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Abstract

Motivation: Protein language models (pLMs) have emerged as powerful tools for capturing the intricate information encoded in protein sequen-
ces, facilitating various downstream protein prediction tasks. With numerous pLMs available, there is a critical need for diverse benchmarks to
systematically evaluate their performance across biologically relevant tasks. Here, we introduce DARKIN, a zero-shot classification benchmark
designed to assign phosphosites to understudied kinases, termed dark kinases. Kinases, which catalyze phosphorylation, are central to cellular
signaling pathways. While phosphoproteomics enables the large-scale identification of phosphosites, determining the cognate kinase responsi-
ble for the phosphorylation event remains an experimental challenge.

Results: In DARKIN, we prepared training, validation, and test folds that respect the zero-shot nature of this classification problem, incorporating
stratification based on kinase groups and sequence similarity. We evaluated multiple pLMs using two zero-shot classifiers: a novel, training-free
k-NN-based method, and a bilinear classifier. Our findings indicate that ESM, ProtT5-XL, and SaProt exhibit superior performance on this task.
DARKIN provides a challenging benchmark for assessing pLM efficacy and fosters deeper exploration of under-characterized (dark) kinases by
offering a biologically relevant test bed.

Availability and implementation: The DARKIN benchmark data and the scripts for generating additional splits are publicly available at: https://

github.com/tastanlab/darkin

1 Introduction

Building on the success of large language models in natural
language processing (Yupeng et al. 2024), protein language
models (pLMs) have been developed to capture the complex
information embedded within protein sequences (Rao et al.
2019, Elnaggar et al. 2021, Lin et al. 2023, Meier et al. 2021,
Lin et al. 2022, Brandes et al. 2022, Ferruz et al. 2022, Geffen
et al. 2022, Elnaggar et al. 2023, Su et al. 2024, ESM Team,
2024, Fournier et al. 2024, Zhang et al. 2025, Yupeng Wang
et al. 2024, Ouyang-Zhang et al. 2024, Hayes et al. 2025,
Peng et al. 2025). By generating semantic representations of
proteins, pLMs enable a broad range of sequence-based pre-
diction tasks. However, as more pLMs become available, sys-
tematically benchmarking their performance is essential to
determine their reliability and applicability in diverse biologi-
cal contexts. Previous work has compared the pLMs in their
ability to predict proteins’ functional properties (Unsal et al.
2022, Schmirler et al. 2024, Zhang et al. 2025) and functional
motifs (Savojardo et al. 2023). In this work, we provide a
novel biologically relevant zero-shot prediction benchmark for
phosphosite—dark kinase associations and compare the pLMs
in terms of their ability to capture intrinsic sequence properties
within this challenging task.

Phosphorylation events are key regulators of protein func-
tion in signal transduction pathways, and their dysfunction is
associated with many diseases (Gaestel et al. 2009, Miiller
etal. 2015, Wu et al. 2023). Kinases are the enzymes that cat-
alyze the phosphorylation of other proteins in a target-
specific manner (Hunter 1995). For this reason, kinases are
major drug targets in diseases such as cancer, infectious dis-
eases, and neurological disorders (Blume-Jensen and Hunter
2001, Cohen et al. 2021). Phosphorylation involves transfer-
ring a phosphate from adenosine 5’-triphosphate (ATP) to
amino acid residues (Cohen 2002). These phosphorylated
residues, referred to as phosphosites, are integral to modulat-
ing the protein’s structure and function.

Although high-throughput phosphoproteomics enables the
identification of phosphosites at the proteome level, experi-
mentally determining the kinase responsible for a phosphory-
lation event remains a major challenge. Notably, more than
95% of reported human phosphosites have no known
cognate kinase (Needham ef al. 2019), and 25% of the
kinases are yet to be assigned to a phosphorylation event;
for about 35% of the kinases, there are 1-10 phosphosites
have been identified (Fig. 1, available as supplementary
data at Bioinformatics online). Consequently, most of the
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phosphoproteome and the kinome are in the dark (Needham
et al. 2019, Deznabi et al. 2020, Vella et al. 2022).
Associating “orphan” phosphosites to their respective kinases
is an important task that would help understand the biologi-
cal function of these phosphorylation events and discover
new drug targets (Needham et al. 2019, Deznabi et al. 2020,
Berginski ef al. 2021). In this work, given a phosphosite,
we aim to predict the dark kinase associated with this
phosphosite.

The contributions of this work can be summarized as fol-
lows: (i) We present a reproducible benchmark dataset for
predicting dark kinase—phosphosite associations. The task is
formulated as given a phosphosite, predict the associated
dark kinase of that site. (ii)We propose a strategy to split the
dataset into train, validation, and test splits for this zero-shot
multi-class prediction task, with stratification based on
kinase groups, the number of phosphosites per kinase, and
kinase sequence similarity. (iii) We present a novel, training-
free, k-NN-based zero-shot classification method for assess-
ing the performance of pLMs under the task of predicting the
dark kinase of a given phosphosite. (iv) We evaluate and
compare various pLMs using two distinct zero-shot classifi-
cation approaches.

