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Abstract

The coevolution trends of amino acids within or between genes offer key insights into protein structure and function. Existing tools for uncovering
coevolutionary signals primarily rely on multiple sequence alignments, often overlooking phylogenetic relatedness and shared evolutionary
history. Here, we introduce PHACE, a phylogeny-aware coevolution algorithm that maps amino acid substitutions onto a phylogenetic tree to
detect molecular coevolution. PHACE categorizes amino acids at each position into “tolerable” and “intolerable” groups, based on their
independent recurrence across the tree, reflecting a position’s tolerance to specific substitutions. Gaps are treated as a third character type,
with only phylogenetically independent gap changes considered. The method computes substitution scores per branch by traversing the tree
and quantifying probability differences across adjacent nodes for each group. To avoid artifacts from alignment errors, we apply a multiple
sequence alignment-masking procedure. Compared to phylogeny-based methods (CAPS, CoMap) and state-of-the-art multiple sequence
alignment-based approaches (DCA, GaussDCA, PSICOV, mutual information), PHACE shows significantly superior accuracy in identifying
coevolving residue pairs, as measured by statistical metrics including Matthews correlation coefficient, area under the ROC curve, and F1

score. This performance stems from PHACE's explicit modeling of phylogenetic dependencies, often ignored in coevolution analyses.
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Introduction

Coevolution refers to the synchronized alterations observed in
pairs of organisms or biomolecules, typically aimed at preserv-
ing or enhancing the functional relationships between them
(De Juan et al. 2013). While it occurs across various levels,
such as among species and organisms, it is particularly evident
at the molecular level between interacting protein positions
(Dutheil 2012). The literature has shown significant interest
in detecting molecular coevolution and understanding the
trends of coevolution among protein positions, as it offers vital
insights into protein structure and function. Notably,
cutting-edge methodologies like AlphaFold (Jumper et al.
2021) and RoseTTAFold (Baek et al. 2021) leverage covari-
ation as a crucial input feature, underscoring its importance
in modern protein structure prediction.

Coevolution trends between amino acid positions can be de-
tected using various approaches that identify correlated
changes, which refer to substitutions that tend to occur in a co-
ordinated manner at two or more positions within a multiple
sequence alignment (MSA). Many approaches based on MSAs
are presented in the literature to detect coevolution, such as the
state-of-the-art tools, DCA (Morcos et al. 2011), GaussDCA
(Baldassi et al. 2014), mutual information (Mlp) (Dunn
et al. 2008), and PSICOV (Jones et al. 2012). However, co-
evolution is not the sole source of correlated amino acid obser-
vations between protein positions in MSAs (Dutheil 2012).

Thus, it is essential to discriminate the actual coevolution sig-
nal from other sources of correlated changes, where a primary
false signal is known to be caused by phylogenetic relatedness
(Dutheil 2012). Additionally, methods scoring coevolution
based on the covariation of positions are known to fail in dis-
criminating positions differentiating in evolutionary scenarios
(Talavera et al. 2015). Talavera et al. demonstrated the
indistinguishability of coevolutionary scenarios from non-
coevolving scenarios based solely on covariation, highlighting
its limitations as a measure of coevolution.

We illustrate our rationale in Fig. 1, where we demonstrate
that coevolution scoring can be inaccurate if shared ancestry is
overlooked, even when position pairs show identical amino
acid frequencies in the MSA. Coevolution inference drastically
depends on the topology of the phylogenetic tree (Fig. 1a). In
the first tree, four correlated changes, represented by distinct
colors for each position (e.g. yellow, and pink circles), are
observed as phylogenetically independent, meaning they oc-
curred on separate branches of the tree and did not originate
from a single clade or a single mutation. In contrast, all four
substitutions in the second tree, shown using the same color
scheme, are phylogenetically dependent, as they resulted
from a single amino acid alteration that occurred on the ances-
tral branch at the root of that clade. In other words, these two
scenarios are equivalent in terms of MSA-based scoring of the
coevolution signal; however, ignoring common evolutionary
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Fig. 1. Rationale of PHACE. a) Importance of phylogenetic information in coevolution analysis. The diagram illustrates how identical MSAs for position
pairs can yield different interpretations: yellow and pink circles on branches represent amino acid changes at two distinct sites, demonstrating how
phylogenetic analysis uncovers different patterns of correlated changes resulting from the shared ancestry problem. b) Clustering amino acids by
tolerability: despite unclear coevolution signals initially, repeated observation of A's and T's at a position suggests tolerance to both amino acids which are
represented as A, in the updated MSA, while other amino acids are grouped as A,. This process alters the coevolution signal in the updated MSA.

history results in a false coevolution signal and overcounts the
effect of one single amino acid alteration as if it occurred four
times independently. Our study aims to address this challenge
by accurately scoring genuine coevolution signals resulting
from correlated evolutionary variation while excluding paral-
lel changes resulting from shared ancestry.

We emphasize another problem that disrupts the co-
evolution signal: high variability at aligned positions. Some
positions in a protein can tolerate a wide range of amino
acid substitutions without affecting function, leading to high
sequence variability. This variability complicates the inter-
pretation of parallel changes, as frequent substitutions may
occur independently at multiple sites without reflecting true
coevolution. We observed that treating these frequent, func-
tionally neutral substitutions in the same way as rare, func-
tionally impactful ones can weaken the detection of genuine
coevolution signals. An illustrative example is provided in
Fig. 1b. Despite the uncertain coevolution signal in the original
MSA, both alanines (As) and threonines (Ts) are observed
phylogenetically independently and repeatedly, highlighting
the position’s tolerance to both A and T (Kuru et al. 2022).
We incorporate this tolerance into our framework by cluster-
ing amino acids into two groups based on whether they are tol-
erated or not, labeled A and A, respectively. Since A and T
are both considered tolerated, they are grouped together as
A ;. The remaining amino acids which are the ones we use to
score coevolution signal are clustered as A,. As illustrated in
the updated MSA in Fig. 1b, this approach reveals the co-
evolution signal concealed in the original MSA.

