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 A B S T R A C T

Renewable Energy Sources (RES) play a significant role in the green energy transition. Recently, state support 
for RES has been declining or even abandoned. In this context, corporate Power Purchase Agreements (PPAs) 
represent an alternative financial instrument for new RES installations. PPAs can mitigate investment risks 
and the active participation in different market segments, which is achievable considering the co-location of 
Battery Energy Storage Systems (BESS). A hybrid scheme of a corporate PPA for a co-located Photovoltaic 
(PV) and BESS asset is examined in this paper under a semi-contracted and semi-merchant scheme aiming at 
ensuring bankability for the asset and profit maximization through market participation. A probabilistic neural 
network is developed to determine a secure Pay as Delivered PPA delivery profile, and a Mixed Integer Linear 
Programming model is developed for the optimal sizing, scheduling, and dispatch of stored energy to different 
electricity market segments. The Greek electricity market is selected for the investigation of the proposed 
methodology, being a market with a high share of PV. The findings suggest that higher capital expenditures 
reduce optimal BESS capacity, while lower offer greater flexibility in BESS size. As the amount of delivered 
power under the PPA increases, the RES investor, as active market participant, must schedule the asset up to 
several days if grid charging is not possible.
1. Introduction

Renewable Energy Sources (RES) play a crucial role in energy tran-
sition, offering solutions to meet the growing electricity demand and 
mitigate the environmental impacts from fossil fuels [1]. Indicatively, 
for the year 2024, RES accounted for 92.5% of global net power 
capacity additions, with Photovoltaics (PV) alone contributing more 
than three-quarters of this growth [2]. To further support RES inte-
gration, governments incentivize private investment through various 
support mechanisms including Feed-in Tariffs (FiT), Feed-in Premiums 
(FiP), Contracts for Difference (CfD) and Tradable Green Certificates 
(TGC) [3,4], which are typically Pay as Produced (PaP) contracts with 
corporations or governments as prominent buyers [5]. However, since 
such supporting schemes result to discriminatory market rules for re-
newable energy injection, grid stability is significantly challenged. This 
often leads to RES curtailments that may reduce project profitability by 
lowering the optimal RES size, decreasing the Net Present Value (NPV) 
and increasing the Levelized Cost of Electricity (LCOE) [6,7].

I This article is part of a Special issue entitled: ‘SyNERGY MED 2024’ published in Renewable Energy.
∗ Corresponding author.
E-mail address: g.gousis@uowm.gr (G. Gousis).

As technology costs decrease, governmental support is reduced [8] 
and RESs are forced to seek new financial and technological solutions 
to remain viable following the common market rules. As a result, cor-
porate Power Purchase Agreements (PPAs) have emerged as one of the 
most effective financial risk mitigation instruments for RES investments 
for RES without any other financial support [9]. With a fixed or indexed 
price for a predefined electricity volume over a multiyear horizon, PPAs 
reduce exposure to spot price fluctuations (i.e., market clearing price 
of Day-Ahead Market (DAM) and Intra-Day Market), providing revenue 
certainty that can attract investments [5], and improve the bankability 
of RES [10]. Under conventional PPAs, producers commit to selling 
the entire volume of electricity generated [11]. Among PPAs, Pay as 
Delivered (PaD) PPAs create a prevalent unsubsidized business model, 
shifting from pure generation-based approaches toward consumption-
oriented contracts that emphasize real-time, on-demand renewable 
power delivery without putting stress on the operational limits of the 
electricity system.
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 Nomenclature  
 Symbol Definition  
 𝑃 𝑡

PV PV power output at time 𝑡 (MW)  
 𝑃 𝑡

PPA Contracted power under PPA at time 𝑡 (MW)  
 𝑃𝑃𝑃𝐴,𝑚𝑎𝑥 Maximum Power contracted under the PPA 

(MW)
 

 𝑃 𝑡
BESS Power output of Battery Energy Storage System 

(MW)
 

 𝑃PV, y-1 The PV power output of time-step 𝑡 for the 
previous year 𝑦 − 1 (MW)

 

 𝑃 𝑡
BESS,max Maximum Power output of Battery Energy 

Storage System (MW)
 

 𝑃 𝑡
B2PPA Power delivered from BESS to fulfill PPA (MW)  

 𝑃 𝑡
C,PV Power Surplus of PV production and contracted 

Power under the PPA (MW)
 

 𝑃 𝑡
𝐶 BESS charging power at time 𝑡 (MW)  

 𝑃 𝑡
𝐷 BESS discharging power at time 𝑡 (MW)  

 𝑃 𝑡
𝑟𝑒𝑗 Rejected (curtailed) power at time 𝑡 (MW)  

 𝑃 𝑡
𝑃𝑃𝐴,𝑑𝑒𝑙 Power delivered to PPA contract (MW)  

 𝑃 𝑡
𝐼𝑆𝑃𝑢𝑝 Power sold in ISPup (MW)  

 𝑃 𝑡
𝑚𝐹𝑅𝑅𝑢𝑝 Power sold in mFRRup (manual Frequency 

Restoration Reserve up) (MW)
 

 𝑃 𝑡
𝐷𝐴𝑀 Power sold in day ahead market (MW)  

 𝑃 𝑡
𝐺2𝐵 Power imported from the grid to BESS  

 𝑃𝐷𝐼𝐹 ,𝑐𝑙 The Diference 𝑃 𝑡
𝑃𝑉 − 𝑃 𝑡

𝑃𝑃𝐴  
 𝜂𝐶 BESS charging efficiency  
 𝜂𝐷 BESS discharging efficiency  
 𝑐𝐵𝐸𝑆𝑆,𝑙𝑜𝑠𝑠𝑒𝑠 coefficient of losses for self-discharge  
 SoC𝑡 State of Charge of BESS at time 𝑡 (MWh)  
 SoC𝑡𝑚𝑎𝑥 Maximum State of Charge of BESS (MWh)  
 𝑐𝑡DAM Day-ahead market clearing price at time 𝑡

(e/MWh)
 

 𝑐𝑡ISPup Integrated Scheduling Process up (ISPup) price 
(e/MWh)

 

 𝑐𝑡mFRRup mFRRup price (e/MW)  
 𝑐PPA Strike price of PPA (e/MWh)  
 𝑐𝑡rej Penalty price for rejected PV power (e/MWh)  
 𝑐𝑝𝑒𝑛 Penalty amount per MW not delivered to PPA 

(e/MWh)
 

 𝑝𝑒𝑛𝑡,𝑦 Amount of penalty for power not delivered e  
 𝑁(𝑚, ℎ) The number of time-steps referring to the hour ℎ

of the day of the month 𝑚
 

 𝐶𝐴𝑃𝐸𝑋𝑃𝑉 Capital expenditure for PV system (e/kW)  
 𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 Capital expenditure for BESS (e/kWh)  
 𝐶𝐴𝑃𝐸𝑋0 Capital expenditure for the PV-BESS asset at 

year 0(e)
 

 𝐶𝐴𝑃𝐸𝑋0
𝑃𝑃𝐴 Capital expenditure of the asset contracted 

under the PPA (e)
 

 𝑞𝐶𝐴𝑃𝐸𝑋 The quota of CAPEX that REP covers through 
the PPA revenue

 

