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ABSTRACT

We compute the achromatic gravitational imprint that Kerr space—time leaves on linear polarization at the photon ring. Recasting
parallel transport in a null Frenet—Serret frame yields a single scalar evolution law for the electric-vector position angle. On the
observer’s screen, the Kerr-minus-Schwarzschild pattern on the direct critical curve is non-zero, strictly odd under spin reversal
after a half-turn azimuth relabelling, and tightly confined to a thin annulus. Using backward-shot, Carter-separated geodesics with
midpoint RK2 transport, we achieve second-order convergence and degree-scale amplitudes that grow monotonically with spin
and inclination (RMS ~ 0.5-2° fora/M 2, 0.8,i 2 60°). Three independent constructions — Frenet—Serret line integral, explicit
Levi—Civita transport of the polarization vector, and the phase of the Walker—Penrose constant — agree ray by ray. We then define
a parity-odd ring estimator that is intrinsically achromatic after standard wavelength-squared regression, symmetry-protected
against common even-parity systematics, and compressed into low azimuthal modes. This yields a minimal two-parameter
template (spin and inclination) for mm/sub-mm polarimetry of horizon-scale rings in sources such as M87* and Sgr A*. The
pipeline enables either a detection of the strong-field parallel-transport phase induced by frame dragging or informative upper
limits.
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1 INTRODUCTION

The rotation of linear polarization by gravity is a purely geometric,
achromatic effect: as a null ray threads curved space-time, parallel
transport twists the electric-vector position angle (EVPA) by an
amount fixed by the connection rather than by plasma microphysics.
This has long been formalized in general relativity through invariant
transport along null geodesics and standard texts (M. Walker & R.
Penrose 1970; C. W. Misner, K. S. Thorne & J. A. Wheeler 1973;
S. Chandrasekhar 1983), and it was predicted to imprint degree-
scale rotations in radiation emerging from the Kerr metric (P. A.
Connors & R. F Stark 1977; P. A. Connors, T. Piran & R. F. Stark
1980). Complementary ‘gravitomagnetic’ formulations clarified why
the effect vanishes in Schwarzschild to leading order and appears
with frame dragging in Kerr, emphasizing its integral, wavelength-
independent character (M. Nouri-Zonoz 1999; M. Sereno 2004).
Horizon-scale imaging now places this classical prediction within
reach. Theory isolates a narrow critical curve (‘photon ring’) formed
by null geodesics that skim the photon region and concentrate lensing
signatures on the observer’s screen (S. E. Gralla, D. E. Holz & R.
M. Wald 2019). The Event Horizon Telescope (EHT) provides the
requisite angular resolution and has delivered resolved polarimetry of
M&7* and, more recently, Sgr A*, revealing ordered EVPA structures
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on ring-like morphologies that invite geometry-level interpretation
after standard A” regression (i.e. x(A%) = xo + RM A2, where RM is
the rotation—-measure (RM); G. B. Rybicki & A. P. Lightman 1979;
E. H. T. Collaboration 2019, 2021). The 2024 Sgr A* polarization
images and their companion interpretation paper strengthen this case
by showing a highly polarized, spiral EVPA pattern on event-horizon
scales (T. E. H. T. Collaboration 2024a,b).

Modern theory sharpens the connection between Kerr geometry
and observable polarization. Gravitational Faraday rotation and its
spin—Hall counterpart have been formulated in a local, observer-
frame language that ties the achromatic phase directly to gravito-
magnetic fields in Kerr A. A. Shoom (2024) and B. A. Parvin & M.
T. Lusk (2025). Polarization holonomy has been quantified explicitly
in the Kerr metric, providing an operational definition of the parallel-
transport angle for admissible trajectories (M. T. Lusk 2024). On
the imaging side, universal polarimetric signatures of the photon
ring have been identified, suggesting that ring-focused observables
can encode black-hole spin with minimal emissivity dependence (E.
Himwich et al. 2020).

Despite this progress, a gap remains: there is no observation-ready,
achromatic template defined strictly on the direct critical curve that
(i) is framed as a screen-space observable, (ii) is symmetry-protected
against common even-parity systematics, and (iii) compresses the
information into a small set of azimuthal modes amenable to
interferometric data. Prior analyses either compute parallel transport
with gauge choices that obscure the observer-screen EVPA, or
propose ring-based morphologies that entangle geometric and plasma
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effects, complicating inference and null tests (A. Brodutch & D. R.
Terno 2011; E. Himwich et al. 2020). Numerical pipelines can also
suffer artefacts near horizontal screen crossings unless turning-point
branches are handled carefully, obscuring degree-scale signals in
precisely the region of interest.

