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Abstract 
The coevolution trends of amino acids within or between genes offer key insights into protein structure and function. Existing tools for uncovering 
coevolutionary signals primarily rely on multiple sequence alignments, often overlooking phylogenetic relatedness and shared evolutionary 
history. Here, we introduce PHACE, a phylogeny-aware coevolution algorithm that maps amino acid substitutions onto a phylogenetic tree to 
detect molecular coevolution. PHACE categorizes amino acids at each position into “tolerable” and “intolerable” groups, based on their 
independent recurrence across the tree, reflecting a position’s tolerance to specific substitutions. Gaps are treated as a third character type, 
with only phylogenetically independent gap changes considered. The method computes substitution scores per branch by traversing the tree 
and quantifying probability differences across adjacent nodes for each group. To avoid artifacts from alignment errors, we apply a multiple 
sequence alignment–masking procedure. Compared to phylogeny-based methods (CAPS, CoMap) and state-of-the-art multiple sequence 
alignment–based approaches (DCA, GaussDCA, PSICOV, mutual information), PHACE shows significantly superior accuracy in identifying 
coevolving residue pairs, as measured by statistical metrics including Matthews correlation coefficient, area under the ROC curve, and F1 
score. This performance stems from PHACE’s explicit modeling of phylogenetic dependencies, often ignored in coevolution analyses.
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Introduction
Coevolution refers to the synchronized alterations observed in 
pairs of organisms or biomolecules, typically aimed at preserv
ing or enhancing the functional relationships between them 
(De Juan et al. 2013). While it occurs across various levels, 
such as among species and organisms, it is particularly evident 
at the molecular level between interacting protein positions 
(Dutheil 2012). The literature has shown significant interest 
in detecting molecular coevolution and understanding the 
trends of coevolution among protein positions, as it offers vital 
insights into protein structure and function. Notably, 
cutting-edge methodologies like AlphaFold (Jumper et al. 
2021) and RoseTTAFold (Baek et al. 2021) leverage covari
ation as a crucial input feature, underscoring its importance 
in modern protein structure prediction.

Coevolution trends between amino acid positions can be de
tected using various approaches that identify correlated 
changes, which refer to substitutions that tend to occur in a co
ordinated manner at two or more positions within a multiple 
sequence alignment (MSA). Many approaches based on MSAs 
are presented in the literature to detect coevolution, such as the 
state-of-the-art tools, DCA (Morcos et al. 2011), GaussDCA 
(Baldassi et al. 2014), mutual information (MIp) (Dunn 
et al. 2008), and PSICOV (Jones et al. 2012). However, co
evolution is not the sole source of correlated amino acid obser
vations between protein positions in MSAs (Dutheil 2012). 

Thus, it is essential to discriminate the actual coevolution sig
nal from other sources of correlated changes, where a primary 
false signal is known to be caused by phylogenetic relatedness 
(Dutheil 2012). Additionally, methods scoring coevolution 
based on the covariation of positions are known to fail in dis
criminating positions differentiating in evolutionary scenarios 
(Talavera et al. 2015). Talavera et al. demonstrated the 
indistinguishability of coevolutionary scenarios from non- 
coevolving scenarios based solely on covariation, highlighting 
its limitations as a measure of coevolution.

We illustrate our rationale in Fig. 1, where we demonstrate 
that coevolution scoring can be inaccurate if shared ancestry is 
overlooked, even when position pairs show identical amino 
acid frequencies in the MSA. Coevolution inference drastically 
depends on the topology of the phylogenetic tree (Fig. 1a). In 
the first tree, four correlated changes, represented by distinct 
colors for each position (e.g. yellow, and pink circles), are 
observed as phylogenetically independent, meaning they oc
curred on separate branches of the tree and did not originate 
from a single clade or a single mutation. In contrast, all four 
substitutions in the second tree, shown using the same color 
scheme, are phylogenetically dependent, as they resulted 
from a single amino acid alteration that occurred on the ances
tral branch at the root of that clade. In other words, these two 
scenarios are equivalent in terms of MSA-based scoring of the 
coevolution signal; however, ignoring common evolutionary 
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history results in a false coevolution signal and overcounts the 
effect of one single amino acid alteration as if it occurred four 
times independently. Our study aims to address this challenge 
by accurately scoring genuine coevolution signals resulting 
from correlated evolutionary variation while excluding paral
lel changes resulting from shared ancestry.

