
Going Forward-Forward in Distributed Deep
Learning

Ege Aktemur1,2⋆, Ege Zorlutuna1,3, Kaan Bilgili1,4, Tacettin Emre Bök1,4,
Berrin Yanikoglu1, and Süha Orhun Mutluergil1

1 Sabanci University, Istanbul, Turkey
{berrin,suha.mutluergil}@sabanciuniv.edu

2 TU Darmstadt, Darmstadt, Germany
ege.aktemur@stud.tu-darmstadt.de
3 ETH Zurich, Zurich, Switzerland

ezorlutuna@ethz.ch
4 TU Berlin, Berlin, Germany
{bilgili,boek}@tu-berlin.de

Abstract. We introduce a new approach in distributed learning, build-
ing on Hinton’s Forward-Forward (FF) algorithm to speed up the train-
ing of neural networks in distributed environments without losing ac-
curacy. Unlike traditional methods that rely on forward and backward
passes, the FF algorithm employs a dual forward pass strategy, eliminat-
ing the dependency among layers required during the backpropagation
period, which prevents efficient parallelization of the training process.
Although the original FF algorithm focused on its ability to match the
performance of the backpropagation algorithm, this work aims to re-
duce the training time with pipeline parallelism. We propose three novel
pipelined FF algorithms that speed up training 3.75 times on the MNIST
dataset while maintaining accuracy when training a four-layer network
with four compute nodes. These results show that FF is highly paral-
lelizable and its potential in large-scale distributed/federated systems to
enable faster training for larger and more complex models.

Keywords: Forward-Forward Algorithm · Distributed Learning · Pipeline
Parallelism

1 Introduction

Training deep neural networks, often consisting of hundreds of layers, is a very
time-consuming process that can take several weeks, using the well-known back-
propagation [18] as the learning algorithm. However, parallelization of this al-
gorithm presents significant challenges due to the sequential nature of the back-
propagation learning algorithm, as illustrated in Figure 1.

⋆ Corresponding author: ege.aktemur@stud.tu-darmstadt.de



2 E. Aktemur et al.

During the backward pass in backpropagation-based training methods, the
gradient is calculated for all layers, and they depend on the gradient calculated
at the next layer. If layers are distributed to different nodes , this dependency
necessitates the sequentialization of the computing nodes, as each node must wait
for the gradient information to backpropagate from its successor before it can
proceed with its calculations. Moreover, the need for constant communication
between nodes to transfer gradient and weight information can lead to significant
communication overhead. This is particularly problematic in large-scale neural
networks, where the volume of data to be transferred can be substantial.

Distributed deep learning has witnessed significant advancements in recent
years, driven by the ever-increasing complexity and size of neural networks. Dis-
tributed training frameworks such as PyTorch Distributed Data Parallel (DDP)
[10], GPipe [6], PipeDream [13] and Flower [2] have emerged as pivotal solu-
tions, enabling the training of massive models by optimizing for scale, speed,
cost, and usability. These systems utilize sophisticated methodologies such as
data, pipeline, and model parallelism to manage and process large-scale neural
network training efficiently across multiple computing nodes.

Fig. 1: Challenges in parallelizing traditional backpropagation involve managing
the forward (F ) and backward (B) passes, both applied to the layer specified by
their first parameter.

In addition to the above research geared towards distributed implementations
of backpropagation, the Forward-Forward Algorithm (FFA) proposed by Hinton
[5] proposes a novel approach to train neural networks. Unlike traditional deep
learning algorithms that rely on global forward and backward passes, the FFA
only uses local (layer-wise) forward and backward passes. Although the FFA
is designed to address the limitations associated with backpropagation without
focusing on distribution, the layer-wise training feature of the FFA results in a
less dependent architecture in a distributed environment that reduces idle time,
communication and synchronization, as demonstrated in Figure 2.

This paper explores the integration of the FFA into distributed deep learn-
ing systems, particularly focusing on its potential to improve the efficiency and
performance of training large-scale neural networks. We demonstrate the effec-
tiveness of the Pipeline Forward-Forward (PFF) algorithm, which reduces the
training duration by almost 5-fold for a 5-layer network while preserving the
accuracy of the original algorithm.



Going Forward-Forward in Distributed Deep Learning 3

Fig. 2: Distributed training of a FFA network. F and B blocks are representing
the layer local forward and backward passes. B blocks compute the gradient by
considering the goodness that will be defined later and then update the weights
of the corresponding layer.