We close this gap by recasting polarization transport in a null
Frenet-Serret (FS) frame and showing that the EVPA obeys a
single scalar evolution law along each geodesic—the screen-rotation
(torsion) integral. Evaluated on the observer’s screen, the Kerr—
minus—Schwarzschild EVPA on the direct critical curve is non-zero,
strictly odd under spin reversal after a half-turn azimuthal relabelling,
and tightly localized to a thin annulus about the ring. Using backward-
shot, Carter-separated rays with mid-point transport, we obtain
second-order convergence and degree-scale amplitudes that grow
monotonically with spin and inclination (B. Carter 1968; J. M.
Bardeen 1973). Three independent routes — FS torsion integral,
explicit Levi—Civita transport, and the phase of the Walker—Penrose
constant — agree ray by ray, fixing the observable without gauge
ambiguity (M. Walker & R. Penrose 1970; S. Chandrasekhar 1983).
Finally, we define a parity-odd ring estimator that is intrinsically
achromatic after A? regression G. B. Rybicki & A. P. Lightman
(1979), symmetry-protected against even-parity leakage, and com-
pressed into low azimuthal modes, yielding a minimal two-parameter
(spin, inclination) template tailored to current mm/sub-mm polarime-
try (E. H. T. Collaboration 2021; T. E. H. T. Collaboration 2024a).

Standard RM analyses target the chromatic slope of x(A?) and
are therefore sensitive to magneto-ionic gradients and depolarization
(B. J. Burn 1966; D. D. Sokoloff et al. 1998; A. E. Broderick &
R. D. Blandford 2004; M. A. Brentjens & A. G. Bruyn 2005; G.
Heald 2009). Plasma-forward GRMHD templates can reproduce
polarized ring morphologies but inherit emissivity and transfer as-
sumptions that complicate parameter compression and null tests (M.
Moscibrodzkaet al. 2017; A. Jiménez-Rosales & J. Dexter 2018; T. E.
H. T. Collaboration 2021a,b). In contrast, our screen-space statistic is
achromatic by construction (the A2 — 0 intercept), parity-odd on the
ring (cancelling even-parity leakage), and ring-localized, yielding a
two-parameter geometry-only template directly comparable across
bands. For subsequent observational use, we refer to this residual
as the Geometric Polarization Invariant, denoted xg, equivalent
to our odd-channel EVPA after A% regression. Quantitatively, the
estimator compresses polarized-ring information into two physical
parameters (a, i) with degree-level RMS amplitudes, whereas RM
fits constrain a chromatic slope and GRMHD forward models require
high-dimensional emissivity and transfer choices (B. J. Burn 1966;
D. D. Sokoloff et al. 1998; M. Moscibrodzka et al. 2017; A. Jiménez-
Rosales & J. Dexter 2018).

2 THEORY: NULL GEODESICS, A NULL FS
FRAME, AND EVPA

2.1 Kerr metric and Carter separation

We use Boyer-Lindquist coordinates x* = (¢, r, 8, ) with signature
(—,+, 4+, +) and adopt units G = ¢ = M = 1, following standard
texts (C. W. Misner et al. 1973; S. Chandrasekhar 1983). The non-
vanishing metric functions of Kerr are

A(r) =r? = 2r +d?, (1)
and
=(r,0) = r? +a’cos? 6, 2
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where a is the specific angular momentum. A useful auxiliary
function is defined by

A(r, 0) = (r? + a*)? — a®>Asin? 6. 3)

These expressions reproduce the Kerr metric as given in standard
references B. Carter (1968) and S. Chandrasekhar (1983).

The non-vanishing metric components in Boyer-Lindquist coor-
dinates take the familiar form

gn=-(1-%). (42)
gip = — 2L, (4b)
&r =% (40)
806 = 2, (4d)
8pp = AL, (4e)

Because Kerr possesses two Killing vectors and a Killing tensor,
geodesic motion is completely separable (V. P. Frolov & D. nak 2007;
B. Carter 1968). In modern language, this integrability arises from a
non-degenerate principal tensor that generates hidden symmetries of
the Kerr spacetime and ensures separability of the Hamilton—Jacobi
equation (V. P. Frolov & D. ndk 2007). Introducing the scalefree
invariants £ = L./E and n = Q/E?, the radial motion obeys

) j—; = ++/R(r), ©)
with
R() = [ +a®) —a&]’ — A —a) + 1], ©

where the potential R(r) follows directly from the Hamilton—Jacobi
equation (B. Carter 1968; S. Chandrasekhar 1983). As emphasized
by V. P. Frolov & D. iidk (2007), the separation constants £ and 7
originate from the hidden symmetries encoded in the principal tensor.
The polar equation reads

de

T — = ++/0(0), @)
dv

where

Q) = n+ a*cos*§ — £ cot* 6. (6))

while the azimuthal and time components satisfy

dp & a[(r? + a*) — a&|
dv  sin20 A ' ®
and
2 N[22
g—tz—a(asinzﬁ—é)-l—(r e +a) aﬂ’ (10)
v

A
which complete the set of first integrals.

2.2 Screen mapping and the camera basis

A zero—angular-momentum observer (ZAMO) at (rops, Oobs =
i, @obs = 0) defines a two dimensional screen with orthonormal axes
(&, B) (J. M. Bardeen 1973; S. Chandrasekhar 1983). We parame-
terize the observer’s screen by polar coordinates (p, ¢) with ¢ =0
at prograde conjunction and adopt a Sachs-anchored orthonormal
basis {e;, e;} fixed at rops; EVPAs are measured in this basis after
subtracting the circular mean. We take & to point rightward and
B upward on the image plane. In the asymptotically flat limit, the
mapping between screen coordinates and the conserved quantities is
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given by the Bardeen map & = —asini, n = 2 + (@ — a®)cos?i
(J. M. Bardeen 1973), where « increases to the right and g upward. At
finite radius we recover (£, 1) by projecting the photon 4-momentum
onto the ZAMO tetrad and extracting (E, L., Q) (S. Chandrasekhar
1983).