Several attempts have been made in the literature to solve
the first problem: separating coevolution signals from phylo-
genetic relatedness by incorporating phylogenetic trees.
CAPS (Fares and McNally 2006) and CoMap (Dutheil and
Galtier 2007), in particular, leverage both phylogenetic trees
and ancestral sequence reconstruction (ASR) in their scoring
schemes. The original version of CAPS used phylogenetic trees
primarily for correction, whereas CAPS v2 incorporates sub-
stitution mapping of amino acid changes onto the phylogenet-
ic tree. This enables it to explicitly model the evolutionary

history of substitutions but still relies on site-wise correlation
coefficients. CoMap provides another tree-based approach
that benefits from substitution mapping. It considers the an-
cestral states at each internal node to compute the expected
number of substitutions per branch and uses correlation be-
tween substitution events to infer coevolution. Additionally,
CoMap accounts for biochemical properties of amino acids
by incorporating weighted substitution mapping, which cap-
tures correlated substitution patterns and can detect compen-
satory changes—where a substitution at one site mitigates the
deleterious effect of a substitution at another, often through
physicochemical compatibility. Unlike CAPS and CoMap,
PHACE advances these approaches by not only using trees
and ASR but also by assessing amino acids based on the dy-
namics of their corresponding positions. PHACE considers
whether substitutions are permissive based on their impact
on protein function, enabling a more refined differentiation
between mere phylogenetic noise and true coevolutionary sig-
nals. This functionality-focused approach allows PHACE to
provide more precise insights into the functional consequences
of amino acid changes, offering a significant enhancement
over traditional methods that may primarily focus on evolu-
tionary patterns without a direct functional context.

In our previous work (Kuru et al. 2022), we introduced
PHACT, a novel phylogeny-based approach for predicting
the functional consequences of missense mutations. This
method integrates the evolutionary history of proteins by util-
izing phylogenetic trees and ASR, which provides the prob-
ability distribution of amino acids at each internal node of
the tree. PHACT operates by performing a detailed traversal
of these trees, starting from the specific leaf node that repre-
sents the query sequence. As it moves through the tree,
PHACT examines the probability differences of ancestral ami-
no acids between each connected node, focusing on positive
probability differences. These positive differences are aggre-
gated across the tree in a weighted manner based on the dis-
tance to the starting point of the traversal. The rationale for
using positive probability differences is to identify the phylo-
genetic nodes where missense mutations have emerged,
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Fig. 2. PHACE algorithm overview. a) PHACE utilizes the original MSA and maximum likelihood phylogenetic tree to cluster amino acids into “tolerable”
and “intolerable” groups, resulting in MSA,. To accurately capture coevolution signals involving insertions and deletions, a second alignment (MSA,) is
created to distinguish amino acids from gaps. Both alignments are used to detect phylogenetically independent changes and update substitution scores
per branch. b) The resulting data are combined to generate a matrix that encodes the number of independent changes per branch per position, along with
branch-specific diversity. PHACE score is calculated using a WCCC (example shown for positions 126 to 130; spatial distance =6.54 A).

signifying an increase in the probability of amino acid substi-
tution. Conversely, negative probability changes, which result
from substitutions in previously visited parts of the tree, indi-
cate a decrease in the likelihood of encountering specific amino
acids in subsequent steps. These negative changes are ignored
in the score computation to avoid repetitive counting of de-
pendent substitutions, thereby enhancing the accuracy of mu-
tation pathogenicity predictions. By tracking these
evolutionarily independent events, PHACT is able to provide
robust predictions of whether a particular missense mutation
will be pathogenic or benign, offering significant improve-
ments over traditional methods that do not account for phylo-
genetic relationships. Given PHACT’s success in scoring
phylogenetically independent events by accurately eliminating
the effect of shared evolutionary history, we have developed
PHACE, a novel phylogeny-aware coevolution algorithm.
The PHACE method aims to detect parallel substitutions
between pairs of positions by leveraging phylogenetically in-
dependent events. The outline of the PHACE algorithm is il-
lustrated in Fig. 2. The central goal of PHACE is to
eliminate correlated changes that arise due to shared evolu-
tionary history, rather than true coevolution. To achieve
this, we derive the amino acid probability distribution at
each internal node by using ASR, based on the observed amino
acids in the MSA. We then calculate the positive probability
differences between neighboring nodes along each branch,

which represent increases in the probability of specific amino
acids. The sum of these increases along a branch reflects the
number of phylogenetically independent amino acid changes.
These branch-level scores are used to identify coordinated sub-
stitutions between site pairs. However, as illustrated in Fig. 1b,
certain positions may tolerate amino acid changes without af-
fecting protein function, making it difficult to distinguish neu-
tral variation from meaningful coevolution. To address this,
we generate a modified version of the original MSA (MSA,
in Fig. 2a), in which amino acids are categorized into three
groups: tolerable (A;), intolerable (A;), and gaps (-).
Tolerability is inferred from the accumulation of phylogenet-
ically independent substitutions at each position. This refine-
ment ensures that frequent, functionally neutral changes do
not mask true coevolutionary signals.

