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ABSTRACT

SIDE-CHANNEL ATTACKS ON IOT DATA AND COUNTERMEASURES

SEYEDPAYAM SEYEDKAZEMI

MECHATRONICS ENGINEERING Ph.D DISSERTATION, JULY 2025

Dissertation Supervisor: Prof. Dr. YÜCEL SAYGIN
Dissertation Co-supervisor: Asst. Prof. Dr. MEHMET EMRE GÜRSOY

Keywords: Side-Channel Privacy Attacks, Ambient Light Sensor, Subject Inference,
Sensor Data Privacy, Noise Injection Defense Mechanisms

This thesis explores novel privacy vulnerabilities arising from the unintended use of sensor
data in mobile and wearable systems. The first part introduces LuxTrack, a side-channel
attack that leverages the ambient light sensor (ALS) of a smartphone to infer user activi-
ties on nearby laptop screens based on emitted light intensity. We developed an Android
application to collect ALS data in a controlled environment with real users and showed
that machine learning models trained on extracted features could infer viewed websites
or applications with up to 80% accuracy. We then proposed and evaluated three counter-
measures—binning, smoothing, and noise addition—demonstrating that attack accuracy
could be reduced to below 30% while maintaining legitimate task utility.

In the second part, we examine how motion sensor datasets, initially designed for ac-
tivity or fall detection, can be exploited for subject inference attacks. Using the SisFall
dataset, we show that it is possible to accurately identify individuals based on their mo-
tion patterns using machine learning models and statistically significant features. We
propose and evaluate several defense mechanisms that inject noise at the feature and sen-
sor levels, achieving a strong trade-off between reducing subject identification accuracy
and preserving activity recognition performance.

Together, these studies highlight the risks of side-channel leaks and unintended inferences
in sensor-based systems, and propose practical defenses to support privacy-preserving
data analytics.
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ÖZET

IOT VERILERI ÜZERINE YAN KANAL SALDIRILARI VE SAVUNMA
MEKANIZMALARI

SEYEDPAYAM SEYEDKAZEMI

MEKATRONİK MÜHENDİSLİĞİ DOKTORA TEZİ, TEMMUZ 2025

Tez Danışmanı: Prof. Dr. YÜCEL SAYGIN
Tez Eş Danışmanı: Dr. Öğr. Üyesi MEHMET EMRE GÜRSOY

Anahtar Kelimeler: Yan Kanal Gizlilik Saldırıları, Ortam Işığı Sensörü, Kişi Çıkarımı,
Sensör Verisi Gizliliği, Gürültü Enjeksiyonlu Savunma Mekanizmaları

Bu tez, mobil ve giyilebilir sistemlerdeki sensör verilerinin amaç dışı kullanımıyla ortaya
çıkan yeni gizlilik açıklarını incelemektedir. İlk bölümde, bir akıllı telefonun ortam ışığı
sensöründen (ALS) yararlanarak yakındaki bir dizüstü bilgisayar ekranında gerçekleştir-
ilen kullanıcı aktivitelerini, ekrandan yayılan ışık yoğunluğuna göre tahmin eden bir yan
kanal saldırısı olan LuxTrack tanıtılmaktadır. Gerçek kullanıcılarla kontrollü bir ortamda
ALS verisi toplamak üzere geliştirdiğimiz Android uygulaması sayesinde, çıkarılan özel-
liklerle eğitilen makine öğrenimi modellerinin görüntülenen internet sitelerini veya uygu-
lamaları %80’e varan doğrulukla tahmin edebildiğini gösterdik. Ardından, saldırı doğru-
luğunu %30’un altına indirirken, meşru görevlerin doğruluğunu yalnızca %3 oranında
azaltan üç karşı önlem—aralıklama (binning), yumuşatma ve gürültü ekleme—önerdik
ve değerlendirdik.

Tezin ikinci bölümünde, başlangıçta aktivite veya düşme tespiti amacıyla oluşturulan
hareket sensörü veri kümelerinin, kişi çıkarımı saldırıları için nasıl kötüye kullanılabileceği
ele alınmaktadır. SisFall veri kümesi kullanılarak, bireylerin hareket desenlerinden yola
çıkarak, anlamlı istatistiksel özellikler ve makine öğrenimi modelleri yardımıyla yüksek
doğrulukta tanımlanabildiği gösterilmiştir. Özellik ve sensör düzeyinde gürültü enjekte
eden çeşitli savunma mekanizmaları önerilmiş ve bu mekanizmaların, aktivite tanıma
performansını korurken kişi tanıma doğruluğunu önemli ölçüde düşürdüğü ortaya kon-
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muştur.

Bu çalışmalar birlikte değerlendirildiğinde, sensör tabanlı sistemlerdeki yan kanal sızın-
tıları ve amaç dışı bilgi çıkarımı risklerine dikkat çekilmekte ve gizliliği koruyan veri
analitiği için uygulanabilir savunma çözümleri sunulmaktadır.
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My family ...
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1. INTRODUCTION

Nowadays, mobile devices are equipped with a variety of sensors, including cameras,
GPS, microphones, accelerometers, gyroscopes, and so forth. One of those sensors is
the Ambient Light Sensor (ALS), which enables useful functionalities such as automatic
adjustment of screen brightness and background color according to the ambient light of
the environment. A smartphone app that uses the ALS is able to access and record the
light intensity in the surrounding environment (in units of lux) without requiring explicit
permission from the smartphone user Chakraborty, Ouyang & Srivastava (2017); Sikder,
Petracca, Aksu, Jaeger & Uluagac (2021).

In the first part of this thesis, we demonstrate how an attacker can exploit the ALS of a
smartphone, a seemingly innocuous sensor, to perform a side-channel attack to infer the
user’s activity on a nearby laptop using the light emitted from the laptop screen. Our
attack, named LuxTrack, stems from the intuition that different activities, websites, and
apps opened on the laptop’s screen will have different background colors and different
light fluctuations; therefore, their light emission characteristics will be different. For
example, reading PDF documents will likely emit a constant amount of bright light,
whereas watching YouTube videos will emit lower amounts or varying amounts of light
due to darker backgrounds and dynamically changing colors in a video. Such differences
in light emission characteristics can be continuously recorded by the smartphone’s ALS
and used to infer the user’s activity.

The proliferation of sensor-based technologies has also revolutionized healthcare appli-
cations, particularly in activity recognition and fall detection for elderly populations.
However, these same datasets may inadvertently expose sensitive information about indi-
viduals, raising critical privacy concerns. In the second part of this thesis, we investigate
privacy vulnerabilities in motor signal datasets (e.g., accelerometer/gyroscope data) using
the SisFall dataset as a case study. While such datasets are anonymized, we demonstrate
that machine learning models can exploit unique biomechanical patterns to infer subjects’
identities; a threat underexplored in prior work.
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To demonstrate LuxTrack, we first developed an Android app that records the ambient
light data from the ALS in units of lux. Using our app, we collected a new dataset
from 10 human subjects in a controlled environment. Each subject was asked to per-
form 8 different everyday activities on the laptop, such as surfing on Facebook, chatting
with friends on WhatsApp, reading PDF documents via Adobe Acrobat, and watching
YouTube videos. To construct a sufficiently large dataset, each subject performed each
activity 13 times (repetitions), and 120 ALS readings were collected in each repetition.
We publicly release the Android app and the dataset we collected for the reproducibility
of our results and to encourage further research in this field.

LuxTrack treats each unique recording in the dataset as a time series, and from each time
series, it extracts a total of 187 features under 6 categories. Features used in LuxTrack
are presented under categories based on their meaning and functionality, such as statis-
tical features (e.g., mean, median, variance), change-based features (e.g., mean absolute
change, absolute energy), transform-based features (e.g., Fast Fourier and Continuous
Wavelet Transforms), and entropy-based features (e.g., binned entropy, permutation en-
tropy, Lempel-Ziv complexity). LuxTrack then formulates the activity inference problem
as an 8-class classification problem (each class corresponding to one activity type), and
the extracted features are used to train machine learning (ML) models in a supervised
fashion. Six ML models are trained, ranging from support vector machines (SVM) to
neural networks (NN) and gradient boosted trees (GBT).

Similarly, in our analysis of the SisFall dataset, which records movements from 24 subjects
performing 19 activities, we treat each trial as a time series and extract features to
train ML models (XGBoost, LightGBM). Here, however, the threat model shifts from
activity inference to subject inference, where an attacker identifies individuals from their
kinematic signatures. Our experiments show this attack achieves up to 89.04% accuracy,
highlighting the privacy risks even in anonymized datasets.

Experimental results for LuxTrack show that it can achieve up to 80% accuracy in in-
ferring the user’s activity on the laptop, whereas the accuracy of random guessing is
12.5%. Highest accuracy is achieved with NN, GBT, and K-NN (k-nearest neighbors)
models, respectively. Also, we compare the results of LuxTrack against two benchmarks:
(i) using raw ALS time series recordings in classification without feature extraction, and
(ii) LightSpy Chakraborty et al. (2017), which is the most relevant work to ours from the
literature. Results show that LuxTrack’s accuracy and F1 scores outperform raw ALS
time series by approximately 25% and LightSpy by approximately 20%.

Motivated by the high accuracy of LuxTrack, we then explore countermeasures against it.
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We propose three countermeasures which work by manipulating ALS readings: binning,
smoothing, and noise addition. Binning discretizes ALS readings into n equal-sized bins,
smoothing averages ALS readings using k nearest readings to them, and noise addition
adds randomly and independently sampled Gaussian noise to each ALS reading with
mean 0 and standard deviation σ. We experimentally show that these countermeasures
are effective in reducing attack accuracy.

For motor signal datasets, we propose a taxonomy of lightweight countermeasures to
mitigate subject inference risks. Unlike uniform noise injection, our defenses, such as
Subject-Only Feature Noise Injection and AcConstrain, strategically perturb identity-
revealing features or sensor axes (e.g., Gyro-x). These reduce subject inference accuracy
to 14.47% with <5% utility loss for activity prediction, making them practical for edge
deployment.

Although the proposed countermeasures for LuxTrack are effective in reducing attack
accuracy, since they manipulate ALS readings, they also hurt the accuracy of legitimate
tasks such as automatically adjusting screen background color. Therefore, a desirable
goal is to achieve high protection from the LuxTrack attack with as little reduction in
legitimate task accuracy as possible. Toward this goal, we perform a trade-off analysis
between attack accuracy and legitimate task accuracy for all three countermeasures.
Based on the results of our analysis, we identify and recommend appropriate trade-off
settings and parameters for our countermeasures. For example, noise addition with σ = 2
is able to reduce attack accuracy to below 30% while maintaining legitimate task accuracy
above 97%.

Similarly, our motor signal defenses optimize the privacy-utility trade-off by differentiat-
ing task-critical features (e.g., via p-value rankings) and employing Bayesian optimization
for noise injection. This ensures minimal impact on activity recognition while maximizing
privacy protection.

Contributions

This thesis makes the following contributions across its two parts:

• Sensor-Based Side-Channel Attacks:

– We develop an Android app for collecting ALS readings and release a dataset
of 10 subjects performing 8 laptop activities.

– We propose LuxTrack, an ML-based attack achieving ∼20% higher accuracy
than LightSpy, and evaluate it under diverse conditions (From different display
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technologies and settings, smartphone models and ambient light conditions to
extension toward intra-activity diversity and Multitasking).

– We design three countermeasures (binning, smoothing, noise addition) with
trade-off analysis for practical deployment.

• Privacy Risks in Motor Signal Datasets:

– We demonstrate subject inference attacks on the SisFall dataset, achieving
89.04% accuracy using XGBoost/LightGBM.

– We propose feature-based and sensor-based defenses (e.g., AcConstrain)
that reduce subject inference to 14.47% with <5% utility loss.

– We introduce a privacy-utility optimization framework for sensor data, ad-
dressing real-world constraints in wearables.

Organization

The rest of this thesis is organized as follows:

• Chapter 2 reviews related work in two key areas: (i) sensor-based side-channel
attacks with focus on Ambient Light Sensor (ALS) vulnerabilities (Section 2.1),
and (ii) fall detection datasets and machine learning approaches that contextualize
our motor signal privacy analysis (Section 2.2).

• Chapter 3 presents the technical foundations of both attacks:

– Section 3.1 details LuxTrack’s hardware/software setup (Section 3.1.1), data
collection protocol (Section 3.1.2), and ML pipeline (feature extraction in Sec-
tion 3.1.3, model training in Section 3.1.4).

– Section 3.2 analyzes subject inference attacks on motor signal datasets, cover-
ing dataset characteristics (Section 3.2.1), feature engineering (Section 3.2.2),
and attack methodologies (Sections 3.2.3.1–3.2.3.2).

• Chapter 4 evaluates both attacks:

– Section 4.1 compares LuxTrack against LightSpy (Section 4.1.1), analyzes con-
fusion matrices (Section 4.1.2), investigates feature importance (Section 4.1.3),
evaluates robustness (Section 4.1.4), and extends the analysis to LOO-CV
(Section 4.1.5), Intra-Activity Diversity (Section 4.1.6), and multitasking sce-
narios (Section 4.1.7).
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– Section 4.2 presents subject inference accuracy for both first-cut (Section 4.2.1)
and proposed solutions (Section 4.2.2).

• Chapter 5 proposes defenses:

– Section 5.1 evaluates binning, smoothing, and noise addition for ALS attacks
(Sections 5.1.1–5.1.3), including trade-off analysis (Section 5.1.4).

– Section 5.2 introduces feature-based (Section 5.2.1) and sensor-axis-specific
(Section 5.2.2) countermeasures for motor signals.

• Chapter 6 summarizes key findings, discusses limitations, and outlines future di-
rections for sensor-based privacy protection.
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2. RELATED WORKS

To contextualize our work, this chapter reviews relevant literature from two distinct
domains that form the foundation of our research. The first part examines prior studies
on sensor-based side-channel attacks, with a particular emphasis on activity inference
attacks exploiting smartphone ambient light sensors. The second part focuses on datasets
and machine learning approaches developed for fall detection systems, especially those
that may inadvertently expose sensitive information such as subject identity. This dual-
perspective review highlights the intersection of utility and vulnerability in sensor-driven
systems, motivating the privacy-focused contributions of this thesis.

2.1 Side-Channel Attacks via Sensors: Focus on Activity Inference Exploit-
ing Smartphone Ambient Light Sensors

Prior research on sensor-based side-channel attacks can be broadly grouped into three
categories: general sensor-based attacks, threats specific to ambient light sensors, and
ALS-based activity inference; the focus of our study.

2.1.1 Sensor-based Side-Channel Attacks on Smartphones

Smartphones contain numerous sensors such as temperature sensors, motion sensors,
light sensors, etc., which can be used to execute side-channel attacks to infer users’ sensi-
tive information Delgado-Santos, Stragapede, Tolosana, Guest, Deravi & Vera-Rodriguez
(2022); Sikder et al. (2021). In many works, accelerometer, gyroscope, and/or mag-
netometer sensors were used to perform keylogging Hussain, Al-Haiqi, Zaidan, Zaidan,
Kiah, Anuar & Abdulnabi (2016); Javed, Beg, Asim, Baker & Al-Bayatti (2020); Mar-
quardt, Verma, Carter & Traynor (2011) or infer the user’s location Narain, Vo-Huu,
Block & Noubir (2016); Nguyen, Akram, Markantonakis, Luo & Watkins (2019); Yang,
Wu, Zhou, Zhang, Wang & Liu (2015). In Diamantaris, Marcantoni, Ioannidis & Polakis
(2020), threats of mobile web browsing via HTML5 WebAPI were studied by monitoring
popular websites’ data access from the WebAPI JavaScript calls down to the Android
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system calls to reveal the extent to which websites are leveraging the WebAPI for collect-
ing sensor data. A recent work by Mehrnezhad et al. Mehrnezhad, Makarouna & Gray
(2022) performed a user study to evaluate user awareness, concerns, and preferences for
mobile ambient sensors when accessed via apps and websites. Despite the risks, the au-
thors conclude that the majority of the participants are not or only a little concerned
about mobile ambient sensors. This may indicate the public’s lack of awareness regarding
the privacy and security risks of mobile sensors.

2.1.2 Ambient Light Sensors as a Source of Side-Channel Leakage

An early work which considered light as a source of side-channel attacks was proposed
in Spreitzer (2014). This work argued that minor tilts and turns of smartphones cause
variations in ALS readings on the smartphone. Through these variations, the authors
demonstrated the possibility of inferring the user’s PIN input from a set of known PINs.
In another attack Mazilu, Blanke, Calatroni & Tröster (2013), low-power sensors such as
pressure, temperature, humidity and light sensors were used to infer the user’s semantic
location (at home, in a shop, etc.). In Abe, Sato, Watanabe, Hashizume & Sugimoto
(2021) and Sato, Shimada, Murakami, Watanabe, Hashizume & Sugimoto (2021), it was
shown that indoor localization and navigation can be facilitated using light emissions
and ALS. In Abe et al. (2021), 2D localization of a smartphone was studied, by receiving
sinusoidally modulated light signals emitted by ceiling-mounted LEDs. An ALS mounted
on the smartphone was used to measure the reflected illumination from the floor. In Sato
et al. (2021), a visible-light positioning system that uses ALS in a LED-based room
lighting was proposed. The light signal strength for each LED was used to localize the
smartphone. Both works demonstrate the possibility of inferring users’ locations via ALS.
In Maiti & Jadliwala (2019), potential privacy and security risks of Internet-enabled smart
lights are studied. The authors describe three specific attacks that can be carried out
using smart lights, including the inference of users’ audio and video playback through
analysis of the light emitted by the bulbs, and the use of the bulbs’ infrared capabilities
to create a covert channel for exfiltrating users’ private data.

2.1.3 ALS-based Activity Inference Attacks

More closely related to our work are Holmes, Desai & Nahapetian (2016); Sabra, Maiti &
Jadliwala (2018); Schwittmann, Matkovic, Weis & others (2016) and Chakraborty et al.
(2017). In Schwittmann et al. (2016), the ALS of a smartphone is used to infer the video
playing on a TV screen. The proposed method can recognize the current TV channel
and/or Youtube video using a recording length of 15 to 120 seconds, by measuring corre-
lations (e.g., Pearson weighted correlation) between the TV light emissions and available
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reference patterns. Recording lengths used in this work are typically longer than ours,
and only correlation with pre-recorded reference patterns is used for inference. In Holmes
et al. (2016), a method is developed to distinguish keystrokes of a laptop keyboard us-
ing only the ALS readings from a smartwatch worn on the user’s non-dominant hand.
Authors in Holmes et al. (2016) also investigate the feasibility of capturing screen em-
anations for determining user browser usage patterns. In a similar work by Sabra et
al. Sabra et al. (2018), keystrokes on an ATM keypad were inferred using the ALS of a
smartwatch. The changing light intensities on and around an ATM keypad were used to
infer keystrokes.

Most closely related to our work is Chakraborty et al. (2017), named LightSpy. In Light-
Spy, ALS on a smartphone was used to capture light samples emitted by the screen of
a laptop. Eight features were extracted from these light samples, and they were used
to train predictive ML models for activity inference. However, LightSpy’s classification
problem contains few classes (2 or 4). In contrast, our work contains 8 user activities,
and therefore, we have an 8-class classification problem. Furthermore, as opposed to 8
features extracted by LightSpy, our feature extraction and selection process identifies 187
features which are relevant to classification. We perform an experimental comparison
against LightSpy in Section ?? and show that our attack achieves approximately 20%
higher accuracy and F1 score compared to LightSpy. Finally, LightSpy does not con-
sider countermeasures or defenses, whereas we propose and experimentally analyze three
countermeasures.

2.2 Datasets and Machine Learning Approaches for Fall Detection: A Re-
view

Recent years have witnessed a growing interest in the development of fall detection sys-
tems, driven by the increasing need for reliable solutions to support aging populations.
In this section, we review key contributions from the literature that explore the con-
struction, evaluation, and application of datasets for fall detection, as well as the use of
machine learning techniques for enhancing detection accuracy. The review is organized
into two main parts: the first focuses on prominent datasets and their characteristics,
while the second examines how these datasets have been utilized in various fall detection
frameworks, highlighting current methodologies, challenges, and advancements.

2.2.1 Fall Detection Datasets: Characteristics and Benchmarking

A creditable dataset produced for the purpose of fall detection study is t-fall by Medrano,
Igual, Plaza & Castro (2014). This study addresses the challenge of efficiently detecting
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falls in the elderly population, an ongoing public health concern. While many studies
rely on acceleration data from smartphones and employ supervised machine learning algo-
rithms for fall detection, these approaches often lack representation of real-world elderly
falls and may not generalize well to new situations. To address this, the authors propose
using novelty detection methods that identify abnormal movements relative to activities
of daily living (ADL), allowing for adaptability to new scenarios through continuous re-
training. The study compares a nearest neighbor-based novelty detection approach with
a traditional supervised Support Vector Machine (SVM) method using datasets collected
from smartphone recordings of simulated falls and real-life ADLs. Despite the absence of
elderly data, the results suggest that while the nearest neighbor method shows promise
for adaptability, in most cases, a generic SVM performs better.

