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Abstract
Motivation: Protein language models (pLMs) have emerged as powerful tools for capturing the intricate information encoded in protein sequen
ces, facilitating various downstream protein prediction tasks. With numerous pLMs available, there is a critical need for diverse benchmarks to 
systematically evaluate their performance across biologically relevant tasks. Here, we introduce DARKIN, a zero-shot classification benchmark 
designed to assign phosphosites to understudied kinases, termed dark kinases. Kinases, which catalyze phosphorylation, are central to cellular 
signaling pathways. While phosphoproteomics enables the large-scale identification of phosphosites, determining the cognate kinase responsi
ble for the phosphorylation event remains an experimental challenge.
Results: In DARKIN, we prepared training, validation, and test folds that respect the zero-shot nature of this classification problem, incorporating 
stratification based on kinase groups and sequence similarity. We evaluated multiple pLMs using two zero-shot classifiers: a novel, training-free 
k-NN-based method, and a bilinear classifier. Our findings indicate that ESM, ProtT5-XL, and SaProt exhibit superior performance on this task. 
DARKIN provides a challenging benchmark for assessing pLM efficacy and fosters deeper exploration of under-characterized (dark) kinases by 
offering a biologically relevant test bed.
Availability and implementation: The DARKIN benchmark data and the scripts for generating additional splits are publicly available at: https:// 
github.com/tastanlab/darkin

1 Introduction
Building on the success of large language models in natural 
language processing (Yupeng et al. 2024), protein language 
models (pLMs) have been developed to capture the complex 
information embedded within protein sequences (Rao et al. 
2019, Elnaggar et al. 2021, Lin et al. 2023, Meier et al. 2021, 
Lin et al. 2022, Brandes et al. 2022, Ferruz et al. 2022, Geffen 
et al. 2022, Elnaggar et al. 2023, Su et al. 2024, ESM Team, 
2024, Fournier et al. 2024, Zhang et al. 2025, Yupeng Wang 
et al. 2024, Ouyang-Zhang et al. 2024, Hayes et al. 2025, 
Peng et al. 2025). By generating semantic representations of 
proteins, pLMs enable a broad range of sequence-based pre
diction tasks. However, as more pLMs become available, sys
tematically benchmarking their performance is essential to 
determine their reliability and applicability in diverse biologi
cal contexts. Previous work has compared the pLMs in their 
ability to predict proteins’ functional properties (Unsal et al. 
2022, Schmirler et al. 2024, Zhang et al. 2025) and functional 
motifs (Savojardo et al. 2023). In this work, we provide a 
novel biologically relevant zero-shot prediction benchmark for 
phosphosite–dark kinase associations and compare the pLMs 
in terms of their ability to capture intrinsic sequence properties 
within this challenging task.

Phosphorylation events are key regulators of protein func
tion in signal transduction pathways, and their dysfunction is 
associated with many diseases (Gaestel et al. 2009, M€uller 
et al. 2015, Wu et al. 2023). Kinases are the enzymes that cat
alyze the phosphorylation of other proteins in a target- 
specific manner (Hunter 1995). For this reason, kinases are 
major drug targets in diseases such as cancer, infectious dis
eases, and neurological disorders (Blume-Jensen and Hunter 
2001, Cohen et al. 2021). Phosphorylation involves transfer
ring a phosphate from adenosine 5’-triphosphate (ATP) to 
amino acid residues (Cohen 2002). These phosphorylated 
residues, referred to as phosphosites, are integral to modulat
ing the protein’s structure and function.

Although high-throughput phosphoproteomics enables the 
identification of phosphosites at the proteome level, experi
mentally determining the kinase responsible for a phosphory
lation event remains a major challenge. Notably, more than 
95% of reported human phosphosites have no known 
cognate kinase (Needham et al. 2019), and 25% of the 
kinases are yet to be assigned to a phosphorylation event; 
for about 35% of the kinases, there are 1–10 phosphosites 
have been identified (Fig. 1, available as supplementary 
data at Bioinformatics online). Consequently, most of the 
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phosphoproteome and the kinome are in the dark (Needham 
et al. 2019, Deznabi et al. 2020, Vella et al. 2022). 
Associating “orphan” phosphosites to their respective kinases 
is an important task that would help understand the biologi
cal function of these phosphorylation events and discover 
new drug targets (Needham et al. 2019, Deznabi et al. 2020, 
Berginski et al. 2021). In this work, given a phosphosite, 
we aim to predict the dark kinase associated with this 
phosphosite.

The contributions of this work can be summarized as fol
lows: (i) We present a reproducible benchmark dataset for 
predicting dark kinase–phosphosite associations. The task is 
formulated as given a phosphosite, predict the associated 
dark kinase of that site. (ii)We propose a strategy to split the 
dataset into train, validation, and test splits for this zero-shot 
multi-class prediction task, with stratification based on 
kinase groups, the number of phosphosites per kinase, and 
kinase sequence similarity. (iii) We present a novel, training- 
free, k-NN-based zero-shot classification method for assess
ing the performance of pLMs under the task of predicting the 
dark kinase of a given phosphosite. (iv) We evaluate and 
compare various pLMs using two distinct zero-shot classifi
cation approaches.