Although we successfully eliminate the correlated patterns re-
sulting from shared evolutionary history and consider position
diversity, deciding how to treat gaps is important. In the existing
literature, widely used tools such as DCA, GaussDCA,
PSICOV, and Mlp treat gaps as the 21st character. However,
most tools overlook gaps in sequence reconstruction in the
ASR framework. Ignoring gaps and treating them as the 21st
amino acid limits the sensitivity and specificity of identifying
the coevolving sites. To address these limitations, we introduce
a second version of MSA consisting of only two characters: one
for all amino acids and one for gaps (MSA, on Fig. 2a). By
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applying classical ASR algorithms to this simplified MSA, we
pinpoint the occurrence of phylogenetically independent gap al-
terations, which correspond to the branches where the probabil-
ity of the character assigned to the gap increases. As shown in
the final tree in Fig. 2a, we consider only phylogenetically inde-
pendent amino acid and gap alterations and eliminate the effect
of shared evolutionary history from our coevolution score with
this approach.

For each position in the position pair, we integrate informa-
tion from both versions of MSA and their corresponding ASR
probabilities to construct a vector of length equal to the num-
ber of branches. Each entry in the vector reflects the total
amount of phylogenetically independent substitutions on
that branch. To score coevolution between a pair of positions,
we compare their corresponding vectors to see whether there
are changes at the same branches and the amount of change
matches. We use the weighted concordance correlation coeffi-
cient (WCCC), where each branch’s weight is determined by
its evolutionary rate. The branch evolutionary rate reflects
whether variation at a branch is broad or localized. By giving
less weight to branches that are broadly variable, we reduce
the influence of background noise and better isolate true co-
evolution signals. We compute this rate by considering the to-
tal amount of change per branch across all positions. Although
phylogenetic tree branch lengths could potentially be used for
this purpose, they are not ideal in our case, as the gap character
is excluded from tree construction and ASR. As a result,
branch lengths do not accurately capture the overall variabil-
ity. Instead, we use this empirical diversity score as a more ac-
curate representation of branch-specific changeability.

We note that no parameter optimization was performed for
PHACE; the algorithm was developed using biologically in-
formed, interpretable steps rather than data-driven tuning.
Given the absence of a gold standard benchmark for co-
evolving protein positions—a recognized bottleneck in the
field—we intentionally avoided overfitting by not calibrating
parameters based on structural data used in the evaluation.

In our experiments, residues in contact within PDB-derived
protein structures were used as proxies for coevolving position
pairs, a common approach in the field to distinguish spatially
close from distant positions in the 3D structure of proteins.
This methodological choice, detailed further in the Results sec-
tion, aligns with established practices in computational biol-
ogy (Morcos et al. 2011; Jones et al. 2012; Baldassi et al.
2014). PHACE demonstrated significantly superior perform-
ance across various statistical measures compared to
MSA-based tools (DCA, GaussDCA, PSICOV, and Mlp)
and phylogeny-based approaches (CAPS and CoMap).

Results

To evaluate the performance of the PHACE algorithm, we uti-
lized protein 3D structures and limited our interest to the pro-
teins with experimentally determined structures. The criteria
for determining the protein set are detailed in the Materials
and Methods section. Similar to the previous studies, we con-
sidered two positions are “in contact” if their CB-CB distance
is less than 8 angstroms (A) (Morcos et al. 2011; Jones et al.
2012; Baldassi et al. 2014). Thus, following the literature,
we infer that two positions are coevolving if they are proxim-
ate in the 3D structure. While an 8 A threshold is commonly
accepted for defining positions in contact, some studies sug-
gest using distances up to 12 A (Li et al. 2015). In our analysis,
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we employed two different strategies for defining non-
coevolving position pairs.

First, we used a threshold of 16 A to classify non-coevolving
pairs. This threshold was chosen based on the structural prop-
erties of proteins, such as the typical spacing observed within
regular secondary structural elements like alpha helices and
beta strands. In alpha helices, which have about 3.6 amino
acids per turn, each residue contributes to a helical rise of ap-
proximately 1.5 A. Similarly, amino acids in beta strands are
spaced roughly 3.5 A apart along the strand. By setting a
16 A threshold, we ensured that position pairs separated by
distances greater than the spacing within these motifs were
categorized as non-coevolving, helping to minimize false-
positive coevolution signals.

Second, for ROC curve comparisons with tools such as
DCA, GaussDCA, PSICOV, and Mlp, we implemented a
strategy where non-coevolving pairs were chosen by sortin
distances from the farthest to the closest, up to the 16 A
threshold, to match the number of coevolving pairs. This bal-
anced selection approach addressed potential biases in the
data set, which can impact metrics like AUC that are sensitive
to imbalances. Using these two complementary strategies, we
aimed to maximize the reliability of our assessments and en-
sure consistency across different analyses.

As benchmark tools report results in various formats, we se-
lected statistical measures based on their respective outputs.
CAPS and CoMap exclusively report coevolving position
pairs, while DCA and GaussDCA provide scores for nearly
all position pairs. Consequently, we evaluated CAPS and
CoMap using Matthews correlation coefficient (MCC) and
F1 scores, whereas the area under the ROC curve (AUC)
was utilized for comparing performance with DCA,
GaussDCA, PSICOV, and Mlp since they report predictions
for all (almost) position pairs. The total number of proteins
in the test set per tool and the employed performance measures
are provided in Table 1. Because no optimal threshold value is
reported for these tools, we determined the best threshold per
protein using ROC curves for MCC comparisons. We used the
same MSA set as an input for all tools in comparison.

