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Abstract In this study, we explore metric-Palatini grav-
ity extended by the antisymmetric component of the affine
curvature. This gravitational theory results in general rela-
tivity plus a geometric Proca field. Building on our previous
work, where we constructed its static spherically symmet-
ric solutions in the Anti-de Sitter (AdS) background (Eur.
Phys. J. C 83(4):318, 2023), we conduct a comprehensive
analysis of the system’s thermodynamics. We examine the
thermodynamic properties of the Einstein-Geometric Proca
AdS compact objects, focusing on the Hawking tempera-
ture, enthalpy, heat capacity, entropy, and Gibbs free energy.
Particular attention is given to the dependence of the Hawk-
ing temperature, enthalpy, and heat capacity on the uniform
potential q1 and the electromagnetic-type chargeq2. Through
numerical analysis, we compute the entropy and Gibbs free
energy and investigate how these quantities vary with the
model parameters.

1 Introduction

The thermodynamics of black holes, first formulated by
Bekenstein and Hawking, establish a connection between
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gravity, quantum mechanics, and entropy. The Bekenstein–
Hawking entropy is given by S = kc3A/4Gh̄, linking the
black hole entropy to horizon geometry [1,2]. Hawking radi-
ation, a quantum effect near the event horizon of the black
hole, causes black holes to emit thermal radiation energy and
gradually lose mass, potentially leading to complete evapora-
tion [3]. These principles mirror classical thermodynamics,
with the black hole temperature related to surface gravity
and entropy to the horizon area in [4]. In modified gravity
theories such as f (R) gravity, Gauss–Bonnet gravity, and
scalar–tensor theories, black hole thermodynamics deviates
from these classical laws due to additional curvature cor-
rections, extra fields, or higher-dimensional effects in Refs.
[5,6]. Extensive research has been conducted to establish a
precise framework for interpreting the thermodynamic prop-
erties of black holes in various gravities in [7–16].

Current research in astrophysics, gravitation, and cosmol-
ogy is centered on a fundamental inquiry. Is general rela-
tivity (GR) the only possible theory of gravity? Answering
this requires an in-depth exploration of alternative theories
that extend GR in physically meaningful ways. One such
extension involves non-Riemannian geometries in which the
metric and connection are treated as independent geometric
quantities [17–19].

A fundamental extension in this framework is metric-
Palatini gravity [20–22], which has been extensively explored
in various domains, including dark matter dynamics [23],
the formation of wormholes [24], and cosmological applica-
tions [25]. A notable variant of this theory arises when the
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non-metricity tensor generates a geometric Z ′ field, defin-
ing a distinct class of models [26]. This formulation has
been the subject of studies on gravitational waves [27] and
black hole properties in both Schwarzschild [28] and AdS
[29] spacetimes. Expanding on our earlier investigation [29],
this work is dedicated to analyzing Einstein-Geometric Proca
AdS objects in greater depth.

The metric-Palatini gravity framework has been exten-
sively analyzed in [28,29], and here we provide a concise
overview of its key aspects. This theory is defined by a metric
gμν and a torsion-free affine connection �λ

μν , which remains
independent of the Levi–Civita connection associated with
the metric.

Metric-Palatini gravity has broad implications in vari-
ous domains, including symmergent gravity, which restores
gauge symmetry [30–32], its role in natural inflation [33,34],
and its astrophysical and cosmological significance [35–
37]. Furthermore, higher-curvature modifications within this
framework have been explored in relation to fundamental
physics [19,26,38].

Extending the Palatini formulation further, one can intro-
duce a term of the form R[μν](�)R[μν](�) where R[μν](�)

represents the antisymmetric component of the affine Ricci
tensor Rμν(�). This modification is particularly significant,
as it leads to a formulation that encompasses general rela-
tivity (GR) along with a massive geometric vector field Qμ

[26,39]. This vector field, known as the geometric Proca field,
is defined as Qμ ≡ 1

4 Q
ν

μν where the non-metricity tensor
is given by Qλμν ≡ −�∇λgμν . This construction naturally
emerges within the Palatini framework and has been explored
in various studies [26,39–42].

