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ABSTRACT

ANOMALY DETECTION AND ROOT-CAUSE DETERMINATION FOR
AUTOMOTIVE APPLICATIONS USING DEEP LEARNING
AND XAI MODELS

MEHMET EMIN MUMCUOGLU
MECHATROCIS ENGINEERING Ph.D DISSERTATION, JULY 2025

Dissertation Supervisor: Prof. MUSTAFA UNEL

Keywords: Anomaly Detection, Predictive Maintenance, Explainable AI,
Heavy-Duty Vehicles, Fuel Efficiency, Air Pressure System, LSTM Autoencoder,
Human-in-the-Loop, Large Language Models

Anomaly detection in heavy-duty vehicles (HDVs) is crucial for predictive mainte-
nance and efficient fleet management, yet it poses considerable challenges due to the
complex interplay between mechanical systems, diverse operational conditions, and
limited labeled data. Traditional diagnostic approaches often fall short, struggling
with false alarms and lacking interpretability, which can undermine user trust and
delay critical interventions. Addressing these challenges necessitates robust, data-
driven anomaly detection frameworks that combine precision with explainability, in-
formed by domain knowledge and human expertise. This thesis develops two tailored
anomaly detection frameworks specifically designed for critical HDV applications:
(1) detecting excessive fuel consumption under varying operational conditions, and
(2) early detection of air pressure system (APS) failures. Excessive fuel consump-
tion significantly impacts operational efficiency and regulatory compliance, whereas
APS failures frequently result in costly breakdowns and downtime. Each application
demands unique methodological considerations due to the inherent variability and
complexity of the underlying data.

For fuel consumption anomaly detection, a novel quartile-based labeling method was
introduced, considering weight-normalized fuel consumption and multi-level road
slope segmentation. Utilizing bagged decision trees, this supervised approach clas-
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sifies operational anomalies at high accuracy across diverse driving datasets from
Turkey and Germany, achieving up to 92.2% accuracy and an F1 score of 0.78.
An interactive fleet monitoring dashboard further provides actionable insights for
fleet operators by visually identifying anomalous trips and facilitating targeted in-
terventions. For APS failure detection, the thesis explores semi-supervised learning
through Long Short-Term Memory (LSTM) Autoencoders, enhanced by a human-in-
the-loop framework incorporating expert analysis. These models effectively identify
subtle temporal deviations preceding mechanical failures with an overall F1 score
of 0.75. Additionally, the Explainable Boosting Machine (EBM) model achieved an
excellent balance of predictive accuracy (91.4%, F1 score: 0.80) and interpretabil-
ity, complemented by a Large Language Model (LLM)-based agentic system that
provides expert-level diagnostic reasoning and transparency.

This thesis emphasizes interpretability by integrating explainable Al techniques
alongside human expertise, thus enhancing diagnostic reliability and user trust.
These interpretable frameworks enable clear root-cause analysis, reduce false alarms,
and improve practical decision-making across diverse operations. The developed
methodologies offer versatile and adaptable solutions for sustainable fleet manage-
ment, with potential future expansions toward real-time anomaly detection, multi-
fault classification, and integration into automated, closed-loop predictive mainte-
nance systems.



OZET

OTOMOTIV UYGULAMALARI iCIN DERIN OGRENME VE
ACIKLANABILIR YAPAY ZEKA KULLANARAK ANOMALI TESPITI VE
KOK-NEDEN ANALiZi

MEHMET EMIN MUMCUOGLU
MEKATRONIK MUHENDISLIGI DOKTORA TEZI, TEMMUZ 2025

Tez Damsmani: Prof. Dr. MUSTAFA UNEL

Anahtar Kelimeler: Anomali Tespiti, Kestirimci Bakim, Agiklanabilir Yapay Zeka,
Agir Vasitalar, Yakit Verimliligi, Hava Basinci Sistemi, LSTM Autoencoder,
Déngiide Insan Yaklagimi, Biiyiik Dil Modelleri

Agir vasitalarda (HDV) anomali tespiti, kestirimci bakim ve etkin filo yonetimi
i¢in kritik 6neme sahip olsa da, mekanik sistemlerin karmagik etkilegimleri, farkl
operasyonel kogullar ve sinirli etiketlenmis veriler nedeniyle 6énemli zorluklar tagi-
maktadir. Geleneksel tanilama yontemleri siklikla yanhig alarmlarla karsilasmakta
ve agiklanabilirlikten yoksun kalmaktadir; bu da kullanic1 glivenini azaltmakta ve
kritik miidahaleleri geciktirebilmektedir. Bu zorluklar1 asmak icin, alan bilgisi ve
uzman gortsleriyle desteklenen, hassasiyet ve aciklanabilirligi bir araya getiren, veri
odakli ve giiclii anomali tespit sistemlerine ihtiya¢c duyulmaktadir. Bu tez kap-
saminda, agir vasitalarda kritik uygulamalar icin 6zel olarak tasarlanmig iki anomali
tespit cercevesi geligtirilmigtir: (1) farkli operasyonel kosullar altinda agir1 yakit
tiiketimini tespit etmek ve (2) hava basinc sistemi (APS) arizalarini erken agsamada
belirlemek. Asir1 yakit tiiketimi, operasyonel verimliligi ve diizenleyici uyumlulugu
onemli olgiide etkilerken; APS arizalari, yiiksek maliyetli arizalara ve ig duruslarina
yol a¢gmaktadir. Bu uygulamalarin her biri, verilerin dogasindaki karmasgiklik ve
degiskenlikten dolay1 6zgiin metodolojik yaklagimlar gerektirmektedir.

Yakit tiiketimi anomalilerinin tespiti i¢in, agirlik-normalize edilmis yakit tiiketimini
ve ¢ok seviyeli yol egimi segmentasyonunu dikkate alan, ¢eyrek temelli (quartile-
based) yenilik¢i bir etiketleme yontemi geligtirilmigtir. Torbalanmig karar agaglari
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(bagged decision trees) kullamlarak gerceklegtirilen bu denetimli yontem, Thirkiye ve
Almanya’daki gesitli stirtis veri setlerinde %92,2’ye varan dogruluk orani ve 0,78 F1
skoru ile operasyonel anomalileri ytliksek hassasiyetle simiflandirmaktadir. Ayrica
geligtirilen etkilegsimli filo izleme paneli, operatorlere anormal seyahatleri gorsel
olarak belirleme ve hedefli miidahaleler yapma konusunda eyleme doniigtiiriilebilir
iggoriiler sunmaktadir. APS ariza tespiti igin ise uzman analizleriyle giiglendirilmis
dongiide insan yaklagimina (human-in-the-loop) sahip Uzun Kisa Siireli Bellek
(LSTM) Autoencoder ile yar1 denetimli 6grenme yaklagimi incelenmigtir. Bu mod-
eller, mekanik arizalardan once ortaya ¢ikan ince zamansal sapmalari, toplamda 0,75
F1 skoru ile etkili gekilde belirlemektedir. Buna ek olarak, Agiklanabilir Giiglendirme
Makinesi (EBM) modeli %91,4 dogruluk ve 0,80 F1 skoru ile éngoriilebilirlik ve yo-
rumlanabilirlik arasinda mitkemmel bir denge kurmug; Biiyiikk Dil Modeli (LLM)
tabanl bir araci sistemle desteklenerek uzman diizeyinde tanisal mantik yiiriitme ve
seffaflik saglanmigtir.

Bu tezde, aciklanabilir yapay zeka teknikleri ile insan uzmanliginin butiinlegtirilme-
sine 6nem verilerek tanisal glivenilirlik ve kullanici giiveni artirilmigtir.  Olustu-
rulan yorumlanabilir ¢erceveler, net kok-neden analizini mtimkiin kilmakta, yanlig
alarmlar1 azaltmakta ve cegitli operasyonlarda pratik karar almayi iyilestirmekte-
dir. Geligtirilen yontemler stirdiiriilebilir filo yonetimi igin ¢ok yonli ve uyarlanabilir
¢Oziimler sunarken, ileride gergcek zamanli anomali tespiti, ¢coklu hata sitmiflandirmasi
ve otomatik kapali dongii kestirimci bakim sistemlerine entegrasyon gibi genigletme
potansiyeline sahiptir.
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1. INTRODUCTION

HDVs have evolved into rolling sensor networks, continuously streams of telemetry
data to the cloud. From powertrain signals and brake system indicators to driver
behavior and environmental context, this vast data stream promises significant ad-
vances in predictive maintenance—identifying potential faults before they strand a
vehicle or escalate into costly failures. However, as driving patterns diversify, road
conditions fluctuate, and factors such as terrain, load, and driver routines vary sig-
nificantly, distinguishing a minor outlier from a safety-critical anomaly becomes ex-
ceptionally challenging. The consequences are significant: downtime directly results

in loss of transport capacity, higher repair costs, and reduced customer satisfaction.

Conventional rule-based diagnostics struggle in this context for two main reasons.
First, the complexity of different vehicles and operating conditions makes manu-
ally defined thresholds unreliable. Second, when an alarm is triggered, technicians
require clear explanations of the root cause; otherwise, repeated false alarms erode
trust, causing unnecessary part replacements. Modern deep-learning models address
the first issue by learning typical system behaviors directly from historical data.
However, addressing the second challenge necessitates human expertise and model

explainability to ensure the reliability and interpretability of diagnostic systems.

Figure 1.1 summarizes the critical three-way interdependency essential to robust
anomaly detection: validated data streams ensure trustworthiness, human expertise
provides crucial insights and accurate labeling, and intelligent models deliver preci-
sion along with explainability. Each of these elements reinforces the core anomaly
detection engine, enhancing overall reliability and interpretability. Deep neural net-
works offer substantial predictive power by capturing complex, non-linear patterns
from vehicle data. Yet, engineering expertise remains indispensable. Designing
meaningful features from vehicle signals, validating that model outputs align with
physical reality, and identifying the root causes behind anomalies remain persistent
challenges. These difficulties arise because failures are infrequent, accurately labeled
data is scarce, and operating conditions continually evolve, forcing practitioners to

adopt unsupervised or semi-supervised learning methods. In such scenarios, adopt-

1
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Figure 1.1 Predictive-maintenance trilemma for HDVs.

ing a human-in-the-loop approach is essential. Domain experts iteratively refine fea-
ture selection, assess model explanations, annotate edge cases, and provide feedback,

enhancing model training and enabling robust and effective predictive maintenance.

Looking ahead, the rapid advancement of LLMs promises another significant leap
in root-cause analysis. These models have the capacity to capture and utilize ex-
pert knowledge, embedding it within agentic systems that clearly articulate their
reasoning processes. Integrated with traditional deep-learning pipelines analyzing
sensor data, LLM-powered agents can interpret anomalies in plain language, sug-
gest actionable diagnostics, and continuously refine their analyses through engineer
feedback. This integration creates a collaborative, self-explaining diagnostic frame-
work, combining the precision of data-driven methods with transparent, expert-level

reasoning.



1.1 Motivation

Anomaly detection in heavy-duty vehicles poses a wide range of challenges across
different systems and failure types. In this thesis, we focus on two critical and data-
rich problems: excessive FC and APS failures. To tackle these tasks, we develop
tailored approaches that explore effective use of ML, feature engineering, and human-
in-the-loop systems—Ilaying the groundwork for scalable and interpretable predictive

maintenance solutions.

1.1.1 Detecting Excessive Fuel Consumption Levels

Anomaly detection is crucial for monitoring HDV performance, as excessive fuel
consumption can arise from subtle mechanical faults or inefficient driving behaviors.
Customers and fleets often complain about their vehicles’ fuel consumption, yet
establishing a reference for fair comparison and detecting excessive or anomalous
usage is far from trivial. Given the increasing availability of on-road data, data-
driven methods have become the most practical approach for early detection and

timely intervention.
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Figure 1.2 EU Fleet-Wide C'Oy Reduction Targets for HDVs.

Diesel HDVs continue to dominate long-haul freight transport due to their high en-
ergy density and durability, yet they account for approximately one-quarter of the
European Union’s road-transport C'Oy emissions (European Environment Agency,
2022). These emissions have increased consistently since 2014, with the exception
of a temporary dip during the 2020 pandemic (European Parliament, 2018). Conse-
quently, the EU has mandated significant fleet-wide COs reductions: 15% by 2025,
45% by 2030, 65% by 2035, and 90% by 2040, relative to a 2019 baseline (European
Commission, 2024) (Figure 1.2). Achieving these ambitious targets demands more
3



than periodic compliance testing; fleet operators require continuous monitoring to

ensure real-world fuel consumption does not quietly increase over time.

Excessive fuel consumption typically results from two main sources: behavioral in-
efficiencies (such as aggressive acceleration, prolonged idling, and suboptimal use
of cruise control) that waste fuel even when vehicles are mechanically sound, and
technical inefficiencies (such as injector drift, turbocharger wear, and under-inflated
tyres) that elevate fuel consumption under normal driving conditions. Identifying
whether excessive consumption is driven by driver behavior or mechanical faults is

essential for profitability and regulatory compliance.
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Figure 1.3 Relationship between average fuel consumption, gross combination
weight, and road slope (Mumcuoglu et al., 2023).

However, the complexity and variability of operating conditions complicate anomaly
detection. Factors such as gross vehicle weight, road gradient, vehicle speed, tyre
pressure, ambient temperature, and seasonal variations interact in complex, non-
linear ways. Figure 1.3 illustrates how the variability in average fuel consumption
increases with load and slope, making predictions increasingly uncertain. As a result,

any effective detection approach must be context-aware.

Due to the scarcity of reliable ground-truth labels indicating what constitutes “ex-

cessive” fuel consumption, this challenge is framed as an unsupervised anomaly-

detection problem. The goal is to establish a robust baseline model that inherently
4



accounts for physical drivers such as load and slope, and subsequently flags trips
whose fuel consumption significantly deviates from expected levels. By leveraging
physics-informed features (e.g., load-normalised fuel rate) and flexible, learning-
based models capable of capturing both point-in-time and temporal consumption
patterns, this approach becomes feasible. The resulting framework enables a fair,
data-driven separation of behavioral inefficiencies from emerging mechanical issues,

thereby guiding timely and targeted interventions.

1.1.2 Detecting Air Pressure System Failures

HDVs operate under demanding conditions, frequently leading to mechanical fail-
ures driven by inadequate maintenance planning, the inability to timely identify
anomalies, and suboptimal driving habits. Among the various mechanical systems
vulnerable to such failures, the APS stands out due to its critical role. Central to this
system is the E-APU, which is essential for maintaining proper pressure in air brakes
and suspension systems. Failures within the APS are notably significant, as they
frequently cause HDVs to become stranded roadside, resulting in costly emergency

interventions and diminished customer satisfaction.

Issues within the APS, whether mechanical faults or sensor malfunctions, can result
in overloading and mechanical fatigue, ultimately causing premature E-APU fail-
ures. Detecting these faults at an early stage is essential to prevent vehicles from
becoming immobilized during operation, thus avoiding expensive roadside assistance
and minimizing downtime. Incidents that lead to such breakdowns impose consid-
erable financial burdens on vehicle manufacturers and disrupt operations for fleet

operators, negatively impacting overall productivity and profitability.

