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ABSTRACT

A LEARNING-CENTRIC END-TO-END HYBRID SYSTEM
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IN AUTOMATED FIBER PLACEMENT

MUHAMMED ZEMZEMOGLU
Mechatronics Engineering, Ph.D. Thesis, July 2025

Dissertation Supervisor: Prof. Dr. MUSTAFA UNEL
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Estimation, Lay-up Reconstruction, Computer Vision, Deep Learning

Automated Fiber Placement (AFP) technology continues to lead and transform
composite manufacturing, but its progress remains constrained by persistent quality
assurance challenges. Emerging material and process defects compromise structural
integrity, while inspection practices remain largely manual, reactive, and incapable
of real-time feedback—leading to costly downtimes. Existing methods face two core
limitations: partial, mostly offline frame-wise analysis and the lack of global, tempo-
rally consistent lay-up visualization. To address these challenges, this thesis proposes
a dual-framework, real-time, learning-centric inspection system that unifies local de-
fect intelligence with global lay-up traceability—operating machine-independently
using only thermal imagery.

The first framework implements a hybrid, frame-wise defect analysis and quality as-
sessment system composed of three synergistic modules—Dynamic Tow Identifica-
tion, Hierarchical Defect Identification, and Lay-up Quality Evaluation—configured
for parallel or conditional execution to ensure runtime efficiency. It begins with
setup-independent spatial-temporal analysis that estimates tow boundaries with
sub-pixel accuracy (mean error < 0.8 px), enabling tow-level reasoning. In paral-
lel, high-level defect detection uses a Gabor-based SVM classifier exceeding 95%
accuracy and recall. Defective frames are forwarded to a custom 12-layer deep con-
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volutional neural network for fine-grained classification, achieving 96.4% multi-class
accuracy across defect types. Upon detection, a seeded active contour model adapted
to thermal textures yields interpretable segmentation masks with 93.2% pixel accu-
racy—outperforming baseline methods under noise. These outputs are fused with
tow geometry to compute the novel Defect Area Percentage (DAP) metric, which
quantifies severity at both tow and course levels and forms the core of the operator
decision support system (AFP-DSS). Operating at 5 fps, the framework enables fully
autonomous, real-time AFP quality inspection.

The second framework introduces ThermoRAFT-AFP, a machine-independent, deep
learning-based thermal motion estimation core tailored to AFP. Built upon the
RAFT optical flow, it incorporates AFP-specific augmentations and runtime op-
timizations (e.g., predictive initialization, drift correction, adaptive early exit) for
stable, precise thermal flow tracking. It estimates dense inter-frame motion to drive
a two-stage reconstruction pipeline that generates course-wise mosaics and assembles
high-fidelity, ply-level laminate visualizations. This restores temporal consistency
and global alignment across evolving lay-ups, enabling traceable defect analysis and
mirroring industrial inspection workflows. ThermoRAFT-AFP achieves a velocity
estimation RMSE of 4.83 mm/s and cumulative drift below 0.1%, while maintaining
robustness down to SNR = 14.4 dB and sustaining real-time operation at 25 fps. Ro-
bust against setup variations without retraining and near-zero tuning, it produces
interpretable, temporally aligned visualizations that support laminate-scale defect
propagation analysis.

Together, the two frameworks form an integrated system that fuses frame-wise de-
fect outputs with global reconstructions into a unified thermal quality view. This
fusion links semantic analysis with temporal context in an interpretable visualiza-
tion aligned with real-world inspection workflows. Evaluated on over 13,000 ther-
mal frames spanning diverse speeds, geometries and defect types, the system meets
aerospace-grade benchmarks, eliminates robot-coupled dependencies, and delivers
scalable, real-time AFP quality inspection directly from thermal imagery.



OZET

OTOMATIK FIBER YERLESTIRMEDE YERINDE TERMAL DENETIM ICIN
OGRENME TABANLI UCTAN UCA HIBRIT BIR SISTEM

MUHAMMED ZEMZEMOGLU
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Tez Damsman: Prof. Dr. MUSTAFA UNEL
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Kestirimi, Serim Yeniden Yapilanma, Bilgisayarli Gérii, Derin Ogrenme

Otomatik Fiber Yerlegtirme (AFP) teknolojisi, kompozit tretiminde oncii ve
doniigtirici bir rol tstlenmeye devam etmektedir. Ancak, siiregelen kalite kon-
trol zorluklar1 bu gelisimi kisitlamaktadir. Uretim sirasinda ortaya cikan malzeme
ve imalat kaynakli kusurlar, yapisal biitiinliigii tehdit edebilmekte; buna kargin mev-
cut denetim yontemleri genellikle manuel, tepkisel ve ger¢gek zamanl geri bildirim
saglamaktan uzaktir. Bu durum, iiretim hatalarini tespitte gecikmelere ve yiiksek
maliyetli makine duruglarina yol agcmaktadir. Mevcut yontemler iki temel eksiklik
tagimaktadir: (1) yalmizca kisith gorevleri kapsayan, gogunlukla gevrimdigi ¢aligsan
kisith ¢oziimler ve (2) zaman iginde evrilen katmanlar boyunca biitiinsel ve tu-
tarli bir gorsellestirme eksikligi. Bu doktora tezinde, yalnizca termal goriintiilleme
temelli, makineden bagimsiz ¢aligan, gercek zamanli ve 6grenme odakl ¢ift yapil
bir denetim sistemi onerilmektedir. Sistem, akilli yerel kusur tespiti ile kiiresel serim
izlenebilirligini biitiinlesik sekilde sunmaktadir.

Birinci yapi, ii¢ biitiinlegsik modiilden olugan, hibrit bir goriintii tabanl kusur analiz
ve kalite degerlendirme sistemidir: Dinamik Serit Tanmimlama, Hiyerarsik Kusur
Tanmmlama ve Serim Kalitesi Degerlendirme. Bu modiiller, ¢alisma zamani (run-
time) verimliligi i¢in paralel veya kogullu ¢alisacak sekilde yapilandirilmigtir. Kuru-
lumdan bagimsiz 6zgiin bir uzamsal-zamansal analiz algoritmasi sayesinde gerit sinir-
lar1 piksel-alt1 hassasiyetle (ortalama hata < 0,8 piksel) belirlenerek gerit dizeyinde
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karar mekanizmalar etkinlegtirilir. Aym anda, {ist seviyeli kusur tespiti, dokusal
ozelliklere dayali optimize edilmis bir Gabor-SVM smiflandiric1 ile gergeklegtirilir
(dogruluk ve duyarhlik > %95). Kusurlu olarak igaretlenen goriintiiler, 6zel olarak
tasarlanmig 12 katmanh derin evrigimsel sinir agina (CNN) yonlendirilerek ¢ok smifh
alt seviye kusur siniflandirmasi yapilir (dogruluk: %96,4). Kusur tanimlama sonrasi,
termal uygulamaya uyarlanmis tohumlu aktif kontur algoritmasi ile segmentasyon
gerceklestirilir; elde edilen maskeler %93,2 piksel dogrulugu ile guirultiilii ortamlarda
dahi yorumlanabilir sonugclar tiretir. Bu ¢ikti, serit geometrisi ile birlegtirilerek, kusu-
run hem gerit hem de hat seviyesindeki etkisini sayisal olarak tanimlayan yeni bir
metrik olan Kusur Etkilenim Orani (DAP) hesaplanir ve bu metrik, operator karar
destek sisteminin temelini olugturur. 5 fps hizla ¢aligan bu yapi, tam otomatik ve
yorumlanabilir denetim olanagi sunarak havacilik standartlarim1 kargilamaktadir.

Ikinci yapr olan ThermoRAFT-AFP, AFP siirecine 6zel olarak gelistirilmis, makine-
den bagimsiz caligan, derin 6grenme tabanli bir termal hareket kestirim birimidir.
RAFT optik akig mimarisi iizerine inga edilen bu yapi, AFP’ye 6zgii iyilegtirmeler
ve siireg-farkindalikli optimizasyonlarla (6rnegin éngoriiye dayali ilklendirme, striik-
lenme diizeltmesi, uyarlamali erken ¢ikig) giiglendirilmigtir. Sistem, gortintiiler-aras
yogun hareket tahminleri yaparak iki agsamali bir yeniden yapilandirma hattini tetik-
ler: once serim seridi diizeyinde termal mozaikler olugturulur, ardindan bunlar ytik-
sek dogruluklu, katman seviyesinde serim gorsellerine doniigtiiriiliir. Bu yapi, zaman
tutarlihgi ve global hizalamay1 geri kazanarak kusur izlenebilirligini miimkiin kilar
ve endustriyel bakim-denetim mantigini yansitir. ThermoRAFT-AFP, 4,83 mm/s
hiz tahmini ortalama kare hatasi (RMSE) ve %0,1’in altinda birikimli striiklenme
ile, SNR = 14,4 dB seviyelerine kadar dayanikliligin1 korurken 25 fps hizinda gercek
zamanl ¢aligmayi stirdiirmektedir. Robotla senkronize verilere ya da diigtik ¢oziintir-
liiklii akiglara dayali geleneksel yontemlerin aksine, hi¢bir yeniden egitim gerektirme-
den farkli iiretim kogullarina bagariyla uyum saglamaktadir.

Bu iki yapmn birlesimi, AFP ic¢in ger¢ek zamanl, buittinlesik ve termal tabanli bir
denetim sistemi olusturmaktadir. Yerel kusur c¢iktilari, global termal serim gorsel-
leri tizerine bindirilerek zaman uyumlu ve yorumlanabilir bir kalite haritas1 ortaya
konmugtur. Boéylece kusur tanimlama, segmentasyon ve hareket kestirimi birlegik
bir izleme mimarisi icinde bitiinlestirilmektedir. 13.000’den fazla termal goriintii
izerinde test edilen sistem, farkl hizlar, geometri ve kusur siniflar1 altinda havacilik
diizeyinde dogruluk ve genellenebilirlik sergileyerek yeniden egitime ihtiyag duy-
madan caligmakta; yalnmizca termal goriintiilerle, robot verisi olmaksizin, gelecek
nesil AFP denetimi i¢in 6l¢eklenebilir ve pratik bir ¢oziim sunmaktadir.
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1. INTRODUCTION

AFP has become a cornerstone of high-performance composite manufacturing. Re-
cent studies highlight that AFP technology accounts for approximately 50% of all
aerospace composite construction (Oromiehie, Prusty, Compston & Rajan (2019)),
underscoring its pivotal industrial impact. By combining robotic precision with
advanced materials, AFP enables the layer-by-layer deposition of CFRP epoxy
strips—known as tows—to fabricate lightweight, structurally optimized components
with micron-level control (August, Ostrander, Michasiow & Hauber (2014)). These
tows are laid in rows to form a course; multiple courses build a ply, and stacked plies
collectively form the laminate. The AFP head typically integrates a compaction
roller and a heat source to ensure bonding and adhesion during each pass, forming
a tightly controlled additive manufacturing sequence, as illustrated in Figure 1.1b,

adapted from (Juarez, Gregory & Cramer (2018)).

Prepreg carbon

fiber tape swals\mbm\

Collimator

Compaction roller

Substrate \

4+— Pre-heating lamp

(b)

Figure 1.1 (a) A typical AFP system during composite part production. (b) A
simplified diagram illustrating the working mechanism of the AFP robotic head
while depositing a row of fiber tows.

AFP offers unmatched advantages in design freedom, production throughput, and
structural performance—particularly in aerospace, automotive, and renewable en-
ergy sectors (Carosella, Hiigle, Helber & Middendorf (2024))—but also introduces
significant process control challenges (Sun, Han, Fu, Jin, Dhupia & Wang (2020)).
Even minor deviations in compaction, heating, or toolpath execution can lead to

critical manufacturing defects such as gaps, overlaps, wrinkles, misalignments, and
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embedded foreign objects (Anay, Miller, Tessema, Wehbe, Ziehl, Tatting, Gurdal,
Harik & Kidane (2022)). These are illustrated in Figure 1.2, adapted from (Denkena,
Schmidt, Véltzer & Hocke (2016)), and are widely reported to compromise interlam-
inar strength, reduce fatigue life, and—under severe conditions—degrade structural
integrity by more than 30% (Abouhamzeh, Nardi, Leonard & Sinke (2018); Blom,
Lopes, Kromwijk, Gurdal & Camanho (2009)).

Missing tow

it

Vo/83231CIFW

Figure 1.2 An illustration of common AFP process defects.

Although deposition is highly automated, quality control in AFP remains predom-
inantly manual (Rudberg, Nielson, Henscheid & Cemenska (2014)). Operators are
required to pause the process frequently to visually inspect each layer for defects. Al-
though critical for quality assurance, this approach is time-consuming, error-prone,
and incurs high labor costs (Cemenska, Rudberg & Henscheid (2015)). Recent
surveys report that over 42% of AFP build time is devoted to inspection-related
tasks—more than twice the time consumed by the actual lay-up process (Rudberg,
Cemenska & Sherrard (2019)). Delayed or missed defect identification further ex-

acerbates downstream repair complexity and jeopardizes structural compliance.

As AFP continues to scale toward more complex geometries and larger lay-up sur-
faces, maintaining consistent in-situ quality becomes increasingly challenging—mnot
only for defect detection, but also for timely, interpretable feedback that supports

production decisions. These limitations underscore the urgent need for an auto-
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mated, in-situ monitoring solution capable of delivering real-time quality insights,
minimizing downtime, enhancing part reliability, and directly supporting operator
decision-making—aligned with Industry 4.0 paradigms of intelligent, data-driven
manufacturing (Parmar, Khan, Tucci, Umer & Carlone (2022)). This brings forth a

fundamental challenge at the intersection of automation, reliability, and scalability:

How can we empower AFP systems with real-time, end-to-end in-
spection capabilities that are robust, intelligent, and seamlessly inte-

grable—without sacrificing speed, accuracy, or generalizability?

In this context, several critical research gaps and practical challenges emerge:

1.1 Absence of a Real-Time End-to-End Defect Inspection System

Despite recent academic advances, existing AFP inspection methods remain frag-
mented and limited in scope. Most focus on partial stages—such as defect detection
or classification—and often operate post-process, require manual oversight, or de-
pend on operator expertise. These approaches lack real-time responsiveness, offer

no unified pipeline, and are rarely scalable across diverse setups.

As a result, the broader design—manufacture—inspect cycle remains disconnected, as
illustrated in Figure 1.3. Feedback mechanisms are manual, optimization loops are

delayed, and inspection rarely informs upstream design or process control decisions.

No commercially available or reported solution currently delivers a unified, ther-
mographic, real-time inspection system that can identify defects as they emerge,
quantify their severity, and guide operators using interpretable visual overlays and
actionable frame-wise metrics (Yadav & Schledjewski (2023)). Closing this gap calls
for a fully automated, in-situ, and learning-enabled pipeline capable of supporting

both defect-level intelligence and process-level traceability.
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Figure 1.3 The design—manufacture-inspect cycle for AFP processes.

1.2 Machine Dependence and Lack of Global Motion Context

Localized, frame-wise inspection offers valuable defect-level insights but lacks the
spatial and temporal continuity required for comprehensive quality assurance. Many
defects evolve gradually, recur intermittently, or reveal structural trends only when
viewed across time. Without motion-aware inspection, such phenomena remain
undetected, hindering traceability, limiting contextual interpretation, and weakening

the feedback loop to operators and process controllers.

Although some studies have introduced global lay-up visualization through mo-
tion information, they often depend on external signals—such as robot controller
data or toolpath encoders—which introduce synchronization errors and restrict gen-
eralizability to specific AFP machines (Hocke (2020); Juarez & Gregory (2021)).
Other efforts based on thermal optical low—such as those relying on handcrafted
curvature descriptors—remain limited in adaptability and robustness when applied
across varying AFP setups and defect scenarios (Denkena, Schmidt, Timmermann
& Friedel (2022)).



At present, no deployable, machine-independent approach exists for estimating mo-
tion directly from thermal image sequences to support global inspection. Bridging
this gap would enable spatially consistent lay-up visualization, defect traceability
across time, and intuitive overlays that assist operators in interpreting evolving
laminate structures—laying the foundation for interpretable, scalable, and fully au-

tomated AFP quality monitoring.

1.3 Bridging the Gap and Promoting Hybrid, Learning-Based Solutions

To overcome the brittleness and low generalizability of traditional rule-based meth-
ods, learning-based solutions are increasingly favored for AFP quality inspection
(Brasington, Sacco, Halbritter, Wehbe & Harik (2021)). These approaches can
adapt to defect variability and thermal inconsistencies—but their effectiveness has

been historically limited by the scarcity of representative thermal datasets.

In response, this work leverages an extensive in-house thermal dataset—captured
under real AFP conditions—to enable a hybrid inspection strategy. By combining
traditional computer vision, machine learning, and deep learning in a task-optimized
architecture, the system balances interpretability, speed, and adaptability, making

it suitable for industrial deployment.

Crucially, the proposed solution goes beyond frame-level analysis. It integrates
localized defect insights with global ply visualization—providing spatially consistent
overlays and operator-assistive feedback in real-time. This integration paves the way
toward a new class of thermographic inspection systems that are learning-centric,

modular, and fully automated.



1.4 Problem Formulation and Research Objectives

Building upon the challenges highlighted in the motivation section, this thesis ad-
dresses two critical gaps in the domain of thermographic inspection for Automated
Fiber Placement (AFP). These challenges are tackled via a parallel dual-framework
architecture, in which each framework is designed to address a major research gap
and a fundamental aspect of the inspection problem: frame-wise, real-time defect
analysis, and motion-aware, machine-independent global inspection. Together, these
frameworks form a unified, operator-assistive, learning-centric quality monitoring

system.

1.4.1 Framework 1: Frame-Wise Defect Analysis and Quality Assessment

The first challenge centers on enabling reliable, real-time defect analysis directly from
thermal images acquired during the AFP process. Defects such as gaps, overlaps,
missing tows, and FOD can appear at any time and must be identified promptly
with sufficient spatial precision and semantic clarity to support subsequent quality

assessment. The research problem addressed in this framework is formulated as:

How can thermal frames acquired during AFP be processed in real time
to detect, classify, and localize multiple defect types—while ensuring tow-
level interpretability, pizel-level accuracy, and industrial deployability

without human intervention?

To address this problem, Framework 1 is formulated as a hybrid, frame-wise inspec-
tion pipeline. It combines classical computer vision, machine learning, and deep
learning to progressively extract semantic and spatially detailed information from
each frame. Its outputs form the local intelligence layer of the proposed system, of-
fering immediate qualitative and quantitative insights into defect types and spatial
locations. To fulfill this vision, the framework is designed around the following core

research objectives:

 Robust Tow Identification: Accurately and consistently estimate tow

boundaries in noisy and low-contrast thermal images, without requiring prior



assumptions or manual tuning.

e Reliable Defect Detection and Classification: Detect defective lay-ups
across varied scenarios with high accuracy, prioritizing sensitivity to false neg-
atives to ensure all defects are captured, and reducing false positives to avoid
unnecessary downtime. Distinguish between multiple defect types with high

precision to enable actionable, granular quality assessment.

o Precise Segmentation: Spatially localize each defect with sufficient res-
olution to support quantitative evaluation and facilitate targeted repair or

rejection.