Define the lapse N' = /A X /A and the frame-dragging angular
velocity w = —g,,/840 = 2ar/A. The orthonormal ZAMO tetrad is
then given by standard constructions (S. Chandrasekhar 1983)

" o =N"1(1,0,0, 0, (11a)
o) = (0, VATE, 0, 0), (11b)
¢4 = (0,0, 1/V%, 0), (11c)
gy = (0, 0, 0, fe) . (11d)

which satisfies gwefg)e(”,;) = Nab-

2.3 Null FS frame and polarization transport

Let k* = dx*/dv be the future-directed null tangent with affine
parameter v (so Vik"* = 0). Along each geodesic we erect a null
moving frame {e,} = {k, £, e}, e,} satisfying

k-€=—1, (12)
and
ey -ep =084, (13)

where e, satisfies,
k-eys=0, (14)

with A, B € {1, 2}. The frame is propagated by Levi—Civita transport
along k,

Vie' = wi ey, (15)
and
Wap = —Wpg = g(eq, Viep), (16)

where w,;, are the Ricci rotation coefficients (M. Walker & R.
Penrose 1970). Because the geodesic has vanishing curvature (no
acceleration), the only physically relevant coefficient is the screen—
rotation (torsion)

o(v) = wpp = gler, Vier) = —g(ea, Viey). an

This torsion encapsulates the gravitational Faraday rotation; its
interpretation as the gravitomagnetic analogue of the electromagnetic
Faraday effect has been discussed in the literature (M. Nouri-Zonoz
1999; M. Sereno 2004; A. Brodutch & D. R. Terno 2011; A. A.
Shoom 2024; M. B. Okten 2025). In weak—field approximations
the rotation angle can be expressed as a line integral of the
gravitomagnetic field along the ray (M. Nouri-Zonoz 1999; M.
Sereno 2004), closely mirroring the FS integral used here. This
emphasizes that o plays the same role in our formulation as the
gravitomagnetic Faraday rotation in previous analyses. Under a local
rotation e4 — RZ(¥(v))ep of the screen basis, 0 — o + ¥/(v),
while the EVPA y transforms as x — x + i + const. Let f# be
the linear-polarization 4-vector, orthogonal to k* and Levi—Civita
transported,

f k=0, (18a)

Vif* =0. (18b)
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Decomposing f on the screen basis as f* = cos x e} + sin x e}
defines the EVPA x(v) and leads to the scalar evolution law (M.
Walker & R. Penrose 1970)

d
X~ o). (19)
dv
so that the observable rotation between source and observer is
Vobs
Ax = / o(v)dv, (20)
Usrc
up to a global gauge.

Define the complex screen vector m* = (eX 4 i el)/+/2 and the
complex polarization scalar p = f,m" for a polarization f* with
f-k=0 and V,f* =0. Levi-Civita transport of {e;, e;} gives
Vim* =i o m*, hence d(arg p)/dv = o while | p| is constant, which
is consistent with equation (19). Introducing the Walker—Penrose
scalar k and

2
Kwe = (fyum") "k = p’«, @n
one has arg Kwp = 2 arg p + const, so

x() = %arg[Kwp(v)] + const. 22)

A screen rotation ey — R4%(y)ep shifts 0 >0 + ' and x —
X + ¥ + const, while Kwp gains only a constant phase; with the
observer’s gauge fixed, Ay is unchanged.

2.4 Spin oddness and ring geometry

We evaluate the achromatic Kerr imprint on the direct critical curve.
Sampling the ring at azimuth ¢ with screen coordinates [a(¢), B(¢)]
and mapping to [, n] via the Bardeen map, we integrate equations
(5)-(10) and equation (19) from a proxy emission radius rqp to the
camera. The camera-frame EVPA is

x(@) =aan2 (f-B. &) . 23)
and
AXgrav(¢) = XKen((p) - XSchw(¢)7 (24)

where & and B are the image-plane unit vectors. Because the torsion
enters linearly in the connection, reversing the spin (¢ — —a) flips
A Xgray While relabelling the ring by ¢ — ¢ + 7 E. Himwich et al.
(2020).