In the absence of torsion, the non-metricity vector becomes
the sole source of deviations from GR. The geometric Proca
field naturally emerges as a direct consequence of metric-
incompatible symmetric connections (which are torsion-
free) rather than putting by hand. Unlike a gauge field, it
represents a fundamentally geometric massive vector field
[26], characterized by specific coupling interactions with
quarks and leptons [28]. This Palatini framework can be fur-
ther extended by incorporating both the metrical curvature
Rμν(

g�) and the affine curvature Rμν(�) into the action,
allowing for a more comprehensive formulation of the the-
ory.

Apart from the quadratic term R[μν](�)R[μν](�), which
gives rise to the geometric Proca field, the combined metric-
affine approach reduces to metric-Palatini gravity [20–22].
The gravitational theory investigated in this work is essen-
tially an extension of metric-Palatini gravity, augmented by
the inclusion of the invariant R[μν](�)R[μν](�) and a nega-
tive cosmological constant (CC) [29,43]. As demonstrated in
[28], the presence of the geometric Proca field Qμ requires
the inclusion of a CC for the existence of static spherically

symmetric solutions. We refer to this framework as extended
metric-Palatini gravity (EMPG). The corresponding action
follows a schematic structure, as described in [29].

S[g, �] =
∫
d4x

√−g

{
“gμνRμν

(g�)
” + “gμν

Rμν (�) ”

+“R[μν](�)R[μν](�)” + “CC”

}
. (1)

This framework constitutes an Einstein-Geometric Proca-
Anti de Sitter (AdS) gravity theory, distinguished from tra-
ditional Einstein-Proca models by its purely geometric foun-
dation. Unlike conventional Einstein-Proca systems, which
have been extensively studied in the literature for various pur-
poses, such as exploring Reissner–Nordström-type spheri-
cally symmetric vacuum solutions [44–47], investigating the
role of the Proca field [48–50], deriving static spherically
symmetric solutions [51–53], and analyzing the structure of
the horizon radius [54–56], our formulation emerges natu-
rally from the metric-affine approach.

The objective of this work is to build on our previous study
[29] by conducting a detailed analysis of the thermodynam-
ics of compact objects within the extended metric-Palatini
gravity (EMPG) framework.

The remainder of this article is organized as follows:
We analyze static spherically-symmetric solutions in EMPG
model in Sect. 2. Section 3 focuses on the thermodynami-
cal properties of Einstein-Geometric Proca compact objects.
The behavior of Hawking temperature has been examined in
Sect. 3.1. Enhalpy, heat capacity, entropy and Gibbs energy
have been discussed in Sects. 3.2, 3.3, 3.4, 3.5, respectively.
Finally, we summarize our findings in Sect. 4.

2 Static spherically-symmetric solutions in EMPG
model

This section presents a brief discussion of the EMPG model,
with much of the content drawn from our previous work [29].
Here, we summarize the key findings. The EMPG action is
provided in [26,28,29,43].

S[g, �] =
∫

d4x
√−g

{
M2

2
R (g) + M

2

2
R (g, �)

+ξRμν (�)R
μν

(�) − V0 + Lm(g�,ψ)

}
, (2)

where the affine curvatures in this action follow from the
affine Riemann curvature

R
μ
ανβ (�) = ∂ν�

μ
βα − ∂β�μ

να + �
μ
νλ�

λ
βα − �

μ
βλ�

λ
να, (3)

with R
μ
ανβ (�) = −R

μ
αβν (�). Its contractions give rise

to two distinct affine Ricci tensors: the canonical tensor
Rμν (�) = R

λ
μλν (�), and the antisymmetric Ricci tensor
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Rμν (�) = R
λ
λμν (�) = R[μν] (�). In metrical geometry, the

latter vanishes identically, i.e., Rμν (g�) = 0. The term pro-
portional to M2 in the action (2) corresponds to the Einstein–

Hilbert term in GR. The term proportional to M
2

corresponds
to the linear case of metric-Palatini gravity. The third term,
proportional to ξ , gives the extension of metric-Palatini grav-
ity with the antisymmetric part of the affine Ricci curvature
[26,28]. In the last two terms, we separate the vacuum energy
density V0 from the Lagrangian of matter Lm(g�,ψ) that
describes the dynamics of the matter fields ψ .