 𝑂𝑃𝐸𝑋𝑃𝑉 Operational expenditure for PV (e/kW)  
 𝑂𝑃𝐸𝑋𝐵𝐸𝑆𝑆 Operational expenditure for BESS (e/kWh)  
 𝑂𝑃𝐸𝑋𝑦 Operational expenditure for PV-BESS asset (e)  
 𝑂𝑃𝐸𝑋𝑡

𝑃𝑃𝐴 Operational expenditure of the asset contracted 
under the PPA (e)

 

 𝑦 Year of the PPA  
 𝑦𝑃𝑃𝐴 Duration of PPA in years  
 𝑟 Discount rate  
 𝑟𝑢 Discount rate for Utility functions  
 𝑏ℎ BESS capacity in hours (h)  
 𝑐𝑙 Certainty level (%)  
 𝑙𝑏 Lower bound 𝑙𝑏 = 1 − 𝑐𝑙  
 𝑈REP1 Utility of REP in Scenario 1 in Nash Bargaining  
 𝑈REP2 Utility of REP in Scenario 2 in Nash Bargaining  
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 𝑈off-takerUtility of off-taker in Nash Bargaining  
 𝑁𝑈 Nash Utility function  
 RMSE Root mean square error  
 𝐸𝑃𝑃𝐴,𝑐𝑙 Energy traded under the PPA for certain cl  

A technological option for RES to improve competitiveness and re-
main financially viable is the hybridization with Battery Energy Storage 
Systems (BESS), which reduces RES stochasticity and optimizes direct 
market participation strategies [12]. Optimal market participation can 
be further enhanced with accurate power output forecasting. Therefore, 
new RES probabilistic forecasting methodologies have emerged, which 
enable the quantification of forecast uncertainty and its integration into 
market bidding, and BESS scheduling [13], thereby hedging against 
imbalance costs and price volatility [14]. Quantile regression provides 
a simple and computationally efficient way to estimate conditional 
quantiles, though its performance is limited. Machine learning and 
deep learning methods, such as quantile forests, or neural networks, 
offer more accurate and distributional forecasts, but at the cost of 
higher computational requirements. This is particularly relevant in 
electricity markets with high PV penetration, such as Greek, where 
prices are strongly influenced by weather-driven variability and follow 
the so-called ‘‘duck curve’’ effect [15].

The motivation of this work is to explore how PV-BESS assets can 
achieve both financial viability and operational flexibility in mod-
ern electricity markets. With the integration of storage and accurate 
forecasting, PV-BESS systems evolve from variable generators into dis-
patchable assets, capable of participating providing firm and control-
lable output. However, despite this enhanced capability, financing such 
projects remains challenging due to high capital costs and uncertain 
merchant revenues. In this context, we examine a semi-contracted, 
semi-merchant PV-BESS asset, an area that remains unexplored. The 
contracted share under a PaD PPA secures long-term revenues and 
enhances bankability, while the merchant share allows the producer to 
benefit from high market prices. In this work, the BESS is employed 
not only to balance deviations from the contracted PPA profile, but 
also to participate in electricity markets and capture additional value. A 
Probabilistic Neural Network is used to generate a secure PPA delivery 
profile. Specifically, a Bayesian Long Short-Term Memory (B-LSTM) 
network is applied to capture temporal dependencies in PV generation, 
quantifying uncertainties, thereby providing a probabilistic forecast 
that supports risk-aware contract scheduling. Mixed-Integer Linear Pro-
gramming (MILP) are widely used in energy system optimization, 
particularly for unit commitment, investment planning, and storage 
scheduling, as they can capture operational decisions and continuous 
power flows alongside binary choices [16]. However, its combination 
with deep learning probabilistic forecasting has not yet been exten-
sively explored. This combination is well-suited for addressing the chal-
lenge of uncertainty management and revenue maximization in dual 
corporate PPA and the direct electricity market exposure framework.

2. Literature review

2.1. The role of PPAs in RES financing and risk management

Bilateral contracts like PPAs help reduce exposure to uncertainties 
as discussed. PPAs, typically spanning 5 to 20 years, use transmission 
or distribution networks to deliver electricity and establish a direct 
agreement between a producer and a corporate off-taker. RES PPAs 
are becoming more mature and cost-competitive, attracting businesses 
and investors seeking sustainability and clean power procurement, 
while helping corporations reduce their environmental footprint [17]. 
An extended review that dives into the identity, the description, and 
finally classifies renewable PPA structures and the relevant contracted 
parameters is presented in [18]. PPAs can be classified into PaP and 
PaD contracts. PaP PPAs typically have lower electricity prices, and 
PaD contracts, studied in this work, command higher prices due to the 
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stochasticity of RES, which generates additional costs for the producer, 
while also facilitating demand matching.

Research in [11,13,19,20], examines reliant PPA structures based 
on the PaD concept, combining energy storage technologies like BESS 
for ensuring the delivery of production when required. Optimal mixes 
when moving from annual obligation to time-matched PPAs, and the 
effect of geographical pooling of different RES technologies in the 
PPA parameters is examined, concluding that solar and wind projects 
have limited locations suitable for installation, which limits the op-
tions of geographical distribution in providing firm power supply [19]. 
The procurement of large consumers through PaD PPAs is considered 
showing that off-site renewable low priced PPAs are preferred over 
conventional PPAs despite variability [20]. A PV-BESS asset to sell 
electricity to host buildings under a PaD or Time-of-Use PPA showing 
that, under the proposed procurement model, community-owned solar 
projects can regain economic viability by combining PaD PPA with 
Demand-Side Management (DSM) services [21]. A credit risk model for 
renewable energy PPAs that jointly values the PPA from the offtaker’s 
and producer’s perspective, that takes into account the implicit value 
of reducing price fluctuations and quantifies the expected benefit and 
loss is suggested in [22].

While research examines PaD RES PPAs, often incorporating BESS 
to firm delivery, no research has examined a PV-BESS asset partially 
contracted under a PaD PPA structure, where part of the generation is 
sold under a contract and the rest is exposed to market conditions.

2.2. Power forecasting for PaD RES PPAs

Predictive and probabilistic modeling, which can quantify uncer-
tainties, is used in [11,13] to mitigate risks of PaD RES PPAs. Since 
the accuracy of power production is of outmost importance the Long-
term PV power output predictions are crucial for identifying trends and 
seasonal variations in generation [23], necessitating effective balancing 
strategies for generation under PaD PPAs and contributing to optimal 
BESS sizing. A variety of machine learning techniques, including hybrid 
machine learning architectures [24], B-LSTM models, which we use 
in this work, have been applied for PV forecasting, offering improved 
capability to capture temporal dependencies and quantify uncertainty 
in generation profiles [25,26]. Short-term PV power output predic-
tions can contribute to optimal scheduling and provide advantages 
such as micro-grid balancing [27] and appropriate short-term energy 
delivery [28] and reducing balancing costs [11].

Nevertheless, the literature on methodologies to construct and de-
termine a secure delivery profile for multi-year horizon PaD PPAs is 
scarce. In our work, we employ a long-term, year-ahead B-LSTM model 
to generate a monthly delivery profile, quantifying the uncertainty of 
falling short of the contracted volume.