2 Materials and methods
2.1 Problem description
Let X denote the space of phosphosite sequences and Y de
note the set of all human kinases. The task of kinase–phos
phosite association prediction involves identifying the kinase 
y 2 Y most likely to catalyze the phosphorylation of a given 
phosphosite sequence x 2 X . Since a phosphosite can be 
phosphorylated by multiple kinases, we frame the problem as 
a multilabel classification task. We denote the training kin
ases as Ytr � Y and the test kinases as Yte � Y. The set Yte 
comprises the zero-shot classes, and the training and test ki
nase sets are disjoint. The training data, Dtr ¼ ðxi;yiÞ; i¼ 1;
. . . ;Ntr, consists of pairings of train kinases with their associ
ated phosphosites, where yi 2 Ytr. Similarly, the test data con
tains phosphosite pairings of the test kinases Yte.

2.2 Dataset curation and processing
The DARKIN dataset is built on human kinases and their 
associated phosphosites. Several publicly available human ki
nase lists are available, yet they partially overlap due to ambi
guities in defining kinase domains. The most widely used and 
oldest list is the 518 human kinase set defined by Manning 
et al. (2002). Other sources, such as kinasecom (http://kinase. 
com/), Eid et al. (2017), The UniProt Consortium (2023), 
and Moret et al. (2020), provide alternative kinase lists with 
some variations. For the current work, we resort to an up-to- 
date list from Moret et al. (2020), which includes 557 human 
kinases, each containing at least one kinase domain.

We obtained experimentally validated kinase–phosphosite 
associations from the PhosphoSitePlus (Hornbeck et al. 
2012) (downloaded in May 2023). Kinase–phosphosite asso
ciations, which are related to non-human kinases, are re
moved. We did not apply the same restriction to substrates, 
as substrates from the model organisms are used to probe the 
interactions. We removed kinase isoforms and fusion kinases 
and used the canonical form specified in the UniProt human 
proteome (Bairoch et al. 2005) (downloaded May 2023). 
Phosphosites are represented as 15-residue amino acid 

sequences, including seven residues flanking the phosphosite 
on both sides. Previous work has shown that phosphosite 
sequences of length 15 or shorter led to better performances 
(Trost and Kusalik 2011, Hornbeck et al. 2014, Wagih et al. 
2015, Deznabi et al. 2020). Padding was applied to ensure 
the phosphosite remains centered when it is near the N or C 
terminus of the protein.

Protein sequences were retrieved from UniProt via the 
API (Ahmad et al. 2025) (accessed December 2023). If the 
substrate could not be uniquely mapped to a Uniprot ID, we 
removed all phosphosite–kinase associations of these 
substrates. We retrieved the kinase domain sequences using 
the domain indices provided in Moret et al. (2020). Kinases 
are categorized into groups and families by Manning et al. 
(2002) according to their domain sequence similarities. We 
retrieved the kinase family and group information from 
Moret et al. (2020). Missing group and family information 
was imputed according to their similarity to other kinases. 
We defined a kinase group Other2 and a kinase family 
otherFamily for kinases that cannot be assigned to a fam
ily or group due to their dissimilarity to the rest of the groups. 
Another categorical information regarding kinases is the 
Enzyme Commission (EC) categorization. EC numbers cate
gorize kinases according to their functionality. We down
loaded EC numbers of the kinases (downloaded July 2023)
(Bairoch 2000). We obtained protein structure data from the 
AlphaFold Protein Structure Database using AlphaFoldAPI at 
EBI (https://alphafold.ebi.ac.uk) (Jumper et al. 2021, Varadi 
et al. 2022) and PDBe (Varadi et al. 2020). For isoform pro
teins lacking structural data in AlphaFold and PDBe, we used 
ColabFold to predict 3D structures (Mirdita et al. 2022).

2.3 Evaluated protein language models and 
baseline encodings
We selected pLMs whose models were accessible, reported to 
perform well in the literature, and were recent. Table 1
presents the pLMs we evaluated, along with their key proper
ties. For more efficient processing, we computed the column- 
wise average of the embedding for all pLMs, excluding the 
vectors corresponding to the padding (PAD) token. For 
pLMs with a classification (CLS) token, we used the embed
dings corresponding to this token to summarize the overall 
representation.

In addition to the pLM, we used the following encodings 
as the baseline representations:

i) One-hot encoding: The input sequence is expressed as a 
binary vector of amino acids. 

ii) BLOSUM62 encoding: The encoding uses the row corre
sponding to a particular amino acid in the BLOSUM62 
matrix, which represents the probability of substitution 
of that amino acid by any other amino acid. 

iii) NLF encoding: NLF captures the physicochemical prop
erties of amino acids and is determined by a non-linear 
Fisher transform (Nanni and Lumini 2011). The repre
sentations are computed using the epitope prediction 
tool (Farrell 2021). 

iv) ProtVec: ProtVec is a skip-gram neural network model 
trained to provide a continuous representation of protein 
sequences (Asgari and Mofrad 2015). ProtVec provides a 
100-dimensional embedding for each 3 g, and the aver
age embedding is used to represent the sequence. 
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2.4 Evaluation splits
In the zero-shot learning (ZSL) evaluation protocol, it is cru
cial to ensure class separation during model training and 
hyperparameter tuning (Xian et al. 2017). Therefore, exam
ples are divided into train, validation, and test sets based on 
their associated class labels. In our earlier work, 
DeepKinZero evaluation Deznabi et al. (2020), we parti
tioned the data into training, validation, and test sets accord
ing to the number of phosphosites associated with each 
kinase. Kinases with more than five phosphosites were 
assigned as training classes, while kinases associated with ex
actly five phosphorylation sites were designated as validation 
kinases. The remaining kinases, each with fewer than five 
phosphosites, form the test or zero-shot classes. Thus, in this 
setup, the zero-shot kinases represent the dark kinases, 
whereas the training classes are light kinases. While this split
ting strategy closely mirrors the real-world scenario of the 
deployed model, the limited number of examples for each 
class in the test set complicates the reliable estimation of eval
uation performance. Therefore, we establish a setup where a 
portion of the well-studied kinases (light kinases) is held out 
as zero-shot classes and is excluded from the training process. 