In line with existing literature, we assessed the performance
of PHACE and other tools across diverse scenarios using two
distinct test sets focused on coevolving positions. The first set
encompassed all pairs, while the second set specifically in-
cluded coevolving pairs with more than five amino acids be-
tween them. Although the first scenario, comprising
coevolving position pairs separated by five or fewer amino
acids, is less extensively detailed in the literature and often per-
ceived as straightforward, our comparison revealed that
benchmark tools performed less effectively in this set com-
pared to PHACE. Furthermore, PHACE exhibited significant
improvement over these tools even in the second set, which
presents more challenging cases. We divided the comparisons
into two subsections based on the input of the compared tools.

Comparison Over a Common Set of Proteins

Before diving into detailed pairwise comparisons, we present
an AUC-wise comparison of all tools using a common set of
proteins comprising 639 entries. It is crucial to note that for
pairs with missing values for any tool in ROC curve compar-
isons, we assign the respective tool’s lowest score for the
corresponding protein. As CAPS and CoMap only report co-
evolving position pairs, excluding a common set of positions
without a score from any of the six tools was not meaningful.
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Table 1 General information about the tools and statistical measures employed

Tool name Input type Number of proteins Reported values Measure used
PDB 3D structure 652 Experimentally studied pairs —
PHACE Phylogenetic tree, ASR, MSA 652 All position pairs AUC, MCC, F1
CoMap Phylogenetic tree, ASR, MSA 652 Only coevolving pairs MCC, F1
CAPS Phylogenetic tree, ASR, MSA 652 Only coevolving pairs MCC, F1
DCA MSA 647 Missing values AUC, MCC
GaussDCA MSA 652 Missing values AUC, MCC
MlIp MSA 652 Missing values AUC, MCC
PSICOV MSA 646 Missing values AUC, MCC
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Fig. 3. Comparison of all tools over a common set in terms of AUC. The test sets are a) all pairs and b) pairs with at least five amino acids between them.

Each point represents the AUC value for a different protein.

Although this comparison methodology may not favor CAPS
and CoMap, AUC was chosen because it provides a compre-
hensive measure of a method’s ability to distinguish between
coevolving and non-coevolving pairs across all potential clas-
sification thresholds. This approach is particularly beneficial
when comparing methods that do not inherently rank non-
coevolving pairs, allowing for an unbiased evaluation of
each method’s discriminative power.

Figure 3 illustrates the comparison of all tools over two dis-
tinct test sets: one constructed over all positional pairs
(Fig. 3a) and the other over pairs with at least a five-amino
acid separation (Fig. 3b). In conducting ROC curve compari-
sons, we aim to maintain a balanced test set encompassing
both coevolving and independent positional pairs.
Independent positions are selected, starting from the furthest
pairs to the closest, while minimizing repetitions. Our object-
ive is to maintain a fair comparison and avoid favoring any
tool based solely on identical positions. As depicted in
Fig. 3a and b, PHACE demonstrates superior performance
compared to all six tools, with a significant difference even
compared to the best-performing tool in this set, DCA
(¢-test, P<0.001). To provide a more detailed evaluation,
we include AUPR comparisons in supplementary fig. S1,
Supplementary Material online, and report per-tool AUC
and AUPR results across all proteins in supplementary table
S1, Supplementary Material online.

To assess how alignment heterogeneity influences method
performance, we analyzed three key parameters: number of se-
quences, alignment length (number of positions), and total
tree length. The distributions of these parameters across

the 652 proteins are shown in supplementary fig. S2,
Supplementary Material online and the underlying values
are provided for each protein are provided in supplementary
table S2, Supplementary Material online. Each parameter
was categorized into three groups—small, medium, and
large—based on defined thresholds (<250, 251 to 750, >750
for number of sequences; <500, 501 to 1,000, >1,000 for
alignment length; <100, 101 to 200, >200 for tree length).

We then evaluated the performance of each tool across these
categories. AUC and AUPR comparisons stratified by align-
ment size are presented in supplementary figs. S3 to S35,
Supplementary Material online, corresponding to the number
of sequences, number of positions, and total tree length, re-
spectively. These results show that PHACE consistently
outperforms other tools across all alignment categories, sup-
porting its robustness to variation in input size and evolution-
ary divergence.

Comparison Among Phylogeny-Based Approaches
In the initial series of pairwise comparisons, we assessed
PHACE against two other tools, CAPS and CoMap, both of
which employ phylogenetic tree analysis and ancestral recon-
struction in their predictions. As previously mentioned, CAPS
and CoMap specifically identify position pairs considered co-
evolving according to their methodologies. CAPS detects co-
evolving amino acid sites by measuring the correlation of
evolutionary rates between sites, adjusted for divergence
times. The version we consider (CAPS v2) also incorporates
substitution mapping and ASR. However, CAPS has some
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Fig. 4. Performance comparison of PHACE and phylogeny-based approaches, CAPS and CoMap, in terms of MCC and F1 score. The test setsare aand c)
all pairs and b and d) pairs with at least five amino acids between them. Each point represents the corresponding metric value for a different protein.

limitations, such as assigning a single amino acid to internal
nodes, ignoring gaps, and relying on a simple correlation func-
tion to infer coevolution. Another tree-based tool, CoMap, is a
clustering-based method that identifies coevolving amino acid
sites by mapping substitutions across a phylogenetic tree.
CoMap considers all possible amino acids for internal no-
des; however, it applies a 0/1 indicator to each parent—child
amino acid pair when computing the expected number of
substitutions, so the resulting score cannot capture the mag-
nitude of the change. Additionally, CoMap also disregards
gaps and employs a basic correlation measure. Both ap-
proaches do not consider the position dynamics related to
tolerable and intolerable amino acids. Since these tools do
not generate predictions for all potential pairs, we evaluated
them using MCC and F1 scores, which are well suited for
categorical comparison among imbalanced data sets.
While a single threshold may not universally optimize

performance across proteins with diverse behaviors, we set
a threshold (0.25) for PHACE for an equivalent comparison.