2.3. RES-storage systems as active market participants and dispatchable 
entities

Accurate forecasting combined with storage transforms a REP into 
an active market participant like a dispatchable entity and a Balancing 
Service Provider (BSP) to the system. This perspective is examined in 
the literature. Some research focuses on long-term analysis for energy 
trading in different market segments [29] and long-term planning of co-
located RES storage assets [30] and others on short-term analysis [31,
32]. The optimal siting of BESS in Distribution Networks (DN) under 
high PV [33] and wind [34] is examined, concluding that significant 
improvement in energy losses, voltage, and line profile is achieved 
by the introduction of BESS units in a DN with high PV and wind 
penetration energy market. Another aspect of research aims at the 
optimal sizing of RES-BESS installation under market participation 
or self-consumption [35–37]. In [35] authors explore BESS in hybrid 
PV-BESS setups, emphasizing their role in energy self-consumption, 
frequency and congestion management, and DSM. They analyze BESS 
3 
research into four key areas: (a) Techno-economic Analysis, (b) Op-
erational Control, (c)System Sizing, and (d) Demand Response (DR), 
highlighting a research gap in DR integration. The optimal residential 
PV-BESS sizing and power-to-energy ratio values based on electricity 
price, consumption class, and supporting schemes (self-consumption vs. 
net-billing) across five Mediterranean countries is examined in [36]. 
Hybrid RES-BESS systems, primarily addressing BESS sizing, operation 
economic performance and viability through participation in short-term 
wholesale electricity markets is optimized in [12]. In [38] a hybrid RES-
BESS setting employs a stochastic optimization approach to optimize 
the operation of a price-taker PV-BESS hybrid station in both DAM and 
balancing markets (BM).

A comprehensive review of the literature on the combined operation 
of variable RES and different storage assets in short-term markets is 
provided in [39]. The study investigates how joint ownership of renew-
able and storage assets can create economies of scope in competitive 
electricity markets. It evaluates the economic viability of adding BESS 
to existing PV systems under different market types and ownership 
models, finding that user-owned BESS yields greater individual sav-
ings, while developer-owned shared BESS delivers broader community 
benefits. It underscores the need to promote and incentivize BESS 
for efficient trading and shared infrastructure. Policymakers should 
encourage diverse electricity trading mechanisms like peer-to-peer to 
optimize BESS capacity and economic returns [40]. Some researchers 
are engaged in optimal sizing and market participation of wind-BESS 
stations [41,42] examining their engagement in different energy mar-
kets, including the energy reserve market and providing short-term 
frequency control. A novel algorithm is developed to optimize the sizing 
and long-term operation of a hybrid station, comprising RES units 
such as a PV plant, a wind plant, or a combination with a behind-
the-meter BESS. The primary objective is to determine the optimal 
BESS configuration that maximizes the net operating revenues of the 
hybrid energy system through its participation in various wholesale 
market segments over the long term. Authors investigate the operation 
of a hybrid pumped storage wind-solar system under different seasonal 
conditions, assessing the cost advantages and disadvantages before and 
after adding a hydro-pump station. It focuses on the dispatching of 
the asset to enhance overall system efficiency [43]. Evaluation of the 
economic feasibility of hybridizing an existing grid-connected wind 
farm with co-located PV, with or without embedded BESS, from an 
investor’s perspective is examined in [44]. The study compares the 
LCOE of the co-located and purely PV asset and models hybrid plant 
operations over its lifetime. The findings indicate that co-location im-
proves export capacity utilization, reduces curtailments, especially with 
longer duration BESS, and enhances grid access opportunities while 
making hybridization a financially viable option for RES investors.

It is evident that the sizing, operational and economic performance, 
and viability of RES-BESS assets in different electricity market models 
and segments is extensively analyzed. However, while all these studies 
expose stochastic assets to market uncertainties non of the above is 
examining the aspect of bankability of a co-located RES-BESS asset. In 
the present work we examine a PV-BESS asset which has a firm income 
under a PaD PPA while it can participate in different market segments.

2.4. Contribution of this paper

In this work, a PaD PPA for a PV-BESS asset, with a single con-
nection to the grid point, which can absorb or which cannot absorb 
energy from the grid is studied. A portion of the generated power 
from the PV is contracted in order to ensure the project’s bankability. 
Only a part of the PV-generated power is contractually committed 
under the PPA, while the BESS plays a supporting balancing, role in 
meeting the contractual obligations. The main purpose of the BESS is 
to enable market exposure for the excess of generated power and taking 
advantage of potential high market prices becoming more profitable.

This work aims to contribute to the corporate PPA sector with the 
following points:
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1. Unlike previous studies focused mainly on contracting the full 
PV production using BESS to balance the miss-matches, or the 
assets are fully exposed to market uncertainties, this paper sug-
gests a semi-merchant, semi-contracted financial framework in 
which a portion of the PV generation is contracted a PaD PPA. In 
this way, the investment risks are reduced, while the bankability 
of the PV with BESS is improved. This partial contract simul-
taneously retains flexibility for additional market participation 
to exploit market opportunities, taking advantage of potentially 
high market prices improving profitability.

2. We construct a monthly dependent hourly firm delivery profile 
for the PaD PPA. This is achieved using a B-LSTM. B-LSTMs 
have been used to forecast PV output quantifying uncertainties 
in the short and medium term but not in the long term (year-
ahead) and not to construct PaD PPA delivery profiles according 
to the REP risk profile. Within this framework, the BESS plays 
a primarily supportive role for low-risk REPs profiles by firm-
ing the contract, while its main function is to capture market 
opportunities.

3. We formulate a MILP optimization model that simulates the 
semi-merchant, semi-contracted condition and jointly determines
the optimal sizing of the BESS and its hourly dispatch strategy 
to satisfy PPA delivery obligations while maximizing revenues 
from participation in multiple electricity market segments. The 
proposed framework integrates probabilistic forecasting outputs 
into the MILP model, enabling risk-adjusted operational schedul-
ing that accounts for forecast uncertainty and minimizes PPA’s 
imbalance costs.

4. We evaluate the operational and economic impacts of vary-
ing PPA contracted proportions, BESS capacities, and certainty 
levels, thereby providing an analytical foundation for assessing 
the trade-off between project bankability and exposure to high 
market prices.

3. Methodology

3.1. Problem description

In this paper, a REP with a utility scale PV and co-located BESS is 
examined, while the BESS can absorb or cannot absorb energy from 
the grid. REP’s primary objective is to contract a long-term PaD PPA 
for a portion of the power produced, with an electricity consumer at a 
fixed price, avoiding market price fluctuations and, to partially secure 
the investment. The following assumptions have been considered in 
this paper: (a) the REP’s top priority is to ensure the delivery of the 
contracted power by appropriately scheduling the usage of BESS in 
the event of a PV power deficit between the contracted power and 
the actual PV generation, (b) the off-taker’s electricity consumption 
exceeds the contracted power under the PPA scheme, eliminating the 
need for DSM, (c) the REP operates in an electricity market with high 
PV penetration, leading to market congestion and PV curtailments, and 
thus the sale of excess energy generated beyond the contracted PV 
power output is prevented in the case that the BESS cannot absorb 
energy from the grid. On the other hand, in case that the BESS can 
absorb energy from the grid, the REP may store low-market electricity 
during off-peak periods to enhance revenue opportunities and support 
PPA delivery. The BESS cannot charge from the grid during periods 
of PV generation. This restriction arises from the single point of grid 
connection, which prioritizes PV output. When PV production exceeds 
the contracted PPA power, the surplus must be directed either to the 
BESS because the market is congested. Conversely, if PV production 
falls short of the contracted power, the BESS must discharge to cover 
the deficit, thereby precluding simultaneous grid charging. (d) Since 
the PPA contracted power is matched with the demand of the off-taker, 
we assume that the energy traded under the corporate PPA contract 
cannot be curtailed. In this context, the surplus energy can be stored for 
4 
later delivery or sold in the market, while in the grid-charging scenario, 
additional stored energy may come from DAM purchases.