AXgrav(¢;a) = - AXgrav(¢ + _a) . (25)

We therefore define an odd channel xo4a(¢) = Axgrav(9) —
AXgav(¢ + ), which doubles the signal and cancels even-parity
contaminants. We will refer to this achromatic, parity-odd ring
observable as the Geometric Polarization Invariant, we denote it
by X6 = Xoud-

3 COMPUTATION

Our numerical pipeline follows the analytic formulation of Section 2
while incorporating several practical improvements. We work in
Boyer-Lindquist coordinates and construct a ZAMO tetrad at the
observer to define the camera screen {&, B} (J. M. Bardeen 1973;
S. Chandrasekhar 1983). Each backwards-shot ray is specified by
screen coordinates («, 8) and launched using the ZAMO-frame
prescription implied by equations (11), then transformed to coor-
dinate components with the tetrad k* = e ;,k@; the constants of
motion (E, L., Q) are recovered from the separated first integrals in
equations (5)—(10) (B. Carter 1968; S. Chandrasekhar 1983). This
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finite-radius formulation reduces to the usual Bardeen mapping in
the rops — 00 limit (J. M. Bardeen 1973).

The direct critical curve is obtained by solving for the impact
radius p(¢) on a uniform, even-length azimuthal grid. Let N denote
the number of azimuthal samples on this grid. We bracket the capture
boundary at fixed ¢ and determine p(¢) by bisection, classifying
a ray via the Carter potentials R(r) and ®(9) (B. Carter 1968;
S. Chandrasekhar 1983). Capture is defined as either crossing the
horizon or asymptoting to a spherical photon orbit (detected via
a double root of the radial potential), while escape is flagged by
a persistent outward-moving streak once the ray has passed the
observer (B. Carter 1968; S. Chandrasekhar 1983). To guarantee
that the bracket straddles the capture boundary, the upper bound is
expanded exponentially if needed, a coarse linear/logarithmic scan
is used to locate any sign flip, and a micro jitter of ¢ near § =0
seeds the polar branch. This yields a robust, branch-safe Kerr critical
curve. For the Schwarzschild reference, we either apply the same
bisection or enforce the analytic circle p = 34/3M for comparison.

The outer horizon radius is

ry = 14++v1—a?, (26)

in the units G = c = M = 1 adopted throughout. Once £ and 7
are fixed, we integrate the geodesic inward using a mid-point
(second order) scheme applied to the Carter-separated velocities
(dt/dv, dr/dv, d8/dv, dg/dv) (B. Carter 1968; S. Chandrasekhar
1983). The affine step is adaptively scaled to obey a per—step polar cap
|AB| < Abnax, Which stabilizes the evolution where the connection
varies rapidly. Turning points are handled without event detection: we
preview branch flips at the midpoint and flip s, when ® changes sign
and s, when R falls below a small threshold, where sy, s, € {+1, —1}
are the polar and radial branch signs. At each step, we record the
start and mid-point geometry coordinates, metric and Christoffels,
the null tangent k*, and an auxiliary null n* built so that k - n = —1
— for a clean replay of polarization transport. Integration halts at the
horizon, at a spherical photon orbit, or upon satisfying the outward-
escape criterion; in all cases, the strong-field segment controlling the
photon-ring phase is captured.

We use adaptive RK2 midpoint steps with a polar cap at turning
points:

Av = min{AvmaXs Elol/”y”}y (27)
and
|A9| < AbBpax =35 X ]073 rad, (28)

Flip the polar momentum at turning points when 6 §” < 0, terminate
the integration if r < r, + 107°M or if the radial step under-resolves
(Ar < 1072 M), and place the observer at ryps = 10° M with a Sachs-
anchored orthonormal screen and fixed global gauge.

We compute A x,,y along identical rays by three routes: first, the
FS torsion integral f o dv; secondly, explicit Levi—Civita transport
of f* with projection onto the observer’s screen; thirdly, one half of
the phase of Kwp. Agreement is quantified by the maximum absolute
route-wise discrepancy over azimuth, &4y, and by the ring-averaged
root-mean-square dispersion, RMS¢, defined by

‘Sroute = m(;lx }AX(FS) - AX(LC/WP)|~ (29)
and

o\ 172
RMS, = <(AX—(AX>¢) >¢ . (30)
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Ateachrecorded start state, we define a Sachs screen by projecting
any vector v via

PH 0" = v kM (n-v) + n*(k-v), (31)

storing n** with the step to preserve gauge consistency. After the in-
ward pass, we set the source gauge by projecting the coordinate basis
vector 0, onto the Sachs screen at the endpoint and normalizing with
the local metric (M. Walker & R. Penrose 1970; S. Chandrasekhar
1983). We then replay Levi—Civita transport backward (endpoint
— observer) with a midpoint RK2: at each step we integrate
df#*/dv = —I'*,, k" f”, project the predicted f* with (31) using
the stored (k*, n*, g,,), and normalize once at the start of the step.
This ‘midpoint replay’ reproduces the FS integral [ o dv and keeps
[ orthogonal to the null pair throughout. At the observer, the EVPA
is read as x = atan2(f - [Ai f - &) in the ZAMO frame, wrapped to
(—90°, 90°] (M. Walker & R. Penrose 1970; S. Chandrasekhar 1983).

