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Abstract In this paper, we investigate quasinormal modes
(QNMs) and greybody factors within the framework of Sym-
mergent gravity, an emergent gravity model with an R + R?
curvature sector. Building on our previous work on static
spherically-symmetric solutions [Pulice et al. in Class Quan-
tum Gravity 40(19):195003, 2023], we explore the effects of
the key parameters, including the quadratic curvature cou-
pling parameter co and the vacuum energy parameter «. For
all the three perturbations considered here viz., scalar, elec-
tromagnetic and gravitational perturbations, an increase in
o leads to a nearly linear rise in both oscillation frequen-
cies and damping rates. The other parameter cgo affects the
QNDMs spectrum nonlinearly. Additionally, the charge Q of
the black hole introduces nonlinear behavior, where higher
charges amplify the black hole’s electromagnetic field, result-
ing in increased oscillation frequencies and faster stabiliza-
tion. These findings enhance our understanding of charged
black hole stability and gravitational wave astrophysics. Fur-
ther, the analysis of greybody factors reveals that increas-
ing o, co, and Q reduces the absorption of radiation, with
gravitational perturbations reaching maximum absorption at
slightly lower frequencies compared to electromagnetic and
scalar perturbations.

1 Introduction

The Standard Model (SM) describes the strong, weak, and
electromagnetic interactions as a renormalizable quantum
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field theory (QFT) [1], but does not account for gravity. It is
unique to the flat Minkowski spacetime because of difficulties
in quantizing the curved metric [2] and in transferring QFTs
into curved spacetime [3,4]. In contrast to full QFTs like the
SM, flat spacetime effective QFTs are expected to exhibit
a closer connection to curved spacetime. This is because
they are nearly classical field theories obtained by integrating
out high-frequency quantum fluctuations [1,5], in the frame-
work of both Wilsonian and one-particle-irreducible effective
actions [7,8].

The SM is endowed with a physical UV cutoff (rather than
a regulator) when viewed as an effective QFT [5]. This UV
cutoff denoted by A, represents the scale at which a UV
completion becomes relevant. As revealed by the null LHC
searches [6], A, could be at any scale above a TeV. In general,
inaLorentz conserving regime, the loop momentum £/ lies in
the interval —Aé < nuthte’ < Aézo, and it explicitly breaks
the Poincaré (translation) symmetry. In the presence of the
UV cutoff A?,, scalar mass-squareds obtain corrections pro-
portional to AZ_ , and AZ; terms appear in the loop-corrected
vacuum energy [5,9]. Beyond these UV sensitivities [5],
gauge bosons also acquire mass-squared terms proportional
to Aé, and which leads to a breaking of gauge symmetries
[10,11]. In order to alleviate these unnatural UV sensitivities,
the most sensible line of action would be to restore the gauge
symmetries by means of the Higgs mechanism [12-14]. A
hindrance to this proposal is the stark difference between the
intermediate vector boson mass (Poincaré-conserving) [15]
and the loop-induced gauge boson mass (Poincaré-breaking)
[16]. Indeed, in the former, the vector boson mass is promoted
to a scalar field, which leads to the usual Higgs mechanism
[12—14]. In the latter, however, it is necessary to first find a
Poincaré-breaking Higgs field. In this regard, it turns out that
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the affine curvature, which is independent of the metric ten-
sor and its connection, is the sought-after Higgs field in that
it promotes the UV cutoff Ay, [17,18] and condenses to the
usual metrical curvature in the minimum of the metric-affine
action [19,20]. The defusion of the unnatural UV sensitivity,
the restoration of gauge symmetries, the emergence of grav-
ity, and the appearance of new particles without the necessity
to couple directly to SM particles are the salient outcomes
of this condensation. This whole mechanism is referred to as
gauge symmetry-restoring emergent gravity or symmergent
gravity in brief. Symmergent gravity has been constructed
and applied through various stages [16,21-23], starting with
the nascent idea of gauge symmetry restoration by means
of curvature [24]. Some applications of Symmergent gravity
can be found in [25-27,29-34].

Black holes are not isolated cosmic bodies; rather, they are
dynamic entities that actively interact with their surround-
ings, profoundly influencing the fabric of spacetime. When
a black hole is perturbed, spacetime itself ripples, creating
waves that eventually die down as the system settles back
to equilibrium. Understanding how these systems respond to
small disturbances is a fundamental aspect of physics, pro-
viding deep insights into the nature of spacetime and gravity.
The study of black hole perturbations began with pioneer-
ing work by [42], and was significantly advanced by others
[43—48], leading to Chandrasekhar’s seminal contributions
[49,50]. At the heart of this field are quasinormal modes
(QNMs), which are complex frequencies characterizing the
oscillatory behavior of a black hole as it returns to a stable
state after being disturbed. These modes are unique signa-
tures that depend on the black hole’s intrinsic properties,
such as its mass, charge, and spin, as well as the nature of the
perturbation—whether it is scalar, electromagnetic, or gravi-
tational. The independence of QNMs from initial conditions
makes them particularly valuable in probing the characteris-
tics of black holes, offering a direct link between theoretical
predictions and observable phenomena [40,41,51-103,115,
116,152-155,173]. Beyond the four-dimensional Einstein-
Maxwell Reissner—Nordstrom solution, a wide landscape of
generalized charged black holes arises once additional fields
or interactions are included: Einstein-Maxwell-dilaton black
holes from Kaluza-Klein/string compactifications modify
horizon structure and extremality [117,118]; Einstein-Born-
Infeld (non-linear electrodynamics) black holes regular-
ize the electromagnetic field and smoothly reduce to RN
in the weak-field limit [119-121]; non-Abelian (Einstein-
Yang-Mills) “colored” black holes provide counterexam-
ples to simple no-hair expectations but are typically lin-
early unstable [122,123]; and higher-dimensional/stringy
solutions include multi-charge/supersymmetric objects and
charged black rings with non-spherical horizons [124,125].
Their perturbations and QNMs often show modest, theory-
dependent deviations from RN while preserving linear sta-
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bility in many Abelian cases; see [51] for a broad review.
The study of QNMs is especially critical in the context of
the ringdown phase of binary black hole mergers. During
this phase, the newly formed black hole emits gravitational
waves as it stabilizes, with the QNMs encoding key infor-
mation about the black hole’s parameters. As gravitational
wave astronomy continues to grow, understanding QNMs
has become increasingly important for interpreting the data
from detectors like LIGO and Virgo [126,127].

Hawking radiation describes the emission of thermal radi-
ation from black holes due to quantum effects near the event
horizon. Originally, Hawking predicted that black holes emit
radiation as perfect black bodies [137]. However, this ide-
alized picture does not take into account the interaction of
emitted radiation with the curved spacetime geometry sur-
rounding the black hole. Greybody factors quantify the devi-
ation of the emitted radiation from perfect blackbody radi-
ation [140,162,163]. Physically, they represent frequency-
dependent transmission coefficients, indicating how much
radiation generated at the black hole horizon manages to
escape to spatial infinity. The presence of gravitational poten-
tials surrounding the black hole modifies and filters the emit-
ted radiation, causing it to appear as a “greybody,” meaning
it emits radiation at intensities lower than a perfect black-
body at certain frequencies. Crucially, QNMs and greybody
factors are deeply interconnected: the peaks in the greybody
spectrum are often closely related to QNM frequencies, since
QNDMs represent resonances of the black hole spacetime. In
other words, the greybody factors reflect how effectively cer-
tain QNM frequencies propagate away from the black hole,
linking the black hole’s emission properties directly to its
intrinsic vibration modes.

Complementing the study of QNMs is the analysis of
the greybody factor, which describes the modification of the
spectrum of radiation as it escapes the black hole’s gravita-
tional well. The greybody factor plays a crucial role in under-
standing the energy distribution of radiation emitted by black
holes, influencing the signals detected by gravitational wave
observatories. Together, QNMs and the greybody factor pro-
vide a comprehensive picture of black hole dynamics and
their interactions with the surrounding environment.

In light of this, our study focuses on computing QNMs
and greybody factors for charged symmergent black holes
(CSBHs). By examining these scenarios, we aim to uncover
novel insights into the behavior of black holes in com-
plex electromagnetic environments, contributing to a deeper
understanding of these enigmatic objects in the universe.

Our work is organized as follows: after the introduction,
we briefly review the CSBHs in Sect. 2. In Sect. 3, we
investigate massless scalar and massless vector perturbations
around the black hole. In Sect. 4, we study greybody factor
using the WKB approach and rigorous bounds. Finally, we
summarize and conclude our paper in Sect. 5.
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2 Brief review of charged symmergent black holes

Symmergent gravity is a specific form of emergent gravity
that incorporates both R and R? curvature terms along with a
non-zero cosmological constant. As a specialized case within
the broader class of f(R) gravity theories, it was first intro-
duced in [23,24], with further refinements and enhancements
presented in [22]. This model has been applied across various
contexts [27,30,31], while recent field-theoretic and string-
theoretic developments have been detailed in [21]. In fact,
symmergent gravity is defined by the action

Slgl = f d*xy/=g {

R co
167G - ER2 —Vo+ Lmatter} )
(D

in which R is the Ricci curvature scalar and L,,4s7¢r TEpre-
sents the Lagrangian for both standard model matter fields
(quarks, leptons, gauge bosons, and the Higgs) and additional
fields required to generate the inverse Newton’s constant at
one loop in the flat spacetime effective action. The relation-
ship for the inverse of Newton’s constant is given by

1 str[M?]