However, accurately detecting APS failures in advance is a complex challenge that
typically requires substantial domain-specific expertise. Traditionally, APS issues
are identified manually during routine maintenance inspections or through reactive
procedures triggered by customer complaints, often due to noticeable air leaks. Fig-
ure 1.4 illustrates various examples of failed E-APU units, clearly demonstrating the
severe operational stresses HDVs endure and highlighting the complexity associated

with monitoring and maintaining these components.

Given these complexities and the significant risks associated with APS failures, there
is an urgent need for intelligent vehicle systems equipped with advanced predictive

maintenance capabilities. Despite this necessity, research specifically addressing
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Figure 1.4 Service images of failed E-APU units (Mumcuoglu et al., 2024b), shown
both installed and removed examples, illustrating progressive wear and operational
damage.

predictive detection of APS failures—such as air compressor malfunctions using
real-time operational data—is currently limited. Modern ML techniques, partic-
ularly semi-supervised approaches, offer considerable promise given the inherently

uncertain nature of APS failures and the limited availability of labeled failure data.

Advanced ML architectures, such as LSTM Autoencoders, have already demon-
strated notable success in anomaly detection applications across various industries,
particularly in identifying failure conditions (Khalid Fahmi et al., 2024). Such so-
phisticated models, complemented by expert domain knowledge and careful data
interpretation, have significant potential to address the specific challenges posed
by APS failures. Integrating domain expertise with state-of-the-art analytical ap-
proaches can lay a robust foundation for predictive maintenance solutions, signifi-

cantly enhancing the reliability, safety, and operational intelligence of HDVs.



1.2 Thesis Contributions

This thesis makes contributions to the field of anomaly detection and root-cause
determination for automotive applications, specifically focusing on HDVs. Building
upon the challenges highlighted in the motivation section, the research addresses
two critical issues: detecting excessive FC levels and early detection of APS failures
in HDVs.

Fuel Consumption Classification with Load and Slope-Aware Quartile

Labeling

Fuel consumption is a vital performance indicator for HDVs, heavily influenced by
various factors such as vehicle weight, road slope, and driving behavior. Accurately
detecting anomalies in fuel consumption can help transportation companies and
manufacturers identify system faults or driving behaviors that lead to excessive
energy consumption and emissions. The detailed contributions in this area are as

follows:

o Dataset Generation: Two comprehensive datasets were generated and utilized:
Dataset A with 606 naturalistic driving records collected from 57 heavy-duty
trucks (Turkish route), and Dataset B with 520 trips from 187 trucks (Ger-
man route), providing diverse geographical and operational contexts for model

validation.

e Road Slope-Aware Labeling Methodology: A novel quartile-based labeling ap-
proach was developed incorporating weight-normalized FC quartiles with
multi-level slope segmentation, enabling accurate distinction between normal

operational variations and genuine FC anomalies.

e Data Segmentation and Labeling: Each driving record was divided into 10-
minute sections. Each section was labeled based on FC quartiles normalized
by the combined weight of the truck with its carry load. Separate quartiles

were computed based on different slope levels of the driven road.

o Development of Classification Models: High FC and outlier FC classification
models were developed using the Bagged Decision Trees algorithm. These
models classify 10-minute sections of HDV driving, using vehicle signals, in

terms of fuel consumption considering vehicle weight and road slope.

o Feature Importance Analysis: In the design process of the ML models, a feature

importance analysis was performed to select the most significant predictors,
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enhancing the models’ accuracy and efficiency.

e Interactive Dashboard Development: An interactive MATLAB dashboard was
developed for fleet-level FC monitoring, providing three visualization levels:
fleet overview with vehicle ranking, distribution analysis of consumption pat-
terns, and detailed trip-level inspection with GPS mapping for actionable fleet

management insights.

o Cross-Dataset Validation: The driving data from both Turkish and German
datasets were evaluated based on the results of the FC classification system,
demonstrating the system’s effectiveness in detecting anomalies across different

geographical and operational contexts.

This system can assist transportation companies and manufacturers in determining
driving behavior anomalies or system faults that cause excessive energy consumption

and emissions for HDVs.

Air Pressure System Failure Detection Using LSTM Autoencoders, Hu-
man Expert Analysis, and Explainable Al

Mechanical failures in HDVs, particularly in the APS, can lead to significant opera-
tional disruptions and costs. Early detection of APS failures, such as those involving
the E-APU, is crucial for preventive maintenance and avoiding breakdown scenar-
ios. Given the unpredictable nature of APS failures and the limited availability of
labeled automotive data, semi-supervised ML techniques are well-suited to tackle

this challenge. The main contributions in this area include:

o Data Acquisition: Acquired a dataset comprising 30 days of operational time-
series data from two HDV groups: 30 vehicles that underwent E-APU replace-

ments due to failures, and 110 vehicles with no maintenance issues.

o Feature Engineering and Preprocessing: Proposed several preprocessing meth-
ods to manage the large dataset and extracted engineered features that high-
light specific temporal patterns indicative of APS failures. These features,
created with the aid of domain knowledge, facilitated both HEA and the de-

velopment of ML models.

o Development of LSTM Autoencoder Model: Developed an LSTM Autoencoder
model to address APS failure detection as a semi-supervised anomaly detection
problem. The model learns normal operational patterns of healthy vehicles and

identifies deviations that may indicate failures.

o Integration of Human FEzxpert Analysis: Proposed a human-in-the-loop ML



framework with enhanced HEA+ methodology, which incorporates brake us-

age patterns to reduce false positives and improve failure detection accuracy.

o XAI Integration: Developed complementary XAI modules including EBM for
interpretable supervised classification and an LLM-based agentic framework

using specialized Al agents for diagnostic reasoning and interpretable analysis.

e Hybrid Detection Approaches: Demonstrated effective combination of LSTM
autoencoders with human expert analysis, achieving significant false positive
reduction and improved maintenance decision-making through multi-tiered de-

tection strategies.

By focusing on detecting APS failures, this work demonstrates the effectiveness of
the proposed framework in addressing this commercial automotive issue using cloud-
based operational driving data. The proposed method significantly improves failure
detection rates and combines data analytics with domain expertise to enhance the

performance of the ML models.

1.3 Outline

The remainder of the thesis is structured as follows:

Chapter 2 reviews anomaly detection techniques in automotive applications, in-
cluding supervised, semi-supervised, and unsupervised methods, and XAI techniques
relevant to automotive contexts. It further describes the primary machine-learning
methods employed—Ensemble of Bagged Decision Trees, LSTM networks, Autoen-
coders, EBM, and LLMs for time-series data.

Chapter 3 details the HDV subsystems examined in this thesis and presents a
comprehensive data acquisition architecture utilized in Ford F-MAX trucks. It in-
troduces the datasets used: two FC datasets (from Turkish and German routes) and

an APS failure dataset with run-to-failure data from 140 vehicles.

Chapter 4 introduces a novel load- and slope-aware FC classification framework.
It proposes a weight-normalized quartile labeling approach using multi-level slope
segmentation, implements Bagged Decision Tree classifiers for identifying high and
outlier FC, describes the progressive labeling strategy across four refinement levels,

and presents an interactive fleet-level FC monitoring dashboard.
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Chapter 5 describes a comprehensive APS failure detection methodology, includ-
ing sliding window-based feature extraction, baseline methods combining LSTM
Autoencoders with HEA, and advanced XAI techniques employing EBMs and LLM-

based agentic analysis with specialized diagnostic agents.

Chapter 6 provides quantitative and qualitative evaluations of the proposed FC
anomaly detection methods (demonstrating effectiveness across Turkish and Ger-
man datasets with load and slope considerations) and the APS failure detection
framework. It evaluates individual ML models, HEA, XAI methods, and hybrid

combinations.

Chapter 7 summarizes the thesis’s main contributions, discusses practical implica-
tions for fleet management and predictive maintenance, addresses the limitations of
the proposed methodologies, and outlines potential directions for future research in

explainable anomaly detection and predictive maintenance for HDVs.
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2. BACKGROUND AND LITERATURE REVIEW

This chapter situates the thesis within the broader context of data-driven vehicle
health monitoring, emphasizing the critical role of robust anomaly detection in mod-
ern automotive systems. It begins by reviewing the existing literature categorized
according to supervision level—supervised, semi-supervised, and unsupervised ap-
proaches—and subsequently introduces the three primary techniques employed in

this thesis: Bagged Decision Trees, LSTM networks, and Autoencoders.

By the end of this chapter, readers will clearly understand (i) the current state
of research in the field, (ii) the specific gaps that this thesis aims to address, and
(iii) the rationale behind selecting methods tailored to the data characteristics and

operational constraints of real-world automotive applications.

2.1 Anomaly Detection in Automotive Applications

Anomaly detection is crucial for maintaining the safety and reliability of automotive
systems. With modern vehicles generating vast amounts of data from numerous sen-
sors and control units, ML techniques have become indispensable for fault detection
and diagnosis. Depending on the availability of labeled data, anomaly detection
methods are classified into supervised, semi-supervised, and unsupervised learning

approaches.

The key difference among these learning approaches lies in the availability of labeled
data and the learning objectives. Supervised learning methods depend entirely on
labeled data, where each data point is associated with a known output or class
label. These methods use labeled examples to learn from data, enabling the classi-
fication or prediction of new, unseen instances. Unsupervised learning methods, on

the other hand, focus on discovering inherent patterns or structures in completely
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unlabeled data. They extract meaningful information by identifying anomalies or
clusters without any prior knowledge of the data labels. The recently proposed semi-
supervised learning approach combines both labeled and unlabeled data during the
learning process. This approach leverages the abundance of unlabeled data, which
is often easier and less expensive to collect, along with a smaller set of labeled data

to improve learning performance.

In the context of anomaly detection for automotive applications, the choice among
these learning paradigms depends on the availability and quality of labeled data.
Supervised learning is effective when there is ample labeled data representing both
normal and faulty conditions. However, obtaining labeled faulty data can be chal-
lenging due to the rarity of certain faults and the costs associated with data labeling.
Unsupervised learning is advantageous when labeled data are scarce or unavailable,
allowing models to identify anomalies based on deviations from learned patterns in
the data. Semi-supervised learning strikes a balance by utilizing the limited labeled
data available to guide the learning process, improving the detection of anomalies

that may not be well-represented in the labeled dataset (Figure 2.1).
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Figure 2.1 Relationship between data labeling and learning paradigms in ML meth-
ods.
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2.1.1 Supervised Anomaly Detection in Automotive Applications

Supervised ML methods are applied when fault types are known and labeled data is
available. These models learn from labeled examples to classify or predict faults in
new, unseen data. In automotive applications, supervised learning is effective when

sufficient labeled data representing both normal and faulty conditions is accessible.

Wolf et al. (2018) developed a deep learning-based pre-ignition detection framework
utilizing signals from Electronic Control Units collected from a fleet of vehicles. They
evaluated different deep neural network architectures, combining LSTM networks
and CNN;, achieving high F1 scores in classifying internal combustion engine faults.
Their work demonstrated the effectiveness of deep learning models in capturing

complex temporal patterns associated with engine anomalies.

Similarly, Rengasamy et al. (2020) proposed a predictive maintenance methodology
using deep neural networks to detect engine faults in heavy-duty trucks. They
utilized Scania’s open dataset, which contains over 75,000 instances with only 1.8%
representing faulty conditions, illustrating a highly imbalanced dataset common
in real-world scenarios. To address this imbalance, they designed a weighted loss
function to enhance fault detection accuracy. Various deep learning architectures,
including ANNs, LSTMs, CNNs, and GRUs, were evaluated, showing that deep

learning models can effectively handle imbalanced data in fault detection tasks.

Nowaczyk et al. (2013); Prytz et al. (2015) focused on predictive maintenance ap-
plications for air compressor systems in heavy-duty trucks using Volvo’s internal
service records dataset. They developed a fuzzy rule-based method, named the re-
laxed prediction horizon algorithm, to classify failures (Nowaczyk et al., 2013), and
utilized a random forest model for RUL estimation of compressor failures (Prytz
et al., 2015). Their work highlighted the applicability of supervised learning meth-

ods in forecasting maintenance needs for specific vehicle components.

Additionally, Wong et al. (2016) utilized ELMs for classifying internal combustion
engine faults based on vehicle signals, while Zhong et al. (2018) implemented an
ensemble of Bayesian ELMs for pre-ignition detection, demonstrating improved clas-
sification performance. These studies underscore the importance of supervised ML

methods in automotive anomaly detection when labeled data is available.

A summary of supervised ML applications in automotive anomaly detection is pro-
vided in Table 2.1.
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Table 2.1 Supervised ML applications, use cases, and ML methods

Reference

Use Case

ML Method

Wong et al. (2016)
Zhong et al. (2018)

IC engine faults

Pre-ignition detection

ELM
Ensemble of Bayesian
ELMs

Wolf et al. (2018) IC engine faults CNN, LSTM
Rengasamy et al. Air pressure system faults ANN, LSTM, CNN,
(2020) GRU

Nowaczyk et  al. Truck compressor failures Relaxed prediction

(2013)
Prytz et al. (2015)

horizon algorithm

Air compressor system RUL Random forest

These studies demonstrate that supervised learning methods, including deep neural
networks, random forests, and ensemble techniques, are effective in detecting and

predicting faults in various automotive systems when labeled data is available.

2.1.2 Semi-supervised Anomaly Detection in Automotive Applications

Semi-supervised methodologies are applied when only a limited amount of labeled
data is available, or when the goal is to detect both known and unknown fault
types. These models are trained primarily on normal (non-faulty) data, learning
the patterns of normal operation, and are then used to identify deviations that may

indicate anomalies.

Killeen et al. (2019) developed a semi-supervised approach to detect defective buses
that differed from the rest of the fleet using statistical analysis. Jung (2020) proposed
an anomaly detection algorithm for various internal combustion engine faults using
multiple one-class SVMs. Theissler (2017) presented a full vehicle fault detection

methodology utilizing an ensemble of one-class and two-class classifiers.

Key semi-supervised techniques used for fault detection include one-class SVMs,
SVDD, and autoencoders. Theissler (2017) implemented one-class SVM and SVDD
classifiers to detect simulated vehicle faults such as erroneous sensor readings. Jung
(2020) utilized a one-class SVM classifier for fault detection in internal combustion
engines, while Sang et al. (2020) applied a one-class SVM to detect braking system

faults in electric multiple units.
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Autoencoders, which are neural network architectures designed for unsupervised
learning of efficient codings, have also been employed for fault detection. Zhang
et al. (2023) used SVDD and autoencoder models for fault detection in lithium
batteries of electric vehicles. Min et al. (2023) implemented a denoising shrinkage
autoencoder to detect faulty sensors in autonomous vehicles. Similarly, Geglio et al.
(2022) utilized a convolutional autoencoder to detect powertrain faults in hybrid-

electric vehicles.

