
LLM-ASSISTED ONBOARDING VIA RETRIEVAL-AUGMENTED
INTERACTIVE COMPUTATIONAL NOTEBOOKS

by
BERKE ODACI

Submitted to the Graduate School of Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Computer Science

Sabancı University
June 2025

BERKE ODACI 2025 ©

All Rights Reserved

ABSTRACT

LLM-ASSISTED ONBOARDING VIA RETRIEVAL-AUGMENTED
INTERACTIVE COMPUTATIONAL NOTEBOOKS

BERKE ODACI

COMPUTER SCIENCE & ENGINEERING M.Sc. THESIS, MAY 2025

Thesis Supervisor: Prof. SELIM BALCISOY

Keywords: Large Language Models, Interactive Computational Notebooks,
Onboarding Support, Code Comprehension, Visual Analytics

Recent advancements in large language models (LLMs) have significantly improved
their ability to understand programming workflows and generate functional code.
While these models are widely used for code-related tasks such as generation and
completion, they often fall short in providing su�cient explanation or contextual un-
derstanding, both of which are essential for e�ectively working with existing projects.

This challenge is particularly evident in Visual Analytics workflows, where inter-
active computational notebooks (e.g., Jupyter Notebooks) are commonly used to
prototype and document complex visualizations, data transformations, and machine
learning pipelines. These notebooks are accessed not only by developers but also by
domain experts such as economists, analysts, or researchers who interact with the
outputs, interpret the findings, or request changes. For both groups, onboarding
into an unfamiliar project can be time-consuming and error-prone due to missing
documentation, implicit logic, and the complexity of the code-output relationship.

To address this, we present a tool that supports the onboarding process by leverag-
ing LLMs to analyze, explain, and edit interactive computational notebooks. The
system parses the notebook into a directed graph of cells, generates natural language
explanations for each cell, and stores them in a retrieval-augmented vector store.
Users interact with the notebook through a web-based interface, where they can ask
natural language questions, select specific cells for focused explanations, and even
request code modifications, all with the ability to revert changes if needed.

iv

We evaluate the tool with both software developers and domain experts through a
mixed-method study, including task-based interactions and post-task surveys. Re-
sults show that the tool improves users’ understanding of unfamiliar notebooks,
increases their confidence in continuing the project, and is highly valued as a fu-
ture onboarding aid. The tool demonstrates the potential of LLMs to bridge the
gap between code and interpretation in data-driven environments, supporting more
e�cient collaboration and knowledge transfer across roles.

v

ÖZET

BÜYÜK D�L MODELLER� �LE DESTEKLENEN ETK�LE��ML� HESAPLAMA
DEFTERLER�NDE PROJEYE UYUM SÜREC�

BERKE ODACI

B�LG�SAYAR B�L�M� VE MÜHEND�SL��� YÜKSEK L�SANS TEZ�, MAYIS
2025

Tez Danı�manı: Prof. Dr. SELIM BALCISOY

Anahtar Kelimeler: Büyük Dil Modelleri, Etkile�imli Hesaplama Defterleri,
Uyum Süreci , Kod Anlayı�ı, Görsel Analitik

Özet

Büyük dil modelleri (LLM’ler), son yıllarda programlama süreçlerini anlamada ve
i�levsel kod üretmede önemli ilerlemeler kaydetmi�tir. Kod üretimi ve tamamlama
gibi görevlerde yaygın olarak kullanılan bu modeller, ço�u zaman yeterli açıklama
veya ba�lamsal bilgi sunma konusunda yetersiz kalmaktadır. Oysa mevcut projelerle
etkili bir �ekilde çalı�abilmek için hem geli�tiriciler hem de konu uzmanları açısından
bu tür açıklayıcı destek büyük önem ta�ımaktadır.

Bu ihtiyaç özellikle, veri görselle�tirme ve analiz süreçlerinin yo�un olarak
yürütüldü�ü Görsel Analiz alanında kendini göstermektedir. Bu alanda, in-
teraktif hesaplama defterleri (örne�in Jupyter Notebook) genellikle karma�ık
görselle�tirmeler, veri dönü�ümleri ve makine ö�renmesi modellerinin prototiplen-
mesi için kullanılmaktadır. Söz konusu defterler yalnızca geli�tiriciler de�il; aynı
zamanda çıktılarla do�rudan etkile�ime giren, sonuçları yorumlayan veya de�i�iklik
talep eden ekonomi uzmanları, veri analistleri ya da ara�tırmacılar gibi alan uz-
manları tarafından da kullanılmaktadır. Yetersiz dokümantasyon ve örtük mantık

vi

nedeniyle, bu tür defterlere adapte olmak her iki grup için de zaman alıcı ve hata
yapmaya açık olabilir.

Bu çalı�mada, projeye uyum sürecini kolayla�tırmak amacıyla, LLM’lerden yarar-
lanarak interaktif hesaplama defterlerini analiz eden, açıklayan ve düzenleyebilen
bir araç sunuyoruz. Sistem, defteri yönlü bir hücre grafi�ine ayırmakta, her hücre
için do�al dilde açıklamalar üretmekte ve bu içerikleri vektör tabanlı bir bilgi ta-
banında saklamaktadır. Kullanıcılar, web tabanlı bir arayüz üzerinden do�al dilde
sorular sorabilir, belirli hücreleri seçerek odaklı açıklamalar alabilir ve kod üzerinde
de�i�iklik talebinde bulunabilir; ayrıca yapılan de�i�iklikler gerekirse geri alınabilir.

Sistemi, yazılım geli�tiriciler ve alan uzmanlarıyla gerçekle�tirdi�imiz karma yön-
temli bir de�erlendirme ile test ettik. Görev tabanlı etkile�imler ve ardından yapılan
anketler aracılı�ıyla elde edilen sonuçlar, aracın kullanıcıların defteri anlamasını ko-
layla�tırdı�ını, projeye devam etme konusundaki güvenlerini artırdı�ını ve gelecekte
yeniden kullanılmak istenece�ini ortaya koymu�tur. Bu çalı�ma, LLM’lerin kod ve
yorum arasında köprü kurarak daha etkili i�birli�i ve bilgi aktarımı sa�lama potan-
siyelini ortaya koymaktadır.

vii

ACKNOWLEDGEMENTS

It is a genuine pleasure to express my deepest gratitude to my mentor and thesis
supervisor, Prof. Selim Sa�et Balcisoy, for his continuous support, patience, and
guidance throughout the past five years. His insights and encouragement have been
invaluable to both my academic and personal development.

I would also like to sincerely thank all my friends and participants who contributed to
the user studies and supported my research. Special thanks go to the members of the
Behavioral Analytics & Visualization Lab (BAVLAB) for providing a collaborative
and inspiring environment throughout this journey.

Finally, I am profoundly grateful to my family for their unwavering support, encour-
agement, and belief in me throughout my entire life. This thesis would not have
been possible without them.

viii

To my beloved family...

ix

TABLE OF CONTENTS

LIST OF TABLES . xii

LIST OF FIGURES . xiii

1. INTRODUCTION . 1

2. Related Work . 5
2.1. Onboarding . 7
2.2. Large Language Models . 8

2.2.1. Code Generation by LLMs . 8
2.2.2. Code Explanation by LLMs . 10
2.2.3. Code Summarization by LLMs . 11

3. ONBOARDING SYSTEM . 13
3.1. System Overview . 13
3.2. Dependency Graph Construction . 16
3.3. LLM Integration . 17
3.4. User Interactions and Features . 19

4. USER STUDY . 22
4.1. User Groups . 22
4.2. Test Data . 23
4.3. Experiment Setup and Questionnaire . 25

5. RESULTS & DISCUSSION . 28
5.1. Overview of Evaluation Metrics . 28
5.2. Kaggle Notebook Comparison (A/B Test) . 30
5.3. Paper Dataset Results . 32
5.4. Unit Test Evaluation . 34
5.5. Discussion. 35

6. LIMITATIONS & FUTURE WORK . 38

x

7. CONCLUSION . 40

BIBLIOGRAPHY. 42

xi

LIST OF TABLES

Table 5.1. Average unit test scores by user group. 35
Table 5.2. Average scores by user group, task, and evaluation metric. 36

xii

LIST OF FIGURES

Figure 3.1. Overview of the system’s workflow for LLM-assisted onboard-
ing in computational notebooks. 14

Figure 3.2. Front-end interface of the onboarding assistant. Users can
interact with the notebook, query the LLM, and view context-aware
responses. 15

Figure 4.1. The socioeconomic distribution of Census Block Groups
(CBGs) that changed their mobility patterns the most and the least
during the first wave of the COVID-19 pandemic, appearing in the
top and bottom dissimilarity quartiles in at least 60% of the weeks
analyzed. CBGs with the most change are primarily located in the
financial center of NYC. Significant socioeconomic patterns are visi-
ble for the top quartile group, while the bottom group shows no clear
profile Boz, Bahrami, Balcisoy, Bozkaya, Mazar, Nichols & Pentland
(2024). 24

Figure 5.1. Average scores for core evaluation metrics across user groups,
before and after using the tool. 30

Figure 5.2. Average LLM-specific ratings after tool-assisted Kaggle tasks:
explanation quality and future use intent. 31

Figure 5.3. Individual participant scores across metrics, separated by user
group and condition. 32

Figure 5.4. Average scores across evaluation metrics for coders and field
experts in the paper dataset condition. 33

Figure 5.5. Individual participant responses across all evaluation metrics
in the paper dataset condition. 34

xiii

1. INTRODUCTION

In data-driven research and development environments, the ability to e�ectively on-
board new team members is essential to sustaining productivity and collaboration.
Onboarding typically involves understanding existing workflows, data pipelines, and
decisions embedded in code artifacts. Because data science is often described as a
multidisciplinary “team sport” (Kim, Zimmermann, DeLine & Begel, 2016; Wang,
Mittal, Brooks & Oney, 2019), these artifacts are rarely the product of a single indi-
vidual. Instead, they emerge from collaboration between data scientists, engineers,
domain experts, and operations sta�, each bringing di�erent expertise, assumptions,
and coding practices. Muller, Lange, Wang, Piorkowski, Tsay, Liao, Dugan & Er-
ickson capture this diversity through the term “data science worker,” reflecting the
wide range of roles and responsibilities in modern data projects (Muller et al., 2019).
While this diversity strengthens analytical capability, it also introduces barriers to
shared understanding. Onboarding becomes especially di�cult when contributors
must interpret unfamiliar logic, undocumented decisions, or project-specific conven-
tions without access to the original author’s rationale.