Figure 4 illustrates the resulting MCC and F1 score per-
formances for pairwise comparisons involving PHACE,
CAPS, and CoMap. Figure 4a and ¢ correspond to MCC
and F1 score comparisons across all possible pairs, while
Figure 4b and d include pairs with at least a five-amino
acid separation. The underlying per-protein MCC and F1
score for PHACE versus CAPS and CoMap are provided in
supplementary tables S3 and S4, Supplementary Material
online respectively. It is apparent from the figures that
PHACE significantly outperforms CAPS and CoMap in
terms of both MCC and F1 score for both test sets (#-test
P <0.001). This underscores the superior predictive capabil-
ity of PHACE over these alternative tools that utilize phylo-
genetic trees in identifying coevolving position pairs within
protein sequences.
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Fig. 5. Comparison of PHACE and MSA-based tools, DCA, GaussDCA, PSICOV, and Mlp, in terms of AUC. The test sets are constructed over a) all pairs
and b) pairs with at least five amino acids between them. Each point represents the AUC value for a different protein.

Comparison of PHACE With MSA-Based
Approaches

In this section, we comprehensively compared PHACE and
several MSA-based tools, namely, DCA, GaussDCA,
PSICOV, and Mlp, focusing on the AUC and MCC. We aimed
to evaluate the performance of these tools in detecting contact-
ing residues inferred from protein structures.

Similar to the earlier ROC curve comparisons, we aimed to
construct a balanced test set comprising coevolving and inde-
pendent position pairs. To ensure fairness and avoid favorit-
ism toward any tool based on repeated positions, we
selected independent positions starting from the furthest pairs
to the closest while minimizing repetitions. As in the previous
ROC curve analyses, the pairs not reported by the compared
tool were assigned one unit lower than the lowest score ob-
served for that tool within the same protein. Since each tool
may have a different set of test proteins, we conducted pair-
wise comparisons similar to the previous section. The results
in Fig. 5 indicate a significant performance gap between
PHACE and other MSA-based tools over a test set constructed

with all pairs (Fig. 5a) and pairs with at least a five-amino acid
separation (Fig. 5b). The significance test was again performed
using a #-test, with the P-value observed as less than 0.001.
The underlying per-protein MCC and F1 scores comparing
PHACE to DCA, GaussDCA, PSICOV, and MlIp are provided
in supplementary tables S5 through S8, Supplementary Material
online, respectively.

Transitioning to MCC comparisons, we acknowledged
the wvariability in threshold selection across different
tools for individual proteins. To our knowledge, these tools
do not report a universally valid threshold. Therefore, we de-
termined the threshold for each tool based on the ROC
curve, enabling an unbiased comparison between PHACE
and each tool pairwisely in terms of MCC. Figure 6 high-
lights a statistically significant improvement in PHACE’s
performance compared to DCA, GaussDCA, PSICOV, and
MIp across test sets over all pairs, as well as pairs with at
least a five-amino acid separation considered. These findings
underscore the effectiveness of PHACE in identifying posi-
tions in contact within protein sequences, outperforming
other established MSA-based tools.
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Limitations of Current Approaches

In Fig. 7, we aim to illustrate instances where PHACE success-
fully classifies coevolving position pairs while other tools fail.
These examples shed light on the potential benefits of properly
incorporating phylogenetic trees to enhance the prediction of
coevolving positions.

The first example presents a scenario involving a fully con-
served position pair. Despite the absence of any evident signal
indicating coevolution, DCA, GaussDCA, PSICOV, and MIp
assign relatively high scores to this pair. We observe instances
similar to this, particularly in DCA and GaussDCA. This pos-
ition pair is strongly predicted as coevolved by the current
tools, although there is no amino acid substitution.

The second example underscores the impact of distinguishing
between tolerable and intolerable amino acids based on
phylogenetically independent events. Although the original
MSA does not exhibit a strong coevolution signal for the position
pair, the presence of amino acids observed independently during
the phylogenetic tree analysis leads to their clustering as tolerable

amino acids. Consequently, an updated MSA reveals a noticeable
coevolution signal. As a result, PHACE correctly identifies a pair
with a distance of 7.34, while no other tool was able to do so.

The final examples in Fig. 7c illustrate the success of toler-
able/intolerable clustering in eliminating incorrect coevolution
signals. DCA and GaussDCA predict both pairs as coevolving
with a high score, while PHACE correctly labels them as inde-
pendent due to phylogenetically independent alterations
among the amino acid groups.

These examples highlight PHACE’s ability to effectively le-
verage phylogenetic information to identify coevolving pos-
ition pairs, demonstrating its superiority over other tools in
certain scenarios where traditional methods may fall short.