The second objective concerns the maximization of the income with 
the optimal allocation of the stored energy in the appropriate electricity 
market segments considering the dispatchable PV-BESS asset. The REP 
stores energy that is the result of excess power not contracted under 
the PPA or, in the case of grid-charging capability, from off-peak DAM 
purchases and uses BESS to engage in electricity markets. Depending 
on the scenario, the BESS is either charged exclusively from PV or both 
from PV and the grid. In both cases, the stored energy can be sold 
in DAM and BM in the upward direction, i.e. through the Integrated 
Scheduling Process up (ISPup) or the manual Frequency Restoration Re-
serve up (mFRRup). The market selection criterion therefore, the profit 
maximization, with the additional opportunity in the grid-charging 
scenario to perform price arbitrage between low-price and high-price 
periods.

The proposed dual approach guarantees that the REP:

• Achieves the financial stability necessary to make the PV-BESS 
asset bankable through the PaD PPA.

• Maximizes revenue through a BESS discharging strategy for mar-
ket participation, capitalizing on periods of high market prices 
and, in the grid-charging scenario, on price arbitrage opportuni-
ties, enhancing viability.

3.2. PV-BESS characteristics and PaD PPA profiles, terms, and conditions

Initially, the REP implements a long-term forecast for the PV gener-
ation. Accurate forecasts contribute to cost reduction by enabling more 
competitive bidding strategies. Probabilistic forecasting is particularly 
valuable as it accounts for uncertainties, quantifies them and mitigates 
errors associated with point forecasting. LSTM neural networks, when 
combined with numerical weather data, have demonstrated strong 
performance across various time series forecasting tasks, offering re-
liable predictions for different input types and forecasting horizons. 
A detailed review of deep learning applications in PV forecasting is 
presented in [45]. The PV generation is normalized using a min–max 
scaler to a range of 0 to 1 to facilitate modeling based on a beta 
distribution. In this paper, a year-ahead forecast is performed, utilizing 
a beta-distributed variable to predict PV generation over 8,760 h. As 
input data, we use historical PV generation values and relevant weather 
data. The output of B-LSTM is a beta distribution function calculation 
for each time step of the year 𝑡 ∈ [1, 8760]. To evaluate the long-term 
forecasting model, we export the expected PV power output 𝑃 (𝑡, 𝑐𝑙 =
50%) and we select the certainty level 𝑐𝑙 and the relevant lower bound 
with 𝑙𝑏 = 1−𝑐𝑙 to construct three different PPA power delivery profiles, 
for the scenario where the BESS cannot absorb energy from the grid 
(Scenario 1), and another for the scenario in which the BESS can absorb 
energy (Scenario 2), relevant to the risk profile of the REP as follows:

For each month of the year 𝑚, we calculate the average of each hour 
of the day (ℎ1 − ℎ24) using the scaled values. 

𝑃 (𝑚, ℎ, 𝑙𝑏) = 1
𝑁(𝑚, ℎ)

∑

𝑡∈𝑇 (𝑚,ℎ)
𝑃 (𝑡, 𝑐𝑙) (1)

The PV power contracted under the PPA for the selected 𝑐𝑙 scheme is: 
𝑃 𝑡
𝑃𝑃𝐴 = 𝑃 (𝑚𝑡, ℎ𝑡, 𝑙𝑏) (2)

where: 𝑃 𝑡
𝑃𝑃𝐴 is the reconstructed time series value at timestep 𝑡, 𝑚𝑡

is the month corresponding to timestep 𝑡, ℎ𝑡 is the hour of the day 
corresponding to timestep 𝑡 and 𝑃 (𝑚𝑡, ℎ𝑡, 𝑙𝑏) is the precomputed average 
production for that specific month and hour.

Using this approach, REP designs a daily delivery profile for the 
PPA that adjusts on monthly basis to account for seasonal variations 
in weather conditions. This ensures that the contracted PPA power 
accurately takes into account the seasonal fluctuations in PV power 
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generation. As a result, power delivery during winter is lower and avail-
able for fewer hours, whereas in summer, the PPA power is higher and 
extends over more hours of the day. The contracted power in the PPA 
remains aligned with realistic production capabilities while factoring 
in a 𝑙𝑏 deal with the uncertainties of PV generation. This enables the 
REP to make well-informed decisions that balance risk and reliability, 
ultimately optimizing the performance of the PPA without relying much 
on the BESS or any absorbing grid power to fulfill the PPA Scenario 1 
or if REP wises more market exposure for the PV produced energy in 
Scenario 2. The PV system has an installed capacity of 𝑃𝑃𝑉 ,𝑚𝑎𝑥, while 
the BESS is designed to handle the maximum difference between the 
generated PV power of the previous year and the contracted power 
in the PPA, or the maximum contracted power, whichever is greater. 
Specifically, the BESS must be capable of absorbing the peak difference 
while preventing over-sizing and simultaneously be able to cover the 
maximum demand of the PPA. The terms and conditions of the PPA are 
the following (a) the duration of the PPA concerns 𝑦𝑃𝑃𝐴 years, (b) the 
producer is obliged to always deliver the contracted power. Considering 
that demand consistently exceeds the contracted power, the off-taker 
intends to get green energy for a portion of the consumed energy. 
The main incentives for the off-taker are avoiding electricity market 
price uncertainty, attracting investments through a greener profile, 
and potential benefits from Guarantees of Origin (GOs), although GOs 
are not quantified in this problem. The producer aims to cover part 
of the investment cost through a fixed price contract to ensure the 
asset is bankable, while also maintaining flexibility to participate in 
electricity market segments for the remaining part of the produced 
energy improving viability.

3.3. Simulation of market participation and BESS dimensioning

The scheduling and sizing of the BESS are determined by a MILP 
model that maximizes the NPV of the PV-BESS asset over the PPA 
duration 𝑦𝑃𝑃𝐴. Two operating scenarios are considered as discussed:

• Scenario 1: BESS can only be charged from surplus PV generation 
(no grid charging).

• Scenario 2: BESS can be charged from surplus PV generation or 
from the grid (price-arbitrage enabled).