In many modern projects, these artifacts are captured within interactive compu-
tational notebooks, which serve as dynamic, executable records of analysis. These
notebooks often combine data preprocessing, modeling, visualization, and interpre-
tation in a single interface (Rule, Tabard & Hollan, 2018). However, each project
also introduces its own set of tools, conventions, and structural inconsistencies in
the code, which can make onboarding overwhelming for newcomers, especially when
no systematic support is provided Dagenais, Ossher, Bellamy, Robillard & de Vries
(2010); Ju, Sajnani, Kelly & Herzig (2021); Matturro, Barrella & Benitez (2017).
Despite their flexibility and expressiveness, such notebooks are frequently undocu-
mented, inconsistently structured, or di�cult to interpret without prior exposure to
the author’s reasoning (Pimentel, Murta, Braganholo & Freire, 2019).

This challenge is particularly pronounced in the context of Visual Analytics, where
interactive computational notebooks are used not only to run code but also to
prototype and communicate rich data visualizations, analytic workflows, and even

1

domain-specific insights. As notebook content grows in complexity through the lay-
ering of code, outputs, visual components, and interactive logic, the di�culty of un-
derstanding these artifacts increases. Wang, Wang, Drozdal, Muller, Park, Weisz,
Liu, Wu & Dugan demonstrate that notebook users often neglect documentation
during rapid iteration, leading to narrative gaps that can hinder comprehension
and collaboration Wang et al. (2022). These challenges a�ect both developers, who
must understand and adapt code structures, and domain experts, who focus on in-
terpreting outputs, validating results, or suggesting modifications. In both cases,
onboarding into an unfamiliar notebook-based project becomes a time-consuming
and error-prone process. Prior work suggests that developers spend as much as 58%
of their total time on program comprehension activities (Xia, Bao, Lo, Xing, Has-
san & Li, 2018), which, while not limited to onboarding, highlights how significant
understanding existing code is to overall developer e�ort.

Recent advancements in large language models (LLMs) have introduced new pos-
sibilities for assisting with code-centric tasks. Models such as CodeBERT (Feng,
Guo, Tang, Duan, Feng, Gong, Shou, Qin, Liu, Jiang & Zhou, 2020), CodeT5 (Wang,
Wang, Joty & Hoi, 2021), and Code Llama (et al., 2024b), as well as general-purpose
models like GPT-4 (OpenAI, 2023), have demonstrated impressive capabilities in
code generation, summarization, and completion. However, many of these applica-
tions focus primarily on generating new code, often without su�cient explanation
or contextualization. This limits their usefulness in onboarding scenarios where the
primary goal is not to generate code, but to understand, validate, and modify ex-
isting workflows. Recent studies Leinonen, Denny, MacNeil, Sarsa, Bernstein, Kim,
Tran & Hellas (2023); Nam, Macvean, Hellendoorn, Vasilescu & Myers (2024a)
have shown that LLMs can aid comprehension by producing contextual explana-
tions. These explanations help reduce cognitive load and improve understanding of
unfamiliar codebases. This opens the possibility of using LLMs not only for code
generation but also for supporting human reasoning and exploration.

In this thesis, I present an interactive tool designed to support the onboarding pro-
cess for both developers and domain experts working with interactive computational
notebooks in Visual Analytics projects. The tool leverages the capabilities of LLMs
for explanation, context-aware question answering, and code editing. It operates by
parsing a notebook into a directed graph of cells, extracting logical dependencies,
and generating natural language explanations for each component. These are stored
in a retrieval-augmented knowledge base that enables e�cient semantic search and
interaction. Users engage with the system through a chat interface, where they
can ask questions, request modifications to code, or seek clarification on outputs.
A revert mechanism is included to maintain safety and user control during editing

2

operations.

The system is implemented using GPT-4 and the LangChain framework (Chase,
2022; OpenAI, 2023), and is presented through a web-based interface that inte-
grates code execution, chat-based interaction, and editable notebook content. A
demonstration video showcasing the tool’s functionality is provided as supplemen-
tary material.

To evaluate the e�ectiveness of this approach, I conduct a user study involving two
participant groups: professional developers and domain experts. Each participant
interacts with real-world interactive computational notebooks, both with and with-
out the assistance of the tool. Their experiences are assessed through structured
tasks and post-task questionnaires. The goal of this study is to measure improve-
ments in comprehension, confidence, and task e�ciency enabled by the tool.

The main contributions of this thesis are summarized as follows:

• A novel tool has been developed to support the onboarding process in Visual
Analytics workflows by leveraging large language models (LLMs) to explain,
summarize, and modify code in interactive computational notebooks.

• The tool is designed to assist both developers and domain experts during
onboarding. In data science projects, collaboration often occurs between indi-
viduals with di�erent areas of expertise, for example, software engineers and
subject matter experts in finance, economics, or healthcare. This disparity in
technical and domain-specific knowledge makes onboarding more di�cult, as
each side may lack full visibility into the other’s work.

• By enabling users to ask natural language questions and receive contextual-
ized explanations about the code, data, outputs, and visualizations, the tool
helps bridge this gap. It allows users to understand and explore unfamiliar
projects more e�ciently, facilitating collaboration and reducing reliance on
direct developer support.

• In addition to improving mutual understanding, the tool empowers domain
experts to take a more active role in their workflows. Instead of waiting for
developer intervention, experts can use the tool to modify notebook logic,
update parameters, or request code-level changes through an LLM-assisted
interface, accelerating the iteration cycle.

• A user study with developers and domain experts validates the usefulness of
the system, showing that it improves comprehension, increases confidence, and
shortens onboarding time when compared to working with notebooks alone.

3

Through these contributions, this thesis explores the practical potential of large
language models in facilitating onboarding within Visual Analytics projects. It
presents a system that helps users interpret code, data, and visual outputs more
e�ectively and supports collaboration between developers and domain experts by
enabling accessible, LLM-assisted interaction with notebook-based workflows.

The remainder of this thesis is organized as follows:

Chapter 2 provides a comprehensive review of the relevant literature. This includes
prior work on onboarding challenges in software and data science workflows, as well
as research on the use of large language models (LLMs) for code generation, editing,
summarization, and explanation.

Chapter 3 describes the architecture and core components of the proposed tool. It
covers the overall workflow, the graph-based structure used for cell context retrieval,
and how LLM prompting is used to generate code, explanations, and summaries in
response to user actions.

Chapter 4 outlines the design of the user study. It details the participant groups,
notebook selection process, experimental setup, and questionnaire design used to
evaluate the tool’s onboarding support capabilities.

Chapter 5 presents the results and analysis of the user study. It includes task-
specific outcomes, compares coder and field expert experiences, and discusses the
implications of the findings in relation to tool usage and user expectations.

Chapter 6 discusses the limitations of the current system and outlines future di-
rections for extending functionality, improving usability, and supporting broader
deployment in real-world notebook environments.

Chapter 7 concludes the thesis by summarizing the main contributions and reflect-
ing on the broader significance of using LLMs to improve onboarding in computa-
tional notebooks.

4

2. Related Work

Understanding existing code and analytic workflows remains a core challenge in
both data science and software engineering Dong, Lou, Zhu, Sun, Li, Zhang & Hao
(2022); Hoang, Kang, Lo & Lawall (2020); Li, Xu, Di, Wang, Li & Zheng (2024); Liu,
Tang, Xia & Yang (2023). This issue becomes particularly acute in Visual Analyt-
ics settings, where interactive computational notebooks, such as Jupyter Notebooks,
serve not only as execution environments but also as documentation and storytelling
tools. These notebooks intertwine code, narrative text, and visual output into a sin-
gle medium, which, while excellent for exploratory analysis and communication,
often lacks structure and consistency. Consequently, they pose unique barriers for
onboarding new contributors who must comprehend previous workflows, trace ana-
lytical reasoning, and safely modify existing content.

Unlike traditional software repositories, interactive notebooks are frequently written
informally, without rigorous commenting or modularity Wang, Li & Zeller (2020).
Execution order may not be linear, variable reuse is common, and cells may depend
on invisible context from earlier executions Wang, Kuo, Li & Zeller (2021). These
characteristics diminish the e�ectiveness of conventional software engineering on-
boarding strategies and demand new methods tailored to this hybrid format. Both
developers and domain experts, such as data scientists, economists, or biomedical
researchers, face di�culties in interpreting the logic and intent embedded within
these documents, especially when metadata, dependencies, and rationale are either
implicit or scattered.

A substantial body of research has explored techniques for improving comprehen-
sion of unfamiliar codebases, particularly in the context of software maintenance,
reverse engineering, and collaborative development environments LaToza, Venolia
& DeLine (2006); Robillard, Walker & Zimmermann (2010). These e�orts emphasize
the value of mental model alignment, sca�olding, and context-aware tooling to aid
developers in reasoning about existing systems. Additionally, onboarding support
has been studied in the context of open-source and industrial projects where high
turnover, distributed teams, and incomplete documentation further complicate in-

5

tegration Steinmacher, Treude & Gerosa (2019). These studies highlight the social
and technical challenges faced by newcomers, including information overload, lack
of mentorship, and the di�culty of navigating undocumented workflows.

In parallel, the emergence of large language models (LLMs) has introduced new
paradigms for code-related assistance. Trained on massive corpora of code and
natural language, LLMs such as CodeBERT Feng et al. (2020), CodeT5 Wang
et al. (2021), and GPT-4 OpenAI (2023) have demonstrated strong performance in
tasks including code generation, explanation, translation, and summarization. These
models not only support productivity-enhancing features such as auto-completion
and code synthesis, but also enable novel forms of interaction, such as answering
questions about existing code or suggesting refactoring strategies. Their ability to
bridge natural and programming languages makes them particularly well-suited for
onboarding scenarios, where new users may seek intuitive explanations and context
without combing through extensive documentation.