2 Related Work

Distributed and parallel neural networks have attracted widespread interest and
investigation from researchers, driven by the promise of improved computational
efficiency and scalability in handling large-scale data and complex models. Com-
prehensive surveys from 2019 [1] and 2022 [12] provide extensive information
about the recent developments on the parallelism methods including data, model
and pipeline that we employ in our methods.

PipeDream [13] is a deep neural network training system that uses backpropa-
gation that efficiently combines data, pipeline, and model parallelism by dividing
the model layers into multiple stages containing consecutive layers. Unlike our
method, PipeDream inherits the limitations of the classic backpropagation al-
gorithm. Similarly, GPipe[6] is a distributed deep learning library that updates
weights synchronously during the backward pass, which differentiates it from
PipeDream; however, it also suffers from additional dependencies introduced by
the classic backpropagation algorithm. In contrast, PyTorch Distributed Data
Parallel [10] achieves near-linear scalability in distributed training by leveraging
data parallelism and synchronizing gradients during the backward pass, trying
to alleviate the inherent limitations of classic backpropagation.

In addition to the above methods, there are several proposed methods for
efficient deep learning training that attempt to overcome the limitations of back-
propagation by proposing alternatives to backpropagation. One of them is called
local parallelism [9]. This method divides the layers into a number of blocks and
uses this block’s local loss to adjust the parameters of the layers that are within
that block. Although this method achieves a significant speedup compared to
backpropagation, its effectiveness is limited because the local loss of the blocks
is not comparable to the global loss.

Forward-Forward Algorithm (FFA) [5] is a learning method for multilayer
networks, proposed by Hinton. This algorithm introduces a novel way of training,
which eliminates the backpropagation and the backward pass. Unlike the method
proposed in this paper, the original FFA is sequential and is designed to work on
a single processing unit. This algorithm forms the backbone of our method along
with the split method, which aims to reduce communication between workers
and increase parallelism.



4 E. Aktemur et al.

FFA has significantly influenced neural network research, leading to innova-
tive integrations and modifications. For example, Ororbia et al. [14] combined
FFA with predictive coding, while Scodellaro et al. [19] demonstrated that CNNs
trained using FFA can achieve up to 99.16% accuracy, approaching the per-
formance of backpropagation. In parallel, Zhao et al. [20] developed CaFo, an
algorithm that constructs cascaded neural blocks with independently trainable
layers suitable for parallelization, and [17] proposed a variant of FFA Contrastive
Learning that replaces later training stages with dual local updates employing
separate loss functions.

Additional studies have extended FFA for various architectures and training
paradigms. Gautham et al. [4] investigated the application of FFA in convo-
lutional and recurrent models for multiclass classification and regression tasks,
while Hwang et al. [7] introduced a Local Back-Propagation (LBP) algorithm
that leverages standard unsupervised models, such as autoencoders, for indepen-
dent layerwise training in distributed environments. Furthermore, Krutsylo [8]
proposed a scalable hybrid blockwise approach that integrates backpropagation
within blocks for modern architectures such as ResNet18 and MobileNetV3, and
Papachristodoulou et al. [15] addressed FFA’s limitations by introducing a novel
convolutional design with channel-wise competitive learning via CFSE blocks,
which achieved a testing error as low as 0.58% on MNIST.

Distributed Forward-Forward (DFF) [3] is an example of the use of FFA in
distributed training system. DFF aims to create a decentralized and distributed
training system to allow multiple low-performance devices to train a large model.
DFF creates a cluster with one master node and multiple server nodes. Each
server is assigned a layer(s) by the master node. These server nodes train their
assigned layers using FFA and send their output to other layers.

Park et al. [16] propose FedFwd, a federated learning algorithm that replaces
traditional backpropagation with FFA to perform layer-wise updates, thus re-
ducing demands on local clients. The authors aim to tackle the inherent resource
constraints in distributed training by eliminating the need to store all intermedi-
ate activations during training. Experimental results on datasets such as MNIST
and CIFAR-10 show that FedFwd achieves competitive test accuracies and com-
parable training times. These findings suggest that FFA-based approaches offer
a promising alternative for efficient distributed training.

While PipeDream and GPipe aim to parallelize backpropagation, DFF [3] is
closest to our work, as it also tries to integrate the FFA into a distributed setting.
However, in terms of accuracy, our implementation achieves better results than
DFF because our implementation updates the weights more frequently, using
minibatches, generates the negative samples adaptively, and uses an additional
classifier which all contribute to the performance of the network.



Going Forward-Forward in Distributed Deep Learning 5

3 Forward-Forward Algorithm

The FFA, proposed by Geoffrey Hinton [5], presents a novel approach to train
neural networks that does not involve backpropagation, which is the standard
learning algorithm used in training neural networks.