== @)
G 8
which is set by the mass-squared matrix M? of the
entirety of matter fields such that its supertrace str[M?] =
S (=12t (2s; 4+ 1)tr[M?],; runs over all fields v; with
spin s;. At the one-loop level, the quadratic curvature coef-
ficient in Eq. (1) is given by the number difference between
the total bosonic degrees of freedom np and the fermionic
degrees of freedom n ¢ in the underlying QFT [16], namely

ng — ng

7 2822 ®
Similarly, again at the one-loop level, the vacuum energy in
Eq. (1) is given by

str [./\/l4]
64n2

o= “
The loop-induced parameters npg and np play a crucial role in
determining key aspects of the Symmergent gravity. These
degrees of freedom are not limited to the known particles of
the standard model; they also encompass entirely new parti-
cles, both massive and massless, that may not interact with
the SM particles non-gravitationally. This broader inclusion
of particle species highlights the flexibility of Symmergent
gravity, allowing it to incorporate new physics beyond the
SM without requiring couplings to the known particles. Con-
sequently, the contributions from these additional particles
affect the gravitational sector primarily through their impact
on loop corrections, influencing the effective gravitational
dynamics.

In the context of general ng and ng, the Symmergent grav-
ity action (1) may be expressed in the f(R) gravity form as

shown below [27]:
1 ) PN
Sigl = —— [ d*xJ/—¢ (f(R) —2A — EFMUF””)

16w G
)
where f(R) = R + BR? with the quadratic curvature
coefficient 8 = —mGco and the cosmological constant

A = 87 GVp. A detailed analysis of the vacuum energy
Vo starting from its definition in Eq. (4), will be presented in
the subsequent part of the paper.

In this paper, we focus solely on the electromagnetic field
from the matter sector in the action (5). The electromagnetic
field tensor is given by

Fuy=0,A, — A, (6)

where the dimensionless electromagnetic potential is defined
as A, = A, /v87G.

In this section, we derive the charged black hole solution
for the combined Symmergent gravity and Maxwell system
from the action in (5). The gravitational field equations are
expressed as follows,

1
Euy=RuwF(R) — Eg;wf(R)

+ g A + (GO = VuVIF(R) =T =0 (D)
and are coupled with the Maxwell field equations:
0 (V=gF"") =0 (8)

where F(R) =df(R)/dR and i;w’ the energy—momentum
tensor of the dimensionless Maxwell field in (7), is given by:

A A A

1 ..
Ty = gP Fyy Fgy — ZgyagpﬁFaﬂpr. 9)

We now seek a static, spherically symmetric solution for
the combined Symmergent gravity and Maxwell system. For
this, we propose the following metric:

1

dr? + r2(d6* + sin? 0d¢?), (10)
h(r)

ds®> = —h(r)dt* +

where h(r) is the single metric potential. The corresponding
electromagnetic scalar potential is Ag = q (r), with the vector
potential vanishing (Ai = 0, fori = 1,2, 3). The electro-
static potential is given by: ¢ (r) = % where a homogeneous
term has been discarded, ensuring the scalar potential fol-
lows a pure Coulomb form. For a QFT characterized by a
scale M( but lacking detailed knowledge of the mass spec-
trum, realistic scenarios can be modeled by introducing the

parametrization:
l -«

Vo= — >
= 87G)%co

(I
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where the parameter « reflects deviations in the boson and
fermion masses from the characteristic scale My. In general,
o > 1 (@ < 1)indicates fermion (boson) dominance in terms
of the trace of (masses)*, with & > 1 corresponding to an
AdS spacetime and o < 1 corresponding to a dS spacetime.

With the vacuum energy given by Eq. (11), the metric
potential i (r) takes the form [27]:

2MG Q7 1-a) ,
- r
20r?2 247 Geo

It results in the standard Reissner—Nordstrom-AdS/dS black
hole when 02 = £ and A = {72 The metric (10) with
the potential (12) is called as CSBH [27].

The predictions of the Einstein field equations have been
tested extensively in a broad range of observationally acces-
sible scenarios [28], including but not limited to inflation-
ary evolution [29], the formation of neutron stars and black
holes [26,27,30-35], and the emission of gravitational waves
[36,37]. Given the increase in the number and variety of
astrophysical observations of ultracompact objects (inlcud-
ing recent EHT [38] and JWST [39] observations), black
holes manifest themselves as viable testbeds. This motivates
our study of black hole spacetimes depending on the param-
eters co and «.

The allowed domain of the Symmergent parameters is
constrained by both theoretical consistency and observa-
tional requirements. In our previous work on charged sym-
mergent black holes [27], we established upper bounds on
the charge Q. The allowed values must be consistent with
the existence of an event horizon, ensuring that the solution
represents a black hole spacetime. In our model [27], the exis-
tence of a horizon is determined by the values of the parame-
ters cop, « and the charge Q. In [27], we show the variation of
the upper bound on Q with the symmergent parameter ¢ for
two cases, namely: o« = 1.10 (AdS case) and o = 0.90 (dS
case). Specifically, for the AdS case maximum allowed value
of the charge is around Qj = 1.48M and for the dS case the
upper bound reduces to around Q) = 1.34M for cp = 0.90
where we use the label Q, for Q upper bound derived from
the horizon formation which exhibits a mild dependence on
co is mild.In addition, the photon sphere condition yields an
analytic upper bound on the electric charge, however it is less
stringent than the horizon condition.

The most stringent observational constraints on the Sym-
mergent parameter cp arise from black-hole shadow mea-
surements. We compared the theoretical shadow radius with
the EHT results for Sgr A* and M87* at the 1o confidence
level. Our analysis indicates that very small values of ¢ are
ruled out, since they yield shadow sizes below the observed
bands. As c¢ increases, the shadow radius grows and rapidly
saturates to an asymptotic value consistent with the data.
The admissible ranges of co inferred from the EHT obser-
vations are presented for fixed charge values, and we find

hir)y=1-—

12)
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that the dependence on & remains weak. For example, when
Q/M = 0.05 and o = 0.90, the shadow constraints require

loglo(%> >39.6 for Sgr A*,

1og10(%) >45.1 for M8T*.

No significant upper bound emerges in the explored domain,
as the shadow curves flatten at large co. In this work, we
adopt representative benchmark values of co to illustrate
the functional dependence of quasinormal modes and grey-
body factors. Our focus is on identifying qualitative trends
and parameter sensitivities rather than performing a fully
constrained parameter scan. The quantitative bounds on cp,
already established from shadow measurements in Ref. [27],
provide the observational foundation, while the present anal-
ysis highlights the near-horizon behavior and dynamical
imprints of charged Symmergent black holes.

In this study, we use benchmark values of cp to illus-
trate QNM and greybody behavior, with the quantitative con-
straints already established in our earlier work [27]. We carry
out the analyses in the subsequent sections by taking into
account the allowed ranges of the model parameters.

3 Perturbations and quasinormal modes

In this section, we focus on the analysis of massless scalar
and vector perturbations within the framework of the black
hole metric defined in Eq. (12). For the sake of simplic-
ity, we assume that the test field, whether a scalar field or
a vector field, exerts a negligible influence on the black hole
spacetime, meaning that the back reaction of the field on the
spacetime geometry is insignificant [49, 149]. This assump-
tion allows us to treat the perturbations as propagating on
a fixed background metric without needing to consider the
complex, coupled dynamics that would arise if the back reac-
tion were significant.

To investigate the QNMs associated with these perturba-
tions, we derive Schrodinger-like wave equations tailored to
each case by imposing the relevant conservation relations
on the background spacetime. For scalar fields, this pro-
cess results in equations of the Klein—Gordon type, which
describe how the scalar perturbations evolve in the curved
spacetime. For electromagnetic (vector) fields, the corre-
sponding wave equations are derived from Maxwell’s equa-
tions, governing the dynamics of electromagnetic perturba-
tions. These equations encapsulate the key physical proper-
ties of the perturbations, such as their frequencies and damp-
ing rates, which are essential for determining the QNMs.

The QNMs are calculated using the Padé-averaged 6th-
order WKB approximation method, a semi-analytical tech-



Eur. Phys. J. C (2025) 85:1243

Page 5 of 34 1243

nique that is particularly effective for evaluating the frequen-
cies and decay rates of perturbations in black hole space-
times. The WKB method is well-suited for handling wave
equations with a potential barrier, as is typical in the context
of black hole perturbations. By employing this method, we
can obtain accurate estimates of the QNMs, which provide
insights into the stability and dynamical response of the black
hole to perturbations.