Discussion

This study introduces a novel perspective on scoring co-
evolution among protein positions and presents PHACE,
which utilizes phylogenetic trees to assign scores to position
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predicted as coevolving by DCA and GaussDCA.

pairs based on correlated, phylogenetically independent ami-
no acid alterations. It categorizes observed amino acids into
two groups: tolerable amino acids and intolerable amino
acids, with gaps considered as the third group of characters.
We compared the performance of PHACE with both
phylogeny-based approaches (CAPS and CoMap) and state-
of-the-art MSA-based tools (DCA, GaussDCA, PSICOV,
and MlIp). Our results demonstrate a significant difference in
performance between PHACE and other benchmark tools
across various measures. This improvement is noteworthy as
it indicates that by eliminating phylogenetic dependence, a
major source of signal that can be mixed with coevolution,
we can achieve better performance than existing state-
of-the-art approaches. Moreover, PHACE’s success over
phylogeny-based approaches is significant, as while employing
phylogenetic trees is crucial to eliminate the correlation intro-
duced by shared ancestry, benefiting from trees to correctly
identify phylogenetically independent alterations—the main
source of coevolution—is even more crucial. We believe
PHACE achieves this by using a tree traversal process, an ap-
proach we have successfully utilized in various problems
(Kuru et al. 2022; Bircan et al. 2024; Dereli et al. 2024).

This approach enhances our ability to discern phylogenetically
independent alterations accurately, thus contributing to the
superior performance of PHACE in identifying coevolution-
ary signals among protein positions.

Our analyses evaluated PHACE’s performance using ex-
perimentally studied protein structures obtained from the
PDB. Consistent with prevailing literature, position pairs
close in 3D structure are often assumed to be coevolving.
However, it is crucial to acknowledge that not all coevolving
residues are in contact, and equating spatial proximity with
coevolution can lead to both false positives and false nega-
tives. Despite these limitations, it is recognized in the litera-
ture that a significant proportion of coevolving residues are
indeed found to be “in contact” within protein structures
(Anishchenko et al. 2017). Testing all tools over the same
set of coevolving and independent positions ensures a fair
comparison. Our primary objective here is not to predict
protein structure. However, leveraging structural data al-
lows us to assess PHACE’s ability to discriminate between
coevolving and independent position pairs based on its
scores. We used two thresholds—8 and 16 A—to define co-
evolving and non-coevolving pairs for MCC and F1 score
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comparisons with CAPS and CoMap, respectively. For the
ROC curve comparisons with DCA, GaussDCA, PSICOV,
and MlIp, we implemented a method for selecting non-
coevolving position pairs that involved sorting distances
from the farthest to the closest up to the 8 A threshold.
This ensured an equal number of coevolving and non-
coevolving pairs to balance the data set, addressing potential
biases that could affect the AUC metric, which is more sen-
sitive to imbalances compared to the MCC. This systematic
approach maximized the reliability of our comparisons, en-
suring that PHACE’s performance was assessed with rigor
and consistency across different tools and metrics. By care-
fully selecting position pairs based on their structural
distances, we ensured a comprehensive and fair evaluation
of coevolution predictions across different assessment
methods.

In our comparisons, we employed two distinct but over-
lapping test sets. The first set encompassed all position pairs,
while the second set comprised position pairs separated by at
least five amino acids. The rationale for this division is
rooted in the literature, which suggests that the second set
presents more challenging cases, as pairs with fewer than
five amino acids between them are considered easier to pre-
dict. However, our observations deviate from these expect-
ations. While there was a slight performance increase for
all tools considered, none of the six tools achieved consist-
ently high predictive performance. Moreover, the perform-
ance gap between PHACE and all six tools widened when
considering the test set encompassing all pairs, including
the “easy” ones.

Figure 6 visually demonstrates PHACE’s superiority over
other benchmark tools. Particularly noteworthy is our cluster-
ing approach, which considers the tolerance of positions to
amino acid alterations, resulting in a notable performance en-
hancement compared to other tools. It is worth mentioning
that DCA, GaussDCA, PSICOV, and MIp may assign a high
score, indicating coevolution for conserved position pairs.
However, we excluded these pairs from our comparisons as
they deviate from the definition of coevolution, which entails
correlated changes between positions.

PHACE shares conceptual ground with classical methods
such as Maddison (1990) and Pagel (1994), which test for cor-
related evolution of discrete traits across a phylogeny.
However, PHACE differs in both focus and implementation:
it operates at the level of amino acid substitutions, uses prob-
abilistic ancestral reconstruction, and quantifies coevolution
through phylogenetically independent substitutions and
branch-diversity-based weighting. These design choices help
mitigate spurious signals arising from shared ancestry and
pseudo-replication and reduce false inference from unrepli-
cated burst events—addressing key concerns raised in more re-
cent critiques (Maddison and FitzJohn 2015; Uyeda et al.
2018). While PHACE does not model causal dependencies,
it robustly detects non-directional, structurally, or functional-
ly coordinated substitution patterns.

Motivated by the substantial performance enhancement
achieved with PHACE, our next step is to extend our ap-
proach to detect protein—protein interactions. Protein—protein
interactions play a pivotal role in various cellular functions,
and it is well established that many human diseases arise
from abnormal protein—protein interactions (Ryan and
Matthews 2005). However, detecting these interactions
through experimental methods is time-consuming and
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expensive (Macalino et al. 2018; Chen et al. 2019) while cur-
rent computational approaches have yet to reach the desired
accuracy level (Gandarilla-Pérez et al. 2023). One potential
avenue for improving the prediction of protein—protein inter-
actions is to generate enhanced co-MSAs, where each row rep-
resents a combination of two interacting proteins. Our initial
objective is to develop a phylogeny-aware algorithm to con-
struct reliable co-MSAs. Subsequently, PHACE might be use-
ful in predicting protein—protein interactions.