In another work (Vilarinho, Farshchian, Bajer, Dahl, Egge, Hegdal & Weggersen, 2015),
authors collect similar data to investigates the potential of utilizing off-the-shelf consumer
mobile devices, specifically a smartwatch and smartphone, as ubiquitous automatic fall
detectors for seniors. Combining threshold-based and pattern recognition techniques,
the implemented system achieved a 63% accuracy in detecting falls and 78% accuracy
in identifying activities of daily living. While the smartwatch sensors and algorithms
marginally contributed to the system’s accuracy, adjustments to thresholds and fuzzifica-
tion are suggested to further enhance performance. Additionally, the open-source nature
of the work aims to facilitate threshold tuning and provide a benchmark for researchers
in this field.

The authors (Frank, Vera Nadales, Robertson & Pfeifer, 2010) introduce an activity recog-
nition system focused on seven crucial motion-related activities, utilizing only an Inertial
Measurement Unit (IMU) worn on the belt. Bayesian techniques, informed by real-time
calculations of relevant IMU raw data features, are applied for classification, with a K2
learning algorithm constructing the Bayesian Network (BN) based on supervised data.
Comparative analysis involving dynamic and static inference algorithms, evaluated on
labeled datasets from 16 subjects, reveals that a Hidden Markov Model (HMM) derived
from the learned BN yields the most effective results.

Fall detection, crucial in preventive medicine and assisted living, particularly for the el-
derly, has spurred the collectors of MobiFall (Vavoulas, Pediaditis, Spanakis & Tsiknakis,
2013) to employ accelerometers and gyroscopes to develop a system and latter offer ad-
ditional benefits such as immediate emergency communication. They introduce a human
activity dataset aimed at facilitating the testing and comparison of fall detection and ac-
tivity recognition algorithms using smartphone inertial sensor data. The dataset includes
signals from accelerometer and gyroscope sensors for 4 types of falls and 9 activities of
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daily living. Initial evaluations of 3 fall detection algorithms using this dataset are pre-
sented. In the updated version of their work (Chatzaki, Pediaditis, Vavoulas & Tsiknakis,
2017; Vavoulas, Chatzaki, Malliotakis, Pediaditis & Tsiknakis, 2016), the authors present
a comprehensive evaluation of utilizing smartphone acceleration sensors for both human
activity and fall recognition. Recorded from 66 subjects, the "MobiAct" dataset com-
prises 12 activities of daily living (ADLs) and 4 types of falls, serving as a benchmark
for developing recognition systems. The study proposes optimized feature selection and
classification schemes, achieving high accuracies of 99.9% for recognizing common ADLs
and 96.8% for the more complex task of recognizing all 12 ADLs and 4 falls.

Martínez-Villaseñor, Ponce, Brieva, Moya-Albor, Núñez-Martínez & Peñafort-Asturiano
(2019) present UP-Fall Detection Dataset. The dataset comprises raw and feature sets
retrieved from 17 healthy young individuals without any impairment that performed 11
activities and falls, with three attempts each. The dataset also summarizes more than 850
GB of information from wearable sensors, ambient sensors and vision devices. The aim
of this dataset is mentioned to be help human activity recognition and machine learning
research communities to fairly compare their fall detection solutions. It also provides
many experimental possibilities for the signal recognition, vision, and machine learning
community.

Addressing the significant demand for low-cost fall detection systems in an aging society,
authors (Kwolek & Kepski, 2014) present a solution to the issue of false alarms commonly
associated with inertial sensor-based detectors. For this purpose, they introduce the
UR Fall Detection Dataset (URFD), comprising images of normal activities alongside
instances of a person lying on the floor, and additional image sequences recorded in
typical room settings. The dataset includes a total of 612 images, with 402 depicting
typical activities of daily living (ADLs) and 210 showing individuals lying on the floor.
Features extracted from depth images are utilized for analysis. The UR Fall Detection
dataset encompasses 30 image sequences featuring 30 falls, performed by 5 individuals
from standing and sitting positions, with RGB and depth images synchronized with
motion data from x-IMU inertial devices.

The authors introduce KFall, a large-scale motion dataset derived from 32 participants
performing 21 activities of daily living and 15 simulated falls while wearing an inertial
sensor (Yu, Jang & Xiong, 2021). With synchronized motion videos providing temporal
labels, KFall becomes the first dataset suitable for pre-impact fall detection. They also
present 3 algorithm types (threshold-based, support vector machine, and deep learning)
tailored to the KFall dataset. Deep learning achieves high overall accuracy (99.32%)
and balanced sensitivity (99.01%) and specificity (99.77% and 94.87% for support vector
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machine). Their findings are claimed to establish a benchmark for future algorithm
development and proactive injury prevention strategies for the elderly.

Another article (Saleh, Abbas & Le Jeannès, 2021) addresses the shortcomings of cur-
rent fall detection datasets, including sensor types, placement, sampling frequency, and
simulation protocols. To mitigate these issues, a comprehensive data acquisition system
and simulation protocol are proposed, resulting in the creation of the FallAllD dataset.
Comprising 26,420 files collected from sensors worn at the waist, wrist, and neck, Fal-
lAllD features motion signals captured by accelerometers, gyroscopes, magnetometers,
and barometers. Deep learning and classical learning-based algorithms are evaluated on
this dataset, revealing significant performance variations compared to reference datasets.
Moreover, an in-depth analysis of acceleration-based fall detection identifies key factors
contributing to false positives and false negatives.

In this paper, we utilized the Sisfall dataset (Sucerquia, López & Vargas-Bonilla, 2017)
which contains the most extensive records from diverse subjects and activity types in
contrast to other datasets. The authors in the related paper introduces a novel dataset
comprising falls and activities of daily living (ADLs), collected using a custom wearable
device equipped with accelerometers and a gyroscope. The dataset includes diverse ADLs
and fall types performed by both young adults and elderly participants. Utilizing com-
mon feature extraction techniques and threshold-based classification, the dataset achieves
high fall detection accuracy of up to 96%. However, further analysis reveals areas for im-
provement, particularly in certain activities where errors are concentrated, highlighting
the need for novel approaches.

2.2.2 Applications of Datasets and Machine Learning Methods in Fall De-
tection

Falls pose a significant health risk for older individuals, necessitating urgent development
of detection and prevention systems, particularly given the increasing aging population.

Authors (Pannurat, Thiemjarus & Nantajeewarawat, 2014) review existing fall detection
systems and research challenges within the field, categorizing platforms into wearable
and ambient devices, and classification methods into rule-based and machine learning
techniques. Their analysis highlights merits, drawbacks, and outstanding research chal-
lenges for emerging platforms aiming to enhance fall detection and prevention for elderly
individuals living independently or in care facilities.

In another paper by Casilari, Luque & Morón (2015), researchers conduct a comprehen-
sive analysis of existing fall detection systems based on Android devices, systematically
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categorizing and comparing proposals based on system architecture, employed sensors,
detection algorithms, and response mechanisms to fall alarms. Their review highlights
the lack of a standardized framework for validation and comparison, as well as the need
for evaluating the practical feasibility of utilizing Android devices with limited resources
for fall detection solutions.

While past literature has primarily focused on fall detection using statistical and
threshold-based approaches, the authors shift attention to the latest trends in fall de-
tection and prevention systems leveraging Machine Learning (ML) algorithms (Usmani,
Saboor, Haris, Khan & Park, 2021). Through analysis of recent studies, datasets, age
groups, ML algorithms, sensors, and locations, they provide insights into current trends
and future directions, aiming to aid researchers in addressing existing challenges and
proposing innovative methodologies.

The authors in a related study (Mauldin, Canby, Metsis, Ngu & Rivera, 2018) introduce
SmartFall, an Android app utilizing accelerometer data from a smartwatch IoT device
to detect falls in real-time, preserving data privacy by performing computations locally
on a paired smartphone. Experimentation with traditional and non-traditional machine
learning algorithms, including Deep Learning, using three fall datasets (Smartwatch,
Notch, Farseeing), reveals that Deep Learning models generally outperform traditional
approaches. This superiority is attributed to Deep Learning’s capacity to automatically
learn subtle features from raw accelerometer data, enhancing generalizability to new users,
a crucial aspect for real-world applicability. Additionally, they present a three-layer open
IoT system architecture which facilitates the collection and analysis of various sensor
data modalities for remote monitoring of a subject’s wellbeing.

A novel pipeline for fall detection based on wearable accelerometer data, utilizing feature
reduction techniques and classical machine learning algorithms is proposed (Al Nahian,
Ghosh, Al Banna, Aseeri, Uddin, Ahmed, Mahmud & Kaiser, 2021). Validation using
3 publicly available datasets demonstrates the pipeline’s superior efficiency in detecting
falls, outperforming existing methods across all datasets and showcasing its generalization
capability. The proposed data analysis pipeline highlights promising advancements in the
field of elderly fall detection and prediction.

The authors (Dhiman & Vishwakarma, 2019) provide a comprehensive overview of ex-
isting approaches to abnormal human activity recognition (AbHAR), encompassing both
handcrafted and deep learning methods. It addresses the diverse aspects influencing Ab-
HAR systems, including anomaly definition, feature representation, application contexts,
and datasets. Various feature designs for AbHAR in videos are discussed, considering
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applications such as fall detection, Ambient Assistive Living (AAL), homeland security,
surveillance, and crowd analysis using RGB, depth, and skeletal evidence. The paper out-
lines key contributions and limitations of feature design techniques within the contexts
of 2D and 3D AbHAR, offering insights into different approaches for abnormal action
detection. Additionally, newly introduced datasets for AbHAR are presented, providing
researchers with more complex validation methods.

The critical need for remote monitoring and early detection of falls among older adults
in telemedicine is addressed by Mrozek, Koczur & Małysiak-Mrozek (2020). The writers
present a scalable architecture capable of monitoring thousands of individuals, detecting
falls, and notifying caregivers. The study includes scalability tests to determine op-
erational requirements for large-scale systems and evaluates various Machine Learning
models for fall detection, with Boosted Decision Trees exhibiting the best performance.
Additionally, experiments comparing fall detection in both Cloud-based data centers and
Edge IoT devices reveal significant reductions in data transmission size when processing
falls at the Edge.

Bet, Castro & Ponti (2019) discover a scarcity of review papers covering the three main
applications related to falls: detection, classification, and risk screening. They believe,
this systematic review aims to identify the current state of fall event detection in older
individuals using wearable sensors, along with key study characteristics and gaps in the
literature. Out of 608 studies, 29 were included, revealing accelerometers as the most
common sensor type, primarily placed at the waist or lumbar region with sampling rates
of 50 or 100Hz. Methods comparing features extracted from accelerometer signals pre-
dominated, with fall risk screening being the most observed application. While this review
offers valuable insights for future research, certain aspects such as sample size and data
acquisition methods still lack consensus.

A wearable sensor-based continuous fall monitoring system is proposed by Hussain, Hus-
sain, Ehatisham-ul Haq & Azam (2019), capable of not only detecting falls but also
identifying falling patterns and associated activities. The system’s performance is evalu-
ated using three machine learning algorithms: k-nearest neighbors (KNN), support vector
machine (SVM), and random forest (RF). Results show that the proposed methodology
achieves high accuracy, with KNN classifier reaching 99.80% accuracy for fall detection
and RF classifier achieving 96.82% accuracy for recognizing different falling activities.

A computational system capable of efficiently detecting and classifying falls is developed
for elderly population monitoring and rapid assistance, mitigating the risk of prolonged
injuries and fatalities by Galvão, Ferreira, Albuquerque, Barros & Fernandes (2021).
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Addressing the challenge of false positives, authors propose various topologies of a mul-
timodal convolutional neural network trained on RGB images and accelerometer data
to detect falls. Evaluation on the UR-Fall Detection and UP-Fall datasets, alongside a
comparison with state-of-the-art models, demonstrates promising results. Their model
achieves state-of-the-art performance on the UP-Fall dataset and exhibits scalability and
robustness for real-world fall detection using readily available sensors.

A machine learning framework for fall detection and daily activity recognition is pre-
sented (Chelli & Pätzold, 2019), utilizing acceleration and angular velocity data from
two public databases. Time- and frequency-domain features are extracted from the data
and provided to four classification algorithms: artificial neural network (ANN), K-nearest
neighbors (KNN), quadratic support vector machine (QSVM), and ensemble bagged tree
(EBT). Results demonstrate high accuracy, with the QSVM and EBT algorithms achiev-
ing 97.2% and 99.1% accuracy in fall detection without false alarms. Furthermore, addi-
tional features extracted from autocorrelation and power spectral density data improve
classification accuracy, with the QSVM and EBT algorithms achieving 100% accuracy in
fall detection without false alarms, representing the best achievable performance.

The authors (Yacchirema, De Puga, Palau & Esteve, 2018) propose an innovative IoT-
based fall detection system for indoor environments, leveraging low-power wireless sensor
networks, smart devices, big data, and cloud computing. The system utilizes a 3D-axis
accelerometer embedded in a 6LowPAN wearable device to collect real-time movement
data from elderly individuals. Sensor readings are processed using a decision trees-based
Big Data model on a Smart IoT Gateway for efficient fall detection. Upon detection,
alerts are triggered, and notifications are sent to caregivers. Additionally, the system
offers cloud-based services, including storage for healthcare professionals to access fall
data and the creation of machine learning models based on detected falls. Experimental
results demonstrate high success rates in fall detection accuracy, precision, and gain.

In another work, the authors claim that while fall detection has been extensively studied,
designing accurate yet computationally efficient algorithms for wearable devices remains
a challenge, thus they propose a low-cost, highly accurate machine learning-based fall
detection algorithm (Saleh & Jeannès, 2019). It introduces a novel online feature extrac-
tion method leveraging the time characteristics of falls and a machine learning system
design optimized for accuracy and computational efficiency. Experimental results on a
large dataset demonstrate over 99.9% accuracy with computational costs below 500 float-
ing point operations per second, facilitating embedding in wearable sensors with minimal
power requirements and enhanced autonomy.
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A convolutional deep neural network’s performance in identifying fall patterns using
data from a transportable tri-axial accelerometer is evaluated by Casilari, Lora-Rivera
& García-Lagos (2020). Unlike many previous studies, the evaluation encompasses a
wide range of public data repositories containing traces from diverse volunteer groups
performing both Activities of Daily Life (ADLs) and simulated falls. While the method
shows promising results when hyper-parameterized for specific datasets, challenges arise
in generalizing the network architecture across different testbeds, emphasizing the need
for adaptable algorithms in real-world applications.

Researchers (Luna-Perejón, Domínguez-Morales & Civit-Balcells, 2019) investigate the
feasibility of using recurrent neural network (RNN)-based models to detect falls and fall
risks in real-time using accelerometer signals. Four different architectures are evaluated
using SisFall dataset at varying frequencies, with resulting models integrated into two
embedded systems to assess execution times and effectiveness. The simplest models
achieved inference times below 34 ms, demonstrating the capability to detect fall events
in real-time with high energy efficiency. Their findings suggest that RNN models offer
an effective method for implementing autonomous wearable fall detection systems on
low-power microcontrollers.

A software architecture based on RNN for fall detection is presented by Musci, De Mar-
tini, Blago, Facchinetti & Piastra (2020), designed to run entirely on wearable devices.
Leveraging SisFall dataset (Sucerquia et al., 2017) with fine-grained temporal annota-
tions, authors demonstrate that careful architectural minimization and hyperparameter
selection yield a competitive model. Validation on state-of-the-art hardware confirms the
feasibility of onboard implementation for effective fall detection.

In another paper, Sarabia-Jácome, Usach, Palau & Esteve (2020) address the critical issue
of fall accidents in the elderly population, emphasizing the need for prompt assistance to
mitigate health risks. Leveraging Ambient Assisted Living (AAL) technologies such as
IoT, Cloud Computing, and Machine Learning (ML), the study integrates Deep Learning
(DL) techniques for enhanced fall detection accuracy. By utilizing fog computing for
ML inference, the system overcomes cloud-related latency issues, presenting an efficient
fog-cloud architecture for real-time fall detection. Through the deployment of DL models
on resource-constrained fog nodes, the system achieves high accuracy (98.75%), reduced
delay, and improved service delivery compared to conventional fall detection systems.

Yu, Qiu & Xiong (2020) aim to develop deep neural networks to predict falls in older
adults during their initiation and descent before impact, allowing for timely safety in-
terventions. Three-class classification models were created using convolutional neural
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networks (CNN), long short-term memory (LSTM), and a hybrid model (ConvLSTM)
using inertial sensor data. The ConvLSTM model exhibited superior sensitivity (93.15%
non-fall, 93.78% pre-impact fall, 96.00% fall) and specificity (96.59%, 94.49%, 98.69%)
compared to LSTM and CNN models, with minimal latency (1.06 ms) suitable for real-
time implementation. These results suggest the hybrid ConvLSTM model’s potential for
embedded fall prediction systems to prevent fall-related injuries in older adults effectively.

Writers (Wu, Zheng, Chu, Cheng & Kim, 2022) introduce a novel Deep Learning (DL)
model, Gated Recurrent Units (GRU), for fall detection, aiming to improve accuracy
and efficiency. Compared with conventional Machine Learning (ML) methods, the GRU
architecture demonstrated superior performance across multiple metrics on two widely-
used datasets, MobiAct (Vavoulas et al., 2016) and Smartwatch (Mauldin et al., 2018),
collected from mobile sensors. With a prediction accuracy of 99.56% and 90.69%, and F1
score of 96.83% and 87.29%, respectively, the proposed method shows promising potential
for robust fall detection.

Another study by Delgado-Escaño, Castro, Cózar, Marín-Jiménez, Guil & Casilari (2020)
introduces a novel deep learning-based approach for fall detection and individual iden-
tification, adaptable across diverse datasets without requiring parameter adjustments.
Leveraging raw inertial data through multi-task learning, the proposed model achieves
over 98% accuracy in fall detection and demonstrates robust performance in identifying
individuals, with minimal false positives. Remarkably, this single-model solution enables
real-time execution, showcasing its versatility across varying conditions and obviating the
need for retraining, thereby facilitating practical deployment in real-world scenarios.

Authors investigate the efficacy of metaheuristic (MH) optimization algorithms in enhanc-
ing human activity recognition (HAR) and fall detection based on sensor data (Al-qaness,
Helmi, Dahou & Elaziz, 2022). Nine MH algorithms are employed for feature selection to
improve classification accuracy, including Aquila optimizer, arithmetic optimization al-
gorithm, marine predators algorithm, artificial bee colony algorithm, genetic algorithm,
slime mold algorithm, grey wolf optimizer, whale optimization algorithm, and particle
swarm optimization algorithm. Preprocessing and segmentation methods are applied to
reveal motion patterns and reduce time complexities, while a light feature extraction
technique employing ResRNN model integrates convolution neural networks, residual
networks, and bidirectional recurrent neural networks. Support vector machine and ran-
dom forest classifiers are utilized for multi-classification and binary classification tasks
across seven complex datasets, demonstrating promising performance of MH optimization
algorithms in HAR and fall detection applications.
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3. ATTACKS METHODOLOGY: DESIGN AND IMPLEMENTATION

3.1 LuxTrack: System Design and Implementation

The development and execution of LuxTrack consists of three main steps. First, we
implemented an Android app for recording ALS readings (in units of lux) and collected
ALS data from human volunteers using our Android app. Each recording from each
volunteer was stored as a time series. Second, we extracted 187 features belonging to 6
categories from each time series. Finally, we trained 6 different machine learning models
using the extracted features via supervised learning to infer the user’s laptop activity. In
this section, we describe these steps in more detail.

Figure 3.1 Hardware setup used in our data collection

3.1.1 Hardware and Software Setup

A visual representation of the hardware setup used in our data collection is shown in
Figure 3.1. We used the ALS in a Samsung Galaxy A72 smartphone to record the light
emitted from a flat-panel laptop screen through an Android application we developed
and ran on the smartphone. The laptop used in our hardware setup was an E480 model
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Lenovo laptop1 with an Intel(R) UHD Graphics 620 display adapter, TN display, and
1366×768 screen resolution. The laptop screen was set to 100% brightness, and the
screen lid was opened 100 degrees. The smartphone was placed near the keyboard of the
laptop, its ALS pointing towards the laptop screen. Users were asked to perform various
daily activities on the laptop, such as online shopping, watching videos, programming,
etc. While the users were performing these activities, light emissions from the laptop’s
screen were recorded using our app on the smartphone. All data collection was carried
out at night time in the same room illuminated by a light bulb, to ensure that ALS
readings are not impacted by the existence of sunlight and/or lighting of the room.