« Real-Time Operation: Ensure the framework achieves its objectives while
operating within strict inference time constraints on standard industrial com-

puting platforms.

1.4.2 Framework 2: Independent Motion-Aware Global Inspection

The second challenge addresses the lack of temporal continuity and global spatial
context in current thermographic inspection pipelines. While frame-wise analysis
captures local defect phenomena, it fails to trace defects across time, detect full-
length course-level misalignments, or visualize evolving laminate structures. This
limitation is especially critical when parts are large, geometrically complex, or re-
quire cumulative surface reconstruction for quality traceability. The research prob-

lem tackled in this framework is defined as:

How can motion in automated fiber placement be accurately and ro-
bustly estimated, and the lay-up reconstructed, using only thermal video
data—without relying on machine signals—while preserving spatial co-

herence, temporal consistency, and enabling global reconstruction?

To tackle this challenge, Framework 2 is designed as a motion-aware global in-
spection system based on thermal-domain optical flow. Unlike prior methods that
depend on robot encoder data or process synchronization, this framework estimates
displacement directly from overlapping thermal images. It reconstructs the lay-up
surface in real time and anchors local defect information within a coherent global

view. To achieve this, the framework pursues the following core research objectives:
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e Accurate Motion Estimation: Estimate vertical displacement across ther-
mal frame sequences with high pixel-level accuracy and temporal stabil-

ity—even in low-texture, thermally inconsistent conditions.

 Real-Time Global Reconstruction: Process high-frequency thermal
streams with minimal latency to enable uninterrupted ply visualization during
the AFP lay-up.

e Machine-Independent Deployment: Operate robustly across different
AFP setups and lay-up conditions without relying on kinematic inputs, robot-

specific parameters, or external synchronization.

o Spatially Coherent Visualization: Facilitate ply-level defect traceability
through interpretable, top-down thermal mosaics—enabling spatially anchored

overlays and operator-assistive navigation.

1.4.3 Unified Research Objectives

This dissertation proposes a unified, learning-centric inspection system that inte-
grates localized frame-wise defect analysis with global thermographic lay-up recon-

struction. The overarching research objectives are:

« Enable Integrated Operation: Design a dual-framework architecture that
combines real-time defect detection and global laminate visualization into a

cohesive, operator-assistive pipeline.

o Ensure Interpretability and Real-Time Feedback: Deliver spatially and
temporally consistent inspection outputs that support intuitive monitoring,

decision-making, and traceability.

« Demonstrate Robustness Through Empirical Validation: Evaluate
the full system under diverse AFP conditions using a high-resolution thermal

dataset comprising over 13,000 in-situ frames.



1.5 Key Contributions

This thesis makes foundational contributions to the field of automated composite
manufacturing by introducing the first fully integrated, real-time, learning-centric
thermographic inspection system for AFP processes. Built upon a dual-framework
architecture, the proposed system redefines both local defect intelligence and global
lay-up traceability—achieving full automation, machine-independence, and real-
time performance from raw thermal imagery to operator feedback. The contributions

are presented below in two categories aligned with the system’s core components.

1.5.1 Framework 1: In-Situ Defect Analysis and Quality Assessment

A Hybrid, Frame-Wise Defect Analysis System. We present a dual-
stage system that fuses classical computer vision with machine learning and
deep learning to enable real-time, tow-level defect analysis from thermal im-
agery—delivering both semantic and spatial detail without manual interven-
tion. This represents the first comprehensive learning-based thermal inspec-

tion pipeline optimized for defect intelligence in AFP.

 Tow Boundary Estimation via Setup-Independent Spatial-Temporal
Analysis. A novel algorithm exploits the sequential nature of AFP deposition
to dynamically identify tow boundaries with sub-pixel accuracy across evolving
thermal frames. Free from rigid geometric assumptions, this method achieved

a mean error of 0.8 px with stable convergence.

o Hybrid Hierarchical Defect Identification under Data Scarcity. To
address data imbalance and resource constraints, we design a hybrid classi-
fication pipeline that combines an SVM-based high-level defect detector (us-
ing Gabor texture features) with a 12-layer DCNN for fine-grained classifica-
tion. Trained on an enriched dataset with synthetic augmentation, the system

achieved 96.4% accuracy across all classes.

o Active Contour-Based Defect Segmentation for Spatial Precision.
We implement seeded active contour models specifically adapted to thermal
image textures, achieving precise segmentation of multiple defect types. The

method yields a mean pixel accuracy of 93.2% and IoU of 0.72, enabling



robust quality metric computation and spatially anchored visualization.

« Defect Area Percentage (DAP) Metric and the AFP-DSS Operator
Support Engine. We introduce the novel DAP metric as a quantitative
measure of defect severity at both course and tow levels. Embedded within
an expert-driven decision-support system (AFP-DSS), this module provides
real-time alerts and intelligent recommendations—enhancing process trans-

parency and empowering automated operator assistance.

1.5.2 Framework 2: Motion Estimation and Lay-Up Reconstruction

e ThermoRAFT-AFP: A Deep Learning-Based Thermal Motion Esti-
mation System. We introduce ThermoRAFT-AFP, the first machine-
independent, learning-based solution for dense motion estimation and lay-
up reconstruction in AFP using thermal imagery. Built around a thermally
adapted RAFT backbone, it is specifically tailored to the kinematic, radiomet-
ric, and temporal characteristics of the AFP process using multiple customiza-
tions including predictive warm-start initialization, regression-based drift cor-

rection, exponential moving average (EMA) filtering.

e« Real-Time Operation Through Custom Process-Aware Optimiza-
tion. ThermoRAFT-AFP achieves real-time performance at 25 Hz through a
suite of custom strategies, including Rol gating, adaptive early exit, temporal
subsampling, and hyperparameter auto-tuning. These ensure both stability

and responsiveness on standard industrial hardware.

o Laminate-Scale Reconstruction via Velocity-Aware Stitching. We
propose a novel reconstruction pipeline that combines vertical motion es-
timates with course-level stitching and velocity-aware alignment, produc-
ing continuous 2D thermal mosaics and interpretable 3D ply-wise visualiza-
tions—enabling full-laminate traceability and enhancing defect propagation

analysis.

o State-of-the-Art Accuracy and Robustness on Large-Scale Evalu-
ation. Validated on a dataset of over 13,300 in-house thermal frames,
ThermoRAFT-AFP achieves RMSE ~4.83 mm/s, R? >99.4%, and MPE ~
—0.67%, while remaining resilient down to SNR = 14.4dB. It consistently
outperforms classical and AFP-specific methods across accuracy, robustness,

and deployment-readiness.
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System-Level Contributions

o Largest Annotated Thermal Dataset for AFP Inspection. We con-
struct the most extensive AFP-specific thermal dataset to date, compris-
ing over 13,000 annotated frames captured under real production conditions.
Task-specific synthetic defect scenarios were incorporated to rigorously sup-
port both defect-level analysis (Framework 1) and motion-based reconstruction

(Framework 2).

e First End-to-End, Real-Time Inspection Pipeline from Image to Op-
erator. This dissertation presents the first fully integrated system that trans-
forms raw thermal input into actionable quality feedback—combining real-time
defect intelligence with global laminate visualization and delivering operator-

assistive overlays validated through realistic industrial case studies.

« Empirical Validation across Accuracy, Runtime, and Deployability
Metrics. Both frameworks are quantitatively benchmarked for precision, ex-
ecution time, and robustness across varied AFP conditions. The system con-
sistently satisfies industrial-grade real-time constraints while maintaining high

interpretability and generalization.
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1.6 Thesis Outline and Organization

The remainder of this thesis is structured as follows:

Chapter 2 reviews the current state of thermographic inspection for Automated
Fiber Placement, covering conventional and learning-based methods for defect detec-
tion, classification, segmentation, and motion estimation, and identifying key gaps

addressed in this thesis.

Chapter 3 describes the in-situ thermographic monitoring platform developed for
this study. It details the hardware setup, thermal camera calibration, synthetic
defect scenario design, and the universal preprocessing pipeline that ensures stan-

dardized input across both proposed frameworks.

Chapter 4 introduces the first core framework for frame-wise defect analysis and
quality assessment. It outlines the hybrid design and learning-centric architecture

that enable real-time, tow-level inspection from thermal imagery.

Chapter 5 presents the second core framework for machine-independent lay-up
reconstruction via thermal motion estimation. It details the ThermoRAFT-AFP

model and its integration into a real-time pipeline for global laminate visualization.

Chapter 6 provides a detailed evaluation of both frameworks, reporting quantita-
tive and qualitative results across accuracy, runtime, robustness, and deployability.
The evaluations are based on a high-resolution, intensive thermal dataset acquired

under real AFP conditions.

Chapter 7 demonstrates the real-time integrated operation of the complete system
through two representative case studies. It illustrates how local frame-wise intelli-
gence and global laminate reconstruction converge to produce actionable, operator-

assistive visualizations.

Chapter 8 concludes the thesis by summarizing key contributions and findings,
and outlines future directions toward scalable, intelligent, and fully autonomous

thermographic inspection systems for composite manufacturing.
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1.7 Publications

The work presented in this thesis has contributed to the following peer-reviewed

publications:

e M. Zemzemoglu, M. Unel, and L. T. Tunc, Enhancing automated fiber place-
ment process monitoring and quality inspection: a hybrid thermal vision based

framework, Composites Part B: Engineering, vol. 285, pp. 111753, 2024.

e M. Zemzemoglu, M. Unel, Deep learning-based thermal motion estimation
and lay-up reconstruction framework towards machine-independent real-time

AFP process monitoring and inspection, (Under Review), 2025.

e M. Zemzemoglu, M. Unel, Thermal inspection and quality assessment for
AFP processes via automatic defect detection and segmentation, in Proceedings
of the IEEE 50th Annual Conference of the Industrial Electronics Society
(IECON), pp. 1-6, 2024.

e M. Zemzemoglu, M. Unel, A hierarchical learning-based approach for the
automatic defect detection and classification of AFP process using thermog-
raphy, in Proceedings of the IEEE 49th Annual Conference of the Industrial
Electronics Society (IECON), pp. 1-6, 2023.

e M. Zemzemoglu, M. Unel, Design and implementation of a vision-based
in-situ defect detection system of automated fiber placement process, in Pro-
ceedings of the IEEE 20th International Conference on Industrial Informatics
(INDIN), pp. 393-398, 2022.
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2. LITERATURE REVIEW

2.1 Sensor Modalities and Imaging Paradigms for AFP Inspection

Automated Fiber Placement (AFP) has emerged as a critical technology for manu-
facturing advanced composite structures with high geometric fidelity and production
throughput. Despite these advantages, AFP remains vulnerable to process-induced
defects—such as gaps, overlaps, bridging, and foreign object debris (FOD)—which
necessitate robust in-situ monitoring systems for real-time quality assurance. A
broad spectrum of sensing modalities has been proposed to this end, including ul-
trasonic probes, strain gauges, laser profilometers, and optical sensors (Drinkwater
& Wilcox (2006); Oromiehie, Prusty, Rajan & Compston (2016); Schmidt, Denkena,
Voltzer & Hocke (2017); Shadmehri, Ioachim, Pahud, Brunel, Landry, Hoa & Ho-
jjati (2015)). Among these, laser profilometry has gained maturity for capturing
surface anomalies (Koptelov, El Said & Tretiak (2025); Meister, Wermes, Stiive &
Groves (2020)), but remains blind to thermally induced bonding issues and subsur-

face defects.

In contrast, vision-based systems—particularly those employing infrared thermog-
raphy—have demonstrated promising versatility and non-contact operability. Ther-
mographic inspection exploits the intrinsic heating phase in AFP to highlight ther-
mal discontinuities that correlate with lay-up irregularities (Denkena, Schmidt &
Weber (2016); Gregory & Juarez (2018); Juarez, Cramer & Seebo (2016)). Unlike
visible-light imaging, which suffers from poor contrast on carbon fiber-reinforced
polymer (CFRP) surfaces, thermal cameras yield richer spatiotemporal signatures
that improve defect detectability and robustness across varying lighting and material

conditions.
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2.2 Classical Thermographic Inspection and Its Limitations

Early explorations of thermographic AFP inspection relied on handcrafted image
processing techniques such as edge detection, filtering, and thresholding (Denkena
et al. (2016); Juarez & Gregory (2019); Schmidt et al. (2017)). While computation-
ally efficient, these methods demonstrated limited adaptability across process setups
and defect types. Juarez and Gregory introduced high-pass and low-pass filter com-
binations to enhance operator visualization, but their system was not designed for
automated detection (Juarez & Gregory (2019)). Similarly, Schmidt et al., proposed
an edge-based segmentation pipeline, yet its heavy dependence on process-specific
parameters rendered it brittle and unscalable (Schmidt et al. (2017)).

Critically, these classical methods failed to offer generalization across tow geometries,
material types, or viewing angles—traits essential for industrial deployment. As
AFP systems increase in complexity, inspection pipelines must transcend static rules
and adopt adaptive, data-driven models capable of encoding thermal semantics and

spatial priors.

2.3 Preprocessing Strategies: Raw vs. Rectified Perspectives

A foundational choice in thermal inspection systems concerns whether to analyze
raw skewed frames or to apply geometric rectification. The first strategy processes
thermal images as-is, avoiding calibration and preserving sensor integrity (Denkena
et al. (2016); Schmidt et al. (2017); Yipeng, Wang, Wang, Li & Ke (2021)). However,
it incurs geometric distortion that complicates downstream tasks like segmentation
and defect localization. These pipelines often rely on threshold tuning specific to

camera angles or fiber orientation, undermining robustness.

An alternative is perspective correction, often via homography, which reprojects
the lay-up surface to a standardized, top-down view (Schmidt, Hocke & Denkena
(2019)). This canonical alignment simplifies motion estimation and tow tracing by
reducing spatial skew. Yet, this approach assumes fixed tow geometry and stable
camera calibration—conditions often violated due to mechanical drift or toolpath

variation. The trade-off between raw-frame fidelity and rectified-frame consistency
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underscores the need for preprocessing pipelines that balance setup independence

with geometric stability.

2.4 Learning-Based Defect Detection and Classification

The limitations of classical methods have led to a shift toward machine learning (ML)
and deep learning (DL) techniques, which offer improved generalization across defect
morphologies and process conditions. Classical ML systems have used texture fea-
tures—such as Gabor filters—combined with support vector machines (SVMs) for
binary classification. Deep convolutional neural networks (CNNs), by contrast, have
demonstrated superior performance, with Schmidt et al. reporting over 90% clas-
sification accuracy on thermographic inputs for tow-level and course-level anoma-
lies (Schmidt et al. (2019)).

Sacco et al. (Sacco, Baz Radwan, Anderson, Harik & Gregory (2020); Sacco, Rad-
wan, Beatty & Harik (2019); Sacco, Radwan, Harik & Van Tooren (2018)) modified
ResNet architectures to perform semantic segmentation on profilometry scans, at-
taining promising performance at the cost of high computational complexity. These
results highlight a broader challenge: real-world deployment is constrained not by
algorithmic accuracy alone but by runtime feasibility and dataset diversity. Most
existing models are trained on small, institution-specific datasets, which hampers

reproducibility and transferability.

To overcome data scarcity, some researchers have explored synthetic generation.
Zambal et al. used U-Net models on synthetic depth maps (Zambal, Heindl,
Eitzinger & Scharinger (2019)), while Meister et al. leveraged GANs for gener-
ating artificial data (Meister, Moller, Stiive & Groves (2021); Meister & Wermes
(2023)). Despite improvements in training diversity, these models exhibit domain
shift when applied to real thermographic inputs. Juarez et al., advocated for con-
trolled defect injection in manufacturing trials to generate realistic yet reproducible
training data—offering a pragmatic middle ground between realism and ground
truth availability (Juarez & Gregory (2021)).
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2.5 Hybrid Strategies and Modular Pipelines

Given the multifaceted nature of AFP defects, modular hybrid pipelines have been
proposed to blend classical and learning-based approaches. Tang et al., proposed
a two-step approach that uses geometry-based preprocessing followed by deep seg-
mentation of 3D profilometry (Tang, Wang, Cheng, Li & Ke (2022)). Ghamisi et al.,
combined rule-based tow localization with unsupervised defect detection via neural
autoencoders. These architectures show that modularity can enhance flexibility and
interpretability (Ghamisi, Charter, Ji, Rivard, Lund & Najjaran (2023)).

Nonetheless, most hybrid methods lack temporal awareness and operate on static,
frame-level inputs. Their components, though effective in isolation, are rarely in-
tegrated into cohesive systems with real-time guarantees, limiting their industrial
applicability. This disjunction between task-level accuracy and pipeline-level de-

ployability defines a critical gap in the current literature.

2.6 Temporal Reasoning and Motion-Coupled Inspection

Temporal context is essential for detecting defect progression, reconstructing ply
maps, and improving localization accuracy. Several motion-aware systems have
emerged. Juarez and Gregory synchronized thermal frames with machine control
signals to reconstruct ply-scale views (Juarez & Gregory (2021)), while Hocke used
controller feedback to anchor thermal defects in spatial context (Hocke (2020)).
However, these approaches rely on precise synchronization and access to machine-

side kinematic data, making them fragile and platform-dependent.

Denkena et al., proposed a machine-independent approach using handcrafted opti-
cal flow features based on local thermal curvature (Denkena et al. (2022)). While
innovative, their system lacked real-time feasibility analysis, was validated only on a
narrow proof-of-concept dataset, and did not address downstream integration with
reconstruction or decision support. These limitations emphasize the need for scal-
able, self-contained systems that infer motion directly from thermal imagery without

auxiliary machine feedback.
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2.7 Deep Optical Flow for Thermographic Sequences

Recent progress in deep optical flow estimation offers new tools for thermographic
motion tracking. Models such as FlowNet 2.0 (Ilg, Mayer, Saikia, Keuper, Dosovit-
skiy & Brox (2017)), PWC-Net (Sun, Yang, Liu & Kautz (2018)), and RAFT (Teed
& Deng (2020)) have set performance benchmarks on visible-spectrum datasets, de-
livering dense, subpixel displacement fields through multi-level feature extraction
and refinement (Wang, Wang, Li, Guo, Xu, Ma, Ling, Fu & Jia (2024)). These
architectures have demonstrated robustness in texture-poor or occlusion-prone en-

vironments—traits that are theoretically transferable to thermal imaging.

Yet, direct application to thermography remains problematic. Thermal frames suf-
fer from low contrast, emissivity variations, and high noise—features underrepre-
sented in visible-spectrum training datasets. Additionally, models like RAFT rely
on memory-intensive cost volumes and deep stacks of convolutional layers, resulting
in execution times incompatible with real-time inspection (Alfarano, Maiano, Papa
& Amerini (2024a)). No existing solution satisfies the trifecta of thermal specificity,
subpixel accuracy, and runtime efficiency. These limitations motivate the devel-
opment of domain-adapted, lightweight optical flow frameworks for thermal AFP

inspection.