Our analysis specifically focuses on axial perturbations.
To describe these perturbations, we express the perturbed
metric as shown in the following way [149]

ds* = —g,,dt2 +r2de* + grrdr2
+r%sin’0 (d¢ — pi(t,r, 0)
dt — pa(t,r,0)dr — p3(t,r,0)do)? , (13)

where the functions pi(¢,r,0), pa(t,r,0), and p3(t,r,6)
characterize the perturbations in the black hole spacetime.
These functions represent deviations from the static and
spherically symmetric background metric, with g;; = h(r)
and g, = 1/h(r) serving as the zeroth-order terms in the
perturbative expansion. These zeroth-order terms correspond
to the unperturbed black hole metric, while the functions p;
encode the effects of the axial perturbations.

Through this approach, we systematically study the
impact of massless scalar and vector perturbations on the
black hole spacetime, providing a deeper understanding of
the behavior and characteristics of QNMs in this context. This
analysis is crucial for exploring the stability of black holes
and the nature of gravitational and electromagnetic waves in
curved spacetime, offering valuable insights into the funda-
mental properties of black hole physics.

3.1 Massless scalar perturbation

We begin by considering a massless scalar field ® in the
vicinity of a CSBH, governed by the equation & = 0,
which describes the motion of the scalar field assuming neg-
ligible backreaction. The corresponding Klein—Gordon equa-
tion in the CSBH spacetime takes the form

; |:"2\/ gttgr_rlcb,r]
”2\/ gttgr_rl

8t
r2sin6

N

(sin 9@)9),9 + Lze(q)),qw — (D) =0.

r2 sin
(14)

The angular structure of this equation suggests that the
appropriate basis functions for the polar orientation are the
associated Legendre polynomials P (cos#), which satisfy

the relation

1 d dP"(cos ) m?
—— — | sin@ — o}
sin@ do do sin? 6
= —I(l + 1)P/" (cos ). (15)

After separating the ¢-dependent part of the equation
using Bécb = —m>®, we express the scalar perturbation as
a multipole expansion:

1
O, r,0,¢) = ;sz:
QL+ 1) (I —m)!

4 (I +m)!

Uy (t,7)e™ P/ (cos 0), (16)

where [ and m represent the polar and azimuthal indices,
respectively [49,151]. The function (¢, r) is the radial
time-dependent wave function and the index “‘s” stands for
scalar.

Substituting this expansion into the Klein—-Gordon equa-
tion leads to the stationary Schrodinger-like equation for the
radial part:

Y (rs + Y (r)s = V(P (r)y. (17)

where r,. is the tortoise coordinate.
The term V (r) represents the effective potential, given by

Ia+1 1 d —1
Vi(r) = —y
s(r) = 18ul < ot e dr |81t 18rr

II+1 1d
:h(r)( s )+;d_rh(’)>' )

Here, [ corresponds to the multipole moment of the black
hole’s QNMs, and w represents the frequency of these modes,
which is determined from 8,2 Ye(t, ry) = —w? Vs (t, r4). The
wavefunction v (r4)s thus describes behaviour of the scalar
QNMs of the CSBH [49,149].

This formalism shows how scalar field perturbations
evolve in the spacetime around CSBHs, with the effective
potential and tortoise coordinate playing key roles in shap-
ing the dynamics of the QNMs. The diagonal and static nature
of the CSBH metric facilitates the straightforward definition
of the QNM frequencies, which are essential for understand-
ing the behavior of the scalar perturbations in these exotic
spacetimes.

Although in our investigation primarily focuses on mass-
less scalar perturbation, the scalar field can be massive also.
The master wave equation with the effective potentials used

@ Springer
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here follows the standard Regge-Wheeler/Zerilli and Chan-
drasekhar formulations. In such a scenario, the potential takes
the form [42,44,50-52,149,150,174]:

I(I+1 1d
( )Jr

Vim (r) = h(r) (r—2 —h() + uz) : (19)

where p is the mass of the scalar field. Usually, for mas-
sive scalar field the oscillation frequency of ring-down GWs
increases and the damping rate decreases. In this work, we
shall consider u = 0 i.e., a massless scalar field.

3.2 Massless vector or electromagnetic perturbation

Following the analysis of scalar perturbations, we now turn to
the study of massless vector perturbations, specifically focus-
ing on electromagnetic perturbations. The tetrad formalism
proves to be a useful approach in analyzing these perturba-
tions, as it allows the projection of the curved metric g,
onto the flat metric ;5 using the vierbein eﬁ . In this formal-
ism, the relationship between the curved and flat metrics is
given by g, = eﬁnﬂgeE, where the indices i, v, ... refer
to the curved spacetime, and i, v, . .. refer to the flat space-

time. The vierbeins satisfy several key relations e} el = %',
eﬁel‘ii = ¢, and ey = gwn’_“_’eg enabling us to express
a given vector S, and a tensor P, in terms of their flat-
spacetime counterparts.

The electromagnetic field strength tensor Fj;5 is governed
by the Jacobi identity o3 Fy5; = 0, leading to a set of con-
straints on the vector perturbations. Using these equations,
we derive a two-derivative motion equation for the vector

perturbations, expressed as

[Vousid e ), |

8tt~/8rr ( -7:,9

r sin 6

\r

+ ) sin@ —r/grr Fut =0, (20)
.0

where 7 = F;g sin 6. Unlike scalar perturbations, the angu-

lar part of this equation suggests that the appropriate basis

functions are the Gegenbauer polynomials P;(cosf| — 1),

which satisfy the differential equation

. d 1 dPi(cosf| —1)
sinf — | —
sin 0 do

) = —I(l—1)P;(cosO|—1).
@

The vector wavefunction F(¢,r,0,¢) can then be
expanded in terms of these polynomials as

dP;(cosO| — 1)

, 22
sin 0d0 @2)

Ft,r,0.0) =) WYem(t,r)
1

@ Springer

leading to the equation for the radial part of the vector per-
turbations:

[Veuss! (Er ven), |

1
@7 /8 Vem — 8B I+ 1) Yem =0. (23)

Here ., is the wave function associated with the electro-
magnetic perturbation. This equation mirrors the form of the
scalar perturbation equation, with the key difference being
the absence of a derivative term in the effective potential for
vector perturbations.

By defining the tortoise coordinate r, as in the scalar case,
the vector perturbations obey the stationary Schrodinger
equation

\r

8;«2* Yem (rs) + wzwem (rs) = Vem (r)Wem (), (24)

where the effective potential for electromagnetic perturba-
tions is

I1+1 I1+1
Ve () = g1t (; ) ) (:; ) (25)

This potential differs from that of scalar perturbations, as it
lacks the derivative term associated with the metric function
h(r).

While these vector perturbations can be identified with
the electromagnetic field, the broader symmergent gravity
framework predicts the existence of additional massless par-
ticles, which may not interact with known particles through
non-gravitational forces. These could include massless scalar
fields or massless (dark) photons, which could significantly
influence gravitational wave emissions. The presence of such
particles in the symmergent particle spectrum could lead to
observable deviations in the dynamics of gravitational waves
and other astrophysical phenomena [16,22,23].

3.3 Gravitational perturbations

In this subsection, we analyze axial gravitational perturba-
tions to derive a Schrodinger-like wave equation character-
ized by an effective potential V. This potential will be fun-
damental for computing the QNMs, as detailed in subsequent
part of the study. Axial perturbations, which are distinguished
by their transformation properties under parity, are particu-
larly important for studying the gravitational stability and
dynamics of compact astrophysical objects within general
relativity. Therefore, for the completeness of the study, apart
from scalar and electromagnetic perturbations, we are also
considering gravitational perturbation to calculate QNMs in
this study.

Notably, as shown in Ref. [148], for an anisotropic fluid
undergoing axial perturbations, the axial components of the
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perturbed energy—momentum tensor vanish. This crucial
simplification allows the use of the tetrad formalism, reduc-
ing the condition for perturbations to:

R(a)(b) =0, (26)

where R ) () denotes the Ricci tensor components expressed
in the tetrad frame.

Focusing explicitly on the 8¢ and r¢ components of this
equation, one obtains the following coupled equations, orig-
inally derived in Ref. [149]:

|:r2\/ |gie] &' (a6 — a3,r)]
N

=r? 18" grr (a1 —asy) ., (27)
|:r2 |g::l gfrl (as,r —azp) sin? 9]

r*sin3 6 ( ) (28)
= ———(a1, —a2s) -
18| &rr ' e

.0

Next, we simplify the above equations by employing the
method of separation of variables. We assume the perturba-
tion function can be decomposed as:

Fo(r,0) = Fo(r) Y(0), (29)

where the angular function Y (0) satisfies the modified dif-
ferential equation:

4 (sin30d—y> =—[ld+1)=2] (30)

do do sin® @
Here, [ is the angular momentum quantum number. The pres-
ence of the factor /(/4-1) —2 distinguishes axial perturbations
from the standard spherical harmonic equation, reflecting the
unique angular dependence of these modes.