Another promising extension of PHACE is to model com-
pensatory amino acid changes, where a substitution at one
site mitigates the deleterious effect of a substitution at an-
other site, often through physicochemical compatibility. It
is well established that coevolving sites may arise from either
correlated substitution histories or compensatory changes
(Dutheil and Galtier 2007). While our current framework
focuses on correlated substitutions, this choice reflects the
fact that compensatory changes are known to be rare in pro-
tein evolutionary history (Chaurasia and Dutheil 2022).
Nonetheless, as a follow-up study, incorporating
compensation-aware modeling represents a natural next
step. This could be achieved by weighting amino acid prob-
abilities based on biochemical properties such as size, polar-
ity, or charge. Such approaches have been previously
explored using subalphabet grouping and substitution
weighting in Neher (1994) and Dutheil and Galtier (2007)
and were more recently expanded to a large-scale structural
context by Chaurasia and Dutheil (2022). Such
compensation-focused modeling could serve as a comple-
mentary tool to PHACE, offering an alternative perspective
on coevolution by capturing functionally coupled sites driv-
en by mutually mitigating substitutions.

As another future direction, we aim to enhance PHACT by
integrating coevolution information obtained from PHACE
scores. PHACT predicts the pathogenicity of missense muta-
tions by utilizing phylogenetic trees and phylogenetically inde-
pendent amino acid alterations. While it is an accurate variant
effect predictor, PHACT currently assumes each protein pos-
ition to be independent, which is an incorrect assumption. It
would be useful to incorporate coevolution information and
the branches contributing to coevolution into the PHACT al-
gorithm to improve its performance.

Materials and Methods

Details of PHACE

The PHACE algorithm utilizes MSAs, phylogenetic trees, and
ASR probabilities to calculate coevolution scores. These ele-
ments crucially shape the algorithm’s framework, providing
a robust basis for distinguishing genuine coevolutionary pat-
terns from those arising from shared ancestry. The method
consists of three key components, each exploiting this phylo-
genetic and ancestral data to effectively identify true co-
evolutionary interactions.

Constructing MSA,

Initially, we detect tolerable/intolerable amino acids by deter-
mining the amino acid with the highest frequency at each cor-
responding position in the MSA. This amino acid serves as a
baseline for identifying tolerable amino acids.

Tolerable and intolerable amino acids are determined
based on their scores computed over phylogenetically inde-
pendent substitutions. We traverse the tree from the root,
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assessing the probability difference per amino acid over
neighboring nodes. The final score is derived through
weighted summation of positive probability differences.
Amino acids with scores higher than the baseline are labeled
tolerable; otherwise, they are considered intolerable. In the
first alternative MSA, MSA, we designate the character
“C” for tolerable amino acids and “A” for intolerable amino
acids and maintain gaps as they are.

To compute the total phylogenetically independent change
per branch, we traverse the tree, calculating the summation
of positive probability differences per branch. Thus, we have
a matrix of number of branches by 2 including total change
per branch.

Constructing MSA,

The limitation with MSA and the total changes computed
over MSA is that the gap character is not considered in the
ASR step. Consequently, the probability distribution is fo-
cused solely on characters A and C, disregarding gaps. This
oversight poses an issue, as branches where the probability
of a character increases may erroneously include
substitutions to gaps, even if those gaps did not occur
phylogenetically independently. To address this issue, we
introduce a second MSA, MSA,, comprising two charac-
ters: “C,” representing all 20 amino acids and “G” for
gaps. With MSA,, we rerun ASR and apply the same tree
traversal process as with MSA . This enables us to identify
branches where phylogenetically independent substitu-
tions to G occur, along with the corresponding amount of
change.

We then update the initial matrix constructed over MSA;
with information regarding the branches where gap altera-
tions occur and the associated amount of change. This update
ensures that our matrix encompasses all phylogenetically inde-
pendent alterations, thereby providing insights into co-
evolution through correlation analysis.

Score Computation

The WCCC serves as a pivotal metric in our analysis, particu-
larly for quantifying the parallelity between the total amounts
of changes for branches per position. While traditionally em-
ployed to measure agreement between two variables, WCCC
proves invaluable in our context due to its ability to assess cor-
relation while accounting for both the magnitude of change
and the importance of each branch through the application
of weights.

To adapt WCCC to our specific needs, we have refined the
original formula to incorporate these considerations. The up-
dated formula is as follows:

WCCClx, y, 2) = 2cov,(x, y) .
Var,(x) + Var,(y) + (mean,(x) — mean,(y))

where x and y represents the total amount of change per
branch for position 1 and 2 in the pair, respectively, and the
subscript z corresponds to the weighted version, where each
term is weighted by the weight associated with the branch.
This refined formulation of WCCC enables us to effectively
capture the nuanced relationship between changes across
branches and positions, while accommodating variations in
the importance of individual branches in terms of coevolution
signal. Thus, it serves as the most suitable measure for our ana-
lytical needs.

We utilize two distinct weights in PHACE: one pertains to
the incompatibility related to gap characters, denoted as w1,
while the other is assigned per branch. The formula of the first
weight is as follows:

1 -
0 = max<1 _total gap — common gap ’ )

number of branches

where total gap refers to the total number of branches with
gaps for the first and second positions in the pair and
common gap corresponds to the number of branches with
gaps that are common for both positions.