We developed a custom Android app to record and store ALS readings on the Samsung
Galaxy A72 smartphone. Two screenshots from our Android app are shown in Figure 3.2.
The screenshot on the left shows the state of the app before data recording begins. Here,
the researcher supervising the data collection enters or selects the pseudonymized user
ID for the current laptop user. (Each laptop user participating in our data collection was
assigned a random user ID to preserve their anonymity.) The supervisor also selects the
activity being performed by the laptop user, e.g., Facebook surfing. After the supervisor
presses the “Collect New Stream" button on the Android app, the app enters a waiting
period of 5 seconds and displays a message to inform the supervisor. This 5-second period
enables the placement of the smartphone near the laptop’s keyboard and ensures that
the laptop user begins the selected activity.

In Figure 3.2, the screenshot on the right shows the state of the app after data recording
begins. The app records 4 samples per second (250 ms between each sample) from the
smartphone’s ALS. Although our app ran in the foreground of the smartphone during
data collection, we also performed tests running the app in the background. We observed
that there are no differences regarding the sampling rate or the permission requirements
of the app, regardless of whether it is running in the background or foreground. The unit
of illuminance recorded from the ALS is lux. For our app to be able to access the ALS, we
import the Sensor, SensorEvent, SensorEventListener, and SensorManager
classes from the Android.Hardware namespace. This namespace provides support
for hardware features and sensors on Android. Our app does not require explicit user
permissions to access and record ALS readings, which implies that any other app running
on an Android device would be able to access and record ALS readings using our method
without requiring extra permissions.

1Full product specifications: https://psref.lenovo.com/syspool/Sys/PDF/ThinkPad/ThinkPad_E480/ThinkPad
_E480_Spec.PDF
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Figure 3.2 Two sample screenshots from our Android application for recording ALS read-
ings

It can be observed from the screenshot on the right of Figure 3.2 that it is not possible
to change the user ID or activity type during the recording phase. The recorded ALS
readings are shown visually on the screen (topmost part) as a continuous time series.
Each data collection lasts 30 seconds, causing the length of each time series to be 30 * 4
= 120 samples. During or after data collection, if it is found that the user ID or activity
type was selected incorrectly, the current time series can be deleted using the “Cancel
and Remove Stream" button on the app. Otherwise, the app is instructed to save the
recorded time series to a local file.

3.1.2 Data Collection

Our data collection was approved by the Sabanci University Research Ethics Council
(SUREC) under protocol number FENS-2023-69. All participants were informed about
the procedure and signed a written consent form. A group of 10 participants voluntarily
participated in the data collection. The participants consisted of 7 males and 3 females,
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Figure 3.3 Sample ALS values recorded from different activities performed by one par-
ticipant

aged between 24-37. Each participant was asked to perform the following 8 activities:

• Surfing on Facebook

• Surfing on Steampowered game store

• Using Bumble (online dating app)

• Chatting with friends on WhatsApp

• Programming on Spyder (Python IDE)

• Reading pdf documents via Adobe Acrobat

• Online shopping via Amazon

• Watching Youtube videos

These activities were selected because they are common everyday activities for many
laptop users. In addition, many of the aforementioned websites are part of Alexa Top
100 most visited websites. Each participant was asked to perform each activity 13 times,
resulting in 13 * 8 = 104 time series (each time series lasts 30 seconds) per participant.
We note that participants were free to choose which pdf document to read, Youtube video
to watch, or Amazon page to visit, etc. Participants logged into their own accounts on
Facebook, Steam, WhatsApp, and similarly, they brought their own pdf document to
read and their own Python code to work on.

Data collection was performed in the evening hours after sunset in a bedroom with a
ceiling lamp. The ceiling lamp was turned on for the whole duration of the data collection.
Collecting data in this setup eliminated the effect of changing daylight conditions. For
example, the ambient light intensity can differ in the morning when compared to the
noon, as well as on a sunny versus a cloudy day. We remain unaffected by such factors by

20



collecting our data in the evening and in a room illuminated by the same ceiling lamp.

In Figure 3.3, we plot the ALS values recorded from one participant performing the 8
aforementioned activities. It can be observed that the ALS recordings corresponding
to each different activity have different characteristics. For example, when the user is
reading pdf files on Adobe Acrobat, the ALS values are consistent and high because pdf
files typically have a white background, and the background does not change. Thus, the
light emitted by the laptop screen is bright and remains consistent. In contrast, since
Spyder has a dark background color, when the user is programming on Spyder, the ALS
values are consistently low. We see fluctuating ALS values when the user is surfing on
Facebook or watching Youtube videos, since the color of the image on the screen can
vary greatly depending on the current image/video frame the user is viewing. LuxTrack
exploits these different ALS characteristics of different activities in a methodical way to
infer user activity.

Finally, we publicly release the Android app and the dataset we collected for the benefit
of the research community and to encourage further advancements in this field.2

3.1.3 Feature Extraction and Selection

LuxTrack performs feature extraction and selection on the raw ALS time series data to
obtain features that are relevant to activity inference. We initially extracted a total of
618 features, but 217 features were found to be significant (with p-value ≤ 0.05). These
217 features were further filtered down to 187 most significant features by decreasing the
False Discovery Rate (FDR) from 0.05 to 5e-12. This feature selection was performed
to eliminate redundant features as well as to reduce the computational cost of training
downstream ML models used in the attack.

The full list of 187 features used in LuxTrack is given in Table 3.1. Based on their meaning
and functionality, we present the features under 6 categories: statistical features category
(SFC), change-based features category (CFC), value-based frequency features category
(VFFC), trend-identifying features category (TIFC), transform-based features category
(TFC), and entropy-based features category (EFC). Some features extract multiple values
from each ALS time series sample, e.g., Fast Fourier Transform (FFT) has 21 coefficients.
Such cases are denoted by parentheses, e.g., FFT Coefficients (21). If there are no
parentheses, then the feature contributes one value. Below, we explain the features in
each category one by one.

2Links to our Android app and dataset will be placed here upon paper acceptance.
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Table 3.1 Features extracted from the recorded ALS time series by LuxTrack. Parentheses
next to the feature name indicate that multiple values (e.g., multiple coefficients) are
extracted for that feature. Features that do not have parentheses contribute a single
value (e.g., one coefficient).

Feature Category Feature Name

Statistical Features Category (SFC)

Minimum, Maximum, Mean, Median, Quantile (8),
Variance, Standard Deviation, Range, Skewness,
Variation Coefficient, Large Standard Deviation (3),
Variance Larger Than Standard Deviation, Symmetry (5)

Change-based Features Category (CFC)
Mean Absolute Change, Absolute Sum of Changes,
CID Complexity, Change Quantiles (42), Sum of Values,
Absolute Energy

Value-based Frequency Features Category (VFFC) Sum of Reoccurring Data Points, Sum of Reoccurring
Values, Uniqueness Rate, Number of Mean Crossings

Trend-identifying Features Category (TIFC)
Aggregate Linear Trend (21), LLSR Trend (2),
C3 Non-Linearity (3), Benford Correlation, AR
Coefficient (2), Partial Autocorrelation, CPSD (3)

Transform-based Features Category (TFC) FFT Coefficients (21), FFT Spectrum Features (4),
CWT Coefficients (43)

Entropy-based Features Category (EFC) Binned Entropy, Lempel-Ziv Complexity (3),
Permutation Entropy (5)

Statistical Features Category (SFC): This category contains simple statistical fea-
tures that can be extracted from a time series. Let x denote an ALS time series and
let xi denote the i’th sample in x, where i ∈ [1,120]. SFC contains min(x), max(x),
mean(x), median(x), var(x), and stdev(x), which are well-known statistical features.
Here, var(x) denotes the variance, and stdev(x) denotes the standard deviation of x.
Another well-known feature, quantile(x,q), finds the value of xi that is greater than q%
of the ordered values from x. This feature was found to be statistically significant for 8
different q values, which were included in SFC. skewness(x) computes the sample skew-
ness of x calculated with the adjusted Fisher-Pearson standardized moment coefficient,
mathematically defined as:

skewness(x) =

√
n(n−1)
n−2 ·

∑n
i=1(xi−mean(x))/n

stdev(x)3

where n = |x|.

The Variation Coefficient of x is defined as:

var_coef(x) = stdev(x)
mean(x)
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Another feature in this category is the Large Standard Deviation feature, which is a
boolean feature that checks if stdev(x) satisfies the following criteria:

stdev(x) > r · (max(x)−min(x))

for a given coefficient r. The “variance larger than standard deviation" feature is also a
boolean feature, which returns true if var(x) > stdev(x) and false otherwise. We note
that the condition var(x) > stdev(x) holds if and only if var(x) > 1. Thus, the intuition
behind this feature is to check if the variance of x (i.e., the difference between individual
readings xi versus mean(x)) is large or not. This feature has been used in several recent
works involving time series data or signal analysis Coolen (2019); Jokar, Azzopardi &
Palotti (2023); Katsidimas, Kotzakolios, Nikoletseas, Panagiotou, Timpilis & Tsakonas
(Katsidimas et al.); Katsidimas, Kotzakolios, Nikoletseas, Panagiotou & Tsakonas (2022);
Richard (2021).

Finally, the symmetry(x,c) feature checks whether the distribution of x looks symmetric
with respect to parameter c, i.e.:

|mean(x)−median(x)|< c · (max(x)−min(x))

Change-based Features Category (CFC): Change-based features capture the
amount of change in the ALS time series. The first feature in this category is Mean
Absolute Change, mathematically defined as:

1
n−1 ·

n−1∑
i=1
|xi+1−xi|

where n = |x|. The absolute sum of changes is equal to the above multiplied by (n−1).

The CID complexity is an estimate of time series complexity proposed in Batista, Keogh,
Tataw & De Souza (2014). It is calculated as:

√√√√ n∑
i=2

(xi−xi−1)2

Another feature in this category is Change Quantiles. This feature establishes fixed
corridors of xi values and then calculates the mean, median, and variance of changes
within that corridor. For example, a horizontal corridor of ambient light values can be
established in Figure 3.3, and then, the mean, median, and variance of changes between
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consecutive values (xi+1−xi) within this corridor are computed.

Finally, the Sum of Values feature computes: ∑n
i=1 xi and the Absolute Energy feature

computes: ∑n
i=1 x2

i .

Value-based Frequency Features Category (VFFC): Features in this category cap-
ture the amount of reoccurrence (repetition) and/or uniqueness in the time series. The
first feature in this category is the Sum of Reoccurring Data Points, which computes the
summation of all values xi that are observed more than once in x. In contrast, the Sum
of Reoccurring Values feature computes a similar summation but counts each non-unique
value once in the summation. The third feature in this category is Uniqueness Rate,
defined as:

Number of unique values in x

Number of values in x

If all values in x are unique (i.e., there are zero reoccurring values), then Uniqueness Rate
is 1.

The last feature in this category, named Number of Mean Crossings, is calculated as fol-
lows. We say that a mean crossing occurs if either: {xi > mean(x) and xi+1 < mean(x)},
or {xi < mean(x) and xi+1 > mean(x)}. Then, the Number of Mean Crossings is defined
as the number of such crossings throughout the whole time series x.

Trend-Identifying Features Category (TIFC): Features in this category are used to
capture linear or non-linear trends in time series. For example, Aggregate Linear Trend
and LLSR Trend features calculate a linear least-squares regression model using the time
series and fetch the parameters of the regression model. In contrast, C3 non-linearity
was proposed in Schreiber & Schmitz (1997) as a measure of non-linearity in time series.
The C3 function takes as input a lag parameter ℓ and calculates:

1
n−2ℓ

n−2ℓ∑
i=1

(xi+2ℓ) · (xi+ℓ) · (xi)

Another feature in this category is the Benford Correlation, which computes the correla-
tion between the first digit distribution of x when compared to the Newcomb-Benford’s
Law distribution Benford (1938); Hill (1995).

The AR Coefficient feature fits an unconditional maximum likelihood estimator of an
autoregressive process to the time series. The resulting parameters (coefficients) of the
autoregressive process are used as features. Relevant to the AR coefficient is the Partial
Autocorrelation feature. The partial autocorrelation of a time series x equals the corre-
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lation of xi and xi−ℓ where ℓ is a lag parameter Box, Jenkins, Reinsel & Ljung (2015).
To compute the partial autocorrelation, autoregressive models are fit to xi and xi−ℓ, and
then the correlation between them is measured.

The last feature in this category is CPSD, which estimates the cross-power spectral
density of time series x Oppenheim, Schafer & Buck (1999). The power spectrum of
three frequencies is used as features in our downstream models.

Transform-based Features Category (TFC): Features in this category leverage two
popular transformations: Fast Fourier Transform (FFT) and Continuous Wavelet Trans-
form (CWT). FFT is a valuable tool for detecting repeating periodic changes or seasonal-
ity within a time series. It transforms the time series from its time domain representation
to the frequency domain. The Fourier coefficients of the one-dimensional discrete Fourier
transform are defined as:

Ak =
n−1∑
m=0

am · exp
(
−2πi

mk

n

)

for k = 0,1, ...,n− 1. In addition to these FFT coefficients, four FFT spectrum features
are used in our attack, which correspond to the mean, variance, skew, and kurtosis of the
Fourier transform spectrum.

The second transformation used in our feature set is CWT. We compute the CWT using
the Ricker wavelet, mathematically defined as:

2
√

3aπ
1
4
· (1− x2

a2 ) · exp(− x2

2a2 )

where a is the width parameter of the wavelet function. CWT coefficients obtained after
the transformation are used as part of our feature set.

Entropy-based Features Category (EFC): Our last feature category is EFC, which
contains features derived from the amount of entropy in the time series x. The three
features in this category are: Binned Entropy, Permutation Entropy, and Lempel-Ziv
Complexity.

Binned Entropy first places the values xi into ϕ equal-sized bins. Let pk denote the
percentage of values placed in bin k. Then, Binned Entropy is equal to:

−
min(ϕ, len(x))∑

k=0
pk · log(pk) ·1(pk>0)
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Permutation Entropy Bandt & Pompe (2002); Henry & Judge (2019) first places the
values into sub-windows of length D starting every τ . Then, each sub-window of length
D is replaced by its permutation such that the permutation is ordered. Finally, the
frequencies of each permutation are counted, and their entropy is found:

−
D!∑
i=1

pi · log2(pi)

where pi is the frequency of permutation i.

Lempel-Ziv complexity measures the entropy of a time series by calculating its richness
according to the Lempel-Ziv compression algorithm Lempel & Ziv (1976); Mitchell (2009).
A time series that is more difficult to compress is said to contain higher entropy. When
measuring the Lempel-Ziv complexity, the time series is first divided into a given number
of bins. Then, it is converted into words with different prefixes. The number of words
needed for this conversion divided by len(x) yields the Lempel-Ziv complexity feature.

3.1.4 ML Model Training

LuxTrack formulates the activity inference attack as a multi-class classification problem,
which is solved using supervised machine learning (ML). LetD denote the training dataset
after feature extraction and selection. The format of D is: D= {(x1,y1),(x2,y2), ...}, such
that xi = (xi,1,xi,2, ...,xi,187) are the 187 features extracted as described in the previous
section, and yi is the class label. Since LuxTrack aims to infer activity type, yi is the
activity of the corresponding time series, i.e., one of the 8 activities listed in Section ??.
The training dataset D is then used to train a classifier M, which learns to predict the
activity type from the features. At test time, an unlabeled ALS time series x is given to
LuxTrack, and M is able to predict the activity type of x, i.e.: M(x)→ activity type.

The type of classifier M plays an important role in determining the accuracy of the
resulting attack model. When implementing LuxTrack, we experimented with diverse
types of linear and non-linear classifiers. In the paper, we report results with six classifier
types: Naive Bayes (NB), k-nearest neighbor (K-NN), decision trees (DT), Support Vector
Machine (SVM), neural networks (NN), and gradient-boosted trees (GBT). Each classifier
has different hyperparameters, e.g., number of neighbors in K-NN, layer structure in
NN, number of trees and max depth in GBT. Each classifier is tuned individually to
achieve high accuracy by selecting its hyperparameters using grid search and 10-fold
cross validation.
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3.2 Subject Inference Attack

3.2.1 Dataset

In our exploration of datasets dedicated to fall detection, we identified more than ten
distinct collections obtained from individuals. Each of these datasets serves the primary
objective of facilitating fall detection algorithms. After careful consideration, we opt for
SisFall dataset due to its comprehensive recording of activities and subjects, facilitated
through the use of a wearable device positioned around the waist.

SisFall dataset comprises recordings from 38 subjects, encompassing 23 young individuals
and 15 elderly participants. Each subject undertakes 5 trials, engaging in 19 different
types of safe activities referred to as Activities of Daily Living (ADL), as well as 15 types
of activities culminating in falls (Falls). Notably, elderly subjects exclusively partake in
ADL activities, with one exception—a judo expert elderly man who performs both ADL
and Falls activities, akin to the young subjects. Falls activity trials are standardized at a
duration of 15 seconds each, while ADL trials vary, lasting 12 seconds (for 12 activities),
20 seconds (for 4 activities), or 25 seconds (for 3 activities).

For the purpose of our studies, we selectively focus on recordings from the 23 young
participants and the singular elderly participant engaged in ADLs. Consequently, we
exclude recordings from other elderly participants and all recordings associated with
Falls activities, regardless of the subject’s age. We focus exclusively on ADL recordings
to study subject inference in routine, non-emergency scenarios. Fall activities, being
brief and structured, are less suitable for learning distinctive motion patterns across
individuals. Additionally, we exclude ADL recordings from most elderly participants to
avoid age-related variation and class imbalance, which could affect model consistency.
The only exception is one elderly subject who performed all ADLs, making their data
compatible with the rest of the cohort.

SisFall dataset was recorded utilizing a self-developed embedded device affixed to the
participants’ waist. This device incorporates a Kinets MKL25Z128VLK4 microcontroller,
an Analog Devices ADXL345 accelerometer, a Freescale MMA8451Q accelerometer, an
ITG3200 gyroscope, an SD card for recording, and a 1000 mA/h generic battery. All
over this article, we call ADXL345 sensor as Acc1, MMA8451Q as Acc2 and ITG3200 as
Gyro for simplicity. All tests were performed with the original frequency sample of 200
Hz, and three values from axis x, y and z are recorded at each time step. So, SisFall
has 9 attributes in its recordings which are treated as columns of the dataset. This
instrumentation ensures a comprehensive capture of motor signals, forming the basis for
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our subsequent analyses in addressing privacy concerns associated with the dataset.

3.2.2 Feature Extraction and Selection

In our research, the tsfresh library (Christ, Braun, Neuffer & Kempa-Liehr, 2018) serves
as a valuable tool for feature extraction from the dataset, generating a substantial 618
non-null values features for each attribute in the input dataset. Each feature is calculated
through a feature calculator given specific input values. While some feature calculators
produce only one feature (like mean and standard deviation), there are some others
which calculate more than one features (like fft coefficient). With three sensors, each
recording x, y, and z values at time steps from the user’s waist, a total of 5562 features
are extracted for the 9 attributes present in SisFall dataset. This detailed feature set
becomes integral to our subsequent machine learning model training endeavors. Our
approach involves training machine learning models on various portions of the dataset,
allowing for detailed exploration. From the 5562 total features, we strategically select 156
most significant (with pValue <= 0.05), choosing those with the lowest pValue among
their counterparts. Feature selection is carried out on various subsets of data chosen for
training ML models, thus 156 most significant features from different portion of data
might have some common and some different features from each others. Details about
the selected features are provided in their related sub sections.

A total of 50 feature calculators have been used during our experiments in this research,
and here we will briefly mention the definition and performance of each one.

Statistical Features: Some of selected features are just simple statistical features that
can be calculated from a trial record. Let’s say x is a time series of a trial recorded
from a user doing a specific activity. The time_reversal_asymmetry_statistic(x, lag)
and symmetry_looking(x, c) features check whether the distribution of x looks symmet-
ric. The kurtosis(x) and skewness(x) uses adjusted Fisher-Pearson standardized moment
coefficient G2 to compute the sample kurtosis and skewness of time series x. Large Stan-
dard Deviation feature, which is a boolean feature and for a given coefficient (r) checks
if standard deviation of time series is greater than r times the its mean. The Variation
Coefficient which is defined as standard deviation of time series over its mean value. The
Variance, standard_deviation, mean, median, quantile and maximum are another well-
known features that quantile(x, q), finds a value in time series x that is greater than q%
of the ordered values.

Change-based Features: This set of features are from those which capture the amount
of change in a trial. The first feature in this category is Change Quantiles. This feature
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establishes fixed corridors of time series values, and then calculates the mean, median, and
variance of changes within that corridor. sum_values(x) calculates the sum over values
of a time series and absolute_sum_of_changes(x) computes the sum over the absolute
value of consecutive changes in the series x. The mean_abs_change(x) returns the mean
over the absolute differences between subsequent time series values and abs_energy(x)
feature computes sum of squares of a time series values. The energy_ratio_by_chunks(x,
param) calculates sum of squares of chunk i out of N chunks expressed as a ratio with
the sum of squares over the whole series. The cid_ce(x, normalize) is another feature in
this set which is an estimate of time series complexity.