By substituting this ansatz into Egs. (27) and (28),
and after appropriate algebraic manipulation, the system
simplifies into a radial equation resembling the familiar
Schrodinger form:

d* g

2 @Y = Vo) . (1)

where we introduced the radial wavefunction transformation
Yer = Fg, and 1, denotes the tortoise coordinate, defined
by:

dre = |27 ar. (32)

lgre]

The effective gravitational potential V,(r) appearing in
the Schrodinger-like equation is explicitly given by:

2 /1 10+ 1)
Ve(r) = 18ul [r_2 (g_ - 1) t—03

T _1” 33
e (Vi) | N

This formula explicitly illustrates how the background
metric, represented by g, and g,., directly influences the
gravitational perturbations. The resulting potential is crucial
to examining how compact astrophysical objects respond to
gravitational perturbations, enabling the detailed exploration
of quasinormal modes and their implications in the subse-
quent analysis.

3.4 Behaviour of the perturbation potentials

Here, we briefly explore the characteristics of the pertur-
bation potentials associated with the black hole under con-
sideration. The perturbation potential plays a crucial role in
determining the QNMs of the black hole, as the nature of
the potential directly influences the frequencies and damping
rates of these oscillatory modes. By analyzing the behavior
of the potential, we can gain a preliminary understanding of
the QNMs and their dependence on various parameters.

The first and second panels of Fig. 1 illustrate the scalar
potential for different values of the multipole moment / with
a = 0.9 and ¢ = 1.1. As expected, the peak value of the
potential increases with an increase in /. This trend is consis-
tent with the understanding that higher multipole moments
correspond to more complex angular dependencies in the per-
turbation, leading to a stronger potential barrier. The rise in
the potential peak with increasing / indicates that the black
hole is more resistant to perturbations with higher angular
momentum, which will likely resultin QNMs with higher fre-
quencies and shorter lifetimes. This is because the potential
barrier effectively traps the perturbation closer to the black
hole, leading to faster decay and higher oscillation frequen-
cies.

In the third panel of Fig. 1, we examine the variation of the
scalar potential with respect to the model parameter . The
potential curve rises significantly as « increases, indicating
that this parameter has a substantial impact on the behavior
of the potential. The parameter « likely represents a charac-
teristic of the modified gravity model or an additional field
interacting with the black hole spacetime. The increase in the
potential with o suggests that higher values of o make the
black hole more resistant to scalar perturbations, potentially
leading to higher QNM frequencies and faster damping rates.
This observation underscores the sensitivity of the QNMs to
the underlying model parameters, highlighting the impor-
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Fig. 1 Variation of the scalar potential V() of CSBH with the radial
distance r for different values of the multipole moment / with M = 1,
G=1a=09, 0 =04and co = 0.3 (first panel), with M = 1,

tance of understanding how these parameters influence the
perturbation dynamics.

Moving to Fig. 2, the first panel displays the variation of
the scalar potential concerning the parameter co. The poten-
tial curve shows a rapid increase for very small positive val-
ues of co, while for negative values close to zero, the poten-
tial decreases drastically. As co becomes more positive or
more negative, the potential tends to stabilize towards a cen-
tral value. This behavior indicates that co exerts a complex
influence on the potential, possibly related to the asymp-
totic behavior of the spacetime or the nature of the coupling
between the black hole and the scalar field. The rapid changes
in the potential for small values of c¢o suggest that even slight
variations in this parameter can significantly alter the QNMs,

@ Springer

G =1,a=1.1,0 =0.4and co = 0.3 (second panel) and for different
values of @ with/ =4, M =1, Q = 0.1 and co = 0.15 (third panel)

making it a critical factor in the stability analysis of the black
hole.

The second panel of Fig. 2 shows the variations of the
potential with respect to the charge Q of the black hole. The
black hole charge has a pronounced effect on the potential
behavior. As Q increases, the peak value of the potential rises
significantly, and the radius » corresponding to the maxi-
mum of the potential shifts closer to the event horizon. This
shift suggests that the presence of charge enhances the black
hole’s ability to trap perturbations near the horizon, leading
to higher QNM frequencies. The charge Q has a significant
impact on the structure of the potential. With an increase in
the value of the charge Q, both the height and width of the
potential increase and the peak of the potential shifts towards
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Fig. 2 Variation of the scalar potential Vi (r) of CSBH with the radial distance r with M = 1, G = 1, « = 0.90 and / = 4. On the left panel

Q = 0.7. On the right panel co = 0.2

the event horizon, which may result in a more complex QNM
spectrum.

We have also plotted similar curves for the electromag-
netic potential in Figs. 3 and 4, considering different values
of the model parameters and multipole moments. The qual-
itative behavior of the electromagnetic potential curves is
similar to that observed for the scalar potential. However, a
notable difference is that the potential values for the scalar
perturbation are generally higher than those for the elec-
tromagnetic perturbation. This difference suggests that the
scalar field experiences a stronger interaction with the black
hole spacetime, leading to higher potential barriers. Conse-
quently, we expect the QNM spectrum for scalar perturba-
tions to have higher frequencies and shorter lifetimes com-
pared to electromagnetic perturbations. The lower potential
values for the electromagnetic case imply that the QNMs
associated with electromagnetic perturbations might exhibit
lower frequencies and longer damping times, indicating a
more gradual decay of these modes.

In Figs. 5 and 6, we have shown the behaviour of the grav-
itational potential with respect to r for different values of the
model parameters. One may note that the variation of the
potential with respect to the model parameters is similar to
the cases of scalar perturbation and electromagnetic pertur-
bation. However, the peak value of the potential appears to
be lower in the case of gravitational perturbations.

The analysis of the perturbation potential provides valu-
able insights into the nature of the QNMs for scalar, electro-
magnetic and gravitational perturbations. The variations in
the potential with respect to parameters such as the multi-
pole moment /, the model parameter «, the coupling param-
eter co, and the black hole charge Q reveal how sensitive
the QNMs are to these factors. This understanding is crucial
for predicting the stability and dynamical response of black

holes to perturbations, particularly in the context of different
gravity models or in the presence of additional fields. One
may note that with Q = 0, one can easily obtain the cor-
responding potentials discussed in Ref. [35]. However, we
have noticed that the charge of the black hole i.e. Q has a
noticeable impact on the QNMs spectrum as predicted by the
variation of the corresponding potential. In the presence of
0, the peak value of the potential increases and the variation
is not similar to that of the Reissner—Nordstrom black hole.
Hence, the QNMs spectrum seems to be different from that
of a standard Reissner—Nordstrom black hole.

3.5 Time-domain profile and quasinormal modes

To begin, let us first examine the time-domain profile of the
scalar field before delving into the determination of QNMs.
In the preceding section, we undertook extensive numerical
computations to characterize the QNMs, thoroughly analyz-
ing how these modes depend on the model parameters Q, o,
and co. Our approach involved solving the perturbation equa-
tions in the frequency domain, which provided insights into
the oscillatory behavior and damping times of the QNMs.
However, frequency-domain analysis alone does not capture
the full temporal evolution of the perturbations. Thus, in the
subsequent section, our focus shifts towards understanding
the time-domain behavior of both scalar and electromagnetic
perturbations. This involves generating temporal profiles that
illustrate how these fields evolve with time after an initial
disturbance. To achieve this, we employ a time-domain inte-
gration framework based on the methodology proposed by
Gundlach et al. [160], which is well-suited for capturing the
full dynamical evolution of perturbations. By applying this
technique, we can observe the decay patterns and the late-
time behavior of the perturbations, offering a complemen-
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Fig. 3 Variation of electromagnetic potential V,,, (r) of CSBH with
the radial distance r for different values of the multipole moment / with
M=1,G=1,a =09, Q =0.35 and co = 0.4 (first panel), with

tary perspective to the frequency-domain analysis. This dual
approach not only helps in verifying the consistency of our
results but also provides a more comprehensive understand-
ing of the dynamical properties of the perturbations in the
given gravitational background.

Now, to proceed with the time domain investigation,
we at first define ¥ (ry, 1) = Y (iAry, jAt) = ¥;; and
V(r(ry)) = V(r«, t) = Vi j. Using this expression, we write

Yiv1,j — 2V + Yi-1,j
Ar%
Vi =29+ Vi
At?

—Vivi; =0. (34)
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0.7

M=1,G=1,a=1.1,0 =0.35and co = 0.4 (second panel) and
for different values of « with M = 1,1 =4, Q = 0.1 and co = 0.15

In this scheme, we use the inittial conditions v (ry, ) =
_ (rs — k1 )2
202
o are the median and width of the initial wave-packet in
the analysis scheme). By utilising these expressions, one can
obtain the time evolution of the scalar perturbation as shown
below:

and ¥ (r«, t)];<0 = O (note that k; and

At \?
Vij+1 = —Vij-1+ AT (Yit1,j

oot (2o (AUY S vias) v, 35
+wl—l,j)+ - (A}’*> — ViAt l/fz,]- ( )

One can obtain the required time domain profiles numer-
ically by using this iteration scheme along with a suitable
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Fig. 4 Variation of electromagnetic potential V,,, (r) of CSBH with the radial distance r with M = 1,/ = 4 and « = 0.90. On the left panel
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fixed value of the fraction AA—r’. Here a suitable value implies

that the ratio AA—r’* must be less than 1 in order to satisfy the
Von Neumann stability condition.

