, biologically-informed data augmentation, this thesis helps
pave the way for future tools that can speed up the mapping of phosphorylation
networks and, in the long run, improve the understanding of human health.
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APPENDIX A

Table A.1 Zero-shot performance of four pLM backbones under three strategies:
BZSM (DARKIN benchmark), DARKIN-FT, and DARKIN-FT–PT (the phos-
phosite encoder is initialized with pretrained weights), evaluated with clustered
attribute-level metrics.

Model Method Family AP Family Acc Group AP Group Acc F.grain AP F.grain Acc

ESM1B
BZSM 0.2198 0.2854 0.4096 0.5620 0.1957 0.2192
DARKIN-FT 0.2945 0.3180 0.4762 0.6065 0.2558 0.2536
DARKIN-FT - PT 0.2398 0.3041 0.4182 0.5962 0.2072 0.2022

ProtT5XL
BZSM 0.2217 0.2779 0.3840 0.5532 0.1890 0.1944
DARKIN-FT 0.2243 0.2430 0.3603 0.4957 0.1934 0.1664
DARKIN-FT - PT 0.2207 0.2906 0.4001 0.6018 0.1840 0.1492

ESM2-650M
BZSM 0.2159 0.2857 0.3909 0.5473 0.1867 0.1893
DARKIN-FT 0.2621 0.3258 0.4324 0.5870 0.2238 0.263
DARKIN-FT - PT 0.2443 0.3069 0.3996 0.5686 0.2128 0.2687

ESM2-150M
BZSM 0.1758 0.2678 0.3595 0.5245 0.1500 0.2138
DARKIN-FT 0.2449 0.2857 0.4160 0.5674 0.2131 0.2173
DARKIN-FT - PT 0.2195 0.2496 0.3749 0.5643 0.1914 0.1952

Table A.2 Few-shot (5-shot) performance of four pLM backbones under three strate-
gies: BFSM (DARKIN benchmark BZSM, renamed for few-shot, DARKIN-FT, and
DARKIN-FT–PT (the phosphosite encoder is initialized with pretrained weights),
evaluated with clustered attribute-level metrics.

Model Method Family AP Family Acc Group AP Group Acc F.grain AP F.grain Acc

ESM1B
BFSM 0.2374 0.3115 0.4277 0.5804 0.2122 0.2027
DARKIN-FT 0.3238 0.3375 0.4956 0.6285 0.2844 0.2516
DARKIN-FT - PT 0.2571 0.3068 0.4222 0.6073 0.2229 0.2082

ProtT5XL
BFSM 0.2316 0.2902 0.4087 0.5725 0.2012 0.1853
DARKIN-FT 0.2404 0.2784 0.3751 0.5126 0.2047 0.1956
DARKIN-FT - PT 0.2374 0.3020 0.4186 0.6246 0.1999 0.1569

ESM2-650M
BFSM 0.2408 0.2957 0.4155 0.5576 0.2129 0.1845
DARKIN-FT 0.3076 0.3446 0.4825 0.6301 0.2716 0.2650
DARKIN-FT - PT 0.2452 0.2800 0.4206 0.6073 0.2158 0.2263

ESM2-150M
BFSM 0.1858 0.2792 0.3832 0.5323 0.1639 0.2019
DARKIN-FT 0.2722 0.3115 0.4481 0.5962 0.2424 0.2484
DARKIN-FT - PT 0.2323 0.2516 0.3954 0.5757 0.1976 0.1837
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Table A.3 Zero-shot performance of DARKIN-Interact with different pLM encoders
fine-tuned via LoRA, evaluated with clustered attribute-level metrics.

Model n Layers Family AP Family Acc Group AP Group Acc F.grain AP F.grain Acc

ESM1B 4 LoRA 0.2431 0.2468 0.4240 0.5785 0.2089 0.1541
ESM2-650M 4 LoRA 0.2198 0.2659 0.4167 0.5658 0.1901 0.1839
ESM2-150M 4 LoRA 0.2001 0.1846 0.4045 0.5382 0.1793 0.1301
ESM2-35M 4 LoRA 0.1704 0.2906 0.3462 0.5530 0.1464 0.1365

Table A.4 Few-shot (5-shot) performance of DARKIN-Interact with different pLM
encoders fine-tuned via LoRA, evaluated with clustered attribute-level metrics.

Model n Layers Family AP Family Acc Group AP Group Acc F.grain AP F.grain Acc

ESM1B 4 LoRA 0.2181 0.3194 0.3738 0.5410 0.1964 0.2224
ESM2-650M 4 LoRA 0.2315 0.3099 0.4177 0.5552 0.2115 0.2397
ESM2-150M 4 LoRA 0.1923 0.2839 0.3405 0.5063 0.1705 0.1940
ESM2-35M 4 LoRA 0.1566 0.2389 0.2984 0.4700 0.1431 0.1822

Table A.5 Effect of the number of negative samples per positive (n) on
DARKIN-Interact’s zero-shot performance. ESM1B encoder is utilized and
fine-tuned via LoRA, evaluated with clustered attribute-level metrics.