Thus, imitating that light kinases are dark kinases. We follow 
this strategy to ensure that we have enough data from each 
kinase in the test set to report a more robust evaluation of 
the performance metrics. When creating the splits, we con
sider the following criteria to ensure a fair evaluation of 
data splits:

i) Number of phosphosites per kinase: To ensure robust 
evaluation, we set a minimum threshold for the number 
of kinase–phosphosite pairs associated with each kinase 
in the test and validation sets. This prevents relying on 
very few data points related to a specific kinase class, 
minimizing inaccurate and unstable results. Thus, we in
vert the roles of light and dark kinases in evaluation: the 
test data include well-studied kinases (light kinases), 
while the training primarily comprises understudied kin
ases (dark kinases). However, it is crucial to note that 
this arrangement is solely for evaluation purposes; the 
deployed model can predict dark kinases. 

ii) Stratification based on kinase groups: Kinases within the 
same kinase group share evolutionary relationships and 
functional similarities (Manning et al., 2002). After 

Table 1. The protein language models (pLMs) compared in this study.

PLM Dataset Vector size Model size Representation Objective Citation

TAPE PFAM 768 38M Sequence Sequence-based, structural 
feature prediction

Rao et al. (2019)

ProtBERT BFD100, UniRef100 1024 420M Sequence Sequence-based, structural, 
physicochemical 
feature prediction

Elnaggar et al.  
(2021)ProtALBERT UniRef100 4096 224M

ProtT5-XL BFD100 1024 3B
ESM1B UniRef50 1280 650M Sequence Structural, physicochemical 

feature prediction
Lin et al. (2023)

ESM1v UniRef90 1280 650M Sequence Sequence variant  
prediction

Meier et al. (2021)

ESM2 UniRef50 1280 650M Sequence Structural feature, 
contact prediction

Lin et al. (2022)

ProteinBERT UniRef90 1562 16M Sequence Sequence-based feature, 
GO annotation  
prediction

Brandes et al.  
(2022)

ProtGPT2 UniRef50 1280 738M Subword Protein design and 
engineering

Ferruz et al.  
(2022)

DistilProtBERT UniRef50 1024 230M Sequence Sequence-based, structural, 
physicochemical 
feature prediction

Geffen et al.  
(2022)

Ankh UniRef50 1536 1.5B Sequence General purpose modeling Elnaggar et al.  
(2023)

SaProt AlphaFold2, PDB 1280 650M Sequence, 
structure

Structure-aware feature, 
mutation effect  
prediction

Su et al. (2024)

ESM3 UniRef, MGnify90, 
JGI, OAS PDB, 
InterPro, 
InterProScan

1536 1.4B Sequence, struc
ture, function

Protein generation Hayes et al.  
(2025)

ESMC UniRef, MGnify,JGI 1152 600M Sequence Sequence-based feature, 
contact prediction

ESM Team (2024)

ISM2 Uniclust30, PDB 1280 650M Sequence Sequence-based, structural, 
functional feature  
prediction

Ouyang-Zhang 
et al. (2024)

DPLM UniRef50 960 650M Sequence Conditional and 
unconditional

Wang et al. (2024)

Protein generation
AMPLIFY UniRef, OAS, 

SCOP, UniProt
1280 350M Sequence Structural feature, 

contact prediction
Fournier et al.  

(2024)
PTM-Mamba UniProt Swiss- 

Prot PTM
768 220M (Mamba) þ

650M (ESM2)a
Sequence PTM-related prediction, 

PTM discovery
Peng et al. (2025)

a This is the parameter size of ESM2, which is also used in PTM-Mamba. The versions of the models are specified in Table 4, available as supplementary 
data at Bioinformatics online.
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preprocessing, the dataset contains only 392 kinases dis
tributed across 11 kinase groups and 129 kinase families. 
Stratifying by kinase families is impractical due to the 
limited number of kinases per family, which would hin
der equal representation of each kinase group in each 
split. Thus, we stratify kinases based on their group 
membership, ensuring the representation of kinase 
groups in the training, validation, and test sets when
ever possible. 

iii) Sequence similarity of kinases: In light of the inference 
task, which is to predict the kinase for a given phospho
site, to avoid optimistic performance estimates, kinases 
with sequence similarity are grouped and assigned exclu
sively to the same set (train, validation, or test). This cri
terion is important to prevent the model from being 
trained on kinases that are highly similar to the kinases 
in the test set, thereby avoiding optimistic evaluation 
results. It also aligns with the principles of ZSL by 
guaranteeing that all kinases in the test set are entirely 
new to the model. Sequence similarity is determined by 
sequence identity calculated after pairwise global align
ment of the kinase domains. 