Table 2.2 Semi-supervised ML applications, use cases, and ML methods

Reference Use Case ML Method

Killeen et al. (2019) Detection of defective buses differ- Statistical ~ analysis
ing from fleet (semi-supervised —ap-

proach)

Jung (2020) Anomaly detection for IC engine Multiple one-class
faults SVMs

Theissler (2017) Full  vehicle fault detection Ensemble of one-class
methodology and two-class classi-

Jung (2020)

Sang et al. (2020)
Zhang et al. (2023)
Min et al. (2023)
Geglio et al. (2022)
Davari et al. (2022)

Kang et al. (2021)

Fault detection in IC engines

Detection of braking system faults
in electric multiple units

Fault detection in lithium batteries
of electric vehicles

Detection of faulty sensors in au-
tonomous vehicles

Detection of powertrain faults in
hybrid-electric vehicles

Anomaly identification in public
transport bus subsystems
Monitoring brake operating unit of
metro trains

fiers

One-class SVM classi-
fier

One-class SVM

SVDD and autoen-
coder models
Denoising  shrinkage
autoencoder
Convolutional autoen-

coder
LSTM autoencoder

One-class LSTM au-
toencoder

LSTM autoencoders have been used to capture temporal dependencies in time-series
data for anomaly detection. Davari et al. (2022) employed an LSTM autoencoder to
identify anomalies in public transport bus subsystems, demonstrating superior pre-
cision and recall compared to multilayer autoencoders. Kang et al. (2021) adopted
a one-class LSTM autoencoder to monitor the brake operating unit of metro trains.
By analyzing brake cylinder pressure data, they achieved early fault detection, show-

casing the method’s robustness in real-world applications.
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2.1.3 Unsupervised Anomaly Detection in Automotive Applications

Unsupervised ML models are utilized when only unlabeled data are available. These
methods detect anomalies by identifying patterns or structures in the data that
deviate from the norm, without prior knowledge of fault types. Clustering-based
methods and anomaly detection algorithms can be combined with expert knowledge

to interpret anomalous conditions.

Fan et al. (2015) proposed a method that compares the internal signals of a vehicle
with a set of vehicles performing similar operations to detect anomalies. Jung &
Sundstrom (2019) introduced a residual selection algorithm to detect and classify
internal combustion engine faults. Tagawa et al. (2014) employed denoising autoen-
coders for fault detection, which are effective in learning representations that are

robust to noise and can highlight anomalies. Routray et al. (2010) developed a full

vehicle fault detection system using ICA, PCA, and clustering techniques.

Table 2.3 Unsupervised ML applications, use cases, and ML methods

Reference

Use Case

Fan et al. (2015)

Jung & Sundstrom

(2019)
Tagawa et  al.
(2014)
Routray et al.
(2010)

Wang et al. (2023)
Zhao et al. (2023)

Xu et al. (2021)
Tuli et al. (2022)

Yu et al. (2023)

Lin et al. (2023)

Wang et al. (2023)

Detection of anomalies in vehicles
by comparing internal signals with
similar operations

Detection and classification of in-
ternal combustion engine faults
Fault detection and analysis

Full vehicle fault detection system

Fault prediction in lithium batter-
ies

Battery fault detection in electric
vehicles

Time-series anomaly detection
Multivariate time-series anomaly
detection

Path planning in autonomous ve-
hicles

Autonomous collision avoidance
for unmanned underwater vehicles

Autonomous parking space detec-
tion

ML Method
Comparison with peer
vehicles  (statistical
analysis)

Residual selection al-
gorithm

Denoising autoen-
coder

ICA, PCA, and clus-
tering techniques
Transformer model

Transformer-based
model

Anomaly Transformer
Transformer networks
(TranAD)
Transformer-based
planning approach
Transformer-based
dual-channel self-
attention
Global
based
model

perception-
transformer

Transformers have recently gained popularity in time-series anomaly detection due
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to their ability to capture long-range dependencies and achieve state-of-the-art
results (Tuli et al., 2022; Xu et al., 2021). Similar to autoencoders, transform-
ers have been used in both semi-supervised and unsupervised learning schemes as
reconstruction-based anomaly detection approaches. Although fault detection is
considered a subfield of anomaly detection, the application of transformers to this

area is still emerging.

In one of the few works in the automotive sector, Wang et al. (2023) utilized a
transformer model for fault prediction in lithium batteries and compared the results
with those of an autoencoder model. Their findings indicated that the transformer
achieved better performance in terms of the F1 score. Similarly, Zhao et al. (2023)
applied a transformer-based model to battery fault detection in electric vehicles.
Beyond fault detection, transformers have demonstrated effectiveness in other au-
tomotive applications, such as path planning (Yu et al., 2023), collision avoidance
(Lin et al., 2023), and autonomous parking (Wang et al., 2023).

2.2 Explainable AI in Automotive Applications

2.2.1 Traditional XAI Approaches

Explainable Al plays an increasingly vital role in automotive systems, especially
in autonomous driving and EVs. XAI enhances transparency, trust, and safety by
making ML models interpretable and their predictions understandable. This section
outlines key XAI approaches applied in automotive contexts, including gradient-
based methods, PDP, LIME, SHAP, and EBM.

Gradient-based methods provide explanations by analyzing the sensitivity of model
outputs to inputs, making them particularly effective for deep learning models.
Charroud et al. (2023) used SmoothGrad and VarGrad to improve the interpretabil-
ity of deep learning models used for autonomous vehicle localization. Similarly,
Grad-CAM has provided valuable post-hoc explanations for neural networks in se-
mantic segmentation tasks for autonomus driving (Kolekar et al., 2022; Saravanara-
jan et al., 2023).
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Partial Dependence Plots visualize the global relationship between model predictions
and individual input features. Jafari & Byun (2024) employed PDPs to interpret
predictions from models estimating the remaining useful life of lithium-ion batteries

in EVs, enhancing model transparency.

LIME provides local explanations for individual predictions by approximating com-
plex models with simpler, interpretable surrogates. Ahmad Khan et al. (2024) uti-
lized LIME in conjunction with SHAP to explain APS failure detection models in
Scania Trucks. SHAP, a game-theoretic approach, quantifies the contribution of
each feature to the model’s predictions. SHAP is widely adopted due to its inter-
pretability across diverse models. Li et al. (2023) employed SHAP for interpreting
lane-change detection models. Mohanty & Roy (2023) applied SHAP to study fac-
tors influencing energy consumption at EV charging stations, modeled via random
forests. Konstantinou et al. (2023) used SHAP with Gradient Boosting Decision
Trees to explain FC models. Additionally, SHAP has been effective in identifying
risky driving behaviors, such as hard braking and speeding events (Masello et al.,
2023; Zhou et al., 2024).

EBM, unlike the previously mentioned methods, inherently produce interpretable
models by combining the simplicity of linear models with the accuracy of ensemble
methods. Barbado & Corcho (2022) utilized EBM to predict FC anomalies, simul-
taneously generating clear explanations for predictions. Despite the growing use of
XALI, its application to APS failure detection remains limited. Ahmad Khan et al.
(2024) applied XATI methods to APS failure detection using anonymized datasets,
which poses challenges in verifying explanations due to the lack of clear feature
identities. Ensuring explanation validity remains critical in XAlI-driven automotive

applications.

2.2.2 LLM-Based Approaches

LLMs have recently gained traction in automotive research due to their exceptional
zero-shot and few-shot learning capabilities, enhancing transparency, interpretabil-
ity, and explainability. LLMs naturally produce textual explanations of their rea-
soning, complementing traditional XAI methods such as SHAP and LIME, and
addressing challenges posed by limited labeled data.

Key application areas of LLMs in automotive contexts include traffic management,

vehicle planning, perception, and maneuver prediction. In traffic management,
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LLMs translate multimodal data streams into interpretable textual forecasts, en-
abling transparent decision-making in traffic flow prediction and signal control tasks
(Guo et al., 2024; Wang et al., 2024). Vehicle planning and control have also ben-
efited from LLMs; GPT-Driver and DriveGPT4 demonstrate that framing trajec-
tory planning as a language-generation problem allows models to provide natural-
language rationales alongside their control outputs (Mao et al., 2023; Xu et al.,
2023). Furthermore, LLMs enhance perception and scene understanding by gener-
ating textual justifications through multimodal question-answering tasks and seman-
tic anomaly detection (Elhafsi et al., 2023; Sima et al., 2023). Retrieval-augmented
generation, such as RAG-Driver, further improves explanation accuracy by ground-
ing explanations in external knowledge, thereby reducing misleading outputs (Yuan
et al., 2024). LLM-based models, including LC-LLM, also predict maneuver intents
transparently, transforming traditional classification tasks into human-readable rea-

soning processes (Peng et al., 2024).

While LLMs enable rapid adaptation through zero-shot or few-shot learning high-
lighted by methods such as BEV-CLIP and prompt-based tuning frameworks (Wang
et al., 2023; Wei et al., 2024)—their deployment faces significant challenges. The
reliability and accuracy of natural-language explanations remain concerns due to
potential model hallucinations, latency limitations, and difficulties in certification
for safety-critical automotive applications. Integrating traditional XAI techniques
with LLM-derived explanations represents a promising direction for ensuring robust

and auditable interpretations in automotive use cases.
LLMs for Time-Series Anomaly Detection:

Beyond automotive-specific applications, recent studies have demonstrated the po-
tential of LLMs for zero-shot anomaly detection in general time-series data. (Xu
et al., 2025) introduced a multimodal approach by transforming numeric series into
visual representations, evaluating multiple multimodal LLMs. Their results demon-
strated robust detection of range- and variate-level anomalies, even when data com-
pleteness dropped to 75%, and revealed comparable performance between open-
source and proprietary models for univariate series. Similarly, Zhou & Yu (2024)
explored text-based LLMs, reporting satisfactory anomaly detection accuracy on
univariate point- and range-wise anomalies, but noting limitations in more complex
multivariate scenarios. Despite these promising advances, LLM-based time-series
anomaly detection has yet to be explored within automotive telemetry or safety-

critical diagnostics, highlighting a significant and promising research direction.
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2.3 Preliminaries

2.3.1 Ensemble of Bagged Decision Trees

Ensembles of bagged trees are powerful machine-learning techniques known for their
robustness against overfitting. In essence, they grow k decision trees using k subsets
(i.e., bootstrap samples) of the input data — each one of these sampled subsets
is utilized to train one decision tree and, then the output label of each data point
is given according to the majority voting approach. As each decision tree in this
ensemble is trained using a sample of the whole data, the unseen data — which is
also known as out-of-bag data — can be used to validate that decision tree. Due
to this cross-validation-like process, the decision trees become more robust against
overfitting. In addition, at each node of each decision tree, a random subset of
the input features is used; this, in fact, helps in providing an estimation of feature
importance as well. Thus, these intrinsic abilities to prevent overfitting and provide
feature importance motivate us to adopt the ensemble of bagged trees in this work

as the classification algorithm.

L OO ON

Majority voting

Normal

Figure 2.2 The ensemble of bagged trees.
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Ensembles of bagged trees are one of the powerful machine-learning techniques for
both classification and regression. In essence, they are used to overcome the overfit-
ting problem associated with decision trees. They are based on bootstrap aggrega-
tion. That is, they firstly construct multiple bootstrap samples (i.e., subsets) from
the data through sampling with replacement where the size of each subset is the
same as the size of the whole data. Consequently, each bootstrap sample will con-
tain almost two-thirds of the data, with some duplicates, while one-third of the data,
known as out-of-bag data, will not be included in that sample. Then, the ensemble
of bagged trees contains as many decision trees as the number of bootstrap samples
such that each decision tree is trained using one bootstrap sample and validated
using its corresponding out-of-bag data. By doing so, the ensemble of bagged trees

is ensured not to overfit.
Out-of-Bag Feature Importance by Permutation

A crucial advantage of ensemble methods is their ability to provide reliable feature
importance estimates OOB permutation testing (Breiman, 2001). This method
leverages the natural cross-validation structure inherent in bagged ensembles to
assess predictor influence without requiring additional validation data. The OOB
permutation importance measures how much each predictor variable contributes to
the model’s predictive accuracy by evaluating the degradation in performance when

that predictor’s values are randomly shuffled.

The estimation process follows a systematic approach for each tree ¢ in the ensemble
(t=1,...,T) and each predictor variable x; (j =1,...,p). For tree ¢, the out-of-
bag error ¢; is first computed using the observations not included in the bootstrap
sample used to train that tree. Subsequently, for each predictor variable x; that
was used for splitting in tree ¢, the values of z; in the out-of-bag observations
are randomly permuted, and the resulting error &;; is calculated. The difference
dij = €¢j — €4 quantifies the importance of predictor x; for tree ¢, with larger positive

values indicating greater importance (Breiman et al., 1984).

The final importance score for each predictor z; is computed as the standardized

mean difference across all trees:

d:
(2.1) Importance(z;) = —]
9j

where cij is the mean of differences d;; across all trees, and o is the standard devia-

tion of these differences (Loh, 2002). This standardization ensures that importance
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scores are comparable across predictors with different scales and variability. Predic-
tors with higher importance scores have a greater influence on the model’s predic-
tions, making this metric valuable for feature selection and model interpretation in

complex datasets.

2.3.2 Long-Short Term Memory Networks

A standard LSTM cell includes the forget gate f; which determines the information
to be discarded, a tanh gate that produces the candidate memory state ¢t, an update
gate u; that selects values to refresh the memory state ¢;, and an output gate oy
that generates the cell’s output from the input and stored memory. Inputs to these
gates include the current sample x; and the previous cell’s output state a;—1. The
aforementioned network is illustrated in Figure 2.3 and can be implemented using

following equations:

(2.2) fr = o(Wylar_1, 2] +by)
(2.3) ue = o(Wlag—1, 24 +bu)
(2.4) ¢ = tanh(Welar—1,2¢] + be)
(2.5) ¢t = frk i1 +upxcy
(2.6) or = o(Wolar_1, 2] +bo)

23



(2.7) a; = o xtanh(c;)

where Wy, Wy, W, W, are weight matrices, and by, by, b, b, are the bias vectors

of corresponding operations.
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Figure 2.3 Architecture of an LSTM cell.

2.3.3 Autoencoders

Autoencoders are designed to learn representations of given data, similar to the
linear PCA technique. However, as a type of artificial neural networks, autoen-
coders have the additional capability to capture non-linear characteristics in the
data (Kramer, 1991). In an autoencoder, the encoder layer reduces the input data
to a latent space representation, and the decoder layer then uses that representation
to reconstruct the output (Figure 2.4). The difference between the input and re-
constructed output is measured and used to update the network’s weights through
error backpropagation. The model is trained to minimize the reconstruction loss,
which is defined as in Eq. (2.8).

1 Y 5
(2.8) Loss = —_ |lzs — 4]
N =
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Figure 2.4 Schematic view of autoencoder architecture.

2.3.4 Explainable Boosting Machine (EBM)

EBM is a glass-box interpretable model based on GAM. Unlike traditional linear
models, GAM uses flexible functions of individual features rather than strictly linear
relationships. EBM further enhances GAM by incorporating pairwise feature inter-

actions and leveraging gradient boosting and bagging techniques during training.

In EBM, each feature is modeled individually using shallow decision trees trained
iteratively on residuals of previous models, thus forming feature-specific additive
functions. Pairwise interactions among features are also automatically identified and
learned similarly. The overall model structure is illustrated in Figure 2.5. Formally,

the prediction of an EBM is computed as:

(2.9) 9(Ely)) = ao+3_ fi(wi) +_ fij(wi,z5),

1<J

where ag is the intercept, f;(z;) represents the contribution of the ith feature, and
fij(zi,x;) captures the interaction effects between feature pairs. The link function
g(.) adapts the model for tasks such as regression or classification; for instance,
g~ 1(.) is the sigmoid or softmax function for classification tasks and identity for

regression.