Model n Layers Family AP Family Acc Group AP Group Acc F.grain AP F.grain Acc

ESM1B 1 LoRA 0.2337 0.3112 0.4278 0.5799 0.2076 0.2383
ESM1B 2 LoRA 0.2424 0.2857 0.4496 0.5792 0.2140 0.1754
ESM1B 4 LoRA 0.2431 0.2468 0.4240 0.5785 0.2089 0.1541
ESM1B 8 LoRA 0.2483 0.2510 0.4244 0.5657 0.2150 0.1846
ESM1B 12 LoRA 0.2417 0.2814 0.3837 0.5353 0.2115 0.1520

Table A.6 Effect of the number of negative samples per positive (n) on
DARKIN-Interact’s few-shot (5-shot) performance. ESM1B encoder is utilized and
fine-tuned via LoRA, evaluated with clustered attribute-level metrics.

Model n Layers Family AP Family Acc Group AP Group Acc F.grain AP F.grain Acc

ESM1B 1 LoRA 0.2400 0.3225 0.4032 0.5662 0.2094 0.2303
ESM1B 2 LoRA 0.2232 0.3201 0.3712 0.5126 0.2052 0.1956
ESM1B 4 LoRA 0.2181 0.3194 0.3738 0.5410 0.1964 0.2224
ESM1B 8 LoRA 0.2324 0.3438 0.3736 0.5465 0.2115 0.2461
ESM1B 12 LoRA 0.2303 0.2918 0.3968 0.5165 0.2105 0.2232

Table A.7 Zero-shot impact of unfreezing the last l ESM1B encoder layers versus
LoRA on DARKIN-Interact, evaluated with clustered attribute-level metrics.

Model n Layers Family AP Family Acc Group AP Group Acc F.grain AP F.grain Acc

ESM1B 4 LoRA 0.2431 0.2468 0.4240 0.5785 0.2089 0.1541

ESM1B 4 Last 1 0.1961 0.2723 0.3787 0.5870 0.1740 0.2079
ESM1B 4 Last 2 0.2536 0.2744 0.4526 0.5969 0.2234 0.2136
ESM1B 4 Last 4 0.2636 0.3048 0.4556 0.6011 0.2338 0.2001
ESM1B 4 Last 8 0.2594 0.2843 0.4462 0.6117 0.2320 0.2008
ESM1B 4 Last 12 0.2663 0.2744 0.4486 0.5948 0.2322 0.1959
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Table A.8 Few-shot (5-shot) impact of unfreezing the last l ESM1B encoder layers
versus LoRA on DARKIN-Interact, evaluated with clustered attribute-level metrics.

Model n Layers Family AP Family Acc Group AP Group Acc F.grain AP F.grain Acc

ESM1B 4 LoRA 0.2181 0.3194 0.3738 0.5410 0.1964 0.2224

ESM1B 4 Last 1 0.2055 0.3131 0.3559 0.5300 0.1871 0.2334
ESM1B 4 Last 2 0.2409 0.3351 0.3906 0.5363 0.2261 0.2429
ESM1B 4 Last 4 0.2406 0.3494 0.3871 0.5229 0.2289 0.2823
ESM1B 4 Last 8 0.2738 0.3691 0.4452 0.5923 0.2490 0.2594
ESM1B 4 Last 12 0.2802 0.3856 0.4606 0.6372 0.2616 0.2792

Table A.9 Ablation study of zero-shot DARKIN-FT exploring alternative compati-
bility projections, merging strategies (concatenation vs gated fusion), kinase-pooler
designs, and optional attribute projections, evaluated with clustered attribute-level
metrics.

Phosphosite
Pooler

Kinase
Pooler Merging Attribute

Projection
Family

AP
Family

Acc
Group

Ap
Group

Acc
F.grain

AP
F.grain

Acc

Default Model Setting 0.2945 0.318 0.4762 0.6065 0.2558 0.2536

✓ − − − 0.2844 0.3097 0.4737 0.6259 0.2469 0.2482

✓

Single
Stage

Concat − 0.2945 0.3331 0.4719 0.6148 0.2514 0.2588
✓ 0.2725 0.3034 0.4673 0.6336 0.2376 0.2312

Gated − 0.2619 0.2998 0.4583 0.5813 0.2241 0.2093
✓ 0.2817 0.3161 0.4628 0.6308 0.2427 0.2503

Two
Stage

Concat − 0.2843 0.3097 0.4714 0.6237 0.2416 0.2249
✓ 0.2824 0.3076 0.473 0.6174 0.2416 0.2383

Gated − 0.2789 0.3133 0.4531 0.6089 0.2416 0.2546
✓ 0.2726 0.3083 0.4583 0.6216 0.2316 0.2454

Table A.10 Regularization strategies for the compatibility matrix W in zero-shot
DARKIN-FT, evaluated with clustered attribute-level metrics.