The torsion-free affine connection can always be decom-
posed as

�λ
μν = g�λ

μν + 1

2
gλρ(Qμνρ + Qνμρ − Qρμν), (4)

with the Levi-Civita connection g�λ
μν and Qλμν = −�∇λgμν

the non-metricity tensor. Applying this decomposition to
the metric-Palatini action (2) results in the reduced action
[26,28,29]

S[g,Y, ψ] =
∫

d4x
√−g

{
1

16πGN
R(g) − V0 − 1

4
YμνY

μν

−1

2
M2

Y YμY
μ + Lm(g, g�,ψ)

}
, (5)

in which Qμ = Qν
μν/4 is the non-metricity vector, Yμ =

2
√

ξQμ is the canonical geometric Proca field, GN =
8π/(M2 + M

2
) is Newton’s gravitational constant, and

M2
Y = 3M

2

2ξ
is the squared mass of the Yμ. For the purposes

of this analysis, it is convenient to express the reduced action
(5) in geometrical units as

S[g,Y ] =
∫

d4x
√−g

1

2κ

×
{
R(g) − 2
 − M2

Y ŶμŶ
μ − 1

2
Ŷμν Ŷ

μν

}
, (6)

in which κ = 8πGN , 
 = 8πGNV0 is the CC, and Ŷμ ≡√
κYμ is the canonical dimensionless Proca field. From the

given action, the equations of motion for the metric tensor
gμν and the field Ŷμ can be derived using the principle of
least action,

Rμν − 
gμν − ŶαμŶ
α
ν + 1

4
Ŷαβ Ŷ

αβgμν − M2
Y ŶμŶν = 0,

and

∇μŶ
μν − M2

Y Ŷ
ν = 0. (7)

These equations have been thoroughly investigated in [28,
29], aiming to obtain black hole solutions for 
 = 0 and

 < 0, respectively. In pursuit of a general static spherically

symmetric solution, the following ansatz is employed

gμν = diag

(
−h(r),

1

f (r)
, r2, r2 sin2 θ

)
, (8)

and the vector field satisfying the equation of motion (7), can
be considered as purely time-like

Ŷμ = φ̂(r)δ0
μ (9)

lead to the solution of the Proca field

φ̂(r̂) = q1

r̂
1−σ

2

+ q2

r̂
1+σ

2

, (10)

where σ =
√

1 + 4M̂2
Y l

2 in which l stands for the AdS
radius, and where we define the following dimensionless
quantities:

r̂ := κ−1/2r, M̂2
Y := κM2

Y . (11)

The Breitenlohner–Freedman mass bound [57] lets the range
0 ≤ σ < 1. This configuration avoids tachyonic runaway
instabilities in the AdS background, with q1 and q2 corre-
sponding to a uniform potential and an electromagnetic type
charge, respectively. Consequently, the metric components
f and h follow the form given in [29], in association with
the geometric Proca solution (10)

f (r̂) = r̂2l−2 + 1 + n1

r̂1−σ
+ n2

r̂
,

h(r̂) = r̂2l−2 + 1 + m1

r̂1−σ
+ m2

r̂
, (12)

in which

n1 = 1 − σ

4
q2

1 , m1 = 1 − σ

3 − σ
q2

1 ,

n2 = m2 − (1 − σ)(1 + σ)

6
q1q2, (13)

Setting q1 = 0 yields the AdS-Schwarzschild solution. The
ADM mass of the resulting compact object is given by the
expression in [29]

MADM = 1

2

(
q1q2

[
γ σ + 1

3
(1 − σ)(σ + 4)

]
− m2

)
.