Inspired by the biological processes of the brain, the FFA trains layers indi-
vidually and sequentially, utilizing two forward passes and a local backward pass
to update the layer weights. Those passes are called the positive pass and the
negative pass. The positive pass adjusts the weights to increase the ”goodness” of
the positive or real data, while the negative pass does the opposite for negative
data, as defined below.

Negative Data. Negative data are obtained by giving incorrect labels to the
samples provided as positive data. In [5], the MNIST dataset is used for the
evaluation of the FFA. The existence of black borders in this image data set
enabled encoding labels in the top-left corner of the input images (a 10-pixel
area on the border denotes the label where a 1-of-C encoding is used). A positive
sample is generated by adding the correct label of the digit in the image, whereas
a negative sample is produced by encoding an incorrect digit as the label. Other
alternatives for creating negative data, including unsupervised methods, are also
possible and explored in [5].

Goodness Function. The goodness of a layer explored in [5] is the sum of the
squares of the activities of the rectified linear neurons in that layer, and the aim
during the learning period is to raise it above some threshold value for positive
(real) data and below the threshold for negative data. The goodness function
p can be captured by applying the logistic function σ to the sum of squared
activities y2j minus a threshold θ:

p(data) = σ(
∑
j

y2j − θ) (1)

Prediction. Two methods have been proposed to predict the label of an input
image. In the Goodness prediction, the input is run through the network with
all possible labels encoded in 1-of-C format so that the label vector consists of
all 0s except a single 1 placed in the index representing this class. Then, the
activations from all but the first hidden layer of the network are accumulated
and the label yielding the maximum goodness is selected as the predicted class.

In the Softmax prediction, the raw input image is labeled with a neutral
vector consisting of 0.1 values for each class and the activity vectors collected
from all except the first hidden layer are fed into a Softmax layer which is trained
to predict the class. The softmax layer is trained using backpropagation at the
end of the training or during the training. As a remark, the softmax layer is
a separate single-layer network, and it does not perform backpropagation to
the FF layers. Hence, it can also be trained independently like an FF layer. This
prediction approach is faster for inference since it is sufficient to perform a single



6 E. Aktemur et al.

pass for each datum; on the other hand, it is sub-optimal with respect to the
Goodness prediction which better corresponds to how the network was trained.

Sequential Training of the Forward-Forward Algorithm. The layers of the net-
work are trained for several epochs where an epoch is defined as training the
network for the entire training dataset once. Since FF does not involve back-
propagation, layers can be trained independently, each layer can be trained for
more than one epoch waiting the upper layers to finish the previous epochs. For
instance, assuming that the network will be trained for 60 epochs, we can train
the first layer for 30 epochs, and use this half-trained layer-1 for training the
second layer for its 30 epochs and so on.

Moreover, training a layer for the total number of epochs and providing its
output to the next layer is not good for accuracy. Training each layer for a small
number of epochs allows fine-grained adjustments on this layer and yields better
results. So, we divide the training process of each layer into splits, basically the
number of consecutive epochs passed from a layer before giving its output to the
next layer. Figure 3 shows the difference between the 1 and 100 split values.

Fig. 3: Comparison of the FFA with split counts 1 (left) and 100 (right) across 3
layers. Train(L,E) in a block denotes training the layer L for E epochs before
passing its output to the next layer.

4 PipelineFF: A Pipeline Forward-Forward Algorithm

In this section, we propose three parallel Pipeline Forward Forward (PFF) algo-
rithms: Single-Layer PFF (Section 4.1), All-Layers PFF (Section 4.2), Federated
PFF (Section 4.3) and Performance-Optimized Network PFF (Section 4.4).

The Single-Layer PFF employs an architecture in which each node is dedi-
cated to training only one layer, while All-Layers and Federated PFF algorithms
distribute the training load more evenly, by asking every node to train all net-
work layers in turn. All models enjoy model and pipeline parallelism, while the
federated PFF also takes advantage of data parallelism.

In all proposed PFF models, we divide the total number of E epochs into S
splits to facilitate distributed training. The sequential training periods of layers
are called chapters, and each chapter takes C = E/S training epochs. Conse-
quently, each node has to process S chapters to complete the training for E
epochs. The variable N denotes the number of nodes in the distributed system.
The input data set is abstracted as x, which consists of positive and negative
samples. Li(x) is used to denote the output of the ith layer of the neural network



Going Forward-Forward in Distributed Deep Learning 7

after a forward pass with the input data x. Finally, Train(Li, n) is an abstraction
for training the layer Li for n epochs.