Note that a single phosphosite can be targeted by multiple 
kinases, which may result in the same phosphosite appearing 
in both the training and test sets with different kinase labels. 
We quantified the multilabel nature of the task in Fig. 3, 
available as supplementary data at Bioinformatics online, 
which shows the number of sites associated with a single ki
nase or multiple kinases in each split. Additionally, we report 
the sites unique to the test set or shared with the validation 
and training data in the Fig. 4, available as supplementary 
data at Bioinformatics online. While a site-based split of the 
train, validation, and test set is possible, it is difficult to ob
tain a balanced split based on all four criteria. More impor
tantly, it is not necessary, as the aim is to predict the right 
kinases for a known phosphosite. Even when a phosphosite 
appears in both splits, the associated kinase labels are disjoint 
across training and test sets. The model is still required to 
generalize to unseen kinases. It is indeed more challenging for 
the model, as it has previously associated this site with a dif
ferent kinase and now needs to predict its association with 
the unseen test kinase. Therefore, this strategy does not affect 
the integrity of the evaluation process.

Taking all these aspects into consideration, we divided the 
dataset into training (80%), validation (10%), and test 
(10%) sets. We first categorize kinases as train or test kinases 
according to the number of phosphosites they are associated 
with. Kinases that are associated with fewer than 15 phos
phosites are defined as train kinases. Later, kinases with at 
least 90% sequence identity are grouped and are randomly 
defined as entirely train or test kinases altogether. From the 
remaining kinases, test kinases are randomly selected from 
each kinase group in a stratified manner to ensure sufficient 
test example pairs from each kinase group. All remaining kin
ases are designated as train kinases. This process is repeated 
to determine validation kinases from among train kinases by 
setting the threshold for kinases in validation to be at least 10 
phosphosites per kinase. Finally, the train, validation, and 
test sets include all train phosphosite–kinase pairs associated 
with the kinases in that relative set. Splitting the kinases into 
train, validation, and test is performed in a randomized and 

reproducible manner. Thus, different splits of the DARKIN 
dataset can be generated by setting different random seeds.

We evaluate our methods using the macro average preci
sion (AP) score. AP summarizes the precision-recall curve at 
all recall levels (Salton and McGill 1983). In this way, AP 
provides a measure of how well the model is able to rank pos
itive samples over negative samples. By using AP, for each 
kinase, we rank the prediction probabilities made for all 
phosphosite samples. If the model is able to assign relatively 
higher probabilities to phosphosites that are actually known 
to be phosphorylated by that kinase (the ground-truth phos
phosites for that kinase), then we obtain higher scores closer 
to 1, indicating that the model ranks positive sites above neg
ative ones, and hence achieves higher AP scores. In our setup, 
we calculate the AP score for each kinase and then take the 
mean across all kinase classes, hence calculating the macro 
AP. Although top-k accuracy is a well-known metric, in our 
setting it fluctuated sharply—small changes in predictions for 
the sparsely represented kinase classes produced large jumps 
in the score. To counter this instability and the effects of class 
imbalance, we report macro AP, which assigns equal weight 
to each kinase class. Macro AP, therefore, provides a steadier 
assessment of performance across both common and rare 
classes. When multiple kinases can phosphorylate a phospho
site, we accept the predicted kinase as a true positive if it 
matches any of the true kinases associated with it.

2.5 Zero-shot classifiers
We employ two ZSL models in our experiments. The first is a 
fitting-free method based on an adapted k-NN classifier, in
tentionally kept simple. The second model is a well- 
established bilinear zero-shot compatibility model. Further 
details on these approaches are provided in the follow
ing sections.

2.5.1 Zero-shot k-NN classifier
To benchmark the zero-shot dark kinase prediction perfor
mance, we devised a simple baseline method by adapting the 
principles of the k-NN algorithm for supervised classification 
to our zero-shot classification task. For a given test phospho
site, we first locate the k most similar training phosphosites 
in the phosphosite representation space. Subsequently, we 
identify the most common light kinase among the kinases as
sociated with the nearest neighbor phosphosites. In cases 
where there is no majority, we choose the nearest neighbor’s 
light kinase. Unlike the supervised k-NN approach, we pre
dict the dark kinase that most resembles the predicted light 
kinase in the representation space. Kinase similarity is 
assessed using the cosine similarity of the kinase embedding 
vectors. These cosine similarity scores are considered our pre
diction scores, indicating how likely each dark kinase is to 
phosphorylate the test phosphosite at hand. This procedure is 
depicted in Fig. 1a.

Our motivation for devising this method is to evaluate the 
pLMs as directly as possible, in the sense that the approach 
does not involve numerical optimization, and the only hyper
parameter is k. This simplicity provides an additional view of 
the relative strengths of the pLMs, largely avoiding model se
lection effects.

2.5.2 Bilinear zero-shot learning model
The second ZSL method we use is a bilinear compatibility 
model. While a variety of other ZSL methods, particularly in 
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image classification, have been proposed over the years, var
iants based on bilinear compatibility models are arguably 
among the most established (Frome et al. 2013, Romera- 
Paredes and Torr 2015, Akata et al. 2015, Akata et al. 2016, 
Xian et al. 2017, Kodirov et al. 2017, Sumbul et al. 2018, 
Deznabi et al. 2020). Therefore, they are particularly suitable 
for our pLM evaluation purposes.