We emphasize another problem that disrupts the co
evolution signal: high variability at aligned positions. Some 
positions in a protein can tolerate a wide range of amino 
acid substitutions without affecting function, leading to high 
sequence variability. This variability complicates the inter
pretation of parallel changes, as frequent substitutions may 
occur independently at multiple sites without reflecting true 
coevolution. We observed that treating these frequent, func
tionally neutral substitutions in the same way as rare, func
tionally impactful ones can weaken the detection of genuine 
coevolution signals. An illustrative example is provided in 
Fig. 1b. Despite the uncertain coevolution signal in the original 
MSA, both alanines (As) and threonines (Ts) are observed 
phylogenetically independently and repeatedly, highlighting 
the position’s tolerance to both A and T (Kuru et al. 2022). 
We incorporate this tolerance into our framework by cluster
ing amino acids into two groups based on whether they are tol
erated or not, labeled A1 and A2, respectively. Since A and T 
are both considered tolerated, they are grouped together as 
A1. The remaining amino acids which are the ones we use to 
score coevolution signal are clustered as A2. As illustrated in 
the updated MSA in Fig. 1b, this approach reveals the co
evolution signal concealed in the original MSA.

Several attempts have been made in the literature to solve 
the first problem: separating coevolution signals from phylo
genetic relatedness by incorporating phylogenetic trees. 
CAPS (Fares and McNally 2006) and CoMap (Dutheil and 
Galtier 2007), in particular, leverage both phylogenetic trees 
and ancestral sequence reconstruction (ASR) in their scoring 
schemes. The original version of CAPS used phylogenetic trees 
primarily for correction, whereas CAPS v2 incorporates sub
stitution mapping of amino acid changes onto the phylogenet
ic tree. This enables it to explicitly model the evolutionary 

history of substitutions but still relies on site-wise correlation 
coefficients. CoMap provides another tree-based approach 
that benefits from substitution mapping. It considers the an
cestral states at each internal node to compute the expected 
number of substitutions per branch and uses correlation be
tween substitution events to infer coevolution. Additionally, 
CoMap accounts for biochemical properties of amino acids 
by incorporating weighted substitution mapping, which cap
tures correlated substitution patterns and can detect compen
satory changes—where a substitution at one site mitigates the 
deleterious effect of a substitution at another, often through 
physicochemical compatibility. Unlike CAPS and CoMap, 
PHACE advances these approaches by not only using trees 
and ASR but also by assessing amino acids based on the dy
namics of their corresponding positions. PHACE considers 
whether substitutions are permissive based on their impact 
on protein function, enabling a more refined differentiation 
between mere phylogenetic noise and true coevolutionary sig
nals. This functionality-focused approach allows PHACE to 
provide more precise insights into the functional consequences 
of amino acid changes, offering a significant enhancement 
over traditional methods that may primarily focus on evolu
tionary patterns without a direct functional context.

In our previous work (Kuru et al. 2022), we introduced 
PHACT, a novel phylogeny-based approach for predicting 
the functional consequences of missense mutations. This 
method integrates the evolutionary history of proteins by util
izing phylogenetic trees and ASR, which provides the prob
ability distribution of amino acids at each internal node of 
the tree. PHACT operates by performing a detailed traversal 
of these trees, starting from the specific leaf node that repre
sents the query sequence. As it moves through the tree, 
PHACT examines the probability differences of ancestral ami
no acids between each connected node, focusing on positive 
probability differences. These positive differences are aggre
gated across the tree in a weighted manner based on the dis
tance to the starting point of the traversal. The rationale for 
using positive probability differences is to identify the phylo
genetic nodes where missense mutations have emerged, 