2.8 Benchmarking and Dataset Availability

Reproducibility and benchmarking are cornerstones of scientific progress. However,
to date, there exists no publicly available thermographic dataset for AFP inspection.
Proprietary restrictions and industrial confidentiality severely limit data sharing.
Consequently, most research groups develop private, setup-specific datasets, which

hinder comparison and generalization.

A partial exception is the multi-modal AFP dataset by Pantoji et al., which includes
laser tracker, visible camera, and line laser sensor (LLS) data (Pantoji, Kassapoglou
& Peeters (2025)). While valuable, this dataset excludes thermal imagery and thus
cannot be used for thermography-based algorithm validation. In response to this

deficit, we constructed a dedicated thermal AFP dataset under controlled labora-
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tory conditions. This dataset supports reproducible evaluation of both frame-wise
and motion-aware modules, and represents a critical resource for advancing thermo-

graphic AFP inspection.

2.9 Synthesis and Research Gaps

The literature presents a fragmented landscape: individual advances in defect de-
tection, motion estimation, or visualization exist, but are rarely integrated into de-
ployable, real-time systems. Common bottlenecks include reliance on handcrafted
features, limited dataset diversity, absence of temporal continuity, and machine-

dependent architectures.

This dissertation addresses these gaps through a dual-framework architecture.
The first stream performs hierarchical frame-wise defect analysis using adaptive,
learning-based methods, while the second reconstructs global lay-up views via
domain-tailored deep optical flow. Together, these modules operate in real-time,
require no external machine data, and deliver a complete, interpretable thermal in-
spection system for AFP processes—Ilaying the foundation for end-to-end intelligent

quality assurance in composite manufacturing.
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3. IN-SITU THERMOGRAPHIC MONITORING SETUP FOR

AFP INSPECTION

Thermographic inspection underpins the proposed learning-centric system for AFP
process inspection and quality assessment. This chapter presents the design, in-
tegration, and calibration of a fully in-situ thermal vision system that captures
high-resolution, temporally rich imagery directly from the lay-up region. Operat-
ing independently of the AFP controller, the setup enables real-time observation
of thermal signatures of the lay-up. These signatures drive the dual-framework ar-
chitecture developed in this work: spatially standardized inputs drive local defect
detection, classification, and segmentation, while temporally consistent sequences
enable motion estimation and lay-up reconstruction. Together with environmental
conditioning, camera calibration, and a universal preprocessing pipeline, this setup
forms the foundation for all downstream inspection algorithms. Parts of this chap-
ter, including figures and system descriptions, are adapted from the author’s earlier
publication (Zemzemoglu & Unel (2022)).

3.1 Thermographic Inspection in AFP Processes

Thermographic analysis is a NDT method that interprets surface heat distribution
across a material. In AFP, it enables anomaly detection by capturing deviations in
heat flux from the thermally conditioned tooling surface. Although the thermal field
is driven by an external heat source, its observed pattern is shaped by factors such
as deposition speed, ply count, lay-up sequence, and geometry—making it difficult
to model deterministically. Thus, thermographic inspection in AFP is best framed
as a passive thermography problem, where surface temperature irregularities are

captured and analyzed to reveal potential anomalies.

Figure 3.1 illustrates the characteristic thermal footprints of key AFP defects us-
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ing three-dimensional surface renderings. Freshly placed tows typically appear
cooler than their surroundings due to transient thermal imbalance. From a thermo-
graphic perspective, gaps—where adjacent tows fail to contact—expose the under-
lying heated surface, producing localized hotspots. Missing tows exhibit a similar
but broader thermal signature, reflecting the larger uncovered area. In contrast,
overlaps create thicker laminate regions that attenuate heat flow, resulting in colder
zones. Foreign bodies embedded within the lay-up obstruct thermal conduction and
leave distinct localized depressions in the thermal profile. Tow splices—naturally
occurring at tow junctions—introduce minor thickness discontinuities and produce

thermal anomalies resembling those of foreign inclusions.

Normal Gap Overlap Foreign Missing
Lay-up Body Tow

aoelNg |ewlay ]

Prepreg tows Heated Tooling Surface

Figure 3.1 Thermal contrast patterns associated with common AFP defects.

3.2 In-Situ Thermal Vision Setup Design and Integration

A fully in-situ thermal vision system is developed and mounted directly on the AFP
machine head to enable real-time thermographic inspection during lay-up. Unlike
post-process or externally fixed setups, it provides continuous, unobstructed access
to the heated region. The system comprises a thermally compliant sensor, a custom
mechanical holder, and an integrated mounting scheme. Each component is detailed

in the following subsections.
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3.2.1 Sensor Requirements

Effective thermal inspection in AFP requires sensors capable of capturing high-
resolution imagery at sufficient frame rates while remaining compatible with the
process’s thermal boundaries. In our system, spatial resolution governs the fidelity
of qualitative defect cues for classification and segmentation, whereas frame rate
controls the inter-frame overlap percentage used in motion estimation and lay-up
reconstruction. To fulfil both spatial and temporal demands, we employ the FLIR
A655sc uncooled thermal camera operating in the long-wave infrared (LWIR) band.
It delivers a resolution of 640 x 480 pixels and records at 50 fps in full-frame mode.
While our system uses this native rate, the camera also supports windowed config-

urations up to 200 Hz, offering flexibility for high-speed scenarios if required.

The camera accommodates two standard operating ranges (—40°C-150°C and
100°C-650°C), with a measurement accuracy of +2°C—well suited to the typi-
cal lay-up surface range of 20-28°C. A 45° wide-angle infrared lens ensures full
coverage of the region of interest (Rol) while preserving geometric consistency. The

camera is mechanically integrated using a custom-designed holder, described next.

3.2.2 Flexible Holder Mechanism Design

To overcome the limitations of post-process inspection, our system adopts an in-situ
monitoring strategy requiring continuous and stable thermal imaging during AFP
operation. This imposes strict demands on the positioning and orientation of the
thermal camera relative to the region of interest (Rol). The design challenge lies
in combining flexibility for visual alignment with structural rigidity under motion.
To address this, the holder mechanism incorporates three mechanical degrees of
freedom: adjustable height, adjustable arm length, and tunable viewing angle—each

allowing precise camera alignment across varying part geometries.

The mechanism attaches to the right side of the AFP machine head via a circular
squeeze clamp that secures a 14 mm cylindrical connection beam. This beam enables
smooth vertical repositioning of the entire assembly. A base platform connected to
the beam supports the thermal camera and houses a slider mechanism that adjusts
arm length through a machined channel. Once the required extension is reached,
a clamping plate locks the slider in place. Viewing angle control is achieved by

interchanging the slider with pre-angled variants. These three adjustable axes form
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the core of the mechanical contribution. A streamlined protective casing is added to
reduce impact vulnerability and tidy cable routing. The complete design is shown

in Figure 3.2.

Figure 3.2 Assembled thermal vision holder mechanism: (Left) open functional con-
figuration, (Right) final with protective casing.

3.2.3 Integration to AFP Machine Head

The mechanical components of the thermal vision system were fabricated using a
mix of manual and digital manufacturing methods. The cylindrical connection beam,
which endures the highest mechanical stress, was turned from hardened steel using a
manual lathe. All remaining structural parts—including the base, slider, and clamp
adapter—were CNC-milled from lightweight aluminium alloy to minimize load on
the AFP head while ensuring rigidity. The protective casing was 3D-printed from

white PLA to provide impact shielding and cable management.

Figure 3.3 shows the manufactured assembly without its casing. Final integration
onto the AFP machine head is presented in Figure 3.4, where parameters were
manually tuned through dry-run calibration. The final operational configuration

used a height of 183.5 mm, arm length of 81.3 mm, and viewing angle of 10°.
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Figure 3.3 Manufactured thermal vision system without protective casing.
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Figure 3.4 Integrated thermal vision system mounted on the AFP machine head.
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3.3 Closed-Loop Thermal Conditioning System

Maintaining consistent surface temperatures across the tooling area is essential not
only for bonding integrity during AFP lay-up but also for reliable thermal imaging.
To this end, a closed-loop heating system was implemented, comprising two identical
heating plates, a control unit, and eight thermocouples positioned around the lay-
up region. The system stabilized the surface at a target temperature of 40°C, with
fluctuations confined to the 35°C-45°C range—providing sufficient thermal contrast

while remaining within the safe thermal limits of the prepreg material.

The effectiveness of thermal defect detection depends strongly on the quality of ther-
mal contrast in the captured imagery. However, enhancing this contrast must be
achieved without compromising process integrity. Prepreg materials are typically de-
posited at surface temperatures between 20°C and 28°C,; and exceeding safe thresh-
olds can degrade bonding quality and distort the fiber architecture. In addition, the
tooling surface exhibits thermal non-uniformities, including geometric warping and
edge—center temperature gradients of up to 7°C, as illustrated in Figure 3.5. While
such variability complicates process control, it introduces visual diversity into the
dataset. For instance, this diversity is strategically leveraged in the hierarchical de-
fect identification module of the first proposed framework to improve generalization
across defect types and process variants, whereas in the ThermoRAFT-AFP motion
estimator, edge-induced variability is selectively removed through spatial cropping

to optimize estimation accuracy and computational efficiency.

3.4 Thermal Camera Spatial Calibration

Camera calibration is essential for extracting metric information from thermal im-
agery, correcting lens-induced distortions, and ensuring geometric consistency for
downstream tasks such as motion estimation, defect localization, and lay-up recon-

struction.
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Figure 3.5 Tooling surface temperature map showing a +7°C edge—center gradient
caused by imperfect contact with heating plates.

3.4.1 Correspondence Problem

Camera calibration involves estimating intrinsic and extrinsic parameters by min-
imising the projection error between known 3D reference points and their corre-
sponding 2D image locations. Given a set of correspondences {Py,p} between
world points Py in a global coordinate frame (1) and their projections p onto the

image plane, the calibration task solves for the projection model:

(3.1) \pi=MPy,  M=KI[R T|

Here, M is the full camera projection matrix, K is the 3 x 3 intrinsic matrix, and
[R|T] is the extrinsic transformation incorporating rotation and translation from
world to camera coordinates. The intrinsic matrix K includes the focal lengths
fz, fy, the optical center (ug,vp), and the skew parameter s. A point Py is thus

projected to image coordinates p; = [u;,v;, 1] via:

my Py
m3 Py

m3PW
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Various methods exist for estimating K, R, and 7', such as the Direct Linear Trans-
form (DLT) (Hartley & Zisserman (2003)), Heikkila’s approach (Heikkila & Silvén
(1997)), and Zhang’s algorithm (Zhang (2000)). The latter is widely adopted for its
robustness and ability to jointly estimate radial and tangential distortions. These
distortion parameters are critical in the AFP input preprocessing pipeline, where
correcting geometric distortions improves both image quality and downstream defect

detection accuracy.

3.4.2 Calibration Setup and Results

Thermal calibration of infrared cameras requires tailored procedures due to the fun-
damental differences in sensing modality compared to visible-light cameras. Stan-
dard printed checkerboards, which offer high contrast for RGB calibration, exhibit
poor radiative contrast in thermal images and thus fail to yield sharply defined

corners under ambient conditions.

To overcome this, a mask-based calibration setup was designed, inspired by prior
work (Hilsenstein (2005); Ng, Du & others (2005)). The custom calibration mask
was cut from a heat-resistant composite sheet (320 x320 x3 mm) using a KUKA KR
16-2C-F waterjet robot. A 7 x 11 checkerboard pattern was machined into the plate,
as shown in Figure 3.6. This mask was then mounted on a heated calibration rig
comprising two heating plates, four metallic risers, and insulation layers, creating

strong thermal gradients between mask holes and surrounding material.

320 mm

() b ©
Figure 3.6 Thermal calibration mask: (a) CAD design, (b) waterjet cutting process,

(¢) manufactured composite mask.

The mask was integrated into a thermal calibration rig comprising four elevation
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mounts, a flat aluminium heating plate, and underlying thermal insulation. The
setup uses the closed-loop heating system introduced earlier, enabling stable high-
contrast thermal patterns by heating the background to 150°C while the air-cooled
mask regions remained cooler. Figure 3.7 shows the fully assembled rig with com-

ponent labels and its thermal response during operation.

Composite
Calibration Rig

Thermal Insulation

(b)

Figure 3.7 Thermal calibration setup: (a) Assembled rig with labeled components;
(b) thermal image showing strong mask-background contrast at 150°C.

Twelve thermal images were captured from various viewpoints and processed using
Zhang’s algorithm. Detected corner points were matched with their 3D mask co-
ordinates and used to solve for the intrinsic matrix K, radial distortion d;,q, and

tangential distortion di,, with subpixel precision:

802.37 0 327.29

(3.3) K=| 0 80L08 237.58

0 0 1
(3.4) draa = [~0.2219 0.2881 —0.001]
(3.5) dian = [—0.0005 0]

The 3D poses of the calibration images relative to both the camera and mask coor-
dinate systems are shown in Figure 3.8. These extrinsic parameters, encoding the
camera’s position and orientation per view, enable metric retrieval from image-plane
to world coordinates and are subsequently reused in lay-up reconstruction and global

visualisation workflows.
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(a) (b)

Figure 3.8 Thermal calibration extrinsics: (a) camera-centered view; (b) world-
centered view.

3.5 Experimental Setup and Data Acquisition Protocol

All experiments were conducted on a Coriolis C1 AFP machine equipped with a
robotic head capable of placing up to eight 6.35 mm-wide tows. The processing
pipeline was executed on a dedicated workstation featuring an Intel Xeon W-2275
CPU (14-core @ 3.30 GHz, Turbo up to 4.60 GHz), 32 GB DDR4 RAM, and an
NVIDIA Quadro RTX 5000 GPU. All tasks were implemented in MATLAB and
Python using widely adopted libraries (Bradski (2000); Paszke, Gross, Chintala,
Chanan, Yang, DeVito, Lin, Desmaison, Antiga & Lerer (2017); Van der Walt,
Schénberger, Nunez-Iglesias, Boulogne, Warner, Yager, Gouillart & Yu (2014)).

A broad spectrum of process and environmental conditions was covered, as sum-
marised in Table 3.1. The parameter set includes varying lay-up speeds, ply lengths,
fiber orientations, layer counts, and defect scenarios—reflecting realistic production
variability and enabling robust performance testing across both defect inspection

and reconstruction tasks.

Thermal data acquisition was performed asynchronously using the camera’s full-
frame mode at 50 Hz, ensuring maximum spatial fidelity for high-precision defect
analysis and segmentation. This configuration produced high inter-frame overlap,
with pitch sizes ranging from 2 mm to 6 mm across the tested lay-up speeds—crucial
for accurate motion-based reconstruction. By operating independently of the AFP
controller, the acquisition protocol supports a major objective of this work: enabling
a fully automated, machine-independent inspection pipeline driven solely by the

thermal camera and the proposed frameworks. However, excessive redundancy can
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Table 3.1 AFP Process and Environmental Conditions

Parameter Value / Range
Tow width 6.35 mm
Tow thickness 160 pm
Material Thermoset

# Tows / Layers 4 /14
Orientations [0°,45°,90°]
Lay-up speed 0.1-0.3 m/s
Course length 300-800 mm
Compaction pressure 3-6 bar
Tool temp / Material temp 32-50°C / 20-28°C
Ambient temperature 19-24°C

degrade the efficiency of detection and classification models.

To address this, the acquired stream was repurposed into two datasets tailored to
the operational needs of each proposed framework: (1) a large-scale, full-rate dataset
used in the ThermoRAFT-AFP motion estimation and lay-up reconstruction frame-
work, and (2) a subsampled, minimal-overlap subset used for training and validating
defect detection, classification, and segmentation models. This dual-dataset strategy
maximises data utility and enables consistent benchmarking across both frameworks.

Technical specifications of these datasets are detailed in Chapter 6.

3.6 Synthetic Defect Scenarios

The hybrid frame-wise defect analysis and quality assessment framework developed
in this work depends on robust learning-based models capable of detecting, classify-
ing, and segmenting a wide spectrum of AFP defects. Effective training and gener-
alization require datasets that cover not only common anomalies but also rare, chal-
lenging cases across diverse conditions. However, many defect types—particularly
those from extreme deviations or infrequent events—are underrepresented in nat-
urally acquired data. To address this, we designed a structured set of synthetic
defect scenarios to augment the dataset while preserving realism and full in-situ

compatibility.

Three main categories of synthetic scenarios were implemented: (1) missing tows, (2)

artificial gaps and overlaps, and (3) foreign bodies. Missing tow conditions, including
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isolated and multi-tow absences, were introduced by selectively omitting tows in the
lay-up design across up to four layers. These defects were embedded during normal
operation and represent a structurally critical class. Generating artificial gaps and
overlaps for in-situ thermal monitoring posed a greater challenge, as post-process
methods are unsuitable for dynamic AFP workflows. To simulate them, prepreg
tows were modified on the spool using cutting or folding techniques. The resulting
discontinuities were introduced naturally during lay-up. Overlaps arose through

fold-induced buckling or manual insertion between layers.

The foreign body category was extended to include realistic contamination scenarios
and FOD-—small consumables accidentally embedded into the laminate. Materials
included poly backing film, Kapton tape, vacuum bag scraps, carbon fiber debris,
and heat-resistant mesh. These were shaped irregularly and randomly introduced
onto the tow or surface before compaction to mimic unintentional inclusions. Tow
splice defects—mnaturally occurring at junctions between prepreg roll segments—were
also captured during experiments. These regions cause localised thickness variation
and are thermally distinct due to altered conductivity. While some high-end AFP
systems detect them via encoded markers, this feature is not widespread. Including

splices thus improves industrial relevance and operator-assistive capabilities.

All synthetic scenarios were integrated into the dataset pipeline and annotated for
supervised training, validation, and performance benchmarking of detection, clas-
sification, and segmentation models. Their inclusion boosts both diversity and ro-

bustness of the learning-centric inspection system.

3.7 Universal Preprocessing Pipeline

The performance of the proposed inspection frameworks is highly dependent on con-
sistent and reliable image preprocessing. Raw thermal images may exhibit radio-
metric noise, geometric distortion, and non-uniform viewpoint, all of which reduce
the accuracy of learning-based and geometric analysis modules. To mitigate these
issues, we introduce a unified preprocessing pipeline applied to every captured frame
prior to use in any downstream module. This standardized sequence ensures spa-
tial and temporal alignment across all inputs, enabling clean, interpretable results

throughout the system.

Each thermal image undergoes four key steps, as illustrated in Figure 3.9. First, 16-

31



. Lens o
Linear Distortions Perspective Temperature

Scaling Correction Correction Normalization

Figure 3.9 Flowchart of the universal preprocessing pipeline.

bit radiometric measurements are linearly scaled to 8-bit grayscale values to reduce
computational cost while retaining critical thermal contrast. Second, lens-induced
geometric distortions are corrected using intrinsic parameters estimated during the

thermal camera calibration phase.