The bilinear zero-shot model (BZSM) aims to estimate the 
compatibility between a given pair of phosphosite x and ki
nase y (illustrated in Fig. 1b). In our work, we use the formu
lation variant proposed and used in (Sumbul et al. 2018, 
Deznabi et al. 2020), which defines the compatibility func
tion Fðx;yÞ ¼ ½θðxÞ> 1�W½ϕðyÞ> 1�> where θðxÞ 2 Rd is the 
phosphosite representation, and ϕðyÞ 2 Rm is the kinase rep
resentation. The augmentation of both representations with 
separate bias dimensions increases the expressivity of the 
model (Sumbul et al. 2018), which can more clearly be ob
served when the definition is expanded: 

Fðx; yÞ ¼ θðxÞ>WϕðyÞþ θðxÞ>W�;mþWd;�ϕðyÞþWdþ 1;mþ 1:

(1) 

In this formulation, the first term estimates pairwise com
patibility. The second term acts analogously to a logpðxÞ
prior, formulated via a linear estimator conditioned on θðxÞ. 
Similarly, the third term is a logpðyÞ prior, expressed as a lin
ear function of ϕðyÞ. And finally, the last term is simply a 
trainable scalar. The model is trained by minimizing the regu
larized cross-entropy loss: 

min
W

−
X

ðx;yÞ2Dtr

log pðyjxÞþ λjjWjj2 (2) 

where the summation runs over all phosphosite–kinase pairs 
available in the training set Dtr ¼ ðxi;yiÞ, and pðyjxÞ is the 
softmax of F over the light kinases: 

pðyjxÞ ¼
exp Fðx; yÞ

P
y02Ytr

exp Fðx; y0Þ
: (3) 

The ‘2 regularization term in Equation (2) is implemented 
as weight decay in practice. At test time, pðyjxÞ is calculated 
via softmax over the test kinases.

3 Results
3.1 Hyperparameter tuning
We use macro AP on the validation set for model selection in 
all cases. For k-NN-based ZSL, we choose k from f3;5;7g. 
For the bilinear ZSL, we perform a hyperparameter search 
among random combinations of learning rate (0.000001… 
0.1), optimizer (Adam, SGD, RMSprop), learning rate sched
ule (Exponential, Step, CosineAnnealing), momentum 
(0.95…0.9999), and the weight decay (0.00001…0.01). 
Finally, to measure the effect of initialization, unless other
wise stated, we train BZSM models three times and report 
the mean and standard deviation of the macro AP values.

3.2 DARKIN benchmark statistics
We present four DARKIN splits (https://github.com/tastan 
lab/darkin and https://zenodo.org/records/16729884) for 
researchers. The experiments are conducted using DARKIN 
Split 1 unless otherwise specified. Therefore, we share the sta
tistics for Split 1. The number of kinases, distinct phospho
sites, and the phosphosite–kinase associations in the train, 
validation, and test sets are shown in Fig. 2. Furthermore, the 
histogram displaying the number of kinases associated with 
specific numbers of phosphosites is presented in Fig. 3. The 
balanced distribution of kinases according to kinase groups 
and the resulting kinase–phosphosite pair distribution can be 
analyzed in Fig. 2, available as supplementary data at 
Bioinformatics online, which results from the stratification 
strategy we used when splitting the kinase–phosphosite pairs. 
In addition to these statistics, further statistics such as the 
number of single-kinase and multi-kinase phosphosites 
(Fig. 3, available as supplementary data at Bioinformatics on
line), seen and novel sites in the test dataset (Fig. 4, available 
as supplementary data at Bioinformatics online), and the dis
tribution of sites by the number of kinases they are associated 
with in the train, validation, and test sets (Fig. 5, available as 
supplementary data at Bioinformatics online) are accessible 
in the Supplementary text, available as supplementary data at 
Bioinformatics online.

3.3 Comparison of protein language models
We initially assess the effectiveness of pLM-based embed
dings using both k-NN and BZSM methods. Table 2 presents 
macro AP scores obtained through the k-NN and 
BZSM when different pLM embeddings (detailed in Table 1) 

Figure 1. (a) k-NN-based zero-shot classifier. First, the test phosphosite’s nearest neighbor phosphosites are determined in the training data. The majority 
vote is taken among the neighbors’ class labels to pick the most likely light kinase. Then, the dark kinase most similar to this light kinase is picked. (b) The 
bilinear compatibility function F takes the phosphosite and kinase embedding vectors and is trained to minimize the cross-entropy loss over light kinases. 
At the prediction time, F is used to assess the compatibility of the phosphosite and the dark kinases.
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are used to represent the 15-mer around the phosphosite se
quence and the kinase domain sequence. When employing 
pLM embeddings, we utilize embeddings sourced from the 
same pLM for both the phosphosite and kinase. To establish 
baseline performance, we also present results obtained with 
three sequence encoding methods: one-hot encoding, 
BLOSUM62, and NLF encoding (Section Evaluated Protein 
Language Models and Baseline Encodings). In both models, 

we observe that most pLM representations outperform the 
baseline encodings, indicating that they capture the protein 
sequences’ relevant characteristics better.

The TAPE embeddings perform the best among the k-NN 
models (0.12 AP score). The ESM models and ProtT5-XL 
closely follow TAPE’s results (Table 2). In the BZSM models, 
however, the TAPE embeddings fall behind the ESM1B and 
ESM1v embeddings. The superior performance of TAPE in 
the k-NN could be due to it being a lower-dimensional vector 
(see Table 1). In BZSM, when employing the CLS token, 
ESM1B and ESM1v achieve over 0.16 macro AP. ProtT5-XL 
is the third close runner-up, and SaProt (cls) also per
forms well.

3.4 CLS token embedding versus averaging
Several pLMs provide a CLS token whose embedding is com
monly used as the sequence summary (Devlin et al. 2019). 
However, it is not clear whether the CLS token or the average 
of all token embeddings provides a better summary for this 
task. The performance differences between these two alterna
tives are shown in Fig. 4, indicating that (i) the results can de
pend on this detail and (ii) the right option varies across 
the pLMs.