25



EBM Model

Iteration Feature 1 Feature 2 Feature n
/ \ Residual / \ Residual Residual / \ Residual
1 / \ esiaua / \ esidua PR esidua / \ esidua

Residual AX Residual ... Residual A.\ Residual
—_ ——y [y —y

|
|
\ |
\ |
\ I
* :
\
\ |
I |
| |
} 2 A Residual K‘ Residual ...  Residual ﬂ Residual |
| E——— e R R |
| :
\
\ . |
| ) :
\
\ |
I |
* |
\
\ |
|
|

Figure 2.5 Hlustration of EBM architecture (Farea et al., 2025).

EBM enables straightforward global and local interpretations by visualizing individ-
ual feature functions and interaction effects. Compared to post-hoc explainability
methods like SHAP and LIME, EBM provides inherent interpretability, lower pre-
diction latency, and competitive performance relative to complex black-box models,
making it suitable for automotive fault detection tasks where transparency is cru-
cial (Das et al., 2020; Nori et al., 2019).

2.3.5 Large Language Models for Time-Series Data

LLMs are Transformer-based architectures processing input sequences of tokens
{uy,...,ur} via multi-head self-attention. Each token is mapped to an embedding
vector e; € R? and combined with positional encodings p; to maintain sequence
ordering. The attention weights, defined as «;; = softmax(q; k;/v/dp,), allow each
token to attend globally across the sequence, facilitating long-range contextual mod-

eling.

Since Transformers require discrete tokens, numeric time-series data must be con-

verted into textual representations. Common encoding strategies include: (i) direct

scalar-to-string conversion (e.g., “12.34”), (ii) CSV-style tokenization, and (iii) TPD
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encoding. While TPD can improve performance in certain scenarios, it may degrade
accuracy in others due to increased token lengths and deviation from pretraining

distributions (Zhou & Yu, 2024).

Additionally, attention mechanisms scale quadratically with sequence length L, im-
posing practical context-length constraints (Lmax). Empirical evidence shows that
downsampling long sequences can significantly improve anomaly detection perfor-
mance, underscoring a pronounced context-length sensitivity in current LLMs (Zhou
& Yu, 2024). Moreover, chain-of-thought prompting, which encourages explicit step-
by-step reasoning, has been shown to negatively impact numeric anomaly detection
tasks, suggesting that LLMs rely more heavily on pattern matching than on logical
inference in such contexts (Zhou & Yu, 2024).
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3. SYSTEM DESCRIPTION AND DATA ACQUISITION

This chapter presents the acquired datasets and system descriptions used in the
study. It covers datasets collected from Ford F-MAX trucks under varying drivers,
routes, and operating conditions for two key problems: one related to fuel consump-
tion and the other to air-pressure-system behavior, the latter including run-to-failure
cases for vehicles with E-APU replacements. The chapter also includes technical de-
tails of the systems, providing the necessary background for the analyses in the

following chapters.

The data acquisition process relies on a fleet telematics system architecture, as
illustrated in Figure 3.1. This system consists of three main components: on-vehicle
data collection through telematics control units that interface with the vehicle’s
CAN bus network, wireless transmission via cellular networks, and cloud-based data
processing and analytics platforms. The telematics units continuously sample vehicle
parameters and transmit this information in real-time to centralized servers for
storage and analysis, enabling comprehensive monitoring of fleet operations and

vehicle health status.

On-Vehicle Cloud & Ul

Cloud Data Center

* Celular LTE
R e S *
Telematics Control Unit *

(@

¢ Antenna ¢ SIM Card
* GPS Receiver

Vehicle Data
GPS, CAN Signals
1Hz Nominal Sampling Rate

Transmission
Cellular Network
Real-time Streaming

Analytics
Time-series Processing
Anomaly Detection

Figure 3.1 Fleet Telematics System Architecture.
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3.1 Fuel Consumption Datasets

Dataset A — Arifiye-Inonii route (Tiirkiye)

The dataset comprises 606 cloud-logged trips from 57 heavy-duty trucks that shuttle
between Arifiye and Inoénii. As summarised in Table 3.1, the records span 45 min
— 3 h 43 min and 28.4 km — 157.8 km, were sampled at 5 Hz, and total 4 ,123 ,367
rows across 34 synchronised CAN signals. Vehicle mass varies from 8.0 tons when
empty to 57.2 tons when fully loaded. Figure 3.2(a) shows the Arifiye-Inénii route

from which the first dataset was collected.

Table 3.1 Dataset A summary statistics (Arifiye-Inénii).

Number of vehicles o7

Number of driving records 606

Number of data points 4,123,367

Nominal sampling rate 5 Hz

Number of signals 34

Duration (min - max) 45 min - 3 hr 43 min

Traveled distance (min - max) 28.4 km - 157.8 km
Vehicle weight (min - max) 8.0 ton - 57.2 ton
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Figure 3.2 Dataset routes: (a) Arifiye-Inénii (Tiirkiye) and (b) Frankfurt-Wiirzburg
(Germany).
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Dataset B — Frankfurt-Wiirzburg route (Germany)

Figure 3.2(b) shows the Frankfurt-Wiirzburg route. It contains 520 trip logs from
187 heavy-duty trucks and 1.55 million rows sampled at 0.2 Hz via the fleet-
telematics uplink. Trip lengths range from 50 km to 111 km, and gross-combination
weight spans 9.5 to 47.8 tons (Table 3.2). Compared with Dataset A, this route is
flatter, faster, and recorded at a lower sampling rate, making it an ideal test bed for

assessing the robustness of the load- and slope-aware models developed in Chapter 4.

Table 3.2 Dataset B summary statistics (Frankfurt-Wirzburg).

Number of vehicles 187
Number of driving records 520
Number of data points 1,546,292
Nominal sampling rate 0.2 Hz
Number of signals 34

Travel distance (min — max) 50 km — 111 km
Vehicle weight (min — max) 9.5t - 47.8t

For both datasets, the signals listed in Table 3.1 include time stamps, vehicle 1D,
cumulative distance, total fuel used (litres), vehicle speed (km/h), engine speed
(rpm), engine-torque percentage, and accelerator /brake-pedal positions (%). Road
slope, gross combination weight (tons), and engine-oil/coolant temperatures (°C)
describe operating context, and an AdBlue dosing rate (continuous, scales with
torque demand) measures urea injection. Together, these kinematic and operating-
state variables form the basis for the load- and slope-aware fuel-consumption models

developed in Chapter 4.

Table 3.3 List of primary signals for the fuel-consumption dataset.

# Signal Name Description Unit

1 DateTime Date and time stamp ISO 8601
2 VehiclelD Vehicle identifier -

3 HRTVD High res. tot. dist. traveled meters
4 TachographVehicleSpeed  Vehicle speed km/h
5 EngSpeed Engine speed rpm

6 ActualEngPercentTorque Engine torque %

7 AccelPedalPosl Accelerator pedal position %

8 BrakePedalPos Brake pedal position %

9 PCCM_ Slope Road slope -

10 DStgy dmRdcAgAct AdBlue dosing rate -

11 EngOilTempl Engine oil temperature °C

12 EngCoolantTemp Engine coolant temperature °C

13 GCVW Gross comb. vehicle weight  tons
14  EngTotalFuelUsed Total fuel consumed litres
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Among the many factors that shape fuel use—rear-axle weight, average speed, driver
behaviour, cruise-control usage, tyre pressures, road profile, and seasonal varia-
tion—gross vehicle weight and road slope dominate. Figure 1.3 (Chapter 1) shows
how increases in either metric markedly raise both the average and the spread of
consumption. Capturing GCVW and slope signals provides a necessary baseline to
control for road and loading effects, enabling more accurate detection of driving or

vehicle anomalies.

3.2 APS Failure Dataset

This section includes a description of the APS architecture and the operational data
acquisition process used to collect thirty-day driving records from vehicles with and
without E-APU failures. These time-series data form the basis for designing the

anomaly detection framework and human-expert analysis described in Chapter 5.

3.2.1 Air Pressure System of HDVs

The E-APU serves as the central component of the APS, supplying pressurized
air to the braking and suspension systems in HDVs. It features an electronically
controlled air dryer integrated system with a multi-circuit valve arrangement. This
valve system distributes pressurized air to various vehicle circuits, each equipped
with pressure sensors to monitor system conditions. The E-APU is designed to
ensure that a failure in one circuit does not compromise the functionality of the
entire braking system. Figure 3.3 illustrates a schematic representation of the APS

configuration with the E-APU centrally located.

The E-APU continuously monitors vehicle and engine conditions electronically, facil-
itating an optimized compressor operation cycle. Air compression is reduced during
periods of high engine load and increased during engine overrun phases to maximize
fuel efficiency. Additionally, the E-APU maintains outlet pressure within specified
limits to ensure reliable braking system performance. It also coordinates regenera-
tion processes to preserve the cleanliness and quality of the air supply, eliminating

moisture and contaminants that could cause corrosion, component wear, or system
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Figure 3.3 Schematic overview of the E-APU in the HDV Air Pressure Systems
(Mumcuoglu et al., 2024b).

malfunctions. In the event of faults such as mechanical breakdowns, excessive pres-
sure conditions, or activation of fail-safe mode, the E-APU transmits the operational
status via the CAN bus.

The root causes of E-APU failures can include design flaws, manufacturing defects,
or harsh operating conditions. A common root cause is component wear due to
poor manufacturing, overuse of the system, or contaminated air intake. Addition-
ally, the presence of moisture in the air supply due to air dryer malfunction results
in corrosion affecting the compressor, valves, and air storage tanks. Severe operat-
ing conditions, including extreme ambient temperatures, and poor driving practices
also represent significant contributing factors to failures across various E-APU com-

ponents.

3.2.2 Data Acquisition

For the APS failure detection application, an operational dataset was constructed
from F-MAX Trucks deployed across Turkey and Europe. These vehicles are incor-
porated within Ford Otosan’s extensive connectivity framework, where operational
vehicle data are recorded in their cloud infrastructure, enabling both real-time and
retrospective monitoring capabilities essential for health monitoring and anomaly

detection applications. This dataset contains time-series driving signals gathered
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over 30-day intervals from two distinct vehicle groups: 30 vehicles with anomalous
behavior that experienced E-APU failures necessitating component replacement,
and 110 vehicles with normal operation maintaining clean maintenance histories.
For vehicles exhibiting anomalous behavior, the dataset encompasses daily driving
records from the period immediately before failure occurrence, referred to as run-to-
failure data. Conversely, for vehicles with normal operation, historical 30-day data
sequences from different periods throughout the year were chosen. The complete
dataset encompasses 3550 driving records, with each record representing one day’s
operational data, collected from a total of 140 distinct vehicles. Comprehensive data

details are shown in Table 3.4, while APU-related signals are specified in Table 3.5.

Table 3.4 Data description.

Healthy Anomaly

Number of vehicles 110 30
Number of daily records 2,779 771
Number of files per vehicle (min-max)  15-30 17-30
Number of drive cycles 18,556 5,552
Avg. number of data points per record 32,988
Number of signals 9
Nominal sampling rate 1-5 Hz

Table 3.5 APS Related Signals

# Signal name Sampling period
1 Air compressor status on change

2 Brake pedal position on change

3 Engine speed 1 sec.

4 Service brake circuit 1 air pressure 1 sec.

5 Service brake circuit 2 air pressure 1 sec.

6 Parking and/or trailer air pressure 1 sec.

7 Tachograph vehicle speed 1 sec.

8 Vehicle total traveled distance 10 sec.

9 Engine total hours of operation 300 sec.
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4. DETECTING ANOMALOUS FUEL CONSUMPTION IN

HEAVY-DUTY VEHICLES

This chapter presents a comprehensive approach to detecting anomalous FC in HDVs
through intelligent classification models that account for the complex interplay be-
tween vehicle load and road conditions. Existing threshold-based approaches often
fail to consider the significant impact of vehicle weight and road slope on fuel effi-
ciency, leading to inaccurate anomaly identification. A classification framework is
developed that combines bagged decision trees with a novel quartile-based label-
ing methodology. The approach progressively refines FC thresholds by incorporat-
ing weight normalization and multi-level slope segmentation, enabling more accu-
rate identification of both high FC patterns and true outliers. Time-series vehicle
telemetry is transformed into meaningful features through sliding window analysis,
enabling accurate distinction between normal operational variations and genuine FC

anomalies that require intervention.

4.1 Load and Slope-Aware Fuel Consumption Classification Framework

Two machine learning models are developed to characterize FC behavior in HDV
driving data: the high FC model and the outlier FC model. Both models employ an
ensemble of bagged decision trees for FC classification. As detailed in Section 2.2.1,
bagging (Bootstrap Aggregation) with decision trees forms the foundation of Ran-
dom Forest algorithms, which enhance bagging by introducing feature randomness
alongside sample randomness. The bagged decision tree approach is selected for its
interpretability and robust performance with the available dataset characteristics.
Specifically, this method enables comprehensive feature importance analysis, which
provides valuable insights into the most significant predictors of FC anomalies, as

will be presented in the results section.
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Figure 4.1 FC classification system overview (Mumcuoglu et al., 2023).

From an engineering validation perspective, the OOB feature importance estimation
provides a robust framework to verify that the model captures physically meaningful
relationships in HDV fuel consumption. The OOB importance scores allow engineers
to confirm that identified predictors align with established domain knowledge of
fuel efficiency factors, such as vehicle load, road gradient, and engine operating
conditions. This validation approach ensures model interpretability and enables
systematic feature selection for practical implementation in commercial vehicle fleet

monitoring systems.

The training data preparation involves a sliding window approach to transform time-
series vehicle signals into static feature vectors. Simple statistical measures—mean,
standard deviation, minimum, and maximum—are calculated for selected signals
within each sliding window. However, special consideration is required for road
slope signal due to their bidirectional nature. Road slope signals typically contain
both positive and negative components corresponding to uphill and downhill grades.
When these signals are averaged over conventional time windows (5-10 minutes),
the positive and negative slope values tend to cancel each other out, resulting in

significant loss of critical gradient information that directly impacts FC patterns.

To preserve this essential slope information, the original road slope signal is de-
composed into separate positive and negative slope components. The positive slope

component is extracted as:

slope if slope > 0
(4.1) positive__slope = b P
0 otherwise
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Similarly, the negative slope component is extracted as:

slope if slope < 0
(4.2) negative__slope = P P
0 otherwise

The decomposition is illustrated in Figure 4.2, where the uphill and downhill por-
tions of a sample slope trace are shaded green and red, respectively, with the corre-

sponding positive- and negative-slope signals plotted beneath.
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Figure 4.2 Separation of road gradient into positive and negative segments (Farea
et al., 2023).

This separation enables the feature extraction process to capture the distinct FC dy-
namics associated with ascending and descending road segments. The decomposed
slope signals, along with other vehicle parameters, are processed using the sliding

window aggregation method described earlier.