The third step performs spatial alignment via homography-based perspective cor-
rection. A quadrilateral Rol is first defined to isolate the region of maximum ther-
mal contrast—typically just beneath the compaction roller—and remove background
clutter. Among the two main preprocessing strategies—processing skewed frames
or applying geometric rectification—we adopt the latter, as it produces a spatially
standardized input domain better suited for geometric analysis and learning-based
inference. Moreover, it simplifies many subtasks in the system such as tow identi-
fication and motion estimation problems by aligning the lay-up direction vertically,
reducing the tasks to a simpler 1D version. A homography transformation then
restores a fronto-parallel view aligned with the tool surface, preserving geometric
properties such as collinearity and scale for accurate downstream processing. The

applied transformation is given by:

' hi1 hi2 his| |z
(3.6) AMy'| = [hor haa hos| |y
1 h31 hza hsz| |1

where h;; are the elements of the 323 homography matrix that transforms a point
(x,y) into (2',y"), and \ is a scaling factor. The final stage addresses temporal ther-
mal inconsistencies across the lay-up course. Older regions exposed to compaction
heat appear warmer than freshly deposited areas, producing a vertical gradient. To
correct this, the average temperature across each image row is computed and sub-
tracted, yielding a temporally normalised map with enhanced defect visibility. As
shown in Figure 3.10, features such as overlaps and foreign objects become more

distinct after this operation.

To illustrate the combined effect of the full pipeline, Figure 3.11 compares a raw

thermal image of a flawless lay-up with its preprocessed counterpart. The resulting

output is both spatially and radiometrically standardized, ready for use across all

modules. Unlike task-specific preprocessing routines, this universal design ensures

interoperability across all modules, simplifying deployment and system integration.
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Figure 3.10 Temperature normalisation: (a) perspective corrected image; (b)
temperature-normalised version showing deviation from row-wise mean.
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Figure 3.11 (a) Raw thermal image of a flawless lay-up; (b) corresponding dataset-
grade preprocessed result.

Figure 3.12 presents representative thermal images of common AFP defect types
studied in this work, shown after the full preprocessing pipeline. These include
gaps (G), missing tows (MT), overlaps (O), tow splices (TS), and FOD (FB)—each
showing distinct thermal patterns that support reliable interpretation. Spatial stan-
dardization and temperature normalisation enhance the saliency and separability of
these defects, enabling accurate detection, classification, and segmentation within
the proposed learning-centric inspection framework. These standardized images are
consumed by both frameworks at different rates: sparsely for frame-wise defect
33



analysis (Framework 1) and densely for thermal motion tracking (Framework 2).

Figure 3.12 Examples of preprocessed defective lay-up instances: (a) gap (b) overlap
(¢) missing tow (d) tow splice and (e) foreign body.

34



4. HYBRID FRAME-WISE DEFECT ANALYSIS AND QUALITY

ASSESSMENT FRAMEWORK

This chapter presents the first core component of the proposed inspection system: a
hybrid, frame-wise analysis framework that detects, classifies, and evaluates defects
in thermal images acquired during the AFP process. This chapter incorporates mate-
rial adapted from the author’s peer-reviewed journal publication (Zemzemoglu, Unel
& Tunc (2024)) reused with minor modifications, including the framework design,
dynamic tow identification module, lay-up quality evaluation module, and associ-
ated figures. The framework integrates hybrid learning algorithms and traditional
computer vision in a hierarchical cascade, enabling real-time operation, tow-level
reasoning, and quality assessment using only a single thermal camera. Its outputs
form the foundation for downstream decision-making and are later contextualized

within a global, motion-aware framework introduced in the following chapter.

4.1 Framework Overview

The architecture of the proposed framework addresses key challenges in in-situ AFP
process monitoring and quality inspection by combining modularity, real-time oper-
ability, and hybrid algorithmic design. The framework adopts a multi-level paradigm
that tailors task-specific solutions to the nature, complexity, and data constraints of
each processing stage. This design facilitates a judicious integration of model-based
and learning-based methods—reserving intensive learning algorithms for scenarios
where they are most effective, while relying on traditional vision techniques where

data scarcity or simplicity permits.

As shown in Figure 4.1, the system comprises three tightly coupled modules: Dy-
namic Tow Identification, Hierarchical Defect Identification, and Lay-up

Quality Evaluation. These modules operate in parallel or conditionally, contribut-
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ing to system responsiveness and computational efficiency. To ensure robustness and
adaptability, the design emphasizes generalizability across different AFP setups and
manufacturing contexts, and prioritises interpretability to support human-in-the-

loop decision making.
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Figure 4.1 Architecture of the proposed Hybrid Frame-wise Defect Analysis and
Quality Assessment Framework, illustrated using a sample FOD defective thermal
input.

The quality of AFP manufacturing is tightly linked to the precise placement of
individual tows. The first module, Dynamic Tow Identification, performs setup-
independent estimation of tow boundary positions using a custom spatial-temporal
analysis algorithm. It outputs individual tow regions, which are subsequently refer-

enced by other modules to facilitate tow-level reasoning and impact analysis.

The second module, Hierarchical Defect Identification, is central to the sys-
tem’s primary decision pipeline. It implements a two-stage classification strategy
to assess the health of each thermal frame. A high-level binary classifier first deter-
mines whether the lay-up instance is healthy (-) or defective (+). If the instance is
deemed defective, a low-level multi-class classifier is triggered to identify the specific
defect class from a predefined set. This cascaded structure addresses the natural
data imbalance—where healthy cases dominate—and reduces unnecessary computa-
tion by bypassing the multi-class stage for non-defective frames. Furthermore, this
module operates in parallel with tow identification, allowing concurrent processing

and contributing to real-time performance.

When a defect is detected, the final module—Lay-up Quality Evaluation—is
conditionally activated. It applies a pixel-level segmentation algorithm to localise
the defective region and extract key morphological features such as shape, size, and

position. These features, combined with tow geometry from the first module, are

36



used to compute a novel metric called DAP, which quantifies the impact of each

defect in relation to the effective lay-up area.

To meet industrial standards and achieve state-of-the-art performance, the system
must fulfill:

o Tow Identification Robustness: Sub-pixel accuracy with average error
< 1px and stable convergence within £2 px, even in the presence of defects

and without prior assumptions.

o Detection Reliability: SVM-based classifier achieving >95% test accuracy
and >95% recall, minimizing the likelihood of undetected defective lay-up

instances.

o Classification Accuracy: DCNN achieving >95% overall and per-class ac-

curacy across all studied defect types.

« Segmentation Precision: Mean pixel accuracy (PA) >90% and Intersection-
over-Union (IoU) score >0.65—yielding spatially conservative yet robust defect

localization.

e Real-Time Operation: Minimum 5 fps throughput on standard CPU hard-
ware across all modules: tow identification, detection, classification, and seg-

mentation.

The synergistic integration of these modules forms the core of an AFP-DSS. Operat-
ing solely with a thermal camera and a lightweight algorithmic stack, the framework
delivers real-time, frame-wise defect analysis enriched with both qualitative and
quantitative insights. It enables precise identification, characterisation, and impact
assessment—empowering operators with timely, data-driven guidance. When paired
with the Motion-Aware Global Inspection Framework, these outputs gain temporal
traceability, machine-independent alignment, and enhanced visual coherence across
the evolving lay-up surface—paving the way for a fully automated, end-to-end, and

operator-assistive thermographic inspection solution.
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4.2 Dynamic Tow Identification

This module enables frame-wise identification of individual tows in thermal im-
ages by automatically and reliably detecting the boundaries between adjacent tows.
In fixed-stiffness AFP manufacturing, tow boundaries correspond to narrow verti-
cal gaps that separate neighbouring tows. These appear as low-temperature lines
in thermographic imagery due to slight heat dissipation across inter-tow regions.
Leveraging this phenomenon, the module fuses thermal cues with targeted com-

puter vision techniques to infer tow geometry.

Figure 4.2 illustrates the thermal basis underpinning this approach. Panel (a) shows
a 3D surface plot of a lay-up course, with pixel intensity mapped to temperature.
After Gaussian smoothing (o = 0.5), elongated thermal valleys emerge that align
visually with inter-tow gaps. Panel (b) presents equidistant cross-sectional profiles
in which local minima consistently correspond to tow boundaries, highlighted with
transparent vertical planes. This empirical analysis supports the use of thermal

gradients as reliable indicators for boundary localization.

— = region of study
—— Cross-sections

profile 1
tow boundaries
profile 2
profile 3
L/\/WM profile 4

profile 5

Figure 4.2 Tow boundary analysis in thermographic AFP inspection: (a) 3D thermal
surface map with inter-tow valleys; (b) cross-sectional intensity profiles showing local
minima aligned with tow boundaries.

Accurate tow boundary detection remains a nontrivial challenge due to thermal
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variability, geometric distortion, and shifting setup conditions. While some methods
process raw, skewed frames and others employ geometric rectification to simplify
the spatial structure, both rely on assumptions—such as fixed tow layouts or static
camera configurations—that may not hold in practice. These limitations motivate
the need for a robust, setup-independent solution that performs reliably under real-

time, frame-wise constraints.

The proposed solution integrates classical computer vision tools into a lightweight
and modular pipeline. Preprocessing first produces rectified top-down views, reduc-
ing the two-dimensional search space to a one-dimensional estimation task along the
x-axis. As a result, the algorithm estimates a series of x-coordinates correspond-
ing to inter-tow separations. A spatial-temporal analysis algorithm then tracks tow
boundary positions over time. Exploiting the sequential nature of thermal data,
the algorithm incrementally refines boundary predictions across frames with min-
imal computational overhead. Estimates rapidly converge to stable x-coordinates,
enabling accurate, consistent, and efficient tow extraction throughout the lay-up

sequence. The algorithmic formulation is presented in the following subsection.

4.2.1 Spatial-Temporal Analysis Algorithm

The algorithm operates in two stages: a spatial estimation followed by temporal
refinement. First, each incoming frame is analysed in isolation to detect potential
tow boundaries based on image features. Then, these estimates are refined using
knowledge accumulated from previous frames, improving stability and suppressing
outliers. This structure leverages the sequential nature of AFP imagery, offering
resilience against noise and frame-level inconsistencies. The full procedure is sum-

marised in Algorithm 1.

To enhance edge detection and reduce noise, optional filtering is applied prior to
edge extraction. Three settings are supported: no filter, a linear filter, or a nonlinear
filter. The linear option uses a vertical Scharr operator, an enhanced gradient filter
offering strong edge responses and rotational symmetry (Jdhne, Scharr, Korkel,
Jahne, Haulecker & Geifller (1999)). The nonlinear option applies a morphological
Top-hat filter, which enhances vertical line features by subtracting local background
using erosion—dilation cycles (Gonzalez (2009)). While not originally designed for
line detection, its sensitivity to local contrast suits thermographic imagery. The

filterType parameter allows flexible adaptation to varying imaging conditions.
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Algorithm 1 Tow identification via online spatial-temporal analysis

Initialise prevXests to store boundary history
for each frame in imgSeq do
Apply filterType filtering
edges < detect edges using edge M ethod
vHist < sum edges along vertical axis
for k from mDist to length(vHist) — mDist do
if vHist[k] is local max and > 7" then
peaks < k
currXest <— merge peaks closer than mD1ist
if not first frame then
updated X est <— average currXest with prevXests
else
updated X est < currXest

Append updated X est to prevXests
Compute estimation error

Edge maps are extracted using the Canny detector, chosen for its precision and
continuity-preserving characteristics (Canny (1986)). Non-maximum suppression
and hysteresis thresholding isolate high-confidence contours. These edges are pro-
jected along the vertical axis to form a one-dimensional histogram vHist, trans-
forming the problem into a line-wise peak detection task. Local maxima exceeding
threshold T within a +mDist window are selected as candidate peaks. Closely
spaced peaks are then merged to eliminate boundary duplication caused by image

artifacts.

Temporal refinement is achieved by smoothing each current estimate using previ-
ous frame history. We evaluate three averaging strategies: simple moving average
(SMavg), weighted moving average (WMayg), and cumulative average (Cavg). Each

method produces a refined x-coordinate x; for a given tow boundary as follows:

(4.1) SMan(t)—; S
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where k is the averaging window size and w; are assigned weights. At each timestep

t, updated boundary positions are recorded, and estimation errors are computed
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as the Euclidean distance to manually annotated ground truth. The resulting x-
coordinates are passed to downstream modules for further use in segmentation and

quality assessment tasks.

4.3 Hierarchical Defect Identification

The second core module of the proposed framework is dedicated to identifying both
the presence and type of defects in each thermographic frame acquired during the
AFP process. As discussed in the system overview, this task is implemented using
a two-stage hierarchical classification pipeline. The first stage determines whether
a given frame contains a defect or not. If a defect is detected, a second stage is
triggered to classify its type. This hierarchical arrangement allows efficient allocation
of computational resources by avoiding unnecessary processing on healthy frames,
while also addressing the natural class imbalance often encountered in AFP datasets,
where defective cases are relatively rare. The hierarchical design, deep learning
architecture, and associated figures in this section are adapted from the author’s
peer-reviewed conference publication (Zemzemoglu & Unel (2023)), in accordance

with corresponding reuse policies.

4.3.1 High-Level Defect Detector

The first level of inspection focuses on binary classification: determining whether a
given frame is "Healthy’ (H) or 'Defective’ (D). Existing strategies for this task can
be broadly categorized into model-based and data-driven approaches. Model-based
methods—such as thresholding, rule-based masking, or manually tuned filters—can
offer reliable performance in static, well-controlled environments. However, their
generalizability to dynamic AFP conditions remains limited, especially when con-

fronted with variations in thermal background, camera angle, or defect morphology.

In contrast, data-driven techniques, particularly MLs, demonstrate greater robust-
ness and adaptability to real-world scenarios. Among these, classical MLs models
are especially suitable for highly separable problems such as this one, where thermal

differences between healthy and defective lay-ups are generally pronounced. Deep
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learning models, while powerful, are often unnecessary at this level due to their high
data and computational demands. Classical models strike an ideal balance: they
require modest training data, operate with low latency, and perform reliably when

supported by well-crafted feature representations.

4.3.1.1 Gabor-Based Feature Extraction

The classifier’s performance depends heavily on the quality of the input features.
For thermal imagery in AFP, where many defects manifest as local texture anoma-
lies, texture descriptors are particularly effective. Several studies have explored
diverse feature types—including geometric, motion-based, and color-derived at-
tributes—but texture features remain the most discriminative in fibrous compos-
ite surfaces (Mahajan, Kolhe & Patil (2009)). Among texture-based methods,
the Gabor Transform has proven especially effective for capturing directional and
frequency-specific information in fabric-like materials (Hanbay, Talu & Ozgiiven
(2016)).

Turner (Turner (1986)) was among the first to apply GFs to texture analysis, and
their advantages have since been validated in numerous comparative studies, par-
ticularly for fabric defect inspection (Javed, Mirza & others (2013)). Consequently,
a GF-based pipeline is adopted for feature extraction in our high-level detector.
These features are also reused by the lay-up quality evaluation module, significantly

reducing redundant computation.

Once extracted, these GFs-based responses form a compact, low-dimensional rep-
resentation that is passed to the classifier. Mathematically, a 2D Gabor filter is
defined as:

$/2 +72?J/2 2
(44) g(x7y;)\7071/}a0-a7) = eXp (_M) COs <27T)\+¢>
(4.5) ' =xzcos(0) +ysin(f), y =—wsin(f)+ycos(h)

Here, X represents the filter wavelength, € its orientation, i) the phase offset, o the
scale of the Gaussian envelope, and  the aspect ratio. A filter bank is constructed
by sweeping A\ and 6, enabling extraction of multi-scale, multi-orientation texture

responses from the input image. These responses are subsequently downsampled and
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normalized to form a feature vector for classification, as visualised in Figure 4.3.
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Figure 4.3 Gabor filter-based feature extraction: (a) 5x8 filter bank; (b) sample
convolution outputs from a defective frame.

4.3.1.2 SVM Classifier Model

Once the feature vector is computed, it is passed into a lightweight classifier for
final decision-making. Various machine learning algorithms were considered for this
task. While Naive Bayes and Random Forests perform well on structured data, they
are less effective for high-dimensional handcrafted features. In contrast, SVMs are
particularly robust for binary classification involving dense, texture-rich descriptors
such as those extracted using GFs. Their ability to maximize the margin between
classes supports strong generalization performance—critical in dynamic industrial
contexts (Cervantes, Garcia-Lamont, Rodriguez-Mazahua & Lopez (2020)). Figure
(4.4) offers an intuitive view of how the SVM forms soft-margin boundaries in feature

space.

SVMs also offer a key advantage in scenarios with limited annotated data, which
is often the case in specialized manufacturing pipelines. These traits led to the
adoption of a soft-margin SVM formulation in this study. This approach intro-
duces a slack variable &; for each training instance, allowing the model to tolerate
bounded misclassifications while maintaining a maximized margin. A regularization

term C' manages the trade-off between generalization and empirical accuracy. The
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Figure 4.4 Soft-margin SVM decision boundary separating healthy and defective
classes in feature space.

formulation is:

1 l
(4.6) min o [w]*+C Y&
i=1
(4.7) st y(wWxi—b)>1-& Vi=1,...,1

Here, w is the weight vector, b is the model bias, C' is the penalty term, and &; are

slack variables.

To effectively model nonlinear decision boundaries common in thermal imagery,
the classifier uses the kernel trick. Kernel functions project the input space into a
higher-dimensional feature space without explicitly computing the transformation,

enhancing expressiveness while maintaining efficiency. We adopt the RBF kernel:
(4.8) K(x;,x;) = exp (—’YHXz‘—XjHQ>

where v adjusts the influence range of each support vector—lower values produce
smoother boundaries. The model is trained on GF-derived features using grid search
to optimize C' and 7. Once deployed, it classifies incoming frames as either "Healthy’
(H) or 'Defective’ (D) in real time. Frames flagged as defective are passed to the
next inspection stage for detailed classification. As new defect instances arise during
production, the training database can be expanded incrementally—supporting the

system’s long-term adaptability.
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4.3.2 Low-level Defect Classifier

This second level of the inspection pipeline is invoked only when the high-level clas-
sifier identifies a frame as defective. It refines the classification by determining the
specific defect type. The corresponding preprocessed thermal image is passed to
a dedicated deep learning module that assigns it to one of five predefined defect
categories. Since this stage requires richer feature understanding and greater rep-
resentational power, a DCNNs is employed. The adopted network is designed to
balance classification accuracy with runtime efficiency, ensuring suitability for near

real-time deployment.

4.3.2.1 Deep Learning Network Architecture

Designing an effective deep network requires careful calibration of architectural pa-
rameters—such as the number of layers, convolutional kernel sizes, pooling strate-
gies, and activation functions. Several candidate architectures were examined, rang-
ing from shallow to very deep configurations. However, given the trade-off between
depth and computational load, a moderate-depth CNN was selected. This design
captures the necessary visual complexity while maintaining efficient inference and

manageable training demands.