Fig. 1. Rationale of PHACE. a) Importance of phylogenetic information in coevolution analysis. The diagram illustrates how identical MSAs for position 
pairs can yield different interpretations: yellow and pink circles on branches represent amino acid changes at two distinct sites, demonstrating how 
phylogenetic analysis uncovers different patterns of correlated changes resulting from the shared ancestry problem. b) Clustering amino acids by 
tolerability: despite unclear coevolution signals initially, repeated observation of A’s and T’s at a position suggests tolerance to both amino acids which are 
represented as A1 in the updated MSA, while other amino acids are grouped as A2. This process alters the coevolution signal in the updated MSA.
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signifying an increase in the probability of amino acid substi
tution. Conversely, negative probability changes, which result 
from substitutions in previously visited parts of the tree, indi
cate a decrease in the likelihood of encountering specific amino 
acids in subsequent steps. These negative changes are ignored 
in the score computation to avoid repetitive counting of de
pendent substitutions, thereby enhancing the accuracy of mu
tation pathogenicity predictions. By tracking these 
evolutionarily independent events, PHACT is able to provide 
robust predictions of whether a particular missense mutation 
will be pathogenic or benign, offering significant improve
ments over traditional methods that do not account for phylo
genetic relationships. Given PHACT’s success in scoring 
phylogenetically independent events by accurately eliminating 
the effect of shared evolutionary history, we have developed 
PHACE, a novel phylogeny-aware coevolution algorithm.

The PHACE method aims to detect parallel substitutions 
between pairs of positions by leveraging phylogenetically in
dependent events. The outline of the PHACE algorithm is il
lustrated in Fig. 2. The central goal of PHACE is to 
eliminate correlated changes that arise due to shared evolu
tionary history, rather than true coevolution. To achieve 
this, we derive the amino acid probability distribution at 
each internal node by using ASR, based on the observed amino 
acids in the MSA. We then calculate the positive probability 
differences between neighboring nodes along each branch, 

which represent increases in the probability of specific amino 
acids. The sum of these increases along a branch reflects the 
number of phylogenetically independent amino acid changes. 
These branch-level scores are used to identify coordinated sub
stitutions between site pairs. However, as illustrated in Fig. 1b, 
certain positions may tolerate amino acid changes without af
fecting protein function, making it difficult to distinguish neu
tral variation from meaningful coevolution. To address this, 
we generate a modified version of the original MSA (MSA1 

in Fig. 2a), in which amino acids are categorized into three 
groups: tolerable (A1), intolerable (A2), and gaps (−). 
Tolerability is inferred from the accumulation of phylogenet
ically independent substitutions at each position. This refine
ment ensures that frequent, functionally neutral changes do 
not mask true coevolutionary signals.

Although we successfully eliminate the correlated patterns re
sulting from shared evolutionary history and consider position 
diversity, deciding how to treat gaps is important. In the existing 
literature, widely used tools such as DCA, GaussDCA, 
PSICOV, and MIp treat gaps as the 21st character. However, 
most tools overlook gaps in sequence reconstruction in the 
ASR framework. Ignoring gaps and treating them as the 21st 
amino acid limits the sensitivity and specificity of identifying 
the coevolving sites. To address these limitations, we introduce 
a second version of MSA consisting of only two characters: one 
for all amino acids and one for gaps (MSA2 on Fig. 2a). By 

Fig. 2. PHACE algorithm overview. a) PHACE utilizes the original MSA and maximum likelihood phylogenetic tree to cluster amino acids into “tolerable” 
and “intolerable” groups, resulting in MSA1. To accurately capture coevolution signals involving insertions and deletions, a second alignment (MSA2) is 
created to distinguish amino acids from gaps. Both alignments are used to detect phylogenetically independent changes and update substitution scores 
per branch. b) The resulting data are combined to generate a matrix that encodes the number of independent changes per branch per position, along with 
branch-specific diversity. PHACE score is calculated using a WCCC (example shown for positions 126 to 130; spatial distance = 6.54 Å).
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applying classical ASR algorithms to this simplified MSA, we 
pinpoint the occurrence of phylogenetically independent gap al
terations, which correspond to the branches where the probabil
ity of the character assigned to the gap increases. As shown in 
the final tree in Fig. 2a, we consider only phylogenetically inde
pendent amino acid and gap alterations and eliminate the effect 
of shared evolutionary history from our coevolution score with 
this approach.

For each position in the position pair, we integrate informa
tion from both versions of MSA and their corresponding ASR 
probabilities to construct a vector of length equal to the num
ber of branches. Each entry in the vector reflects the total 
amount of phylogenetically independent substitutions on 
that branch. To score coevolution between a pair of positions, 
we compare their corresponding vectors to see whether there 
are changes at the same branches and the amount of change 
matches. We use the weighted concordance correlation coeffi
cient (WCCC), where each branch’s weight is determined by 
its evolutionary rate. The branch evolutionary rate reflects 
whether variation at a branch is broad or localized. By giving 
less weight to branches that are broadly variable, we reduce 
the influence of background noise and better isolate true co
evolution signals. We compute this rate by considering the to
tal amount of change per branch across all positions. Although 
phylogenetic tree branch lengths could potentially be used for 
this purpose, they are not ideal in our case, as the gap character 
is excluded from tree construction and ASR. As a result, 
branch lengths do not accurately capture the overall variabil
ity. Instead, we use this empirical diversity score as a more ac
curate representation of branch-specific changeability.