For each window, four summary statistics—mean, standard deviation, minimum,
and maximum—are computed for every signal, including the slope components.
The resulting feature vectors are then fed into both classification models (Figure
4.1), providing a compact yet informative representation of each driving segment

for ensemble learning.
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4.2 Weight-Normalized Quartile Labeling with Multi-Level Slope

Segmentation

To characterize FC levels as high or normal and establish discrete calibration thresh-
olds, the baseline approach (Gong et al., 2021) utilized quartiles of FC per 100 km.
A FC level is labeled as high if it exceeds the overall upper quartile (representing
the top 25% of FC levels), while remaining levels are labeled as normal FC (Method
1). However, reasonable FC threshold determination requires consideration of ve-
hicle weight and road slope influences. To address this limitation, a progressive

refinement methodology is implemented through the following steps:

e Initially, FC thresholds are obtained using weight-normalized FC quartiles
(Method 2).

e Subsequently, the dataset is segmented into 4 equally-distributed slope levels
based on average slope intervals, with weight-normalized FC quartiles com-
puted for each segment (Method 3).

» Finally, the dataset is partitioned into 16 equally-distributed slope levels based
on average slope intervals, with weight-normalized FC quartiles calculated for
each partition (Method 4).

At each refinement step, FC levels are labeled as high or normal based on the
obtained thresholds.

For each sample, the weight-normalized average FC per 100 km, denoted as WAFC,

is computed across sliding windows using the following formula:

AFC
(4.3) WAFC = 5o x 100

where AFC denotes the total fuel consumed in liters, AD represents the total
distance covered in kilometers within the window, and GCVW corresponds to the

gross combination weight of the vehicle during the data collection period.

The training samples for both FC classification models are labeled according to
WAFC quartile distributions. These quartiles are computed across the 16 slope
levels established in the slope segmentation methodology (Method 4). The labeling

criteria differ between the two models:
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Figure 4.3 Quartile-based labeling scheme for high FC and outlier FC models (Mum-
cuoglu et al., 2023).

« High FC Model: Samples with WAFC exceeding ()3 within their respective
slope levels are designated as high FC, while remaining samples are classified

as normal FC.

e Outlier FC Model: Samples with WAFC surpassing Q3 + 1.5 X (Q3 — Q1)
within their respective slope levels are marked as outlier FC, with all other

samples categorized as inlier FC.

Here, @)1 and Q)3 represent the first and third quartiles of the boxplot distribution.
The complete labeling strategy is illustrated in Figure 4.3.

Figure 4.4(a) highlights the limitations of the labeling method proposed in (Gong
et al., 2021), which identifies trips as having high FC simply if they exceed a cer-
tain torque threshold. This approach overlooks scenarios where higher torque is
justified by increased load, causing mislabeling. Introducing weight-normalized FC
quartiles results in a more balanced labeling across torque-weight space (Figure
4.4(b)). However, as illustrated in Figure 4.5(b), this approach still struggles to
account for the effects of varying slope conditions. Trips requiring higher torque on
steep slopes continue to be incorrectly flagged as high FC. To address this issue,
separate weight-normalized FC quartiles were defined for four discrete slope inter-
vals, producing more uniformly labeled data across varying slopes (Figure 4.5(c)).
Ultimately, refining the slope intervals further to sixteen distinct levels achieved a
high degree of uniformity in labeling, ensuring accurate representation of FC across

diverse loading and slope conditions (Figure 4.4(d), Figure 4.5(d)).
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4.3 Interactive Dashboard for Fleet-Level Fuel Consumption Monitoring

An interactive MATLAB-based dashboard was developed to provide fleet managers
with practical insights into FC behavior at fleet, vehicle, and individual trip lev-
els. The dashboard integrates the predictions from the load- and slope-aware FC
classification models and presents them through three complementary visualization

screens, guiding users from an overall fleet analysis to detailed trip diagnostics.

Fleet Overview (Bar Plots Tab)

The first visualization (Figure 4.6a) ranks vehicles based on the percentage of their
travel time flagged as High FC or Anomaly FC. High FC classifications are in-
dicated with blue bars, signifying consistently excessive fuel use, while Anomaly
FC events—represented by orange bars—highlight sporadic abnormal consumption.
Fleet managers can quickly identify vehicles that consistently deviate from expected
fuel-efficiency patterns, thus prioritizing them for detailed investigation or mainte-

nance.

Distribution Analysis (Histograms Tab)

The second screen (Figure 4.6b) provides histograms showing how frequently vehicles
are classified within the High FC and Anomaly FC categories. This view offers a clear
depiction of the distribution and variation of fuel-consumption behaviors across the
fleet. Adjustable histogram bins allow managers to explore and identify the fleet’s

overall consumption patterns and to pinpoint potential outlier vehicles.

Trip-Level Inspection (Time Series Tab)

The third visualization screen (Figure 4.7) enables detailed inspection of individual
vehicle trips. After selecting a specific vehicle and trip record, each 10-minute trip
segment is plotted on an interactive map using distinct markers: blue triangles
indicate normal consumption, red triangles indicate high FC, and red crosses denote
anomalous consumption segments. A supplementary information panel provides
essential trip metrics such as duration, average FC, and distance traveled, assisting

in the in-depth analysis and root-cause investigation.

In addition to monitoring capabilities, this dashboard lays the foundation for fu-
ture enhancements, including route optimization studies. By correlating fuel-
consumption classifications with driver behavior, road topology, and other contex-
tual data, fleet managers could potentially optimize driving practices and routes to

achieve minimal FC and improved operational efficiency.
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Figure 4.6 Fleet-level dashboard views: (a) bar chart summarizing high and anoma-
lous FC ratios for each truck; (b) histograms illustrating the fleet-wide distribution

of FC classes.
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5. AIR PRESSURE SYSTEM FAILURE DETECTION IN

HEAVY-DUTY VEHICLES

This chapter addresses the detection of APS failures in HDVs through a hybrid ap-
proach that combines ML techniques with domain expertise. The proposed method-
ology develops a comprehensive failure detection framework, beginning with a base-
line approach that integrates LSTM autoencoders with Human Expert Analysis for
reliable failure identification. This baseline is enhanced through XAI modules, in-
cluding EBM and an innovative LLM-based agentic framework that decomposes di-
agnostic reasoning into specialized Al agents. This multi-tiered approach transforms
raw operational data from multiple APS sensors into fully interpretable insights for

system failure prevention.

5.1 Data Processing and Feature Extraction

Effective data preprocessing is crucial for extracting meaningful patterns from APS
operational data and developing reliable data-driven models. The APS dataset
presents several challenges including signals with varying sampling rates and types
(Table 3.5), extended stationary periods where vehicles remain operationally active
but motionless, and intermittent data gaps caused by logging errors or connectivity
issues. These characteristics necessitate a systematic preprocessing approach to

isolate genuine operational periods and ensure data quality for subsequent analysis.

The preprocessing workflow begins by segmenting daily driving records into discrete
drive cycles based on temporal continuity, where consecutive data points are sepa-
rated by no more than 5 minutes. Within each drive cycle, signals are interpolated
to achieve uniform sampling frequencies according to their individual characteristics.
Subsequently, feature extraction is performed using sliding windows of 20 minutes

with 10-minute shifts, computing moving statistics including mean, standard devia-

42



tion, and minimum values. This approach reduces computational complexity while
preserving essential temporal patterns such as duty cycle variations within each

window period.

Daily driving record
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Drive cycles
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Figure 5.1 Data preprocessing workflow: segmenting daily driving records into drive
cycles, applying data interpolation and sampling via moving statistics.

The final preprocessing step applies vehicle and engine speed thresholds to eliminate
stationary or non-operational segments, ensuring that only meaningful driving data
contributes to the analysis. Each resulting sample point represents aggregated infor-
mation from a 20-minute operational window. The complete preprocessing workflow
is illustrated in Figure 5.1, where w’ and s’ denote the sliding window length and
shift respectively, while ‘d’ represents the minimum time gap threshold for drive

cycle formation.

Following the preprocessing stage, a set of handcrafted features was extracted from
each sliding window. These features were carefully selected based on expert domain
knowledge, aiming to capture pressure fluctuations, compressor behavior, and vehi-
cle dynamics that are indicative of early-stage APS failures. The same feature set
is used as input to the traditinal ML methods evaluated in this study, including the
LSTM-AE and the EBM, and is also the foundation for expert assessments described
in the HEA section.

The list of extracted features is summarized in Table 5.1.
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Table 5.1 Extracted features computed over each sliding window.

Z
e

Feature
Duty cycle (DutyCycle)

Air compressor on/off count (AC_on/off _count)

Minimum pressure of service brake circuit 2 (P2_min

)
Standard deviation of service brake circuit 2 pressure (P2_std)
Minimum pressure of service brake circuit 3 (P3_min)
Standard deviation of service brake circuit 3 pressure (P3_std)
Mean brake pedal position (BrakePedalPos_mean)

Mean engine speed (EngineSpeed mean)

© 00 3 O Ot B~ W NN o=

Standard deviation of engine speed (EngineSpeed_std)
Standard deviation of vehicle speed ( VehicleSpeed_std)

—
]

5.2 Baseline APS Failure Detection Methods

This section outlines a two-tier APS failure-detection pipeline. First, a semi-
supervised LSTM auto-encoder learns the normal pressure dynamics of healthy ve-
hicles. Its anomaly scores are then cross-checked with structured Human Expert

Analysis to filter false alarms and relate deviations to physical failure modes.

5.2.1 Design of an LSTM Autoencoder for Failure Detection

Autoencoders are widely adopted for anomaly detection, especially in semi-
supervised contexts, due to their effectiveness in modeling normal system behav-
ior. They consist of two core components: an encoder, which compresses the input
data into representative features, and a decoder, which reconstructs the original
input from these features. In semi-supervised anomaly detection, autoencoders are
trained exclusively on normal operational data, allowing the model to reconstruct
normal sequences accurately, reflected by a low reconstruction error. Conversely,
anomalous data will yield higher reconstruction errors, signaling deviations from

learned normal patterns.

LSTM networks are frequently employed in autoencoders due to their capability to
44



capture dynamic temporal patterns in sequences. As a specialized form of RNNs,
LSTMs effectively model both short-term fluctuations and long-term dependencies,

making LSTM-AE particularly suited for multivariate time-series anomaly detection.

For detecting APS failures in HDVs, we propose a semi-supervised LSTM-AE model
(illustrated in Figure 5.2). The model processes operational data sequences, using
two LSTM layers with dropout regularization in the encoder to extract represen-
tative features. The decoder symmetrically mirrors this structure with two LSTM
layers to reconstruct the original data from the encoded features. An overcom-
plete autoencoder architecture, featuring encoding dimensions greater than the in-
put size, is adopted due to its superior capacity for modeling intricate underlying
processes compared to undercomplete autoencoders with smaller encoding dimen-
sions (Ranjan, 2020). The resulting reconstruction errors provide vehicle-specific
anomaly scores, enabling early detection of APS failures and proactive maintenance

interventions.
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Figure 5.2 LSTM-based autoencoder architecture for APS anomaly detection (Mum-
cuoglu et al., 2024b).

To effectively capture the underlying temporal dynamics and relationships among
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selected APS signals, LSTM networks (Hochreiter & Schmidhuber, 1997) are uti-
lized. A standard LSTM architecture consists of three primary layers: an input
layer, a recurrent hidden layer, and an output layer. Unlike classical neural net-
works, LSTMs possess internal memory that enables them to retain information
across long sequences. This memory capability is governed by three specialized
gates: the forget, input (update), and output gates. Each gate is implemented as
an independent neural network with matching dimensions and sigmoid activation

functions.

During training, sequential multivariate time-series data are provided in the form
X = [X1,X2,...,X¢,...|, where x; denotes the multivariate input vector at timestamp
t. These inputs are processed through the LSTM units to learn both short- and

long-term dependencies critical for detecting subtle temporal anomalies.

5.2.2 Human Expert Analysis (HEA)

Four critical signals provide direct insights into the health of the APS: the com-
pressor status signal and the pressure signals from the three primary brake circuits
(illustrated in Figure 5.3). Any potential APS failure typically appears as devia-
tions in these operational signals. To effectively capture these anomaly patterns, we

propose monitoring the following three derived indicators:

Duty cycle: The duty cycle, defined as the ratio of the air compressor’s active
operation time to the total operational period, serves as a key indicator of APS
health. Typically, a healthy HDV exhibits a lower and more stable duty cycle,
whereas anomalies cause the compressor to operate more frequently or continuously.
When the APS fails to maintain the required air pressure or quality, the compressor

is forced into excessive operation, resulting in notably higher duty cycle values.

Compressor on/off count: Apart from maintaining system pressure, the APU
also ensures air quality within the APS through a cyclic "regeneration" process,
periodically releasing and replenishing small quantities of air. Although this cy-
cling is generally normal, abnormal frequency or irregular patterns in compressor
state changes might signal early-stage APS issues. Thus, we propose tracking the
frequency of compressor state transitions within a sliding time window as a novel

indicator to detect unusual fluctuations associated with potential APS anomalies.

Minimum pressure: Air leakage is among the primary concerns in APS systems,
causing significant operational stress. Although the minimum pressure levels in
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brake circuits are strongly influenced by brake usage, persistent air leakage produces
consistently lower pressure levels, clearly distinguishable from healthy operational
baselines. Consequently, monitoring minimum brake circuit pressures throughout
driving periods serves as an additional indicator for identifying anomalous APS

conditions.

Let the compressor state be represented by the binary sequence S = [s1, s9, 83, ..., 8n],
where s; € {0,1} denotes the compressor’s off (0) or on (1) status at sample i. For

each sample index k, a sliding window wy, of fixed length W is evaluated.

The duty cycle within wy, is computed as
(5.1) DC 1 >
. — s,
k W o 7

giving the fraction of time the compressor is active.

The total number of on/off transitions in the same window is
(5.2) Cr=>_|sit1—sil,
wy,

where k identifies the current position of the sliding window.

Let the pressure signal from a brake circuit be P = [p1,p2,p3,...,pn|. The minimum

pressure within window wy, is

(5.3) MinPj, = r%lkn{pl}

The set {DCY%, Cr, MinP} constitutes the proposed indicators for characterising

APS behaviour over time.

To investigate APS failure behaviour, daily averages of duty cycle, compressor on/off
count, and minimum brake-circuit pressure are plotted for representative vehicles
in Figure 5.3. Panel (a) shows a healthy vehicle whose signals remain stable within
nominal ranges: the duty cycle remains consistently low, compressor switching fre-
quency is modest, and minimum pressure stays at safe levels. In contrast, panels (b)
and (c), corresponding to two vehicles that eventually experienced E-APU failure,
illustrate three distinct anomaly patterns: (i) gradual performance drift, exemplified
by steadily increasing duty cycles; (ii) isolated spikes indicating brief, severe pres-
sure disruptions; and (iii) persistent off-nominal signal levels, such as consistently
low minimum pressure or elevated compressor switching. These differences high-

light early indicators of impending failure, yet significant overlap between normal
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Compressor On/Off Count Duty Cycle

Minimum Pressure

and faulty signals persists, complicating reliable discrimination and underscoring

the necessity of advanced feature analysis (see Figure 5.4).
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Figure 5.3 Temporal trends in duty cycle, compressor switching frequency, and
minimum pressure levels, derived from data of healthy (a) and faulty (b—c) vehi-
cles (Mumcuoglu et al., 2024b).
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Figure 5.4 Box plots of the proposed indicators, showing distinctions between healthy
and faulty vehicles, with overlaps highlighting the challenge of anomaly detec-
tion (Mumcuoglu et al., 2024b).
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Based on the preceding analysis, a manual labeling procedure was developed in
collaboration with data analytics specialists and brake system experts. Initially,
acceptable daily-average ranges were defined for the duty cycle, compressor on/off
count, and minimum pressure, derived from data of carefully selected healthy vehi-
cles. Each vehicle’s APS failure risk was then evaluated by experts who reviewed
deviations from these established limits and identified anomalous patterns within
these three features. Risk scoring involves assigning each feature a grade: 0 (no vis-
ible anomaly), 1 (potential anomaly that warrants monitoring), or 2 (clear anomaly
present). Vehicles receive a cumulative score of up to 6 flags across the three features,

and this total determines whether they are labeled as normal or anomalous.