3.5 Incorporating additional kinase information
We augment the kinase sequence embedding vectors with ad
ditional information regarding kinase family hierarchy and 
EC classification. We encode these memberships as one-hot 
encoded vectors and append them to the sequence embedding 
vectors. Here, we experiment only with the BZSM since it 
outperforms the k-NN (The complete results obtained on the 
3-NN with this additional kinase information are provided in 
Table 1, available as supplementary data at Bioinformatics 
online). Including each type of additional information indi
vidually enhances the performance of all models (Table 3), es
pecially the inclusion of the kinase family information. 
The models based on ESM1B, ESM1v, and SaProt, using the 
CLS token embeddings, benefit the most and emerge as the 
best performers in this augmented case. These findings 

Figure 3. The histogram of the number of phosphosites associated with kinases in train, validation, and test sets in the default DARKIN split. See Section 
2.4 for details.

Figure 2. (a) The number of kinases. (b) The number of unique phosphosites. (c) The number of kinase–phosphosite pairs in each train, validation, and 
test folds of the default DARKIN split dataset.

Table 2. Mean macro AP of 3-NN and BZSM using only 
pLM embeddings.

Embedding AP (3-NN) AP (BZSM)

OneHotEnc 0.0897 0.0634 ±0:0034
Blosum62 0.0897 0.0327 ±0:0008
NLF 0.0902 0.0419 ±0:0030
ProtVec 0.0808 0.0959 ±0:0010
ESM1B (cls) 0.1119 0.1631 ±0:0011
ESM1v (cls) 0.1121 0.1640 ±0:0028
ESM2 (avg) 0.0957 0.1391 ±0:0057
Ankh-Large 0.1106 0.0840 ±0:0012
DistilProtBERT (avg) 0.0811 0.1269 ±0:0084
ProtBERT (avg) 0.0540 0.1044 ±0:0015
ProtAlbert (cls) 0.0915 0.1281 ±0:0049
ProteinBERT 0.1168 0.1236 ±0:0023
ProtGPT2 0.1054 0.1333 ±0:0020
ProtT5-XL 0.1172 0.1552 ±0:0011
SaProt (avg) 0.0973 0.1466 ±0:0026
TAPE 0.1200 0.1237 ±0:0018
ISM2 (cls) 0.0791 0.1200 ±0:0081
DPLM (avg) 0.1000 0.1299 ±0:0028
AMPLIFY (cls) 0.0873 0.0969 ±0:0025
ESM3 (cls) 0.0896 0.0881 ±0:0008
ESMC (avg) 0.0954 0.0945 ±0:0003
PTM-Mamba (phosphosite)b 0.0998 0.1218 ±0:0019

a For pLM with CLS versus average token embedding alternatives, the 
best performing one is shown.

b PTM-Mamba models use ESM2 embeddings for kinases. Since 
PTM-Mamba lacks a CLS token and includes special tokens for the 
phosphorylated residue, we used the embedding of that residue instead. The 
best results in each column are shown in bold. The versions of the models 
are specified in Table 4, available as supplementary data at 
Bioinformatics online.
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underscore that there is additional information in these ki
nase categorizations that cannot be captured solely with se
quence information. The detailed list of results obtained with 
all pLMs obtained on the BZSM with this additional kinase 
information is provided in Table 2, available as supplemen
tary data at Bioinformatics online.

3.6 Comparing the best-performing pLMs on 
different random DARKIN splits
As ESM1B and SaProt emerge as the two top-performing 
pLMs when paired with the BZSM model (Table 3), we fur
ther evaluated their performance on three additional random 
splits of the DARKIN dataset to facilitate a more 

Figure 4. Performance comparison of BZSM models across different pLMs. The x-axis represents the average precision (AP) and the y-axis lists the 
evaluated pLMs. Light gray bars correspond to results obtained using the CLS token representation, while dark gray bars correspond to results obtained 
using the average of all token embeddings. Error bars indicate standard deviation across multiple runs.

Table 3. The BZSM performance trained with sequence embedding and other kinase information.a

Embedding Base þ Family þ Group þ EC þ Family þ Group þ EC

OneHotEnc 0.0634 0.1107 0.0832 0.0802 0.1098
Blosum62 0.0327 0.0318 0.0310 0.0337 0.0323
NLF 0.0419 0.0391 0.0425 0.0400 0.0426
ProtVec 0.0959 0.1262 0.1129 0.1214 0.1354
ProtBERT (cls) 0.0842 0.1170 0.1077 0.1132 0.1273
ProteinBERT 0.1236 0.1506 0.1215 0.1367 0.1359
ProtT5-XL 0.1552 0.1701 0.1531 0.1674 0.1731
ESM1B (cls) 0.1631 0.1740 0.1688 0.1680 0.1769
ESM1v (cls) 0.1640 0.1737 0.1653 0.1652 0.1734
ESM2 (avg) 0.1391 0.1588 0.1453 0.1496 0.1638
DistilProtBERT (cls) 0.1167 0.1360 0.1292 0.1287 0.1441
ProtGPT2 0.1333 0.1476 0.1412 0.1419 0.1557
Ankh-Large 0.0840 0.1417 0.1135 0.1178 0.1594
ProtAlbert (cls) 0.1281 0.1269 0.1276 0.1285 0.1372
SaProt (cls) 0.1292 0.1696 0.1424 0.1434 0.1800
TAPE 0.1237 0.1379 0.1333 0.1310 0.1455
ISM2 (cls) 0.1200 0.1275 0.1260 0.1333 0.1374
DPLM (avg) 0.1299 0.1427 0.1318 0.1368 0.1420
AMPLIFY (avg) 0.0896 0.0968 0.0944 0.0969 0.1066
ESM3 (cls) 0.0881 0.1484 0.1220 0.1238 0.1611
ESMC (cls) 0.0866 0.1672 0.1136 0.1401 0.1754
PTM-Mamba (phosphosite)b 0.1218 0.1432 0.1292 0.1346 0.1471