Despite growing adoption of LLM-based tools, most focus on general-purpose devel-
opment environments and overlook the idiosyncrasies of notebook-based analytics.
Notebooks pose specific challenges (e.g., non-linear execution, weak encapsulation,
and interleaved output) but also o�er opportunities for richer interaction, such as
dialog-based walkthroughs or in-context annotation of cells. As a result, there is
a pressing need to understand how LLMs can be leveraged to support onboarding
not just for code, but for entire analytical narratives embedded in computational
notebooks.

This chapter surveys the literature along two intersecting dimensions: onboarding
strategies (Section 2.1), and the capabilities of LLMs in code-related tasks (Sec-
tion 2.2). Section 2.1 focuses on the challenges of onboarding both developers and
domain experts in data-intensive workflows, with special attention to informal, hy-
brid artifacts like notebooks. Section 2.2 is further divided into three parts: code
generation (Section 2.2.1), code explanation (Section 2.2.2), and code summarization
(Section 2.2.3), capabilities that are central to our proposed tool. Together, these
perspectives inform the design and evaluation of intelligent onboarding assistants
tailored for computational notebooks.

2.1 Onboarding

6

Onboarding in software and data science workflows involves enabling newcomers,
whether developers or domain experts, to quickly understand, navigate, and con-
tribute to existing code and analytical pipelines.

The challenge is especially pronounced in interactive computational notebooks (e.g.,
Jupyter). Unlike traditional software, notebooks intertwine code, commentary, and
visual output in a non-linear and often undocumented manner. This structure in-
creases the cognitive load, obscures dependencies, and hinders the ability of new-
comers to build accurate mental models of workflow. Static documentation or linear
tutorials are insu�cient in such settings.

Recent visual analytics research has leveraged LLMs to improve onboarding for
complex systems. A notable example is LEVA (LLM-Enhanced Visual Analytics),
which employs large language models to interpret visual designs and relationships in
a visual analytics system and generates interactive, context-aware tutorials to sup-
port onboarding, exploration, and summarization phases Zhao, Zhang, Zhang, Zhao,
Wang, Shao, Turkay & Chen (2025). LEVA demonstrates that mixed-initiative guid-
ance, combining system knowledge, visual design metadata, and natural-language
tutoring, can e�ectively reduce users’ learning curve and improve task performance.

Nevertheless, prior systems like LEVA focus on the visual analytics domain rather
than notebook-based code workflows. Tools such as EDAssistant embed code search
and API recommendation features inside notebooks, aiding comprehension but lack-
ing explicit structure or context tracing Li, Zhang, Leung, Sun & Zhao (2023). Other
e�orts, such as Albireo, o�er visual representations of code dependencies via force-
directed graphs, where each node corresponds to a notebook cell and edges capture
execution or data dependencies Wenskovitch, Zhao, Carter, Cooper & North (2019).
This structure assists orientation by exposing non-linear cell flows and shared con-
text, helping users navigate the implicit logic embedded in notebooks. However,
while Albireo supports structural understanding, the burden of interpreting seman-
tic meaning and analytical intent still largely falls on the user.

In contrast, our work augments these approaches by constructing a directed cell-
dependency graph across notebook cells, combined with LLM-driven explanation
and summarization. This hybrid structural-semantic approach surfaces both the
relevant code context and its narrative meaning, supporting newcomers in building
holistic mental models of exploratory notebook workflows.

2.2 Large Language Models

7

Large Language Models (LLMs) have emerged as powerful tools for natural language
understanding and generation, with capabilities that extend to a wide range of
programming-related tasks. Trained on massive corpora that include both code and
natural language, models such as GPT-4 OpenAI (2023), CodeBERT Feng et al.
(2020), and CodeT5 Wang et al. (2021) have demonstrated remarkable performance
on code generation, explanation, and summarization benchmarks.

These models operate on the principle of masked language modeling or autoregres-
sive prediction, enabling them to generate syntactically correct and semantically
meaningful code snippets, translate between programming languages, summarize
source files, and answer natural-language questions about code. Such capabilities
make LLMs attractive not only for automation and productivity, but also for human-
centered tasks like teaching, pair programming, and onboarding.

While the commercial integration of LLMs in tools such as GitHub Copilot has fo-
cused on enhancing developer productivity through auto-completion and synthesis,
academic research is increasingly investigating their potential for deeper support in
program comprehension. Particularly relevant is their ability to engage in multi-
turn dialogue, provide context-aware feedback, and explain complex code behavior,
features that are well-aligned with the needs of newcomers entering unfamiliar code-
bases or workflows.

In the context of this thesis, LLMs are leveraged to assist onboarding within in-
teractive computational notebooks by supporting three complementary functions.
First, they can generate code based on user input, either by editing an existing cell
or creating a new one, facilitating iterative development and correction. Second,
they provide explanations not only for code fragments, but also for the outputs pro-
duced by code execution, helping users interpret visualizations, statistical results,
or intermediate variables. Third, they assist in summarizing the overall analytical
workflow, including describing the structure and semantics of the datasets used in
the project. These functionalities aim to reduce the cognitive load on newcomers
and support a more intuitive and guided exploration of notebook-based analyses.
Each of these capabilities is discussed in detail in the following subsections.

2.2.1 Code Generation by LLMs

Code generation remains one of the most prominent and well-researched capabilities
of Large Language Models (LLMs). By transforming natural language descriptions

8

into executable code, LLMs have significantly lowered the barrier to programming
and accelerated development workflows across a variety of platforms, including IDEs,
version control systems, and interactive computational notebooks.

Model Advances: Early models such as CodeBERT Feng et al. (2020) and CodeT5
Wang et al. (2021) laid the groundwork for bidirectional understanding and gen-
eration tasks. More recent instruction-tuned models, including GPT-4 OpenAI
(2023), LLaMA 3 et al. (2024a), and Code LLaMA et al. (2024b), demonstrate im-
proved zero-shot and few-shot performance on natural language to code tasks across
benchmarks like HumanEval, MBPP, and CodeXGLUE Lu, Guo, Ren, Huang, Svy-
atkovskiy, Blanco, Clement, Drain, Jiang, Tang, Li, Zhou, Shou, Zhou, Tufano,
Gong, Zhou, Duan, Sundaresan, Deng, Fu & Liu (2021). Notably, Code LLaMA is
specialized for code tasks, trained on permissively licensed source code, and supports
multiple programming languages. LLaMA 3 continues this trajectory by integrating
massive pretraining with strong instruction tuning, narrowing the gap between open
and proprietary models.

Notebook-Oriented Generation: While many models are designed for general-
purpose code generation, JuPyT5 Chandel, Clement, Serrato & Sundaresan (2022)
specifically addresses generation in Jupyter notebook environments. It is trained
on notebook-style data to produce coherent code cells that reflect real-world data
science workflows, such as cell-based structure, context sensitivity, and informal
code-comment mixing.

Evaluation Metrics: Performance is often measured using pass@k, semantic cor-
rectness, and functional equivalence. Liu et al. highlight the limitations of traditional
evaluation approaches by introducing EvalPlus, a framework that generates compre-
hensive test suites to assess the robustness of LLM-generated code Liu, Xia, Wang
& Zhang (2023). Their findings show that augmenting benchmarks with additional
tests can significantly reduce pass rates, by up to 28.9%, revealing that many gener-
ations initially considered correct fail under stricter validation. This underscores the
need for more rigorous, execution-based evaluation when deploying code generation
models in practical settings.

Human-in-the-Loop Refinement: Despite impressive results, LLM-generated
code can still exhibit logical errors, incomplete reasoning, or improper API usage. In-
teractive, multi-turn systems such as TiCoder Fakhoury, Naik, Sakkas, Chakraborty
& Lahiri (2024) address these limitations by incorporating feedback loops, allowing
users to iteratively refine and validate code with the model’s assistance. This ap-
proach is particularly valuable in notebook environments, where code is often written
incrementally and context evolves over time.

9

In summary, code generation by LLMs is a rapidly advancing field. For notebook-
based onboarding, we leverage these advances to allow users to request new cell
generation or cell editing via natural language. This interaction pattern, grounded
in real-time context, supports incremental development and lowers the cognitive
burden associated with writing boilerplate or exploring new libraries.

2.2.2 Code Explanation by LLMs

As analysts, developers, or domain experts engage with unfamiliar notebooks, un-
derstanding what code does and why is essential. Traditional forms of documen-
tation, such as inline comments or docstrings are often incomplete, outdated, or
entirely absent. LLMs o�er a compelling alternative by generating natural-language
explanations that clarify the intent, structure, and behavior of code.

E�ectiveness in Educational Contexts: LLMs have been evaluated as expla-
nation generators in academic settings, often outperforming novice-authored expla-
nations in clarity and usefulness. Leinonen et al. compared ChatGPT-generated
explanations with those written by students in introductory programming assign-
ments and found that LLM-generated content was consistently rated as clearer and
more accurate by external evaluators Leinonen et al. (2023).

Flexible Level of Detail: LLMs can generate explanations at di�erent levels of
detail, ranging from short summaries to step-by-step, line-by-line explanations, de-
pending on what the user needs. For example, Xiao, Hou & Stamper found that
beginners learned better when they were given multiple types of hints, such as gen-
eral advice along with detailed code comments Xiao et al. (2024). Similarly, systems
like LLM-powered e-books provide several kinds of explanations for the same code,
including individual line descriptions, key concepts, and overall summaries MacNeil,
Tran, Hellas, Kim, Sarsa, Denny, Bernstein & Leinonen (2023). This kind of flex-
ibility is especially useful in computational notebooks, where users move between
writing code, viewing results, and reading or writing explanatory text. Adapting
the level of explanation to match this workflow helps make onboarding smoother
and more intuitive.