The time-domain profiles of scalar, electromagnetic and
gravitational perturbations provide important insights into
the dynamic behavior of these fields in black hole space-
times. The left panel of Fig. 7 presents the temporal profile
of scalar perturbations, while the second panel shows that of
electromagnetic perturbations and the third panel shows that
of gravitational perturbations. The chosen parameters include
an overtone number of n = 0, witha = 0.9, Q = 0.3, and
co = 0.4, while the multipole moment / is varied. Both pro-
files reveal that an increase in / leads to higher frequencies of
oscillations. However, the decay rates behave differently for
scalar, electromagnetic and gravitational perturbations. In the
case of scalar perturbations, the decay rate increases signif-
icantly as / grows, meaning that higher multipole moments
correspond to faster damping. In contrast, the decay rate for
electromagnetic perturbations as well as gravitational pertur-
bations seems to show only a slight variation with increasing
. Additionally, scalar perturbations tend to damp out faster
than the other two cases, implying that scalar fields are more
sensitive to perturbations and exhibit quicker stabilization in
the black hole environment.

Figure 8 further explores the time-domain profiles by vary-
ing the model parameter «, keeping the overtone number
n = 0, multipole moment/ = 1, Q = 0.3, and co = 0.4
fixed. Similar to the previous case, the decay rate for scalar
perturbations is consistently greater than that for electromag-
netic and gravitational perturbations. This suggests that o
exerts a more pronounced influence on the scalar field. As
the value of « increases, both the oscillation frequency and
decay rate are affected, but the damping of scalar pertur-
bations remains more rapid than that of electromagnetic and

gravitational perturbations. The scalar field tends to dissipate
faster, reflecting its stronger interaction with the black hole
geometry compared to electromagnetic fields. In the third
panel, we have shown the time domain profiles for gravita-
tional perturbation. One may note that for this case, we have
considered / = 2 which is the fundamental case.

Figure 9 examines the effects of the parameter co on the
time-domain profiles. Here, for small values of time ¢, all the
three perturbations exhibit very similar profiles, with min-
imal differences in their oscillation patterns. However, as
time progresses, variations in oscillation frequencies become
more noticeable, particularly for larger values of 7. Despite
these differences, the damping rates for both types of pertur-
bations appear relatively unaffected by changes in cg, sug-
gesting that this parameter influences the frequency of oscil-
lations more than the rate at which the perturbations decay.
For the range of cp values considered, the impact on damp-
ing seems marginal, indicating that co primarily affects the
oscillatory dynamics rather than the overall stability.

Finally, in Fig. 10, the time-domain profiles are plotted
with varying values of the charge parameter Q. The results
indicate that the black hole charge has a noticeable effect on
the oscillation frequency for all the three perturbations. As
Q increases, the oscillation frequencies increase, suggesting
that a more highly charged black hole causes perturbations to
oscillate more rapidly. The damping rate, however, increases
only slightly for both types of perturbations, implying that
while the charge of the black hole influences the oscillatory
behavior, it has a relatively minor impact on the overall rate
at which the perturbations decay. This finding highlights that
the black hole charge primarily affects the dynamic response
of the system without drastically altering its stability over
time.
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Fig. 5 Variation of gravitational potential V,(r) of CSBH with the
radial distance r for different values of the multipole moment / with
M=1,G=1a =09, 0 =0.35and co = 0.4 (first panel), with

The time-domain profiles of scalar, electromagnetic and
gravitational perturbations reveal key differences in how
these fields evolve over time in the presence of a black hole.
Scalar perturbations generally exhibit higher decay rates and
faster damping than electromagnetic and gravitational per-
turbations, making them more responsive to changes in the
black hole’s parameters, such as the multipole moment /, the
model parameter «, and the charge Q. These results provide
a deeper understanding of the dynamics of black hole pertur-
bations and the influence of various physical parameters on
the behavior of QNMs.
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0.7

M=1,G=1a=1.1,0 =0.35and co = 0.4 (second panel) and
for different values of « with M = 1,/ =4, Q = 0.1 and ¢co = 0.15
(third panel)

3.6 WKB method with Padé approximation for
quasinormal modes

In this study, we aim to estimate the QNMs of the black
holes by employing the Wentzel-Kramers-Brillouin (WKB)
method, a widely recognized approximation technique in
the field of black hole perturbation theory. Initially intro-
duced by Schutz and Will [156], the WKB method provides
a first-order approximation for calculating QNMs. However,
despite its utility, the method is known to exhibit certain lim-
itations, including a higher degree of error in some cases.
To address these limitations, researchers have developed
higher-order WKB approximations, significantly improving
the accuracy of QNM calculations [157-159]. Our work
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Fig. 8 The time-domain profiles of the massless scalar perturbations
(first panel), electromagnetic perturbations (second panel) and gravi-
tational perturbations (third panel) for different values of the model

utilizes the advancements suggested by Ref. [159], where
Padé approximations are incorporated into the WKB method,
yielding more precise results.

Building on these improvements, we apply the Padé-
averaged 6th-order WKB approximation technique to esti-
mate the QNMs of black holes. The incorporation of Padé
averaging has been shown to enhance the precision of QNM
estimates, as demonstrated in prior studies such as Ref. [158].
By using this refined approach, we seek to achieve more accu-
rate and reliable estimates of QNMs, which will be compared
with earlier results to validate our findings. This compar-
ative analysis is critical in evaluating the robustness of the
WKB method and advancing our understanding of black hole
dynamics.
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for gravitational perturbations / = 2

In this subsection, we present QNM values computed
using the Padé-averaged 6th-order WKB approximation,
along with error estimates in Tables 1, 2 and 3. The 3rd and
4th columns of these tables show the errors associated with
the WKB approximation, specifically the root mean square
(rms) error, denoted as A5, and the error term Ag, defined
as [158]

Ag = lm%ﬂ’ (36)

where w7 and ws represent the QNMs computed using the 7th
and Sth-order Padé-averaged WKB methods, respectively.
By analyzing these errors, we provide a detailed assessment
of the accuracy of our QNM estimates, further reinforcing
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Fig. 9 The time-domain profiles of the massless scalar perturbations
(first panel) and electromagnetic perturbations (right panel) for different
values of co with the parameter values M = 1,G =1,n =0, = 0.9

the reliability of the WKB method in black hole perturbation
analysis.

In Table 1, the QNMs for massless scalar perturbations
of a CSBH are presented, with the following model param-
eters: co = 0.3, Q0 = 05,0 =09,G = M =1, and
overtone number n = 0. The results are obtained using the
6th-order WKB approximation method, averaged with Padé
approximants. The table also shows two types of errors: the
root mean square (rms) error (A,,s) and the relative error
term Ag. It is observed that while the Padé-averaged WKB
method tends to have larger relative errors (Ag) for lower
values of the multipole moment /, the rms error (A ) is rel-
atively smaller. As the multipole moment / increases, both
error terms decrease significantly. This behavior is typical
of the WKB method, which becomes less accurate when the
difference between the multipole moment / and the overtone

100 150 200

t

and Q = 0.3. For scalar and electromagnetic perturbations, / = 1 and
for gravitational perturbations / = 2

number n is small. Additionally, the quasinormal frequencies
and damping rates increase as the value of / increases. In the
last column of this table, we have shown the QNMs obtained
from eikonal approximation. One may see that the results
obtained using the eikonal approximation deviates signifi-
cantly for small multipole moments. It is due to the larger
errors associated with the method. The Padé averaged 6th
order WKB approximation is more accurate than the eikonal
approximation, and as seen from the Table, errors associ-
ated with the higher order WKB method decrease with an
increase in the values of the multiple moment / [158]. Usu-
ally, the WKB method is not suitable for n > [ as such a sce-
nario results in higher errors. Apart from this, if the potential
has more than one peak, the WKB method can not provide
reliable results.
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200

and co = 0.4. For scalar and electromagnetic perturbations, / = 1 and

for gravitational perturbations / = 2

Table 1 The scalar QNMs of the CSBH forn =0, M = 1,G =1, = 0.9, Q = 0.5 and co = 0.3 using the 6th order WKB approximation
method averaged with Padé approximants

) Padé averaged WKB Arms Ag Eikonal

=1 0.27937 — 0.094328i 4.74121 x 1076 0.0000176752 0.313058 — 0.0924115i
=2 0.464267 — 0.0924163i 6.44457 x 1077 2.44832 x 107° 0.485099 — 0.0916926 i
[=3 0.649716 — 0.0918554i 5.0719 x 1078 4.46484 x 1077 0.664713 — 0.0914789 i
=4 0.835258 — 0.0916204i 8.56836 x 10~° 1.14886 x 1077 0.846959 — 0.0913906 i
=5 1.02083 — 0.0915005: 2.25924 x 107° 4.54218 x 1078 1.03042 — 0.0913459

Table 2 presents the QNMs for electromagnetic perturba-
tions under the same model parameters and method used in
Table 1. Similar to the case of scalar perturbations, the errors
are larger for lower multipole moments /, but as / increases,
both the rms and relative errors decrease. This indicates that
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the accuracy of the WKB approximation improves with larger
multipole moments, consistent with the results observed in
scalar perturbations.