Value-based Frequency Features: Features grouped in this set capture the amount
of reoccurrence (repetition) and/or uniqueness in the time series of trials. The first
feature in this set is ratio_beyond_r_sigma(r, x) which computed as one of the most
significant features from most of sub-data. This feature computes the ratio of values
that are more than r * standard deviation of a time series(x), so r times sigma, away
from the mean of x. Sum of Reoccurring Data Points, which computes the summation
of all values of a time series that are observed more than once. In contrast, the Sum of
Reoccurring Values feature computes a similar summation, but counts each non-unique
value once in the summation. The percentage of reoccurring values to all values returns
the percentage of values that are present in the time series more than once. This means
the percentage is normalized to the number of unique values. The range_count(x, min,
max) is the next feature in this group and counts observed values within the interval
[min, max]. While count_below(x, t) feature calculates the percentage of values in x
that are lower than t, the count_above(x, t) returns the percentage of values in x that
are higher than t. The value_count(x, value) counts occurrences of value in time series x
and number_crossing_m(x, m) calculates the number of crossings of x on m. A crossing
is defined as two sequential values where the first value is lower than m and the next
is greater, or vice-versa. The last feature in this category is number_peaks(x, n) which
computes the number of peaks of at least support n in the time series x. A peak of
support n is defined as a subsequence of x where a value occurs, which is bigger than its
n neighbours to the left and to the right.

Trend-Identifying Features: Features in this set are used to capture linear or non-
linear trends in trials. The linear_trend(x, params), for example, calculates a linear
least-squares regression for values of the time series of a trial that were aggregated over
chunks versus the sequence from 0 up to the number of chunks minus one. The Aggre-
gate Linear Trend and LLSR Trend features calculate a linear least-squares regression
model using the time series and fetch the parameters of the regression model. In con-
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trast, C3 non-linearity was proposed as a measure of non-linearity in time series. AR
Coefficient feature fits an unconditional maximum likelihood estimator of an autoregres-
sive process to the time series. Resulting parameters (coefficients) of the autoregressive
process are used as features. Relevant to the AR coefficient are the well-known Auto-
correlation and Partial Autocorrelation features. The agg_autocorrelation(x, param) is
another similar feature and calculates the value of an aggregation function f_agg (e.g.
variance or mean) over the autocorrelation for different lags. Another feature in this
set is SPKT Welch Density (CPSD), which estimates the cross-power spectral density
of time series x. The power spectrum of three frequencies is used as features in our
downstream models. The friedrich_coefficients(x, param) feature computes coefficients
of polynomial h(x), which has been fitted to the deterministic dynamics of langevin model
and max_langevin_fixed_point(x, r, m) returns the largest fixed point of dynamics es-
timated from polynomial h(x), which has been fitted to the deterministic dynamics of
Langevin model. Benford Correlation, which computes the correlation between the first
digit distribution of x when compared to the Newcomb-Benford’s Law distribution is the
next feature in this group. The Augmented Dickey Fuller test is a hypothesis test which
checks whether a unit root is present in a time series sample. The last feature of the
group calculates the value of the respective test statistic.

Transform-based Features: This set has 3 featues with similar functionality on trans-
formation. Fast Fourier Transform (FFT), its aggregated form and Continuous Wavelet
Transform (CWT) are popular transformations. FFT is a valuable tool for detecting re-
peating periodic changes or seasonality within a time series. It transforms the time series
from its time domain representation to the frequency domain. The aggregated fft com-
putes the spectral centroid (mean), variance, skew, and kurtosis of the absolute fourier
transform spectrum. CWT coefficients calculates a continuous wavelet transform for the
Ricker wavelet, also known as the Mexican hat wavelet taking “widths”, “coeff” and “w”.
The feature calculator takes all the different widths arrays and then calculates the cwt
one time for each different width array. Then the values for the different coefficient for
“coeff” and width “w” are returned.

Entropy-based Features: Our last set of features contains those derived from the
amount of entropy in the time series of a given trial x. The feature calculators in this set
are: permutation_entropy, approximate_entropy, sample_entropy, binned_entropy, and
fourier_entropy.

Permutation Entropy (Bandt & Pompe, 2002; Watt & Politi, 2019) first places the values
into sub-windows of length D starting every θ. Then, each sub-window of length D is
replaced by its permutation such that the permutation is ordered. Finally, the frequencies
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of each permutation are counted, and their entropy is computed:

PED =−
D!∑
i=1

pi log2(pi)

where pi is the frequency of permutation i.

Approximate Entropy (Richman & Moorman, 2000; Yentes, Hunt, Schmid, Kaipust, Mc-
Grath & Stergiou, 2013) measures the regularity and unpredictability of fluctuations in a
time series. It is computed by comparing sequences of length m within the time series and
evaluating their similarity within a tolerance r. For longer time series (e.g., N > 2000),
this method yields stable results. It provides a scalar value that reflects the system’s
complexity — lower values correspond to more predictable patterns, while higher values
indicate greater irregularity.

Sample Entropy (Richman & Moorman, 2000) is a refinement of Approximate Entropy
that improves consistency by avoiding self-matching in the analysis. It estimates the
negative natural logarithm of the conditional probability that sequences of length m that
match within tolerance r will remain similar at the next point. Compared to Approximate
Entropy, Sample Entropy is less biased and more reliable, especially for shorter time series.

Binned Entropy first places the values xi into ϕ equal-sized bins. Let pk denote the
percentage of values placed in bin k. Then, Binned Entropy is equal to:

−
min(ϕ, len(x))∑

k=0
pk · log(pk) ·1(pk>0)

Fourier Entropy calculates the entropy of the power spectral density (PSD) of the signal
using Welch’s method (Bruce Land, Bruce Land; The Scipy community, The Scipy com-
munity). It first estimates the PSD of the time series, discretizes the resulting spectral
values into bins, and then computes Binned Entropy over the normalized power distribu-
tion. This feature captures the complexity of the signal in the frequency domain, offering
complementary information to the time-domain entropy measures.

3.2.3 Subject Inference Attack Approaches

In this section, we explore approaches to infer the subject performing a trial based on
sensor data. The first method directly predicts the subject from the entire dataset,
using machine learning models trained on features extracted from sensor data across 19
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activities. After feature extraction, we select significant features and train classifiers,
such as decision trees, XGBoost, and LightGBM, to identify the subject. The second
approach, more closely resembling real-world scenarios, first predicts the activity type and
then narrows the focus to the subset of data corresponding to that activity to infer the
subject. This method assumes that, in practice, activity information would be available,
but subject identity would be hidden. Both approaches rely on careful feature selection
and model tuning to achieve optimal prediction accuracy.

3.2.3.1 First cut solution

In the first solution, we go directly to subject prediction from the whole dataset. This
approach is the simplest solution comes to the mind and can be interpreted as if the
attacking algorithm tries to predict the performer of a trial regardless of knowing the
activity this trial comes from. In this approach, we give 4 trials out of 5 recorded
from each subject from 19 activities to our ML models as training data to predict
the subject of trial from the 156 features extracted of each trial. The schematic of
this approach shows the process in detail (see figure 3.4). Let’s express our dataset as
D (Subject, Activity,Trial, Sensor, Axis) where D gives us values of an attribute coming
from one of three sensors in one of axes x, y or z. The Sensor and Axis shows these
input well. For our dataset, Subject input specifies one of 24 subjects’ Subject_Id who
performed the given Trial from 4 trials any subject performed for each of 19 possible
activities. For our sensors with 200 Hz sampling frequency, the trial Trlk from a 20-
second lasted activity like Actj who performed by Subi contains 4000 samples of 9 sensor
values (3 axes of 3 sensors). Therefore, an attribute of this trial which is accessed by
D (Subi, Actj ,Trlk, Snsm,Axsn) will return a list of 4000 values.

In the first step, the meaningful features are calculated from attributes of all trials.
There are fixed 618 features to be extracted from each 9 attributes of a trial. They can
be appended to a single list to form 9× 618 long array of total features extracted from
that trial. When the process continues for all available trials in our training dataset,
the row-by-row union of features arrays generated from trails makes a matrix of features
which we is returned at the end. The algorithmic explanation (see pseudocode no) below
shows the process in more clear way. FE is the function that calculates the fixed number
of features for the specified attribute of a trial.

▷ FE: Feature Extraction Function
function FE(D (Subject, Activity, Trial, Sensor, Axis))

Calculate 618 fixed feature values for each sensor axis of a trial
Return them as a list of values
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end function

feature_matrix← [] ▷ Clear lists
feature_values← []
features← []
for each Sub in Subject list do

for each Act in Activity list do
for each Trl in Trial list do

feature_values← []
for each Sns in Sensor list do

for each Axs in Axis list do
features← FE(D (Sub, Act,Trl, Sns, Axs))
Append features list to feature_values list

end for
Append feature_values list to feature_matrix list

end for
end for

end for
Return feature_matrix

end for

Of course many of those features extracted for trials won’t have noticeable effect on trials
classification. Thus, the next step of process is selecting some of the most significant
features from those many features extracted for trials which have the highest impact on
trials classification based on subject_id. pValue is the metric we use to measure the
significance of features in classification, so that the features dataset (features_matrix)
extracted from the training trials dataset is given to Feature Selection function (FS) to
have the required correlation between each feature and the label column (here subject_id)
calculated as pValue of each feature. The features are then sorted from the most signif-
icant ones to the less by descending order of pValues. Since the smaller pValue is, the
highest impact the feature has in classification. We then select only top n=156 features
sorted (see pseudocode no).

▷ FS: Feature Selection Function
function FS(Data, Label)

Calculate the pValue of each feature column in Data relative to the Label column
Keep only the features column with pValue <= 0.05
Select and return top 156 features columns with lowest pValues
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end function

selected_feature_matrix← [] ▷ Clear list
selected_feature_matrix← FS(feature_matrix, Subject_Id)

Figure 3.4 Subject Prediction Schematic in our First cut solution

In the subsequent step, we define the subject prediction attack as a multiclass clas-
sification problem, addressed through supervised machine learning (ML) techniques.
Let D represent the training dataset after the feature extraction and selection phase
(previously referred to as selected_feature_matrix). The structure of D is given by:
D = {(x1,y),(x2,y), ...}, such that xi = (x1,x2, ...,x156) are feature vectors each consists
of 156 extracted and selected features, and y denotes the class label. In this context,
since the goal is to infer the subject identity, y corresponds to the subject_id indicating
the individual who performed each trial. This training dataset D is then used to train a
classifierM, which learns to map feature vectors to their corresponding subjects. During
inference, when an unlabeled trial instance x is presented, the classifier M outputs its
predicted subject identity, i.e., M(x)→ subject.

The choice of classifier M significantly influences the effectiveness of the attack model.
In our implementation, we explored various classifier architectures and report our results
using four tree-based models: decision trees (DT), gradient-boosted trees (GBT), extreme
gradient boosting (XGBoost), and light gradient boosting (LightGBM). Each classifier
was individually tuned through grid search combined with 4-fold cross-validation, allowing
us to optimize their hyperparameters and maximize prediction accuracy.
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Figure 3.5 Subject Prediction Schematic in our Proposed solution

3.2.3.2 Proposed solution

In this approach we do not predict the subject directly, but to predict the activity of
trials first. In this solution, the attacking model tries to predict the activity from which
the trial was recorded without needing to know the subject id of trial. Thus this solution
is closer to the reality. Because this dataset and the other similar ones are recorded
mainly for fall detection purposes, thus in real scenarios, in order to keep the privacy,
the information about subjects who performed the trials will be removed before releasing
the dataset, and data will be sent to the clients with the activity code. This means that
the attacking system will be aware of the activity the trials come while accessing the
data, but it does not have access to the subjects who made the trials. Therefore, it will
probabily train a model to predict the activity on the entire data set. After predicting
the attempted activity, train a model to predict the subject of activity only on the subset
of data related to the pre-predicted activity. See the schematic of this approach in the
figure 3.5.

We formulate both the activity and subject inference tasks as multiclass classification
problems, solved through supervised machine learning (ML) methods. Let D denote
the dataset constructed after applying feature extraction and selection. The dataset
is structured as: D = {(x1,y1),(x2,y2), ...} where each instance xi = (xi,1,xi,2, ...,xi,156)
represents a 156-dimensional feature vector, and yi indicates the associated class label.
These features are extracted as described in the preceding section. When the objective
is to predict activities, yi corresponds to the activity code associated with the respective
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trial—specifically, one of four labeled trials out of five recorded for each of the 19 distinct
activities performed by 24 subjects. The classifier M is trained on the dataset D to
learn the mapping between feature vectors and activity types. During inference, when
an unlabeled trial vector x is given to the system, M predicts the activity type as
M(x)→ activity type.

A similar process is followed when the goal is to predict subjects; however, in this case,
the subject is not inferred directly from the entire dataset. Instead, the system first
determines the activity type of the trial using M as described above. Then, subject
inference is performed using only the subset of the dataset corresponding to the predicted
activity. For instance, if the predicted activity type for an unlabeled trial is D12 ("sitting
a moment, lying slowly, wait a moment, and sit again"), which is one of the 19 defined
activities (D01 to D19), the system performs subject classification using only the 1/19
portion of the dataset that includes trials labeled as D12. At this stage, a separate
supervised classifier N is trained to infer the subject identity from the restricted feature
set, i.e., N (x)→ subject id.

Choosing suitable models forM and N is essential to ensure high performance in activity
and subject prediction. To this end, we explored both linear and non-linear classification
techniques. The experimental results reported in this work are based on four widely-
used tree-based classifiers: decision trees (DT), gradient-boosted trees (GBT), extreme
gradient boosting (XGBoost), and light gradient boosting (LightGBM). Each model are
fine-tuned independently using grid search along with 4-fold cross-validation to identify
optimal hyperparameters and enhance predictive accuracy.
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4. ATTACKS RESULTS AND DISCUSSIONS

This section presents the experimental evaluation and analysis of the proposed attacks.
We organize our results and discussions into two main parts. The first part focuses on
the ALS-based Activity Inference Attack, where we analyze the performance of LuxTrack
under various conditions, compare it with existing baselines, evaluate robustness, and
assess generalization through multiple experimental settings. The second part addresses
the Subject Inference Attack, examining both a preliminary baseline solution and our
proposed refined approach. Through this structure, we aim to highlight the effectiveness
of our attacks as well as the insights gained from their detailed performance analyses.

4.1 ALS-based Activity Inference Attack Results and Discussions

We evaluate the effectiveness of LuxTrack using the dataset we collected. All results are
reported with 10-fold cross validation. We use well-known metrics to evaluate the success
rate of LuxTrack: accuracy, precision, recall, and F1 score.

4.1.1 Comparison with LightSpy and Raw ALS Data

First, in order to demonstrate the improvement achieved by LuxTrack, we perform a
comparison between LuxTrack, the state-of-the-art LightSpy attack Chakraborty et al.
(2017), and the use of raw ALS time series recordings to train ML models (instead of
feature extraction and selection). We note that the methodology used in LuxTrack differs
from LightSpy in terms of the features extracted and the ML models used. Furthermore,
the comparison between LuxTrack and raw ALS recordings aims to show the benefit of
LuxTrack’s feature extraction step rather than feeding ALS recordings to ML models
directly (without feature extraction).

The results of this comparison are shown in Table 4.1. The accuracy and F1 scores
of each model are reported after the models’ hyperparameters are optimized in each
setting. Since there are 8 total activities, the accuracy of a random guess is 12.5%. In
general, models achieve substantially higher accuracy compared to a random guess, which
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Table 4.1 Accuracy and F1 scores of our LuxTrack attack versus LightSpy versus using
raw ALS time series recordings in classification (without feature extraction). Results
show that LuxTrack outperforms its most relevant competitor, LightSpy, by roughly 20%
in terms of accuracy and F1 score.

Raw ALS LightSpy LuxTrack (Our Attack)
Model Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

NB 20.00% 16.26% 51.67% 47.05% 46.25% 40.00%
K-NN 52.08% 49.66% 60.00% 58.01% 70.00% 68.99%
DT 35.83% 33.30% 57.92% 58.59% 62.50% 64.25%

SVM 33.33% 27.65% 45.42% 39.96% 61.25% 57.68%
NN 52.08% 50.80% - - 79.58% 79.56%

GBT 54.17% 53.75% - - 75.42% 75.96%
Best 54.17% 53.75% 60.00% 58.59% 79.58% 79.56%

indicates the plausibility of inferring user activity from ALS readings. We observe that
NB and SVM models usually yield lower accuracy and F1 scores, whereas NN and GBT
models’ accuracy and F1 scores are generally higher.

The best-performing model for raw ALS recordings is GBT, which achieves 54.17% ac-
curacy and 53.75% F1 score. In contrast, the best-performing models are K-NN and
DT in terms of accuracy and F1 score, respectively. The accuracy and F1 score of the
best-performing models for LightSpy are higher than the accuracy and F1 score for raw
ALS. Finally, the highest accuracy and F1 scores are achieved using LuxTrack. The
best-performing model for LuxTrack is NN with 79.58% accuracy and 79.56% F1 score,
which are roughly 20% higher than the accuracy and F1 score achieved by LightSpy. This
demonstrates that LuxTrack clearly outperforms its closest competitor.

When we compare LightSpy against LuxTrack with respect to each model individually,
we observe that LightSpy performs better than LuxTrack only in terms of NB. For the
remaining models (K-NN, DT, SVM), LuxTrack consistently yields higher accuracy and
F1 score. Thus, we believe that the superiority of LuxTrack compared to LightSpy is
not because of the model type, but rather because of the set of features. Only 8 features
were used in LightSpy, which are: range, standard deviation, mean absolute derivative,
mean crossing rate, skewness, entropy, high-frequency energy ratio, and spectral mean
Chakraborty et al. (2017). LuxTrack also uses some of these features, but in addition,
we include many other informative and statistically significant features which enable
LuxTrack to achieve significantly higher attack effectiveness than LightSpy.
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(a) GBT (b) NN

Figure 4.1 Confusion matrices of GBT and NN models obtained after executing LuxTrack.

4.1.2 Analysis of Confusion Matrices

In Figure 4.1, we illustrate the confusion matrices of the GBT and NN models after
executing LuxTrack. We choose to analyze the confusion matrices of GBT and NN
models rather than other models, since GBT and NN yield the highest accuracy and F1
score.

We observe that the confusion matrices of GBT and NN agree in several aspects. For
example, according to both models, the activity types (classes) with the lowest precision
are Steampowered game store and video streaming on Youtube. In particular, both
models are likely to confuse video streaming on Youtube with Steampowered game store
activity. Programming on Spyder is also likely to be confused with Steampowered game
store. The likely reason behind these confusions is because Steampowered, Spyder, and
Youtube videos typically have dark background colors, resulting in a low amount of light
being emitted from the laptop screen. In contrast, the recall and F1 scores of Bumble
and Whatsapp activities are high for both NN and GBT. This is because applications
like Whatsapp emit consistent amounts of light throughout the activity without much
fluctuations, which causes them to be more easily inferred.

In general, other than three relatively more challenging activities (which are Facebook
surfing, Steampowered game store, and video streaming on Youtube), the F1 scores of
each class are higher than 80-90% for both NN and GBT. This shows that many laptop
activities have unique light emission characteristics, which can allow them to be inferred
by adversaries using an ALS eavesdropping attack like ours.
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Table 4.2 Analysis of feature importance in terms of feature categories. For each rank
range (e.g., top 10, 11-20, 21-30), the table shows what percentage of features within
that range fall under each feature category. For example, 50% of features in top 10 fall
under SFC category, 10% of features in top 10 fall under CFC category, 60% of features
in 11-20 fall under TIFC category, etc.

Percentage of Features Within Rank
Under Each Category

Feature
Importance

Rank SFC CFC VFFC TIFC TFC EFC

Top 10 50% 10% 10% 10% 20% 0%

11 - 20 20% 10% 10% 60% 0% 0%

21 - 30 10% 0% 0% 50% 30% 10%

31 - 40 10% 60% 0% 10% 20% 0%

41 - 50 10% 0% 0% 0% 90% 0%

51 - 75 8% 8% 0% 4% 72% 8%

76 - 100 16% 40% 4% 0% 32% 8%

101 - 125 8% 64% 0% 0% 16% 12%

126 - 150 12% 32% 0% 28% 28% 0%

151 - 187 13.5% 8.1% 2.7% 32.5% 40.5% 2.7%

4.1.3 Feature Importance Analysis

Next, we analyze the feature importance of each feature used in LuxTrack’s models. We
used p-values of features to perform this analysis. The lower the p-value of a feature,
the more important role it plays in prediction. We computed the p-value of each feature
and then ranked features (from 1 to 187) according to their p-values, with the feature in
1st ranking being the most important. Considering the high number of features, instead
of presenting the full feature importance ranking, we divided the ranking into ranges
such as top 10, rank 11-20, rank 21-30, .., rank 151-187. For each range, we found what
percentage of features within that range fall under each feature category (according to
the categorization in Table 3.1). The results are given in Table 4.2.