4.1 Single-Layer PFF Algorithm

Fig. 4: Single-Layer PFF Algorithm example with three layers and three splits.

Single-Layer PFF employs an architecture in which each node is dedicated to
training only one layer, as shown in Figure 4. This procedure ensures that while
node i is training the layer Li for the jth split, the previous node can train
the layer Li−1 concurrently on the split number j′ > j. Already with this simple
architecture, we achieve parallelism among the nodes, unlike the sequential FFA.

The distributed training example provided in Figure 4 illustrates a scenario
with three compute nodes and a three-layer neural network. The number of
nodes, N , is selected to be equal to the number of layers L and each node trains
the corresponding layer of the network. In the following, we detail the algorithm
with a pseudo code and the training process.

Node Initialization: Each node i ∈ [1, N ] is initialized with training data
and layer parameters and hyperparameters.

Initialization and Training of Node 1: Node 1 initializes neurons of L1

randomly and trains this layer for C epochs. Then, it sends L1’s weight and
biases to Node i′ > 1 and starts training L1 for C more epochs and repeats.

Other Nodes: To train Li for the jth split, Node i needs to prepare the
output of Li−1 (trained for j′ > j splits). This is done by getting the layers Lk

where k < i and doing a forward pass until Li. Then, it trains Li for C epochs
and sends its weight and bias values to each Node i′ > i and repeats.

Termination: Each node iterates for S chapters and E epochs in total. After
each iteration, a node might update the negative examples based on a protocol.

Transferring large layer outputs, which grow with dataset size, between com-
puting nodes leads to a communication bottleneck. To enhance time efficiency,
our approach prioritizes the transmission of layer parameters over output ten-
sors. By sending the parameters and executing the forward pass on each node,
we drastically reduce the amount of data transferred, resulting in a faster over-
all process. This optimization is represented in Figure 4 and the loop within
Algorithm 1, Lines 3-5.



8 E. Aktemur et al.

Algorithm 1 Single-Layer Training Procedure
1: for chapter = 1 to split do
2: xpos, xneg ← XPOS , XNEG

3: for layerIndex = 1 to currentClientIndex do
4: layer ← getLayer(layerIndex, chapter)
5: xpos, xneg ← layer(xpos, xneg)

6: for miniEpoch = 1 to epochs/split do
7: learningRateCooldown(chapter,miniEpoch)
8: for each batch in xpos, xneg do
9: trainLayer(currentClientIndex, batch)

10: PublishLayer(chapter, layerIndex)
11: UpdateXNEG(publish = False)

4.2 All-Layers PFF Algorithm

Fig. 5: All-Layers PFF Algorithm example with three layers and two splits.

The All-Layers PFF model builds upon the Single-Layer approach by allowing
each compute node to train the entire network, affording a more balanced load
among the nodes.

Figure 5 illustrates the approach in the context of a system with three com-
pute nodes and a three-layer neural network, but with two splits for clarity.

Node Initialization: Each node is initialized with the dataset and the re-
quired hyperparameters.

Initial Training: Node1 trains the entire network with randomly initialized
layers for C epochs.

Rest of the training: Concurrently, each Nodei trains the layer Lk−1 im-
mediately after Nodei−1 has completed its C epochs of training for the layer
Lk−2. Each Nodei sends its last trained layer to Nodei+1(mod(N)) and receives
the layer to be trained from Nodei−1(mod(N)).

Iteration and Convergence: The process repeats for S/N splits but not
S since in this approach every node trains each layer. The algorithm converges
when the entire network has been trained for a total of E epochs.

4.3 Federated PFF Algorithm

In contrast to the All-Layers PFF Algorithm, the Federated PFF Algorithm
employs the same training procedure but differentiates in the data it utilizes



Going Forward-Forward in Distributed Deep Learning 9

Algorithm 2 All-Layers Training Procedure
1: for chapter = 1 to split do
2: xpos, xneg ← XPOS , XNEG

3: for layerIndex = 1 to numLayers do
4: if not (firstClient and chapter = 0) then
5: getLayer(layerIndex, chapter)

6: for miniEpoch = 1 to epochs/split do
7: learningRateCooldown(chapter,miniEpoch)
8: for each batch in xpos, xneg do
9: trainLayer(layerIndex, batch)

10: PublishLayer(chapter, layerIndex)
11: xpos, xneg ← layer(xpos, xneg)

12: UpdateXNEG(publish = False)

for training. Each node trains on its own local dataset rather than a shared
one. This preserves data privacy, as there is no need to share raw data with
other nodes or a centralized server. While the data remain localized, the nodes
exchange model updates. This allows nodes to benefit from learning carried out
by their counterparts, which iteratively improves the global model that benefits
from diverse data without central aggregation. This federated structure is crucial
not only for scenarios requiring data privacy but also enables distributed training
over networks where central data aggregation is impractical or undesired.