3.3.1. Mathematical formulation

Mathematical formulation scenario 1. 
Objective Function 1 

max 𝑁𝑃𝑉 =
𝑦𝑃𝑃𝐴
∑

𝑦=1

1
(1 + 𝑟)𝑦

[8760
∑

𝑡=1

(

𝑃 𝑡,𝑦
PPA,del𝑐PPA + 𝑃 𝑡,𝑦

DAM𝑐
𝑡
DAM

+ 𝑃 𝑡,𝑦
ISPup𝑐

𝑡
ISPup + 𝑃 𝑡,𝑦

mFRRup𝑐
𝑡
mFRRup

− pen𝑡,𝑦 − 𝑐𝑡,𝑦rej𝑃
𝑡,𝑦
rej

)

− OPEX𝑦
]

− CAPEX0 (3)

Constraints Scenario 1 
𝑃 𝑡
PPA,del = 𝑃 𝑡

PPA − max
{

0, 𝑃 𝑡
PPA − 𝑃 𝑡

PV − 𝑃 𝑡
B2PPA

}

(4)

pen𝑡 = 𝑚𝑎𝑥[0,
(

𝑃 𝑡
PPA − 𝑃 𝑡

PPA,del

)

𝑐pen] (5)

SoC𝑡 = SoC𝑡−1 + 𝜂𝐶𝑃
𝑡
𝐶 −

𝑃 𝑡
𝐷

𝜂𝐷
− 𝑐BESS,losses SoC𝑡−1 (6)

0 ≤ SoC𝑡 ≤ 𝑏ℎ ⋅ 𝑃BESS,max (7)

0 ≤ 𝑃 𝑡
𝐷 = 𝑃 𝑡

B2PPA + 𝑃 𝑡
DAM + 𝑃 𝑡

ISPup + 𝑃 𝑡
mFRRup (8)

𝑃BESS,max = max
{

𝑃PPA,max, max
𝑡

(

𝑃 𝑡
PV − 𝑃 𝑡

PPA
)

}

(9)
5 
0 ≤ 𝑃 𝑡
𝐶,𝑃𝑉 = max

(

𝑃 𝑡
PV − 𝑃 𝑡

PPA, 0
)

(10)

0 ≤ 𝑃 𝑡
𝐶 ≤ 𝑃 𝑡

𝐶,𝑃𝑉 (11)

𝑃 𝑡
𝐶 ⋅ 𝑃 𝑡

𝐷 = 0 (12)

𝑃 𝑡
PV ⋅ 𝑃 𝑡

𝐷 = 0 (13)

𝑃 𝑡
rej = 𝑃 𝑡

PV − 𝑃 𝑡
PPA − 𝑃 𝑡

𝐶 (14)

CAPEX0 = 𝐶𝐴𝑃𝐸𝑋𝑃𝑉 𝑃PV,max + 𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 𝑃BESS,max 𝑏ℎ (15)

OPEX𝑦 = 𝑂𝑃𝐸𝑋𝑃𝑉 𝑃PV,max + 𝑂𝑃𝐸𝑋𝐵𝐸𝑆𝑆 𝑃BESS,max 𝑏ℎ (16)

Mathematical formulation scenario 2. 
Objective Function 2 

max 𝑁𝑃𝑉 (2) =
𝑦𝑃𝑃𝐴
∑

𝑦=1

1
(1 + 𝑟)𝑦

[8760
∑

𝑡=1

(

𝑃 𝑡,𝑦
PPA,del𝑐PPA + 𝑃 𝑡,𝑦

DAM𝑐
𝑡
DAM + 𝑃 𝑡,𝑦

ISPup

𝑐𝑡ISPup + 𝑃 𝑡,𝑦
mFRRup𝑐

𝑡
mFRRup − pen

𝑡,𝑦 − 𝑐𝑡,𝑦DAM𝑃
𝑡,𝑦
𝐺2𝐵

− 𝑃 𝑡,𝑦
rej 𝑐rej

)

− OPEX𝑦
]

− CAPEX0 (17)

Constraints Scenario 2  Eqs. (4)–(13), (15), (16) are applied.

0 ≤ 𝑃 𝑡
𝐶 ≤

{

𝑃 𝑡
𝐶,PV, if 𝑃 𝑡

𝐶,PV > 0,
𝑃 𝑡
G2B, otherwise,

(18)

0 ≤ 𝑃 𝑡
𝐶 ≤ 𝑃BESS,max (19)

3.3.2. MILP model interpretation
The first step for the REP is to select the contracted lower bound 

(𝑐𝑙) for the delivery of the PV power output according to its risk 
profile, thereby securing the PPA. Subsequently, the REP commits to 
an hourly contractual electricity delivery obligation, 𝑃 𝑡

PPA, for each time 
step 𝑡 of the year. Since the terms of the PPA include the obligation to 
deliver the contracted power, BESS dimensioning plays a critical role in 
fulfilling the agreement. Specifically, the BESS is activated in situations 
where PV generation alone is insufficient to meet the PPA obligation. 
Furthermore, BESS sizing is crucial for optimal market participation. In 
our formulation, the PPA power delivery profile is provided as an input 
to the optimization, while the BESS capacity and market participant 
scheduling is co-optimized over the contracted duration 𝑦PPA of the 
PPA. The parameter battery hours (𝑏ℎ) refers to continuous discharging 
at maximum power. We implement a day-ahead forecasting model us-
ing a LSTM neural network to predict PV output. This forecast serves as 
the final piece of information the REP relies on to make well-informed 
scheduling decisions for market participation. For the day-ahead PV 
power forecast, the LSTM takes as input historical PV generation data, 
relevant numerical weather data, and forecasted weather conditions for 
time step 𝑡. The literature suggests that day-ahead PV power forecasting 
is highly accurate [45,46]. Therefore, for this analysis, we assume the 
forecast to be 100% accurate for day-ahead or several days ahead, with 
𝑃 𝑡
PV = 𝑃 𝑡

PV, and use it to determine power surplus and deficit in fulfilling 
the electric power delivery obligations under the PPA. There is exten-
sive research in the field of electricity market prices prediction [47], 
and the relevant evaluation metrics have decreased, leading to more 
accurate electricity market price predictions. As a result, we assume 
that REP knows the electricity market prices 𝑐𝑡DAM, 𝑐𝑡ISPup, 𝑐𝑡mFRRup, in 
different segments of the electricity market. The mean hourly values 
are used if the resolution in time is different for the market parameters. 
Therefore, 𝑃 𝑡

𝑃𝑃𝐴 for different 𝑐𝑙, 𝑃 𝑡
𝑃𝑉  and market prices, are fed into the 

model. The objective functions (3) for Scenario 1 and (17) for Scenario 
2 both maximize the NPV from PPA revenues and market participation 
in the DAM, ISPup, and mFRRup segments, while subtracting penalties, 
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OPEX, and CAPEX. In Scenario 2, an additional cost term is included 
for purchasing energy from the grid to charge the BESS.

In both scenarios:

• Constraint (4) determines the contracted PPA power delivered, 
with any deficit supplied by BESS discharging.

• Constraint (5) applies a high penalty for non-delivery.
• The SoC dynamics in (6) include charging and discharging effi-
ciencies as well as self-discharge losses, while (7) enforces the 
BESS energy capacity limit.

• Discharging allocation is defined in (8), with simultaneous charg-
ing and discharging prevented by (12).

The key difference lies in the charging constraints:

• Scenario 1: Constraint (11) limits charging strictly to PV surplus 
after PPA fulfillment, as determined by (10).

• Scenario 2: Constraints (18)–(19) allow charging either from PV 
surplus or from grid imports, enabling price-arbitrage opportuni-
ties.

In both cases, the BESS power rating is determined by (9), ensuring 
sufficient capacity to meet either peak PPA shortfalls or the largest PV 
surplus. Rejected renewable power by the PV is calculated via (14), and 
CAPEX and OPEX are computed using (15) and (16), respectively. To 
calculate the total investment cost of the asset, the capital expenditures 
for the PV and BESS components were considered separately. The 
literature regarding cost estimation for co-located assets is limited, 
especially for hybrid PV-BESS systems that do not absorb energy from 
the grid. Such configurations, can effectively reduce connection costs 
due to simplified grid integration requirements [48].