a The mean macro APs are shown. Of CLS and embedding averaging, only the best-performing model results are listed.
b PTM-Mamba models utilize ESM2 embeddings for kinases. Since PTM-Mamba lacks a CLS token and includes special tokens for the phosphorylated 

residue, we used the embedding of that residue instead. The best results in each column are  shown in bold.
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comprehensive comparison between these two pLMs. While 
both models demonstrate competitiveness, SaProt consistently 
outperforms ESM1B slightly across all runs on these four dif
ferent splits (Table 4). The performance of SaProt underscores 
the added value of structural information.

3.7 Extended evaluation of kinase family, group, 
and phosphosite predictions
We evaluated model performance on all DARKIN splits using 
macro AP at multiple levels: family AP, where kinase predic
tions are aggregated by their families; group AP, where kinase 
predictions are aggregated by their groups; and phosphosite 
AP, which evaluates precision for phosphosite-specific predic
tions. We also calculated the hit@k accuracy for these models 
(Table 3, available as supplementary data at Bioinformatics 
online). In all these metrics, SAProt shows slightly better 
performance.

Additionally, we introduced a metric, Masked Group AP, 
which focuses on precision within the true group by exclud
ing irrelevant kinases from the predictions. This metric works 
by masking logits for kinases outside the ground-truth kinase 
group, effectively setting them to negative infinity. This met
ric simulates a scenario where the model perfectly identifies 
kinase groups and predicts within the group. This allows us 
to measure the model’s ability to rank kinases accurately 
within groups. Our findings, summarized in Table 4, show 
that Masked Group AP significantly outperforms standard 
AP, with values greater than twice those of standard AP cal
culated over all classes. This improvement demonstrates 
the strong impact of incorporating group-level information, 
suggesting that if kinase groups could be predicted accu
rately—whether by this or a separate model—the 

performance jump in kinase ranking could be substantial. 
This insight suggests a promising direction for future re
search, where accurate group predictions could serve as a ba
sis for refining kinase-level predictions.

3.8 Fine-tuning of phosphosite and kinase encoders
To evaluate if task-specific fine-tuning improves the perfor
mance, we extended the original BZSM setup—which keeps 
phosphosite and kinase embeddings fixed and only learns the 
compatibility matrix—by adding four fine-tuning variants 
and evaluating them using the two well-performing pLMs, 
ESM1B and ProtT5-XL. First, we allowed end-to-end fine- 
tuning of the phosphosite encoder while keeping the kinase 
encoder frozen and still learning the compatibility matrix W. 
Next, we gradually unfroze the kinase encoder, reinitializing 
and training either its final transformer block or, in a deeper 
variant, the last two blocks, so that both phosphosite and ki
nase representations could adapt jointly with the compatibil
ity matrix W. Finally, in the fourth variant we experimented 
with a fully shared encoder that produces both phosphosite 
and kinase embeddings; here, the entire model is fine-tuned 
jointly, and compatibility is computed via a simple dot prod
uct, eliminating the need for W. Each regime was tested with 
two kinase representations: sequence-only embeddings and 
appending the sequence embeddings with family, group, and 
EC information vectors.

As presented in Table 5, fine-tuning the pLM encoders 
does not guarantee improved performance. Instead, the 
results were inconsistent across different configurations. For 
the ESM1b model, the highest performance was AP of 
0.1911, achieved by reinitializing the final two layers of both 
the phosphosite and kinase encoders using the full set of ki
nase features. However, this represents only a marginal 

Table 5. Experiments on fine-tuning ESM1b and ProtT5-XL, in which we employ transformers to fine-tune either the phosphosite model or the 
phosphosite and kinase model simultaneously.a

Transformer Configuration BZSM Dot product Kinase features AP

ESM1B ProtT5-XL

Fully fine-tune transformer, remove BZSM ✓ Seq 0.0996 0.1593
Fully fine-tune phosphosite model, freeze kinase model ✓ Seq 0.1622 0.1298
Reinitialize last layer of phosphosite and kinase models ✓ Seq 0.1852 0.1375
Reinitialize last two layers of phosphosite and kinase models ✓ Seq 0.1283 0.1285
Fully fine-tune phosphosite model, freeze kinase model ✓ Seq, Family, Group, EC 0.1638 0.1765
Reinitialize last layer of phosphosite and kinase models ✓ Seq, Family, Group, EC 0.1669 0.1800
Reinitialize last two layers of phosphosite and kinase models ✓ Seq, Family, Group, EC 0.1911 0.1575

a As a baseline evaluation, we remove BZSM and evaluate zero-shot predictions by the dot product of learned kinase and phosphosite representation. 
ESM1b embeddings are obtained using CLS token representation, while ProtT5-XL embeddings are obtained using the average of all token embeddings. 
Training and evaluation protocols are the same for both pLMs. The best performing models' results are shown in bold.