Among all categories, SFC has the highest number of features in the top 10 ranks, with
5 out of 10 features in the top 10 belonging to the SFC category. In addition, 2 SFC
features are ranked between 11-20. Quantile is the most important feature, followed by
the Minimum, Mean, and Median features. These results indicate that simple aggre-
gate statistics such as quantile, minimum, mean, and median can indeed serve as good
predictors of user activity from ALS.
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Following SFC, the TIFC category also plays a significant role in our classification models.
It contains one feature among the top 10, 6 features in the range 11-20, and 5 features in
the range 21-30. The most important features in the TIFC category include Aggregate
Linear Trend, C3 Non-Linearity, LLSR Trend, and Benford Correlation (in this order).
There also exist other significant features in this category, but their importance rankings
are comparatively lower.

After SFC and TIFC, we have TFC, CFC, and VFFC categories. In the TFC category,
FFT coefficients and FFT spectrum features constitute features that are ranked in the
top 40. In contrast, CWT coefficients rank lower, typically within the 41-50 range. In
the CFC category, Sum of Values and Absolute Energy features are the highest-ranking
features, which are ranked 10th and 12th, respectively. They are followed by the Change
Quantiles feature, Mean Absolute Change feature, Absolute Sum of Changes feature, and
CID complexity feature, respectively. In the VFFC category, the Sum of Reoccurring
Data Points feature is ranked 5th, and the Sum of Reoccurring Values feature is ranked
within the top 20. In contrast, the Uniqueness Rate and Number of Mean Crossings
features are ranked lower.

Finally, features in the EFC category rank lowest among other categories. The Binned
Entropy feature ranks 22nd, but the remaining features in the EFC category are ranked
between 51-178. Considering these results, we can conclude that entropy-related features
contribute less than other features to our LuxTrack attack.

4.1.4 Attack Robustness Evaluation

In this section, we perform a broader attack robustness evaluation to validate the effec-
tiveness of LuxTrack in varying conditions, such as varying display technologies, display
settings, ambient light conditions, smartphone models, and spatial relationships between
the ALS and the display. For consistency, the same participants, activities, and dura-
tions were used as in Section 3.1.2. The original ML models were not retrained, i.e., the
original models were tested with different display technologies, display settings, etc. This
enables us to study the generality and transferability of LuxTrack’s models to various
conditions.

Impact of different display technologies. The laptop model used in our original
data collection and the experiments reported thus far was a Lenovo E480 equipped with
a TN display. Here, we measure the impact of using a different laptop (Asus UX430U)
equipped with an IPS display. The results are reported in Table 4.3.

We observe from Table 4.3 that LuxTrack is effective on an IPS display, reaching close
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Table 4.3 Accuracy and F1 scores of LuxTrack on an Asus laptop with IPS display.

LuxTrack (IPS Display)
Model Accuracy F1 Score

NB 52.08% 47.36%
K-NN 71.25% 70.56%
DT 61.67% 61.58%

SVM 52.08% 49.01%
NN 74.17% 73.41%

GBT 71.25% 70.96%
Best 74.17% 73.41%

to 74% accuracy and F1 score using an NN model. Similar to Table 4.1 (in which an HD
display was used), NN and GBT models provide higher accuracy and F1 scores compared
to other models on an IPS display as well. In Table 4.3, NN and GBT are followed closely
by K-NN, and the remaining models are inferior. Also, comparing Tables 4.1 and 4.3,
we observe that NB and K-NN perform slightly better in Table 4.3 as opposed to Table
4.1, whereas the remaining models perform slightly better in Table 4.1. Considering all
results, we conclude that the change from a TN display to an IPS display yields small
drops in accuracy and F1 score, but LuxTrack is still highly effective for an IPS display,
achieving 74.17% accuracy.

Table 4.4 Accuracy and F1 scores of LuxTrack under varying brightness levels.

100% Brightness 80% Brightness 60% Brightness
Model Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

NB 46.25% 40.00% 42.08% 35.61% 15.00% 9.10%
K-NN 70.00% 68.99% 74.58% 74.13% 25.42% 18.34%
DT 62.50% 64.25% 66.25% 63.86% 27.50% 19.65%

SVM 61.25% 57.68% 53.33% 51.94% 22.08% 13.76%
NN 79.58% 79.56% 75.83% 76.40% 30.83% 18.81%

GBT 75.42% 75.96% 71.25% 70.34% 29.17% 19.84%
Best 79.58% 79.56% 75.83% 76.40% 30.83% 19.84%

Impact of different display settings. Next, we keep the display technology constant
by using the Lenovo E480 but vary two of the display settings: brightness and gamma
value. Brightness can be controlled using percentages (e.g., 100%, 90%, 80%). For the
gamma value, we test three different settings: maximum gamma, medium gamma, and
minimum gamma. In the previously reported experiments, the default settings of 100%
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Table 4.5 Accuracy and F1 scores of LuxTrack under varying gamma settings.

Max Gamma Medium Gamma Min Gamma
Model Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

NB 63.75% 59.16% 46.25% 40.00% 35.42% 32.13%
K-NN 80.42% 79.61% 70.00% 68.99% 72.50% 71.14%
DT 69.17% 69.36% 62.50% 64.25% 54.17% 49.31%

SVM 69.17% 65.04% 61.25% 57.68% 46.67% 43.71%
NN 83.33% 83.29% 79.58% 79.56% 77.50% 77.89%

GBT 82.08% 82.09% 75.42% 75.96% 71.25% 70.94%
Best 83.33% 83.29% 79.58% 79.56% 77.50% 77.89%

brightness and medium gamma were used. Note that these are default settings and they
are expected to be in line with an everyday laptop user. In the next sets of experiments, we
vary the brightness percentage and gamma setting individually and report their impacts
on attack effectiveness.

In Table 4.4, we keep the default value of gamma (medium) and vary brightness between
100% and 60%. When brightness is reduced from 100% to 80%, the accuracy of LuxTrack
decreases by only 4%. However, when brightness is further reduced to 60%, the accuracy
of LuxTrack decreases to 30.83%. These results indicate that attack effectiveness is indeed
sensitive to brightness, which is an intuitive result due to the fact that when brightness is
100%, there is more light emitted from the display, which causes the recorded lux values
of different activities to be high and diverse (as exemplified in Figure 3.3). With 80%
brightness, the lux values we recorded were closer to one another (e.g., between 9-42 lux),
but differences between activities were still substantial. However, with 60% brightness,
the lux values we recorded were all within a small range (e.g., between 8-20 lux for all
activities), and therefore, it becomes difficult to distinguish the light emission patterns
of an activity from the others. Therefore, we can conclude that higher brightness yields
higher attack effectiveness.

In Table 4.5, we keep the default value of brightness (100%) and vary the gamma. The
display’s gamma controls the pixels’ luminance, affecting the appearance of darker areas
on the screen. Lower gamma makes shadows look brighter, whereas higher gamma makes
it harder to see details within shadows. LuxTrack achieves the highest accuracy and F1
score (around 83%) when gamma is maximized. When gamma is at its medium setting,
the accuracy and F1 score of LuxTrack decrease to around 80%. Finally, when gamma
is at its minimum setting, the accuracy and F1 score of LuxTrack decrease to around
77-78%. While changing the gamma value does impact attack effectiveness, it does not
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Table 4.6 Accuracy and F1 scores of LuxTrack under two alternative ambient light con-
ditions: reduced light (the room is illuminated by a distant bedside lamp) and daylight
(the room is illuminated by sunlight during day hours).

Reduced Light Daylight
Model Accuracy F1 Score Accuracy F1 Score

NB 38.33% 34.41% 22.08% 15.34%
K-NN 51.67% 46.85% 35.00% 35.26%
DT 41.67% 36.00% 19.58% 12.99%

SVM 38.75% 32.41% 28.33% 23.26%
NN 61.67% 62.26% 26.25% 21.00%

GBT 52.08% 48.28% 22.08% 15.89%
Best 61.67% 62.26% 35.00% 35.26%

have the same negative impact as brightness, with at most 6% change. We note that
NN, GBT and K-NN models continue to yield the highest attack accuracy and F1 score
despite changes in gamma.

Impact of ambient light conditions. Recall from Section 3.1.2 that our data collection
was performed in the evening in a room illuminated by a ceiling lamp. In this section, we
vary this ambient light condition by executing LuxTrack in two alternative conditions:
(i) reduced light conditions in which the room is illuminated only by a distant bedside
lamp, (ii) high ambient light conditions in which the room is illuminated by sunlight on
a sunny day. The results of LuxTrack in these two conditions are reported in Table 4.6.

The results in Table 4.6 show that LuxTrack remains effective under reduced ambient
light conditions, though with a slight decrease in accuracy and F1 score. Since limited
illumination is provided by the bedside lamp in reduced light conditions, the ALS records
very low values (close to 0) for activities that have dark backgrounds. Hence, such
activities become difficult to differentiate from one another. On the other hand, under
sunlight conditions, the accuracy of LuxTrack decreases substantially (∼35%). This
result shows that sunlight dominates the ambient light conditions, reducing the effect
of the illuminance caused by the laptop display. Therefore, the ALS readings no longer
reflect the laptop activity under strong daylight. This causes our attack accuracy to drop.
Finally, we observe from Table 4.6 that NN, GBT, and K-NN models continue to be the
better-performing models. Interestingly, under daylight conditions, K-NN yields higher
accuracy and F1 score compared to NN and GBT, which is typically not the case in the
remaining experiments.

Impact of smartphone models. We used a Samsung Galaxy A72 smartphone in our
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Table 4.7 Accuracy and F1 scores of LuxTrack using two alternative smartphones (Nokia
3.1 Plus and Oppo A5s).

Nokia 3.1 Plus Oppo A5s
Model Accuracy F1 Score Accuracy F1 Score

NB 44.17% 37.50% 45.42% 42.65%
K-NN 74.58% 73.91% 64.17% 63.11%
DT 60.00% 57.01% 52.92% 51.53%

SVM 58.75% 55.86% 62.08% 63.23%
NN 78.33% 77.79% 80.83% 80.53%

GBT 77.50% 76.86% 70.42% 69.93%
Best 78.33% 77.79% 80.83% 80.53%

initial data collection. However, different smartphone models can be equipped with differ-
ent ALSs, therefore we also test the effectiveness of LuxTrack using two other smartphone
models: Nokia 3.1 Plus and Oppo A5s. We note that the ALSs on these phones have
different manufacturers and technical specifications. For example, the ALS on Samsung
Galaxy A72 is manufactured by Sensortek, its model is STK31610, and its resolution is
0.5 lux. In contrast, the ALS on Oppo A5s is manufactured by ams OSRAM, its model
is TSL2540, and its resolution is 1.0 lux.

The results of LuxTrack using Nokia 3.1 Plus and Oppo A5s are shown in Table 4.7.
We observe that the accuracy and F1 scores obtained using these two smartphones are
very similar to those obtained using Samsung A72 (rightmost columns in Table 4.1). The
attack is approximately 1% less accurate using Nokia 3.1 Plus compared to Samsung A72,
whereas it is approximately 1% more accurate using Oppo A5s compared to Samsung
A72. Many of the observations regarding individual ML models are also similar for
different smartphones. Considering these observations, we can conclude that LuxTrack
is not specific to Samsung A72; it is generally effective on different smartphone models.
The fact that LuxTrack is effective on multiple smartphones equipped with different ALSs
demonstrates the generalizability of our attack.

Impact of the spatial relationship between the ALS and the display (vary-
ing angles). Recall our hardware placement and the spatial relationship between the
smartphone ALS and the laptop display from Section ??. In this section, we explore
the impact of rotating the smartphone away from the laptop screen. In particular, we
tested two rotation settings: (i) 30 vertical rotation away from the laptop screen, and (ii)
45 horizontal rotation away from the laptop screen. The results are given in Table 4.8.

As the smartphone is rotated away from the laptop screen, it becomes harder for the
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Table 4.8 Accuracy and F1 scores of LuxTrack under two rotation settings: 30 vertical
rotation away from the laptop screen, 45 horizontal rotation away from the laptop screen.

30 Vertical 45 Horizontal
Model Accuracy F1 Score Accuracy F1 Score

NB 35.83% 31.89% 31.67% 30.00%
K-NN 50.83% 48.28% 37.92% 30.76%
DT 40.83% 36.79% 26.25% 21.08%

SVM 38.33% 35.78% 44.17% 39.81%
NN 66.67% 66.48% 62.08% 62.25%

GBT 57.92% 53.35% 60.83% 56.58%
Best 66.67% 66.48% 62.08% 62.25%

ALS to read the light emitted from the screen. Therefore, we would expect LuxTrack’s
accuracy to drop. The results in Table 4.8 confirm this intuition, both for horizontal and
vertical rotations. According to the results, 30 vertical rotation causes LuxTrack’s accu-
racy to drop by 13% and 45 horizontal rotation causes accuracy to drop by 17% compared
to the default setting (no rotation). Higher the degree of rotation, higher the accuracy
drop. Yet, we highlight that LuxTrack is still quite effective despite the substantially
high degrees of rotation – its accuracy remains at 66% and 62% respectively, whereas the
accuracy of a random guess is 12.5%. Hence, we conclude that while LuxTrack is indeed
affected by the spatial relationship between the ALS and the laptop screen, its accuracy
remains high despite substantial amounts of rotation.

4.1.5 Results with LOO-CV

Table 4.9 Comparison between LuxTrack, LightSpy and raw ALS when LOO-CV is used
instead of 10-fold cross validation.

Raw ALS LightSpy LuxTrack
Model Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

NB 33.08% 28.30% 55.10% 52.69% 55.67% 54.38%
K-NN 46.54% 42.81% 54.90% 54.73% 66.63% 65.82%
DT 31.15% 21.81% 56.35% 48.64% 60.48% 56.67%

SVM 38.56% 35.92% 46.90% 44.64% 63.85% 63.68%
NN 49.62% 48.53% - - 72.02% 71.94%

GBT 56.15% 55.38% - - 75.29% 75.38%
Best 56.15% 55.38% 56.35% 54.73% 75.29% 75.38%

In this section, we perform experiments with the Leave-One-Out Cross Validation (LOO-
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CV) technique instead of 10-fold cross validation. To enable making comparisons between
LOO-CV and 10-fold cross validation, we use the same dataset (same participants, ac-
tivities, durations, etc.) as in Section 4.1.1 but retrain the models using LOO-CV rather
than 10-fold cross validation. In LOO-CV, one human subject is iteratively picked for
testing, and the remaining subjects are used for training. We repeat this process for each
subject and then report the average accuracy and F1 scores for all iterations. LOO-CV
enables us to explore how accurate our models are when they are tested with data from
a previously unseen human subject.

The results of LOO-CV experiments are given in Table 4.9. In general, results obtained
with LOO-CV are similar to results obtained with 10-fold cross validation (Table 4.1).
In terms of the best-performing ML models, small increases in accuracy and F1 score
(2-3%) are obtained under LOO-CV compared to 10-fold cross validation when models
are trained with raw ALS data. In contrast, the accuracy and F1 scores of LightSpy
and LuxTrack are approximately 4-5% lower under LOO-CV compared to 10-fold cross
validation. When we study the individual ML models, we observe that NB and SVM
perform better under LOO-CV whereas the remaining models perform better under 10-
fold cross validation.

Overall, considering all results, we conclude that LOO-CV can slightly decrease attack
accuracy and F1 score compared to 10-fold cross validation, but their results are similar.
In addition, there are also cases in which LOO-CV yields higher attack accuracy and
F1 score compared to 10-fold cross validation. Thus, the attack’s performance is similar
under LOO-CV and 10-fold cross validation.

4.1.6 Intra-Activity Diversity

Recall from Section 3.1.2 that for each activity (such as shopping on Amazon, reading
PDFs on Adobe Acrobat, watching Youtube, etc.) we allow participants to freely choose
which Amazon product to look at, which pdf document to read, which Youtube video
to watch, and so forth. Hence, the data we collected contains a substantial amount of
intra-activity diversity, i.e., different participants have diverse behaviors for each activ-
ity. In this section, we evaluate a “simpler" scenario in which there is no intra-activity
diversity for the Youtube activity. That is, we ask each participant to watch the same
Youtube video. Since this is an easier scenario, we expect LuxTrack to perform more
accurately. To perform this experiment, we collected additional data using the same data
collection procedures as in Section 3.1.2, using the same set of participants, hardware,
data collection durations, and so forth. The key difference is that each participant is
asked to watch the same Youtube video rather than different videos.
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Table 4.10 Accuracy and F1 scores of LuxTrack when each participant is asked to watch
the same Youtube video.

LuxTrack (same video)
Model Accuracy F1 Score

NB 52.92% 45.99%
K-NN 79.17% 78.26%
DT 67.92% 68.31%

SVM 62.92% 59.30%
NN 85.42% 85.30%

GBT 81.25% 81.14%
Best 85.42% 85.30%

The results of this scenario are shown in Table 4.10. Compared to Table 4.1, we observe
that the accuracy and F1 scores of all models increase. NB, NN, and GBT models
especially have large increases (around 5-6%) compared to K-NN and SVM (around 2%).
NN continues to be the best-performing model, followed by GBT. Notably, the accuracy
of LuxTrack increases from 79.58% to 85.42% in this simpler scenario.

Next, we analyze the reason behind this increase by studying the confusion matrices of
the two best-performing models: NN and GBT. The confusion matrices are presented
in Figure 4.2. When we compare these matrices with Figure 4.1, we observe that the
recall values of the Youtube activity are substantially higher in Figure 4.2. The recall
values of other activities are similar in both figures. In addition, there is a substantial
increase in the precision of some activities such as Steampowered and Youtube. While
the increase in the precision of Youtube activity is expected, the Steampowered activity
is curious. Upon analyzing this behavior, we saw from Figure 4.1 that many true samples
that belonged to the Youtube activity were frequently predicted incorrectly as belonging
to the Steampowered activity by NN and GBT models. However, this did not happen
when all subjects watched the same Youtube video (Figure 4.2). Hence, we can conclude
that the accuracy increase observed in Table 4.10 is due to both easier prediction of the
Youtube activity, and also better prediction of activities that are frequently confused with
Youtube.

4.1.7 Extension to Multitasking

In the previous experiments, we assumed that laptop users are performing one activity
at a time. However, it is also possible that users multitask with multiple applications
displayed on the laptop screen at the same time. For example, users can divide their
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(a) GBT (b) NN

Figure 4.2 Confusion matrices of GBT and NN models in the simpler scenario where all
users watch the same Youtube video.

screen into two parts – they can read a pdf document in one half and write code in the
other half. Then, an interesting aspect to consider is whether LuxTrack can be extended
to multitasking users.

To evaluate LuxTrack on multitasking users, we constructed the following experiment.
First, we chose 4 activities that could be multitasked by users in real life: Reading pdf
documents via Adobe Acrobat, Using Bumble, Watching Youtube videos, Programming
on Spyder. Then, we considered all pairwise combinations of these 4 activities, i.e., we
have

(
4
2

)
= 6 combinations. For each combination, we collected data from participants

who multitask with those combinations of activities on the laptop screen by dividing the
screen into two halves. The same settings as in Section 3.1.2 were used in collecting
this data (same set of participants, hardware, sample sizes, durations, etc.). Then, we
used the same feature extraction and ML model training phases of LuxTrack, by treating
each combination as one class. Thus, we obtained ML models for a 6-class classification
problem.

The accuracy and F1 score results of our models are given in Table 4.11. Results show that
LuxTrack is highly effective in multitasking scenarios as well, achieving higher than 87%
accuracy. In addition to NN and GBT, which are typically the best-performing models
in the previous experiments, we observe that other models also perform well. In fact,
K-NN (which used to be the third-best model in previous experiments) is now the best-
performing model in Table 4.11. The accuracy and F1 scores of the remaining models are
also quite strong. Overall, the results indicate that LuxTrack can be successfully extended
and applied to infer activities of multitasking users, in addition to users performing a
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Table 4.11 Accuracy and F1 scores of LuxTrack when participants are multitasking with
two activities.

LuxTrack (Multitasking)
Model Accuracy F1 Score

NB 81.67% 80.07%
K-NN 87.22% 87.18%
DT 86.67% 86.57%

SVM 83.89% 83.83%
NN 85.00% 84.97%

GBT 84.44% 84.12%
Best 87.22% 87.18%

single activity.