In Table 3, we have shown the QNMs for the gravitational
perturbation. In this case, one may note that the oscillation
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Table 2 The electromagnetic QNMs of the CSBH forn = 0, M = 1,G = 1, = 0.9, Q = 0.5 and co = 0.3 using the 6th order WKB

approximation method averaged with Padé approximants

1 Padé averaged WKB ANrms Ag Eikonal

=1 0.24098 — 0.0880597i 3.87696 x 107° 0.0000234139 0.276403 — 0.0866553 i
=2 0.442189 — 0.090206i 1.83268 x 1077 2.32131 x 1076 0.463342 — 0.0895359 i
=3 0.634127 — 0.0907312i 2.44681 x 1078 4.26197 x 1077 0.649234 — 0.0903676 i
=4 0.82319 — 0.090941i 5.37897 x 107° 1.09616 x 1077 0.834941 — 0.0907157 i
=5 1.01098 — 0.0910459i 1.60587 x 10~° 4.17134 x 1078 1.02059 — 0.0908933 i

Table 3 The gravitational QNMs of the CSBH forn =0, M =1,G = 1, = 0.9, Q = 0.5 and co = 0.3 using the 6th order WKB approximation

method averaged with Padé approximants

l Padé averaged WKB Arms Ag Eikonal

1=2 0.360726 — 0.0851828i 8.72691 x 10~7 0.0000263476 0.383891 — 0.084425 i
=3 0.578576 — 0.0883191i 1.02995 x 10~10 8.73876 x 1078 0.594274 — 0.0879164 i
=4 0.780778 — 0.0895376i 434691 x 107 3.10375 x 10~8 0.792796 — 0.0892975 i
=5 0.976597 — 0.0901268i 1.49305 x 1072 1.19004 x 1078 0.986356 — 0.0899675 i

frequency of GWs is comparatively lower in comparison to
those found for the cases of scalar and electromagnetic per-
turbations. The damping or decay rate is also less than that
of scalar as well as electromagnetic perturbations.

When comparing the results from these tables, it is clear
that the quasinormal frequencies and damping rates for scalar
perturbations are the highest and for gravitational perturba-
tions, the lowest for these three types. This difference high-
lights the impact of the type of perturbation on the black
hole’s quasinormal modes, where gravitational and electro-
magnetic perturbations generally produce lower frequency
oscillations and slower decay rates compared to massless
scalar perturbations. As anticipated, the eikonal estimate
deviates noticeably from Padé—~WKB at low / (cf. Tables 1,
2, 3), with the discrepancy decreasing monotonically with /
and becoming sub-percent for [ > 4.

To explore the effects of the model parameters on the
QNM spectrum, we have explicitly plotted the real and imag-
inary components of the QNMs with respect to these param-
eters. For this purpose, we employed the Padé-averaged 6th-
order WKB approximation method, choosing a higher value
of the multipole moment /. The rationale for selecting a larger
value of / is that the WKB method’s associated error dimin-
ishes significantly at higher values of /. In Fig. 11, the varia-
tion of real (left) and imaginary (right) QNMs with respect to
the model parameter « is shown for scalar perturbations. As
« increases, the real QNMs, which correspond to the oscil-
lation frequencies, exhibit a significant increase, following
an almost linear pattern. It’s important to note that « < 1
implies a de Sitter (dS) spacetime, meaning that de Sitter
black holes have lower oscillation frequencies compared to
anti-de Sitter (AdS) or asymptotically flat black holes. The

damping rate or decay rate of GWs also increases linearly
with «. The same behavior is observed in Fig. 12 for electro-
magnetic perturbations and in Fig. 13 for gravitational pertur-
bations. However, in the case of gravitational perturbations,
both oscillation frequencies and damping rate are found to
be lower than electromagnetic and scalar perturbations.

In Fig. 14, the variation of the ringdown GW frequency
and damping rate with respect to the parameter cg is depicted
for scalar perturbations. For positive values of cg, both
real quasinormal frequencies and damping rates increase
non-linearly, with the variation being more pronounced for
smaller values of cg. As co approaches 0.4, the variation in
both real and imaginary QNMs becomes negligible. In con-
trast, for negative values of cg, both the oscillation frequency
and damping rate increase non-linearly, reaching a maximum
near co = 0. Notably, a discontinuity in the QNM spectrum
is observed at co = 0. Figures 15 and 16 present similar
results for electromagnetic and gravitational perturbations,
showing comparable behavior across the parameter space.

The charge parameter Q has a significant and nonlinear
impact on the QNM spectrum of black holes. As shown in
Figs. 17, 18 and 19, both the oscillation frequency (real part
of QNMs) and the damping rate (imaginary part of QNMs)
increase as Q increases. This behavior holds true for all the
three perturbations i.e., scalar, electromagnetic and gravita-
tional perturbations, although the precise values of the fre-
quencies and decay rates differ depending on the type of
perturbation. In the case of electromagnetic perturbations,
the oscillation frequencies and damping rates are generally
lower than those observed for scalar perturbations. In the
case of gravitational perturbations, the oscillation frequen-
cies and damping rates are found to be the lowest. The non-
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Fig. 12 The real (left panel) and imaginary (right panel) parts of the QNMs of the CSBH for electromagnetic perturbations as a function of the
vacuum energy parameter « with M = 1,G =1,n =0,/ =4 and co = 0.4

linear nature of the relationship between Q and the QNMs
suggests that even small changes in the charge parameter can
have a pronounced effect on the behavior of the black hole.

Physically, the increase in oscillation frequency with
higher Q can be understood in the context of the black hole’s
enhanced electric field. As the black hole’s charge increases,
the strength of its electromagnetic field grows, which leads
to more tightly bound perturbations. This results in higher
frequency oscillations for perturbing fields around the black
hole. Furthermore, the increase in the damping rate with Q
indicates that the perturbations decay more rapidly, mean-
ing that the charged black hole tends to settle down faster
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after being perturbed. The faster decay is likely due to the
increased energy stored in the electromagnetic field, which
enhances the dissipation of perturbing waves.

The physical significance of these findings is particularly
relevant in the context of astrophysical black holes that may
possess charge. Although most observed black holes are
expected to have negligible charge due to charge-neutralizing
effects in astrophysical environments, highly charged black
holes are theoretically possible in certain exotic scenarios.
For example, primordial black holes formed in the early uni-
verse could retain some charge if they formed in environ-
ments where neutralizing particles were absent. Understand-
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symmergent parameter co withM = 1,G =1,n =0,/ =4, Q0 =0.55and ¢« = 0.9

ing the impact of charge on the QNM spectrum is therefore
important for detecting or constraining the properties of such
exotic black holes through gravitational wave observations.

These results highlight that the CSBH model exhibits
behavior distinct from other well-known charged black hole
solutions, such as the Reissner—Nordstrom black hole. In
addition, the impact of the symmergent parameters on the
QNM spectrum is distinct from that of the black hole’s
charge, further emphasizing the uniqueness of this model.
The study of QNMs in charged black holes, and their depen-
dence on parameters such as Q, continues to be an important
area of research for both theoretical and observational astro-

physics [53,95,98,99,104-109]. Gravitational-wave obser-
vations have been used to constrain the possible electric
charge of black hole remnants. Analyses of LIGO/Virgo
events found no evidence for nonzero charge, but placed loose
bounds on the charge-to-mass ratio, Q/M < 0.3-0.5 [110].
Numerical relativity simulations further showed that the
inspiral phase is more sensitive to charge than the ringdown,
with GW 150914 data still compatible with moderate charges
[111]. Even tiny charges, at the level of Q/M ~ 10~*, could
in principle power electromagnetic counterparts to mergers
[112], although no such signals have been confirmed. Exten-
sions to Kerr—Newman black holes demonstrate that charge
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primarily perturbs QNM frequencies in a perturbative way
[113,114]. Future detectors such as LISA may allow high-
precision spectroscopy to either detect or place tighter bounds
on charge.

These findings also differ from results obtained for worm-
hole configurations, as studied in [128,129], demonstrating
that the symmergent model’s predictions for QNMs are dis-
tinct even when compared to other exotic spacetime geome-
tries. This underscores the importance of QNMs as a tool for
probing the underlying nature of black holes and the influ-
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ence of additional parameters such as charge and symmergent
contributions on their dynamical properties.

3.7 Validity of Hod’s conjecture

In the study of black hole physics, a key question concerns
how fundamental properties such as mass, charge, and angu-
lar momentum are reflected in a black hole’s quasinormal
modes. In the previous part of our investigation, we have
investigated how the model parameters associated with the
black hole spacetime impacts the QNMs spectrum. Now, in
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this subsection, we investigate the validity of Hod’s conjec-
ture for the black hole spacetime. In a seminal work, Ref.
[130], Hod proposed a universal constraint on the quasinor-
mal mode spectrum of any black hole. Specifically, he con-
jectured that there always exists a frequency o in the spec-
trum such that the imaginary part of w satisfies the following
bound:

S () =7Th, (37)
where Ty denotes the Hawking temperature of the black hole.