The final architecture, shown in Table 4.1, consists of twelve layers: alternating
convolution and max-pooling layers with gradually increasing kernel sizes, followed
by two fully connected layers. All convolutional outputs are normalized and passed
through ReLU activations, while the final dense layer employs the Softmax function

to generate a probability distribution across the five defect classes.

Table 4.1 Optimized DCNN for low-level defect classification

Layer Type Kernel Size # Filters
Input Input Layer [220 110 1]

1-2 Conv + MaxPool [3x3], [2x2] 8

3-4 Conv + MaxPool [5x5], [2x2] 8

56 Conv + MaxPool [7x7], [2x2] 16

7-8 Conv + MaxPool [9x9], [2x2] 32
9-10 Conv + MaxPool [15x15], [2x2] 64

11 Dense Layer 300 -

12 Dense Layer (Softmax) 5 -
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4.3.2.2 Model Training and Refinement

Training the CNN involves optimizing the network weights to minimize the classifi-
cation loss over the training dataset. To this end, the SGDM algorithm is adopted.
SGDM accelerates convergence by smoothing the gradient descent path using a mo-
mentum term—a moving average of past gradients. The weight update rules are
defined as:

(4.9) Vi= Vi + (1= 5)Vw L(W, X, y)

(4.10) Wt = Wt—l — Oé‘/;f

where W represents the network weights, L is the loss function, « is the learning
rate, 3 is the momentum coefficient bounded by [0, 1] interval, and V; is the velocity

vector controlling update smoothness.

To improve training efficiency and reduce memory usage, mini-batch processing is
used, with each batch consisting of 20 images. Hyperparameter tuning is performed
empirically and reported in the Results chapter. After training, the model is val-
idated using held-out data and tested on previously unseen samples to assess its
generalization. Once deployed, this module enables fine-grained defect classifica-
tion in real time, thereby enhancing the interpretability and traceability of the AFP

inspection system.

4.4 Lay-up Quality Evaluation

The final stage of the proposed inspection framework focuses on a comprehensive
quality assessment of thermal frames flagged as defective. Upon detection of a defect
by the high-level classifier, this evaluation module is triggered to both localize the
anomalous region and quantify its severity. The core of this module consists of two
sequential components: a segmentation algorithm that delineates the spatial extent
of the defect, and a metric-based evaluation that translates these regions into action-
able quality scores. This dual approach enables the system to transition from binary
defect presence to a nuanced frame-wise defect impact assessment—both visually

and numerically—thus bridging detection with repair-oriented decision support.
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4.4.1 Defect Segmentation and Localization

This component addresses the problem of identifying and isolating defect regions
within a defective input frame. Formulated as a binary segmentation task, the goal
is to extract pixel-wise defect zones from the healthy background, with applicability
across all five defined defect categories. Real-time performance and robustness are

essential to ensure system scalability in industrial AFP settings.

Prior studies have explored a range of segmentation algorithms, particularly for op-
tical inspection, spanning from simple masking and thresholding to region growing,
watershed, and graph-based methods (Kumar (2008); Meister, Wermes, Stiive &
Groves (2021)). In this work, we evaluate two complementary algorithms on ther-
mal images: AT and AC. Both leverage texture features previously extracted via
GFs, ensuring computational efficiency through feature reuse from earlier detection
stages.

As a preprocessing step, the system performs mean image subtraction: the mean
thermal profile of healthy lay-ups is computed from the training database and sub-
tracted from incoming defective images. This removes static biases due to inherent
material structure or inter-tow gaps, yielding a zero-centered image that enhances

contrast between defects and background patterns (see Figure 4.5).
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Figure 4.5 Preprocessing via mean subtraction: (a) input image with defect (FOD),
(b) mean image of healthy lay-ups, (c) result after subtraction enhancing defect
contrast.

The first segmentation method applies Gabor-based enhancement followed by Otsu’s
adaptive thresholding. While GFs alone provide directional texture discrimination,
combining them with AT yields superior segmentation results, as also noted in (Ku-

mar (2008)). Otsu’s method assumes a bimodal histogram and computes an optimal
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threshold T¢ that maximizes inter-class variance between background and foreground
regions (Otsu (1979)). Its real-time applicability is further supported by fast variants
tailored for thermal imagery (Bindu & Prasad (2012)).

The second segmentation approach adopts an active contour model, in which an
initial curve iteratively evolves to enclose the defective region. Compared to tech-
niques such as standalone Gabor filtering, watershed segmentation, or divide-and-
conquer methods, active contours offer superior flexibility and accuracy—especially
when properly initialized. Previous research has demonstrated their effectiveness
in thermal image segmentation under controlled conditions (Sreeshan, Dinesh &
Renji (2020)). Building on this foundation, we extend the method to real-world
AFP thermal imagery, where defect shapes are irregular and background noise is

nontrivial.

To ensure robust performance, we initialize the contour using texture maps derived
from previously extracted GFs rather than random seeds. This strategy improves
both localization accuracy and convergence speed. The contour is evolved using
the Chan—Vese region-based model (Chan & Vese (2001)), which balances internal
smoothness constraints with external forces derived from texture contrast. This en-
ergy minimization process enables the contour to adaptively fit the defect boundary;,
even in soft-gradient thermal contexts. While computationally intensive by design,
the use of low-resolution input and precomputed features keeps runtime feasible for
near real-time deployment. Upon convergence, the defective area is cleanly isolated

from the background and passed to subsequent evaluation modules.

4.4.2 Defect Area Percentage Estimation

In order to transition from visual identification to frame-wise quantitative assess-
ment, a novel metric—DAP—is introduced. DAP is defined as the ratio of defect
pixels to the total number of pixels in the affected region along the horizontal lay-
up axis. This formulation reflects the anisotropic nature of AFP defects, which

primarily impact material integrity transversely.

The segmented defect mask, obtained from either thresholding or active contouring,
serves as input to the DAP computation block. Pixel-wise counts are converted into
physical units using the thermal camera’s calibration parameters, ensuring dimen-
sional accuracy. Crucially, the evaluation extends beyond frame-level assessment:

leveraging the dynamic tow identification mechanism (introduced earlier), DAP is
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computed not only for the entire course but also for each individual tow in the frame.

This tow-level granularity enables precise fault localization and supports mainte-
nance strategies aligned with practical AFP workflows, where operators typically
intervene at the tow level rather than replacing entire courses. The system com-
putes DAP values for each tow by intersecting the segmented defect mask—obtained
via the local inspection framework—with the tow layout map generated by the dy-
namic tow identification module. Notably, when augmented with the outcomes of
the Motion-Aware Global Inspection Framework, this localization gains an addi-
tional dimension of continuity. Through inter-frame motion estimation and frame
stitching, the second framework provides temporal alignment and spatial consistency
across overlapping regions, enabling the traceability of individual defects across the

evolving lay-up surface.

The resulting defect metrics are then fused with classifier predictions and relayed
to the operator interface alongside intuitive visual overlays. This multi-source inte-
gration allows the AFP-DSS to assign each lay-up instance to one of several prede-
fined expert knowledge based quality states, reflecting both local defect severity and
broader spatial context. Based on internal thresholds, an alert-recommendation en-
gine issues action prompts ranging from 'No Action Required’ to 'Repair or Replace
Tow’. Through this hierarchical and context-aware evaluation—anchored by local
features and reinforced by global reconstruction—the proposed system elevates ther-
mographic inspection from basic defect detection to an intelligent, operator-assistive

quality management platform.
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5. MACHINE-INDEPENDENT MOTION-AWARE GLOBAL

INSPECTION FRAMEWORK

This chapter presents the second core framework of the proposed system: a machine-
independent, motion-aware global inspection framework that reconstructs the ther-
mal lay-up from overlapping image sequences. Complementing the local frame-wise
defect analysis detailed in Chapter 4, this framework exploits temporal continuity
to generate spatially coherent, laminate-scale visualizations. By integrating dense
motion estimation with process-aware reconstruction, it enables real-time, machine-

independent monitoring and enhances traceability across the evolving lay-up.

5.1 Framework Overview

The proposed framework enables real-time, machine-independent inspection of AFP
processes by accurately estimating motion fields and reconstructing a spatially con-
sistent global view of the laminate from thermographic video data. It addresses key
challenges in motion-aware reconstruction—such as radiometric noise, frame mis-
alignment, tool-dependent variability, and drift accumulation—while emphasizing
generality, low latency, and interpretability. Operating independently of machine-

integrated signals, the system adapts seamlessly across diverse AFP setups.

As illustrated in Figure 5.1, the system comprises two core stages: ThermoRAFT-
AFP Motion Estimation and Thermal Lay-up Reconstruction. These mod-
ules form a sequential pipeline: each frame’s motion is estimated at the pixel level,
then aggregated into high-fidelity laminate visualizations. Deep learning is applied
selectively—using dense optical flow models where fine-grained temporal consistency
is essential, and combining geometric rectification with statistical pooling for effi-

ciency and robustness.
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Figure 5.1 Overall structure of the proposed Motion-Aware Global Inspection Frame-
work, illustrating the thermal input stream, motion estimation process, and recon-
structed laminate output.

The first module, ThermoRAFT-AFP Motion Estimation, processes consecu-

tive thermal frames It (z,y) to compute dense velocity fields Vi (z,y):

(51> ‘A/k(l‘ﬁg):F<]k—1(x7y)7[k(x7y))a

where F(-) denotes the learned flow estimator. Displacement is recursively accumu-

lated as:

A

with At denoting the frame time interval.

To ensure robustness under low-texture and thermally variable conditions, this stage
employs a deep learning-based optical flow model with three runtime enhancements:
predictive initialization for flow continuity, drift correction via residual alignment,
and temporal filtering using exponential moving averages. As a consequence of the
perspective correction step in the universal preprocessing pipeline, all input frames
are rectified to align the lay-up surface fronto-parallel—simplifying motion estima-
tion to a primarily vertical task. Within this rectified domain, dense vertical flow
is pooled into scalar velocity v, values—and correspondingly scalar displacement
dj. values—using a median operator over a predefined Rol, yielding compact, drift-

stable motion signals well-suited for real-time lay-up reconstruction.

The second module, Thermal Lay-up Reconstruction, transforms these scalar
displacements into spatially coherent laminate views. Frames are first stitched into
seamless course-level mosaics based on vertical motion. These mosaics are then

registered ply-wise by matching cumulative displacement profiles. The result is a
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temporally ordered, high-fidelity 2D /3D representation of the evolving lay-up sur-
face—enabling traceability, operator guidance, and automated inspection at the ply

or laminate scale.

To meet industrial standards and achieve state-of-the-art performance, the system
must fulfill:

e Metrological Performance: High-precision motion estimation with
RMSE < 2% of nominal tool speed, R? > 99%, and minimal bias (MPE <1%).

e Real-Time Operation: Minimum 10 fps throughput on standard thermal
streams using commodity hardware—without hardware acceleration or syn-

chronization.

o Deployability: Robust to thermal noise, invariant to lay-up parameters, and
nearly tune-free across diverse process setups—with no machine-derived in-

puts.

o Traceability: Seamless reconstruction with cumulative drift Ay < 1%, en-
abling high-fidelity 2D mosaics and 3D ply-level visualization for global defect

tracking.

Together, these modules compose a unified global inspection framework that
complements frame-wise analysis by embedding defect observations within their
broader spatiotemporal context. Designed for speed, robustness, and interpretabil-
ity, the system enables true machine-independent in-situ thermographic inspec-

tion—delivering actionable insight into AFP quality evolution.

5.2 Deep Flow Estimation in AFP

Deep optical flow models have recently demonstrated superior performance in cap-
turing dense motion patterns, particularly in low-texture or noisy environments.
Among them, RAFT (Teed & Deng (2020)) has emerged as a leading architecture,
known for its accuracy, resolution preservation, and robustness. RAFT estimates
full-resolution optical flow by iteratively refining motion predictions over a high-
dimensional all-pairs correlation volume. Its core architecture—depicted in Fig-
ure 5.2—comprises a feature encoder, correlation lookup module, and a recurrent
update block.
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Figure 5.2 RAFT optical flow architecture.

Originally trained on visible-spectrum datasets such as FlyingChairs (Dosovitskiy,
Fischer, Ilg, Hausser, Hazirbas, Golkov, Van Der Smagt, Cremers & Brox (2015)),
Sintel (Butler, Wulff, Stanley & Black (2012)), and KITTT (Geiger, Lenz, Stiller &
Urtasun (2013)), RAFT delivers subpixel-accurate, dense flow across a wide range of
real-world scenes. It has achieved top-tier benchmark scores with a relatively modest
parameter footprint of 5.3M, as highlighted in recent comparative studies (Alfarano,
Maiano, Papa & Amerini (2024b)).

Several architectural properties make RAFT an attractive candidate for thermal

motion estimation in AFP settings:

o Global matching: All-pairs correlation handles large displacements and

sparse features—ideal for untextured thermal inputs.

o Iterative refinement: The recurrent update mechanism increases robustness

to radiometric fluctuations.

o Full-resolution output: Flow maps retain pixel-level precision, which is

critical for reconstructing fine-layer AFP structures.

Despite these advantages, raw RAFT is not directly deployable for in-situ AFP
monitoring. First, its training on visible-range images renders it insensitive to the
unique thermal behaviors of composite materials—such as emissivity variation, heat
conduction, and layer stacking effects. Second, its dense matching and iterative
inference impose substantial computational load. Even on high-end GPUs, standard
RAFT processes 1088 x 436 frames at only ~10fps (Teed & Deng (2020)), falling
short of real-time needs. Most importantly, RAFT lacks awareness of AFP-specific
motion priors, including vertical tool travel, unidirectional lay-up progression, and

temporal coherence.

To address these limitations, we introduce ThermoRAFT-AFP: a domain-adapted

variant designed for thermal flow estimation in AFP contexts. The model inte-
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grates predictive initialization for temporal consistency, radiometric drift correction
to handle thermal bias accumulation, and lightweight inference strategies tailored
to AFP’s predominantly vertical motion dynamics. Together, these enhancements
allow real-time operation while improving accuracy and robustness under true AFP

process conditions.

5.3 ThermoRAFT-AFP: Domain Tailored Motion Estimator

5.3.1 Predictive Warm-Start Initialization

A central enhancement in our motion estimation strategy is the use of predictive
warm-start initialization, which significantly boosts convergence, flow stability, and
throughput. Unlike conventional RAFT, which initializes the optical flow field with
zeros—implicitly assuming motionless input—or with random values, our approach
reuses the final refined output from the previous frame pair as a starting point for
the next. This transforms the flow estimator from an open-loop predictor into a
temporally guided, fixed-point iterator. For frame k, the initial flow estimate is
defined as:

(5.3) o =)

(V)

where ¥, ] represents the refined flow at the final iteration N from the previous
pair (Ix_9,1x—1). We set N = 12 consistent with RAFT’s default. This warm-
start mechanism reduces refinement steps by 25-40%, enhances stability in low-
texture regions, and provides improved flow continuity—thereby enabling real-time

operation in process-driven thermal imaging scenarios such as AFP.

5.3.2 Regression-Based Drift Correction

Although RAFT-based models produce high-fidelity motion estimates, small sys-

tematic deviations can accumulate over time due to texture sparsity, radiometric

54



variability, or setup-dependent calibration factors such as lens distortion and pixel-
to-millimetre conversion inaccuracies. These per-frame biases, though minor, inte-

grate into significant displacement drift.

To mitigate this, we apply Passing—Bablok regression (Passing & Bablok (1983))—a
robust, non-parametric linear calibration method designed for uncertain, non-
Gaussian data. It requires only a monotonic relationship between predicted and
ground-truth values, which we confirm using Spearman’s rank correlation (Spear-

man (1961)). All sequences satisfy the criterion with p > 0.9 and p < 0.01.

Let 95 denote the raw velocity estimate and v the ground-truth velocity at frame

k. The regression model is given by:
(5.4) v = BU +«

with slope § and intercept « estimated from median pairwise slopes. The corrected

velocity becomes:

~corr _ Uk —C&

(5.5) ot = 5

This adjustment eliminates systematic drift while preserving signal trends. Impor-
tantly, (a, ) are computed once per camera—setup pair using a short calibration
sequence and remain fixed thereafter—enabling generalized, nearly calibration-free
deployment across varying materials, machines, and lay-up parameters. Despite its
simplicity, this correction yields the highest gain in accuracy across our evaluation
metrics and incurs negligible runtime cost, making it ideal for embedded inspection

workflows.

5.3.3 Temporal Stabilization

In addition to accuracy, AFP monitoring demands temporally consistent motion
outputs suitable for reconstruction and control. Even with subpixel precision, frame-
to-frame jitter may arise due to transient emissivity effects or localized contrast
drops. To suppress such instability, we apply a causal exponential moving average
(EMA) filter to the corrected velocity stream:

(5.6) U = )\ﬁ;éorr + (1 — )\)@k—l
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where A € [0,1] is a smoothing gain. This yields the stabilized output 7 with

minimal computational burden.

We evaluated alternative smoothing strategies such as the Kalman filter (Kalman
(1960)) and Savitzky-Golay filter (Savitzky & Golay (1964)). However, Kalman
filtering introduced undesirable parameter sensitivity and minor lag in our setting,
while Savitzky—Golay filtering, though shape-preserving, is non-causal and unsuit-

able for real-time streaming.

EMA, by contrast, provides low-latency smoothing with a single multi-
ply—accumulate operation per frame. It consistently reduces jitter, preserves the
underlying trend, and yields small but reliable improvements in estimation qual-
ity—completing the ThermoRAFT-AFP pipeline with temporally stable, real-time

motion output.

5.4 Process-Aware Inference Optimizations

Despite the architectural precision and temporal stability of ThermoRAFT-AFP,
achieving real-time performance in industrial AFP environments requires further
optimizations beyond model design. To this end, we introduce a set of domain-
specific inference strategies that substantially reduce computational load without
compromising accuracy. These are not generic speed-ups, but process-aware accel-
erations that exploit the predictable motion patterns and structured thermal features

inherent to AFP lay-up.

5.4.1 Region-of-Interest Cropping

Due to the quadratic scaling of RAFT’s 4D correlation volume (Martins Briedis,
Gross & Schroers (2025); Teed & Deng (2020)), reducing spatial resolution directly
improves inference speed. In AFP thermography, significant motion is confined to
a narrow central band corresponding to the active laminate region, while peripheral

zones typically contain static background and radiometric noise.

To exploit this, we define a fixed symmetric Rol per setup, cropping lateral margins
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to isolate the motion-rich band. Unlike adaptive or entropy-based cropping, this ap-
proach imposes no per-frame overhead and preserves geometric alignment—ensuring

compatibility with warm-start initialization and downstream stitching.

Empirically, this Rol gating yields up to 20% speed-up with equal or improved flow
stability. By focusing inference on the relevant region, it enhances robustness while

maintaining sub-millimetre tracking fidelity at high throughput.

5.4.2 Adaptive Early Exit

RAFT’s iterative refinement allows for early termination once convergence is
reached. We exploit this via an adaptive early-exit mechanism that monitors the
update norm |A?| at each iteration. Refinement halts when the magnitude falls
below a threshold 7 (empirically 7 < 0.01 px), beyond which further iterations offer
negligible gain.