Enhanced Human Expert Analysis (HEA+): While the three core indicators
provide valuable insights into APS health, distinguishing between genuine anoma-
lies and operational variations remains challenging. High duty cycle values, for
instance, may result from legitimate heavy braking during demanding driving con-
ditions rather than system deterioration. To address this limitation, HEA+ incor-
porates brake usage patterns as a contextual indicator to enhance anomaly discrim-

ination.

The average brake pedal position within window wy, is computed as
1

(5.4) AvgBrake, = — > b,
W

where b; represents the brake pedal position at sample 1.

By correlating duty cycle patterns with brake usage, HEA+ enables experts to differ-
entiate between duty cycle elevations caused by system faults versus those attributed
to operational demands. Figure 5.5 illustrates this enhanced analysis through four
representative cases: (a) shows elevated duty cycle patterns with minimal brake
usage, indicating potential system anomalies requiring attention; (b) demonstrates
high duty cycle values coinciding with intensive braking, suggesting the elevation
may be operationally justified; (c) presents moderate duty cycle levels that align
closely with brake patterns, indicating normal system response; and (d) exhibits con-
sistently low duty cycle values regardless of brake usage, confirming healthy system
operation. This contextual analysis significantly reduces false positives by filtering

out duty cycle anomalies that correlate with legitimate operational demands.
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Figure 5.5 Enhanced expert analysis (HEA+) incorporating brake usage patterns:
(a) elevated duty cycle with low brake usage suggests system anomaly; (b) high duty
cycle correlating with heavy braking indicates operational demand; (c) moderate
duty cycle matching brake patterns shows normal response; (d) consistently low
duty cycle confirms healthy operation.

5.2.3 Predictive Maintenance Protocol for Anomalous Vehicle Detection

For vehicle anomaly detection using HEA, a threshold for the number of anomaly
flags is determined by maximizing the F1 score. Similarly, when directly applying
the LSTM-AE model, its anomaly score threshold is optimized via grid search, tuned
to achieve the best F1 performance. The combined approach, integrating the ML
model with HEA, requires simultaneous optimization of two thresholds: the ML-
derived anomaly score and the number of HEA flags. Grid search optimization is
again employed to identify threshold combinations yielding optimal performance in
fault detection. The proposed predictive-maintenance protocol combining the ML

model with HEA involves four main steps:
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Step 1: Historical driving data are collected from the fleet, followed by preprocessing

steps necessary for both ML-based analyses and expert review.

Step 2: The developed ML model calculates anomaly scores, identifying vehicles

likely exhibiting anomalies.

Step 3: Human experts then examine the engineered features—duty cycle, com-
pressor on/off count, and minimum pressure trends—for vehicles flagged as

potentially anomalous.

Step 4: Vehicles that exceed both the ML anomaly-score threshold and the expert-

derived anomaly-flag threshold are prioritized for immediate maintenance.

5.3 Explainable AT Modules

5.3.1 Explainable Boosting Machine

The EBM is an interpretable machine learning model extending GAM, as previously
described in Section 2.3.4. It uses shallow, gradient-boosted decision trees trained
iteratively on the handcrafted APS features listed in Section 5.1. Pairwise feature
interactions, when relevant, are identified and similarly modeled through separate

shallow decision trees.

EBM inherently provides transparent local explanations by visualizing how each fea-
ture or interaction contributes individually to a model’s predictions. This intrinsic
interpretability allows direct root-cause identification, making EBM suitable either
as a complementary or alternative method to manual Human Expert Analysis. Im-
plementation specifics, including hyperparameter tuning and detailed evaluation,

are presented in the Experimental Results Chapter.

5.3.2 LLM-based Agentic Pattern Analysis

To further enhance expert analysis capabilities while maintaining interpretability,

we developed an agentic framework that decomposes the diagnostic process into
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specialized Al agents, each focusing on specific aspects of APS behavior. We imple-
mented this framework using Google’s Gemini 2.0 Flash (Google DeepMind, 2024)
for rapid inference, providing a 1M-token context window, native tool-calling ca-
pabilities, and a one-month free API trial for experimental validation. Preliminary
third-party evaluations confirm strong reasoning improvements over 1.5-Flash (Al-
Hayeket al. | 2025; Balestri, 2025).

The framework comprises four specialized agents operating in a hierarchical struc-
ture. Three signal-specific agents analyze the core indicators independently: the
Duty Cycle Agent evaluates duty cycle patterns in conjunction with brake usage
(following HEA+ methodology), the Switching Pattern Agent examines compres-
sor on/off count anomalies, and the Pressure Agent monitors minimum pressure
deviations. Each agent receives daily-averaged signal values in text format and ap-
plies domain-specific pattern recognition to identify anomalous behaviors, temporal

trends, and potential failure modes.

The agent prompts were carefully engineered to encapsulate expert knowledge and
diagnostic reasoning patterns observed in traditional HEA processes. Each signal-
specific agent incorporates domain-specific thresholds and operational ranges: duty
cycle analysis considers values above 0.5 as potentially anomalous when sustained
over 3-4 consecutive days without corresponding brake usage elevation; switching
pattern analysis monitors compressor state changes above 50 cycles per day; and
pressure analysis flags sustained drops below 700 kPa. The agents apply pattern
recognition logic that distinguishes between isolated anomalies and persistent degra-
dation patterns, mirroring expert diagnostic reasoning. The complete prompt spec-

ifications for all agents are provided in Appendix B.

The Decision Agent synthesizes outputs from all three signal-specific agents to render
final diagnostic decisions. This agent implements a hierarchical weighting system
where duty cycle serves as the primary health indicator, while compressor switching
and minimum pressure function as secondary confirmatory signals. The decision
logic follows expert prioritization: duty cycle anomalies alone can indicate system
deterioration (probability 60-80%), while secondary indicators require corroboration
with primary signals to suggest critical failures (combined anomalies yield 80-95%
fault probability).

Let Apc, Asw, and Aprp represent the anomaly assessments from the Duty Cycle,

Switching Pattern, and Pressure agents, respectively. The Decision Agent computes
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the final classification through structured reasoning:

Faulty  if Apc = True and sustained patterns
(5.5)  Classification = { Faulty  if Apc = True and (Agy or Ayrp) = True

Healthy otherwise

Each agent outputs structured JSON responses containing anomaly flags, pattern
descriptions, and diagnostic rationale. The complete prompt engineering approach
ensures consistent analysis while preserving the interpretability and root cause iden-
tification capabilities essential for maintenance decision-making. This agentic frame-
work effectively transfers human expert knowledge into a scalable, consistent diag-

nostic system that maintains expert-level diagnostic reasoning.
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6. EXPERIMENTAL RESULTS

This chapter presents the evaluation results of the two anomaly-detection pipelines
developed in this thesis. In Section 6.1, the load- and slope-aware quartile-labeling
scheme combined with bagged decision trees is assessed for detecting excessive fuel
consumption events. In Section 6.2, the LSTM autoencoder, both individually and
in combination with Human Expert Analysis, is evaluated for early detection of air-
pressure-system failures. For each task, experimental setup, tuning procedures, and
prediction results are presented, emphasizing the practical value of these methods

for fleet-scale predictive maintenance.

6.1 FC Anomaly Detection

6.1.1 Model Configuration & Feature Selection

Within the developed fuel-consumption classification system, both the High Fuel
Consumption Model and the Outlier Fuel Consumption Model are implemented as
ensembles of 30 bagged decision trees. Each tree is grown with a minimum leaf
size of 8, and training continues up to 37,244 iterations to ensure convergence.
The ensemble architecture—built on bootstrap sampling and majority voting—is

described in the preliminaries and illustrated in Figure 2.2 (Section 2).

As illustrated in Figure 6.1, percent torque is the most influential feature, followed by
vehicle speed, road slope, and vehicle weight. This ranking aligns closely with estab-
lished vehicle-dynamics knowledge, highlighting these variables’ significant impact

on fuel consumption. Based on this analysis, the top twelve features were selected
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as predictors. Four statistical measures (mean, standard deviation, minimum, and
maximum) were calculated for each selected predictor over sliding windows, resulting

in a total of 48 input features (12 predictors x 4 statistics).

Sliding window lengths of 5 and 10 minutes were examined, and their results are

compared in the following subsections.

Out-of-Bag Permuted Predictor Importance
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Figure 6.1 Feature importance ranking for fuel consumption prediction (Mumcuoglu
et al., 2023).

6.1.2 High Fuel Consumption Model

Method Selection and Comparison

Table 6.1 reports the classification accuracy obtained with 5-minute and 10-minute
sliding windows under four proposed labeling schemes, evaluated on Dataset A
(Arifiye-Inonii route). When the data are labeled only by quartiles of average fuel
consumption, following the approach of (Gong et al., 2021), the model achieves
95.4% and 96.4% accuracy for the 5 and 10-minute windows, respectively—well
above the 86.6% reported in the original study. Because this method ignores vehicle
weight and road slope, the resulting task is relatively easy.
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Incorporating these two factors increases the complexity of the classification task,
thereby lowering accuracy. Specifically, when employing weight-normalized fuel con-
sumption quartiles with a finer slope segmentation (16 slope levels), the classification
accuracy reduces to 88.5% for the 5-min window and 92.2% for the 10-min window,

reflecting a more challenging yet realistic scenario.
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Figure 6.2 Weight-normalized average FC thresholds for high FC labeling
model (Mumcuoglu et al., 2023).

The thresholds for each slope band are shown in Figure 6.2, which guides the model
in distinguishing excessive fuel consumption from torque demands induced by load
and grade. Across all four methods, the 10-min window consistently outperforms
the 5-min window, indicating that a longer averaging period yields smoother, more
reliable FC estimates. Accordingly, the 10-min setting with weight-normalized FC
quartiles and 16 slope levels (Method 4) is selected and used in all subsequent

analyses, including the outlier-FC study.

Table 6.1 High-FC results by method on Dataset A (Arifiye Inonii route).

Labeling Method Classification Accuracy [%]
5 min window 10 min window
FC Quartiles 95.4 96.4
Weight-Norm. FC Quartiles 92.2 96.1
Weight-Norm. FC Quartiles 4 Slope Levels 91.0 94.2
*Weight-Norm. FC Quartiles 16 Slope Levels 88.5 92.2
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Final Model Evaluation

Following the method selection, the proposed approach was validated across both
datasets to assess its generalizability. Table 6.2 presents the final classification re-
sults for both the Arifiye-Inonii Dataset (Tiirkiye) and the Frankfurt-Wiirzburg
Dataset (Germany). The model demonstrates consistent performance across differ-
ent geographical and operational contexts, with average accuracies of 92.2% and
90.6% for the Turkish and German datasets, respectively. The slight performance
difference between datasets can be attributed to variations in road characteristics,
traffic patterns, and operational conditions between the two routes. The confusion

matrices for both datasets and their combination are shown in Figure 6.3.

Table 6.2 High FC model validation results across datasets.

5 min window 10 min window
Dataset runl run2 run3d avg. runl run2 run 3 avg.
Arifiye—Inonii 88.5 88.5 88.6 88.5 922 92.3 922 92.2
Frankfurt-Wirzburg 876 87.6 876 87.6 90.7 90.6 90.6 90.6
All Combined 89.5 89.3 89.3 894 925 92.5 92.5 92.5
Dataset A (Arifiye-inéni) Dataset B (Frankfurt-Warzburg) Combined Dataset

normal

1228

normal

634

normal

1647

True Class

high
>
®

7631

high

1141 3568
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2535 11482

normal high normal high normal high
Predicted Class Predicted Class Predicted Class

Figure 6.3 High FC model classification results.

6.1.3 Outlier Fuel Consumption Model

Figure 6.4 illustrates the weight-normalized average FC thresholds used to label
outliers, with separate thresholds defined for each of the sixteen slope intervals. Since
outlier cases represent only a small fraction of the datasets (approximately 1.8% for
Dataset A, 2% for Dataset B, and 1.7% for the combined dataset, as detailed in
Table 6.3), accuracy alone is insufficient for evaluating model performance due to
class imbalance. Instead, performance metrics including precision, recall, and their
harmonic mean, the F1 score, are utilized (see Appendix A).
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Applying the proposed 16-level slope-aware labeling approach across both datasets,
the classification results (Table 6.4) show F1 scores of 0.78 for Dataset A, 0.71 for
Dataset B, and 0.70 for the combined dataset. These results indicate that the devel-

oped model effectively identifies genuine cases of anomalously high fuel consumption

while limiting false alarms across different operational contexts. The confusion ma-

trices for both datasets and their combination are shown in Figure 6.5.

Table 6.3 Outlier data statistics across datasets

Dataset # of samp. # of Outl. Inlier Ratio Outlier Ratio
Arifiye-Inonii Dataset 37,245 674 98.2% 1.8%
Frankfurt-Wiirzburg Dataset 18,824 380 98.0% 2.0%
All Combined 56,069 1,054 98.3% 1.7%

Table 6.4 Outlier FC Model Classification Results

Dataset

Accuracy Precision Recall F1 Score

Arifiye-Inonii Dataset 99.25% 0.83 0.74 0.78
Frankfurt-Wiirzburg Dataset  98.91% 0.76 0.67 0.71

All Combined

99.06% 0.78 0.63 0.70
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Figure 6.4 Weight-normalized average FC thresholds for outlier FC labeling model.
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6.1.4 Example Fleet Analysis and Vehicle Comparison
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Figure 6.6 Evaluation of 57 HDVs by the proposed FC classification system (Mum-

cuoglu et al., 2023).

The following analysis is conducted on Dataset A (Arifiye-Inonii route) as a sam-
ple demonstration of the classification system’s practical application. Figure 6.6
presents an example fleet analysis produced by the FC classification system. Sev-
eral vehicles clearly stand out, either consistently flagged for high FC (e.g., units
52, 49, 10, 13) or frequently identified as FC outliers (e.g., units 49, 6, 7). Since
these classifications already account for variations in vehicle load and road slope,

the repeated flags likely reflect anomalous driving behaviors or potential mechanical
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High Fuel Consumption Ratio [%]

29

outlier




faults, highlighting specific vehicles that should be prioritized for further inspection

or maintenance.

High F.C.

20

High Fuel Consumption Ratio [%]
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Anomaly Fuel Consumption Ratio [%]

Figure 6.7 Fleet-wide distribution of high FC and anomaly FC ratios showing vehi-
cles with elevated fuel consumption patterns.
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Figure 6.8 Fuel consumption diagnostic dashboard interface demonstrating vehicle

filtering and identification capabilities.