For any static, spherically symmetric black hole the Hawking
temperature is related directly to the surface gravity «p at

the event horizon r; via Ty = 5%, Ky = %h/(r)|

r=ry’
[137,169]. Using our metric function 4 (r), we obtain !
1 |26M 2 1—
R e 1l (38)
4 Ty o r, 127 GCO

which reduces to the standard limits: (i) Schwarzschild Ty =
1/(@mry) for Q— 0and (1—«)/co — Owithr, = 2G M; (ii)
Reissner—Nordstrom with the identification Q2 = 0%/Qua)
and vanishing cosmological term. With M expressed through
the horizon condition f(r,) = 0, the Hawking temperature
reads
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a—1 (39)
87Gco -

1|1 0?

Ty = e |:rh Zari +
This expression provides a precise relation between the black
hole’s geometry and its thermodynamic properties. Remark-
ably, Hod’s conjecture is highly general, applying not only to
four-dimensional black holes but also to higher-dimensional
cases and asymptotically AdS black holes [103,131-133].
Hod’s conjecture, as encapsulated in Eq. (37), imposes a
significant constraint on the damping rates of quasinormal
modes, with the Hawking temperature serving as the critical
factor determining the upper bound on the imaginary part of
the frequency. This universal bound has profound implica-
tions for understanding the stability and oscillatory behaviour
of black holes across diverse geometries. Extensive studies
have tested the validity of Hod’s conjecture across a vari-
ety of black hole configurations [134—136]. These investi-
gations have consistently confirmed the conjecture’s robust-
ness, establishing it as a cornerstone in the analysis of quasi-
normal modes and black hole physics.

Here we have graphically visualised the validity of Hod’s
conjecture in Fig. 20. We see that the Hod’s conjecture is valid
for the black hole in most of the parameter spaces except for
very small values of the parameter co. When cp becomes
very small, |wy| increases drastically, violating Hod’s con-
jecture. When cq is very small, the effective cosmological
term Aerf = (1 — )/ (8w Gep) becomes large in magni-
tude, pushing the geometry towards (near-)Nariai configu-
rations with closely spaced horizons. In this near-extremal
regime Ty — 0 while the Padé—~WKB estimate of |Jw| is
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known to be less reliable due to the broad, flattened barrier
and multiple turning points. Time-domain integrations (and
higher-order WKB where convergent) confirm that within
the horizon-existence window the Hod bound remains satis-
fied; the apparent “violations” occur for parameter choices
arbitrarily close to the extremal limit where the semi-analytic
approximation overestimates damping.

4 Greybody factors

The concept of greybody factors originates from Hawking’s
groundbreaking discovery in 1975, which demonstrated that
black holes are not completely black but emit radiation, now
known as Hawking radiation [137]. This emission occurs
near the black hole’s horizon, but the radiation that reaches
a distant observer is altered by a redshift factor, resulting in
a modification of its spectrum. This distortion is known as
the greybody factor, and it reflects the difference between
the initial Hawking radiation and what an observer at infin-
ity detects [138, 139]. Various methods have been developed
to calculate greybody factors, including significant contribu-
tions by Maldacena et al. [140], Fernando [141], and others
[93,95,96,116,128,142-147].

4.1 Using the WKB approach

In subsection, we utilize the higher-order WKB approxima-
tion method to calculate greybody factors for all the three
types of perturbations. This method is especially suited to
calculating the reflection and transmission coefficients asso-
ciated with wave scattering near a black hole. Specifically,
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Fig. 20 Graphical visualisation of the validity of Hod’s conjecture

we explore the wave equation under boundary conditions that
allow for incoming waves from infinity, a scenario analo-
gous to scattering waves from the black hole’s horizon. This
allows us to determine how much of the incident wave is
reflected back versus transmitted across the potential barrier.
The transmission coefficient, in this context, is defined as the
greybody factor.

The boundary conditions governing the scattering process
are expressed as:

v = e—iwr* + Reiwr*

as ry — 400, W=Te '+

as ry —> —00, (40)

where R and T represent the reflection and transmission coef-
ficients, respectively. These coefficients satisfy the conserva-

tion relation | T’ |2 +|R |2 = 1, implying that the reflection and
transmission probabilities must sum to one. The transmission
coefficient | T |2, also known as the greybody factor A, quanti-
fies the fraction of radiation that escapes the potential barrier
and reaches an observer at infinity:

A2 =1—|R? =T (41)

The WKB approximation provides a means to calculate
the reflection coefficient R through the following expression:

_1
R= (1 +e_2i”K) . (42)
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where the phase factor K is determined by the following
equation:

P it (Y ZA(K)—O (43)

‘/_2‘/6/ =2

which involves the maximum value of the effective potential
Vo, its second derivative V(;/ , and higher-order corrections A;,
extending up to the 6th order [156—159]. The WKB method,
while effective, is less accurate at low frequencies where
reflection tends to be total, causing the greybody factors to
approach zero. Nevertheless, this does not substantially affect
the calculation of energy emission rates.

Given the robustness and broad applicability of the WKB
method in various contexts, including the study of black
hole perturbations and greybody factors, a detailed review
is beyond the scope of this paper. For more in-depth dis-
cussions, we refer readers to comprehensive reviews in the
literature [51,161].

The figures presented in Figs. 21,22, 23, 24 and 25 provide
a detailed analysis of the behavior of the greybody factors for
massless scalar, electromagnetic and gravitational perturba-
tions under varying model parameters. Each figure highlights
how different parameters influence the absorption probabil-
ities, offering valuable insights into black hole dynamics in
the context of symmergent gravity.

In Fig. 21, we observe the variation of greybody factors
|Ag |2 for scalar perturbations (first panel), |A, |2 for electro-
magnetic perturbations (second panel) and |A, |? for gravita-
tional perturbations (third panel) as the multipole moment /
changes. As the multipole moment increases, the peak of the
greybody factors shifts to higher frequencies (), indicating
that higher-energy modes are more strongly excited at larger
[ values. Interestingly, gravitational perturbations reach their
maximum absorption at slightly lower frequencies compared
to scalar and electromagnetic perturbations. This suggests
that gravitational waves interact more efficiently at lower fre-
quencies, leading to earlier peaks in absorption than scalar
and electromagnetic waves for the same multipole moments.

In Fig. 22, the effects of the model parameter « on the
greybody factors are examined. The greybody factors for all
the three perturbations exhibit a noticeable decrease as «
increases. This implies that black holes with smaller « val-
ues have higher absorption and scattering probabilities, effec-
tively capturing more incoming radiation or particles. As «
increases, the greybody factors drop, indicating that black
holes become less interactive with the surrounding radiation
and allow more of it to escape. The sensitivity of the greybody
factors to « underscores the significance of this parameter in
controlling the interaction between black holes and external
perturbations.

@ Springer

A similar pattern emerges in Fig. 23, which explores the
impact of the model parameter co on the greybody factors.
All the three perturbations display higher greybody factors
for smaller values of ¢, with a clear decrease as co increases.
This suggests that black holes with lower values of cg are
more effective at absorbing radiation, while higher values of
co reduce this efficiency. The sensitivity of the greybody fac-
tors to co diminishes at higher values, indicating that changes
in co have less impact on black hole absorption in this regime.

Finally, Fig. 25 illustrates the influence of the charge
parameter Q on the greybody factors. As the charge Q
increases, the greybody factors gradually decrease for all
the three types of perturbations. This implies that charged
black holes are less efficient at absorbing radiation com-
pared to their neutral counterparts. The decrease in absorp-
tion with increasing charge suggests that the presence of
charge reduces the interaction between the black hole and
incoming waves or particles, leading to lower absorption
probabilities.

In summary, these figures reveal that the parameters /,
o, co, and Q significantly influence the greybody factors
for scalar, electromagnetic and gravitational perturbations.
Smaller values of «, co, and Q correspond to higher absorp-
tion probabilities, while higher values lead to decreased inter-
action with incoming radiation. Additionally, gravitational
and electromagnetic perturbations tend to reach their max-
imum absorption at lower frequencies compared to scalar
perturbations. These findings enhance our understanding of
the intricate dynamics between black holes and external per-
turbations within the framework of symmergent gravity.

4.2 Rigorous bounds on greybody factors

In this part of our investigation, we consider rigorous bounds
on greybody factors by utilizing a different method. Since
this portion of the analysis reveals similar behavior between
scalar, electromagnetic and gravitational perturbations in
terms of greybody factors, we focus on scalar perturbations
only for the remainder of the study.

The method we employ is based on the elegant analyt-
ical approach originally introduced by Visser (1998) [162],
which was subsequently developed further by Boonserm and
Visser (2008) [163]. This technique has been widely applied
in various contexts, as explored by numerous researchers,
including Boonserm et al. (2017, 2019) [164,172], Yang et
al. (2022) [170], Gray et al. (2015) [165], Ngampitipan et al.
(2012) [166], and others [167,168,170,171]. These studies
have demonstrated the robustness of this approach in deter-
mining greybody factor bounds across different gravitational
systems.
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Fig. 21 The greybody factors for massless scalar (first panel), electromagnetic (second panel) and gravitational (third panel) perturbations for
different values of the multipole moment / with the parameter values M = 1,G =1, = 0.9, Q = 0.3 and co = 0.4

For our analysis, we concentrate specifically on deriving
the bounds for the greybody factors of CSBHs. We begin by
analyzing the Klein—Gordon equation for the massless scalar
field, as discussed in the previous sections, and then reduce
the effective potential to the form:

[+ Dh(r) n h(r)h’(r),

V) == ;

(44)

where £ (r) represents the metric function and / is the multi-
pole moment. This potential governs the dynamics of scalar
field perturbations in the black hole background.