2 Materials and methods
2.1 Problem description

Let X denote the space of phosphosite sequences and Y de-
note the set of all human kinases. The task of kinase-phos-
phosite association prediction involves identifying the kinase
y € Y most likely to catalyze the phosphorylation of a given
phosphosite sequence x € X. Since a phosphosite can be
phosphorylated by multiple kinases, we frame the problem as
a multilabel classification task. We denote the training kin-
ases as YV, C Y and the test kinases as );, C V. The set Y,
comprises the zero-shot classes, and the training and test ki-
nase sets are disjoint. The training data, D;, = (x;,y;),i =1,
..., Ny, consists of pairings of train kinases with their associ-
ated phosphosites, where y; € V,,. Similarly, the test data con-
tains phosphosite pairings of the test kinases ).

2.2 Dataset curation and processing

The DARKIN dataset is built on human kinases and their
associated phosphosites. Several publicly available human ki-
nase lists are available, yet they partially overlap due to ambi-
guities in defining kinase domains. The most widely used and
oldest list is the 518 human kinase set defined by Manning
et al. (2002). Other sources, such as kinasecom (http://kinase.
com/), Eid et al. (2017), The UniProt Consortium (2023),
and Moret et al. (2020), provide alternative kinase lists with
some variations. For the current work, we resort to an up-to-
date list from Moret et al. (2020), which includes 557 human
kinases, each containing at least one kinase domain.

We obtained experimentally validated kinase—phosphosite
associations from the PhosphoSitePlus (Hornbeck et al.
2012) (downloaded in May 2023). Kinase—phosphosite asso-
ciations, which are related to non-human kinases, are re-
moved. We did not apply the same restriction to substrates,
as substrates from the model organisms are used to probe the
interactions. We removed kinase isoforms and fusion kinases
and used the canonical form specified in the UniProt human
proteome (Bairoch et al. 2005) (downloaded May 2023).
Phosphosites are represented as 15-residue amino acid
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sequences, including seven residues flanking the phosphosite
on both sides. Previous work has shown that phosphosite
sequences of length 15 or shorter led to better performances
(Trost and Kusalik 2011, Hornbeck et al. 2014, Wagih et al.
2015, Deznabi et al. 2020). Padding was applied to ensure
the phosphosite remains centered when it is near the N or C
terminus of the protein.

Protein sequences were retrieved from UniProt via the
API (Ahmad et al. 2025) (accessed December 2023). If the
substrate could not be uniquely mapped to a Uniprot ID, we
removed all phosphosite—kinase associations of these
substrates. We retrieved the kinase domain sequences using
the domain indices provided in Moret et al. (2020). Kinases
are categorized into groups and families by Manning et al.
(2002) according to their domain sequence similarities. We
retrieved the kinase family and group information from
Moret et al. (2020). Missing group and family information
was imputed according to their similarity to other kinases.
We defined a kinase group Other2 and a kinase family
otherFamily for kinases that cannot be assigned to a fam-
ily or group due to their dissimilarity to the rest of the groups.
Another categorical information regarding kinases is the
Enzyme Commission (EC) categorization. EC numbers cate-
gorize kinases according to their functionality. We down-
loaded EC numbers of the kinases (downloaded July 2023)
(Bairoch 2000). We obtained protein structure data from the
AlphaFold Protein Structure Database using AlphaFoldAPT at
EBI (https://alphafold.ebi.ac.uk) (Jumper et al. 2021, Varadi
et al. 2022) and PDBe (Varadi et al. 2020). For isoform pro-
teins lacking structural data in AlphaFold and PDBe, we used
ColabFold to predict 3D structures (Mirdita et al. 2022).

2.3 Evaluated protein language models and
baseline encodings

We selected pLMs whose models were accessible, reported to
perform well in the literature, and were recent. Table 1
presents the pLMs we evaluated, along with their key proper-
ties. For more efficient processing, we computed the column-
wise average of the embedding for all pLMs, excluding the
vectors corresponding to the padding (PAD) token. For
pLMs with a classification (CLS) token, we used the embed-
dings corresponding to this token to summarize the overall
representation.

In addition to the pLM, we used the following encodings
as the baseline representations:

i) One-hot encoding: The input sequence is expressed as a
binary vector of amino acids.

ii) BLOSUMBS62 encoding: The encoding uses the row corre-
sponding to a particular amino acid in the BLOSUM62
matrix, which represents the probability of substitution
of that amino acid by any other amino acid.

iii) NLF encoding: NLF captures the physicochemical prop-
erties of amino acids and is determined by a non-linear
Fisher transform (Nanni and Lumini 2011). The repre-
sentations are computed using the epitope prediction
tool (Farrell 2021).

iv) ProtVec: ProtVec is a skip-gram neural network model
trained to provide a continuous representation of protein
sequences (Asgari and Mofrad 2015). ProtVec provides a
100-dimensional embedding for each 3 g, and the aver-
age embedding is used to represent the sequence.
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Table 1. The protein language models (pLMs) compared in this study.