For each azimuth ¢, we compute the Kerr EVPA xke on the
Kerr critical curve and the Schwarzschild EVPA xs., On the corre-
sponding Schwarzschild curve. Their difference A x (¢) is converted
to a spin-2 quantity P(¢) = exp [2i Ax(¢)], and the residual spin-2
gauge is removed by subtracting % arg(P),. We then form

Poaa(¢p) = P(¢p) P(¢p + )", (32)
and
Peven(¢) = P(¢) P(¢ + 71), (33)

and extract Xoad = § arg Poad, Xeven = 3 arg Peven. The 0dd channel
isolates the gravitational signal because Ay (¢;a) obeys the exact
spin-odd symmetry A x(¢;a) = —Ax(¢ + m; —a) (B. Carter 1968;
J. M. Bardeen 1973, see also equation 25); its azimuthal RMS A,qq =
(ngd>;/2 summarizes detectability. The even channel is consistent
with numerical noise across our runs.

We synthesize a narrow annulus centred on the direct critical curve

and assign

Xsynlh(d’) = Xo + AXgrav(d’;avi) + n(¢)’ (34)

with Gaussian n(¢) of standard deviation o, per beam. Stokes
(Q, U) are formed and convolved with a circular Gaussian beam
of FWHM 6peam; per-pixel A2 regression removes dispersive Fara-
day rotation. The odd channel xou(¢) = 1[x(#) — x(¢ + )] is
regressed against the template family 7, () = A Xgrav(¢; a, i) with
inverse-variance weights w(¢),

S, Ko@) T (@) w()

Aota = ; (35)
“ >y T2@) w(@)
and
T2 () w(g)
SNR? = Zﬁb‘”# (36)
o
X
We report bias and variance of Xodd versus (0, Bpeam)-
For quick forecasts, we provide
M
ARMS(4 iy = €y sini M e (37)

1+ C(1—a/M)

with (Cy, C,) least-squares fitted to our (a/M, i) grid; exact tem-
plates 7,.;(¢) and tabulated RMS values are provided as arrays.
Both the forward geodesic and backward transport integrations
are second-order accurate, with a global O(h?) error once the 6-
cap controls the step size. Constraint preservation is monitored
by reprojecting and re-normalizing f* on the Sachs screen at
each start; violations remain at machine precision. Ray by ray, the
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Yoad(¢) [°]

0 60 120 180 240 300 360
¢ [°]

Figure 1. Odd-parity EVPA x,44(¢) on the direct critical curve for a high-
spin, high-inclination example (a/M = 0.9, i = 80°). The curve is smooth
and non-sinusoidal, with degree-scale amplitude and no aliasing artefacts.
Odd differencing removes the gauge freedom and suppresses even-parity
contributions.

EVPA from this Levi—Civita replay agrees with that obtained by
directly integrating the FS torsion o = g(e;, Viez) using the same
midpoint rule, and the complex Walker—Penrose invariant remains
constant along each ray (M. Walker & R. Penrose 1970; S. Chan-
drasekhar 1983). For a representative case (a/M,i) = (0.9, 80°),
halving the affine step four times yields EVPA max-norm differ-
ences of (2.1, 0.53,0.13, 0.032)°, consistent with O(h?); algebraic
constraints remain < 10! along all rays.

4 FINDINGS

The achromatic Kerr contribution to the EVPA on the photon
ring is quantified by the difference A gy (¢p) between Kerr and
Schwarzschild solutions after subtracting a constant gauge. In the
Schwarzschild limit, this quantity vanishes, while in Kerr space—
times, it reflects the presence of frame dragging through the null
FS scalar law (cf. equation 19), where o is the screen-rotation
rate. Across the full range of spins and inclinations examined,
AXgrav(¢) varies smoothly over 0 < ¢ < 27 and exhibits degree-
scale modulations that track where null geodesics spend longer near
the horizon. Because vacuum parallel transport is used, the signal
is intrinsically achromatic; any wavelength dependence in observed
EVPAs can be removed via a standard per-pixel A? regression.

At high spin and inclination, the azimuthal profile becomes
markedly non-sinusoidal. Fig. 1 presents the odd-parity waveform
Xodd(¢) for a/M = 0.9 and i = 80°. The curve is smooth and non-
sinusoidal, with flattened extrema and shoulders shifted towards the
approaching and receding limbs. This morphology reflects the un-
equal accumulation of o (v) = g(e;, Vie,) along chords that weight
the strong-field region differently; rays launched near the projected
equatorial limbs penetrate deeper and linger longer near the spherical
photon orbit, increasing the net phase. The amplitude is of a few
degrees, and the waveform is free of aliasing or noise artefacts. By
contrast, an identical calculation in Schwarzschild yields a residual
EVPA consistent with zero after the mean is removed, as one expects
from spherical symmetry.

The dependence on spin a/M and inclination i, together with
the separation into the full Kerr—Schwarzschild difference A xgray,
the odd channel x,44, and the even channel xeyen, is Summarized in
Fig. 2. Each row fixes an inclination (20°, 50°, or 80°) and each
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Figure 2. Dependence on spin and inclination. Rows correspond to incli-
nations i = 20°, 50°, and 80°; columns display the Kerr—Schwarzschild
difference A xgrav(¢), the odd channel xo44(¢) and the even channel Xeyen(¢).
Amplitudes rise with both /M and i, while the even channel remains near
the noise floor. Vertical axes are in degrees; within each row the three panels
share identical y-limits, while ranges differ by row solely for visibility.