The second weight, w,, reflects the diversity of each branch
in terms of phylogenetically independent alterations across all
positions. However, to ensure that each branch contributes
proportionately to the final score relative to the amount of
change, we take the geometric mean of the evolutionary rate
of each branch and the maximum amount of change per
branch over the position pair. The formula for the weight
per branch i is as follows:

oni)— { \/wbmh max(dify (i), dif2(i)) max(dif; (i), dif,()) >0
v Obranch * 1 maX(dlfl(l), dlfz(l)) =0

where wpanch is the weight computed over the evolutionary
rate of the branch and dif; (i) and dif, (7)) correspond to the to-
tal change for branch i for the first and second positions in
the pair, respectively. We note that if there is a nonparallel
change (|dif;(7) — dif;({)] > 0.5) on branch i, we assign
(i) =1 to ensure that the effect of nonparallel change is
not reduced.

The final PHACE score is computed by considering both
weights and WCCC as follows:

PHACE = 0, WCCC(dify, dif>, w,)

Here, it is important to note that in the case of a nonparallel
change, we examine the original MSA. If the amino acid in
question is observed only once, we disregard the impact of
this change and assume that there is no change on the corre-
sponding branch for both positions in the pair. Additionally,
substitutions between amino acids and substitutions to gaps
are not considered correlated changes, even if they occur on
the same branch for both positions. We penalize the score
for these types of parallel changes.

PDB Structures

The experimentally studied protein structures are acquired us-
ing a batch download script directly from the PDB (Berman
et al. 2002 ). For each UniProt ID, the corresponding PDB
ID is retrieved from the UniProt database (UniProt 2021).
Among the proteins from Kuru et al. (2022), PDB structures
are available for 2,390. To assess the compatibility of the se-
quences in the structures, we collected three types of informa-
tion: number of compatible positions, number of different
positions, and if the sequence at PDB is longer, the length dif-
ference between our sequence and PDB sequence. If a structure
has more than 10 incompatible amino acid positions or if the
ratio of mapped positions to total sequence length is less than
50%, it is discarded. From the remaining proteins and struc-
tures, if there are multiple candidate structures for a protein,
we select the one with the highest number of compatible and
minimum number of incompatible positions. That resulted
in 652 proteins in total.
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Benchmark Tools

We utilized CAPS, CoMap, DCA, GaussDCA, PSICOV, and
MIp as benchmark tools, obtained from the GitHub page or
web server of the corresponding tool. For a completely fair
comparison, each tool was executed over the masked MSA
and phylogenetic tree, if required, which are also used for
PHACE computation.

The details regarding the parameters are as follows:

1. CAPS was executed with default parameters.

2. The “Correlation” version of CoMap clustering analysis
was employed using the LGO8 model, considering all sites
and employing a Gamma rate distribution with four
categories.

3. DCA and GaussDCA were run with default parameters
over the masked MSA, except GaussDCA, which re-
ported position pairs with at least five amino acids be-
tween them. To obtain their predictions over all pairs,
we changed the parameter min_separation to 1.

4. PSICOV was run with the minimum sequence separation
parameter set to 1, similar to GaussDCA.

5. MlIp was executed with default parameters.

The scripts used to run each tool with these parameters are
available in our GitHub repository.

MSA and Phylogenetic Trees

The MSA and phylogenetic trees of 5,123 human proteins are
obtained from the PHACT database (Kuru et al. 2022). They
obtained the homologs of each query sequence through
PSI-BLAST (Altschul et al. 1997) against a nonredundant
database of 14.010.480 proteins produced from the reference
proteomes in the UniProtKB/Swiss-Prot Knowledgebase
(UniProt 2021). Two iterations of PSI-BLAST with 5,000
maximum target sequences were performed. The number of
hits was limited to maximum 1,000 sequences with a min-
imum 30% identity and E-value of 0.00001 due to computa-
tional limitations of building phylogenetic trees. The
sequences were aligned using MAFFT FFTNS (Katoh and
Standley 2013), and the MSAs were trimmed with the
trimAl tool gappyout method (Capella-Gutierrez et al.
2009). The resulting MSA was used to generate a maximum
likelihood phylogenetic tree with the RaxML-NG (Kozlov
etal. 2019) tool using LG4X model and leaving the remaining
parameters at default settings.

Ancestral Reconstruction

Positions with “gap” character in the query sequence are re-
moved from the original MSA (without trimming). The result-
ing MSA is used to perform ASRs by using IQTREE. To ensure
that amino acid properties do not influence the resulting prob-
ability distributions, we employed a user-defined model that
assigns equal substitution rates and baseline frequencies to
each character. ASR is executed for three versions of the MSA:

1. The original MSA used to compute tolerance scores per
position

2. MSA with three characters: the dominating amino acid,
the alternating amino acid, and gaps

3. MSA with two characters: one character representing all
amino acids and another representing gaps

Kuru and Adebali - https://doi.org/10.1093/molbev/msaf150

A similar user-defined model is applied to all three versions,
with matrix sizes adjusted based on the number of characters
in the MSA. While the tree topology is preserved in the ASR
step, it reoptimizes the branch length. To prevent changes in
branch lengths based on alternative MSAs, we utilize the -blfix
option, which ensures fixed branch lengths.

Supplementary Material

Supplementary material is available at Molecular Biology and
Evolution online.
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