(14)

In this expression, γ represents the surface term coefficient of
the geometric Proca field under the normalization MADM =
1. Comprehensive analyses of the physical characteristics
of the Einstein-geometric Proca AdS solution, including the
dependence of the horizon radius on the model parameters
and its singularity structure, can be found in [29].
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3 Thermodynamical properties in EMPG model

The investigation of black hole thermodynamics revealed
a fundamental connection among gravity, thermodynamics,
and quantum theory. This understanding has been attained
by classical and semi-classical analysis, greatly improving
our understanding of quantum processes in strong gravita-
tional fields [58]. Progress in quantum field theory on curved

surfaces has demonstrated an immediate link between sur-
face gravity and temperature [59], as well as between the
area of the event horizon and entropy [60]. Subsequently, we
investigate the thermodynamic characteristics of Einstein-
Geometric Proca AdS compact objects. To facilitate calcu-
lations, we focus on the equatorial plane. In this section, we
study the thermodynamic properties in the EMPG presented
above, such as temperature, entropy, and heat capacity.

3.1 Hawking temperature

In 1974, Hawking discovered that the physical temperature
of a black hole is not absolute zero. Due to quantum particle
creation effects, a black hole emits all types of particles to
infinity with a perfect black body spectrum at temperature
[58]

T = κ

2π
, (15)

where κ is the surface gravity of BH, and we can calculate it
with the following expression

κ =
√
h′(r) f ′(r)

2
|r=rh . (16)

After substituting Eqs. (15)–(16) Hawking temperature of
a compact object with static spherically symmetric metric (8)
is expressed by

TH =
√
h′(r) f ′(r)

4π
|r=rh , (17)

which gives the following expression for the Hawking tem-
perature using the metric solutions (12).

TH = 1

16l2r2
h

√
3π

√√√√
[
12r3

h + 4l2rh − q2
1 l

2rσ
h (σ − 1)σ

] [
3l2q2

1r
σ
h (1 − 4σ + 3σ 2) + 2(σ − 3)

(
18r3

h + 6rhl2 + q1q2l2(σ 2 − 1)
)]

(σ − 3)
.

(18)

The event horizon of the black hole for the specified metric
(12) is determined by the condition f (r̂) = 0. If we consider
q1 = 0, the Hawking temperature of the Schwarzschild black
hole T0 = 1/(8πM) is recovered. Figure 1 illustrates the
radial dependence of Hawking temperature on various values
of q1 and q2. It is obvious that TH decreases monotonically
with increasing radial distance. Higher values of q1 are asso-
ciated with greater TH , while higher values of q2 correspond
to lower TH . Figure 2 shows that the Hawking temperature
increases monotonically with the charge parameters while
larger black hole masses correspond to lower temperatures.
This behavior is consistent with the fact that massive black
holes are colder, whereas charge contributions enhance the
surface gravity.

3.2 Enthalpy

In black hole thermodynamics, the mass M of a black hole
is interpreted as its enthalpy H , not its internal energy, and
can be found by the condition f (r̂h) = 0.

H =
q1q2l2(14 − 12σ + 12γ σ − 2σ 2)

+12rh(l2 + r2
h ) + 3l2q2

1r
σ
h (1 − σ)

24l2
. (19)

Enthalpy helps us to understand how energy changes in a
black hole when it absorbs or emits energy. Figure 3 shows
the radial dependence of black hole enthalpy in different q1,
q2 and σ . The graph clearly shows that increasing the values
of q1 and q2 corresponds to higher enthalpy, which means
higher internal energy.
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Fig. 1 Hawking temperature TH with respect to horizon radius rh for fixed values of q1 and q2

Fig. 2 Hawking temperature TH with respect to q1 (on the left) and q2 (on the right) for fixed values mass

3.3 Heat capacity

To check the thermodynamic stability of the compact objects,
the heat capacity C(rh) of the objects is calculated. The pos-
itive (negative) specific heat signifies the local thermody-
namic stability (instability) of the black holes. By using the
relation