Context-Aware Understanding: Modern interfaces that integrate LLMs, such
as conversational IDE assistants, allow users to query the rationale behind specific
implementation choices, identify causes of errors, or request alternative formulations.
Nam, Macvean, Hellendoorn, Vasilescu & Myers demonstrate how LLMs can be

10

embedded in development environments to provide real-time, context-aware code
understanding support Nam et al. (2024b).

In our system, LLMs are used not only to explain code syntax or logic, but also
to interpret outputs, such as data tables, figures, or textual results, produced by
notebook cells. This extends the explanatory capability from “what the code does”
to “what the result means,” enabling a more comprehensive onboarding experience.

2.2.3 Code Summarization by LLMs

Code summarization involves generating short, natural-language explanations of
code segments, helping users quickly understand what the code does without in-
specting each line. This feature is especially helpful in computational notebooks,
where narrative and code coexist.

Statement-level summarization: Zhu, Miao, Xu, Zhu & Sun conduct a compre-
hensive evaluation of LLMs at the statement level and find that models like GPT-4
and CodeLlama outperform prior baselines, demonstrating that large models can
reliably summarize even fine-grained code units under well-tuned prompting Zhu
et al. (2024).

Structured hybrid context: Zhou, Li, Yu, Fan, Yang & Huang introduce Struct-
CodeSum, a technique that combines local snippet context with global code struc-
ture (such as inter-function references and control/data flow) to produce more in-
formative and coherent summaries Zhou et al. (2024).

Project-specific adaptation: Ahmed & Devanbu demonstrate that few-shot tun-
ing on project-specific code examples significantly improves summarization quality,
enabling better alignment with domain conventions and vocabulary Ahmed & De-
vanbu (2023).

Remaining challenges: Even with these advances, code summarization still su�ers
from issues like hallucinated details, misalignment with user priorities, and depen-
dency on labeled examples. These problems are particularly acute in notebooks,
where analysis is exploratory, data-driven, and often lacks formal structure.

Our system integrates code summarization at two scales: (a) notebook-level sum-
maries that outline the overall workflow and data usage, and (b) grouped-cell sum-
maries that describe the intents of related sections. These summaries leverage both

11

local snippet context and project-wide cues to help newcomers build clear mental
models of notebook-driven analysis.

12

3. ONBOARDING SYSTEM

3.1 System Overview

Our system is designed to support onboarding in existing interactive computational
notebooks, such as Jupyter notebooks, by leveraging large language models (LLMs)
in a retrieval-augmented generation (RAG) framework Lewis, Perez, Piktus, Petroni,
Karpukhin, Goyal, Küttler, Lewis, Yih, Rocktäschel, Riedel & Kiela (2020). The
goal is to assist both developers and domain experts in understanding, modifying,
and extending prior analyses with minimal friction.

The workflow begins with the system ingesting an already existing notebook. Op-
tionally, the user may supply a separate context file, which can contain any ad-
ditional background information, documentation, or domain-specific knowledge.
While this context file can enhance LLM performance in some cases, it is not re-
quired for the system to function.

As part of the upload process, the system automatically sends each code cell to
the LLM to generate a textual explanation or summary. These cell-level context
snippets are embedded and stored in a vector database. This improves the quality
of later retrieval operations by enriching the semantic search space, especially in
cases where the user does not click a specific cell but instead asks general questions
about the notebook. By ensuring that each cell has pre-generated, LLM-authored
context, the system increases the likelihood of retrieving the correct portion of the
notebook during RAG-based interaction.

To model the structure and flow of the notebook, the system constructs a directed
graph where each node corresponds to a code cell. Edges represent semantic or ex-
ecution dependencies, such as variable definitions, function usage, or import state-
ments, across cells. This graph allows the system to retrieve relevant context when

13

Figure 3.1 Overview of the system’s workflow for LLM-assisted onboarding in com-
putational notebooks.

user queries reference a specific part of the notebook.

The notebook is then segmented into smaller parts and indexed into a vector store.
This enables the use of a RAG pipeline, where semantically relevant notebook frag-
ments are retrieved to construct context-aware prompts for the LLM.

Once processing is complete, the interactive notebook is presented to the user. At
this stage, the system supports several forms of interaction. Users can:

• Ask natural language questions about the notebook.

• Request code generation based on prompts.

• Click on specific cells to get targeted explanations or clarifications.

14

When a user selects a particular cell, the LLM responds using context specifically
tailored to that cell. This functionality is especially useful for cells that contain
either complex logic or di�cult-to-interpret output (e.g., long tables or intricate
plots).

From this point onward, the system becomes an active assistant during the on-
boarding process. Whether the user is a software developer or a domain expert, the
LLM is capable of answering questions, proposing code modifications, and o�ering
explanations across a wide range of technical and analytical concerns.

In addition to LLM-based assistance, users retain full interactivity with the notebook
interface. They can edit text and code, insert new cells, execute computations, and
explore outputs freely. If a user is dissatisfied with a code modification made by
the LLM, they may undo the change on a per-cell basis via a dedicated “redo”
functionality, preserving control and reversibility during experimentation.

Figure 3.2 Front-end interface of the onboarding assistant. Users can interact with
the notebook, query the LLM, and view context-aware responses.

3.2 Dependency Graph Construction

15

To capture the flow of logic and dependencies in a computational notebook, we
construct a directed graph G = (V,E), where each node vi œ V represents a code cell
in the notebook, and each directed edge (vi,vj) œ E indicates that cell vj depends
on cell vi.

Unlike linear scripts, interactive notebooks such as Jupyter support non-linear exe-
cution, frequent redefinition of variables, and fragmented logic across cells. As such,
inferring context requires a structural representation that captures both implicit and
explicit dependencies between cells.

Graph Nodes: Each code cell in the notebook is assigned a unique index based on
its position in the document. Let C = [c1, c2, . . . , cn] denote the ordered list of code
cells. Each cell ci corresponds to a node vi œ V in the graph.

Edge Construction Rules: We define the edge set E using the following rules:

1.1 Sequential Flow Rule: For all i œ {1, . . . ,n ≠ 1}, we add an edge (vi,vi+1).
This captures the default sequential flow of the notebook as written.

1.2 Symbol Dependency Rule: Let Di denote the set of symbols (e.g., func-
tions, classes, variables) defined in cell ci, and let Uj denote the set of symbols
used in cell cj . For all i, j œ {1, . . . ,n}, if Di fl Uj ”= ÿ, we add a directed edge
(vi,vj). This ensures that semantic dependencies (e.g., a function defined in
one cell and used in another) are captured explicitly.

The resulting graph may contain multiple edges between non-adjacent cells and
captures both temporal and logical relationships.

Symbol Extraction and Analysis: To identify Di and Uj , we statically analyze
each code cell by parsing its abstract syntax tree (AST). For each cell:

• Definitions (Di) include function names, class names, and top-level variable
assignments.

• Usages (Uj) include any referenced identifiers not locally defined within the
same cell.

We maintain a global symbol table indexed by cell, enabling e�cient lookup of
where each symbol was first defined. When a symbol is defined in multiple cells,
we treat the most recent definition, based on the topological sort of the graph, as
authoritative. This is implemented by traversing the graph in topological order and
updating the symbol table whenever a redefinition is encountered. This way, symbol
resolution always reflects the most recent version visible from earlier execution paths.

16

Use in Context Retrieval: When a user selects a specific cell ck, the system
queries the graph to retrieve all upstream cells that provide relevant context. This
is done by computing the transitive closure in the graph to identify nodes from
which there exists a directed path to vk:

Context(ck) = {ci œ C | there exists a path vi vk in G}

The content of these cells is retrieved and used to construct an LLM prompt. This
ensures that the model has access to all necessary symbol definitions and execution
context when generating explanations or answering user queries for the selected cell.

Handling Non-Code Cells: While markdown or comment-only cells do not define
or use executable symbols and are thus not connected via semantic edges in the
directed graph, they are still included in the RAG system. This is because such cells
may contain explanations, observations, or interpretations written by the original
author, which are valuable for onboarding. These cells are embedded and indexed in
the vector store alongside code cells, enabling them to be retrieved during semantic
search if relevant to the user’s query.

3.3 LLM Integration

The core of our system’s intelligence is provided by a large language model (LLM),
which supports onboarding tasks such as answering user questions, explaining code
cells, and generating or editing code. To ensure relevance and accuracy, the LLM is
not used in isolation; rather, it is integrated into a retrieval-augmented generation
(RAG) framework and interacts closely with the cell dependency graph.

Prompt Construction: All interactions with the LLM involve the construction of
a task-specific prompt, which includes:

• A user query or instruction (e.g., “What does this cell do?”, “Fix this error”,
“Add a function to filter the dataset.”)

• Context retrieved from either the dependency graph or vector store, and, if a
cell is selected, the contents of that specific cell and its upstream dependencies.

• A system prompt that defines the model’s role (e.g., “You are an assistant
helping a user understand and edit this data science notebook.”)

17

Context Retrieval Paths: There are two distinct pathways for retrieving context:

2.1 Graph-based retrieval: If the user has clicked on a specific cell, the system
uses the dependency graph to gather all upstream cells that define symbols
used in the selected cell. The content of the selected cell itself is also included
to ensure local context is preserved.

2.2 RAG-based retrieval: For general questions not tied to a specific cell, rele-
vant notebook fragments are retrieved from the vector store using dense em-
bedding similarity to the user’s query.

The retrieved context is inserted into the prompt in a structured format to give the
LLM a complete and coherent view of the relevant portion of the notebook.

Prompt Format: Each LLM call uses a structured prompt composed of a system
message, relevant notebook context, and the user query. If a user clicks on a specific
cell before asking a question, the selected cell and its upstream dependencies (as
determined by the dependency graph) are included in the context. If no cell is
selected, context is retrieved via similarity search from the vector store.

A representative prompt structure looks like this: [System message] You are a
helpful assistant for understanding and editing code in a data science notebook.

[Context] Cell 2 (Upstream) def loaddata(...) : ...

Cell 5 (Selected) result = process(data)

[User question] What does the result variable represent, and why is process() used
here?