80
12
10
250
280 05 09 0
alM

Figure 3. Even-channel detectability map. The colour scale shows the root-
mean-square amplitude Aeven (degrees) across spin a/M and inclination i.
The even channel is close to zero across most of the parameter space, with
modest amplitudes appearing only at low inclinations and large spins. These
values remain small relative to the odd-channel amplitude, consistent with
the spin-odd nature of the geometric signal.

> D [e)
Acven[]

[

column displays a different projection. The panels reveal that the
amplitude of A gy and xo4q increases monotonically with both a
and i: at fixed i, the signal rises from zero at a = 0 to degree-scale
values by a/M ~ 0.9, while at fixed a, it grows with inclination,
reflecting that chords slicing the high-o equatorial belt contribute
more torsion. The even channel remains near numerical noise across
all spins and inclinations. Note that the vertical axis scales differ by
row, spanning approximately £50° for i = 20°, £10° for i = 50°,
and £1° for i = 80°, while within each row the three columns share
the same range; this choice maximizes visibility without altering the
trends.

To further characterize the even channel, Fig. 3 presents a
detectability map for the even channel root mean square Aeyen
across spin and inclination. The colour scale illustrates that Aeyen
is negligible (dark colours) over most of the parameter space,
particularly at moderate to high inclinations where the signal is
strongly suppressed. Only at low inclinations and large spins, does
the even projection become less effective, producing amplitudes of
a few degrees; these remain small compared with the odd-channel
amplitudes and reinforce that the even channel contains little physical
information. This map therefore confirms that the near-null behaviour
of Xeven Observed in Fig. 2 holds across the entire (a, i) plane.
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Figure 4. Azimuthal derivative d(A xgray)/d¢ along the ring at i = 20° for
a/M =0, 0.5 and 0.9. The derivative is flat except for a step at ¢ =~ 180°,
corresponding to the polar turning point. No random spikes or oscillations
are present.

The geometric signal is strictly odd under spin reversal with a
simple azimuthal relabelling:

AXgrav(¢;a) = _AXgre\v(¢ + 7 _a) . (38)
Consequently, forming the odd channel
Xodd(¢) = AXgrav(¢) - AXgrav(¢ + 77) (39)

doubles the desired signal and cancels all even-parity contaminants.
In practice, reversing the spin while keeping the line of sight fixed
yields curves that overlap after a half-cycle shift, with residuals at
machine precision. Since g4 o a flips sign under a — —a while
the ring relabels by ¢ — ¢ + m, the g,4-odd part of o = g(e;, Viez)
integrates to give this relation. Calibration errors and beam asym-
metries tend to be even under ¢ > ¢ + 7 and are thus strongly
suppressed in xoqq-

Three independent numerical routes — integrating the FS scalar o,
transporting the full polarization vector f#* with the Levi—Civita con-
nection, and extracting the phase from the Walker—Penrose invariant
— agree ray by ray within numerical round off. Convergence tests
with halved affine steps show the expected second-order behaviour
once the polar-angle step cap is in the asymptotic regime; differences
between successive resolutions fall below one degree for all cases
displayed in Figs 1-3. Constraint violations remain at round off and
do not correlate with phases of maximal EVPA modulation. Varying
the observer radius from 7o,y = 400 to 800M changes the results
by less than our plotting precision, and adjusting the turning-point
stopping rule alters only the absolute phase, which is removed by
our gauge.

A smoothness check on the derivative of A g,y is shown in Fig. 4
for i = 20° and spins a/M = 0, 0.5 and 0.9. Each curve is flat near
zero except for a sharp step at ¢ >~ 180° associated with the polar
turning point. There are no random spikes or oscillations, confirming
that the azimuthal waveform is single valued and free of needle like
artefacts. Similar behaviour is observed at higher inclinations.

Because Faraday rotation is dispersive, the geometric contribution
should be extracted achromatically by regressing the EVPA against
2% and taking the residual at zero wavelength:

x(A?) = xo + RMA%. (40)

After this step, finite resolution smooths azimuthal structure and
mixes neighbouring radii, but the signal’s radial localization en-
sures that selecting a narrow annulus retains most of the signal
while reducing beam-induced biases. Sparse (u, v) coverage yields
azimuthally non-uniform errors; the root-mean-square statistic is
robust against such heteroscedasticity. Scattering and calibration
errors that are approximately even under ¢ — ¢ + 7w cancel to
first order in x.qa. Residual RM gradients can leak into the odd
channel but can be monitored by differencing adjacent frequency
bands. Although the template is emissivity agnostic, optically thin
synchrotron weighting emphasizes certain chords; to first order this
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Figure 5. Signal-to-noise ratio as a function of the number of azimuthal
samples N for per-sample EVPA uncertainties o, = 0.3°, 0.5°, 1.0°, and
2.0°. Increasing N boosts the SNR with diminishing returns; smaller o,
yields higher SNR.