PLM Dataset Vector size Model size Representation Objective Citation
TAPE PFAM 768 38M Sequence Sequence-based, structural  Rao ez al. (2019)
feature prediction
ProtBERT BFD100, UniRef100 1024 420M Sequence Sequence-based, structural, Elnaggar et al.
ProtALBERT UniRef100 4096 224M physicochemical (2021)
ProtT5-XL BFD100 1024 3B feature prediction
ESM1B UniRef50 1280 650M Sequence Structural, physicochemical Lin et al. (2023)
feature prediction
ESM1v UniRef90 1280 650M Sequence Sequence variant Meier et al. (2021)
prediction
ESM2 UniRef50 1280 650M Sequence Structural feature, Lin et al. (2022)
contact prediction
ProteinBERT UniRef90 1562 16M Sequence Sequence-based feature, Brandes et al.
GO annotation (2022)
prediction
ProtGPT2 UniRef50 1280 738M Subword Protein design and Ferruz et al.
engineering (2022)
DistilProtBERT  UniRef50 1024 230M Sequence Sequence-based, structural,  Geffen et al.
physicochemical (2022)
feature prediction
Ankh UniRef50 1536 1.5B Sequence General purpose modeling  Elnaggar et al.
(2023)
SaProt AlphaFold2, PDB 1280 650M Sequence, Structure-aware feature, Su et al. (2024)
structure mutation effect
prediction
ESM3 UniRef, MGnify90, 1536 1.4B Sequence, struc- Protein generation Hayes et al.
JGI, OAS PDB, ture, function (2025)
InterPro,
InterProScan
ESMC UniRef, MGnify,JGI 1152 600M Sequence Sequence-based feature, ESM Team (2024)
contact prediction
ISM2 Uniclust30, PDB 1280 650M Sequence Sequence-based, structural, Ouyang-Zhang
functional feature etal. (2024)
prediction
DPLM UniRef50 960 650M Sequence Conditional and Wang et al. (2024)
unconditional
Protein generation
AMPLIFY UniRef, OAS, 1280 350M Sequence Structural feature, Fournier et al.
SCOP, UniProt contact prediction (2024)
PTM-Mamba  UniProt Swiss- 768 220M (Mamba) + Sequence PTM-related prediction, Peng et al. (2025)
Prot PTM 650M (ESM2)? PTM discovery

? This is the parameter size of ESM2, which is also used in PTM-Mamba. The versions of the models are specified in Table 4, available as supplementary

data at Bioinformatics online.

2.4 Evaluation splits

In the zero-shot learning (ZSL) evaluation protocol, it is cru-
cial to ensure class separation during model training and
hyperparameter tuning (Xian et al. 2017). Therefore, exam-
ples are divided into train, validation, and test sets based on
their associated class labels. In our earlier work,
DeepKinZero evaluation Deznabi er al. (2020), we parti-
tioned the data into training, validation, and test sets accord-
ing to the number of phosphosites associated with each
kinase. Kinases with more than five phosphosites were
assigned as training classes, while kinases associated with ex-
actly five phosphorylation sites were designated as validation
kinases. The remaining kinases, each with fewer than five
phosphosites, form the test or zero-shot classes. Thus, in this
setup, the zero-shot kinases represent the dark kinases,
whereas the training classes are light kinases. While this split-
ting strategy closely mirrors the real-world scenario of the
deployed model, the limited number of examples for each
class in the test set complicates the reliable estimation of eval-
uation performance. Therefore, we establish a setup where a
portion of the well-studied kinases (light kinases) is held out
as zero-shot classes and is excluded from the training process.

Thus, imitating that light kinases are dark kinases. We follow
this strategy to ensure that we have enough data from each
kinase in the test set to report a more robust evaluation of
the performance metrics. When creating the splits, we con-
sider the following criteria to ensure a fair evaluation of
data splits:

i) Number of phosphosites per kinase: To ensure robust
evaluation, we set a minimum threshold for the number
of kinase—phosphosite pairs associated with each kinase
in the test and validation sets. This prevents relying on
very few data points related to a specific kinase class,
minimizing inaccurate and unstable results. Thus, we in-
vert the roles of light and dark kinases in evaluation: the
test data include well-studied kinases (light kinases),
while the training primarily comprises understudied kin-
ases (dark kinases). However, it is crucial to note that
this arrangement is solely for evaluation purposes; the
deployed model can predict dark kinases.

ii) Stratification based on kinase groups: Kinases within the
same kinase group share evolutionary relationships and
functional similarities (Manning et al., 2002). After
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preprocessing, the dataset contains only 392 kinases dis-
tributed across 11 kinase groups and 129 kinase families.
Stratifying by kinase families is impractical due to the
limited number of kinases per family, which would hin-
der equal representation of each kinase group in each
split. Thus, we stratify kinases based on their group
membership, ensuring the representation of kinase
groups in the training, validation, and test sets when-
ever possible.

iii) Sequence similarity of kinases: In light of the inference
task, which is to predict the kinase for a given phospho-
site, to avoid optimistic performance estimates, kinases
with sequence similarity are grouped and assigned exclu-
sively to the same set (train, validation, or test). This cri-
terion is important to prevent the model from being
trained on kinases that are highly similar to the kinases
in the test set, thereby avoiding optimistic evaluation
results. It also aligns with the principles of ZSL by
guaranteeing that all kinases in the test set are entirely
new to the model. Sequence similarity is determined by
sequence identity calculated after pairwise global align-
ment of the kinase domains.