We note that no parameter optimization was performed for 
PHACE; the algorithm was developed using biologically in
formed, interpretable steps rather than data-driven tuning. 
Given the absence of a gold standard benchmark for co
evolving protein positions—a recognized bottleneck in the 
field—we intentionally avoided overfitting by not calibrating 
parameters based on structural data used in the evaluation.

In our experiments, residues in contact within PDB-derived 
protein structures were used as proxies for coevolving position 
pairs, a common approach in the field to distinguish spatially 
close from distant positions in the 3D structure of proteins. 
This methodological choice, detailed further in the Results sec
tion, aligns with established practices in computational biol
ogy (Morcos et al. 2011; Jones et al. 2012; Baldassi et al. 
2014). PHACE demonstrated significantly superior perform
ance across various statistical measures compared to 
MSA-based tools (DCA, GaussDCA, PSICOV, and MIp) 
and phylogeny-based approaches (CAPS and CoMap).

Results
To evaluate the performance of the PHACE algorithm, we uti
lized protein 3D structures and limited our interest to the pro
teins with experimentally determined structures. The criteria 
for determining the protein set are detailed in the Materials 
and Methods section. Similar to the previous studies, we con
sidered two positions are “in contact” if their Cβ-Cβ distance 
is less than 8 angstroms (Å) (Morcos et al. 2011; Jones et al. 
2012; Baldassi et al. 2014). Thus, following the literature, 
we infer that two positions are coevolving if they are proxim
ate in the 3D structure. While an 8 Å threshold is commonly 
accepted for defining positions in contact, some studies sug
gest using distances up to 12 Å (Li et al. 2015). In our analysis, 

we employed two different strategies for defining non- 
coevolving position pairs.

First, we used a threshold of 16 Å to classify non-coevolving 
pairs. This threshold was chosen based on the structural prop
erties of proteins, such as the typical spacing observed within 
regular secondary structural elements like alpha helices and 
beta strands. In alpha helices, which have about 3.6 amino 
acids per turn, each residue contributes to a helical rise of ap
proximately 1.5 Å. Similarly, amino acids in beta strands are 
spaced roughly 3.5 Å apart along the strand. By setting a 
16 Å threshold, we ensured that position pairs separated by 
distances greater than the spacing within these motifs were 
categorized as non-coevolving, helping to minimize false- 
positive coevolution signals.

Second, for ROC curve comparisons with tools such as 
DCA, GaussDCA, PSICOV, and MIp, we implemented a 
strategy where non-coevolving pairs were chosen by sorting 
distances from the farthest to the closest, up to the 16 Å 
threshold, to match the number of coevolving pairs. This bal
anced selection approach addressed potential biases in the 
data set, which can impact metrics like AUC that are sensitive 
to imbalances. Using these two complementary strategies, we 
aimed to maximize the reliability of our assessments and en
sure consistency across different analyses.

As benchmark tools report results in various formats, we se
lected statistical measures based on their respective outputs. 
CAPS and CoMap exclusively report coevolving position 
pairs, while DCA and GaussDCA provide scores for nearly 
all position pairs. Consequently, we evaluated CAPS and 
CoMap using Matthews correlation coefficient (MCC) and 
F1 scores, whereas the area under the ROC curve (AUC) 
was utilized for comparing performance with DCA, 
GaussDCA, PSICOV, and MIp since they report predictions 
for all (almost) position pairs. The total number of proteins 
in the test set per tool and the employed performance measures 
are provided in Table 1. Because no optimal threshold value is 
reported for these tools, we determined the best threshold per 
protein using ROC curves for MCC comparisons. We used the 
same MSA set as an input for all tools in comparison.