𝐶𝑜𝑠𝑡𝑃𝑉 = (𝐶𝐴𝑃𝐸𝑋𝑃𝑉 + 𝑂𝑃𝐸𝑋𝑃𝑉 )𝑃𝑃𝑉 ,𝑚𝑎𝑥 (20)

𝐶𝑜𝑠𝑡𝐵𝐸𝑆𝑆 = (𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 + 𝑂𝑃𝐸𝑋𝐵𝐸𝑆𝑆 )𝑃𝐵𝐸𝑆𝑆,𝑚𝑎𝑥𝑏ℎ (21)

3.3.3. PPA fair price calculation
The optimization of the capacity of BESS in battery hours 𝑏ℎ and 

the optimal scheduling of market participation is a result of the PPA 
fair price. After the co-optimization described in Section 3.3.2 is imple-
mented, the next step is to find a fair price for the PPA. Nash Bargaining 
Theory provides an effective framework for determining the strike price 
in a PPA negotiation between a REP and an off-taker. The objective 
of this negotiation is to establish a mutually beneficial agreement that 
optimizes the gains for both parties. The Nash Bargaining Solution 
(NBS) offers a structured resolution to this problem by identifying 
an optimal strategy pair. Let 𝑈𝑅𝐸𝑃  and 𝑈𝑜𝑓𝑓−𝑡𝑎𝑘𝑒𝑟 denote the utility 
functions of the two negotiating parties, and let 𝑆1 and 𝑆2 represent 
their respective strategy sets. A strategy pair (𝑠∗1 , 𝑠∗2), where 𝑠∗1 ∈ 𝑆1
and 𝑠∗2 ∈ 𝑆2, is considered a Nash Bargaining Solution if it satisfies the 
following condition for each party 𝑖 [11]: 
𝑈𝑖(𝑠∗𝑖 , 𝑠

∗
(−𝑖)) ≥ 𝑈𝑖(𝑠𝑖, 𝑠∗(−𝑖)), ∀𝑠𝑖 ∈ 𝑆𝑖 (22)

where 𝑠𝑖 represents the strategy of one party, and 𝑠∗(−𝑖) denotes the 
strategy of the other party.

In the context of PPA strike price negotiations, the strategy choices 
correspond to different possible strike prices, while the utility functions 
represent the net benefits each party derives from the PPA at those 
prices.

REP wants to invest in an asset PV-BESS, but the usage of BESS is 
limited in the framework of the PPA according to the certainty level of 
the contracted power, and a part of the nominal capacity of the PV is 
used to deliver the PPA contracted power.

𝑈off-taker =
𝑦𝑃𝑃𝐴
∑

∑8760
𝑡=1 𝑃 𝑡,𝑦

PPA

(

𝑐𝑡,𝑦DAM − 𝑐𝑡,𝑦PPA
)

(1 + 𝑟𝑢)𝑦
(23)
𝑦=1

6 
Table 1
Cost specifications for PV and BESS.
 Cost items Cost specifications  
 𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 120–180 e/kWh [40]  
 𝐶𝐴𝑃𝐸𝑋𝑃𝑉 450–500 e/kW [55]  
 𝑂𝑃𝐸𝑋𝐵𝐸𝑆𝑆 4% of 𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 [40] 
 𝑂𝑃𝐸𝑋𝑃𝑉 7.5 e/kW [55]  
 Discount rate 4%, 8% 12% [56,57]  
 PPA duration 𝑦𝑃𝑃𝐴 10, 12, 14 years  

𝑈REP1 =
𝑦𝑃𝑃𝐴
∑

𝑦=1

∑8760
𝑡=1

(

𝑃 𝑡,𝑦
PPA,del𝑐

𝑡,𝑦
PPA

)

− OPEX𝑦PPA
(1 + 𝑟𝑢)𝑦

− CAPEX0PPA (24)

𝑈REP2 =
𝑦𝑃𝑃𝐴
∑

𝑦=1

∑8760
𝑡=1

(

𝑃 𝑡,𝑦
PPA,del𝑐

𝑡,𝑦
PPA − 𝑐𝐷𝐴𝑀𝑃 𝑡,𝑦

𝐵2𝑃𝑃𝐴

)

(1 + 𝑟𝑢)𝑦

−
OPEX𝑦PPA
(1 + 𝑟𝑢)𝑦

− CAPEX0PPA (25)

𝑈off-taker quantifies the off-taker’s discounted savings by contract-
ing power below the market price. 𝑈REP1 represents the REP’s total 
discounted revenue from the PPA minus associated operational and 
investment costs related to the PPA for scenario 1. For Scenario 2 REPs 
utility function 𝑈REP2, the term involving 𝑐DAM𝑃 𝑡,𝑦

B2PPA accounts for cost 
of stored energy to fulfill the PPA obligations. Since the origin of the 
stored energy cannot be explicitly tracked we conservatively assume 
that discharging from the BESS to fulfill the PPA incurs an average cost 
equal to the mean day-ahead market price of previous years, 𝑐DAM. This 
approach represents a simplified but cautious estimation.

Both scenarios are formulated with MILP in GAMS, using hourly 
resolution over one year. Parameters are common across scenarios. The 
solver co-optimizes optimal BESS power and energy ratings
(𝑃BESS,max, 𝑏ℎ), hourly dispatch schedules, PPA compliance metrics, 
market revenues, penalties, and curtailed energy while the PPA strike 
price is determined through an iterative procedure. From modeling and 
equations the conclusion that the optimal sizing of BESS and optimal 
BESS scheduling are independent of the fair price calculation can be 
obtained.

4. Case study and simulation

4.1. Data and parameters setup

For the evaluation of the results, a case study is conducted on the 
participation of the REP in the Greek electricity market. The Greek 
electricity market is structured in accordance with the European Target 
Model, which establishes harmonized regulatory and operational rules 
and implementation frameworks across all segments of the electricity 
market [49]. Also, it exhibits a high share of renewable energy, with 
PV capacity accounting for 28.6% of the total installed capacity, com-
parable to Italy (24.3%) and Bulgaria (20.1%), with a direct connection 
with them, Spain (25%), and Germany (31.5%) during the year of the 
case study [50]. Such high renewable PV penetration affects signifi-
cantly DAM price patterns, leading to the emergence of the duck curve 
phenomenon [15] and curtailments due to market congestion. The data 
of the market refer to 2023 [51,52] and a comprehensive review about 
the functionality of the Greek electricity market is reviewed in [53], 
and especially electricity balancing market in [54]. The PV generation 
data are coming from an existing PV in Northern Greece in the city of 
Kozani.