This format ensures that the LLM is grounded in the relevant notebook context,
whether the question pertains to a specific cell or a general workflow topic. It also
enables follow-up interactions by preserving conversational coherence.

Prompt Design Process: Prompt formats used in the system were developed
iteratively through empirical testing. During the tool’s development, we continu-
ously evaluated how the LLM responded to di�erent prompt structures. When we
observed incorrect, or vague outputs, we revised the system message, formatting,
or context ordering to improve accuracy and relevance. This refinement process
continued until we were satisfied with the tool’s behavior in diverse scenarios. The
user study was conducted using this final version of the prompt format, ensuring
that results reflect the system’s best-performing configuration.

LLM Model Selection: For this project, we selected the ChatGPT-4 API as the

18

LLM backend. Although models fine-tuned for specific tasks (e.g., code completion
or summarization) can o�er strong performance in narrow domains, our system
requires a broader skill set. The LLM must not only reason about code, but also:

• Understand general user language, both technical and non-technical.

• Explain datasets, modeling steps, and analytical goals.

• Interpret narrative comments and intentions left by previous developers.

• Comprehend user requests with limited or ambiguous phrasing.

These requirements make a general-purpose, instruction-tuned model like ChatGPT-
4 more suitable than narrower, code-only models. Its strong performance across both
conversational and technical tasks allows it to support diverse users, including both
programmers and domain experts, through natural, adaptive interactions.

Task Types: The LLM supports multiple user-facing operations:

• Code Explanation: Describing the logic, purpose, and output of a selected
code cell.

• Code Generation: Producing new code based on a user instruction or mod-
ifying an existing cell.

• Workflow Questions: Answering high-level questions about the dataset,
modeling choices, or analysis steps.

All prompts are passed to the model through an API interface that is decoupled from
the notebook front end, allowing for easy future adaptation to alternative models.

3.4 User Interactions and Features

The system is designed to support intuitive, seamless interaction between users
and the computational notebook environment. It accommodates both code-centric
and non-technical users by enabling natural language interaction with the notebook
and providing real-time assistance through LLM-powered features. The interface
remains consistent with the traditional notebook paradigm while augmenting it with
onboarding-focused capabilities.

19

Notebook Display and Interaction: Upon loading, the system presents the full
notebook in an interactive web-based interface (see Figure 3.2). Users can read,
scroll, and freely navigate across all cells, code and markdown alike. Cells retain
full interactivity: users can modify code or text, insert new cells, delete or rearrange
existing ones, and execute any part of the notebook just as they would in a standard
Jupyter environment.

LLM Querying: At any point, users may enter natural language queries through
a dedicated input field. The query can be general (e.g., “What does this notebook
do?”) or targeted (e.g., “Explain what this loop is doing.”). If a cell is selected prior
to asking a question, the system incorporates that cell and its upstream dependencies
into the LLM prompt, enabling localized explanations.

Cell-Based Explanation: Clicking on a specific cell enables cell-focused assis-
tance. In this mode, the LLM answers questions specifically in the context of that
cell. This is particularly helpful when the selected cell contains:

• Complex control structures (e.g., nested loops or conditionals),

• Abstracted function calls,

• Output-heavy results such as data tables or visualizations.

This feature supports both technical and non-technical users in interpreting unfa-
miliar or opaque analysis logic.

Code Generation and Editing: Users may ask the LLM to modify existing
cells or generate entirely new ones. For example, a prompt like “Add a function
to normalize the values in this column” will result in either a modified cell or an
inserted cell with the requested code. The system highlights LLM-generated changes
and associates them with an undo/redo interface for traceability and control.

The system does not rely on precomputed or static explanations. Instead, all user
questions are dynamically forwarded to the LLM at runtime. This decision was
made to support a wide range of user query styles and natural language phrasing.
Since di�erent users (e.g., coders vs. field experts) may use di�erent terminology,
dynamically generating responses ensures the system adapts in real time to the
intent behind each question. Every response is freshly generated by the LLM using
current context retrieved from the notebook.

Redo Functionality: Every LLM-driven code edit is reversible. A “redo” button
is associated with each cell that has been modified by the LLM, allowing users to
revert changes easily. This functionality is implemented through local versioning

20

rather than by re-querying the LLM. Each time a cell is modified, its previous state
is stored, enabling instant rollback without incurring additional latency or API cost.
This is critical for iterative development and promotes experimentation without risk
of losing the original state.

Manual Exploration: LLM assistance is optional. Users can fully explore, edit,
and run the notebook on their own. The system does not interfere with manual
workflows, allowing users to alternate between automated guidance and hands-on
exploration as needed.

Mixed-Expertise Support: The design intentionally accommodates both soft-
ware developers and field specialists (e.g., data analysts, researchers). By combining
notebook-native interaction with LLM-based contextual support, the system reduces
onboarding friction across a wide range of technical backgrounds.

21

4. USER STUDY

To evaluate the e�ectiveness of our LLM-assisted onboarding tool, we conducted
a user study involving participants with varying technical backgrounds. The goal
of the study was to assess how well the system supports users in understanding,
navigating, and continuing work on existing computational notebooks, particularly
those with complex workflows and limited documentation.

The study was designed around realistic notebook scenarios and structured user
tasks, followed by a questionnaire to collect both quantitative ratings and qualitative
feedback. Participants were exposed to di�erent datasets and code environments,
and we measured their perceptions of code clarity, data understanding, and overall
usability, both with and without assistance from the tool.

In the following sections, we describe the test datasets used, the participant groups
involved, and the structure of the evaluation experiment.

4.1 User Groups

To understand how the tool performs across di�erent types of users, we divided
study participants into two main groups based on their technical backgrounds:

Coders: This group consisted of participants with prior experience in program-
ming, particularly in Python and working with Jupyter notebooks. These users
were expected to be familiar with typical data science workflows, including data
loading, transformation, modeling, and interpretation. They represent software de-
velopers, data scientists, and technically-oriented analysts who are likely to engage
with notebooks from a code-centric perspective.

Field Experts: This group included domain specialists (e.g., public health re-

22

searchers, urban planners, economists) with little to no programming background.
These users typically interact with notebook content through its outputs, narrative
elements, and visualizations. Their perspective is primarily analytical or decision-
focused rather than implementation-driven.

All participants were either actively working in their respective fields or were enrolled
in graduate-level academic programs. This ensured that each user had su�cient
background knowledge to engage meaningfully with the content and provide relevant
feedback based on their expertise.

Including both groups allowed us to evaluate how well the system supports onboard-
ing across a wide range of user profiles. This distinction was essential, as onboarding
in computational notebooks often involves both code comprehension and domain-
specific reasoning, challenges that manifest di�erently for coders and field experts.

4.2 Test Data

To evaluate the tool’s performance in realistic scenarios, we selected three types
of notebook-based tasks. These test cases were chosen to reflect di�erent levels of
complexity, types of workflows, and degrees of documentation quality.

Paper Dataset: The first and most complex test was built using the notebook and
dataset from the study “One City, Two Tales: Using Mobility Networks to Under-
stand Neighborhood Resilience and Fragility during the COVID-19 Pandemic” Boz
et al. (2024). This notebook analyzes human mobility in New York City using
network metrics such as betweenness centrality and ego-network dissimilarity. It
includes dense analytical content, numerous figures, and domain-specific narrative.
One of the key figures used in our study (see Figure 4.1) presents the socioeconomic
distribution of neighborhoods in the top and bottom mobility dissimilarity quartiles
during the first wave of the pandemic.

The study constructs weekly mobility networks between Census Block Groups
(CBGs) by aggregating SafeGraph POI visit data between January 2019 and De-
cember 2020. These mobility patterns are represented as directed graphs, capturing
flows between neighborhoods. Neighborhood-level adaptability is then modeled as a
function of mobility change, with higher adaptability indicating greater compliance
with shelter-in-place policies.

23

The analysis incorporates both socioeconomic variables (such as income, race, and
education) and geographic characteristics (such as local amenity access) to under-
stand how di�erent communities responded to the pandemic. A key insight from
the paper is that highly adaptable neighborhoods were not only socioeconomically
advantaged but also had better access to local services, while low-adaptability neigh-
borhoods lacked clear predictors.

This dataset was selected to simulate a high-barrier, research-grade notebook that
poses challenges for both coders and field experts due to its multilayered prepro-
cessing, complex visualizations, and limited inline documentation.

Figure 4.1 The socioeconomic distribution of Census Block Groups (CBGs) that
changed their mobility patterns the most and the least during the first wave of the
COVID-19 pandemic, appearing in the top and bottom dissimilarity quartiles in at
least 60% of the weeks analyzed. CBGs with the most change are primarily located
in the financial center of NYC. Significant socioeconomic patterns are visible for the
top quartile group, while the bottom group shows no clear profile Boz et al. (2024).

Kaggle Notebooks: To evaluate the tool in more typical, mid-complexity settings,
we selected two di�erent data science notebooks from Kaggle. While these notebooks
are not as detailed as the academic paper, they reflect real-world workflows com-
monly found in applied machine learning contexts. We ensured that both notebooks
included rich datasets, meaningful visualizations, and implementations of machine
learning, deep learning, or AI models. This allowed us to test the system’s ability to
handle a wide range of notebook elements, from exploratory data analysis to model

24

training and interpretation. The inclusion of both visual and model-rich content
made these notebooks ideal for assessing how well the tool supports multi-faceted
analytical tasks.

Unit Tests: We also created a series of isolated, focused prompts to test individual
system capabilities, such as code generation, output explanation, and summariza-
tion. These unit tests provided a controlled way to measure how well the tool
performs on narrowly defined onboarding tasks, independent of broader notebook
context.

By combining these three types of data sources, we ensured the evaluation covers a
range of di�culty levels and use cases reflective of real-world notebook usage.

4.3 Experiment Setup and Questionnaire

The user study was structured around three experimental conditions, each targeting
di�erent evaluation goals. All participants completed tasks within each condition,
allowing us to measure both their standalone performance and their interaction with
the tool.