In line with existing literature, we assessed the performance 
of PHACE and other tools across diverse scenarios using two 
distinct test sets focused on coevolving positions. The first set 
encompassed all pairs, while the second set specifically in
cluded coevolving pairs with more than five amino acids be
tween them. Although the first scenario, comprising 
coevolving position pairs separated by five or fewer amino 
acids, is less extensively detailed in the literature and often per
ceived as straightforward, our comparison revealed that 
benchmark tools performed less effectively in this set com
pared to PHACE. Furthermore, PHACE exhibited significant 
improvement over these tools even in the second set, which 
presents more challenging cases. We divided the comparisons 
into two subsections based on the input of the compared tools.

Comparison Over a Common Set of Proteins
Before diving into detailed pairwise comparisons, we present 
an AUC-wise comparison of all tools using a common set of 
proteins comprising 639 entries. It is crucial to note that for 
pairs with missing values for any tool in ROC curve compar
isons, we assign the respective tool’s lowest score for the 
corresponding protein. As CAPS and CoMap only report co
evolving position pairs, excluding a common set of positions 
without a score from any of the six tools was not meaningful. 
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Although this comparison methodology may not favor CAPS 
and CoMap, AUC was chosen because it provides a compre
hensive measure of a method’s ability to distinguish between 
coevolving and non-coevolving pairs across all potential clas
sification thresholds. This approach is particularly beneficial 
when comparing methods that do not inherently rank non- 
coevolving pairs, allowing for an unbiased evaluation of 
each method’s discriminative power.

Figure 3 illustrates the comparison of all tools over two dis
tinct test sets: one constructed over all positional pairs 
(Fig. 3a) and the other over pairs with at least a five-amino 
acid separation (Fig. 3b). In conducting ROC curve compari
sons, we aim to maintain a balanced test set encompassing 
both coevolving and independent positional pairs. 
Independent positions are selected, starting from the furthest 
pairs to the closest, while minimizing repetitions. Our object
ive is to maintain a fair comparison and avoid favoring any 
tool based solely on identical positions. As depicted in 
Fig. 3a and b, PHACE demonstrates superior performance 
compared to all six tools, with a significant difference even 
compared to the best-performing tool in this set, DCA 
(t-test, P < 0.001). To provide a more detailed evaluation, 
we include AUPR comparisons in supplementary fig. S1, 
Supplementary Material online, and report per-tool AUC 
and AUPR results across all proteins in supplementary table 
S1, Supplementary Material online.

To assess how alignment heterogeneity influences method 
performance, we analyzed three key parameters: number of se
quences, alignment length (number of positions), and total 
tree length. The distributions of these parameters across 

the 652 proteins are shown in supplementary fig. S2, 
Supplementary Material online and the underlying values 
are provided for each protein are provided in supplementary 
table S2, Supplementary Material online. Each parameter 
was categorized into three groups—small, medium, and 
large—based on defined thresholds (≤250, 251 to 750, >750 
for number of sequences; ≤500, 501 to 1,000, >1,000 for 
alignment length; ≤100, 101 to 200, >200 for tree length).

We then evaluated the performance of each tool across these 
categories. AUC and AUPR comparisons stratified by align
ment size are presented in supplementary figs. S3 to S5, 
Supplementary Material online, corresponding to the number 
of sequences, number of positions, and total tree length, re
spectively. These results show that PHACE consistently 
outperforms other tools across all alignment categories, sup
porting its robustness to variation in input size and evolution
ary divergence.

Comparison Among Phylogeny-Based Approaches
In the initial series of pairwise comparisons, we assessed 
PHACE against two other tools, CAPS and CoMap, both of 
which employ phylogenetic tree analysis and ancestral recon
struction in their predictions. As previously mentioned, CAPS 
and CoMap specifically identify position pairs considered co
evolving according to their methodologies. CAPS detects co
evolving amino acid sites by measuring the correlation of 
evolutionary rates between sites, adjusted for divergence 
times. The version we consider (CAPS v2) also incorporates 
substitution mapping and ASR. However, CAPS has some 

Table 1 General information about the tools and statistical measures employed

Tool name Input type Number of proteins Reported values Measure used

PDB 3D structure 652 Experimentally studied pairs —
PHACE Phylogenetic tree, ASR, MSA 652 All position pairs AUC, MCC, F1
CoMap Phylogenetic tree, ASR, MSA 652 Only coevolving pairs MCC, F1
CAPS Phylogenetic tree, ASR, MSA 652 Only coevolving pairs MCC, F1
DCA MSA 647 Missing values AUC, MCC
GaussDCA MSA 652 Missing values AUC, MCC
MIp MSA 652 Missing values AUC, MCC
PSICOV MSA 646 Missing values AUC, MCC