The parameters used in the numerical analysis are summarized 
in Table  1. In addition to the values shown in the table, different 
values of 𝑐𝑙 are examined for both PV and BESS. For the analysis, 
we use a discount rate of 𝑟 = 𝑟𝑢 = 8% as the central value for the 
calculation of the NPV and the 𝑈REP1 and 𝑈REP2, since this is a common 
internal rate of return for RES projects in the EU, and especially in 
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Fig. 1. Monthly PPA profiles, Expected power output and typical day for each month.
Greece [56,57]. Moreover, the PPA duration is set to 𝑦PPA = 12 years in 
the main case, and these values for 𝑟 and 𝑦PPA should be assumed unless 
stated otherwise. We allocate the installation and grid connection costs 
e.g. inverters, cables, and mounting systems, SCADA, between the PV 
and BESS components to avoid double counting one time for PV and 
one for BESS. These costs form part of the Balance of System (BOS), 
which typically account for around 65% of the total installed cost of 
utility-scale PV systems, according to [58]. The same report indicates 
a total installation cost of approximately 590 e/kW, with a projected 
reduction to 513e/kW by 2025. BESS costs declined by 93% from 2010 
to 2024, falling from 2230 e/kWh to 172e/kWh. In co-located PV-
BESS projects, a portion of the BOS specifically the grid connection, 
cables, transformer, switchgear, and SCADA systems, excluding invert-
ers, is shared between the two components resulting in a lower per-unit 
CAPEX compared to standalone PV and BESS installations. The upper 
values of Table  2 are consistent with the report, but since we examine a 
co-located project with cost sharing, we conduct a sensitivity analysis 
with lower cost assumptions to account for the cost-sharing and the 
ongoing decline in infrastructure prices.

OPEX includes annual operation and maintenance costs as well as 
degradation costs, which are often included in OPEX [40] or modeled 
as extra costs directly in the objective function [59], assuming a PPA 
with duration 𝑦𝑃𝑃𝐴 years.

4.2. PPA power profiles and long-term forecasting evaluation

Initially, the REP models PV power output with a year-ahead hourly 
forecast. After that, REP calculates the mean hourly values for each 
month to create a monthly dependent corporate PPA. Fig.  1 illustrates 
the mean non-scaled hourly power output for each month and the PPA 
obligation delivery. The year-ahead forecast’s is 𝑅𝑀𝑆𝐸 = 681 kW. 
For our calculations, the min–max scaled values 0–1 for the power 
production of the PV in the MILP simulation, are used so we assume a 
𝑃 = 1 MWp and the PPA power profiles are scaled appropriately.
𝑃𝑉 ,𝑚𝑎𝑥

7 
Fig. 2. Certainty level vs optimal BESS size.

4.3. Sensitivity analysis economic evaluation

We assume that the fully renewable PaD PPA, which is the most 
likely to be incentivized, serves as the main scenario on which we 
conduct a more detailed analysis. We implement a sensitivity analysis 
for different cost cases, as they appear in Table  1 and different value 𝑐𝑙, 
for PV and BESS. In Scenario 1, we simulate the case for 𝑐𝑙 = 99%, 95%
and 90%. In Scenario 2 the BESS can use grid-imported energy to cover 
the PPA obligations. So in Scenario 2 we simulate the case for lower 
values [11] of 𝑐𝑙 = 75% and 50% which correspond to the expected 
average value.

Fig.  2 analyzes the relationship between certainty levels and re-
quired BESS hours at varying CAPEX values (120, 150, and 180 
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Fig. 3. Certainty level vs Net Present Value.

Fig. 4. Certainty level vs PPA revenue quota over annualized CAPEX.

Fig. 5. Certainty level vs PPA fair price (𝑐𝑃𝑃𝐴)

e/kWh). The continuous curves refer to capacity in hours and the 
intermittent to capacity in 𝑀𝑊ℎ. The findings suggest that higher 
CAPEX reduces optimal BESS capacity and storage hours, while lower 
CAPEX offers greater flexibility in storage system sizing. We observe 
8 
Fig. 6. BESS scheduling over the worst case period of PV production.

that the optimal capacity for 𝑐𝑙 = 90% is independent of the considered 
𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 . This suggests that securing the PPA at a relatively low 
𝑐𝑙 requires a large BESS capacity, indicating that the REP is willing 
to invest in a more expensive BESS to make the agreement viable. 
After dimensioning BESS we calculate the fair PPA price 𝑐𝑃𝑃𝐴. Fig.  5 
illustrates the impact of 𝑐𝑙 and CAPEX conditions on the 𝑐𝑃𝑃𝐴. Increased 
𝑐𝑙 leads to higher fair prices. This happens because as 𝑐𝑙 gets lower, 
more energy is traded during market periods when electricity prices 
are low due to high PV penetration and the disagreement price of the 
off-taker is decreased. Also, the REP can offer a lower disagreement 
price due to the increased PPA traded energy. Conversely, lower CAPEX 
values reduce fair PPA prices, enhancing competitiveness.

Fig.  3 shows the relation of NPV and 𝑐𝑙 for different CAPEX. NPV 
increases with higher 𝑐𝑙, because of the high market prices relative to 
the PPA fair price. Lower CAPEX leads to higher NPV due to less initial 
investment needed. While 𝑐𝑙 = 99% seems to be the most profitable 
choice, it changes for high 𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 and the optimal choice is 
𝑐𝑙 = 95%. Fig.  4 examines the relationship between 𝑐𝑙 and the recovery 
of CAPEX PPA revenues. It finds that increased certainty leads to a 
smaller percentage of annual CAPEX recovery, where annual CAPEX 
is the total CAPEX of the PV-BESS divided by 𝑦𝑃𝑃𝐴. The formula that 
describes the procedure is: 

𝑞𝐶𝐴𝑃𝐸𝑋 =

8760
∑

𝑡=1

(

𝑃 𝑡
PPA𝑐𝑃𝑃𝐴 − 𝑂𝑃𝐸𝑋PPA

)

(1−𝑟)

CAPEX0
𝑦PPA

(26)

A higher value for this fraction means a more secure and bankable 
investment.

4.4. Optimal market participation and BESS scheduling

To study the behavior of REP in the electricity market, the most 
critical factor is the scheduling of BESS. REP has four choices for BESS, 
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Fig. 7. PPA fair price for different discount rates and duration of the contract.

Fig. 8. NPV for different discount rates and duration of the contract.

i.e. to cover PPA mismatches in case of PV production lack as a top 
priority, or sell the stored energy to DAM, ISPup, mFRRup. Fig.  6 
shows the behavior of REP for different 𝑐𝑙 in the worst-case scenario of 
continuous low PV power production. In case of 𝑐𝑙 = 99% and 𝑐𝑙 = 95%, 
REP initially has fully discharged BESS. Throughout this period, the 
REP is more active in the markets and fully discharges the battery in 
case 𝑐𝑙 = 99%. In the case of 𝑐𝑙 = 95%, the REP participates in the 
markets but does not fully discharge the battery to cover the production 
shortfall on the following day. For 𝑐𝑙 = 95%, market participation 
decreases, and there is no full battery discharge for the next six days. 
When 𝑐𝑙 = 90%, the REP’s battery state remains sufficiently charged 
to handle the large contracted power amounts that must be delivered 
under the PPA. Its market participation is almost zero since it does not 
discharge during hours when the PV system is not generating. The peak 
of the SoC curve for 𝑐𝑙 = 90% coincides with the battery’s maximum 
capacity Fig.  2. In conclusion, as 𝑐𝑙 decreases, the REP must schedule 
his operational strategy several days in advance.