To better understand the fleet’s FC patterns, Figure 6.7 displays histograms show-
ing the distribution of high FC and anomaly FC ratios across the fleet. The analysis
reveals that a significant portion of vehicles exhibit high FC ratios below 38-39%,
while anomaly FC percentages of 7-8% clearly stand outside the typical fleet per-
formance range. These distributions demonstrate the system’s ability to identify
vehicles that deviate substantially from normal operational patterns. The practi-

cal application of these findings is illustrated in Figure 6.8, which shows the fuel
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consumption diagnostic dashboard where fleet managers can filter vehicles based on
these high FC and anomalous FC thresholds. In this example, vehicles 10 and 49 are
prominently identified as outliers, enabling targeted investigation and maintenance

scheduling for these specific units.

6.2 APS Failure Detection Results

This section presents experimental results for the comprehensive APS failure de-
tection framework developed in Chapter 5. The evaluation encompasses baseline
methods (LSTM-AE, HEA, and HEA+), explainable AT modules (EBM and LLM-
based agentic analysis). Performance is assessed across the collected fleet dataset
using standard anomaly detection metrics, with emphasis on interpretability and

practical deployment considerations.

6.2.1 Data Division and Evaluation Protocol

The experimental evaluation employs distinct protocols tailored to each method’s
learning paradigm. For the semi-supervised LSTM-AE, four experiments vary the
proportion of HV data allocated for training, with AV data remaining consistent

across all tests. The detailed configuration is presented in Table 6.5.

Table 6.5 Experimental configuration for semi-supervised APS failure detection
model evaluation

Training Validation Testing
Experiment 1 20% of HVs  80% of HVs All HVs and AVs
Experiment 2 40% of HVs 60% of HVs All HVs and AVs
Experiment 3 60% of HVs 40% of HVs All HVs and AVs
Experiment 4 80% of HVs 20% of HVs All HVs and AVs

The domain knowledge-based methods (HEA, HEA+, and LLM-based agentic anal-
ysis) operate unsupervised, requiring no data division as they rely entirely on expert-
defined thresholds and pattern recognition. For the supervised EBM method, 5-fold
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cross-validation is employed to ensure robust performance estimation, the procedure

for fold generation and evaluation is detailed in Appendix A.

Given the substantial class imbalance in the APS dataset, performance evaluation
employs precision, recall, F; score, accuracy, and AUC. These metrics are compre-
hensively defined in Appendix A. Throughout this analysis, anomalous vehicles are

treated as the positive class, while healthy vehicles represent the negative class.

6.2.2 Baseline Method Results

6.2.2.1 Human Expert Analysis (HEA) Results

Following the methodology described in Section 5.2, human experts performed unsu-
pervised pattern analysis on the three core indicators (duty cycle, compressor on/off
count, and minimum pressure) across all vehicles. Each indicator receives a score of
0 (no anomaly), 1 (potential anomaly), or 2 (clear anomaly), resulting in a maxi-
mum of 6 flags per vehicle. Figure 6.9(a) illustrates the distribution of anomaly flags,

demonstrating clear separation between healthy and anomalous vehicles. The HEA

Mirrored Distribution of HEA flags by Class HEA Precision-Recall Tradeoff
70 1
healthy manomaly
60
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Figure 6.9 HEA performance analysis: (a) distribution of anomaly flags by vehi-
cle class, showing clear separation between healthy and anomalous vehicles; (b)
precision-recall trade-off across different flag thresholds, with optimal F1 perfor-
mance at 3 flags.

method achieves robust detection capabilities, with 90% of failed vehicles receiving
at least one anomaly flag. Figure 6.9(b) shows the precision-recall trade-off across
different threshold settings. At the 4-flag threshold, HEA attains perfect precision
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(1.00) but with reduced recall. The optimal F1 score of 0.63 occurs at the 3-flag
threshold, balancing precision (0.76) and recall (0.53) with 86.4% overall accuracy.

Enhanced Human Expert Analysis (HEA+) Results:

The enhanced HEA+ method incorporates brake usage patterns to reduce false
positives in duty cycle assessments. The scoring system employs weighted flags:
duty cycle (weight 1.0), compressor on/off count (weight 0.5), and minimum pressure
(weight 0.5), resulting in a maximum of 4 flags per vehicle. This weighting reflects
the relative importance and reliability of each indicator when contextualized with

brake usage patterns.

Figure 6.10(a) shows the refined flag distribution, demonstrating improved dis-
crimination between vehicle classes compared to the baseline HEA method. The
precision-recall analysis in Figure 6.10(b) reveals enhanced performance character-
istics, with the optimal threshold at 1.5 flags achieving precision of 0.79, recall of
0.63, and F1 score of 0.70. This represents a significant improvement over the base-

line HEA method, with enhanced precision while maintaining reasonable recall.

Table 6.6 Comparative performance of the baseline HEA and the enhanced HEA™
models at their respective optimal flag-count thresholds.

Method Threshold TN FN FP TP Precision Recall F1  Accuracy
HEA >3 flags 105 14 5 16 0.76 0.53 0.63 86.4%
HEA® >15flags 105 11 5 19 0.79 0.63 0.70  88.6%
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Figure 6.10 HEA+ performance analysis: (a) distribution of weighted anomaly flags
incorporating brake usage context, showing improved class separation; (b) precision-
recall trade-off demonstrating enhanced performance over baseline HEA, with opti-
mal F1 score of 0.70 at 1.5 flags threshold.
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6.2.2.2 LSTM Autoencoder Results

The LSTM autoencoder’s performance was evaluated across four experimental con-
figurations with varying proportions of HV training data. Figure 6.11 presents
the averaged learning curves, demonstrating consistent convergence across all ex-
periments. Even with minimal training data (20% HVs), the model achieves re-
construction errors below 0.015, with faster convergence observed as training data
increases. Window length analysis reveals that 20-minute windows outperform 10-
minute alternatives, achieving the highest F1 score of 0.75 with 80% HV training
data (Figure 6.12). This configuration represents the optimal balance between data

requirements and detection performance.
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Figure 6.11 LSTM autoencoder learning curves (Mumcuoglu et al., 2024a).
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Figure 6.12 Impact of window length on LSTM-AE performance (Mumcuoglu et al.,
2024a).

Table 6.7 summarizes the quantitative performance across all experimental configu-
rations. The model exhibits progressive improvement with increased training data,
achieving perfect precision (1.00) and optimal F'1 score (0.75) at 80% HV utilization.
Beyond this point, additional training data yields diminishing returns, suggesting
an optimal data sufficiency threshold.
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Table 6.7 LSTM autoencoder performance across different training data proportions
using 20-minute windows.

Model Training Data  Precision Recall F1  Accuracy

20% of HVs 0.66 0.63  0.64 85.0%
40% of HVs 0.90 0.60  0.72 90.0%
LSTM-AE 60% of HVs 0.90 0.60  0.72 90.0%
80% of HVs* 1.00 0.60 0.75 91.4%
95% of HVs 0.86 0.63 0.73 90.0%

The optimal model configuration (80% HV training) correctly identified all healthy
vehicles while detecting 18 of 30 anomalous vehicles, as illustrated in the confusion
matrix (Figure 6.13). This performance demonstrates strong reliability in healthy

vehicle classification with reasonable anomaly detection capabilities.

Confusion Matrix
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Figure 6.13 Confusion matrix for the optimal LSTM autoencoder configuration (80%
HV training data), showing perfect healthy vehicle classification and 60% anomaly
detection rate (Mumcuoglu et al., 2024a).

Figure 6.14 provides interpretability insights through reconstruction error analy-
sis of representative driving sections. The model accurately reconstructs signals
from healthy vehicles while exhibiting significant reconstruction errors for anoma-
lous sections. The highlighted regions of poor reconstruction correspond to abnor-
mal patterns in duty cycle, compressor switching behavior, and pressure dynamics,

providing direct indication of potential failure modes.
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Figure 6.14 Reconstruction error analysis comparing healthy and anomalous driving
sections. Poor reconstruction regions (highlighted) correspond to abnormal APS
behavior patterns, enabling failure mode identification.

6.2.3 Explainable AT Module Results

6.2.3.1 EBM Performance

The EBM model was evaluated using the stratified five-fold cross-validation proto-
col detailed in Appendix A. Following the methodology established in Chapter 5,
vehicle-level anomaly scores were computed as the median of observation-level clas-
sification probabilities. The optimal classification threshold was determined through

grid search optimization to maximize F1 score performance.

The EBM achieved robust classification performance across all evaluation metrics.
With an optimal threshold of 0.31, the model attained a precision of 0.80, recall
of 0.80, and F1 score of 0.80, demonstrating balanced performance between false
positive and false negative rates. The overall classification accuracy reached 91.4%,
indicating strong discriminative capability across both healthy and anomalous ve-

hicle categories.

The AUC of 0.88 demonstrates consistent performance across various threshold set-

tings, indicating robust classification boundaries between vehicle classes. Figure 6.15
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presents the ROC curve alongside threshold-dependent performance metrics, illus-

trating the model’s stability across different operating points.
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Figure 6.15 EBM performance characteristics: ROC curve (left) demonstrating AUC
of 0.88, and threshold-dependent evolution of precision, recall, and F1 score (right)
with optimal performance at threshold 0.31 (Farea et al., 2025).

The model successfully identified 24 of 30 anomalous vehicles while correctly classi-
fying 104 of 110 healthy vehicles. This performance represents a balanced approach
to the safety-critical nature of APS failure detection, where both missed failures
and false alarms carry significant operational consequences. The consistent perfor-
mance across cross-validation folds indicates model robustness and generalizability

to unseen vehicle data.

Table 6.8 summarizes the quantitative performance metrics, demonstrating the
EBM'’s effectiveness as a supervised learning approach for APS failure detection

when sufficient labeled training data is available.

Table 6.8 EBM classification performance using five-fold cross-validation.

Model Threshold Precision Recall F1 Score Accuracy AUC
EBM 0.31 0.80 0.80 0.80 91.4% 0.88

6.2.3.2 EBM Model Interpretability Analysis

The EBM framework provides both global feature importance rankings and local
decision explanations for individual vehicle classifications. The global feature im-
portance analysis reveals that AC on/off count emerges as the most influential

predictor, followed by BrakePedalPos mean, DutyCycle, P2 _min, and P3_min.
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This ranking aligns closely with domain expertise, where air compressor cycling
frequency and duty cycle patterns serve as primary indicators of APS degradation,
while brake usage context provides essential interpretation for distinguishing normal
operational stress from anomalous behavior. Figure 6.16 demonstrates the mean ab-
solute contribution scores for all model features, confirming the significance of these

core APS indicators in the classification decision process.
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Figure 6.16 EBM global feature importance ranking showing the contribution of
input features and their interactions to classification decisions (Farea et al., 2025).

Local explanation analysis provides insight into individual classification decisions
through representative cases. Figure 6.17 illustrates correctly classified samples
where Sample 1 (true negative) demonstrates healthy classification driven by low
AC_on/off _count and DutyCycle values with normal pressure readings. Sample 2
(true positive) shows faulty classification based on elevated compressor cycling and
duty cycle patterns, with time series analysis revealing progressive deterioration in
the final month before failure, indicating extended compressor operation as a key

failure precursor.
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Figure 6.17 EBM local explanations for correctly classified vehicles: (top) true neg-
ative sample showing healthy operational patterns, (bottom) true positive sample
demonstrating progressive APS degradation indicators.

Misclassification analysis reveals the model’s limitations and edge cases. Figure 6.18
presents Sample 3 (false negative), where a failed vehicle was misclassified as healthy
due to normal compressor behavior and pressure values during the monitoring pe-
riod, suggesting either subtle failure modes not captured by key indicators or po-
tential preventive replacement scenarios. Sample 4 (false positive) shows a healthy
vehicle misclassified as faulty due to elevated compressor cycling and reduced min-
imum pressures, highlighting the challenge of distinguishing temporary operational

stress from genuine system degradation.
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Figure 6.18 EBM local explanations for misclassified vehicles: (top) false negative
showing normal patterns despite actual failure, (bottom) false positive indicating
temporary operational anomalies in healthy vehicle.

6.2.3.3 Results of the LLM-based Agentic Framework

The LLM-based agentic framework, detailed comprehensively in Chapter 5, provides

interpretable anomaly detection through multi-agent pattern analysis. In its best-

performing run (Table 6.9), the framework achieved a precision of 0.82, recall of

0.60, F1 score of 0.69, and an overall accuracy of 89%. Although the quantitative

performance is competitive, the method’s primary strength lies in its exceptional
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interpretability and the detailed natural-language explanations generated for each

detected anomaly.

Performance evaluations across multiple independent runs revealed variability, with
accuracy ranging from 0.86 to 0.89 and F1 scores between 0.62 and 0.69 (Ta-
ble 6.10). This variability underscores the inherent stochasticity in LLM-driven
decision-making, reflecting a trade-off between reproducibility and the nuanced rea-

soning capability enabled by the agentic approach.

In the optimal run, the framework successfully identified 18 out of 30 anomalous
vehicles and accurately classified 106 of 110 healthy vehicles (Table 6.9). While recall
was somewhat lower than traditional anomaly detection methods, this limitation was
effectively offset by the framework’s rich contextual explanations. These detailed
justifications allow domain experts to comprehend and verify the reasoning behind

each anomaly classification, thus enhancing practical applicability and expert trust.

Table 6.9 LLM-based agentic framework: best-run confusion matrix and perfor-
mance metrics

TN FN FP TP Precision Recall F1 Accuracy
106 12 4 18 0.82 0.60  0.69 0.89

Table 6.10 Performance variability across five independent runs

Metric Min Max Mean + SD Range
Accuracy 0.86  0.89 0.884+0.01 0.03
F1 score 0.62 0.69 0.66 +0.03 0.07

The framework thus serves as a robust and interpretable alternative to tradi-
tional human-expert-based anomaly detection approaches. Developed through do-
main knowledge transfer and structured prompt engineering, the agentic framework
demonstrates performance comparable to the HEA baseline method in terms of both
F1 score and accuracy. These results underscore the effectiveness of systematically

encoding domain knowledge within an LLM-based anomaly detection solution.
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Response:
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Explanations: DutyCycle is consistently high for more than 3-4 days, and the CountOnOff values are also
consistently above the threshold for extended periods. MinPressure is only slightly low, but the other indicators
imply a fault.

Figure 6.19 Output of the LLM-based agentic framework demonstrating multi-agent
analysis of an anomalous vehicle. Each specialized agent provides detailed natural-
language explanations of its APS indicator assessment, with the decision agent in-
tegrating these insights into a comprehensive anomaly classification.

Figure 6.19 further illustrates the framework’s explanatory capabilities through a
representative analysis of an anomalous vehicle. Here, each specialized agent con-
tributes detailed, context-aware reasoning for its assigned APS indicator. Specifi-
cally, the duty cycle agent identifies sustained high readings surpassing operational
thresholds, the compressor switching agent detects frequent and excessive cycling
patterns, and the minimum pressure agent contextualizes pressure fluctuations rel-
ative to vehicle operation. The decision agent synthesizes these individual analyses

into an integrative and interpretable anomaly determination.