Fig. 3. Comparison of all tools over a common set in terms of AUC. The test sets are a) all pairs and b) pairs with at least five amino acids between them. 
Each point represents the AUC value for a different protein.
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limitations, such as assigning a single amino acid to internal 
nodes, ignoring gaps, and relying on a simple correlation func
tion to infer coevolution. Another tree-based tool, CoMap, is a 
clustering-based method that identifies coevolving amino acid 
sites by mapping substitutions across a phylogenetic tree. 
CoMap considers all possible amino acids for internal no
des; however, it applies a 0/1 indicator to each parent–child 
amino acid pair when computing the expected number of 
substitutions, so the resulting score cannot capture the mag
nitude of the change. Additionally, CoMap also disregards 
gaps and employs a basic correlation measure. Both ap
proaches do not consider the position dynamics related to 
tolerable and intolerable amino acids. Since these tools do 
not generate predictions for all potential pairs, we evaluated 
them using MCC and F1 scores, which are well suited for 
categorical comparison among imbalanced data sets. 
While a single threshold may not universally optimize 

performance across proteins with diverse behaviors, we set 
a threshold (0.25) for PHACE for an equivalent comparison.

Figure 4 illustrates the resulting MCC and F1 score per
formances for pairwise comparisons involving PHACE, 
CAPS, and CoMap. Figure 4a and c correspond to MCC 
and F1 score comparisons across all possible pairs, while 
Figure 4b and d include pairs with at least a five-amino 
acid separation. The underlying per-protein MCC and F1 
score for PHACE versus CAPS and CoMap are provided in 
supplementary tables S3 and S4, Supplementary Material
online respectively. It is apparent from the figures that 
PHACE significantly outperforms CAPS and CoMap in 
terms of both MCC and F1 score for both test sets (t-test 
P < 0.001). This underscores the superior predictive capabil
ity of PHACE over these alternative tools that utilize phylo
genetic trees in identifying coevolving position pairs within 
protein sequences.

Fig. 4. Performance comparison of PHACE and phylogeny-based approaches, CAPS and CoMap, in terms of MCC and F1 score. The test sets are a and c) 
all pairs and b and d) pairs with at least five amino acids between them. Each point represents the corresponding metric value for a different protein.
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Comparison of PHACE With MSA-Based 
Approaches
In this section, we comprehensively compared PHACE and 
several MSA-based tools, namely, DCA, GaussDCA, 
PSICOV, and MIp, focusing on the AUC and MCC. We aimed 
to evaluate the performance of these tools in detecting contact
ing residues inferred from protein structures.

Similar to the earlier ROC curve comparisons, we aimed to 
construct a balanced test set comprising coevolving and inde
pendent position pairs. To ensure fairness and avoid favorit
ism toward any tool based on repeated positions, we 
selected independent positions starting from the furthest pairs 
to the closest while minimizing repetitions. As in the previous 
ROC curve analyses, the pairs not reported by the compared 
tool were assigned one unit lower than the lowest score ob
served for that tool within the same protein. Since each tool 
may have a different set of test proteins, we conducted pair
wise comparisons similar to the previous section. The results 
in Fig. 5 indicate a significant performance gap between 
PHACE and other MSA-based tools over a test set constructed 

with all pairs (Fig. 5a) and pairs with at least a five-amino acid 
separation (Fig. 5b). The significance test was again performed 
using a t-test, with the P-value observed as less than 0.001. 
The underlying per-protein MCC and F1 scores comparing 
PHACE to DCA, GaussDCA, PSICOV, and MIp are provided 
in supplementary tables S5 through S8, Supplementary Material
online, respectively.

Transitioning to MCC comparisons, we acknowledged 
the variability in threshold selection across different 
tools for individual proteins. To our knowledge, these tools 
do not report a universally valid threshold. Therefore, we de
termined the threshold for each tool based on the ROC 
curve, enabling an unbiased comparison between PHACE 
and each tool pairwisely in terms of MCC. Figure 6 high
lights a statistically significant improvement in PHACE’s 
performance compared to DCA, GaussDCA, PSICOV, and 
MIp across test sets over all pairs, as well as pairs with at 
least a five-amino acid separation considered. These findings 
underscore the effectiveness of PHACE in identifying posi
tions in contact within protein sequences, outperforming 
other established MSA-based tools.