4.5. Sensitivity analysis for discount rate and 𝑦𝑃𝑃𝐴 of the contract

To examine how the discount rate and the duration of the PPA 
affect the key techno-economic parameters of the project, we conduct 
a sensitivity analysis for the case with CAPEX values of 450e/kW for 
PV and 150e/kWh for BESS and 𝑐𝑙 = 95%. The results focus on three 
critical outputs: the fair PPA price, NPV, and the optimal BESS capacity.

As shown in the figures, the fair PPA price decreases with longer 
PPA durations Fig.  7. Conversely, it increases with higher discount 
rates, reflecting the need for greater revenue to meet investor return 
expectations under more stringent financing conditions. For instance, at 
a 10-year duration, the fair price rises from 77e/MWh at a 4% discount 
rate to 88e/MWh at 12% discount rate. The NPV shows a strong posi-
tive correlation with the PPA duration across all discount rate cases, as 
9 
Fig. 9. BESS capacity for different discount rates and duration of the contract.

Fig. 10. NPV for different cl in Scenario 2.

Fig. 11. PPA fair price for different cl in Scenario 2.

presented at Fig.  8. At a 4% discount rate, extending the contract from 
10 to 14 years increases the NPV from approximately e578 thousands 
to over e1 million, which is normal for 4 years greater duration. On the 
other hand, higher discount rates significantly reduce the NPV. Finally, 
the impact of different BESS capacity is illustrated at Fig.  9. Lower 
discount rates and longer PPAs enable higher economically optimal 
storage capacities. This reflects the improved revenue certainty and 
cost recovery potential, which justifies greater investment in flexibility 
infrastructure like storage. Overall, the sensitivity analysis underscores 
the importance of favorable financing terms and long-term contracting 
in enhancing both the profitability and the storage integration of hybrid 
RES systems under corporate PPAs.
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Table 2
BESS capacity in hours penalizing green energy rejection.
 Certainty Level and BESS capacity (hours)
 𝑏ℎ𝑐𝑙=99% 7.896  
 𝑏ℎ𝑐𝑙=95% 7.719  
 𝑏ℎ𝑐𝑙=90% 7.551  

4.6. Energy imported from the grid (scenario 2)

This scenario, being the most common in the literature [11,60], 
considers that BESS can also charge from the grid. A comparison with 
Scenario 1 takes place by examining certainty levels (75% and 50%), 
𝐶𝐴𝑃𝐸𝑋𝑃𝑉 = 500 e/kWh and different 𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 values. The 
results indicate that enabling import energy from the grid improves 
significantly the economic performance, especially at higher certainty 
levels 𝑐𝑙 = 75%, where market exposure is greater. This is reflected at 
Fig.  10, where the NPV vs. Certainly level are presented for different 
CAPEX of BESS. In Scenario 2, the total energy traded by the REP is 
much greater due to charging of BESS from the grid. The fair prices 
of PPAs for this scenario are illustrated in Fig.  11 and are higher than 
in Scenario 1, due to the higher impact of 𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 in 𝑈𝑅𝐸𝑃 2. The 
flexibility to charge from the grid enhances arbitrage opportunities and 
enables more effective participation in the electricity market, making 
the investment more profitable, however the total amount of energy 
used for BESS charging is not from renewable sources anymore. As a 
result, the PaD PPA cannot be considered as green one. This fact makes 
the investment less likely to be incentivized.

The optimal BESS capacity remains unchanged at 𝑐𝑙 = 50% across 
all CAPEX levels, with 𝑏ℎ = 6.543 hours. This indicates that under 
market exposure conditions, the BESS sizing is primarily driven by 
price arbitrage opportunities rather than PPA firming needs, resulting 
in a longer duration compared to Scenario 1. Even at 𝑐𝑙 = 75%, the 
variation in optimal capacity is relatively small, from 𝑏ℎ = 4.247 for 
𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 = 180 and 150 to 𝑏ℎ = 4.255 for 𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 = 120. 
Overall, allowing grid import provides additional economic value and 
requiring requires larger storage investments.

4.7. Allocation of energy

REP has different obligations to deliver energy for different 𝑐𝑙 and 
the 𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 affects the size of the BESS and therefore the optimal 
energy allocation in the market segments. As 𝑐𝑙 decreases, the energy 
that REP has the obligation to trade via the PPA increases. The majority 
of the sold energy from BESS goes to ISP. The rejected energy increases 
for more expensive BESS installations. The energy allocation is constant 
for the selected scenarios for 𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 because the MILP algorithm 
converges to the same optimal size for BESS.

Fig.  12 illustrates the optimal energy allocation in the market and 
energy losses in percentage of the total produced energy by the PV 
which is approximately 1670 MWh for the scaled PV, 𝑃𝑃𝑉 ,𝑚𝑎𝑥 = 1 MWp

nominal power. While 
𝐸𝑃𝑃𝐴,𝑐𝑙=99%

𝐸𝑃𝑃𝐴,𝑐𝑙=95%
= 0.51 the fraction

𝑃𝑃𝑃𝐴,𝑚𝑎𝑥,𝑐𝑙=99%

𝑃𝑃𝑃𝐴,𝑚𝑎𝑥,𝑐𝑙=95%
= 0.68. This is the reason why the REP can offer 

more competitive prices in the PPA as the 𝑐𝑙 decreases as described 
in Section 4.3.

In case we penalize the rejection of green PV energy, the REP 
must dimension the BESS with bigger capacity independent from the 
𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 . Fig.  13 illustrates the energy allocation in this case. 
Energy losses increase in this scenario because of the charging and dis-
charging coefficients and the self-discharge of the BESS. BESS capacity 
in hours 𝑏ℎ in this scenario for different 𝑐𝑙 is shown in Table  2. The NPV 
decreases significantly and even becomes negative for 𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 =
180 e/kWh.
10 
Fig. 12. Energy allocation in PPA and market segments.

Fig. 13. Energy allocation penalizing rejection.

5. Conclusions and discussion

The study explores a corporate PaD PPA model, with partial con-
tracting of generated power under the PPA, incorporating a PV-BESS 
under market conditions with high PV penetration. A probabilistic 
B-LSTM for long-term PV power forecasting is used to ensure the 
contracted power profile aligns with realistic production expectations. 
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A MILP optimization model determines the optimal BESS sizing and 
scheduling. The results highlight a fundamental trade-off between 𝑐𝑙
and BESS capacity. Lower 𝑐𝑙 increase the BESS requirement but allow 
less market exposure, while higher 𝑐𝑙 values reduce PPA obligations, 
enabling more active market engagement sacrificing the bankability 
aspect. Lower 𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 enhances the financial viability of the 
project by allowing flexible storage sizing. Sensitivity analysis on PPA 
duration and discount rate demonstrates that longer contract lengths 
significantly increase NPV, justify larger BESS capacities, and reduce 
the required PPA price, thereby improving bankability. In contrast, 
short-term contracts and higher discount rates constrain profitabil-
ity and limit optimal BESS investment. Allowing the BESS to import 
energy from the grid (Scenario 2) improves economic performance, 
particularly at higher 𝑐𝑙 values where the producer benefits from price 
arbitrage. However, this option may undermine the project’s renewable 
integrity and reduce eligibility for CAPEX-related incentives tied to 
100% renewable energy usage, which remains a key consideration for 
regulators and investors. Finally, penalizing the rejection of renewable 
energy enforces larger BESS sizing and results in higher energy losses 
due to storage inefficiencies, reducing economic performance.
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