Ultimately, the interpretability afforded by this agentic approach represents its most
significant advantage, providing intuitive, human-readable justifications that align
closely with expert reasoning. Unlike conventional ML models, which typically
require separate explanatory techniques, the LLM-based system inherently generates
clear and contextual explanations. This feature significantly enhances the ease of
integration into existing maintenance workflows and supports expert validation and

adoption in practical anomaly detection scenarios.
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6.2.4 Integrated Methods and Comprehensive Analysis

Table 6.11 summarizes the optimal performance of each learning paradigm for APS
failure detection. The supervised EBM achieved the most balanced results, with an
F'1 score of 0.80, effectively balancing precision and recall (both at 0.80). Conversely,
the semi-supervised LSTM-AE model demonstrated exceptional precision (1.00) but
at the cost of lower recall (0.60). Among the unsupervised methods, the LLM agentic
approach provided competitive precision (0.82) with a recall comparable to expert-
based methods.

Table 6.11 Summary of APS failure-detection performance by learning paradigm

Paradigm Method Optimal setting* Precision Recall F1 Accuracy
HEA > 3 flags 0.76 0.53  0.63 86.4%
Unsupervised*™ HEA™T > 1.5 flags 0.79 0.63  0.70 88.6%
LLM agentic 3+1 agents (Gemini 2.0 Flash) 0.82 0.60  0.69 89.0%
Semi-supervised LSTM-AE 80 % HV train, 20-min window 1.00 0.60  0.75 91.4%
Supervised EBM threshold 0.31 0.80 0.80  0.80 91.4%

* Configuration that maximises F; score for each method.

** Unsupervised methods rely solely on expert logic and require no labelled training data.

Hybrid Approach Performance

To evaluate the effectiveness of integrating LSTM-AE with interpretable methods,
we systematically assessed four configurations across varying proportions of HVs
in the training set. Figure 6.20 illustrates Fl-score progression for the standalone

LSTM-AE and hybrid methods.

LSTM-AE & HEA/ HEA+ LSTM-AE & LLM

0.750
0750 0.750 0.750
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Figure 6.20 Performance of hybrid LSTM-AE approaches across different experi-
ments. Left: LSTM-AE with HEA/HEA+. Right: LSTM-AE with LLM integra-
tion.

The results reveal that integrating domain-expert analysis substantially enhances
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baseline LSTM-AE performance. The standalone LSTM-AE exhibited notable sen-
sitivity to training data composition, improving from an F1 of 0.644 (20% HVs)
to 0.750 (80% HVs). In contrast, the LSTM-AE combined with HEA consis-
tently improved anomaly detection performance, delivering stable F1 scores ranging
from 0.731 to 0.750 across experiments. Importantly, the enhanced expert analysis
(HEA+) approach achieved its peak performance (F1 = 0.750) even with a limited
amount of healthy vehicle data (40% HVs), underscoring the value of incorporating

brake usage patterns for context-aware anomaly detection.

Meanwhile, the LSTM-AE + LLM hybrid demonstrated competitive results, achiev-
ing F1 scores between 0.694 and 0.736. Although the integration of LLM agents did
not outperform HEA+ in terms of absolute accuracy, it notably offered significant
improvements in interpretability, explainability, and scalability. Unlike HEA /HEA+
methods that rely heavily on manual expert calibration, the LLM-based approach
automates diagnostic reasoning, thus simplifying deployment across diverse vehicle

fleets without extensive domain-expert involvement.

These insights underline the trade-offs between incremental performance gains and
operational scalability, positioning the LLM hybrid as particularly valuable in large-

scale predictive maintenance scenarios where expert resources are constrained.
Correlation Analysis of Interpretable Models

To quantitatively assess consistency among the interpretable models (HEA+, EBM,
and LLM-based agents), Pearson correlation coefficients were computed between
their respective APS indicators. Table 6.12 summarizes key correlations (|p| > 0.60),
demonstrating robust alignment across domain knowledge-driven and data-driven

approaches.

Duty cycle exhibited strong correlation (p = 0.72 with LLM, p = 0.76 with EBM),
confirming its critical role across all interpretability paradigms. Compressor on/off
count similarly showed significant correlations (p = 0.75 with LLM, p = 0.70 with
EBM), reflecting the effective transferability of frequency-based expert indicators
into learned frameworks. The minimum pressure (P3) indicator demonstrated mod-
erately strong yet consistent correlations (p = 0.69 with LLM, p = 0.63 with EBM),
suggesting nuanced variations in how each model interprets dynamic sensor behav-

ior.

Importantly, the global expert-defined indicator (HEA+ total flags) strongly cor-
related with both LLM predictions (p = 0.77) and EBM probabilities (p = 0.79),
providing empirical validation that the data-driven models effectively internalized

composite expert logic. These findings highlight strong intuitive consistency, re-
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inforcing confidence that all interpretable models align closely with maintenance

engineers’ domain knowledge and operational priorities.

Table 6.12 Key Pearson correlations (p) between HEA+ features and their counter-
parts in the LLM and EBM models. Values above 0.70 are set in bold.

Feature p(HEA+,LLM Agents) p(HEA+,EBM)
Duty cycle 0.72 0.76
Compressor on/off count 0.75 0.70
Minimum pressure (P3) 0.69 0.63

Global indicator: p(HEA+ Total Flags, LLM Predict.) = 0.77, p(HEA+ Total Flags, EBM Prob.) =0.79

Expert analysis and interpretability are critical elements of predictive maintenance
applications, essential not only for reliable detection but also for accurate root cause
identification and minimizing false positives. As demonstrated by strong correlations
among HEA+, EBM, and LLM-based indicators, interpretable models effectively
internalize domain-expert logic, highlighting their potential to serve as scalable
alternatives to manual expert analyses. In particular, EBM and LLM-based ap-
proaches exhibit consistent behavior with expert-defined methods, positioning them
as valuable tools that enhance scalability without compromising interpretability or

diagnostic quality.

Furthermore, employing semi-supervised models like LSTM autoencoders brings
additional advantages by addressing the intrinsic challenges posed by the heteroge-
neous nature of APS faults. Unlike supervised models, which may struggle with the
diverse and unpredictable range of potential fault conditions, semi-supervised learn-
ing frameworks adeptly adapt to unknown fault types by modeling normal system
behavior exclusively from healthy data. This approach not only circumvents issues
related to class imbalance—common in fault detection scenarios—but also provides
robust baseline anomaly scores that effectively differentiate between normal and

anomalous system conditions.

Overall, this integrated approach—Ileveraging interpretable models combined with
semi-supervised anomaly detection—provides a comprehensive predictive mainte-
nance solution. It balances interpretability, adaptability, and scalability, paving the
way for effective real-world implementation in large-scale vehicle fleets while ensur-

ing consistent reliability in APS fault detection and prevention.
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7. CONCLUSION

This thesis has developed robust anomaly detection frameworks designed specifi-
cally for HDV applications, significantly advancing predictive maintenance strate-
gies. Two primary vehicle system challenges were addressed: excessive fuel con-

sumption and APS failures.

For FC anomalies, a novel quartile-based labeling method, sensitive to vehicle load
and road slope, was introduced. The developed Bagged Decision Tree models effec-
tively classify FC anomalies with high accuracy (up to 92.2%) across diverse geo-
graphical contexts. The complementary interactive dashboard provides fleet man-

agers with actionable insights, enabling proactive interventions.

In APS failure detection, semi-supervised LSTM Autoencoders demonstrated strong
predictive capability (F1: 0.75) with perfect precision in capturing subtle temporal
anomalies. Integrating human expert analysis significantly reduced false positives
and enhanced overall model performance. Additionally, the EBM achieved an op-
timal balance between accuracy (91.4%, F1: 0.80) and interpretability, augmented
by a LLM-based diagnostic framework offering expert-level interpretability.

A notable contribution of this research is the emphasis on explainability, merging
advanced machine learning with domain expertise. These explainable Al-driven
frameworks substantially enhance trust, interpretability, and practical applicability,

crucial for fleet management and maintenance operations.

Future research can extend these methods toward real-time detection, multi-fault
classification, and integration into automated, closed-loop predictive maintenance
systems, paving the way for more resilient and sustainable fleet management prac-

tices.
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APPENDIX A

Classification Performance Evaluation

This appendix summarises the evaluation metrics and validation procedures
used throughout the experimental chapters. All metric formulas rely on the
confusion-matrix counts of TP, FP, TN, and FN. In the datasets analysed here,
the positive class corresponds to anomalous vehicles, while the negative class de-

notes healthy ones.

Precision

Precision indicates how many of the segments predicted as anomalous were indeed

anomalous:

TP
Al Precision = ————
(A1) recision =
Recall

Recall (sensitivity) shows how many of the real anomalies the model detects:

TP

(A2) Recall = m

F1 score
The F; score is the harmonic mean of precision and recall:

2 Precision Recall

(A.3) i)

- Precision + Recall
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Accuracy

Accuracy reports the proportion of all predictions that are correct:

TP+TN
TP+FP+TN+FN

(A.4) Accuracy =

Area Under the ROC Curve (AUC)

AUC summarises performance across all discrimination thresholds by integrating
the TPR over the FPR:

1
(A.5) AUC = /0 TPR(FPR)dFPR

K-fold cross-validation

K-fold cross-validation provides an estimate of model generalisation performance by

partitioning the dataset and evaluating on held-out data.

Let D = {(x;,5:)}}¥; be the labelled dataset. It is partitioned into K disjoint folds
{Fi1,...,Fi} of approximately equal size, preserving the original class proportions

within every fold.

For each k € {1,..., K}, a model My, is trained on K —1 folds and evaluated on the
held-out fold Fy:

(A.6) M, :train(D\fk>

(A.7) Sp = metric(/\/lk,fk>

where sy, is any evaluation metric (Precision, Recall, F, etc.) computed on fold F.

The overall score for metric s is the arithmetic mean across folds:

1 K
(A8) EZ?ZSk

The variability is quantified by the sample standard deviation:

1 K N2
(A.9) o5 = K_1/€231<8k_8)
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APPENDIX B

LLM-based Agentic Framework Prompts

This appendix presents the complete prompt engineering specifications for the four-
agent diagnostic framework described in Chapter 5. The prompts are designed to
transfer expert knowledge into structured Al agents capable of analyzing APS failure

patterns with interpretable reasoning.

Duty Cycle Agent Prompt

The Duty Cycle Agent analyzes duty cycle patterns in conjunction with average
brake usage, implementing the HEA+ methodology to distinguish between opera-

tional demands and system anomalies.

Listing B.1 Duty Cycle Agent prompt

You are an AI specialized in analyzing DutyCycle (DC) and AvgBrake

signals using pattern analysis.

**Context and Domain Knowledge**:

1. **DutyCycle (DC)** reflects the air compressor’s workload and is a key
indicator of system health.

- Reference threshold for DutyCycle: {dc_threshold} (Typical range of DC
is 00.8)

- Values consistently above the threshold for 34 days indicate an
anomaly, especially if AvgBrake is not similarly elevated.

2. AvgBrake (typical range 010; values 4 considered high) indicates
average brake usage.

If DC and AvgBrake both trend high, it’s likely normal due to driving

conditions (traffic, slopes, etc.).
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3. Look for multi-day DC patterns that are high while AvgBrake remains

low.

**xTagk**:

Given daily DutyCycle and AvgBrake data, identify:

- **No Anomaly#** or **Anomaly** (34 consecutive days with
DC>{dc_threshold} but not matching AvgBrake).

- Key Patterns: List 1-2 notable trends or violations with DC values and

their occurrence times for further analysis.

**x0utput only JSON** in this format (no extra text):
{
"Anomalies": ["description of anomalies, if any"],

"IsAnomalous": true/false

Compressor Switching Agent Prompt

The Switching Pattern Agent examines compressor on/off count patterns to identify

system instability and abnormal cycling behavior.

Listing B.2 Compressor Switching Agent prompt

You are an AI specialized in analyzing CountOnOff (CO) signals to detect

compressor state changes using pattern analysis.

**Context and Domain Knowledge**:

1. **CountOn0ff** represents how many times the compressor turns on/off
in a day.

2. For your analysis, consider:

- Reference threshold for CountOnOff: {co_threshold} (Typical range of CO
is 570).

Sustained high values above the threshold over consecutive days (34 or

more) may indicate system instability or frequent cycling.

3. One-day spikes might not be a fault if they are isolated.

*xTagk**:

Given daily CountOnOff data:

- Identify **No Anomaly#** or **Anomaly** (34 days above {co_threshold}).
- Key Patterns: List 1-2 notable trends or violations with CO values and

their occurrence times for further analysis.

**x0utput only JSON** in this format (no extra text):
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"Anomalies": ["description of anomalies, if any"],

"IsAnomalous": true/false

Minimum Pressure Agent Prompt

The Pressure Agent monitors minimum pressure deviations to detect air leakage

and pressure system degradation.

Listing B.3 Minimum Pressure Agent prompt

You are an AI specialized in analyzing the MinPressure (MP) signal using

pattern analysis.

**Context and Domain Knowledge**:

1. x*MinPressure** tracks the lowest observed pressure for the day.

2. For your analysis, consider:

- Reference threshold for MinPressure: {mp_threshold} (typical range of
MP is 690-810).

- A sustained drop below the thresholds for 34 days might indicate
leakage.

3. Single-day dips are less concerning if not repeated.

**Task**:

Given daily MinPressure data:

- Identify **No Anomaly#** or **Anomaly** (34 days below ~{mp_threshold}).
- Key Patterns: List 1-2 notable trends or violations with MP values and

their occurrence times for further analysis.

**x0utput only JSON** in this format (no extra text):
{
"Anomalies": ["description of anomalies, if any"],

"IsAnomalous": true/false

Decision Agent Prompt

The Decision Agent synthesizes analyses from the three signal-specific agents to

render final diagnostic decisions with probability assessments.

Listing B.4 Decision Agent prompt
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You are an AI that makes the final vehicle health classification based on
analyses of three key indicators:

- DutyCycle & AvgBrake Analysis

- CountOnOff Analysis

- MinPressure Analysis

**Context and Domain Knowledge**:
1. Reference thresholds used in the analyses:
- DutyCycle: {dc_threshold} (typical range 0-0.8)
- CountOnOff: {co_threshold} (typical range 5-70)
- MinPressure: {mp_threshold} (typical range 690-810)

2. Classification Guidelines:
- Predict **Faulty** when strong failure patterns appear or failures

appear across multiple indicators

The DutyCycle analysis is the PRIMARY indicator of system health
- CountOnOff and MinPressure are SECONDARY indicators

CountOnOff alone or MinPressure alone DO NOT imply a fault!!!

Otherwise, predict **Healthy**

**Guidance for Probability**:

If only DutyCycle is anomalous with clear patterns: 60-80%

If only one secondary indicator is anomalous but not severe: 10-30%

If DutyCycle plus one or more secondary indicators show sustained

anomalies: 80-95Y

If all three indicators show strong anomalies: 95%+

**0utput JSON only, in this format:*x*

{
"Classification Result": "Healthy" or "Faulty",
"Probability of Faulty": <number>,
"AT Explanations": "brief rationale if Faulty, else None"
Iy
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