Note that a single phosphosite can be targeted by multiple
kinases, which may result in the same phosphosite appearing
in both the training and test sets with different kinase labels.
We quantified the multilabel nature of the task in Fig. 3,
available as supplementary data at Bioinformatics online,
which shows the number of sites associated with a single ki-
nase or multiple kinases in each split. Additionally, we report
the sites unique to the test set or shared with the validation
and training data in the Fig. 4, available as supplementary
data at Bioinformatics online. While a site-based split of the
train, validation, and test set is possible, it is difficult to ob-
tain a balanced split based on all four criteria. More impor-
tantly, it is not necessary, as the aim is to predict the right
kinases for a known phosphosite. Even when a phosphosite
appears in both splits, the associated kinase labels are disjoint
across training and test sets. The model is still required to
generalize to unseen kinases. It is indeed more challenging for
the model, as it has previously associated this site with a dif-
ferent kinase and now needs to predict its association with
the unseen test kinase. Therefore, this strategy does not affect
the integrity of the evaluation process.

Taking all these aspects into consideration, we divided the
dataset into training (80%), validation (10%), and test
(10%) sets. We first categorize kinases as train or test kinases
according to the number of phosphosites they are associated
with. Kinases that are associated with fewer than 15 phos-
phosites are defined as train kinases. Later, kinases with at
least 90% sequence identity are grouped and are randomly
defined as entirely train or test kinases altogether. From the
remaining kinases, test kinases are randomly selected from
each kinase group in a stratified manner to ensure sufficient
test example pairs from each kinase group. All remaining kin-
ases are designated as train kinases. This process is repeated
to determine validation kinases from among train kinases by
setting the threshold for kinases in validation to be at least 10
phosphosites per kinase. Finally, the train, validation, and
test sets include all train phosphosite—kinase pairs associated
with the kinases in that relative set. Splitting the kinases into
train, validation, and test is performed in a randomized and
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reproducible manner. Thus, different splits of the DARKIN
dataset can be generated by setting different random seeds.

We evaluate our methods using the macro average preci-
sion (AP) score. AP summarizes the precision-recall curve at
all recall levels (Salton and McGill 1983). In this way, AP
provides a measure of how well the model is able to rank pos-
itive samples over negative samples. By using AP, for each
kinase, we rank the prediction probabilities made for all
phosphosite samples. If the model is able to assign relatively
higher probabilities to phosphosites that are actually known
to be phosphorylated by that kinase (the ground-truth phos-
phosites for that kinase), then we obtain higher scores closer
to 1, indicating that the model ranks positive sites above neg-
ative ones, and hence achieves higher AP scores. In our setup,
we calculate the AP score for each kinase and then take the
mean across all kinase classes, hence calculating the macro
AP. Although top-k accuracy is a well-known metric, in our
setting it fluctuated sharply—small changes in predictions for
the sparsely represented kinase classes produced large jumps
in the score. To counter this instability and the effects of class
imbalance, we report macro AP, which assigns equal weight
to each kinase class. Macro AP, therefore, provides a steadier
assessment of performance across both common and rare
classes. When multiple kinases can phosphorylate a phospho-
site, we accept the predicted kinase as a true positive if it
matches any of the true kinases associated with it.

2.5 Zero-shot classifiers

We employ two ZSL models in our experiments. The first is a
fitting-free method based on an adapted k-NN classifier, in-
tentionally kept simple. The second model is a well-
established bilinear zero-shot compatibility model. Further
details on these approaches are provided in the follow-
ing sections.

2.5.1 Zero-shot k-NN classifier

To benchmark the zero-shot dark kinase prediction perfor-
mance, we devised a simple baseline method by adapting the
principles of the k-NN algorithm for supervised classification
to our zero-shot classification task. For a given test phospho-
site, we first locate the k& most similar training phosphosites
in the phosphosite representation space. Subsequently, we
identify the most common light kinase among the kinases as-
sociated with the nearest neighbor phosphosites. In cases
where there is no majority, we choose the nearest neighbor’s
light kinase. Unlike the supervised k-NN approach, we pre-
dict the dark kinase that most resembles the predicted light
kinase in the representation space. Kinase similarity is
assessed using the cosine similarity of the kinase embedding
vectors. These cosine similarity scores are considered our pre-
diction scores, indicating how likely each dark kinase is to
phosphorylate the test phosphosite at hand. This procedure is
depicted in Fig. 1a.

Our motivation for devising this method is to evaluate the
pLMs as directly as possible, in the sense that the approach
does not involve numerical optimization, and the only hyper-
parameter is k. This simplicity provides an additional view of
the relative strengths of the pLMs, largely avoiding model se-
lection effects.

2.5.2 Bilinear zero-shot learning model

The second ZSL method we use is a bilinear compatibility
model. While a variety of other ZSL methods, particularly in
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Figure 1. (a) k-NN-based zero-shot classifier. First, the test phosphosite’'s nearest neighbor phosphosites are determined in the training data. The majority
vote is taken among the neighbors’ class labels to pick the most likely light kinase. Then, the dark kinase most similar to this light kinase is picked. (b) The
bilinear compatibility function F takes the phosphosite and kinase embedding vectors and is trained to minimize the cross-entropy loss over light kinases.

At the prediction time, Fis used to assess the compatibility of the phosphosite and the dark kinases.

image classification, have been proposed over the years, var-
iants based on bilinear compatibility models are arguably
among the most established (Frome et al. 2013, Romera-
Paredes and Torr 2015, Akata et al. 2015, Akata et al. 2016,
Xian et al. 2017, Kodirov et al. 2017, Sumbul et al. 2018,
Deznabi et al. 2020). Therefore, they are particularly suitable
for our pLM evaluation purposes.