Table 4. The mean macro AP scores at multiple levels (family, group, phosphosite) for the two best-pLMs, ESM1B (Family þ Group þ EC) and SaProt 
(Family þ Group þ EC), on four random DARKIN splits for the BZSM.a

Split Embedding AP Phospho-site AP Family AP Group AP Masked Group AP

Split 1 ESM1B (cls) 0.1769 0.2830 0.2278 0.3959 0.4054
SaProt (cls) 0.1800 0.3053 0.2384 0.3903 0.3868

Split 2 ESM1B (cls) 0.1536 0.2747 0.1989 0.3689 0.3644
SaProt (cls) 0.1599 0.2929 0.2087 0.3649 0.3702

Split 3 ESM1B (cls) 0.1531 0.2951 0.1987 0.3747 0.3508
SaProt (cls) 0.1627 0.3142 0.2104 0.3663 0.3598

Split 4 ESM1B (cls) 0.1652 0.3118 0.2142 0.3969 0.3563
SaProt (cls) 0.1690 0.3482 0.2205 0.4069 0.3674

a The best performing results for each split comparison are shown in bold.
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improvement over other configurations and comes at a nota
ble computational cost. Similarly, the ProtT5-XL model saw 
a slight performance increase to an AP of 0.1800 when reini
tializing the last layer of both encoders. Notably, most other 
fine-tuning strategies resulted in a decrease in performance 
for both models.

We explored other fine-tuning strategies. To arrive at 
phosphosite-aware and kinase-aware pLMs, we conducted 
comprehensive experiments in which we fine-tuned pLMs 
with kinase- and phosphorylation-related auxiliary tasks. 
These tasks include (i) phosphorylation prediction, given a 
potential phosphosite and its surrounding sequence, the 
model is trained to predict if this site is phosphorylated or 
not. (ii) Kinase group prediction, given the kinase domain se
quence, predicting the group of the given kinase. This is a 
multi-class classification task. (iii) Contrastive learning on 
family/group relations. In this task, the model should learn 
the kinase family/group relationships in a contrastive learning 
setup. We present the dataset, experimental methods, and the 
results in the Section 4, available as supplementary data at 
Bioinformatics online. None of these phosphosite and kinase 
fine-tuning strategies match the performance of the end-to- 
end fine-tuning presented above (AP score of 0.1911) 
obtained by reinitializing the last two layers of the 
ESM1B model.

4 Conclusion
Focused on the zero-shot task of assigning phosphosites to 
understudied dark kinases, DARKIN offers a novel bench
mark for evaluating pLMs. As it is easy to fall into the data 
leakage pitfalls in these types of problems, as raised and dis
cussed in drug-target prediction (Chatterjee et al. 2023), drug 
synergy prediction (Beyza Çandır et al. 2025), in genomics 
(Whalen et al. 2022), or link prediction (Bri�ere et al. 2025), it 
is important to evaluate the models in robust evaluation 
frameworks to assess the generalization of these models 
(Bernett et al. 2024). In this work, the train, validation, and 
test splits are carefully designed to follow ZSL and kinase- 
related issues. We evaluate the pLMs’ representation capabil
ities in this problem using two zero-shot classifiers. Our 
results demonstrate the superior performance of the ESM 
models, the ProtT5-XL, and the SaProt models.

Based on our results using the DARKIN dataset, dark 
kinase–phosphosite prediction remains a highly challenging 
task for the current pLMs. The highest AP score achieved 
was 0.1911 using fine-tuning pLMs, which considerably out
performs random guessing (0.03 by averaging AP over 1000 
runs of randomly generated ranking of kinases for a given 
site), but can be considered low overall. The low performance 
could be due to several reasons. There are challenging cases 
where the phosphosite sequences are almost identical, but the 
associated kinase sets for these phosphosites differ. This dif
ference could be due to a true biological difference that can 
be explained by a structural or functional difference (a re
quired interaction partner or the same cellular localization), 
or it could also be an issue of data incompleteness. While 
some kinase–phosphosite pairs are truly associated, they 
might not have been experimentally studied and therefore are 
not reported as associated pairs. We should also note that the 
performances in a deployed model of dark–kinase associa
tions are likely to be higher. To ensure a sufficient number of 
examples in the evaluation, as explained in Section 2, we 

switched the light and dark kinases in the train and test sets. 
In this way, the test set included the well-studied kinases with 
more examples, and the training set included the under
studied kinases. While this strategy is useful for benchmark
ing purposes, it poses a challenge in training, as the training 
data contains many kinases with few examples. Since the 
deployed model uses the well-studied kinases as well, it is 
likely to have better predictive performance.

In this study, we excluded fusion kinases and non- 
canonical kinase isoforms in constructing the datasets. This 
was due to the lack of annotation of their kinase domains in 
some cases and the low number of known associated phos
phosites, which made it difficult to reliably evaluate the mod
els’ performance on these kinases. These kinase forms can 
play crucial roles in disease contexts such as cancer, where 
gene fusions or isoform-specific events give rise to novel or 
dysregulated signaling activities (Stransky et al. 2014, 
Gonzalez and McGraw, 2009). Thus, zero-shot predictions 
coupled with experimental validation on these kinases can 
open new avenues for understanding the functional impact of 
isoforms and oncogenic fusions.

The study focused on the ZSL framework. Another prom
ising direction and interesting benchmark is the few-shot 
learning problem, in which the model leverages the few 
known phosphosites of the kinases during the training. The 
current DARKIN dataset can be modified for this setup eas
ily. We hope this novel benchmark will facilitate comprehen
sive evaluations of pLMs and dark kinase prediction models, 
contributing to protein biology research.
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