Combined with predictive warm-starts, this strategy enables rapid convergence, of-
ten reducing iterations from 12 to as few as 1-3. In effect, it transforms RAFT into a
convergence-aware tracker that adapts to the smooth, unidirectional motion typical
of AFP processes. This optimization significantly lowers latency while maintaining

flow quality.

5.4.3 Temporal Subsampling

RAFT’s robust all-pairs matching allows for inference under sparse temporal sam-
pling, tolerating larger displacements than traditional block- or gradient-based meth-
ods. We exploit this via fixed-interval frame skipping, reducing the effective pro-

cessing rate fprocess below the camera’s nominal rate fyom = 50Hz.

To regulate this trade-off, we define the inter-frame displacement § and the vertical

overlap ratio vy as:

(5.7) § = Unom - =L

f process
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(5.8) 7:100-<1—h )

Rol

where vpon is the nominal tool speed (mm/s), p is pixel density (px/mm), and hrer
is the vertical height of the Rol (px).

As an example, using vpom = 250mm/s, p = 4px/mm, and hr. = 180px, selecting
Jprocess = 26 Hz (i.e., StepSize = 2) yields 6 ~ 40px and v~ 77.8%. This provides

a smooth overlap for accurate stitching while halving computational cost.

Unlike entropy- or event-based policies, this deterministic approach is simple, ro-
bust, and compatible with defect detection and reconstruction. Among all proposed
optimizations, temporal subsampling yields the largest runtime savings—making it

critical for real-time deployment.

5.5 Reconstructing the AFP Process

While frame-wise velocity estimation yields temporally localized insights, industrial
AFP monitoring increasingly requires laminate-scale visualizations to support defect
traceability, maintenance diagnostics, and intelligent process control. Operators
typically assess plies globally but intervene at the course or tow level—necessitating

both coarse and fine-grained visual context.

To mirror this hierarchical inspection logic, our system autonomously reconstructs
the lay-up at two levels. First, thermal frames are stitched into seamless course-
level mosaics. Then, these mosaics are vertically aligned into ply-scale assemblies
using inter-course velocity synchronization. This design supports operator interpre-
tation, enables automated evaluation, and ensures spatiotemporal coherence. The

full pipeline is summarized in Algorithm 2.

5.5.1 Course-Level Seamless Image Stitching

Each course C; consists of a sequence of thermal frames I, for which corrected
velocity U5 and displacement czk are available from ThermoRAFT-AFP. Frames are

vertically aligned using di, and blended into the course mosaic C; using a NaN-aware
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Algorithm 2 Real-time multi-level AFP lay-up reconstruction algorithm

Input: Frame [}, velocity 0, displacement dk, timestep At, density p
Output: Reconstructed laminate £
i1, L0, P10
while receiving frame [ do
if first frame of course C; then
Ci I, Vi + []
else
Shift I, by dj,, blend into C; (Eq. 5.9)
Append 0 to V;
if motion stop detected then
if i=1 then
Py C1
else
(i + argmaxyxcorr(V;, Vi_1)

i (S o) -At) -
Vertically align C; by s;, append to Py
1 1+1
Append Py to L, return L

feathering scheme to ensure radiometric continuity and eliminate edge artifacts. The

blended pixel intensity B(x,y) is computed as:

(5.9) Bley) = = @) on(@y)

where wy(x,y) is a tapered spatial weight (e.g., linear or Gaussian), and 0y (x,y) is

the binary validity mask:

1 if Ix(z,y) is valid (non-NaN)
(5.10) Op(2,y) =

0 otherwise

This ensures seamless merging of overlapping regions while excluding missing or
corrupted pixels. Each new course is initialized from its first valid frame, and seg-
mentation is driven entirely by motion cues. Specifically, thresholded plateaus of
near-zero velocity—indicative of roller deceleration and lift-off—mark the start or
end of a course. This enables fully autonomous, data-driven segmentation without

reliance on machine-side triggers or external timestamps.
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5.5.2 Laminate-Level Assembly via Motion Synchronization

Once all courses {C;} within a ply are stitched, they are vertically registered into a
complete ply view. This is accomplished via motion synchronization: each course’s
velocity trace V; is cross-correlated with that of its predecessor to find the optimal

vertical offset:

(5.11) 5 = Agmax corr(V;(t), Vic1(t+ 1))

This shift s; is then used to vertically align C; with C;—_;. The resulting ply-level
mosaics are stacked in build direction, yielding a 3D thermal laminate £ that is both
spatially and temporally consistent. This layered reconstruction enables part-scale

analysis, multi-defect traceability, and operator-level interpretation.

Critically, the result serves as a digital substrate for closed-loop AFP control, his-
torical diagnostics, and intelligent repair guidance. By elevating frame-wise obser-
vations into a globally coherent visual context, this module transforms inspection

from passive defect reporting to active process understanding.
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6. EXPERIMENTAL RESULTS AND DISCUSSION

This chapter presents a comprehensive evaluation of the hybrid inspection system,
structured around the dual-framework architecture from Chapters 4 and 5. Each
framework is assessed using thermal datasets totaling over 13,000 frames and eval-
uated against the success criteria in Section 1.4, covering accuracy, runtime, ro-
bustness, and deployability. Results are presented by framework: frame-wise defect
analysis and quality assessment are followed by motion estimation and laminate
reconstruction. The chapter concludes with a benchmark comparison against state-
of-the-art AFP inspection methods.

6.1 Multi-Resolution Thermal Dataset for Dual Framework Evaluation

The evaluation of both proposed frameworks was conducted using thermal image
data acquired and preprocessed with the setup described in Chapter 3. Due to the
lack of publicly available thermal datasets for AFP processes, all evaluation data
was acquired in-house. Two task-specific evaluation datasets were then constructed
from this data, each reflecting a distinct temporal sampling strategy. The first, used
for frame-wise defect analysis and quality assessment (Framework 1), consists of
non-overlapping frames selected to maximize information diversity and minimize
redundancy. The second, used for motion-aware reconstruction (Framework 2),
retains the full sequential frame order, as temporal overlap is essential for accurate

motion estimation and stitching.
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6.1.1 Framework 1 Evaluation Dataset:

A curated subset of 5,000 thermal images was extracted to evaluate detection, classi-
fication, and segmentation tasks. This dataset includes 2,500 healthy lay-up frames
and 2,500 defective frames, evenly distributed across five common AFP defect cat-
egories: gaps, overlaps, missing tows, tow splices, and foreign object debris (FOD).
Each image was annotated with both class labels and pixel-wise segmentation masks.
The dataset supports module-level evaluation of binary health classification, multi-

class defect recognition, and DAP-based segmentation performance.

6.1.2 Framework 2 Evaluation Dataset:

The full thermal image sequence was used to evaluate dense motion estimation
and lay-up reconstruction. This dataset comprises 13,300 sequential frames cap-
tured across 70 AFP courses. Approximately 30% of the sequences contain induced
defects, while the remainder represent healthy or low-contrast lay-ups. These se-
quences were used to compute displacement profiles, stitching drift, and velocity
error metrics, forming the quantitative basis for evaluating Framework 2’s global

inspection performance.

Together, these two purpose-aligned datasets enable rigorous, resolution-specific as-

sessment of both frameworks within the proposed hybrid system.

6.2 Framework 1 Evaluation: Defect Analysis and Quality Assessment

This section provides a focused evaluation of the first proposed framework, empha-
sizing its defect detection, classification, and localization capabilities. It incorporates
evaluation results, figures, and tables adapted from the author’s previously published
works (Zemzemoglu & Unel (2023,2); Zemzemoglu et al. (2024)), in accordance with
the respective publishers’ reuse policies. The analysis is organized by subsystem: dy-
namic tow identification, hierarchical defect identification, and defect segmentation.
For each module, we examine performance using both quantitative metrics and il-

lustrative examples, with special attention to robustness under defect-induced noise.

62



Runtime results confirm the system’s adherence to real-time constraints, including
under full execution scenarios. The findings affirm the framework’s suitability for

adaptive, frame-wise AFP inspection in industrial settings.

6.2.1 Performance Analysis of Dynamic Tow Identification Algorithm

We evaluate the performance of the proposed spatial-temporal analysis algorithm for
dynamic tow identification in AFP lay-up images. To underscore the contribution
of the temporal component, we begin by examining spatial-only estimations. Fig-
ure 6.1 shows results on one healthy and one defective sample, comparing estimated
(blue dashed) and ground-truth (green solid) tow boundaries. The accompanying
edge histograms (vHist) help visualize gradient distributions critical for boundary

inference.

(a) (b)

Figure 6.1 Tow boundary estimation using spatial-only analysis on (a) healthy and
(b) defective samples with ground truth (green lines) and estimated boundaries (blue
dashed lines); bar charts show edge distributions.

The calculated pixel-wise error margins for this spatial tow boundary estimation

example are [+4.5, —3, —2.5] for the healthy lay-up and [+3.5, —3, —12.5] for

the defective lay-up. While the spatial algorithm performs reasonably on healthy

samples, defective regions—such as overlaps or tow splices—induce substantial de-
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viations that impair tow-level reasoning, particularly DAP computation. Despite
parameter tuning (e.g., threshold 7', merging distance mDist), spatial-only methods
lack the robustness required under defect-induced noise. These limitations motivate
our integration of a temporal component, which stabilizes estimations with minimal

additional computational cost.

A detailed scenario is presented in Figure 6.2, where two defect events—D1 (tow
splice) and D2 (overlap)—emerge during the lay-up. The splice in tow 3 introduces
outlier vertical edges, triggering a spike in B3’s estimation error and momentar-
ily pushing B2 outside the convergence band. The subsequent overlap between
tows 3 and 4 causes temporary divergence in B3 before recovery. Despite these dis-
turbances, the spatial-temporal algorithm adapts in real time, progressively refining
estimates through cumulative averaging. Both B2 and B3 ultimately converge within
the £2 px error margin, demonstrating the algorithm’s resilience and alignment with

the robustness criterion defined for tow identification.
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Figure 6.2 Tow boundary errors under defects D1 and D2. Temporal averaging
stabilizes B2 and B3 within +2 px band.

To quantify performance, we define four metrics: (i) First Convergence, the earli-
est frame index where error enters the tolerance envelope; (ii) Stable Convergence,
where it remains consistently within bounds; (iii) Estimation Error, the mean abso-
lute boundary error; and (iv) Ezecution Time, measuring runtime per frame. These
metrics directly reflect the system’s Tow Identification Robustness and con-

tribute to its overall real-time suitability.
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The algorithm parameters were experimentally optimized for balanced accuracy, ro-
bustness, and runtime. Key settings included a peak merging distance mDist =
10 px, edge threshold T'= 0.5, and a 10-frame temporal window (k = 10) for averag-
ing. The weighting array w was designed to favor boundary zones over the center,
mitigating the impact of defective regions. Table 6.1 compares the performance of

different filter-averaging combinations across four criteria.

Among the variants, Scharr-based linear filtering with cumulative averaging (Cgyg)
consistently achieved the best trade-off—delivering the lowest estimation error
(0.8 px), fastest stable convergence (8frames), and sub-30 ms runtime. This per-
formance reflects the algorithm’s momentum-driven convergence: as the majority of
frames are defect-free, cumulative averaging increasingly suppresses defect-induced
noise. In contrast, non-linear filters (e.g., top-hat) yielded no significant gain but
added computational cost. Overall, the selected configuration meets the real-time

requirement and aligns with the system’s Tow Identification Robustness criterion.

Table 6.1 Mean performance comparison of the proposed spatial-temporal analysis
based dynamic tow identification algorithm using different filtering methods and
averaging techniques.

No Filter Linear Filter Non-linear Filter
SMavg WMayg Cavg SMavg WMayg Cavg SMavg WMawg  Cavg
First Convergence [f] 8.2 7.0 7.4 4.2 4.0 34 5.9 5.5 4.7
Stable Convergence [f]  14.5 140 122 95 8.9 8.0 120 10.8  10.5

Estimation Error [px] 3.6 3.5 3.1 1.3 1.1 0.8 2.2 1.8 1.8
Execution Time [ms] 21.7 23.3 22.0 26.1 28.9 27.7 335 35.1 31.6

The chosen configuration balances robustness and efficiency, with convergence typ-
ically achieved in under 8 frames and sub-pixel accuracy maintained across healthy
and defective regions. Compared to nonlinear alternatives, linear filtering provides

competitive performance at significantly lower computational cost.

To further enhance estimation reliability, classification outputs from the defect
detection module can optionally guide dynamic re-weighting or masking strate-
gies—skipping highly defective frames or down-weighting their influence in the aver-
aging process. This integration could improve robustness against emerging defects

while maintaining low overhead.

Unlike prior works that rely on static assumptions or machine-coupled models, our
method operates fully online, adapting to new frame content and enabling general-
ized deployment across AFP systems. This approach aligns directly with the Tow

Identification Robustness and Real-Time Operation criteria outlined earlier.
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6.2.2 Hierarchical Defect Identification Performance Evaluation

This part evaluates the hierarchical learning-based framework for frame-wise defect
identification. The system consists of a high-level binary classifier using Support
Vector Machines (SVM) and a low-level multiclass classifier based on deep convo-
lutional neural networks (DCNN). Performance is reported in accordance with the
defined criteria for Detection Reliability and Classification Accuracy, with

attention to recall, false negatives, and runtime feasibility.

6.2.2.1 High-Level SVM-Based Defect Detector

The SVM model was trained using Gabor texture features extracted from the labeled

thermal dataset. The data was partitioned into three subsets:
« Training set (80%): Used to fit the model.
» Validation set (10%): Used to optimize hyperparameters during training.
o Test set (10%): Held out for final evaluation using unseen instances.

A grid search was employed to identify optimal hyperparameters, with tuning pri-
oritized toward high recall (sensitivity) to minimize the likelihood of undetected
defects. No signs of overfitting were observed, and all reported metrics refer to the

test set performance.

Figure 6.3 presents the normalized confusion matrix, treating defective lay-ups as
the positive class. The matrix displays counts of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) for binary classification. The
model achieved 97.2% recall for defective and 95.6% precision for healthy samples.
The 2.8% false negative rate ensures most defective instances are flagged, while the
4.4% false positive rate minimizes unnecessary process interruptions and associated

costs.

Table 6.2 summarizes the tuned parameters and test metrics. The model achieved
an overall accuracy of 96.4% and an Fl-score of 96.43%, underscoring its balanced
performance. Some misclassifications stem from ambiguities between defect and
non-defect textures (e.g., gaps vs. tow boundaries), which may be reduced with

conditional postprocessing logic.

Feature extraction dominates the model’s average runtime (89.7ms), mainly due
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Figure 6.3 Normalized confusion matrix for SVM-based test set classification results.

Table 6.2 SVM model optimized parameters and performance evaluation.

Model Parameters Performance Metrics
Kernel constant (y) 27° Test accuracy 96.4%
Penalty term (C') 273 F1-score 96.43%
Feature extraction  72.7ms Recall 97.2%
SVM prediction 17.0ms Precision 95.67%
Total time 89.7ms

to image convolution with the Gabor filter bank. Although the filters are pre-
generated and reused across frames and quality modules, this step remains the most
demanding. Still, execution time remains well within the Real-Time Operation
constraint, especially since the extracted features are reused for downstream quality
evaluation. This efficiency, paired with strong predictive performance, confirms the

SVM model’s suitability for reliable AFP status monitoring.

6.2.2.2 Low-Level DCNN-Based Multiclass Classifier

The DCNN model was trained to classify five defect types. Training converged after
60 epochs, with the learning rate reduced every 10 epochs. Key parameters and
results are listed in Table 6.3.

Figure 6.4 shows the normalized confusion matrix. All per-class accuracies exceeded
95%. The Owverlap class posed the greatest challenge, likely due to constraints in syn-
thetic defect generation. Missing Tow, despite its low visual contrast and difficulty
for human inspection—especially in unidirectional multi-layer lay-ups—achieved the

highest accuracy (98%), aided by multi-tow scenarios that improved class separa-
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Table 6.3 DCNN model parameters and classification results.

Model Parameters Classification Results
Layers number 12 Overall accuracy 96.4%
Initial learning rate 1073  Test time 39.7 ms
Epochs limit 60

Training set 80%

Validation set 10%

Test set 10%

bility. Tow Splice and Foreign Body classes exhibited slightly higher false positives

due to inter-class visual similarity.
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Figure 6.4 Normalized confusion matrix for DCNN-based test set classification re-
sults.

Despite minor confusion, all class accuracies exceeded 96%, validating the DCNN'’s
effectiveness and satisfying the Classification Accuracy criterion. The hierarchi-
cal structure mitigates class imbalance and simplifies model complexity, enabling
more stable generalization. Considering that preprocessing consumes an average of
1.5ms, the combined detection (89.7ms) and classification (39.7 ms) stages yield a
total module runtime of 130.9 ms per input frame—well within the 5 fps real-time

constraint and leaving sufficient margin for the upcoming segmentation stage.

This architecture enables high-confidence, efficient classification while complement-
ing the detection stage to strengthen overall frame-wise defect intelligence. Together,

these modules validate the system’s capability for robust, real-time defect detection
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and classification—fulfilling the industrial demands of quality-focused AFP moni-

toring.

6.2.3 Defect Segmentation and Localization

The effectiveness of the defect segmentation and localization algorithm is critical
to downstream quality evaluation, particularly for computing course-level and tow-
level DAP metrics. Two algorithmic variants are compared: adaptive thresholding
(AT) of texture features and AC with texture feature seeding. Among defect types,
foreign bodies and tow splices pose segmentation challenges due to their irregular
shapes, non-uniform thermal contrast, and high similarity to structural textures in

the background.

Figure 6.5 shows the result of the AT-based method on a sample image contain-
ing a foreign body defect spanning the third and fourth tows. While the texture-
based preprocessing enhances defect edges, it also amplifies weaker gradients near
tow boundaries and image margins—particularly the middle tow boundary with a
wide footprint. These outliers propagate through thresholding and appear as false
positives in the final binary mask. Although the sides of the defect are partially
segmented, the AT result fails to form a closed region and includes residual pixels

from background structures.

(a) (b) (c)

Figure 6.5 Adaptive thresholding of texture features: (a) original lay-up image show-
ing a tow scrap foreign body defect; (b) texture feature-enhanced image; (c) seg-
mented mask using Otsu’s adaptive thresholding.
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The AC algorithm was applied to the same image for comparative evaluation. As
shown in Figure 6.6, the initial seed contains edge clusters from the defect as well as
outlier pixels on the middle tow boundary. Over successive iterations, the active con-
tour expands across the defect area while suppressing the influence of non-defective
textures—demonstrating strong noise rejection. By iteration ¢ = 25, the contour
converges on the foreign body region, successfully enclosing it. Although the final
mask includes some peripheral pixels not part of the true defect, this conservative
tendency introduces a slight positive bias in the DAP metric—considered preferable

to the risk of false negatives.