The bilinear zero-shot model (BZSM) aims to estimate the
compatibility between a given pair of phosphosite x and ki-
nase y (illustrated in Fig. 1b). In our work, we use the formu-
lation variant proposed and used in (Sumbul ez al. 2018,
Deznabi et al. 2020), which defines the compatibility func-
tion F(x,y) = [6(x)" 1]W[p(y)" 1]" where 6(x) € R is the
phosphosite representation, and ¢(y) € R™ is the kinase rep-
resentation. The augmentation of both representations with
separate bias dimensions increases the expressivity of the
model (Sumbul et al. 2018), which can more clearly be ob-
served when the definition is expanded:

F(x,y) = 0(x) " We(y) +0(x) ' W+ Wa.p(y) + Way 11
(1)

In this formulation, the first term estimates pairwise com-
patibility. The second term acts analogously to a logp(x)
prior, formulated via a linear estimator conditioned on 6(x).
Similarly, the third term is a logp(y) prior, expressed as a lin-
ear function of ¢(y). And finally, the last term is simply a
trainable scalar. The model is trained by minimizing the regu-
larized cross-entropy loss:

min — ) log p(ylx) +4| W] (2)

(x,y)€Dy

where the summation runs over all phosphosite—kinase pairs
available in the training set D, = (x;,y;), and p(y|x) is the
softmax of F over the light kinases:

exp F(x, )
pylx) = : (3)
> yey, expF(x,y)
The ¢, regularization term in Equation (2) is implemented
as weight decay in practice. At test time, p(y|x) is calculated
via softmax over the test kinases.

3 Results
3.1 Hyperparameter tuning

We use macro AP on the validation set for model selection in
all cases. For k-NN-based ZSL, we choose k from {3,5,7}.
For the bilinear ZSL, we perform a hyperparameter search
among random combinations of learning rate (0.000001 ...
0.1), optimizer (Adam, SGD, RMSprop), learning rate sched-
ule (Exponential, Step, CosineAnnealing), momentum
(0.95...0.9999), and the weight decay (0.00001...0.01).
Finally, to measure the effect of initialization, unless other-
wise stated, we train BZSM models three times and report
the mean and standard deviation of the macro AP values.

3.2 DARKIN benchmark statistics

We present four DARKIN splits (https://github.com/tastan
lab/darkin and https://zenodo.org/records/16729884) for
researchers. The experiments are conducted using DARKIN
Split 1 unless otherwise specified. Therefore, we share the sta-
tistics for Split 1. The number of kinases, distinct phospho-
sites, and the phosphosite—kinase associations in the train,
validation, and test sets are shown in Fig. 2. Furthermore, the
histogram displaying the number of kinases associated with
specific numbers of phosphosites is presented in Fig. 3. The
balanced distribution of kinases according to kinase groups
and the resulting kinase—phosphosite pair distribution can be
analyzed in Fig. 2, available as supplementary data at
Bioinformatics online, which results from the stratification
strategy we used when splitting the kinase—phosphosite pairs.
In addition to these statistics, further statistics such as the
number of single-kinase and multi-kinase phosphosites
(Fig. 3, available as supplementary data at Bioinformatics on-
line), seen and novel sites in the test dataset (Fig. 4, available
as supplementary data at Bioinformatics online), and the dis-
tribution of sites by the number of kinases they are associated
with in the train, validation, and test sets (Fig. 5, available as
supplementary data at Bioinformatics online) are accessible
in the Supplementary text, available as supplementary data at
Bioinformatics online.

3.3 Comparison of protein language models

We initially assess the effectiveness of pLM-based embed-
dings using both k-NN and BZSM methods. Table 2 presents
macro AP scores obtained through the k-NN and
BZSM when different pLM embeddings (detailed in Table 1)
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Figure 2. (a) The number of kinases. (b) The number of unique phosphosites. (c) The number of kinase—phosphosite pairs in each train, validation, and

test folds of the default DARKIN split dataset.
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Figure 3. The histogram of the number of phosphosites associated with kinases in train, validation, and test sets in the default DARKIN split. See Section

2.4 for details.

Table 2. Mean macro AP of 3-NN and BZSM using only
pLM embeddings.

Embedding AP (3-NN) AP (BZSM)

OneHotEnc 0.0897 0.0634 =0.0034
Blosumé62 0.0897 0.0327 =0.0008
NLF 0.0902 0.0419 =0.0030
ProtVec 0.0808 0.0959 =0.0010
ESM1B (cls) 0.1119 0.1631 =0.0011
ESM1v (cls) 0.1121 0.1640 =0.0028
ESM2 (avg) 0.0957 0.1391 =0.0057
Ankh-Large 0.1106 0.0840 =0.0012
DistilProtBERT (avg) 0.0811 0.1269 =0.0084
ProtBERT (avg) 0.0540 0.1044 =0.0015
ProtAlbert (cls) 0.0915 0.1281 =0.0049
ProteinBERT 0.1168 0.1236 =0.0023
ProtGPT2 0.1054 0.1333 =0.0020
ProtT5-XL 0.1172 0.1552 =0.0011
SaProt (avg) 0.0973 0.1466 =0.0026
TAPE 0.1200 0.1237 =0.0018
ISM2 (cls) 0.0791 0.1200 =0.0081
DPLM (avg) 0.1000 0.1299 =0.0028
AMPLIFY (cls) 0.0873 0.0969 +0.0025
ESM3 (cls) 0.0896 0.0881 =0.0008
ESMC (avg) 0.0954 0.0945 =0.0003
PTM-Mamba (phosphosite)® 0.0998 0.1218 +=0.0019

* For pLM with CLS versus average token embedding alternatives, the
best performing one is shown.