4.2 Subject Inference Attack Results and Discussions

The dataset, which was recorded from 24 different subjects while performing 19 activities,
will be provided to the clients after removing the information related to the subject. Our
attack scenario in this research is predicting the subject when the subject id of the
test data received has been erased. To design such an attack system, we introduce two
solutions to select portion of dataset and train the models on. Test results will provide us
the solution with the best performance score. We evaluate the effectiveness of our attack
system using the dataset we obtained. All results are reported with 4-fold cross validation.
We use accuracy metric to evaluate the success rate of our attack. In this section, we test
the performance of models proposed as two different approaches for subject prediction.
In the first approach, we predict the subject directly from the entire dataset, and in the
second approach, we first predict the activity of the data sample and then predict the
subject who performed it in the subset of the data related to only the activity type of
that sample. The results obtained from each approach are discussed in the following sub
sections.

4.2.1 Results of the first cut solution

After training the subject prediction models on 4 trials recorded from every 19 activity
types performed by each subject, we test them for only remaining trial from 5. The
accuracy of the models is according to the table 4.12 where 75.44% is the highest one we
have achieved to predict the subjects of trials.

To better understand which activity types contribute most to subject identifiability, we
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Table 4.12 Accuracy of subject prediction models in first cut solution

Models DT GBT XGBoost Light GBM
Prediction
Accuracy

54.82 % 70.61 % 74.56 % 75.44 %

analyze the partial accuracy of subject prediction models across individual activities.
Table 4.13 presents the prediction performance for each activity type, detailing how
accurately the models identify subjects based on the activity trial.

As seen in Table 4.13, trials of walking and jogging activities—regardless of being per-
formed slowly or quickly—are generally predicted with low accuracy across all four clas-
sifiers. In contrast, six specific activity types consistently lead to high subject predic-
tion accuracy: "Quickly sit in a low height chair, wait a moment, and up quickly",
"Quickly/slowly sit in a half height chair, wait a moment, and up quickly/slowly", "Sitting
a moment, lying quickly, wait a moment, and sit again", and "Standing, slowly bending
at/without bending knees, and getting up". These activities appear to encode more
distinctive personal movement signatures.

Beyond this general observation, several deeper insights emerge. First, activities involv-
ing low-height or half-height seated transitions result in the highest accuracies—up to
100%—indicating that such tasks may amplify subject-specific biomechanical patterns.
Second, fall-like or instability-prone activities, such as "collapsing into a chair" or "stum-
bling while walking", also yield relatively strong performance, suggesting that individual
strategies for maintaining or recovering balance are distinguishable. Finally, the consis-
tent ranking of activities across all classifiers—whether high or low—demonstrates that
the activity type itself is a major determinant of subject identifiability, independent of
the model architecture.

4.2.2 Results of the Proposed Solution

Table 4.14 presents the accuracy of subject prediction models within the framework of our
proposed two-stage attack approach. In this design, an activity classifier is first trained
on the full dataset to identify the activity type of an unlabeled trial. Once the activity
is predicted, the trial is passed to a second classifier trained only on the subset of data
corresponding to that predicted activity to infer the subject identity.

As shown in Table 4.14, the highest subject prediction accuracy—89.04%—is achieved
when the decision tree (DT) model is used for activity prediction, followed by the XG-
Boost model for subject prediction.
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Table 4.13 Partial accuracy of subject prediction models for trials of each activity type. While walking and jogging trials—regardless
of speed—tend to yield lower subject prediction accuracy, certain complex seated or transition activities consistently result in higher
accuracy across all four models.

Activity Specific
Subject Prediction

Models
DT gbt xgboost lightgbm

Walking slowly 8.33% 25.00% 33.33% 33.33%
Walking quickly 16.67% 29.17% 45.83% 45.83%
Jogging slowly 4.17% 8.33% 20.83% 16.67%
Jogging quickly 8.33% 8.33% 12.50% 12.50%

Walking upstairs and downstairs slowly 50.00% 75.00% 58.33% 70.83%
Walking upstairs and downstairs quickly 66.67% 83.33% 95.83% 95.83%

Slowly sit in a half height chair, wait a moment, and up slowly 66.67% 91.67% 87.50% 87.50%
Quickly sit in a half height chair, wait a moment, and up quickly 75.00% 91.67% 95.83% 95.83%
Slowly sit in a low height chair, wait a moment, and up slowly 83.33% 91.67% 91.67% 95.83%

Quickly sit in a low height chair, wait a moment, and up quickly 70.83% 95.83% 100.00% 100.00%
Sitting a moment, trying to get up, and collapse into a chair 62.50% 75.00% 87.50% 91.67%
Sitting a moment, lying slowly, wait a moment, and sit again 45.83% 83.33% 87.50% 91.67%
Sitting a moment, lying quickly, wait a moment, and sit again 70.83% 87.50% 95.83% 95.83%

Being on one’s back change to lateral position, wait a moment, and change to one’s back 58.33% 70.83% 66.67% 75.00%
Standing, slowly bending at knees, and getting up 79.17% 87.50% 91.67% 91.67%

Standing, slowly bending without bending knees, and getting up 79.17% 100.00% 91.67% 91.67%
Standing, get into a car, remain seated and get out of the car 66.67% 75.00% 83.33% 75.00%

Stumble while walking 54.17% 75.00% 83.33% 79.17%
Gently jump without falling (trying to reach a high object) 75.00% 87.50% 87.50% 87.50%

Average Accuracy 54.82% 70.61% 74.56% 75.44%
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Table 4.14 Accuracy of subject prediction models for models selected to already predict
the activity in our proposed solution

Subject Prediction

Models DT GBT XGBoost LightGBM
A

ct
iv

ity
Pr

ed
ic

tio
n DT 65.79% 70.83% 89.04% 87.94%

GBT 66.45% 69.74% 87.94% 86.40%

XGBoost 65.79% 69.52% 87.50% 85.96%

LightGBM 65.57% 69.08% 87.28% 85.53%

This combination outperforms all other model pairings. Notably, across all activity clas-
sifiers, the XGBoost and LightGBM models consistently yield high subject prediction
accuracy in the second stage, suggesting their superior ability to capture subject-specific
patterns within activity-specific subspaces. On the other hand, DT and GBT used in the
second step consistently deliver lower accuracy, reinforcing the advantage of gradient-
boosted frameworks in high-resolution classification tasks.

Table 4.15 Accuracy of activity prediction models in the 1st step of our proposed solution

Models DT GBT XGBoost Light GBM
Prediction
Accuracy

83.55 % 88.60 % 91.45 % 93.42 %

Table 4.15 further details the performance of activity prediction models used in the first
stage of the attack. As expected, LightGBM achieves the highest activity classification
accuracy at 93.42%, followed closely by XGBoost at 91.45%. Interestingly, however,
these models do not always yield the highest subject prediction performance when used
as the first-stage classifier. This suggests that higher activity classification accuracy does
not necessarily correlate with higher overall attack success—possibly due to the way
each model’s prediction influences the construction of activity-specific sub-datasets for
subject inference. In particular, DT may provide more “conservative” activity predictions
that result in cleaner sub-datasets, which in turn help XGBoost achieve higher subject
prediction accuracy.

These results collectively demonstrate that the effectiveness of the subject inference attack
depends not only on the classification accuracy of each stage but also on the interplay
between the first and second stage classifiers. Thus, careful model pairing is essential to
maximize the attack potential in practical scenarios.
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In the second stage of the proposed approach, subject prediction is performed with the
assumption that the attacker already knows the activity type of the trial—information
that was inferred in the first stage. As a result, instead of training models on the entire
dataset, we train 19 separate subject prediction models (one per activity) for each of the
four classifiers. Each model is trained on activity-specific data that includes four out of
five trials per activity for all 24 subjects. This enables classifiers to specialize in capturing
subject-specific patterns within a particular activity context.

Table 4.16 presents the accuracy of these subject prediction models across all activ-
ity types. The most striking observation is the significantly improved performance
compared to earlier attack stages. In particular, activities such as “jogging slowly,”
“walking quickly,” and “walking slowly” achieve perfect subject identification accuracy
(100%) with XGBoost and LightGBM, and near-perfect results with GBT and DT. Even
“jogging quickly,” which was previously associated with low prediction accuracy in Ta-
ble 4.13, now yields perfect accuracy with XGBoost and LightGBM and 87.50% with
GBT—demonstrating that activity-specific tailoring of models drastically enhances sub-
ject discrimination.

These results suggest that when activities are known, the intra-activity variability in
how individuals perform them becomes a strong biometric signal. In essence, the “noise”
introduced by inter-activity variation is eliminated, allowing the classifier to focus solely
on person-specific motion traits. Moreover, the four walking and jogging activities, which
performed poorly in the generalized setting, now become some of the best-performing
categories, indicating that fine-grained gait differences are quite unique when observed
within a single activity frame.

Conversely, several seated or transition activities that previously produced high accu-
racy under the global model setup now exhibit relatively lower performance when iso-
lated—such as “sitting a moment, lying slowly, wait a moment, and sit again” and “being
on one’s back change to lateral position. . . ”. This shift highlights the possible effect of
reduced data diversity in individual activity subsets or the increased homogeneity of
movement in such tasks.

Overall, these findings underline the strength of the proposed two-step approach, where
decoupling activity and subject classification not only improves performance but also
reveals hidden structure in subject motion patterns—structure that becomes more ap-
parent when activity context is fixed. They also confirm the robustness of XGBoost and
LightGBM as subject identifiers across a wide range of activity types, outperforming DT
and GBT in most scenarios.
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Table 4.16 Accuracy of subject prediction models on datasets of already predicted activities in the 1st step of our proposed solution

Activities
Subject Prediction

Models
DT gbt xgboost lightgbm

Walking slowly 66.67% 95.83% 100.00% 100.00%
Walking quickly 75.00% 91.67% 100.00% 100.00%
Jogging slowly 91.67% 100.00% 100.00% 100.00%
Jogging quickly 62.50% 87.50% 100.00% 100.00%

Walking upstairs and downstairs slowly 62.50% 70.83% 91.67% 91.67%
Walking upstairs and downstairs quickly 62.50% 70.83% 100.00% 91.67%

Slowly sit in a half height chair, wait a moment, and up slowly 70.83% 70.83% 87.50% 95.83%
Quickly sit in a half height chair, wait a moment, and up quickly 83.33% 79.17% 91.67% 91.67%
Slowly sit in a low height chair, wait a moment, and up slowly 66.67% 75.00% 91.67% 91.67%

Quickly sit in a low height chair, wait a moment, and up quickly 66.67% 66.67% 100.00% 91.67%
Sitting a moment, trying to get up, and collapse into a chair 58.33% 62.50% 83.33% 70.83%
Sitting a moment, lying slowly, wait a moment, and sit again 50.00% 33.33% 54.17% 54.17%
Sitting a moment, lying quickly, wait a moment, and sit again 54.17% 50.00% 83.33% 83.33%

Being on one’s back change to lateral position, wait a moment, and change to one’s back 54.17% 50.00% 66.67% 62.50%
Standing, slowly bending at knees, and getting up 70.83% 50.00% 75.00% 75.00%

Standing, slowly bending without bending knees, and getting up 83.33% 79.17% 91.67% 87.50%
Standing, get into a car, remain seated and get out of the car 58.33% 66.67% 66.67% 75.00%

Stumble while walking 79.17% 62.50% 95.83% 91.67%
Gently jump without falling (trying to reach a high object) 58.33% 62.50% 91.67% 83.33%
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5. POTENTIAL COUNTERMEASURES AND THEIR IMPACT

This chapter presents the defense mechanisms proposed in response to the two distinct
inference attacks explored in this thesis. The first set of countermeasures targets the
ALS-based activity inference attack introduced in Section 3.1, where we demonstrated
that ambient light sensor data can be exploited to accurately infer user activities. The
second set focuses on mitigating the subject inference attack outlined in Section 3.2,
which revealed privacy vulnerabilities in a fall-detection dataset originally designed for
activity recognition. Each section introduces tailored defense strategies—ranging from
signal obfuscation to noise injection at both feature and sensor levels—designed to reduce
inference accuracy without significantly impairing legitimate functionality. We also an-
alyze the trade-offs involved, aiming to strike a balance between privacy protection and
task utility in real-world scenarios.

5.1 Countermeasures against ALS-based Activity Inference Attack

The high accuracy achieved by LuxTrack motivates the need for countermeasures which
can reduce attack accuracy, i.e., make it difficult for an adversary to infer user’s activity
from ALS readings. At the same time, the countermeasure should not disable the smart-
phone OS or third-party app from using the ALS for legitimate reasons such as adjusting
screen brightness or background color. The W3C Working Draft on ALS (World Wide
Web Consortium, World Wide Web Consortium) describes two intuitive security princi-
ples for ALS, which can guide the design of countermeasures: (i) discard new ALS sensor
readings if they fail to exhibit sufficient difference from previous readings, (ii) reduce the
accuracy or precision of ALS readings. Since the first approach may interfere with the le-
gitimate ALS sensor requests made by the OS or apps, we design countermeasures which
follow the second principle, i.e., reducing accuracy or precision. Our countermeasures
do not require any changes to the requests or responses of the smartphone OS or apps;
therefore, they can be easily integrated with existing infrastructure.

We propose three potential countermeasures for LuxTrack: Binning, Smoothing, and
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Figure 5.1 Attack accuracy of three ML models with highest original accuracy (NN, GBT
and K-NN) on binned data, with varying number of bins n.

Noise Addition. These countermeasures rely on the same principle: after an ALS reading
is obtained from the sensor (in units of lux), it is manipulated by the firmware or a trusted
component of the OS before being passed on to untrusted components, e.g., a third-party
smartphone app which may run an inference attack. Thus, the attacker is allowed to
observe only the manipulated versions of the ALS readings. In addition to presenting the
three countermeasures, we experimentally show that they are effective by demonstrating
the decrease in attack accuracy achieved after each countermeasure is applied.

5.1.1 Binning

Our first countermeasure is binning, which discretizes ALS readings into n equal-sized
bins. Let min and max denote the minimum and maximum possible ALS reading. n

bins are created, each with size s = (max−min)/n. Then, for each xi (1≤ i≤ |x|), the
value of xi is replaced by its bin: xi← xi//s where // denotes integer division.

We tested this countermeasure using different numbers of bins: n = 2, 4, 8, 12. The
results are shown in Figure 5.1. We compare the cases with and without binning for three
different ML models: NN, GBT and K-NN. These three models were chosen because they
originally had the highest attack accuracy (see Table 4.1). We observe that as we reduce
the number of bins, attack accuracy decreases. This is because fewer bins imply higher
data loss (bin sizes s are larger). For few bins such as n = 2 or 4, attack accuracy is as
low as 30-45%, which implies strong resistance against LuxTrack attack. As n increases,
attack accuracy recovers and approaches the original values for all three ML models.
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Figure 5.2 Attack accuracy of three ML models (NN, GBT and K-NN) after smoothing,
with a varying number of readings (data points) k used in smoothing.

5.1.2 Smoothing

Our second countermeasure is smoothing, which smooths each ALS reading using its
nearest neighbors, i.e., readings that are adjacent to this reading in the time series. More
formally, xi is replaced by:

xi←
xi− k−1

2
+ ..+xi + ..+xi+ k−1

2

k

That is, each xi is replaced by the average of (k−1)/2 points before it, (k−1)/2 points
after it, and itself. Here, we denote by parameter k the number of ALS readings (number
of data points) that will be used in smoothing. The higher the value of k, the smoother
the resulting ALS time series will be after all xi are replaced.

We tested this countermeasure using different k = 3, 5, 7, 9, 11. The results are shown
in Figure 5.2. We use the same ML models as before (NN, GBT, K-NN) because they
had the highest accuracy originally. We observe that as k increases, attack accuracy
decreases. This is because an increase in k causes change-related features to be damaged.
For example, SFC features such as variance, standard deviation, skewness, Variation
Coefficient, as well as many features from the CFC, VFFC, and EFC categories are
directly impacted by smoothing. Recalling the importance of these feature categories
from our feature importance analysis, we can indeed expect a substantial decrease in
attack accuracy when smoothing is used. On the other hand, it should be noted that
even with k = 9 or 11 attack accuracy remains above 50%, which implies that other
features which are less impacted by smoothing can still enable the attacker to achieve
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Figure 5.3 Attack accuracy of three ML models (NN, GBT and K-NN) after noise addi-
tion, with varying standard deviation σ used in the generation of noise samples.

semi-accurate attacks.

5.1.3 Noise Addition

Our third countermeasure is noise addition, which adds randomly and independently
sampled Gaussian noise to each ALS reading. That is, xi is replaced by:

xi← xi +G(0,σ)

where G(0,σ) denotes a Gaussian distribution (Normal distribution) with mean 0 and
standard deviation σ. Typically, higher σ causes higher noise to be added to xi, therefore
ALS time series become more distorted.

We tested this countermeasure with σ values ranging from 0.1 to 20. The results are
shown in Figure 5.3. When σ is very low such as σ = 0.1, the noise added is negligible,
therefore there is very little impact on attack accuracy. As σ increases, the noise amount
increases, therefore attack accuracy decreases. Attack accuracies of all three ML models
are almost halved when σ ≥ 1. With even higher σ, we observe that the accuracies of
GBT and NN models drop as low as 12.5%, which is equal to the accuracy of a random
guess (since we consider 8 activities in our dataset). This shows that if high amounts of
noise are added to ALS readings, the LuxTrack attack can indeed become impossible to
conduct.
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5.1.4 Trade-offs Between Attack Accuracy and Legitimate Task Accuracy

In the experiments conducted thus far, we showed that our countermeasures can be
effective against LuxTrack. However, each countermeasure has an internal parameter:
number of bins n in binning, number of points k in smoothing, and standard deviation σ

in noise addition. Countermeasures’ effectiveness in preventing the attack depends on the
values of these parameters. On the other hand, since the countermeasures manipulate
ALS readings, legitimate apps which use the ALS readings for legitimate tasks are also
affected. This creates a trade-off: Significant manipulation of ALS readings yields better
protection against the attack but also reduced accuracy in legitimate tasks, whereas little
manipulation of ALS readings maintains accuracy in legitimate tasks but offers little
protection from attacks. A desirable goal is to achieve high attack protection with little
accuracy reduction in legitimate tasks.

Towards this goal, in this section, we experimentally study the trade-offs between attack
accuracy and legitimate task accuracy in order to guide the selection of the appropriate
countermeasure and parameter. To measure attack accuracy, we use the same strategy
as in the previous subsections: After we apply the countermeasure, we feed the resulting
data to the LuxTrack pipeline (feature extraction and ML model) and obtain the attack
accuracy result. To measure how well legitimate task accuracy is preserved, we consider
a typical use case of the ALS sensor: changing the background color. Using ALS, the
background color of a smartphone screen is adjusted by apps (such as Google Maps)
from dark to light in bright environments and from light to dark in darker environments.
Using Google Maps as a popular and representative mobile app, we experimentally found
that the background color is changed from light to dark when illumination is below 7 lux.
Thus, the screen should be set to dark when ambient light is < 7 lux and it should be
set to light when ambient light is ≥ 7 lux. Accuracy in the legitimate task is measured
as the percentage of cases in which the background color adjustment is correct according
to the true ambient light of the environment.

Impact on Legitimate Task: Before demonstrating the trade-offs between attack accu-
racy and legitimate task accuracy, we first focus solely on the impact of countermeasures
on the legitimate task (adjustment of screen background color). In this context, we define:

• True Positives: cases where screen background should be dark and it is correctly
set to dark

• True Negatives: cases where screen background should be light and it is correctly
set to light
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Table 5.1 Impact of binning on legitimate task performance.

Num
Bins
(n)

Recall
(TPR)

Selectivity
(TNR)

Precision
(PPV)

Negative
Predictive

Value (NPV)

Accuracy
(ACC)

2 0 1 0 0.9822 0.9822
4 1 0.6815 0.054 1 0.6872
8 0.5817 1 1 0.9925 0.9925
12 1 0.9645 0.3384 1 0.9651

Table 5.2 Impact of smoothing on legitimate task performance.

Num
Pts
(k)

Recall
(TPR)

Selectivity
(TNR)

Precision
(PPV)

Negative
Predictive

Value (NPV)

Accuracy
(ACC)

3 0.9747 1 1 0.9995 0.9995
5 0.9397 0.9997 0.9817 0.9989 0.9986
7 0.8852 0.9996 0.9764 0.9979 0.9976
9 0.8405 0.9995 0.9686 0.9971 0.9967
11 0.8074 0.9993 0.9540 0.9965 0.9959

• False Positives: cases where screen background should be light but it is incorrectly
set to dark

• False Negatives: cases where screen background should be dark but it is incorrectly
set to light

Then, we measure recall (TPR), selectivity (TNR), precision (PPV), negative predictive
value (NPV), and accuracy (ACC) according to their standard definitions. The results
are shown in Tables 5.1, 5.2 and 5.3 for binning, smoothing and noise addition counter-
measures, respectively.