(a) (b) (c)

Figure 6.6 Active contours with texture feature seeding: (a) initial seed mask at
i =1; (b) intermediate contour at ¢ = 10; (c¢) final convergence at i = 25, isolating
the defect.

Quantitatively, AT excels in computational efficiency with an average runtime of
8.2ms. The AC algorithm, requiring 62.5ms for 25 iterations, is slower but offers
significantly higher spatial precision and robustness. Its ability to form closed regions
and resist false segmentation makes it suitable for integration into real-time quality
inspection, especially when single-defect instances are expected. With future inte-
gration of region splitting and merging logic, the method can support multi-defect

scenarios.

To evaluate accuracy, we adopt two common metrics: PA and IoU. PA measures
the proportion of correctly classified pixels, while IoU quantifies the overlap between

predicted and ground-truth regions:

TP+TN
TP+TN+FP+FN

(6.1) PA — ( ) % 100
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2 IoU =
(6.2) oU SUG

Here, TP, TN, FP, and FFN denote true positives, true negatives, false positives,
and false negatives, respectively. In the IoU expression, S is the predicted segmen-

tation and G is the ground truth.

The AC method was tested on defective lay-up instances of the evaluation dataset,
yielding a mean PA of 93.2% and mean IoU of 0.72. These results highlight the algo-
rithm’s suitability for thermography-based segmentation tasks and confirm its gen-
eral robustness. Direct comparison with external benchmarks is limited by the ab-
sence of publicly available AFP thermographic datasets. However, similar methods
operating on profilometer data or bounding-box annotations report IoUs between
0.70-0.78 (Ghamisi et al. (2023); Tang et al. (2022)), suggesting our performance is

on par or better given the greater complexity of thermal data.

Taken together, this segmentation strategy provides a reliable defect localization
backbone for frame-wise AFP quality analysis. While AT offers a fast but coarse
approximation, AC delivers higher accuracy, especially in cases involving irregular or
low-contrast defects—ensuring downstream DAP computation remains robust and

interpretable.

Runtime Summary: The total execution time of the frame-wise quality assess-
ment framework depends on the active route. Route A—comprising only tow iden-
tification—was previously shown to complete within a sub-30 ms runtime. In the
worst-case Route B scenario—where both classification and segmentation via AC
are triggered upon defect detection—the runtime reaches 193.4ms. This remains
within the system’s 200 ms frame budget, satisfying the 5 FPS real-time constraint
and confirming the deployability of the full analysis path.

6.3 Framework 2 Evaluation: Motion-Aware Global Inspection

This section evaluates the second framework of the proposed inspection system,
which leverages overlapping thermal frames to enable motion-aware analysis and
global lay-up reconstruction. Emphasis is placed on subpixel motion estimation,
real-time feasibility, and laminate-scale visualization. The assessment spans accu-

racy, drift, and robustness—supporting the framework’s role as a globally consistent
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and operator-assistive inspection layer.

6.3.1 ThermoRAFT-AFP Performance Analysis

This subsection presents a quantitative evaluation of the ThermoRAFT-AFP frame-
work on a representative thermal dataset comprising 13,300 frames captured from
AFP lay-up operations. The evaluation emphasizes subpixel motion estimation ac-
curacy, long-term displacement stability, and temporal consistency. Three metric
categories are used: (i) Precision—quantified by Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE); (ii) Trueness—captured by Mean Prediction
Error (MPE); and (iii) Tracking Fidelity—measured using Coefficient of Deter-
mination (R?), Pearson Correlation (r), and cumulative drift (Agug). Given the
ground truth velocity vi and predicted velocity o5 at frame k, with cumulative

displacement cik, the evaluation metrics are defined as:

| N
(6.3&) RMSE = N Z (Uk; — @k)2
k=1
| N
(6.3b) MAE = N > o — O]
k=1
1 N @k Uk
6.3c MPE =100 —
(6.3c) N kgl o
> (v — Or)?
6.3d B2 = 2kk = 0k)
(6.34) Sk(vp —0)?
> (ve — 0) (8, — D)
(6.3e) r= =
V k(0 —0)2 /2 (0, — 0)?
(6.3f) Aguire = 100-| =9
dn

A grid search was conducted on a validation subset to jointly tune the Region-of-
Interest (Rol) cropping ratio, RAFT iteration count, and Exponential Moving Av-
erage (EMA) gain A. The selected configuration—20% cropping, two iterations, A =
0.82, and Passing—Bablok regression correction (5 = 0.9789, o = 0.0095)—achieves

real-time operation while ensuring high precision.

A sample course result is illustrated in Figure 6.7, comparing ThermoRAFT-AFP
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with raw RAFT and ground truth. The reference velocity was interpolated using
shape-preserving cubic splines to replicate typical lay-up profiles featuring veloc-
ity ramps and plateaus. While raw RAFT exhibits overestimation during steady
motion, ThermoRAFT-AFP shows tight alignment, particularly in transient zones.
Raw RAFT yields 7.87mm/s RMSE, 3.64% MPE, and 2.58% displacement drift,
whereas ThermoRAFT-AFP reduces these to 4.58 mm/s, 0.17%, and 0.10% respec-

tively—achieving sub-millimeter cumulative error over a 750 mm lay-up.
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Figure 6.7 Motion estimation for a representative AFP course: (top) frame-wise
lay-up velocity, (bottom) cumulative displacement.

The refined estimates track both amplitude and phase accurately, with R? =99.51%
and Pearson r = 99.76%, underscoring fidelity even during dynamic transitions. This
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single-case performance typifies the global dataset-level findings reported next.

Table 6.4 summarizes ThermoRAFT-AFP’s metrics across the full evaluation set.
Average RMSE remains under 5mm/s, MPE under 0.2%, and cumulative drift
at 0.09%—all satisfying the predefined success thresholds. Compared to baseline
RAFT, RMSE and MAE improve by over 40%, while MPE and drift reduce by more
than 90%. Moreover, standard deviations are notably reduced, indicating robustness
across lay-up scenarios, thermal patterns, and defect contexts. This consistency is
further evidenced by high R? (99.33%) and correlation (99.70%).

Table 6.4 Performance metrics of ThermoRAFT-AFP across evaluation dataset

RMSE MAE MPE R? r Adrite
[mm/s] [mm/s] (%] (%] (%] (%]
Raw RAFT 8.70£1.12 6.39 £0.92 3.06 £0.58 96.7 £0.22 98.3+0.17 2.58 +£1.96
ThermoRAFT-AFP 4.83+0.25 3.70+0.19 0.17+0.25 99.33 +0.07 99.70+£0.10 0.09 £ 0.08
Enhancement’ 44.5% 42.1% 94.4% +2.6 pp +1.4pp 96.5%
Success criteria <5.0 <5.0 <0.5 >99.0 >99.0 <1.0
TRelative gain (baseline — ours)/baseline x 100; “pp” = percentage points.

Most of the drift and bias correction ( 90%) stems from the regression layer, while
EMA filtering contributes an additional 7-10% accuracy gain by mitigating jitter.
The integrated enhancements transform a generic flow estimator into a domain-

adapted, precision-grade tracker suitable for automated thermographic monitoring
in AFP.

6.3.2 Runtime Performance and Real-Time Feasibility

This subsection evaluates the real-time operability of the ThermoRAFT-AFP frame-
work by analyzing the trade-off between inference speed and estimation fidelity. The
analysis is supported by both metric-based profiling and the effect of cumulative op-
timization strategies. All results are measured on the hardware platform previously
described in chapter 3. Root Mean Square Error (RMSE) is selected as the pri-
mary representative metric, while correlation-based indicators such as R? and r are

omitted here, having already been validated in subsection 6.3.1.

Table 6.5 summarizes the effect of temporal subsampling (StepSize variation) on
both accuracy and latency. The tuned configuration, StepSize 2 (25Hz), emerges
as Pareto-optimal—achieving subpixel velocity error, a low drift rate of 0.09%, and

real-time throughput with a measured inference time of 33.0 ms. This is comfortably
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within its 40 ms frame cycle budget. Interestingly, StepSize 1 (50 Hz) performs worse
despite higher sampling density. Its 70 ms latency exceeds the allowable time and
yields degraded accuracy, likely due to excessive spatial redundancy and radiometric

noise, which compromise RAFT convergence.

Table 6.5 Accuracy vs inference time trade-off analysis for different StepSize settings.

StepSize 1 StepSize 2 StepSize 3 StepSize 4 StepSize 5 StepSize 6

Metric
(50Hz)  (25Hz)  (16.6Hz) (125Hz) (10.0Hz) (8.33Hz)

RMSE [mm/s] 6.23 4.83 7.18 15.35 10.11 75.98
MPE [%] -0.39 0.17 1.50 2.66 0.17 6.62
R? [%] 99.05 99.33 98.79 04.46 97.22 -54.81
Aduite [%] 0.28 0.09 0.41 0.30 0.35 7.41
Allowable Time [ms] 20 40 60 80 100 120
Inference Time [ms] 70.0 33.0 24.3 18.1 14.6 12.4

The performance degrades sharply at StepSize 6 (8.33Hz), where RMSE exceeds
75mm/s and the coefficient of determination (R?) falls below zero. This collapse
stems from insufficient overlap between consecutive frames, violating optical flow as-
sumptions and impeding convergence. Intermediate configurations (e.g., StepSize 4
at 12.5 Hz) already exhibit instability, suggesting that temporal motion continuity
becomes unreliable below a practical threshold of 16 Hz. These results confirm that
high frame rate alone is not sufficient—temporal coherence is critical to accurate

flow estimation.

While inference time decreases monotonically with increasing StepSize, accuracy
does not degrade linearly. For instance, StepSize 3 is 26% faster than StepSize 2,
yet it suffers from 48% higher RMSE and over four times more drift. StepSize 5
maintains reasonable accuracy with 10 Hz processing and may be useful under fall-
back or power-saving conditions. The selected StepSize 2 configuration also leaves
a 7ms budget margin for preprocessing and reconstruction tasks, validating the

feasibility of the full end-to-end pipeline.

ThermoRAFT-AFP achieves this real-time performance not by simplification but
through careful domain-specific optimization of the inference pipeline. Starting
from baseline RAFT inference—78.5ms per frame with full resolution and 12 it-
erations—a series of runtime optimizations are applied. Predictive warm-starting
reduces this by 23%, reaching 60.6 ms. Rol cropping across horizontal and verti-
cal axes yields a further 24% improvement, lowering latency to 45.8ms. Finally,
a confidence-driven early-exit mechanism dynamically trims redundant refinement
iterations, arriving at the deployed runtime of 33.0 ms.
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This 58% cumulative latency reduction demonstrates how domain-aware strate-
gies—not generic simplification—enable real-time inference with high accuracy.
ThermoRAFT-AFP thus bridges the gap between academic optical flow models

and the practical demands of autonomous, in-situ AFP monitoring and inspection.

6.3.3 Lay-up Reconstruction and Visualization

Building on the validated velocity estimates, this subsection demonstrates how
ThermoRAFT-AFP enables real-time laminate-scale reconstruction using only ther-
mal imagery. The selected case features a uni-directional (UD) laminate comprising

both healthy zones and FOD anomalies.

Figure 6.8 illustrates the course-level reconstruction. Frame-wise thermal im-
ages—aligned using ThermoRAFT-AFP motion estimates—are fused into a con-
tinuous thermal mosaic. Frame spacing inherently reflects local deposition velocity,
while feathered blending suppresses overlap artifacts and attenuates radiometric
noise. Transparent dashed white lines indicate frame centers for spatial reference.

For clarity, only a representative course segment is shown.

Frame Index
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
I I I I I ] I I I

0 Lay-up Direction 50 100 150 200
—
Course Length [mm]

Figure 6.8 Course-level reconstruction for a uni-directional laminate containing both
healthy and FOD-affected regions. Stitched frame centers are marked by transparent
dashed white lines for reference. Only a representative segment of the full course is
shown for visual clarity and space efficiency.

Global laminate reconstruction is achieved by stacking stitched courses. As shown
in Figure 6.9, ply-wise synchronization is performed via cross-correlation of velocity
profiles, compensating for inter-course shifts. In the illustrated example, a vertical
lag of 12.3 mm is detected and corrected—ensuring seamless alignment across course
boundaries. The resulting 2D lamina view enables full-ply inspection and supports

inter-course defect interpretation.

To evaluate stitching fidelity, we compute the Structural Similarity Index Measure

(SSIM) between the original frames and their corresponding regions in the course

mosaic. An average SSIM of 0.8665 indicates strong structural preservation. Ply-
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Figure 6.9 Ply-level motion synchronization visualization across two stitched AFP
courses. Overlayed motion profiles (blue) highlight instantaneous velocity variations
along the course length. Estimated inter-course lag is shown with a scaled marker
in physical units (mm), derived from cross-correlation.

level registration accuracy is assessed by measuring vertical deviation at layer edges,
yielding a mean absolute alignment error below 1.23 mm—achieved without any

post-hoc correction.

Runtime profiling confirms real-time feasibility. Course-level stitching—including
motion estimation, inter-frame alignment, lag correction, and blending—executes in
36.5ms per frame, satisfying the 25 Hz (40 ms) throughput requirement. Ply-wise
stacking operates asynchronously during >5s machine idle intervals and introduces

no delay to the real-time pipeline.

Unlike prior work such as (Denkena et al. (2022)), which focuses on per-frame mo-
tion, our method reconstructs entire laminates in real time. The output provides
a continuous, operator-interpretable thermal map where localized anomalies can be
understood in global context. This real-time, camera-only reconstruction supports
cross-layer, inter-course, and intra-course defect analysis—marking a significant ad-

vance in in-situ inspection for automated composite manufacturing.
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6.3.4 Reliability and Robustness Analysis

To evaluate the deployability of ThermoRAFT-AFP under real-world AFP con-
ditions, we assess its reliability and robustness across four dimensions: statistical
agreement, variation across layers and defects, noise resilience, and tuning-free gen-

eralization.

Agreement with Ground Truth: A Bland-Altman analysis (Figure 6.10) is
conducted over the full dataset to assess estimator reliability. The plotted subset
(one-third for clarity) shows over 91.8% of frame-wise displacements fall within sub-
pixel bounds (£124 ym), and 95% lie within £1.960 (£211 gm). The few outliers
coincide with rapid tool transitions, suggesting that deviations are tied to transient
thermographic noise rather than estimator error. Concordance Correlation Coef-
ficient (CCC) reaches 99.64%, confirming strong agreement with the identity line.
The 95% Total Deviation Index (TDIgs) is 9 um, reflecting tight estimator bounds
and high temporal repeatability.
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Figure 6.10 Bland-Altman analysis of frame-wise displacement estimates, showing
deviation mean (black), 95% limits (orange), and &3 pixel bounds (blue). Over 91%
of estimates fall within the subpixel range; outliers coincide with velocity transitions.

Performance Across Lay-up Depth and Texture: As shown in Table 6.6,
RMSE remains consistently low across all four ply levels, while MPE improves

slightly with increasing lay-up depth. This suggests that estimator bias reduces
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as thermal gradients stabilize. Texture-rich regions (e.g., defect zones) yield lower
RMSE and more balanced MPE—indicating that the model effectively leverages
spatial features without overfitting. The sign reversal in MPE between healthy
(positive bias) and defective (slight underestimation) regions further illustrates sta-

ble estimator behavior across contrasting thermal inputs.
Table 6.6 Metric-wise comparison of ThermoRAFT-AFP performance across lay-up

depth and feature richness. Shading reflects metric magnitude (lower is better).
Arrows (]) mark best values. AH-D is the healthy-to-defective delta.

L No. Lay-up Stat
Metric aver o Mean ay7up SRS AH-D
1 2 3 4 Healthy Defective
RMSE [mm/s] 44 45 45 4.3] 443 4.6 4.2] 0.4
MPE [%)] 0.30 0.24 0.23 0.17] 0.24 0.78 —0.69]) 1.47

Noise Resilience Under Perturbations: We simulate real-world thermographic
noise via a Monte Carlo approach. Additive white Gaussian noise (AWGN), scaled to
match FLIR A655sc’s NETD of 30 mK, is combined with a low-frequency columnar
drift representing thermal shading. Perturbations are applied pre-normalization in

the temperature domain to preserve realism.

As summarized in Table 6.7, ThermoRAFT-AFP maintains strong accuracy and
temporal coherence across SNR levels down to 24.4dB, with RMSE ~4.68 mm/s,
drift ~0.44%, and R? > 99.4%. Performance degrades gracefully at 14.4dB (RMSE
7.05mm/s, drift 1.18%, R? 86.9%), with functional limits observed near 4.3 dB.
These results confirm robust estimator behavior under radiometric perturbations

and bounded degradation under severe thermal noise.

Tuning-Free Generalizability: All results were achieved using a single, fixed con-
figuration. Apart from a one-time regression calibration step, no re-training or scene-
specific tuning was required. ThermoRAFT-AFP thus demonstrates strong cross-
case generalization and high portability to varied AFP thermal setups—meeting a

critical requirement for industrial applicability.

6.3.5 Benchmarking of Motion Estimation Methods

Reliable benchmarking for AFP thermal inspection is hindered by the absence of
public datasets and limited reproducibility of prior work. To enable a fair and trans-

parent comparison, we selected three representative motion estimation approaches:
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Table 6.7 Metrology robustness of ThermoRAFT-AFP across noise levels (o2, SNR).
Color shading qualitatively reflects performance drop per metric. The 14.4dB row
marks the final noise condition with acceptable estimation fidelity.

RMSE MAE MPE R? A drift
mm/s] [mm/s]  [%] [%%] [mm / %]

1073 (64.4dB) | 4.68 329  -0.67 9946  3.36 /0.44
1072 (54.4dB) | 4.68 329  -0.67 99.46  3.37 /0.44
1071 (44.4dB) | 4.68 329  -0.67 9946  3.37 /044
10° (34.4dB) 4.71 3.33  -0.68 99.45  3.39 /0.45
10! (24.4dB) 4.78 3.44 067 9943  3.28 /0.43
102 (14.4dB) | 7.05 5.66 2.21 86.92 8.96 / 1.18
103 (4.3dB) 395.34 248.93 165.28 -70.39 916.10 / 120.54

o? (SNR)

a dense classical method (Farneback (Farnebédck (2003))), a sparse keypoint tracker
(SIFT with RANSAC (Lowe (2004))), and a domain-specific optical flow variant
(CurvatureSSD), re-implemented from (Denkena et al. (2022)). All methods were
evaluated on the same thermal AFP dataset under identical preprocessing, with pa-
rameters tuned via grid search. RAFT baseline results were previously analyzed in

subsection 6.3.1 and are omitted here for conciseness.

Table 6.8 Comparison of motion estimation methods on thermal AFP dataset. Met-
rics span accuracy, runtime, and deployability. Bold marks best scores.