C = ∂MBH

∂TH
= ∂MBH/∂rh

∂TH/∂rh
, (20)

one finds the following expression for the heat capacity of
Einstein Geometric-Proca compact object:

C =
2
√

3πr2
h

√
(σ − 3)

(
12r3

h + l2
(
4rh + q2

1r
σ
h σ

−q2
1r

σ
h σ 2

))
432r6

h (σ − 3) + 6l2q1r3
h (1 − σ)

(
2q2

(
σ 2 − 3 − 2σ

)
+3q1rσ

h

(
7σ − 7σ 2 + σ 3 − 1

) )

×
√ [

12r3
h + 4l2rh + l2q2

1r
σ
h σ(1 − σ)

] [3l2q2
1r

σ
h (1 − 4σ

+3σ 2) + 2(σ − 3)
(
18r3

h + 6rhl2 + q1q2l2(σ 2 − 1)
)] .

(21)

Figure 4 shows the dependence of heat capacity on the
radius of the horizon rh . The graph indicates that the heat
capacity of the Einstein-Geometric Proca AdS compact
objects is negative and increases with increasing values of q1.
However, a change in q2 results in a minor reduction in heat
capacity. The negative value of the heat capacity indicates

123
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Fig. 3 Enthalpy H with respect to horizon radius rh for fixed values of q1 and q2

Fig. 4 Heat capacity C with respect to horizon radius rh for fixed values of q1 and q2

Fig. 5 Heat capacity of
Einstein-Geometric Proca AdS
compact object as a function of
the normalized event horizon
rh/�

that the compact object is unstable in small radius. However,
for sufficiently large event horizon radius, the heat capac-
ity becomes positive, indicating that the compact object is
thermodynamically stable. As illustrated in Fig. 5, a phase
transition occurs when the horizon radius rh becomes com-
parable to the AdS length scale l.

3.4 Entropy

The second law of thermodynamics implies that black holes
must have entropy. Without it, adding mass to a black hole
would violate this law. In 1972, Jacob Bekenstein suggested
that a black hole’s entropy is proportional to the area of
its event horizon, which leads to the Hawking–Bekenstein
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Fig. 6 Entropy with respect q2 for fixed values of q1 (on the left) and with respect q1 for fixed values of q2 (on the right) with σ = 0.9

Fig. 7 Gibbs energy with respect to horizon radius rh for fixed values of q1, q2 and σ

entropy for a spherically symmetric compact object being
defined by the area law [61]

S = Ah

4GN
, (22)

where Ah = 4πr2
h is the area of the compact object horizon.

Figure 6 shows how the black hole entropy varies with the
parameters q1 and q2. The graphs reveal that these parame-
ters significantly influence the entropy: when q1 is negative,
increasing q2 increases the entropy, while for positive q1, a
higher q2 leads to a reduced entropy. Similarly, for positive
q2, an increase in q1 decreases the entropy, while for negative
q2, an increase in q1 enhances it.

3.5 Gibbs energy

Gibbs free energy is a critical quantity in black hole thermo-
dynamics, essential for analyzing both the thermodynamic
stability and phase transitions of black holes. It serves as a
fundamental indicator that helps determine the direction of

thermodynamic processes in nature. The Gibbs free energy
for a black hole is defined as follows [62]

G = M − T S.

In this context, M, T, S represent the enthalpy, Hawking’s
temperature, and entropy of the black hole, respectively. Fig-
ure 7 illustrates how the Gibbs free energy of the Einstein-
Geometric Proca AdS compact object varies with the radial
distance. The graphs clearly show that as the radial distance
and the parameters q1 and q2 increase, the Gibbs free energy
also increases.

3.6 First law of thermodynamics

Having established the expressions for entropy and temper-
ature, we are now prepared to examine the first law of ther-
modynamics. The first law of thermodynamics in our model
is

dM = T dS + �2 dq2 (23)
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where

• M = M(rh): the mass of the compact object,
• T = T (rh): the Hawking temperature,
• S = S(rh): the entropy,
• �2: the potential of q2.