Fig. 6: Federated PFF Algorithm example with 3 layers and 6 split.

4.4 PFF with A New Goodness Function

The FFA [5] states that different goodness functions can be used while training
each layer individually. In this section, we propose a new PFF algorithm called
Performance-Optimized Network (PON) that uses a goodness function based
on classification accuracy. Specifically, we add a softmax activated layer to each
network layer and update only the weights of these two layers via backpropaga-
tion (as illustrated in Figure 7b), training each layer to maximize classification
accuracy and thereby making this approach suitable only for supervised learning
problems. Furthermore, the rest of the training is performed exactly in accor-
dance with the FFA except that there are no negative data.



10 E. Aktemur et al.

(a) Original FFA (b) PON

Fig. 7: Comparison of forward and backward passes between FFA and PON.

5 Experimental Evaluation

We obtain and compare several models by modifying the distributed model
(Single-Layer or All-Layers), negative data selection (Adaptive, Fixed, or Ran-
dom), classification strategies (Goodness and Softmax) and goodness function.

The two variants of the PFF (Single-Layer and All-Layers models, as ex-
plained in Sections 4.1 and 4.2, respectively) are compared with the sequential
implementation (node count N = 1), which is equivalent to the original FFA
and can be used to compare models using the same code base.

To select negative samples, we implemented AdaptiveNEG, the method pro-
posed in [5], which selects the most predicted incorrect label as the negative
label. The second approach is FixedNEG, which involves choosing random in-
correct labels for each instance in the beginning of the training. The third ap-
proach, called RandomNEG, selects the random incorrect labels at the end of
each chapter. The last two are proposed to speed up the training.

For the classification approach, we implemented both approaches explained
in Section 3 proposed by Hinton in [5]. In the Goodness based approach, a sample
is classified into the class that results in the highest goodness score (considering
all but the first layer). In the Softmax approach, a single layer classification head
is added to the network with softmax activation.

Finally, we evaluated the PON proposed in 4.4 in supervised learning sce-
narios.

5.1 Implementation Details

Our chosen architecture is the same feedforward neural network as in [5]. Its
configuration is [784, 2000, 2000, 2000, 2000], where the numbers indicate the
number of nodes in each layer. Thus, the input, which is 784-dimensional, is
followed by four hidden layers with 2000 nodes each. Each of these layers employs
the ReLU activation function.

The network is trained and tested using the MNIST dataset, using 60,000
training instances with mini-batches of size 64 and testing on a separate test set
comprising 10,000 instances for 100 epochs and 100 splits. The Adam optimizer
is used for both the FF Layers and the Softmax layer (trained using Backprop-



Going Forward-Forward in Distributed Deep Learning 11

agation) is set initially at 0.01 and 0.0001 respectively and cooldowns after the
50th epoch. The threshold coefficient θ in Eq. 1 is set to 0.01, as in [5].

5.2 Comparison of FF, DFF and PFF Models

We first compare the accuracy and speed of the PFF variants using the Good-
ness approach with the Matlab implementation of the original Forward-Forward
paper’s results [5] and another distributed implementation [3] of the Forward-
Forward algorithm. The results are given in Table 1.

The AdaptiveNEG approach, which selects negative data based on the net-
work’s performance at each chapter, outperforms both RandomNEG and Fixed-
NEG models in terms of accuracy. Remarkably, despite shorter training times
(7,178 vs 11,190 seconds), RandomNEG performs close to AdaptiveNEG in terms
of accuracy (98.33 vs 98.52 in Sequential), making these models more accurate
than FixedNEG in every implementation.

The AdaptiveNEG Goodness model with Sequential implementation is basi-
cally the same as [5] and it indeed achieves almost the same accuracy as Hinton‘s
Matlab implementation [11]. It enables us to compare the training time of the
model with our Python implementation.

Furthermore, AdaptiveNEG with All-Layers implementation matches the
highest accuracy of its sequential version (98.51% vs. 98.52%) but in about a
quarter of the time (2,980 vs. 11,190 seconds), using four compute nodes. This
finding showcases the PFF Algorithm’s efficiency in distributing the training,
achieving 94% utilization (3.75/4), significantly speeding up the process. The
All-Layers method speeds up training for AdaptiveNEG by efficiently distribut-
ing tasks between nodes, allowing each to compute its own negative samples after
every chapter, unlike the Single-Layer approach, where the last node generates
and publishes the generated labels.