Using this effective potential, we proceed to derive the
rigorous lower bound for the greybody factors, following the
methodology laid out by Visser (1998) [162] and Boonserm
and Visser (2008) [163]. The bound for the transmission coef-
ficient, denoted as T, is given by:

oo
T, > sech? i/ % Ar. , (45)
- 20 J_so h(r)

where w is the frequency of the perturbation. Here, T} repre-
sents the transmission coefficient, which corresponds to the
greybody factor.

To account for the presence of the cosmological con-
stant and the symmergent gravity parameters, we modify the
boundary conditions in accordance with the work by Boon-
serm et al. (2019) [172]. The modified bound is expressed
as:

1 [Re |y A
A > Tj, = sech® (—/ udr) = sech? (—1) ,
2w J,,  h(r) 2w

(46)
where the integral term A; is defined as:
Ra v R ltg+1)
A :/ udr :/ ( —g ) —|dr. (47)
ry B(r) . r r
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In these equations, ryg and Ry denote the event and cos-
mological horizon radii of the black hole, and the effective
potential V (r) is integrated between these radii.

We have successfully computed the rigorous bounds
on greybody factors for CSBHs. The formula obtained is
expressed as:

the role of symmergent gravity in shaping the interaction
between black holes and perturbations.

We compute the transmission coefficient | A; (w)|> = 1—|R|?
using the 6th-order Padé—WKB approach [156—159]. Since
the method depends only on the peak Vj and its derivatives

24w7rotcoGrl31 R;{

T, — sech? <(RH —ru) (4mcoG (3arg Ry (GM (rg + Ru) + 1L+ DrgRy) — Q°Cy) + (o — 1)ar,3,R;,)) us)

where C1 = (rHRH + r%, + R%,) and the parameters co, «,
and Q represent the quadratic curvature coupling parameter,
the vacuum energy parameter, and the charge of the black
hole, respectively.

This expression provides a rigorous lower bound on the
greybody factors as a function of various parameters. Our
findings demonstrate that the greybody factor bound is sen-
sitive to both the black hole charge and the parameters gov-
erning the symmergent gravity model. These results will con-
tribute to a deeper understanding of black hole radiation and
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at the turning point, setting Q — 0 and (1 — «)/co — 0
maps Vy — (1 — 2GM/r)[l(lrL2l) + ZGM], and our |A;|?

73
reduces exactly to the Schwarzschild result (same peak data),
as expected.

By performing numerical calculations, we can evaluate
the bound and visualize it in Fig. 25 for the case of different /
values (on the left panel) and different « values (on the right
panel), and in Fig. 26 for the case of different co values (on
the left panel) and different Q values (on the right panel).
The resulting graphs indicate that with an increase in the




Eur. Phys. J. C (2025) 85:1243

Page 27 of 34 1243

A 2
|4l — ¢ =0.1

— ¢p=0.2
— ¢y =0.3 1
cp=04 ]

0.7 0.8

1.0
0.8 b
0.6 §
A 2
4] i — ¢ =0.1
0.4 L — cp=0.2 ]
L — ¢ =0.3 |
0.2 o = 0.4 ]
0.0t R
0.7 0.8
w
|Ag|

— ¢ =0.1
— 9 =0.2
— ¢ =03

cy =04

Fig. 23 The greybody factors for massless scalar (first panel), electromagnetic (second panel) and gravitational (third panel) perturbations for
different values of the symmergent parameter co with the parameter values M = 1,G =1, =09, 0 =03 and/ =2

model parameter «, greybody bounds decrease significantly.
The impacts of parameter / on the greybody bounds are
more significant in comparison to the greybody factors dis-
cussed in the previous subsection. Again, as the parameter co
increases, the bound on the greybody factor decreases. This
observation suggests that CSBHs exhibit stronger barrier
properties and possess lower greybody bounds compared to
Schwarzschild black holes. The model parameter Q also has
a similar impact on the greybody bounds. Overall, the influ-
ence of the model parameters for CSBHs on the greybody
bounds almost mirrors the effects observed in the case of
greybody factors discussed in the previous subsection. Given
that greybody factors exhibit similar behavior for both types
of perturbations, in this subsection, we have focused solely
on scalar perturbations to investigate the greybody bounds.

5 Concluding remarks

In this paper, we have studied charged black hole solutions
in the Symmergent gravity [27] by investigating the QNMs

and greybody factors of the CSBHs, focusing on scalar, elec-
tromagnetic and gravitational perturbations. This work is an
extension of our previous work [35]. Here, we have analysed
the QNMs and greybody factors in the presence of charge Q.
Our analyses reveal that the symmergent parameters o, and
the quadratic curvature coupling parameter co have signifi-
cant impacts on the QNMs and greybody factors as well as
the black hole charge Q and the multipole moment /.

Key insights from our results include:

e Higher multipole moments / lead to stronger potential
barriers, higher QNM frequencies, and faster damping
rates, with black holes becoming more resistant to per-
turbations.

e The symmergent parameter o shows a linear increase in
both the QNM frequency and damping rate. This sug-
gests that the parameter governs the black hole’s ability
to trap and damp perturbations, particularly in scalar per-
turbations.

e The coupling parameter co also plays a critical role,
exhibiting a complex influence on the QNM spectrum
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Fig. 26 The greybody bound 7}, as a function of the frequency

and the greybody factors. At small values, rapid changes
occur in both oscillation frequency and damping rates,
but these effects stabilize as co increases.

e The black hole charge Q increases the potential bar-
rier, resulting in higher frequencies for QNMs, while
marginally affecting the damping rate.

The greybody factors of CSBHs were found to differ sub-
stantially from those of Schwarzschild black holes. Particu-
larly, the model parameters « and co play a central role in
determining the black hole’s absorption and scattering prop-
erties. We observed that smaller values of these parameters
correspond to higher greybody factors, indicating stronger
interactions between the black hole and incoming matter or
waves.

Our analysis shows that small positive values of co result
in smaller real QNM frequencies, while small negative values
lead to larger frequencies. For asymptotically large positive
or negative values of co, the QNMs approach constant values
similar to those in a Schwarzschild black hole. The parameter
o has a near-linear effect on both the real and imaginary
components of the QNMs, with larger values of « leading to
higher frequencies and faster decay rates. Additionally, we
observe that the presence of charge Q significantly impacts
the QNMs by raising both the frequency and damping rate
as Q increases.

Our investigation into scalar, vector and gravitational
perturbations shows that scalar perturbations consistently
exhibit higher frequencies and shorter lifetimes compared
to electromagnetic and gravitational perturbations, a reflec-
tion of the stronger interaction between the scalar field and
the black hole. The time-domain profiles further highlight
that scalar perturbations decay more rapidly, with notable
sensitivity to variations in cg, «, and Q.

a=0.9, cy=0.4, I=1

Regarding the greybody factors, our study indicates that
both & and cp have measurable effects on the absorption and
scattering behavior of the black hole. We find that smaller
values of « increase the greybody factors, suggesting that
black holes with reduced o are more effective in absorbing
and scattering incoming radiation.

Furthermore, our investigation into the validity of Hod’s
conjecture offers an additional conceptual perspective on
the dynamical stability of these black holes. The conjecture,
which relates the damping rate of quasinormal modes to the
Hawking temperature, was found to hold robustly across a
wide region of the parameter space, thereby reinforcing the
consistency of the symmergent black hole solutions with uni-
versal stability bounds. However, for very small values of
the coupling parameter ¢y, we observed notable deviations
in which the imaginary part of the frequency can exceed
the conjectured limit. This behavior highlights the critical
role of cq in shaping the black hole’s oscillatory properties
and suggests a possible observational signature: violations of
the conjectured damping bound could manifest as unusually
short-lived ringdown signals in gravitational wave data.

Taken together, the combined analysis of QNMs, grey-
body factors, and the validity of Hod’s conjecture not only
strengthens the conceptual foundations of our study but also
identifies concrete phenomenological features that may be
probed in forthcoming observations. The distinct imprints
of the parameters «, cp, and Q on quasinormal spectra and
absorption properties provide potential observational targets
for future gravitational wave detectors such as LISA and for
black hole shadow measurements by the Event Horizon Tele-
scope. With the increasing precision of these facilities, it may
soon be possible to place meaningful constraints on symmer-
gent gravity, thereby testing the consistency and viability of
the theory. In this sense, our present work establishes a the-
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oretical framework that connects the dynamics of charged
black holes in symmergent gravity with measurable astro-
physical phenomena, offering new opportunities to refine our
understanding of black hole physics.
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