reweights modes without changing parity, introducing a global scale
factor and a small phase shift that can be absorbed by a two-parameter
matched filter. Higher order images cluster near the critical curve
and accumulate larger phases, but blend into the main ring at finite
resolution; thus the direct-image template slightly underestimates the
full signal if subring contrast is significant. To isolate the geometric
contribution in real data, we first perform per-beam A regression to
form o, allowing for internal RM structure and modest conversion
(T. W. Jones & S. L. O’Dell 1977; M. Kennett & D. Melrose 1998;
D. D. Sokoloff et al. 1998). We then convolve all bands to a common
circular beam and co-register them to suppress beam-imprinted parity
(I. Marti-Vidal et al. 2016; E. H. T. Collaboration 2019). A narrow
annulus bracketing the direct critical curve is selected on the image
plane; opposite azimuths are differenced to obtain xg(¢), which
is fitted to 7,.;(¢) with a small phase nuisance. Slowly varying
magneto-ionic terms (e.g. RM gradients or external screens) are
dominated by even parity and are therefore strongly suppressed by
the odd projection, whereas an achromatic residual in xg that is
consistent across a low-/high-band split is the geometric signal (A.
E. Broderick & R. D. Blandford 2004; M. MoScibrodzka et al. 2017;
T.E. H. T. Collaboration 2021a,b). Because even-parity terms cancel
identically in xoqq, residual magneto-ionic leakage enters only at
O(04RM) and is bounded empirically by low-/high-band splits; in
our injections, the induced bias on the odd-channel amplitude is
< 0.5° for EHT-like beams and RM gradients. Three immediate
null checks — Schwarzschild extraction (= 040 ~0), agreement
between independent low/high sub-bands after separate A” fits, and
invariance under a 90° restoring-beam rotation — verify parity and
achromaticity in practice.

If N denotes the number of approximately uniform azimuthal
samples and o, the per-sample EVPA uncertainty after A*> removal,
a matched-filter estimate of the signal-to-noise ratio scales as

e T)o VN2
SNR ~ e Tho /1/2. @1
Ox (T, T),

Since the signal is dominated by a few low-order modes, tens of
samples suffice provided o, is a few degrees. Fig. 5 plots the SNR
versus N for per-sample uncertainties o, = 0.3°, 0.5°, 1.0°, and
2.0°. Each curve increases monotonically and exhibits diminishing
returns; smaller o, yields substantially higher SNR. The parity
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projection doubles the gravitational signal and halves even-parity
noise, thereby enhancing detectability for a given data quality.

For EHT-like settings with N ~48 azimuthal samples and o, ~1°
after A2 removal, the amplitude SNR SNR 4 & (A oqq/ o)V N/2is~7
at(a/M,i) = (0.9, 80°), implying sub-0.1 precision in a/M or a few
degrees in i from the measured slope of Ayyq(a, i).

Robustness tests varied the observer radius, emission proxy,
azimuthal sampling (from about 36 to 128 points), affine step size
(with factor-of-eight refinements) and the method used to map finite-
radius geodesics to the critical curve. Only the expected sensitivity
emerged: the azimuthal rootmeansquare stabilizes once M = 48 and
the step size is sufficiently small; the phase can shift by a fraction
of a bin if the start of the tessellation changes, motivating the use
of an RMS summary and a matched filter that includes a marginal
phase. None of these choices affects the parity, radial localization or
monotonic scaling. The sign of the primary lobe in x,q4(¢) fixes the
projected spin direction (up to a & relabelling), while the amplitude
grows monotonically with a at fixed i and with i at fixed a. A joint fit
to the amplitude and modestly phase-sensitive shape therefore breaks
the degeneracy between a and i when combined with standard ring-
diameter measurements. Because the observable is achromatic, data
from multiple bands can be combined after A> removal to increase
N without bias.

Finally, it should be emphasized that plasma birefringence and
absorption are not included here: the template defines a geometric
baseline rather than a complete radiative transfer solution. In practice,
one should remove dispersive rotation via A? regression, isolate
a narrow ring annulus, form the odd channel and fit the result
with a two-parameter FS template allowing for amplitude and a
small azimuthal phase. Residual frequency-dependent signatures
bound unremoved Faraday structure; even-parity residuals bound
instrumental leakage. Simulated analyses suggest that these controls
keep biases in the odd-channel amplitude below about 0.5° for typical
EHT configurations, well below the severaldegree signals expected
at high spin and inclination.

5 CONCLUSIONS

We have recast the gravitational rotation of linear polarization in Kerr
as the integral of a single scalar — the null FS screen-rotation rate
o = g(e_1, V_ke_2) — accumulated along photon trajectories that
form the critical curve. This formulation yields an achromatic, ring-
localized, parity-odd template for the electric-vector position angle
(EVPA) on the observer’s screen, independent of plasma emissivity
and robust to gauge choices. Three independent constructions — (i)
the FS scalar integral [ o dv, (ii) explicit Levi-Civita transport
of the polarization vector, and (iii) the phase inferred from the
Walker—Penrose invariant — agree ray by ray at machine precision,
closing the theoretical loop and fixing the observable unambiguously.
Numerically, a mid-point geodesic/transport scheme with constraint-
preserving orthonormalization attains the expected O(h%) conver-
gence and keeps all algebraic constraints at round off, ensuring
that the degree-scale modulations we report are physical rather than
numerical. For clarity and future reuse, we name this observable the
Geometric Polarization Invariant (xg).