1. Kaggle Dataset Condition (A/B Test): Participants were randomly as-
signed one of the two Kaggle notebooks (A or B). In the first round, they completed
a set of tasks without the help of the tool. In the second round, they switched to the
other notebook and used the tool to complete a similar set of tasks on a di�erent
dataset and code structure. While task formats were comparable to enable consis-
tent evaluation, content di�erences helped mitigate learning e�ects between rounds.
After each round, they completed a questionnaire. This A/B design enabled us to
compare performance and satisfaction before and after tool use.

2. Paper Dataset Condition: Participants were provided with the notebook
based on the COVID-19 mobility network study Boz et al. (2024). They were asked
to explore the notebook and use the tool to ask questions, request explanations, and
engage with outputs. Afterward, they completed a questionnaire assessing their
understanding and experience. This condition was designed to evaluate the tool’s
performance in highly complex, domain-specific analytical contexts.

3. Unit Test Condition: In this setup, participants interacted with the tool
on focused, single-function tasks. Examples included generating a missing func-

25

tion, summarizing a complex cell, or explaining a chart. Each test was followed by
targeted questions to assess how well the system fulfilled the requested task.

Questionnaire Design: Participants were asked to rate their experience on a 1–10
scale across the following dimensions (asked after each notebook or task):

• How easy was it to understand the data used in the notebook?

• How easy was it to understand the code of the notebook?

• Was the explanation in the notebook su�cient?

• How confident do you feel in continuing to work on the project?

After using the tool, participants were also asked:

• How well did the LLM explain the notebook content?

• Would you consider using this tool in the future?

For unit test tasks:

• How well did the system perform code generation?

• How helpful was the summary?

• How clear was the explanation?

An optional open-ended text field was also included to allow participants to leave
qualitative feedback, including suggestions, praise, or critical remarks.

This experimental design allowed us to measure user satisfaction and perceived
utility across varied scenarios and user types, creating a comprehensive foundation
for the evaluation that follows.

Open-Ended Feedback Collection: In addition to the structured 1–10 scale
questionnaire, participants were also provided with an open-ended feedback form at
the end of the study. This form invited them to elaborate on their ratings, including
what aspects of the tool they found most or least helpful and why. These free-text
responses o�ered valuable qualitative insights. For example, several coders explained
their low ratings for code generation by noting that they preferred to write code
themselves for stylistic consistency and long-term maintainability. This qualitative
feedback helped contextualize the numeric scores and informed our interpretation
of user preferences.

Answer Validation and Monitoring: Given the known risk of hallucinations
in large language models, all LLM-generated responses during the user study were

26

monitored for correctness. The study was conducted in person, with the same lo-
cal computer setup for all participants. I was present during each session, actively
observing the interaction between participants and the system. For both Kaggle
notebooks, I had fully reviewed and tested the notebooks beforehand to understand
their logic and verify key outputs. For the paper dataset, I studied the full publi-
cation and further contacted the original author to clarify any uncertainties. This
allowed me to judge the correctness of the LLM’s answers during the study and
ensure that any hallucinated or misleading responses could be identified.

27

5. RESULTS & DISCUSSION

The user study involved a total of 25 participants, comprising 15 coders and 10
field experts. Among the coders, 9 were graduate students and 6 were currently
working professionals. The field expert group included 7 active professionals and
3 graduate students. This distribution ensured a diverse participant pool, with
real-world experience and academic expertise both represented across technical and
non-technical user groups.

All participants completed all experimental conditions, as described in Chapter 4,
which included interacting with academic paper-based notebooks, Kaggle notebooks,
and isolated unit test tasks. Each condition was followed by a structured question-
naire and, in some cases, timed evaluations.

This chapter presents the results of the user study in detail. In Section 5.1, we
summarize the evaluation metrics and structure of the questionnaire. Section 5.3
discusses the results for the paper dataset, highlighting how users navigated complex
visuals and domain logic. Section 5.2 compares notebook performance with and
without the tool in the Kaggle condition. Section 5.4 presents findings from the
unit test evaluations. Section 5.5 analyzes written user feedback, and concludes
with key insights from the study.

5.1 Overview of Evaluation Metrics

To evaluate the e�ectiveness of our onboarding tool, participants completed struc-
tured questionnaires following each task across three test conditions: Kaggle note-
books (A/B test), the academic paper-based notebook, and isolated unit test sce-
narios. All 25 participants completed all three tasks in the same order, Kaggle first,
followed by the paper notebook, and then unit tests. Breaks were provided between

28

each stage to reduce fatigue and ensure thoughtful feedback.

All participants, regardless of background (coders or field experts), answered the
same set of evaluation questions. The questionnaires were designed to measure
perceived clarity, usefulness, and tool e�ectiveness, both with and without the as-
sistance of the system. No task completion time was recorded, as participants were
allowed to proceed at their own pace to prioritize depth of engagement over speed.

Responses were collected on a 1–10 Likert scale, where 1 represented the most neg-
ative response (e.g., very di�cult, very poor) and 10 the most positive (e.g., very
easy, very helpful).

General comprehension questions (used across all notebook tasks):

• Data Understanding: How easy was it to understand the dataset used in
the notebook?

• Code Comprehension: How easy was it to understand the code and logic
in the notebook?

• Explanation Su�ciency: Was the explanation (from markdown cells or the
tool) su�cient to follow the analysis?

• Project Confidence: How confident do you feel in continuing work on this
project?

These were rated separately for tasks completed with and without tool support,
particularly in the Kaggle A/B test.

Tool-specific questions (only asked after tool-assisted tasks):

• LLM Explanation Quality: How well did the LLM explain the notebook’s
content?

• Future Use Intent: Would you consider using this tool in the future?

Unit test evaluation (feature-focused): In the final task, participants interacted
with the tool in isolated test scenarios, each targeting a specific function. They were
asked to rate the following:

• Code Generation: Quality and usefulness of the code generated by the LLM.

• Summary Clarity: How well the tool summarized the content of a code cell
or analytical block.

29

• Explanation Accuracy: Clarity and correctness of explanations given for
code or outputs.

Each questionnaire also included an optional text box for open-ended feedback.
These responses were reviewed to identify qualitative insights that supplement the
numerical results, including recurring praise, usability issues, and feature sugges-
tions.

The following sections report the results per test condition, followed by a cross-group
comparison and synthesis of user feedback.

5.2 Kaggle Notebook Comparison (A/B Test)

The Kaggle notebook condition was used to evaluate how the tool supports users in
typical data science workflows involving visualizations and machine learning models.
Each participant completed a task using one notebook without the tool, followed by
a similar task using a second notebook with the tool. This A/B structure enabled
within-subject comparisons.

Figure 5.1 Average scores for core evaluation metrics across user groups, before and
after using the tool.

30

Figure 5.2 Average LLM-specific ratings after tool-assisted Kaggle tasks: explanation
quality and future use intent.

Coders: Among coder participants, the tool led to consistent improvements across
all evaluation metrics. The most notable gains were observed in:

• Data Understanding: increased from 7.33 to 8.47 (+1.13)

• Project Confidence: increased from 6.27 to 7.53 (+1.27)

• Explanation Su�ciency: improved from 6.47 to 7.60 (+1.13)

Coders also rated the tool highly for LLM explanation quality (mean: 8.4) and
future use intent (mean: 8.53), suggesting a strong positive reception. These users
reported that the tool helped clarify preprocessing logic, reduced lookup time, and
served as a useful checkpoint for confirming interpretations.

Field Experts: For field experts, the tool had an even more pronounced impact.
The largest improvements were in:

• Explanation Su�ciency: increased from 5.20 to 8.20 (+3.00)

• Code Comprehension: increased from 5.40 to 6.80 (+1.40)

• Project Confidence: increased from 5.60 to 7.40 (+1.80)

LLM explanation quality was rated extremely high (mean: 9.2), indicating that the
tool e�ectively bridged the gap between narrative content and technical implemen-
tation. Several participants from this group noted that they would not have been
able to complete the second notebook without the tool.

Visual Summary: Figure 5.1 shows the average ratings across four core dimen-
sions (data understanding, code comprehension, explanation su�ciency, and project

31

Figure 5.3 Individual participant scores across metrics, separated by user group and
condition.

confidence), comparing performance with and without the tool for both user groups.
Figure 5.2 summarizes the LLM-specific evaluation results. Figure 5.3 presents all
individual responses, highlighting both consistency in ratings and the tool’s impact.

Interpretation: The A/B test results indicate that the onboarding tool had a clear
positive e�ect across all measured dimensions. Field experts experienced the largest
relative improvement in explanation su�ciency and confidence, while coders bene-
fited from faster comprehension and smoother onboarding into unfamiliar notebook
logic. The tool’s ability to support di�erent levels of technical background through
contextual explanations appears to be one of its most e�ective design features.

5.3 Paper Dataset Results

The academic paper-based notebook derived from the “One City, Two Tales”
study Boz et al. (2024) was used to evaluate the system’s ability to support onboard-
ing in complex, domain-specific analytical environments. The notebook contained
socioeconomic data, network-based mobility metrics, and dense visual outputs, mak-
ing it significantly more di�cult to interpret than typical data science notebooks.

Coder Performance: Coders reported a mixed experience in this condition. While
they were generally able to follow the code execution flow, they struggled with

32

unfamiliar domain-specific visualizations and sparse documentation. Average scores
were highest in Code Comprehension (7.27) and Project Confidence (7.53), indicating
that their technical background helped them maintain orientation. However, lower
scores in Data Understanding (5.20) and Explanation Su�ciency (4.93) suggest that
the notebook’s domain complexity limited full comprehension. Despite this, LLM
explanation quality (8.40) and future use intent (8.87) were both rated highly.

Field Expert Performance: Field experts found this task more challenging over-
all. They scored relatively higher in Data Understanding (6.70) than coders, but con-
siderably lower in Code Comprehension (4.10) and Explanation Su�ciency (3.60),
reflecting their di�culty interpreting Python code without formal training. Still,
they rated LLM explanation quality at 9.20 and future use intent at 9.30, suggest-
ing that the tool provided substantial support in bridging the technical-language
gap.