> PTM-Mamba models use ESM2 embeddings for kinases. Since
PTM-Mamba lacks a CLS token and includes special tokens for the
phosphorylated residue, we used the embedding of that residue instead. The
best results in each column are shown in bold. The versions of the models
are specified in Table 4, available as supplementary data at
Bioinformatics online.

are used to represent the 15-mer around the phosphosite se-
quence and the kinase domain sequence. When employing
pLM embeddings, we utilize embeddings sourced from the
same pLM for both the phosphosite and kinase. To establish
baseline performance, we also present results obtained with
three sequence encoding methods: one-hot encoding,
BLOSUMBS62, and NLF encoding (Section Evaluated Protein
Language Models and Baseline Encodings). In both models,

we observe that most pLM representations outperform the
baseline encodings, indicating that they capture the protein
sequences’ relevant characteristics better.

The TAPE embeddings perform the best among the k-NN
models (0.12 AP score). The ESM models and ProtT5-XL
closely follow TAPE’s results (Table 2). In the BZSM models,
however, the TAPE embeddings fall behind the ESM1B and
ESM1v embeddings. The superior performance of TAPE in
the k-NN could be due to it being a lower-dimensional vector
(see Table 1). In BZSM, when employing the CLS token,
ESM1B and ESM1v achieve over 0.16 macro AP. ProtT5-XL
is the third close runner-up, and SaProt (cls) also per-
forms well.

3.4 CLS token embedding versus averaging

Several pLMs provide a CLS token whose embedding is com-
monly used as the sequence summary (Devlin et al. 2019).
However, it is not clear whether the CLS token or the average
of all token embeddings provides a better summary for this
task. The performance differences between these two alterna-
tives are shown in Fig. 4, indicating that (i) the results can de-
pend on this detail and (ii) the right option varies across
the pLMs.

3.5 Incorporating additional kinase information

We augment the kinase sequence embedding vectors with ad-
ditional information regarding kinase family hierarchy and
EC classification. We encode these memberships as one-hot
encoded vectors and append them to the sequence embedding
vectors. Here, we experiment only with the BZSM since it
outperforms the k-NN (The complete results obtained on the
3-NN with this additional kinase information are provided in
Table 1, available as supplementary data at Bioinformatics
online). Including each type of additional information indi-
vidually enhances the performance of all models (Table 3), es-
pecially the inclusion of the kinase family information.
The models based on ESM1B, ESM1v, and SaProt, using the
CLS token embeddings, benefit the most and emerge as the
best performers in this augmented case. These findings
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Figure 4. Performance comparison of BZSM models across different pLMs. The x-axis represents the average precision (AP) and the y-axis lists the
evaluated pLMs. Light gray bars correspond to results obtained using the CLS token representation, while dark gray bars correspond to results obtained
using the average of all token embeddings. Error bars indicate standard deviation across multiple runs.

Table 3. The BZSM performance trained with sequence embedding and other kinase information.®

Embedding Base + Family + Group +EC + Family + Group + EC
OneHotEnc 0.0634 0.1107 0.0832 0.0802 0.1098
Blosum62 0.0327 0.0318 0.0310 0.0337 0.0323
NLF 0.0419 0.0391 0.0425 0.0400 0.0426
ProtVec 0.0959 0.1262 0.1129 0.1214 0.1354
ProtBERT (cls) 0.0842 0.1170 0.1077 0.1132 0.1273
ProteinBERT 0.1236 0.1506 0.1215 0.1367 0.1359
ProtT5-XL 0.1552 0.1701 0.1531 0.1674 0.1731
ESM1B (cls) 0.1631 0.1740 0.1688 0.1680 0.1769
ESM1v (cls) 0.1640 0.1737 0.1653 0.1652 0.1734
ESM2 (avg) 0.1391 0.1588 0.1453 0.1496 0.1638
DistilProtBERT (cls) 0.1167 0.1360 0.1292 0.1287 0.1441
ProtGPT2 0.1333 0.1476 0.1412 0.1419 0.1557
Ankh-Large 0.0840 0.1417 0.1135 0.1178 0.1594
ProtAlbert (cls) 0.1281 0.1269 0.1276 0.1285 0.1372
SaProt (cls) 0.1292 0.1696 0.1424 0.1434 0.1800
TAPE 0.1237 0.1379 0.1333 0.1310 0.1455
ISM2 (cls) 0.1200 0.1275 0.1260 0.1333 0.1374
DPLM (avg) 0.1299 0.1427 0.1318 0.1368 0.1420
AMPLIFY (avg) 0.0896 0.0968 0.0944 0.0969 0.1066
ESM3 (cls) 0.0881 0.1484 0.1220 0.1238 0.1611
ESMC (cls) 0.0866 0.1672 0.1136 0.1401 0.1754
PTM-Mamba (phosphosite)® 0.1218 0.1432 0.1292 0.1346 0.1471

* The mean macro APs are shown. Of CLS and embedding averaging, only the best-performing model results are listed.
b PTM-Mamba models utilize ESM2 embeddings for kinases. Since PTM-Mamba lacks a CLS token and includes special tokens for the phosphorylated
residue, we used the embedding of that residue instead. The best results in each column are shown in bold.

underscore that there is additional information in these ki-
nase categorizations that cannot be captured solely with se-
quence information. The detailed list of results obtained with
all pLMs obtained on the BZSM with this additional kinase
information is provided in Table 2, available as supplemen-
tary data at Bioinformatics online.