Method Accuracy Efficiency Deployability
RMSE MPE R? Adrift FPS / Time / Budget Real-Time CCC / TDIgps Robustness Generalizability
[mm/s]  [%] [%] [mm / %] [Hz / ms / ms] % / pm]
Farneback 60.28 14.72° 1091 130.59 / 17.16 50 / 19.0 / 20.0 v 59.7 / 169 Low Low
SIFT + RANSAC 7.66 3.18 98.53 18.82 / 2.48 25 /9.4 /40.0 v 98.2 /16 Moderate Low
CurvatureSSD 7.38 0.38 98.66  4.85/0.64 50 / 52.8 / 20.0 98.8 / 14 Moderate Moderate
ThermoRAFT-AFP  4.83  0.17 99.33 0.67 / 0.09 25/ 33.0 / 40.0 v 99.6 / 9 High High

T CurvatureSSD re-implemented from algorithmic description due to unavailable
source code or metrics.

As summarized in Table 6.8, ThermoRAFT-AFP surpasses all baselines across
metrological accuracy, runtime efficiency, and field deployability. It achieves the low-
est RMSE (4.83 mm/s), near-zero MPE, and minimal drift (0.09%), while maintain-
ing R? above 99.3%. In contrast, Farneback—despite operating at 50 FPS—exhibits

extreme error and negative bias, rendering it unfit for AFP inspection tasks.

SIFT4+RANSAC provides moderate accuracy with low latency (9.4 ms), but strug-
gles under low-texture or high-noise inputs. CurvatureSSD performs well under
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clean conditions but violates real-time constraints with 52.8 ms latency, and shows
instability at reduced frame rates. Its evaluation excludes defects, cross-plies, and

noise—raising concerns about deployment readiness.

By contrast, ThermoRAFT-AFP maintains 25 FPS real-time operation with 33.0 ms
latency, subpixel accuracy, and robust performance across thermal, geometric, and
structural variations. It also reports the highest CCC (99.64%) and lowest TDIgs
(9 um), evidencing consistent estimator agreement and generalization—all without

scene-specific tuning.

These results affirm ThermoRAFT-AFP as the only solution satisfying the full
spectrum of industrial requirements: accuracy, real-time capability, robustness to
disturbance, and operational generalizability for thermal motion tracking in AFP

monitoring.

6.4 System-Level Qualitative Comparison

Table 6.9 presents a comprehensive system-level benchmark of recent AFP inspec-
tion studies, evaluated across 13 core functional capabilities—ranging from basic
in-situ sensing to advanced motion estimation and laminate-scale reconstruction.
This capability matrix is designed to assess the functional maturity of inspection
solutions, highlighting the degree of integration and operational readiness. It serves
not only as a landscape overview but also as a critical positioning tool for the pro-

posed work within both thermal and laser-based research streams.

A first inspection reveals that most prior studies remain confined to narrow func-
tional slices. For example, (Meister & Wermes (2023)) and (Sacco et al. (2020))
focus solely on defect detection and classification. Others, such as (Ghamisi et al.
(2023)), introduce tow identification but stop short of segmentation, localization, or
any form of thermal motion analysis. Even among the most comprehensive works,
no prior study satisfies more than 6 of the 13 capability categories—underscoring
the fragmented state of the field.

Notably, only a few studies such as (Schmidt et al. (2019)) and (Zhang et al. (2022))
demonstrate real-time operation, yet both omit critical modules such as motion
estimation and reconstruction. Similarly, works like (Tang et al. (2022)) and (Sacco

et al. (2020)) achieve segmentation and classification but lack global consistency or
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Table 6.9 System-level functional coverage comparison of AFP inspection systems
across recent studies. Capabilities span defect analytics, thermal motion tracking,
and real-time deployment.
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Reference Sensor  Methodology Database

Meister & Wermes (2023) laser  data-driven 469 - - V- - - -
Zhang, Wang, Liu, Guo & Ji (2022)  laser data-driven 3,000 - - vV Vv - v v - -V
Tang et al. (2022) laser hybrid 43 v - v v v v - - -V
Sacco et al. (2020) laser data-driven 800 - - VvV VvV vo- - -
Ghamisi et al. (2023) laser data-driven 44 - vV v - V- - -
Schmidt et al. (2019) thermal  data-driven 12000 v - Vv v - - - - -V
Juarez & Gregory (2021) thermal model-based 16 v - - - - - v - vV
Denkena et al. (2022) thermal model-based ~250 v o- - - - - v v - -
This work thermal hybrid 13300 v v v v Vv Vv Vv vV V V

13,300 frames used for motion estimation and reconstruction; 5,000 subset used for defect-level
tasks.

cross-layer inspection, as they operate on frame-wise analysis alone.

The motion estimation study by (Denkena et al. (2022)) provides an important
exception. It introduces thermal optical flow for lay-up tracking but does so under
restrictive conditions: healthy layers only, no segmentation, and no real-time or
reconstruction support. Consequently, it remains limited in scope and offers no

direct means for defect-level inspection or decision support.

In contrast, the proposed system—highlighted in the shaded row—stands out as the
only approach offering complete functional integration. It covers all 13 capabilities
across both data-driven and model-based domains, from dynamic tow identification
to defect localization, thermal motion estimation, and real-time laminate reconstruc-
tion. Notably, these are achieved without machine-side feedback, and at operational

frame rates suitable for on-line deployment.

This comprehensive functionality is enabled by a dual-framework architecture. The
first stream focuses on localized, frame-wise analysis using hybrid learning algo-
rithms for defect detection, classification, segmentation, and tow-aware localization.
The second stream reconstructs temporally consistent lay-up mosaics using dense
thermal motion estimation and synchronization—facilitating global quality evalua-
tion. Combined, they produce a unified, learning-centric platform that transitions
from isolated thermal frames to interpretable, ply-level visualizations for operator

assistance.
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Importantly, these results are achieved using an internal thermal dataset of 13,300
frames—substantially larger than those used in comparable studies—and validated
across both healthy and defective lay-ups. The subset of 5,000 frames used for defect-
level tasks ensures sufficient diversity and realism, while preserving scalability and

repeatability.

In summary, this work delivers the first fully operational, real-time, thermography-
based AFP inspection system with end-to-end functional coverage. It not only
closes long-standing gaps in segmentation, tracking, and reconstruction, but also
establishes a practical framework for future industrial deployment—marking a step

change in the state of in-situ composite process monitoring.
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7. INTEGRATED SYSTEM OPERATION: PRACTICAL CASE

STUDIES DEMONSTRATION

Having validated both frameworks quantitatively, we now demonstrate their inte-
gration under realistic conditions. This chapter presents the real-time operation of
the proposed dual-framework inspection system through two representative AFP
lay-up scenarios. Engineered for industrial relevance and deployability, the system
unifies frame-wise defect analysis with global thermal reconstruction into a cohe-
sive, visually rich, and operator-assistive pipeline. The two frameworks operate
asynchronously: motion estimation and lay-up reconstruction run at 25 frames per
second (FPS), enabling course- and laminate-level visualization, while defect analy-
sis and quality assessment operate at 5 FPS for focused, non-overlapping frame-wise
inspection. Despite this disparity, outputs are fused within a unified interface that
evolves incrementally as new frames are acquired, supporting both real-time moni-

toring and historical review.

The envisioned GUT overlays local defect outputs onto the global thermal view in real
time. Operators can inspect reconstructed laminates, trace anomalies to individual
frames or courses, and receive actionable recommendations based on metrics such
as the DAP ratio. To demonstrate this layered functionality, two case studies are
presented: the first involves a unidirectional laminate with multiple FODs; the
second addresses a cross-ply lay-up featuring various defects such as gaps, overlaps,
and an organic tow splice. Together, these scenarios validate the system’s capability
for interpretable, layered, and machine-independent thermographic AFP inspection

in realistic production settings.
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7.1 Case Study A: Unidirectional Lay-up with Multiple FODs

The first scenario demonstrates system behavior under a unidirectional lay-up con-
taminated with multiple FODs, such as tow scrap and airborne particulates. The
laminate configuration follows a typical [0°, 0°, 0°, 0°] stacking sequence, represen-
tative of aerospace fuselage floors and stiffener webs. Contamination was manually
introduced in the first two courses of the second ply (C1-C2 in L2) to emulate
realistic production faults in high-throughput AFP settings.

The reconstructed laminate, visualized in Figure 7.1, reveals several structurally
relevant patterns not captured in conventional frame-wise views. Most notably,
elongated heat trails perpendicular to the tow direction appear at nearly every FOD
site in ply 2, indicating potential partial disbondment or tack failure. These patterns
extend vertically into ply 3 and attenuate into ply 4, highlighting a volumetric

thermal influence shaped by defect geometry, material properties, and ply thickness.

The presence of cross-tow thermal spread also suggests the feasibility of augmenting
the current DAP metric with directional propagation cues, enabling future vari-
ants sensitive to such tack failure modes. This depth-aware thermal view enables
operators to assess not only surface anomalies but also cross-layer propagation
trends—shifting inspection logic from isolated frame-level detection to full-ply ther-

mal diagnostics grounded in global coherence.

An example frame from the contaminated region is processed by the frame-wise
defect analysis pipeline, as shown in Figure 7.2. After preprocessing, the input is
flagged as defective by the SVM-based binary classifier. The defect is first classified
using the DCNN-based classifier into the FB defect class, and the defect region
is then segmented using an active contours algorithm and overlaid on the thermal

frame with a bounding box for spatial localization.

The system computes DAP values at both course and tow levels, with the most severe
case—tow 4—reaching a value of 70.56%. Since this value exceeds the expert-defined
40% severity threshold, the outcome triggers an alert from the predefined AFP-DSS
knowledge base. This alert-recommendation pair is derived from a combination of
qualitative indicators (defect class, ply number, tow index) and quantitative met-
rics (DAP values), and recommends stopping the process and removing the foreign

object.

This case illustrates how the integrated system synchronizes global reconstruction

with local detection to deliver interpretable and actionable defect intelligence. The
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Figure 7.1 Case A: Unidirectional [0°] laminate with tow scrap FODs. Right:
exploded-view reconstruction showing vertical thermal propagation. Left: zoom-
in on ply 2 highlighting lateral thermal separation zones.

Global DAP: 29.77%
T3 DAP: 40.92%
T4 DAP: 70.56%

!

Buiyayep uoisipag

Recommendation

High course DAP % Stop Process
High T3/T4 DAP % Remove FB

Figure 7.2 Frame-wise inference on a defective instance from Case A. Thermal
anomaly is segmented and localized with high tow-wise DAP. The decision sys-
tem recommends process stoppage and defect removal.
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observed alignment between ply-level thermal trails and frame-level segmentation re-
inforces the benefits of multi-scale fusion for reliable, operator-assistive AFP quality

assurance.

7.2 Case Study B: Cross-Ply Lay-up with Mixed Defect Types

The second scenario evaluates the system’s robustness under structurally complex
and thermally diverse conditions by examining a balanced cross-ply laminate with
mixed defect types. The lay-up sequence follows a [0°, 90°, 0°, 90°] configuration, rep-
resentative of quasi-isotropic aerospace components such as wing skins and pressure
bulkheads. This arrangement introduces directional variation in fiber orientation,
thermal texture, and potential defect manifestations—presenting a more demanding

inspection context.

The reconstructed laminate, shown in Figure 7.3, reveals multiple defect signa-
tures across plies, visualized through an exploded 3D representation. Notably, three
anomalies are spatially resolved: (a) an embedded tow splice in ply 3, (b) a lo-
calized delamination trail, and (c) cut-induced gaps in plies 2 and 3, occasionally
accompanied by overlaps. Despite orthogonal ply stacking and motion complexity,
cumulative drift remains under 1% of total course length, validating the stability
of the real-time motion estimation and stitching framework. This ensures both

machine-independent automation and reliable operator-guided traceability.

A single example frame is analyzed via the frame-wise inspection framework, as
shown in Figure 7.4. The frame is processed through the universal pipeline, with
the classifier identifying the anomaly as a longitudinal gap centered on tow 3. The
segmented region is localized and overlaid using active contours, while DAP scores
are computed to assess severity. Tow 3 exhibits a high DAP of 45.08%, exceeding

the expert-defined threshold for process intervention.

The integrated decision layer then matches the outcome to a predefined entry in
the AFP-DSS knowledge base. Based on both qualitative attributes (defect class,
affected tow, ply index) and quantitative scores, the system recommends pausing
the process and adjusting or replacing tow 3 before resuming. Notably, for narrower
gaps that fall within acceptable limits, the system can defer to autoclave-induced

autocorrection, thereby avoiding unnecessary interruptions.
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Figure 7.3 Case B: Cross-ply [0°, 90°, 0°, 90°] laminate with mixed defect types.
Exploded 3D view reveals (a) tow splice, (b) delamination trail, and (c) cut-induced
gap and accompanying overlap, demonstrating system accuracy under directional
variation.
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Global DAP: 12.84%
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Figure 7.4 Frame-wise inference on a defective instance from Case B. Localized tow
gap triggers DAP-based alert and recommends corrective action via the knowledge
base.

This case yields two key observations. First, defects that preserve material con-
tinuity—such as overlaps and splices—tend to exhibit stronger cross-ply thermal
propagation compared to void-type anomalies like gaps. Second, the combined use
of global reconstruction and local inspection enables the system to differentiate tran-
sient surface noise from thermally coherent volumetric defects. Together, these capa-
bilities reinforce the value of interpretable, learning-centric, and thermally grounded

AFP inspection across diverse lay-up configurations.
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8. CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation presented a learning-centric, end-to-end hybrid inspection system
for real-time quality assessment in Automated Fiber Placement (AFP), significantly
advancing the state-of-the-art in thermal vision-based process monitoring. The
proposed dual-framework architecture—uniting a hybrid frame-wise defect analysis
and quality assessment module with a machine-independent, motion-aware global
reconstruction pipeline—delivers both localized defect intelligence and laminate-
scale traceability. This synergistic combination addresses longstanding limitations
in manual and automated inspection workflows by enabling timely, interpretable,

and scalable analysis of AFP lay-ups through a purely thermographic solution.

The system eliminates operator dependency by automating key inspection tasks,
including dynamic tow boundary identification, defect detection, classification, seg-
mentation, and lay-up quality evaluation. Central to this capability are several
algorithmic innovations: a hierarchical Gabor-filter-based classification cascade, a
texture-guided active contour segmentation algorithm, and a novel DAP metric
quantifying defect severity at both tow and course levels. These modules operate
within a unified, setup-independent framework and were rigorously validated across

diverse thermal datasets representative of real-world AFP production conditions.

Complementing this local inspection framework, ThermoRAFT-AFP—the second
core module—delivers dense thermal motion estimation through a tailored adapta-
tion of RAFT optical flow. AFP-specific augmentations such as predictive warm-
start initialization, drift correction, and temporal stabilization enable subpixel-
accurate flow estimation in real time. Operating at 25 fps, the system reconstructs
course-wise and ply-wise laminate visualizations with high spatial fidelity and cumu-
lative drift below 1%. Evaluations over 13,000+ thermal frames confirm the system’s
robustness and generalizability, achieving velocity RMSE below 5 mm /s, mean per-
centage error of 0.17%, and Fl-scores exceeding 96% for defect classification—all

without requiring any machine-side data or encoder feedback.

A core outcome of this work is the seamless integration of both frameworks within
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an operator-assistive, vision-only inspection interface. Frame-wise analytics and
global reconstructions are fused into a dynamic graphical environment, empowering
users to monitor, trace, and respond to defects across spatial and temporal scales.
The resulting system functions as a comprehensive AFP-DSS—an AFP Decision
Support System—capable of translating complex thermal patterns into actionable
quality intelligence. Through its embedded alert and recommendation engine, the
system enables real-time diagnostics, minimizes machine downtime, and promotes

informed decision-making across the entire lay-up cycle.

The proposed solution satisfies all core industrial criteria: (i) real-time operability
on CPU-based hardware, (ii) interpretability through visual overlays and calibrated
metrics, (iii) robustness to lay-up variations and defect diversity, and (iv) scalabil-
ity to large laminates via motion-aware stitching. Its modular structure supports
both live process monitoring and retrospective quality audit modes, enabling broad

applicability and easy integration with existing AFP workflows.

Nevertheless, several limitations remain. The system has thus far been validated
primarily under fixed-stiffness production regimes and may not generalize directly
to variable-stiffness or curvilinear lay-ups. While most learning-based compo-
nents—such as classification and segmentation—can be extended to these scenar-
ios with appropriate retraining, other elements, including the motion estimation
pipeline and preprocessing routines, may require substantial re-engineering to ac-
commodate non-uniform fiber orientations and complex surface geometries. Addi-
tionally, relying solely on thermal imaging, though beneficial for deployment simplic-
ity, may constrain classification accuracy in ambiguous or low-contrast cases where
multi-modal sensing could provide enhanced discrimination. Lastly, while the DAP
metric offers a robust thermal-based estimate of defect severity, further studies are
needed to correlate its values with the mechanical performance of the final composite

part.

Overall, this dissertation contributes a foundational step toward intelligent, scal-
able, and deployable AFP inspection systems. It bridges the gap between thermal
vision, hybrid AI, and industrial inspection by unifying high-frequency analytics
with human-interpretable, laminate-level visualization—paving the way for resilient,

autonomous composite manufacturing workflows.

91



Future Work

Building upon the success of the proposed system, several research avenues hold
strong potential for extending its capabilities. In the short term, the defect anal-
ysis pipeline can be enriched to support a wider range of defect types—including
wrinkles, bridging, tow twists, and surface contamination—through retraining on ex-
panded and diverse labeled datasets. Integrating inter-ply defect tracking into the
reconstruction process will enable temporal propagation analysis, providing deeper
insight into multi-layer defect evolution. Moreover, calibration of the DAP metric
against mechanical testing would allow the system to estimate structural impact,
enhancing its utility in predictive diagnostics. Operator-facing improvements—such
as a feedback-enabled GUI for annotation, review, and traceability—will support

both user trust and data-driven iterative learning.

On a broader horizon, the framework can be extended to handle non-planar, curvi-
linear, and variable-stiffness lay-ups by incorporating geometry-aware motion esti-
mation, curvature-adaptive segmentation, and non-uniform stitching logic. Depth
sensing, stereo vision, or shape-from-motion techniques may be integrated to enable
3D surface reconstruction, improving detection of out-of-plane anomalies such as tow
lift, bridging, and buckling. Robustness under challenging conditions can be further
enhanced by exploring thermal-visual fusion models, enabling more reliable defect
classification in noisy or ambiguous regions. A unified, lightweight multi-task learn-
ing model—capable of simultaneously performing motion estimation, classification,
and segmentation—could streamline real-time inference, particularly for edge-based

or embedded deployments.

In the long term, the vision-centric design of the proposed system makes it a
strong candidate for integration within smart, connected AFP environments. Clos-
ing the loop with AFP machine controllers would enable autonomous repair, tow
re-application, and adaptive process adjustments based on real-time defect detec-
tion—transforming the system from a passive observer into an active controller.
Scaling the framework into a cloud-enabled, networked platform could facilitate
dataset-driven optimization, cross-machine performance benchmarking, and holistic
laminate quality traceability across entire production lines—advancing the frontier

of intelligent, adaptive, and autonomous composite manufacturing.
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