Quantitative Summary: Figure 5.4 shows average scores across both user groups
for each evaluation criterion. Figure 5.5 displays individual responses, showing a
consistent pattern of higher satisfaction with LLM assistance, particularly among
field experts.

Figure 5.4 Average scores across evaluation metrics for coders and field experts in
the paper dataset condition.

Interpretation: This condition demonstrated the tool’s ability to assist users work-
ing with highly technical and under-documented content. Coders leveraged the
tool for clarification and e�ciency, while field experts depended on it to make the

33

Figure 5.5 Individual participant responses across all evaluation metrics in the paper
dataset condition.

notebook comprehensible at all. These results highlight the value of context-aware
LLM support in research-grade analytics, where onboarding barriers are particularly
steep.

5.4 Unit Test Evaluation

The final task evaluated the tool in focused, context-independent scenarios that
tested individual capabilities: code generation, code summarization, and explana-
tion. These unit tests allowed participants to assess the tool’s core features in
isolation, without requiring familiarity with a full notebook workflow.

Coder Performance: Coders responded positively to the summary and expla-
nation capabilities of the tool, giving average scores of 8.07 and 8.47 respectively.
However, the average score for Code Generation was considerably lower at 2.93.
Feedback from this group revealed that the low rating was not due to inaccuracy,
but rather due to preference: many coders expressed that they preferred to write
code themselves. They noted that small edits were faster to perform manually
than waiting for the LLM and verifying its output. Others emphasized that LLM-
generated code often did not align with their personal coding style, including vari-
able naming, abstraction preferences, and logical structuring. Several participants
mentioned concerns about long-term readability and maintainability, stating that

34

relying on AI-generated code might lead to disorganized or inconsistent codebases.

Field Expert Performance: Field experts, in contrast, rated all three capabilities
highly. Their average scores were 7.50 for Code Generation, 7.40 for Summary,
and 8.90 for Explanation. Participants in this group frequently commented that
receiving immediate answers and direct code modifications from the LLM saved
time and reduced cognitive overhead. For many, the tool helped them engage with
the notebook in ways that would otherwise have been inaccessible due to limited
programming experience.

Comparison Table: Table 5.1 summarizes the average scores across user groups
for each unit test capability.

Table 5.1 Average unit test scores by user group.

User Group Code Generation Summary Explanation

Coders 2.93 8.07 8.47
Field Experts 7.50 7.40 8.90

Interpretation: These results highlight a divergence in expectations between the
two user groups. Coders were less interested in AI-generated code due to speed,
stylistic preferences, and concerns about long-term maintainability. On the other
hand, field experts valued the immediacy and automation provided by the tool,
particularly in tasks they would have struggled to perform manually. While im-
provements in generation quality may help address coder concerns, the tool’s sum-
marization and explanation capabilities already o�er substantial onboarding value
to users with diverse technical backgrounds.

5.5 Discussion

Table 5.2 summarizes average scores across all evaluation metrics, user groups, and
task types. This unified view highlights key trends in how coders and field ex-
perts interacted with the tool across di�erent contexts, and how their needs and
expectations diverged.

Key Insights: The tool consistently improved participants’ understanding, expla-
nation satisfaction, and project confidence, especially among field experts. Gains

35

Table 5.2 Average scores by user group, task, and evaluation metric.

Metric Kaggle (No) Kaggle (With) Paper Unit Test
Coders

Data Understanding 7.33 8.47 5.20 –
Code Comprehension 7.40 7.73 7.27 –
Explanation Su�ciency 6.47 7.60 4.93 –
Project Confidence 6.27 7.53 7.53 –
LLM Explanation Quality – 8.40 8.40 –
Future Use Intent – 8.53 8.87 –
Code Generation – – – 2.93
Code Summary – – – 8.07
Explanation Accuracy – – – 8.47

Field Experts
Data Understanding 7.60 7.90 6.70 –
Code Comprehension 5.40 6.80 4.10 –
Explanation Su�ciency 5.20 8.20 3.60 –
Project Confidence 5.60 7.40 6.80 –
LLM Explanation Quality – 9.20 9.20 –
Future Use Intent – 7.70 9.30 –
Code Generation – – – 7.50
Code Summary – – – 7.40
Explanation Accuracy – – – 8.90

were most pronounced in the Kaggle A/B test, where participants had the opportu-
nity to directly compare assisted and unassisted experiences. Field experts benefited
most in explanation su�ciency (+3.0 improvement) and confidence, confirming the
tool’s utility in lowering onboarding barriers.

The paper dataset, while more complex, confirmed the same pattern: field experts
relied heavily on the tool to understand outputs and connect code to real-world
meaning. Coders, although more comfortable navigating the notebook, still bene-
fited from LLM explanations to reduce the cognitive e�ort of working through dense
visual or domain-specific content.

Code Generation Di�erences: In the unit test evaluation, coders rated code
generation significantly lower than field experts. However, this reflected a practical
stance rather than tool failure. Coders reported that they preferred to write code
themselves due to e�ciency, control over naming and logic structure, and long-
term code quality. They expressed concern that relying on LLMs could lead to
inconsistent or di�cult-to-maintain codebases.

In contrast, field experts were generally satisfied with LLM-generated code, viewing
it as a short-term solution or support mechanism while awaiting input from a de-

36

veloper. They emphasized the value of getting “something that works” quickly and
described the tool as reducing dependency on technical collaborators for routine or
exploratory tasks.

General Patterns: Summarization and explanation were rated highly by both
groups, with particularly strong results among field experts. These two features
appear to bridge technical skill gaps and support learning and hando�, two of the
most important factors in real-world onboarding scenarios. Even in high-complexity
cases like the paper dataset, users felt more equipped to interpret notebooks with
the LLM’s assistance.

Interestingly, coders also highlighted the value of these features, not for learning
new content, but for navigating poorly documented notebooks. Several partici-
pants mentioned that the LLM e�ectively filled in for missing author guidance, such
as explaining undocumented functions, describing cell-level intent, or summarizing
sections in notebooks that lacked headers or clear structure. In this way, the LLM
functioned as a contextual layer that made otherwise opaque notebooks searchable
and more coherent.

Conclusion: The results demonstrate that an LLM-powered onboarding assistant
can address real bottlenecks in both code-centric and analysis-centric workflows.
While generative code support remains controversial among experienced program-
mers, explanation and summary capabilities already provide broad value and pro-
mote deeper engagement with unfamiliar projects.

37

6. LIMITATIONS & FUTURE WORK

While the proposed tool demonstrates strong potential for improving onboarding in
interactive computational notebooks, several limitations remain that o�er directions
for future enhancement.

First, the system relies on GPT-4 via the ChatGPT API, which, while general-
purpose and powerful, introduces cost, latency, and version-dependence issues.
While GPT-4’s versatility made it ideal for supporting both code and domain-level
tasks, more specialized or locally hosted models could improve response speed, re-
duce cost, and increase reproducibility.

We briefly explored using separate LLMs for code generation and explanation, but
found this approach impractical within our constraints. The code generation task
often required deep understanding of user questions, prior outputs, and notebook
structure, all of which demanded general-purpose language capabilities. Specialized
models lacked this flexibility, and due to hardware limitations we were unable to
experiment with larger or fine-tuned alternatives. Future work could investigate
combining lightweight domain-specific models in a multi-agent setup for improved
modularity and privacy.

Second, the directed graph used for context retrieval is based on relatively simple
heuristics, such as sequential cell order and function usage detection. While this
proved su�cient in many cases, it may fail in notebooks with highly nonlinear ex-
ecution paths or complex variable dependencies. Incorporating static code analysis
or runtime tracing could lead to more accurate contextualization.

Third, although the user study included participants from both technical and non-
technical backgrounds, the sample size (25 participants) limits generalizability.

A key usability concern raised during testing was the low rating of code generation
by experienced coders. This was not due to technical failure but rather philosophical
and stylistic preferences, many coders preferred to retain direct control over their
code for long-term maintainability. This highlights the need for customizable LLM

38

behavior, such as enforcing style conventions or scoping suggestions within stricter
constraints.

Another practical limitation is the lack of automated dependency management. If
the LLM generates code that requires a library not yet installed in the user’s en-
vironment, installation must currently be done manually. In future iterations, the
tool could proactively detect missing packages and o�er automated installation to
streamline usability.

For future work, we aim to enhance the context retrieval system with more advanced
dependency tracking, explore multi-agent LLM architectures for task decomposition,
and o�er user-tunable parameters for LLM behavior (e.g., verbosity, technicality,
coding style). We also plan to expand testing to larger, more heterogeneous user
groups and integrate version control awareness to support onboarding in evolving
notebooks.

Ultimately, this work opens the door to broader applications of LLMs in human-
in-the-loop workflows and suggests that onboarding support can be meaningfully
improved through natural language interaction, even in complex, mixed-media en-
vironments like Jupyter notebooks.

39

7. CONCLUSION

This thesis presented a tool designed to support onboarding in interactive compu-
tational notebooks using large language models. The system integrates program
analysis, graph-based context retrieval, and natural language prompting to assist
both coders and field experts in understanding, navigating, and contributing to
existing notebooks.

Onboarding in computational notebooks is often hindered by the informal, nonlinear,
and densely interwoven nature of code, outputs, and narrative explanations. Our
tool addresses this by enabling users to ask questions, generate new code, and receive
contextual explanations or summaries at any point in the notebook, using a directed
graph to retrieve relevant context dynamically.

To evaluate the system, we conducted a user study involving 25 participants, in-
cluding both programmers and non-programmers. The study demonstrated that
the tool improves code comprehension, data understanding, and user confidence,
especially for field experts with limited programming experience. While code gener-
ation was well received by non-programmers, experienced coders expressed reserva-
tions, preferring full control over implementation for reasons of maintainability and
consistency.

The results suggest that LLM-based tools can meaningfully assist onboarding work-
flows in data science environments, particularly through summarization and expla-
nation rather than full automation. The ability to retrieve context-aware answers
and incrementally build understanding o�ers substantial value, especially in high-
complexity or poorly documented notebooks.