3.6 Comparing the best-performing pLMs on
different random DARKIN splits

As ESM1B and SaProt emerge as the two top-performing
pLMs when paired with the BZSM model (Table 3), we fur-
ther evaluated their performance on three additional random
splits of the DARKIN dataset to facilitate a more
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Table 4. The mean macro AP scores at multiple levels (family, group, phosphosite) for the two best-pLMs, ESM1B (Family + Group + EC) and SaProt

(Family + Group + EC), on four random DARKIN splits for the BZSM.?

Split Embedding AP Phospho-site AP Family AP Group AP Masked Group AP
Split 1 ESM1B (cls) 0.1769 0.2830 0.2278 0.3959 0.4054
SaProt (cls) 0.1800 0.3053 0.2384 0.3903 0.3868
Split 2 ESM1B (cls) 0.1536 0.2747 0.1989 0.3689 0.3644
SaProt (cls) 0.1599 0.2929 0.2087 0.3649 0.3702
Split 3 ESM1B (cls) 0.1531 0.2951 0.1987 0.3747 0.3508
SaProt (cls) 0.1627 0.3142 0.2104 0.3663 0.3598
Split 4 ESM1B (cls) 0.1652 0.3118 0.2142 0.3969 0.3563
SaProt (cls) 0.1690 0.3482 0.2205 0.4069 0.3674

* The best performing results for each split comparison are shown in bold.

Table 5. Experiments on fine-tuning ESM1b and ProtT5-XL, in which we employ transformers to fine-tune either the phosphosite model or the

phosphosite and kinase model simultaneously.?

Transformer Configuration BZSM Dot product Kinase features Ap
ESM1B  ProtT5-XL

Fully fine-tune transformer, remove BZSM v Seq 0.0996 0.1593
Fully fine-tune phosphosite model, freeze kinase model v Seq 0.1622 0.1298
Reinitialize last layer of phosphosite and kinase models v Seq 0.1852 0.1375
Reinitialize last two layers of phosphosite and kinase models v Seq 0.1283 0.1285
Fully fine-tune phosphosite model, freeze kinase model v Seq, Family, Group, EC 0.1638 0.1765
Reinitialize last layer of phosphosite and kinase models v Seq, Family, Group, EC 0.1669 0.1800
Reinitialize last two layers of phosphosite and kinase models v Seq, Family, Group, EC 0.1911 0.1575

* As a baseline evaluation, we remove BZSM and evaluate zero-shot predictions by the dot product of learned kinase and phosphosite representation.
ESM1b embeddings are obtained using CLS token representation, while ProtT5-XL embeddings are obtained using the average of all token embeddings.
Training and evaluation protocols are the same for both pLMs. The best performing models' results are shown in bold.

comprehensive comparison between these two pLMs. While
both models demonstrate competitiveness, SaProt consistently
outperforms ESM1B slightly across all runs on these four dif-
ferent splits (Table 4). The performance of SaProt underscores
the added value of structural information.

3.7 Extended evaluation of kinase family, group,
and phosphosite predictions

We evaluated model performance on all DARKIN splits using
macro AP at multiple levels: family AP, where kinase predic-
tions are aggregated by their families; group AP, where kinase
predictions are aggregated by their groups; and phosphosite
AP, which evaluates precision for phosphosite-specific predic-
tions. We also calculated the hit@k accuracy for these models
(Table 3, available as supplementary data at Bioinformatics
online). In all these metrics, SAProt shows slightly better
performance.

Additionally, we introduced a metric, Masked Group AP,
which focuses on precision within the true group by exclud-
ing irrelevant kinases from the predictions. This metric works
by masking logits for kinases outside the ground-truth kinase
group, effectively setting them to negative infinity. This met-
ric simulates a scenario where the model perfectly identifies
kinase groups and predicts within the group. This allows us
to measure the model’s ability to rank kinases accurately
within groups. Our findings, summarized in Table 4, show
that Masked Group AP significantly outperforms standard
AP, with values greater than twice those of standard AP cal-
culated over all classes. This improvement demonstrates
the strong impact of incorporating group-level information,
suggesting that if kinase groups could be predicted accu-
rately—whether by this or a separate model—the

performance jump in kinase ranking could be substantial.
This insight suggests a promising direction for future re-
search, where accurate group predictions could serve as a ba-
sis for refining kinase-level predictions.