Table 1: Original, DFF and PFF comparison. Baseline is highlighted as bold.
Model Setup Training Time (s) Test Accuracy (%)
Hinton‘s Matlab Code [11] 98.53
DFF (1000 epochs)[3] 93.15

Sequential 11,190.72 98.52
AdaptiveNEG-Goodness Single-Layer 5,254.87 98.43

All-Layers 2,980.76 98.51
Sequential 7,178.71 98.33

RandomNEG-Goodness Single-Layer 1,974.10 98.26
All-Layers 2,008.25 98.17
Sequential 7,143.28 97.95

FixedNEG-Goodness Single-Layer 1,920.80 97.94
All-Layers 1,978.21 97.89



12 E. Aktemur et al.

5.3 Classifier Mode Comparison for AdaptiveNEG

In the first evaluation, we compared PFF variants that used the Goodness ap-
proach for classification and established the AdaptiveNEG Goodness model as
the proposed baseline. The second experiment compares the performance of this
model with that using the Softmax approach. As mentioned before, the good-
ness method is the first method provided in [5] and uses only the FF layers. The
Softmax method on the other hand, is presented as a faster alternative, predict-
ing the output using a Softmax layer that gets the activations of the hidden FF
layers (except the first). The corresponding results can be found in Table 2.

The results show that the AdaptiveNEG Softmax model trains faster than
the AdaptiveNEG-Goodness model, for all different implementations (e.g. 1,886
versus 2,980 secs). This accelerated training is due to the single-step prediction in
the softmax approach, rather than predicting across 10 different classes. However,
the accuracies all slightly decrease compared to comparable Goodness models.

The advantage of the All-Layers PFF Algorithm on the AdaptiveNEG ex-
plained in Section 5.2 is still very observable for the Softmax methods.

Table 2: Classification mode comparison for AdaptiveNEG. The first three row
results indicated in italic denote the baseline model from Table 1. Bold results
indicate suggested models for each classification mode.

Model Setup Training Time (s) Test Accuracy (%)
Sequential 11,190.72 98.52

AdaptiveNEG-Goodness Single-Layer 5,254.87 98.43
All-Layers 2,980.76 98.51
Sequential 8,365.96 98.38

AdaptiveNEG-Softmax Single-Layer 2,471.27 98.31
All-Layers 1,886.42 98.30

5.4 Classifier Mode Comparison for RandomNEG

Based on the previous findings in section 5.2, we observed that RandomNEG
closely rivals AdaptiveNEG in accuracy, while significantly reducing training
time. This observation leads us to further investigate the impact of employing
softmax within the RandomNEG framework. This section thus compares the
effects of softmax and Goodness prediction on both FixedNEG and RandomNEG
strategies. The results of this comparison are detailed in Table 3, providing
insight into how these elements influence the effectiveness and efficiency of the
methods under review.

In terms of accuracy, the Softmax approach outperforms the Goodness ap-
proach for prediction. For instance, while the Sequential RandomNEG Goodness
model performed 98.33 the softmax version performed 98.48. This level of accu-
racy of the softmax version is very close to the performance of our baseline model



Going Forward-Forward in Distributed Deep Learning 13

(98.51 Accuracy using AdaptiveNEG Goodness). Although the accuracy levels
are very close, we observe that there is a significant speed-up using RandomNEG
(8,104 versus 11,190).

In terms of training speed, on the other hand, training a model with the
additional Softmax layer takes longer in the Sequential model as expected. How-
ever, Single-Layer implementation is not affected by this additional complexity.
This is due to the fact that Softmax Layer is easier/faster to train than the FF
Layers, and due to the pipeline architecture this only adds a small delay.

Surprisingly, Softmax models give faster results compared to same Goodness
models for All-Layers implementation. This again stems from the fact that train-
ing Softmax is faster than training FF Layers, and distributing this job between
5 nodes speeds up the overall training.

Table 3: Classification mode comparison for RandomNEG. The first three row
results indicated in italic are from Table 1. Bold text shows the proposed Ran-
domNEG model balancing accuracy and speed.

Model Setup Training Time (s) Test Accuracy (%)
Sequential 7,178.71 98.33

RandomNEG-Goodness Single-Layer 1,974.15 98.26
All-Layers 2,008.25 98.17
Sequential 8,104.96 98.48

RandomNEG-Softmax Single-Layer 1,891.86 98.31
All-Layers 1,786.30 98.33

5.5 Evaluation of the Performance-Optimized Network

This section explores the evaluation of our Performance-Optimized Network
(PON) that is created by incorporating a new goodness function into the Forward-
Forward algorithm. Our analysis shows that while the Performance-Optimized
Model performs slightly worse than the best-performing AdaptiveNEG Goodness
model, there is a notable reduction in training times, indicating a significant step
towards efficient computing without significantly sacrificing performance.