This work contributes both a practical implementation and an empirical under-
standing of how LLMs can support interdisciplinary collaboration and knowledge
transfer in notebook-based workflows. Future directions include deeper integration
with runtime environments, improved dependency management, user-customized
LLM behavior, and expanded testing in real-world team settings.

40

By bridging the gap between natural language and code, and between developers
and domain specialists, this tool lays the groundwork for more accessible, intelligent,
and collaborative notebook systems.

41

BIBLIOGRAPHY

Ahmed, T. & Devanbu, P. (2023). Few-shot training llms for project-specific code-
summarization. In Proceedings of the 37th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’22, New York, NY, USA.
Association for Computing Machinery.

Boz, H. A., Bahrami, M., Balcisoy, S., Bozkaya, B., Mazar, N., Nichols, A., &
Pentland, A. (2024). Investigating neighborhood adaptability using mobility
networks: a case study of the covid-19 pandemic. Humanities and Social
Sciences Communications, 11 (1).

Chandel, S., Clement, C. B., Serrato, G., & Sundaresan, N. (2022). Training and
evaluating a jupyter notebook data science assistant.

Chase, H. (2022). LangChain.
Dagenais, B., Ossher, H., Bellamy, R. K. E., Robillard, M. P., & de Vries, J. P.

(2010). Moving into a new software project landscape. In Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE ’10, (pp. 275–284)., New York, NY, USA. Association for Computing
Machinery.

Dong, J., Lou, Y., Zhu, Q., Sun, Z., Li, Z., Zhang, W., & Hao, D. (2022). Fira:
Fine-grained graph-based code change representation for automated commit
message generation. In Proceedings of the 44th International Conference on
Software Engineering, ICSE ’22, (pp. 970–981)., New York, NY, USA. Asso-
ciation for Computing Machinery.

et al., A. G. (2024a). The llama 3 herd of models. For the full list of authors, refer
to the original publication.

et al., B. R. (2024b). Code llama: Open foundation models for code. For the full
list of authors, refer to the original publication.

Fakhoury, S., Naik, A., Sakkas, G., Chakraborty, S., & Lahiri, S. K. (2024). Llm-
based test-driven interactive code generation: User study and empirical eval-
uation. IEEE Transactions on Software Engineering, 50 (9), 2254–2268.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B.,
Liu, T., Jiang, D., & Zhou, M. (2020). Codebert: A pre-trained model for
programming and natural languages.

Hoang, T., Kang, H. J., Lo, D., & Lawall, J. (2020). Cc2vec: distributed represen-
tations of code changes. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ICSE ’20, (pp. 518–529)., New York,
NY, USA. Association for Computing Machinery.

Ju, A., Sajnani, H., Kelly, S., & Herzig, K. (2021). A case study of onboarding in
software teams: Tasks and strategies. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), (pp. 613–623).

Kim, M., Zimmermann, T., DeLine, R., & Begel, A. (2016). The emerging role
of data scientists on software development teams. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, (pp. 96–107).,
New York, NY, USA. Association for Computing Machinery.

LaToza, T. D., Venolia, G., & DeLine, R. (2006). Maintaining mental models:
a study of developer work habits. In Proceedings of the 28th International

42

Conference on Software Engineering, ICSE ’06, (pp. 492–501)., New York,
NY, USA. Association for Computing Machinery.

Leinonen, J., Denny, P., MacNeil, S., Sarsa, S., Bernstein, S., Kim, J., Tran, A., &
Hellas, A. (2023). Comparing code explanations created by students and large
language models. In Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1, ITiCSE 2023, (pp. 124–130).,
New York, NY, USA. Association for Computing Machinery.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler,
H., Lewis, M., Yih, W.-t., Rocktäschel, T., Riedel, S., & Kiela, D. (2020).
Retrieval-augmented generation for knowledge-intensive nlp tasks. In Proceed-
ings of the 34th International Conference on Neural Information Processing
Systems, NIPS ’20, Red Hook, NY, USA. Curran Associates Inc.

Li, C., Xu, Z., Di, P., Wang, D., Li, Z., & Zheng, Q. (2024). Understanding code
changes practically with small-scale language models. In Proceedings of the
39th IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’24, (pp. 216–228)., New York, NY, USA. Association for Computing
Machinery.

Li, X., Zhang, Y., Leung, J., Sun, C., & Zhao, J. (2023). Edassistant: Supporting
exploratory data analysis in computational notebooks with in situ code search
and recommendation. ACM Trans. Interact. Intell. Syst., 13 (1).

Liu, J., Xia, C. S., Wang, Y., & Zhang, L. (2023). Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code
generation. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS ’23, Red Hook, NY, USA. Curran As-
sociates Inc.

Liu, Z., Tang, Z., Xia, X., & Yang, X. (2023). Ccrep: Learning code change repre-
sentations via pre-trained code model and query back. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE), (pp. 17–29).

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement, C.,
Drain, D., Jiang, D., Tang, D., Li, G., Zhou, L., Shou, L., Zhou, L., Tufano,
M., Gong, M., Zhou, M., Duan, N., Sundaresan, N., Deng, S. K., Fu, S., &
Liu, S. (2021). Codexglue: A machine learning benchmark dataset for code
understanding and generation.

MacNeil, S., Tran, A., Hellas, A., Kim, J., Sarsa, S., Denny, P., Bernstein, S., &
Leinonen, J. (2023). Experiences from using code explanations generated by
large language models in a web software development e-book. In Proceedings
of the 54th ACM Technical Symposium on Computer Science Education V. 1,
SIGCSE 2023, (pp. 931–937)., New York, NY, USA. Association for Comput-
ing Machinery.

Matturro, G., Barrella, K., & Benitez, P. (2017). Di�culties of newcomers joining
software projects already in execution. In 2017 International Conference on
Computational Science and Computational Intelligence (CSCI), (pp. 993–998).

Muller, M., Lange, I., Wang, D., Piorkowski, D., Tsay, J., Liao, Q. V., Dugan, C.,
& Erickson, T. (2019). How data science workers work with data: Discovery,
capture, curation, design, creation. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, CHI ’19, (pp. 1–15)., New York,
NY, USA. Association for Computing Machinery.

Nam, D., Macvean, A., Hellendoorn, V., Vasilescu, B., & Myers, B. (2024a). Using

43

an llm to help with code understanding. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ICSE ’24, New York,
NY, USA. Association for Computing Machinery.

Nam, D., Macvean, A., Hellendoorn, V., Vasilescu, B., & Myers, B. (2024b). Using
an llm to help with code understanding. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ICSE ’24, New York,
NY, USA. Association for Computing Machinery.

OpenAI (2023). Gpt-4: Generative pre-trained transformer 4.
Pimentel, J. F., Murta, L., Braganholo, V., & Freire, J. (2019). A large-scale study

about quality and reproducibility of jupyter notebooks. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR), (pp.
507–517).

Robillard, M., Walker, R., & Zimmermann, T. (2010). Recommendation systems
for software engineering. IEEE Software, 27 (4), 80–86.

Rule, A., Tabard, A., & Hollan, J. D. (2018). Exploration and explanation in
computational notebooks. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, CHI ’18, (pp. 1–12)., New York, NY,
USA. Association for Computing Machinery.

Steinmacher, I., Treude, C., & Gerosa, M. A. (2019). Let me in: Guidelines for the
successful onboarding of newcomers to open source projects. IEEE Software,
36 (4), 41–49.

Wang, A. Y., Mittal, A., Brooks, C., & Oney, S. (2019). How data scientists use com-
putational notebooks for real-time collaboration. Proc. ACM Hum.-Comput.
Interact., 3 (CSCW).

Wang, A. Y., Wang, D., Drozdal, J., Muller, M., Park, S., Weisz, J. D., Liu, X., Wu,
L., & Dugan, C. (2022). Documentation matters: Human-centered ai system
to assist data science code documentation in computational notebooks. ACM
Trans. Comput.-Hum. Interact., 29 (2).

Wang, J., Kuo, T.-y., Li, L., & Zeller, A. (2021). Assessing and restoring repro-
ducibility of jupyter notebooks. In Proceedings of the 35th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE ’20, (pp.
138–149)., New York, NY, USA. Association for Computing Machinery.

Wang, J., Li, L., & Zeller, A. (2020). Better code, better sharing: on the need of
analyzing jupyter notebooks. In Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering: New Ideas and Emerging Results,
ICSE-NIER ’20, (pp. 53–56)., New York, NY, USA. Association for Comput-
ing Machinery.

Wang, Y., Wang, W., Joty, S., & Hoi, S. C. H. (2021). Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and gen-
eration.

Wenskovitch, J., Zhao, J., Carter, S., Cooper, M., & North, C. (2019). Albireo: An
interactive tool for visually summarizing computational notebook structure.
In 2019 IEEE Visualization in Data Science (VDS), (pp. 1–10).

Xia, X., Bao, L., Lo, D., Xing, Z., Hassan, A. E., & Li, S. (2018). Measuring
program comprehension: A large-scale field study with professionals. IEEE
Transactions on Software Engineering, 44 (10), 951–976.

Xiao, R., Hou, X., & Stamper, J. (2024). Exploring how multiple levels of gpt-
generated programming hints support or disappoint novices. In Extended Ab-

44

stracts of the CHI Conference on Human Factors in Computing Systems, CHI
EA ’24, New York, NY, USA. Association for Computing Machinery.

Zhao, Y., Zhang, Y., Zhang, Y., Zhao, X., Wang, J., Shao, Z., Turkay, C., & Chen, S.
(2025). Leva: Using large language models to enhance visual analytics. IEEE
Transactions on Visualization and Computer Graphics, 31 (3), 1830–1847.

Zhou, Z., Li, M., Yu, H., Fan, G., Yang, P., & Huang, Z. (2024). Learning to generate
structured code summaries from hybrid code context. IEEE Transactions on
Software Engineering, 50 (10), 2512–2528.

Zhu, J., Miao, Y., Xu, T., Zhu, J., & Sun, X. (2024). On the e�ectiveness of large
language models in statement-level code summarization. In 2024 IEEE 24th
International Conference on Software Quality, Reliability and Security (QRS),
(pp. 216–227).

45