3.8 Fine-tuning of phosphosite and kinase encoders

To evaluate if task-specific fine-tuning improves the perfor-
mance, we extended the original BZSM setup—which keeps
phosphosite and kinase embeddings fixed and only learns the
compatibility matrix—by adding four fine-tuning variants
and evaluating them using the two well-performing pLMs,
ESM1B and ProtT5-XL. First, we allowed end-to-end fine-
tuning of the phosphosite encoder while keeping the kinase
encoder frozen and still learning the compatibility matrix W.
Next, we gradually unfroze the kinase encoder, reinitializing
and training either its final transformer block or, in a deeper
variant, the last two blocks, so that both phosphosite and ki-
nase representations could adapt jointly with the compatibil-
ity matrix W. Finally, in the fourth variant we experimented
with a fully shared encoder that produces both phosphosite
and kinase embeddings; here, the entire model is fine-tuned
jointly, and compatibility is computed via a simple dot prod-
uct, eliminating the need for W. Each regime was tested with
two kinase representations: sequence-only embeddings and
appending the sequence embeddings with family, group, and
EC information vectors.

As presented in Table 5, fine-tuning the pLM encoders
does not guarantee improved performance. Instead, the
results were inconsistent across different configurations. For
the ESM1b model, the highest performance was AP of
0.1911, achieved by reinitializing the final two layers of both
the phosphosite and kinase encoders using the full set of ki-
nase features. However, this represents only a marginal
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improvement over other configurations and comes at a nota-
ble computational cost. Similarly, the ProtT5-XL model saw
a slight performance increase to an AP of 0.1800 when reini-
tializing the last layer of both encoders. Notably, most other
fine-tuning strategies resulted in a decrease in performance
for both models.

We explored other fine-tuning strategies. To arrive at
phosphosite-aware and kinase-aware pLMs, we conducted
comprehensive experiments in which we fine-tuned pLMs
with kinase- and phosphorylation-related auxiliary tasks.
These tasks include (i) phosphorylation prediction, given a
potential phosphosite and its surrounding sequence, the
model is trained to predict if this site is phosphorylated or
not. (ii) Kinase group prediction, given the kinase domain se-
quence, predicting the group of the given kinase. This is a
multi-class classification task. (iii) Contrastive learning on
family/group relations. In this task, the model should learn
the kinase family/group relationships in a contrastive learning
setup. We present the dataset, experimental methods, and the
results in the Section 4, available as supplementary data at
Bioinformatics online. None of these phosphosite and kinase
fine-tuning strategies match the performance of the end-to-
end fine-tuning presented above (AP score of 0.1911)
obtained by reinitializing the last two layers of the
ESM1B model.

4 Conclusion

Focused on the zero-shot task of assigning phosphosites to
understudied dark kinases, DARKIN offers a novel bench-
mark for evaluating pLMs. As it is easy to fall into the data
leakage pitfalls in these types of problems, as raised and dis-
cussed in drug-target prediction (Chatterjee et al. 2023), drug
synergy prediction (Beyza Gandir et al. 2025), in genomics
(Whalen et al. 2022), or link prediction (Briere et al. 2025), it
is important to evaluate the models in robust evaluation
frameworks to assess the generalization of these models
(Bernett et al. 2024). In this work, the train, validation, and
test splits are carefully designed to follow ZSL and kinase-
related issues. We evaluate the pLMs’ representation capabil-
ities in this problem using two zero-shot classifiers. Our
results demonstrate the superior performance of the ESM
models, the ProtT5-XL, and the SaProt models.

Based on our results using the DARKIN dataset, dark
kinase-phosphosite prediction remains a highly challenging
task for the current pLMs. The highest AP score achieved
was 0.1911 using fine-tuning pLMs, which considerably out-
performs random guessing (0.03 by averaging AP over 1000
runs of randomly generated ranking of kinases for a given
site), but can be considered low overall. The low performance
could be due to several reasons. There are challenging cases
where the phosphosite sequences are almost identical, but the
associated kinase sets for these phosphosites differ. This dif-
ference could be due to a true biological difference that can
be explained by a structural or functional difference (a re-
quired interaction partner or the same cellular localization),
or it could also be an issue of data incompleteness. While
some kinase—phosphosite pairs are truly associated, they
might not have been experimentally studied and therefore are
not reported as associated pairs. We should also note that the
performances in a deployed model of dark—kinase associa-
tions are likely to be higher. To ensure a sufficient number of
examples in the evaluation, as explained in Section 2, we

switched the light and dark kinases in the train and test sets.
In this way, the test set included the well-studied kinases with
more examples, and the training set included the under-
studied kinases. While this strategy is useful for benchmark-
ing purposes, it poses a challenge in training, as the training
data contains many kinases with few examples. Since the
deployed model uses the well-studied kinases as well, it is
likely to have better predictive performance.

In this study, we excluded fusion kinases and non-
canonical kinase isoforms in constructing the datasets. This
was due to the lack of annotation of their kinase domains in
some cases and the low number of known associated phos-
phosites, which made it difficult to reliably evaluate the mod-
els’ performance on these kinases. These kinase forms can
play crucial roles in disease contexts such as cancer, where
gene fusions or isoform-specific events give rise to novel or
dysregulated signaling activities (Stransky et al. 2014,
Gonzalez and McGraw, 2009). Thus, zero-shot predictions
coupled with experimental validation on these kinases can
open new avenues for understanding the functional impact of
isoforms and oncogenic fusions.

The study focused on the ZSL framework. Another prom-
ising direction and interesting benchmark is the few-shot
learning problem, in which the model leverages the few
known phosphosites of the kinases during the training. The
current DARKIN dataset can be modified for this setup eas-
ily. We hope this novel benchmark will facilitate comprehen-
sive evaluations of pLMs and dark kinase prediction models,
contributing to protein biology research.
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