Regularization Family AP Family Acc Group Ap Group Acc F.grain AP F.grain Acc

L2 (Default) 0.2945 0.318 0.4762 0.6065 0.2558 0.2536

L2 + L1 0.2204 0.2935 0.4151 0.6089 0.1891 0.2334
L2 + Ranked Dropout 0.2957 0.326 0.4766 0.6138 0.2534 0.2715
L2 + Spectral Norm 0.2973 0.3267 0.4701 0.6138 0.2585 0.2575
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Table A.11 Zero-shot effect of augmenting DARKIN-FT with synthetic phosphosites
from ProGen2–Phospho using either loss function (Cross Entropy, CE, and BLO-
SUM) and three kinase sets (Train, Train + Val, Train + Val + Test), evaluated
with clustered attribute-level metrics.

Augmentation
Method

Kinase
Set

Family
AP

Family
Acc

Group
Ap

Group
Acc

F.grain
AP

F.grain
Acc

− − 0.2945 0.3180 0.4762 0.6065 0.2558 0.2536

ProGen BLOSUM
Train 0.2291 0.2807 0.4288 0.5693 0.1963 0.2242
Train + Val 0.2313 0.2722 0.4149 0.5558 0.2000 0.2213
Train + Val + Test 0.2039 0.2539 0.4067 0.5353 0.1800 0.1909

ProGen CE
Train 0.2509 0.2984 0.4333 0.5735 0.2182 0.2468
Train + Val 0.2473 0.2977 0.4253 0.5672 0.2144 0.2376
Train + Val + Test 0.2276 0.2638 0.4074 0.5495 0.1970 0.2015

Table A.12 Zero-shot effect of augmenting DARKIN-Interact with synthetic phos-
phosites from ProGen2–Phospho using either loss function (Cross Entropy, CE, and
BLOSUM) and three kinase sets (Train, Train + Val, Train + Val + Test), evalu-
ated with clustered attribute-level metrics.

Augmentation
Method

Kinase
Set

Family
AP

Family
Acc

Group
Ap

Group
Acc

F.grain
AP

F.grain
Acc

− − 0.2663 0.2744 0.4486 0.5948 0.2322 0.1959

ProGen BLOSUM
Train 0.2541 0.2885 0.4351 0.5912 0.2264 0.1945
Train + Val 0.2284 0.2730 0.3973 0.5834 0.2016 0.1832
Train + Val + Test 0.1872 0.2425 0.3248 0.4583 0.1741 0.1711

ProGen CE
Train 0.2494 0.2829 0.4270 0.6011 0.2184 0.1888
Train + Val 0.1649 0.2475 0.3469 0.5495 0.1426 0.1732
Train + Val + Test 0.1840 0.2143 0.3270 0.4767 0.1610 0.1457

Table A.13 Impact of KSSA-labeled unlabeled phosphosite sequences on
DARKIN-FT and DARKIN-Interact, evaluated with clustered attribute-level met-
rics.

Model Augmentation
Method

Kinase
Set

Family
AP

Family
Acc

Group
Ap

Group
Acc

F.grain
AP

F.grain
Acc

DARKIN-FT − − 0.2945 0.318 0.4762 0.6065 0.2558 0.2536
Kin Lib Train (Filtered) 0.2586 0.3267 0.4140 0.5764 0.2230 0.2532

DARKIN-Interact − − 0.2663 0.2744 0.4486 0.5948 0.2322 0.1959
Kin Lib Train (Filtered) 0.2111 0.3232 0.3767 0.5898 0.1835 0.2383

Table A.14 Effect of augmentation with homologous sequences on DARKIN-FT and
DARKIN-Interact, evaluated with clustered attribute-level metrics.

Model Augmentation
Method

Kinase
Set

Family
AP

Family
Acc

Group
Ap

Group
Acc

F.grain
AP

F.grain
Acc

DARKIN-FT − − 0.2945 0.318 0.4762 0.6065 0.2558 0.2536
Homologous Train 0.2687 0.2913 0.4434 0.5780 0.2356 0.2355

DARKIN-Interact − − 0.2663 0.2744 0.4486 0.5948 0.2322 0.1959
Homologous Train 0.2722 0.2553 0.4584 0.5926 0.2371 0.1754
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Table A.15 Hyperparameter settings for the DARKIN-FT, DARKIN-Interact, and
ProGen2–Phospho.

Method Hyperparameters

LR Optimizer LR Scheduler Weight Decay Batch Size LoRA r LoRA alpha

DARKIN-FT [0.0001, 0.001, 0.01] [Adam, SGD] [Cosine, Exponential, Step] [0.0001, 0.001, 0.01] [64, 128, 256] - -
DARKIN-Interact [0.0003, 0.001, 0.01] [Adam, AdamW] [Exponential, Step] [0.0001, 0.001, 0.01] [8, 16, 24] [-, 32, 64, 128] [-, 32, 64, 128]
Progen2-Phospho [0.0001, 0.001, 0.005] [AdamW] [Cosine] [0.001, 0.01] [4, 8, 16] [16, 32, 64] [16, 32, 64]
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