From Table 5.1, we observe that binning has a substantial negative impact on legitimate
task performance for all n values. When n = 2, TPR and PPV are equal to zero. When n

= 4, PPV is close to zero. n = 8 or 12 are more favorable than n = 2 or 4, but even then,
the TPR and PPV values are significantly low. As a result, we conclude that binning is
not a desirable countermeasure to preserve legitimate task performance in general. From
Table 5.2, we observe that smoothing can maintain high TNR, PPV, NPV and ACC for
k = 3 to 11. Its main negative impact on legitimate task performance is the reduction in
TPR. TPR is above 0.97 when k = 3 but it drops consistently as k is increased from 3 to
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Table 5.3 Impact of noise addition on legitimate task performance.

σ
Recall
(TPR)

Selectivity
(TNR)

Precision
(PPV)

Negative
Predictive

Value (NPV)

Accuracy
(ACC)

0.1 1 1 1 1 1
0.4 0.9572 0.9984 0.9162 0.9992 0.9977
0.7 0.8677 0.9958 0.788 0.9976 0.9935
1 0.8638 0.9934 0.7025 0.9975 0.991
2 0.7374 0.9818 0.4244 0.9952 0.9775
3 0.7101 0.9599 0.2437 0.9945 0.9555
4 0.6051 0.9420 0.1593 0.9924 0.936
5 0.6401 0.9262 0.1362 0.9930 0.9211
10 0.5506 0.8645 0.0687 0.9906 0.8589
15 0.5272 0.8232 0.0514 0.9897 0.8179
20 0.5117 0.7779 0.0402 0.9887 0.7731

11. From Table 5.3, we observe that noise addition starts with perfect TPR, TNR, PPV,
NPV and ACC when σ = 0.1. For such low σ, the added noise amounts are so low that
there is no negative impact on legitimate task performance. However, as σ increases, all
of TPR, TNR, PPV, NPV and ACC steadily decrease. The rate of decrease is fastest
for TPR and PPV, whereas it is slower for others. This result shows that the legitimate
task performance of noise addition is heavily dependent on the value of σ.

Analysis of Trade-offs: In Figures 5.4, 5.5 and 5.6, we provide graphs to compare the
legitimate task accuracy and LuxTrack attack accuracy using three ML models with the
highest attack accuracy (K-NN, NN, GBT). Figure 5.4 shows that binning is moderately
effective in reducing attack accuracy when the number of bins n = 8 or 12, but for the
attack to become less feasible, n should be as low as 2 or 4. However, for n = 2 or 4, we
had observed from Table 5.1 that TPR, TNR, PPV and ACC of binning can be extremely
low. Thus, when we consider the trade-off between attack accuracy and legitimate task
performance, binning is not the most desirable countermeasure because a high decrease
in legitimate task performance must be incurred for binning to become effective against
LuxTrack.

When we analyze the trade-offs of smoothing by combining Figure 5.5 with Table 5.2, we
observe that smoothing is generally good at maintaining high legitimate task performance
across many k values. On the other hand, Figure 5.5 shows that attack accuracy also
remains quite high (above 50%) for all k values. Thus, we conclude that while smoothing
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Figure 5.4 Trade-off between legitimate task accuracy (changing screen background color)
and activity inference attack, for the binning countermeasure.

performs well in maintaining legitimate task performance, if high protection against the
LuxTrack attack is desired, then it would not be the preferred choice of countermeasure.
On the other hand, if the priority is to maintain as high legitimate task performance as
possible while achieving some protection from the attack, then smoothing would be a
suitable choice.

Finally, we study the trade-offs of the noise addition countermeasure using Figure 5.6
and Table 5.3. The protection offered by this countermeasure is not much when σ = 0.1
or 0.4. In contrast, near-perfect protection can be offered when σ = 10 or above, but this
comes at the cost of substantial loss in legitimate task accuracy. σ = 1 and 2 seem to offer
a good trade-off between legitimate task accuracy and protection from the attack. When
σ = 1, attack accuracy is below 40% for all three ML models; in addition, legitimate task
accuracy and other metrics in Table 5.3 remain high. When σ = 2, attack accuracy is
below 30% for all three ML models; in addition, legitimate task accuracy remains above
97%. Thus, noise addition defense with σ close to 1 or 2 can be recommended to achieve
a good trade-off.

5.1.5 Evaluation of Countermeasures on LightSpy

In addition to showing that our countermeasures are effective against LuxTrack, we also
evaluate them on LightSpy to demonstrate their generality. Figure 5.7 contains the
results for binning, Figure 5.8 contains the results for smoothing, and Figure 5.9 contains
the results for noise addition. Overall, we observe that the countermeasures are effective
against LightSpy as well, and their behaviors are similar to how they behave on LuxTrack.
For example, with few numbers of bins such as 2 or 4, attack accuracy is as low as 20-45%.
As the number of bins increases, attack accuracy also increases. Even with a relatively
large number of bins (n = 12), there are significant drops in the attack accuracy of K-
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Figure 5.5 Trade-off between legitimate task accuracy (changing screen background color)
and activity inference attack, for the smoothing countermeasure.
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Figure 5.6 Trade-off between legitimate task accuracy (changing screen background color)
and activity inference attack, for the noise addition countermeasure.

NN and SVM models. Also similar to LuxTrack, we observe from Figure 5.8 that as
we increase the number of points k used in smoothing, attack accuracy decreases. The
reduction in accuracy is small when k = 3 or 5; but substantial accuracy reductions are
observed when k ≥ 7. For the noise addition defense, we observe from Figure 5.9 that
attack accuracy decreases quickly as the standard deviation σ of the noise exceeds 0.4.
Similar to LuxTrack, attack accuracies are almost halved when σ = 1, and they approach
the accuracy of a random guess when σ ≥ 4.

5.2 Countermeasures against Subject Inference Attack

The foundation of our proposed countermeasure against subject-inference attacks is the
deliberate manipulation of sensor data before it is transmitted to the client. The goal is
to ensure minimal impact on the legitimate utility of the data—namely, activity predic-
tion accuracy—while significantly reducing the accuracy of models developed by attackers
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Figure 5.7 Attack accuracy of LightSpy models after our binning countermeasure is ap-
plied.

Figure 5.8 Attack accuracy of LightSpy models after our smoothing countermeasure is
applied.

to infer subjects. To achieve this, we present example scenarios of defense mechanisms
designed to counter specific types of attacks. These mechanisms can primarily be cate-
gorized into two groups: (1) those that manipulate features extracted from raw sensor
data and (2) those that directly manipulate the raw sensor data itself. At the end of
each scenario, depending on the defense type, either noisy features or raw data are sent
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Figure 5.9 Attack accuracy of LightSpy models after our noise addition countermeasure
is applied.

to the client. The attacker, with access to this data, applies four machine learning mod-
els (previously trained as a "first cut solution") to predict activities and subjects from
the records. Below, we describe each defense mechanism in detail. The assumptions
regarding the information available to each mechanism are summarized in the table 5.4.

5.2.1 Features-Based Defense Mechanisms

In the first three scenarios, the assumption is that the defense mechanism has access to
features extracted from the raw sensor data. Instead of transmitting raw data from nine
sensors, 156 significant features for subject classification and 156 significant features for
activity classification are extracted and sent to the client. Given that 17 features overlap
between the two sets, a total of 295 features are provided to the client in place of raw
sensor data. These feature sets were selected based on lower p-values.

5.2.1.1 Random Feature Noise Injection Defense Mechanism (RFNI)

In this scenario, the defense system has access to all 295 features without knowing their
specific importance for subject or activity classification. That is, the defense mechanism
does not know which feature belongs to which set of 156 features. The defender randomly
applies Gaussian noise with varying standard deviations to each feature. The noisy
features are then sent to the client. The attacker, with malicious intent, uses the noisy
features as input to its predictive models in an attempt to infer the subject.
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Table 5.4 Summary of assumptions and information availability for each proposed defense mechanism.

Defender F/R
Sig.

Feat.
(Subj.)

Sig.
Feat.
(Act.)

Informed
of

Raw Sensors’
Sig.

# Noisy
Sensor-Axes

# Noisy
Features

ML Models Access
& Feat. Provided

Noise
Calc.

Search
Method

RFNI F ✗ ✗ ✗ 0 295, 221, 147, 73 ✗ ✗ ✗
SFNI F ✓ ✗ ✗ 0 156 ✗ ✗ ✗

SOFNI F ✓ ✓ ✗ 0 139 ✗ ✗ ✗
Uni-SANI R ✗ ✗ ✗ 6 0 ✗ ✗ ✗

OptUni-SANI R ✗ ✗ ✗ 6 0 ✓ ✓ Binary Search
MinNoise R ✗ ✗ ✓ 2 0 ✓ ✓ Bayesian Search

AcConstrain R ✗ ✗ ✓ 2 0 ✓ ✓ Bayesian Search
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The accuracy of the four predictive models for both activity and subject classification,
based on the noisy data, is illustrated in Figures 5.10a and 5.10b. As shown, increasing
the noise’s standard deviation reduces the accuracy of all four models for predicting both
the 19 activities and the 24 subjects.

This behavior can be attributed to the effect of Gaussian noise disrupting the dataś struc-
ture, making it more challenging for predictive models to identify meaningful patterns.
However, since the defense mechanism does not distinguish between features critical for
subject and activity classification, the noise is applied uniformly across all features. Con-
sequently, the noise affects both categories of features indiscriminately.

Figure 5.10c compares the change in accuracy between activity prediction models and
subject prediction models. Although increasing noise achieves the goal of reducing the
accuracy of subject prediction, it significantly impacts activity prediction accuracy, which
is undesirable. This result occurs because the overlapping features and shared informa-
tion between subject and activity classification mean that noise affecting subject-relevant
features also influences activity-relevant features. Additionally, the indiscriminate appli-
cation of noise to all features results in degradation in model performance for both tasks,
especially as the standard deviation of the noise increases.

Feature Subset Selection and Its Impact: In some cases, selecting a subset of
features can yield better results for the models. Therefore, this scenario is extended by
randomly selecting a specific percentage of features (e.g., 75%, 50%, and 25%) as input to
the attacker’s predictive models. To ensure comparability with previous results, the same
noise levels are applied to the selected features. Figures 5.11, 5.12, and 5.13 illustrate
the changes in accuracy for subject and activity prediction models, both as a function of
noise standard deviation and relative to each other.

The results reveal that reducing the percentage of features available to the attacker
produces distinct effects on subject and activity prediction models:

A. Subject Prediction Accuracy: Selecting fewer features increases the relative pro-
portion of subject-relevant features in the subset, even when selected randomly. Subject
classification models often rely on a smaller, distinct set of features, and this random
selection process may retain a sufficient amount of this information. Furthermore, the
addition of noise affects fewer features, reducing the overall disruption to subject-relevant
patterns. As a result, subject prediction accuracy remains stable or even improves slightly
in some cases.

B. Activity Prediction Accuracy: Activity classification relies on a broader range of
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(a)

(b)

(c)
Figure 5.10 Accuracy of (a) Subject prediction models and (b) Activity prediction models
with and without noise of specific intensities added to all features, along with (c) a trade-
off analysis diagram showing the performance relationship between Subject and Activity
prediction models. 69



(a)

(b)

(c)
Figure 5.11 Accuracy of (a) Subject prediction models and (b) Activity prediction models
with and without noise of specific intensities added to random 75% of features, along with
(c) a trade-off analysis diagram showing the performance relationship between Subject
and Activity prediction models. 70



(a)

(b)

(c)
Figure 5.12 Accuracy of (a) Subject prediction models and (b) Activity prediction models
with and without noise of specific intensities added to random 50% of features, along with
(c) a trade-off analysis diagram showing the performance relationship between Subject
and Activity prediction models. 71



(a)

(b)

(c)
Figure 5.13 Accuracy of (a) Subject prediction models and (b) Activity prediction models
with and without noise of specific intensities added to random 25% of features, along with
(c) a trade-off analysis diagram showing the performance relationship between Subject
and Activity prediction models. 72



features that capture movement patterns across multiple sensors. Reducing the feature
set diminishes the overall information available to activity models, leading to a moderate
accuracy drop. However, this reduction also limits the extent to which noise is applied
to activity-relevant features, mitigating the negative impact of noise. Moreover, the
likelihood of retaining the 17 shared features decreases as the subset is reduced, lessening
interference between subject and activity classification tasks and partially preserving
activity prediction accuracy.

These observations indicate a trade-off inherent in feature subset selection: while subject
prediction accuracy benefits from a higher relative representation of subject-relevant fea-
tures and reduced noise interference, activity prediction accuracy experiences a smaller
decline due to the decreased cross-task interference and noise exposure.

The findings in RFNI underscore the importance of designing noise injection strategies
that selectively target features based on their relevance to specific tasks. This approach
minimizes collateral damage to the primary objective—activity classification—while ef-
fectively mitigating subject inference attacks. Building on this idea, the next scenario
explores a targeted strategy: the Subject-Specific Feature Noise Injection Defense Mech-
anism (SFNI).

5.2.1.2 Subject-Specific Feature Noise Injection Defense Mechanism (SFNI)

In this scenario, the defense mechanism possesses additional knowledge about the fea-
tures compared to the RFNI strategy. Instead of having access to all 295 features, the
defender identifies the 156 features most critical for subject classification. Noise is applied
exclusively to these features to maximize the reduction in subject prediction accuracy.

The changes in accuracy for the four activity and subject prediction models as a function
of the applied noise are depicted in Figures 5.14a and 5.14b. As these figures demon-
strate, subject prediction accuracy decreases significantly with increasing noise, achieving
the desired outcome. Meanwhile, the impact on activity prediction accuracy is less pro-
nounced compared to the previous scenario, effectively meeting both objectives. Figure
5.14c further highlights the trade-off between activity and subject prediction accuracies,
showing that activity prediction accuracy is better preserved as subject prediction accu-
racy declines.

The results reveal three key observations:

Impact on Subject Prediction Accuracy: By focusing noise injection on features
that are explicitly significant for subject classification, this defense mechanism effectively
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(a)

(b)

(c)
Figure 5.14 Accuracy of (a) Subject prediction models and (b) Activity prediction models
with and without noise of specific intensities added to subject-specific features, along with
(c) a trade-off analysis diagram showing the performance relationship between Subject
and Activity prediction models. 74



disrupts the information most critical to subject prediction models. Unlike RFNI, which
distributes noise randomly across all features, SFNI ensures that the noise targets the
core predictive elements for subject inference. This targeted approach leads to a more
significant drop in subject prediction accuracy as noise intensity increases, making it more
challenging for the attacker to infer subject identities.

Impact on Activity Prediction Accuracy: The effect of noise on activity prediction
models is mitigated due to the selective application of noise. Since noise is applied
only to the 156 subject-relevant features, the remaining features, including those critical
for activity classification, remain largely unaffected. Additionally, the reduced overlap
between subject- and activity-relevant features further minimizes the unintended impact
of noise on activity prediction. This targeted strategy preserves the integrity of activity
prediction models more effectively than RFNI, which applies noise indiscriminately across
all features.

Trade-Off Between Objectives: Figure 5.14c illustrates that the SFNI mechanism
achieves a more favorable trade-off between subject and activity prediction accuracies
compared to RFNI. As subject prediction accuracy decreases due to noise, activity pre-
diction accuracy experiences a much smaller decline. This result underscores the effective-
ness of targeted noise application in reducing subject inference attacks while maintaining
the primary functionality of activity classification systems.

While SFNI demonstrates a significant improvement in balancing the objectives of subject
prediction reduction and activity prediction preservation, it still applies noise to features
that are partially shared between the two tasks. This overlap can lead to unnecessary
degradation in activity prediction accuracy. To address this, the next scenario introduces
the Subject-Only Feature Noise Injection Defense Mechanism (SOFNI), which eliminates
this overlap by isolating and targeting only the 139 features specific to subject classifi-
cation. This refinement further minimizes collateral effects on activity prediction while
maintaining robust protection against subject inference attacks.

5.2.1.3 Subject-Only Feature Noise Injection Defense Mechanism (SOFNI)

In the third scenario, the defense system leverages even more detailed knowledge about the
features. This defender identifies both the 156 significant features for subject classification
and the 156 significant features for activity classification. By categorizing features based
on their relevance to each classification task, the defense mechanism isolates the 139
features that are exclusively important for subject classification, excluding the 17 features
shared by both tasks. Noise is applied solely to these 139 features, ensuring that the
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features critical for activity classification remain entirely unaffected.

The changes in accuracy for the four prediction models as a function of the applied noise
are shown in Figures 5.15a and 5.15b.

The results highlight the following key observations:

Impact on Subject Prediction Accuracy: Applying noise exclusively to the 139
subject-specific features ensures that the disruption directly targets the critical predictive
elements for subject inference. As noise intensity increases, subject prediction accuracy
declines significantly across all models, eventually reaching levels desired by the defense
mechanism. This result underscores the effectiveness of precise noise targeting, as it
maximizes the disruption to subject prediction models without diluting the noise effect
by spreading it across irrelevant or redundant features.

Impact on Activity Prediction Accuracy: Since no noise is applied to the 156 fea-
tures significant for activity classification, activity prediction accuracy remains unaffected.
Unlike RFNI and SFNI, where noise inadvertently impacts activity-relevant features due
to overlap, the SOFNI approach eliminates any collateral effects. This precise targeting
ensures that the primary objective of activity classification remains intact, even under
increasing noise levels.

Trade-Off Between Objectives: Figure 5.15c illustrates the stability of activity
prediction accuracy in contrast to the significant drop in subject prediction accuracy as
noise intensity increases. This result demonstrates the superiority of SOFNI in balancing
the dual objectives of preserving activity prediction accuracy and reducing subject
prediction accuracy. Unlike previous scenarios, SOFNI achieves an ideal balance, where
activity prediction models are entirely unaffected while subject prediction models are
effectively disrupted.

Why Do the Results Occur This Way?

The outcomes observed in Figures 5.15a, 5.15b, and 5.15c can be attributed to the fol-
lowing factors:

Precise Targeting of Subject-Specific Features: By isolating the 139 features ex-
clusive to subject classification, SOFNI ensures that noise is applied only to the features
directly contributing to subject prediction. This precision eliminates the dilution of noise
observed in RFNI and SFNI, where noise was either randomly distributed or partially
affected overlapping features. Consequently, subject prediction models experience a more
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(a)

(b)

(c)
Figure 5.15 Accuracy of (a) Subject prediction models and (b) Activity prediction models
with and without noise of specific intensities added to subject-only features, along with
(c) a trade-off analysis diagram showing the performance relationship between Subject
and Activity prediction models. 77



substantial accuracy drop with increasing noise.

No Overlap Between Affected Features: The absence of overlap between the noisy
features (subject-specific) and the unaffected features (activity-specific) ensures that ac-
tivity prediction models remain entirely shielded from the defense mechanism’s impact.
This separation of feature sets prevents any unintended degradation in activity prediction
accuracy, a significant improvement over the previous scenarios.

Enhanced Trade-Off Management: The trade-off between subject and activity pre-
diction accuracies is more effectively managed in SOFNI due to its exclusive focus on
subject-specific features. By leaving activity-critical features intact, the defense mech-
anism achieves a near-perfect balance, significantly reducing subject inference accuracy
without compromising the primary functionality of activity classification systems.

SOFNI represents the most refined approach among the three scenarios, achieving the
dual objectives of robust defense against subject inference attacks and uncompromised
activity prediction accuracy. This approach demonstrates the importance of leveraging
detailed feature knowledge in designing targeted defense mechanisms.

5.2.1.4 Comparison of the Three Features-Based Defense Mechanisms

From the first to the third scenario, the results progressively align more closely with the
intended goals. In the third scenario, the ideal outcome is achieved: a substantial reduc-
tion in subject prediction accuracy with no change in activity prediction accuracy. As
previously noted, the LightGBM model consistently outperforms the other three algo-
rithms. For this model, Figure 5.16 illustrates the changes in subject prediction accuracy
relative to activity prediction accuracy as noise intensity increases.

As seen in Figure 5.16, the subject prediction accuracy decreases by up to 10% in the
first and second defense systems, which is better than the third one, where the reduction
is around 20%. However, in the first defender, applying noise to all features significantly
reduces activity prediction accuracy. In contrast, the second defender shows a much
better performance, with only about a 2% reduction in activity prediction accuracy. The
third defender, while causing no reduction in activity prediction accuracy, does not reduce
subject prediction accuracy as effectively as the second defense mechanism (by about 10%
less).

Thus, the second defender offers the best trade-off between the two objec-
tives—maximizing subject prediction accuracy reduction while minimally impacting ac-
tivity prediction accuracy—demonstrating better overall performance compared to the
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Figure 5.16 Impact of noise intensity on subject prediction accuracy and activity predic-
tion accuracy across the three defense mechanisms for LightGBM models.

other two.