In the MNIST dataset, the results presented in Table 4 highlight the ef-
fectiveness of the new goodness function proposed when integrated with the
Forward-Forward algorithm. The highest test accuracy is achieved by the Adap-
tiveNEG Goodness model, reaching 98.52%, which is slightly superior to the
98.48% accuracy of the RandomNEG Softmax model. It should be noted that
the Performance-Optimized Network, whether using only the last layer or all
layers, shows a small decrease in accuracy. Specifically, using all layers slightly
improves the accuracy to 98.38% compared to 98.30% when only the last layer is
used. These results underscore the robustness of the proposed goodness function,
particularly when all layers are optimized, despite a considerable reduction in



14 E. Aktemur et al.

training time (4219.97 seconds) compared to the AdaptiveNEG Goodness model
(11190.72 seconds).

Table 4: MNIST evaluation of PON with the baseline models from Table 1.
Model Training Time (s) Test Accuracy (%)
AdaptiveNEG-Goodness 11,190.72 98.52
RandomNEG-Softmax 8,104.96 98.48
PON (only last layer) 4,219.97 98.30
PON (using all layers) 4,219.97 98.38

5.6 Experiments with CIFAR-10

To extend our analysis to a more complex scenario, we replicated the experiments
described in Sections 5.2 through 5.5 using the CIFAR-10 dataset. CIFAR-10,
known for its higher variability and complexity compared to MNIST, serves as
a challenging benchmark to test the robustness and effectiveness of our models.

Table 5 presents the detailed results of these experiments. Performance-
Optimized Network (PON), whether it uses only the last layer or all layers,
demonstrated a superior ability to handle the complexities of CIFAR-10, with
the prediction using all of the layers achieving the highest accuracy of 53.50%.
This was closely followed by the RandomNEG Softmax model, which achieved
52.18% accuracy. Furthermore, the PON models show relatively efficient train-
ing durations compared to the other sequential PFF Models. Surprisingly, the
AdaptiveNEG Goodness model, which performed exceptionally well in MNIST,
significantly underperformed in CIFAR-10, with an accuracy of only 11.10%.
This difference suggests a potential mismatch between the model’s capabilities
and the dataset’s requirements.

It should be noted that while state-of-the-art models have achieved above
99% accuracy on CIFAR-10, the performance of our models is similar to Hinton’s
original FFA, which reported an accuracy of 56% using CNNs [5].

Table 5: CIFAR-10 Results
Model Training Time (s) Test Accuracy (%)
PON (using all layers) 4,920.97 53.50
PON (only last layer) 4,920.97 53.11
FixedNEG-Softmax 8,021.15 50.89
RandomNEG-Softmax 7,636.99 52.18
AdaptiveNEG-Goodness 10,148.23 11.10



Going Forward-Forward in Distributed Deep Learning 15

6 Conclusion and Future Work

Our work in this paper presents Pipeline Forward-Forward Algorithm (PFF),
a novel way to train distributed neural networks using Forward-Forward Al-
gorithm. Compared to the classic implementations with backpropagation and
pipeline parallelism [6] [13], PFF is inherently different as it does not enforce
backpropagation dependency on the system, thus achieving higher utilization of
computational units with fewer bubbles and idle time. Experiments done with
PFF show that the PFF Algorithm achieves the same accuracy as the standard
FF implementation [5] with a 4x speed up. Comparison of PFF with an existing
distributed implementation of Forward-Forward (DFF [3]) shows even greater
improvements, as PFF achieves %5 more accuracy in 10 times less epochs. This
improvement in accuracy is mainly because PFF splits the data into batches
and feeds them to the network batch by batch, unlike DFF which feeds the
data as a whole. In addition, the data that are exchanged between layers in
PFF is a lot less than DFF since PFF sends the layer information (weights and
biases), whereas DFF sends the whole output of the data. This results in less
communication overhead compared to DFF.

Besides the exciting results that PFF produced, we believe that our work
paves the way for a brand new path in the area of Distributed training of Neural
Networks. Thus, there are plenty of different ways that can improve PFF, with
some of these approaches outlined below.

– Exchanging parameters after each batch: In the current implementa-
tion of PFF, the exchange of parameters between different layers takes place
after each chapter. Making this exchange after each batch is worth trying
since it could better tune the weights and produce higher accuracy. However,
it could potentially increase the communication overhead.