The resulting screen-space signature has four properties that
matter for observation. First, it is non-zero in Kerr and vanishes
in Schwarzschild up to a global gauge, confirming that frame
dragging is the sole driver of the pattern. Secondly, it is strictly odd
under a — —a once the trivial relabelling ¢ — ¢ + 7 on the ring
is applied; the odd-parity combination xo44(¢p) = x(¢) — x (¢ + )
therefore doubles the signal and cancels even-parity contaminants.
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Thirdly, it grows monotonically with spin and inclination, reaching
degree-scale RMS for a/M ~ 1 viewed at high i. Fourthly, it is
localized in radius to a narrow annulus bracketing the direct photon
ring; sampling a few neighboring circles shows a sharp peak of the
odd-channel RMS within [8p|/M < 0.2 of the critical curve and a
rapid fall-off outside. Together, these features define a compressed,
symmetry-protected observable that lives precisely where mm/sub—
mm VLBI data sets have geometric leverage.

The plots constructed from our calculation clarify what a detection
should look like. The azimuthal waveform of A x_grav(¢) is not
purely sinusoidal: at moderate spins anm = 1 component dominates,
while higher harmonics emerge gradually asa/M — 1andi — 90°.
This decomposition is useful in practice because modest azimuthal
sampling already captures most of the signal power. The strict
oddness under ¢ — ¢ + 7 is a decisive advantage in real data,
where beam asymmetries, calibration drifts, and residual foregrounds
are approximately even on a ring. Taken together, the amplitude
versus spin/inclination monotonicity and the low-order azimuthal
structure mean that a simple two-parameter family of templates
indexed by (a, i), augmented by a small phase nuisance, can support
parameter inference without entanglement with detailed emissivity
models.

The same geometry suggests a minimal, observation-ready
pipeline. One first removes dispersive Faraday rotation by per-pixel
(or per-beam) A” regression to form an achromatic EVPA residual at
a fiducial frequency. One then extracts a narrow annulus around the
ring (via image-plane apertures or visibility-domain ring fits), forms
the odd channel by differencing opposite azimuths, and regresses the
result against the FS template family. Because the statistic is parity-
odd, even-parity leakage from bandpass errors, beam systematics,
and slowly varying foregrounds is strongly suppressed; because the
statistic is achromatic, multiband data can be coherently combined
after A% removal. In this framework, higher order images that cluster
near the critical curve effectively enhance the measured amplitude
once convolved with a finite beam, making our direct-image template
conservative rather than optimistic.

Several caveats are explicit by design. We do not include plasma
birefringence, absorption, or emissivity weighting in the definition
of the geometric template; these effects reweight azimuthal modes
and shift phases mildly but do not alter achromaticity or spin-odd
parity. Sparse (u, v) coverage and finite beams smooth azimuthal
structure; this is mitigated by radial localization and by using RMS-
type summaries that are insensitive to small phase shifts. Interstellar
scattering and time variability (especially relevant for Sgr A*)
require cadence-aware processing, but the odd-parity differencing
remains symmetry-protected scan by scan. Algorithmically, moving
the observer farther out or adjusting the turning-point stopping rule
changes only an overall gauge that is removed before statistics are
formed.

Two theoretical extensions are natural. The first is to express o in a
principal-null Newman-Penrose tetrad to make the connection with
spin coefficients and the Killing—Yano tensor fully analytic, turning
our numerical equivalences into closed identities. The second is to
develop near-ring asymptotics at high spin and inclination, clarifying
which azimuthal modes dominate and how higher order images
renormalize the annular amplitude. On the data side, the immediate
next step is to inject the odd-parity ring estimator into synthetic
mm/sub-mm polarimetric data sets built from GRMHD snapshots
with realistic calibration, thereby turning our qualitative detectability
statements into instrument-specific forecasts. In parallel, applying
the method to existing M87* and Sgr A* data sets — after standard A2
removal and ring extraction — can already deliver either a detection
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of the achromatic, parity-odd Kerr imprint or tight upper limits that
constrain combinations of (a, i) and emissivity reweighting.

The torsion of a null moving frame provides a compact, physi-
cally transparent bridge from strong-field geometry to a symmetry-
protected observable on the sky. By isolating the achromatic, spin-
odd EVPA pattern on the photon ring and by closing the triangle be-
tween FS, Levi-Civita, and Walker—Penrose constructions, we have
produced a practical template and estimator that meet the data where
they are. A positive detection would amount to a direct measurement
of a parallel-transport phase sourced by frame dragging; a non-
detection, interpreted through the same parity-aware pipeline, would
still return informative bounds and stress-test instrument systematics
and plasma models. Either outcome moves polarization holonomy
from theory into measurement, sharpening the interface between
differential geometry and horizon-scale polarimetry. In practice,
reporting xg (or its upper limit) after parity and achromaticity checks
provides a geometry-only diagnostic that is immediately comparable
across bands and epochs.
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