In the Maxwell limit (σ → 1) the Proca field behaves as
φ̂(r̂) → q1 + q2

r̂ and it means that q2 has the meaning of an
electromagnetic-like charge while q1 represents a uniform
potential. Thus we dropped the term �1 dq1 in the first law.
Since we consider the electric-type charge q2 to be fixed in
this variation, the first law reduces to its simple form:

dM

drh
= T

dS

drh
. (24)

If define

� = dM

drh
− T

dS

drh
(25)

we need to satisfy

� = 0. (26)

By substituting the explicit expressions for M , T and S into
the first law, we obtain:

� = 1

8

(
12r2

h

l2
− q2

1 (σ − 1)σrσ−1
h + 4

)
−

(
rh

8
√

3

)

×
√(

l2
(
4rh − q2

1 (σ − 1)σrσ
h

) + 12r3
h

) (
3l2q2

1 (σ − 1)(3σ − 1)rσ
h + 2(σ − 3)

(
l2

(
q1q2

(
σ 2 − 1

) + 6rh
) + 18r3

h

))
l4r4

h (σ − 3)
(27)

To verify the validity of the first law, we plot the contour
curves where � = 0. Along each such curve in Fig. 8, the
first law of thermodynamics is exactly satisfied. The figure
illustrates (q1, rh) plane for various fixed values of q2 in order
to maintain the condition � = 0. Notably, the case q1 = 0,
corresponding to the Schwarzschild-AdS solution, satisfies
� = 0. This special case is represented by the black dashed
line in the plot.

4 Conclusion

This study explores the thermodynamics of Einstein-Geometric
Proca AdS compact objects, examining how Hawking radi-
ation, entropy, enthalpy, heat capacity, and Gibbs energy
depend on model parameters such as q1, q2 and σ . The study
focuses on analyzing Hawking radiation, entropy, enthalpy,
heat capacity, and Gibbs energy and their dependence of q1,

Fig. 8 The contour plot of Eq. (27) for � = 0

q2, and σ . Based on the calculations presented above, we
arrive at the following conclusions:

• We have analyzed the Hawking temperature of Einstein-
Geometric Proca AdS compact objects and its depen-
dence on q1, q2, and rh in Fig. 1. Our study reveals that
temperature TH decreases monotonically with increas-
ing radial distance. Moreover, higher values of q1 are
associated with higher temperatures near the compact
object while higher values of q2 corresponds to lower
temperatures. Figure 2 shows that the Hawking tempera-
ture increases monotonically with the charge parameters
while larger black hole masses correspond to lower tem-
peratures. This behavior is consistent with the fact that
massive black holes are colder, whereas charge contribu-
tions enhance the surface gravity.

• When examining the enthalpy of Einstein-Geometric
Proca AdS compact objects, we observe that the enthalpy
increases with the horizon radius (see Fig. 3). Moreover,
at a fixed σ , adjustments in the parameters q1 and q2 lead
to an increase in mass, thus increasing the enthalpy.
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• Additionally, we have examined the heat capacity, a key
factor in determining the stability of the black hole in
Fig. 4. Our analysis indicates that the heat capacity of
the Einstein-Geometric Proca AdS bcompact object is
negative. Moreover, it increases with higher values of q1,
while increasing q2 leads to a slight decrease.

• The analysis of entropy for Einstein-Geometric Proca
AdS black holes, as illustrated in Fig. 6, shows its sensi-
tivity to the parameters q1 and q2. Specifically, for nega-
tiveq1 values, increasingq2 leads to higher entropy, while
for positive q1 values, increasing q2 causes the entropy
to decrease. Similarly, if q2 is positive, an increase in q1

enhances the entropy, but if q2 is negative, the entropy
decreases as q1 increases.

• We have also examined the Gibbs free energy of Einstein-
Geometric Proca AdS compact objects as shown in Fig. 7.
Our findings indicate that as the radial distance increases,
along with the parameters q1 and q2, the Gibbs free
energy also increases.
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