– Different Setups: In the experiments of this work, we used sockets to es-
tablish communication between different nodes. This brings additional com-
munication overhead, as the data is sent through the network. In a setup
where computational units of the PFF are closer and can access to a shared
resource (Multi GPU architectures) the time of training networks can de-
crease drastically.

– Generating Negative Samples Differently: The way negative samples
are generated is a very important aspect of the Forward-Forward Algorithm
as it directly affects the learning of the network. Thus, discovering new and
better ways to generate negative samples would definitely result in a better
performing system.

– Forming an Innovative Framework: A general and efficient framework
can be implemented for training large neural networks following and improv-
ing the novel ideas presented in this work.



16 E. Aktemur et al.

References

1. Ben-Nun, T., Hoefler, T.: Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. ACM Computing Surveys 52(4), Article 65 (2019).
https://doi.org/10.1145/3320060

2. Beutel, D.J., Topal, T., Mathur, A., Qiu, X., Fernandez-Marques, J., Gao, Y.,
Sani, L., Li, K.H., Parcollet, T., de Gusmao, P.P.B., Lane, N.D.: Flower: A friendly
federated learning research framework (2022), https://arxiv.org/abs/2007.14390

3. Deng, Q., et al.: Dff: Distributed forward-forward algorithm for large-scale model
in low-performance devices. In: 2023 IEEE 6th International Conference on Pattern
Recognition and Artificial Intelligence (PRAI). IEEE (2023)

4. Gautham, S.R., Nair, S., Jamadagni, S., Khurana, M., Assadi, M.: Ex-
ploring the feasibility of forward forward algorithm in neural networks.
In: 2024 International Conference on Advances in Modern Age Technolo-
gies for Health and Engineering Science (AMATHE). pp. 1–6 (2024).
https://doi.org/10.1109/AMATHE61652.2024.10582053

5. Hinton, G.: The forward-forward algorithm: Some preliminary investigations. arXiv
preprint arXiv:2212.13345 (2022)

6. Huang, Y., et al.: Gpipe: Efficient training of giant neural networks using pipeline
parallelism. In: Advances in neural information processing systems. vol. 32 (2019)

7. Hwang, T., Seo, H., Jung, S.: Local back-propagation: Layer-wise unsupervised
learning in forward-forward algorithms (12 2024). https://doi.org/10.21203/rs.3.rs-
5695830/v1

8. Krutsylo, A.: Scalable forward-forward algorithm (2025),
https://arxiv.org/abs/2501.03176

9. Laskin, M., et al.: Parallel training of deep networks with local updates (2021)
10. Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li, T., Paszke, A., Smith,

J., Vaughan, B., Damania, P., Chintala, S.: Pytorch distributed: Experiences on
accelerating data parallel training (2020), https://arxiv.org/abs/2006.15704

11. Löwe, S., Baichuan: Forward-forward. https://github.com/loeweX/Forward-
Forward (2023)

12. Mayer, R., et al.: Scalable deep learning on distributed infrastructures: Chal-
lenges, techniques, and tools. ACM Computing Surveys 53(1), Article 3 (2020).
https://doi.org/10.1145/3363554

13. Narayanan, D., Harlap, A., et al.: Pipedream: generalized pipeline par-
allelism for dnn training. In: Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles. pp. 1–15. SOSP ’19, New
York, NY, USA (2019). https://doi.org/10.1145/3341301.3359646,
https://doi.org/10.1145/3341301.3359646

14. Ororbia, A., Mali, A.: The predictive forward-forward algorithm (2023)
15. Papachristodoulou, A., Kyrkou, C., Timotheou, S., Theocharides, T.: Con-

volutional channel-wise competitive learning for the forward-forward al-
gorithm. Proceedings of the AAAI Conference on Artificial Intelligence
38(13), 14536–14544 (Mar 2024). https://doi.org/10.1609/aaai.v38i13.29369,
https://ojs.aaai.org/index.php/AAAI/article/view/29369

16. Park, S., Shin, D., Chung, J., Lee, N.: Fedfwd: Federated learning without back-
propagation (2023), https://arxiv.org/abs/2309.01150

17. R, G.: Improved forward-forward contrastive learning (2024),
https://arxiv.org/abs/2405.03432



Going Forward-Forward in Distributed Deep Learning 17

18. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representa-
tions by back-propagating errors. Nature 323(6088), 533–536 (1986).
https://doi.org/10.1038/323533a0

19. Scodellaro, R., et al.: Training convolutional neural networks with the forward-
forward algorithm. arXiv preprint arXiv:2312.14924 (2023)

20. Zhao, G., et al.: The cascaded forward algorithm for neural network training (2023)