5.2.2 Raw-Sensor-Data-Based Defense Mechanisms

Although the feature-based defenders exhibit excellent performance, they are less realis-
tic in practical applications. Depending on the microcontroller hardware used for sensor
installation, raw sensor readouts are typically more accessible, and real-time computation
and supplying large number of features is often infeasible. Thus, feeding defense mech-
anisms with features instead of raw sensor data is not practical. For this reason, this
section focuses on designing defense systems that directly manipulate raw sensor data.

5.2.2.1 Uniform Noise-Based Defense Mechanisms

Uniform noise-based defense mechanisms provide a straightforward and effective approach
to reduce the accuracy of Subject prediction models. By introducing noise uniformly
across all sensor axes, these methods aim to disrupt predictive models’ ability to iden-
tify sensitive information. This section introduces two variations of uniform noise-based
defenses: Uni-SANI, which applies random uniform noise intensities, and OptUni-SANI,
which fine-tunes noise intensity to minimize Subject prediction accuracy while preserving
Activity prediction accuracy as much as possible.
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5.2.2.1.1 Uniform Sensor-Axis Data Noise Injection Defense Mechanism
(Uni-SANI) The simplest and most cost-effective method to introduce noise into raw
sensor data is to apply noise of uniform intensity across all 9 sensor-axes. For designing
this defense system, it suffices for the defender to access readings from all three axes of
the three available sensors. The defender generates random noise with varying intensities,
adds it to the readings, and transmits the noisy data to the cloud service. Figures 5.17a
and 5.17b illustrate how predictive models respond to this defense system’s behavior
under different noise intensities.

As observed, both the accuracy of the four Subject prediction models and the four Activity
prediction models decline more sharply as noise intensity increases. Even with a slight
increase in noise intensity, a significant drop in the models’ accuracy is evident.

Figure 5.17c clearly depict how the accuracy of the Subject prediction models changes in
comparison to the Activity prediction models. While the accuracy of the Subject models
decreases well below our desired threshold (e.g., below 10%), the accuracy of the Activity
models also declines significantly. This steep drop in Activity prediction accuracy is
undesirable, as our objective is to maintain Activity prediction accuracy or allow only
minimal reductions.

5.2.2.1.2 Optimized Uniform Sensor-Axis Data Noise Injection Defense
Mechanism (OptUni-SANI) To mitigate the steep decline in the accuracy of Activ-
ity prediction models, we replace random noise intensity with a search for the minimum
noise intensity that optimizes results when applied to all 9 sensor-axes. The optimiza-
tion algorithm we use to determine the minimum standard deviation (σ) of normally
distributed noise is the binary search algorithm. Among the four predictive models, we
select only LightGBM, as it demonstrates higher accuracy compared to the other three
models. By setting a threshold value (α = 40) as the maximum acceptable accuracy for
Subject prediction models, we proceed with the binary search for the minimum σ within
the range [0, 0.5], starting with an initial value of 0.25. The optimization problem is
defined as follows:

minimize σ

subject to Acc[Subj. Pred.,Model,σ] < Threshold α

given Model = {LightGBM}, 0 < σ < 0.5, α = 40
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(a)

(b)

(c)

Figure 5.17 Effect of Uni-SANI on the accuracy decline of (a) Subject prediction models
and (b) Activity prediction models with increasing noise intensity, while (c) shows the
comparative changes in accuracy between Subject and Activity prediction models.
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This optimized defense system requires access to predictive models to determine the effect
of noise on the raw sensor data. The noisy data is tested on the Subject and Activity
prediction models, and based on the accuracy results, the algorithm determines the next
σ value for subsequent iterations.

Figure 5.18a illustrates how the accuracy of both Subject and Activity prediction models
changes for the LightGBM model at different σ values. It can be observed that the
search algorithm halves the σ value in each step. As σ decreases, the accuracy of both
models increases, with the Subject prediction accuracy approaching the desired threshold.
For instance, with a threshold α = 40, the algorithm identifies the final noise standard
deviation as σ = 0.0078. For α = 50, the algorithm advances one more step to reach a
final value of σ = 0.0039. Figure 5.18b further highlights how Subject prediction accuracy
changes relative to Activity prediction accuracy, offering a clearer view for selecting an
appropriate threshold value (α).

(a) (b)

Figure 5.18 Performance of the OptUni-SANI defense mechanism. (a) Depicts changes
in Subject and Activity prediction accuracy for the LightGBM model at varying noise
standard deviation (σ) values during the binary search process. (b) Illustrates the rela-
tionship between Subject prediction accuracy and Activity prediction accuracy, aiding in
the selection of the optimal threshold value (α).

5.2.2.2 Sensor-Axis-Specific Noise Analysis

In this analysis, noise is applied selectively to individual axes among the nine sensor-
axes, rather than to all axes simultaneously. This approach aims to evaluate the unique
significance of data from each sensor-axis in the predictive performance of both Activity
and Subject classification models. By isolating each sensor-axis, it becomes possible to
discern how the features extracted from these axes contribute to model accuracy and to
understand the varying sensitivities of Subject and Activity prediction models to specific
sensor data.
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The number of significant features selected for classification based on either Activity or
Subject often varies across sensor-axes. Even when the number of selected features is
comparable, the features themselves may differ. Consequently, the influence of different
sensor-axes on predictive accuracy is not uniform. For instance, data from certain sensor-
axes may significantly affect Activity prediction models but have minimal or no impact on
Subject prediction models, and vice versa. Furthermore, some axes may simultaneously
influence both models, while others have negligible effects on either.

The results of this analysis highlight these distinctions. Figures 5.19a and 5.19b demon-
strate that applying noise to the x- and y-axes of Acc2 has no effect on Subject prediction
accuracy, indicating that the models did not select significant features from these axes.
However, this same noise causes a notable decrease in Activity prediction accuracy, with
reductions as high as 44% in the XGBoost model and 16% in the LightGBM model.
Similarly, applying noise to the y-axis of Acc1 (Figure 5.19c) affects both Subject and
Activity prediction models, showing sensitivity across both classification tasks.

The most intriguing results arise from applying noise to the x- and z-axes of Acc1 and
the x-axis of the Gyro sensor (Figures 5.19d, 5.19e, and 5.19f). Here, noise significantly
reduces Subject prediction accuracy while minimally affecting—or even preserving—the
accuracy of Activity prediction models. For example, in the case of the Gyro sensor’s x-
axis, Subject prediction accuracy drops by approximately 43% to 50% across all models,
while Activity prediction accuracy remains stable. These findings suggest that features
selected from this sensor-axis are vital for Subject prediction but have minimal influence
on Activity prediction, making it a prime candidate for further exploration.

The insights from Sensor-Axis-Specific Noise Analysis reveal how selectively applied noise
can disrupt Subject prediction while preserving Activity prediction. This analysis not
only identifies sensor-axes that hold asymmetric importance across classification tasks
but also serves as a foundation for designing more targeted and effective noise-based
defense mechanisms. Motivated by the findings of Sensor-Axis-Specific Noise Analysis,
we introduce two novel mechanisms: MinNoise and AcConstrain, which build on the
insights gained here to mitigate Subject inference attacks while safeguarding Activity
prediction integrity.

5.2.2.3 Optimized Sensor-Axis-Specific Noise Injection Defense Mechanisms

The results from the previous defender led to the design of a third defense system. By
adding noise to specific sensor-axis readings, we observed the behavior of Subject and
Activity predictor models and how the accuracy of each predictor changes based on the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.19 Results of Sensor-Axis-Specific Noise Analysis. (a) and (b) show how noise
on the x- and y-axes of Acc2 impacts Activity but not Subject prediction accuracy. (c)
Highlights accuracy reductions for both model types with noise on the y-axis of Acc1.
(d), (e), and (f) depict the x- and z-axes of Acc1 and the x-axis of the Gyro sensor,
where Subject prediction accuracy drops significantly while Activity prediction accuracy
is preserved, with the Gyro x-axis showing the most desirable results.

sensor-axes affected by the noise. Consequently, we now have a better understanding of
which sensor-axes should be targeted with noise to significantly reduce the accuracy of
Subject predictors while ensuring minimal impact on Activity predictors.

In this new defending system, inspired by the results of the previous one, we select only
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two of the nine sensor-axes to apply noise: the z-axis of the Acc1 sensor and the x-axis
of the Gyro sensor. Noise applied to these two sensor-axes demonstrated the highest
reduction in the accuracy of Subject predictors while causing the least degradation in the
accuracy of Activity predictors.

Applying noise with equal intensity across both sensor-axes is unlikely to yield optimal
results. This was evident in the performance of the first defense mechanism (MinNoise),
where noise with the same intensity was added to all nine sensor-axes, and optimization
was needed to improve the results. Although the optimization brought relatively better
results, there was still room for improvement. Applying different noise intensities to each
of the nine sensor-axes and optimizing these intensities would provide even better results,
albeit at a higher computational cost.

Thus, in this defense system, instead of directly applying noise with the same intensity, we
apply two different noise intensities—each specific to one of the selected sensor-axes—and
begin optimization simultaneously.

The selected optimization algorithm for this section is Bayesian search, which aims to
find the optimal noise intensities σ1 and σ2 to apply to the z-axis readouts of the Acc1
sensor and the x-axis readouts of the Gyro sensor, respectively. The optimality criterion
depends on the conditions we define. We solve the problem under two different conditions:

1. Minimizing the total noise intensities σ1 + σ2 required to reduce the Subject prediction
model’s accuracy below a predefined threshold (MinNoise).

2. Minimizing the accuracy of the Subject prediction model while ensuring the Activity
prediction model’s accuracy remains above a predefined threshold (AcConstrain).

For both scenarios, the LightGBM model is exclusively used for both Subject and Activity
predictions. The details of each scenario are as follows.

5.2.2.3.1 Minimized Noise Optimization-Based Defense Mechanism (Min-
Noise) Under MinNoise, the objective is to minimize σ1 + σ2 such that the combined
noise intensities reduce the Subject prediction model’s accuracy below a specified thresh-
old, α. The threshold α ranges from 15% to 60%, and for each value, Bayesian search is
executed. Each execution involves 100 iterations, during which σ1 and σ2 are iteratively
updated to minimize their sum while satisfying the condition that the Subject prediction
accuracy falls below α.

The algorithm starts with initial values σ1=0.25 and σ2=0.25, and in subsequent itera-
tions, it selects values for σ1 and σ2 from the range [0, 0.5]. This range provides sufficient
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flexibility for noise intensity selection. At the end of 100 iterations, the algorithm selects
the σ1 and σ2 values that result in the minimum σ1 + σ2 while meeting the required
condition. The optimization process for MinNoise can be expressed as follows:

minimize σ1 +σ2

subject to Acc[Subj. Pred.,Model,σ1,σ2] < Threshold α

given Model = {LightGBM}, 0 < σ1,σ2 < 0.5, α = {15%,20%,25%, . . . ,55%,60%}

Figure 5.20a illustrates the minimum σ1 + σ2 values found by the algorithm for
each threshold α. For instance, when α=15%, the algorithm identifies σ1=0.496 and
σ2=0.3067, resulting in a total noise intensity of 0.8027. With these noise values, the
Subject prediction model’s accuracy is reduced to 14.47%, which is below the specified
threshold. Notably, there is no constraint on the accuracy of the Activity prediction model
in this scenario. Under the same conditions, the Activity prediction model maintains an
accuracy of 89.47%.

While the algorithm also identifies other noise intensity combinations, such as σ1=0.5 and
σ2=0.4895, which reduce the Subject prediction accuracy further (to 14.25%), the algo-
rithm prioritizes minimizing the noise intensity sum and selects σ1=0.496 and σ2=0.3067
as the optimal solution for α=15%.

The results reveal that as the threshold α increases, the minimum noise intensities se-
lected by the algorithm decrease. This is because lower noise intensities suffice to reduce
the Subject prediction accuracy below higher thresholds. Moreover, as α increases, the
Activity prediction accuracy experiences less degradation. For instance, the Activity pre-
diction accuracy drops from 93.64% to 89.47% when α decreases, demonstrating effective
performance under this optimization scenario.

Figure 5.20b illustrates the balance between the two models, revealing that a substantial
drop in Subject prediction accuracy (from 47.37% to 14.47%) is accompanied by only a
slight decline in Activity prediction accuracy (from 93.64% to 89.47%).

5.2.2.3.2 Accuracy-Constrained Optimization-Based Defense Mechanism
(AcConstrain) Under AcConstrain, the objective is to minimize the Subject predic-
tion model’s accuracy while ensuring the Activity prediction model’s accuracy remains
above a threshold α. Unlike MinNoise, the priority here is to control the accuracy of
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(a)

(b)

Figure 5.20 (a) Minimum total noise intensities (σ1 + σ2) required to reduce Subject
prediction accuracy below various thresholds (α) under MinNoise. The results highlight
the trade-off between noise intensity and Subject prediction accuracy, with lower thresh-
olds requiring higher combined noise intensities. Activity prediction accuracy remains
unconstrained in this scenario. (b) The balance between Subject and Activity prediction
accuracies under MinNoise, showing that a significant reduction in Subject prediction
accuracy leads to only a marginal decline in Activity prediction accuracy.
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the Activity prediction model. The threshold α ranges from 84% to 94%, and Bayesian
search is executed for each value.

Similar to MinNoise, each algorithm execution involves 100 iterations. During each iter-
ation, the algorithm selects the σ1 and σ2 values from the range [0, 0.5] to minimize the
Subject prediction accuracy while ensuring that the Activity prediction accuracy does
not fall below α. The initial values are again set to σ1=0.25 and σ2=0.25.

The optimization process for AcConstrain can be expressed as follows:

minimize Subj. Pred. Acc.

subject to Acc[Act. Pred.,Model,σ1,σ2] > Threshold α

given Model = {LightGBM}, 0 < σ1,σ2 < 0.5, α = {84%,85%,86%, . . . ,93%,93.5%,94%}

Figure 5.21a shows the minimum Subject prediction accuracies obtained by the algorithm
for different α values. For instance, when α=93%, the algorithm finds σ1=0.0109 and
σ2=0.4699, resulting in a Subject prediction accuracy of 28.51%, while maintaining the
Activity prediction accuracy at 93.2%, above the threshold. Although other noise combi-
nations, such as σ1=0.0099 and σ2=0.4702, yield lower total noise intensities, they are not
selected as the final solution because they result in a slightly higher Subject prediction
accuracy of 29.39%. The results indicate that as α increases, the minimum achievable
Subject prediction accuracy also increases. This is because smaller noise intensities are se-
lected to avoid significant degradation in Activity prediction accuracy. Consequently, the
degradation in both Subject and Activity prediction accuracies is inversely proportional
to α.

Figure 5.21b further highlights the trade-off between the two models, showing that even
with a significant reduction in the Subject prediction accuracy (from 74.56% to 11.84%),
the Activity prediction accuracy drops only marginally (from 94.08% to 89.91%).

5.2.2.4 Comparison of the Three Raw-Sensor-Data-Based Defense Mecha-
nisms

The three proposed defense systems represent distinct approaches to introducing noise
into raw sensor data, each with unique strengths and limitations.

Uni-SANI and its optimized version, OptUni-SANI, apply uniform noise across all sensor-
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Figure 5.21 Performance of Optimized Sensor-Axis-Specific Noise Injection under Ac-
Constrain defense mechanisms. (a) Minimum achievable Subject prediction accuracy for
different Activity prediction thresholds (α), demonstrating the trade-off between the two
models. (b) Comparative accuracy reductions for Subject and Activity prediction models,
showing minimal impact on Activity prediction despite significant degradation in Subject
prediction accuracy.

axes, achieving simplicity and broad effectiveness. While these approaches significantly
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reduce Subject prediction accuracy below desired thresholds, they also cause an unde-
sirable drop in Activity prediction accuracy. The optimization of noise intensity using
binary search in OptUni-SANI partially mitigates this issue but still struggles to preserve
Activity prediction accuracy adequately.

MinNoise takes a more targeted approach by adding noise to individual sensor-axes.
This design reveals the varying importance of different sensor-axes in predictive models.
Results show that applying noise to specific axes, such as the x-axis of the Gyro sensor
or the z-axis of the Acc1 sensor, achieves the desired reduction in Subject prediction
accuracy while minimizing the impact on Activity prediction. However, identifying the
most impactful axes requires additional analysis.

AcConstrain builds on the insights of MinNoise by optimizing noise intensities for two
specific sensor-axes. Using Bayesian optimization, it balances the trade-off between min-
imizing Subject prediction accuracy and preserving Activity prediction accuracy. By tai-
loring noise intensities for each axis, this approach achieves the best performance among
the three, effectively addressing both objectives with minimal computational overhead.

The performance comparison of all three defense mechanisms, under specific conditions,
is depicted in Figure 5.22. The figure highlights the reductions in Subject prediction accu-
racy and the corresponding impact on Activity prediction accuracy for each mechanism,
focusing on the LightGBM model. For Uni-SANI and OptUni-SANI, the comparison is
based on uniform noise application. For MinNoise, the results are drawn from adding
noise to the x-axis of the Gyro sensor, the sensor-axis with the most desirable result. Fi-
nally, for AcConstrain, both optimization conditions are considered, showcasing its ability
to minimize Subject prediction accuracy while preserving Activity prediction accuracy.

In summary, Uni-SANI and its optimization offer simplicity but lack precision, while
MinNoise and AcConstrain leverage axis-specific noise application to achieve more refined
and effective outcomes. AcConstrain’s optimization strategy makes it the most promising
approach, providing significant reductions in Subject prediction accuracy with minimal
impact on Activity prediction.
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Figure 5.22 Comparison of the three raw-sensor-data-based defense mechanisms in terms
of Subject and Activity prediction accuracy using the LightGBM model. The figure
includes: (1) results for Uni-SANI and OptUni-SANI with uniform noise application, (2)
MinNoise with noise applied to the x-axis of the Gyro sensor, and (3) AcConstrain for both
optimization conditions. The comparison illustrates how each mechanism balances the
trade-off between reducing Subject prediction accuracy and preserving Activity prediction
accuracy.
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6. CONCLUSION AND FUTURE WORK

This thesis has explored the hidden privacy risks embedded in two seemingly benign sensor
data domains: ambient light emissions captured by smartphone sensors and biomechan-
ical patterns in motor signal datasets. Through rigorous experimentation, we demon-
strated how these data streams can be repurposed to infer sensitive user information,
revealing critical gaps in current privacy protections. Our work underscores the dual-use
nature of sensor technologies—while they enable valuable functionalities like adaptive
screen brightness and fall detection, they simultaneously create unforeseen surveillance
vectors that demand urgent attention.

The first part of this research introduced LuxTrack, a novel side-channel attack that
exploits smartphone ambient light sensors to infer nearby laptop activities with over 80%
accuracy—a 20% improvement over prior work. By developing a specialized Android
app and collecting real-world data from human subjects, we established that subtle light
variations from laptop screens carry sufficient information to distinguish between eight
common activities, from PDF reading to video streaming. The effectiveness of this attack
motivated the design of three practical countermeasures (binning, smoothing, and noise
addition), which we empirically showed could reduce inference accuracy below 30% while
preserving essential sensor functionality. These findings carry immediate implications for
the W3C ALS standardization process and highlight the need for privacy-aware sensor
architectures in mobile devices.

Parallel to this, our investigation of motor signal datasets uncovered equally severe pri-
vacy vulnerabilities. Using SisFall dataset as a case study, we demonstrated how os-
tensibly anonymized movement data can be reverse-engineered to re-identify individuals
with 89.04% accuracy. This vulnerability stems from the inherent uniqueness of human
biomechanical patterns, which persist across different activities. To mitigate this risk,
we developed targeted defense mechanisms that strategically perturb either extracted
features or raw sensor axes, achieving a 14.47% subject inference rate while maintaining
over 95% utility for legitimate activity recognition tasks. These results challenge prevail-
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ing assumptions about dataset anonymization and call for fundamental changes in how
sensor data is collected and shared, particularly in healthcare applications.

Looking ahead, several research directions emerge from this work. The attack surface
of ambient light sensors could be further explored by combining ALS data with other
smartphone sensors or expanding to IoT devices like smart bulbs, which increasingly in-
corporate similar light-sensing capabilities. For motor signals, developing real-time adap-
tive defenses that automatically adjust noise parameters based on contextual risk factors
could bridge the gap between theoretical protections and practical deployment. Both do-
mains would benefit from interdisciplinary solutions that integrate signal processing with
cryptographic techniques, potentially enabling privacy-preserving sensor data sharing.
At a broader level, our findings underscore the need for updated regulatory frameworks
that address the unique challenges of sensor-based privacy invasions, ensuring that tech-
nological advancements in sensing capabilities are matched by corresponding safeguards
for individual rights.

The methodologies and countermeasures presented in this thesis provide a foundation
for rethinking sensor data privacy across multiple domains. By continuing to investigate
these challenges while engaging with standardization bodies and policymakers, future re-
search can help shape an ecosystem where sensor technologies fulfill their promise without
compromising user trust.
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