Fig. 5. Comparison of PHACE and MSA-based tools, DCA, GaussDCA, PSICOV, and MIp, in terms of AUC. The test sets are constructed over a) all pairs 
and b) pairs with at least five amino acids between them. Each point represents the AUC value for a different protein.
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Limitations of Current Approaches
In Fig. 7, we aim to illustrate instances where PHACE success
fully classifies coevolving position pairs while other tools fail. 
These examples shed light on the potential benefits of properly 
incorporating phylogenetic trees to enhance the prediction of 
coevolving positions.

The first example presents a scenario involving a fully con
served position pair. Despite the absence of any evident signal 
indicating coevolution, DCA, GaussDCA, PSICOV, and MIp 
assign relatively high scores to this pair. We observe instances 
similar to this, particularly in DCA and GaussDCA. This pos
ition pair is strongly predicted as coevolved by the current 
tools, although there is no amino acid substitution.

The second example underscores the impact of distinguishing 
between tolerable and intolerable amino acids based on 
phylogenetically independent events. Although the original 
MSA does not exhibit a strong coevolution signal for the position 
pair, the presence of amino acids observed independently during 
the phylogenetic tree analysis leads to their clustering as tolerable 

amino acids. Consequently, an updated MSA reveals a noticeable 
coevolution signal. As a result, PHACE correctly identifies a pair 
with a distance of 7.34, while no other tool was able to do so.

The final examples in Fig. 7c illustrate the success of toler
able/intolerable clustering in eliminating incorrect coevolution 
signals. DCA and GaussDCA predict both pairs as coevolving 
with a high score, while PHACE correctly labels them as inde
pendent due to phylogenetically independent alterations 
among the amino acid groups.

These examples highlight PHACE’s ability to effectively le
verage phylogenetic information to identify coevolving pos
ition pairs, demonstrating its superiority over other tools in 
certain scenarios where traditional methods may fall short.

Discussion
This study introduces a novel perspective on scoring co
evolution among protein positions and presents PHACE, 
which utilizes phylogenetic trees to assign scores to position 

Fig. 6. Comparison of PHACE and MSA-based tools, DCA, GaussDCA, PSICOV, and MIp, in terms of MCC. The test sets are constructed over a) all pairs 
and b) pairs with at least five amino acids between them. Each point represents the MCC value for a different protein.
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pairs based on correlated, phylogenetically independent ami
no acid alterations. It categorizes observed amino acids into 
two groups: tolerable amino acids and intolerable amino 
acids, with gaps considered as the third group of characters. 
We compared the performance of PHACE with both 
phylogeny-based approaches (CAPS and CoMap) and state- 
of-the-art MSA-based tools (DCA, GaussDCA, PSICOV, 
and MIp). Our results demonstrate a significant difference in 
performance between PHACE and other benchmark tools 
across various measures. This improvement is noteworthy as 
it indicates that by eliminating phylogenetic dependence, a 
major source of signal that can be mixed with coevolution, 
we can achieve better performance than existing state- 
of-the-art approaches. Moreover, PHACE’s success over 
phylogeny-based approaches is significant, as while employing 
phylogenetic trees is crucial to eliminate the correlation intro
duced by shared ancestry, benefiting from trees to correctly 
identify phylogenetically independent alterations—the main 
source of coevolution—is even more crucial. We believe 
PHACE achieves this by using a tree traversal process, an ap
proach we have successfully utilized in various problems 
(Kuru et al. 2022; Bircan et al. 2024; Dereli et al. 2024). 

This approach enhances our ability to discern phylogenetically 
independent alterations accurately, thus contributing to the 
superior performance of PHACE in identifying coevolution
ary signals among protein positions.

Our analyses evaluated PHACE’s performance using ex
perimentally studied protein structures obtained from the 
PDB. Consistent with prevailing literature, position pairs 
close in 3D structure are often assumed to be coevolving. 
However, it is crucial to acknowledge that not all coevolving 
residues are in contact, and equating spatial proximity with 
coevolution can lead to both false positives and false nega
tives. Despite these limitations, it is recognized in the litera
ture that a significant proportion of coevolving residues are 
indeed found to be “in contact” within protein structures 
(Anishchenko et al. 2017). Testing all tools over the same 
set of coevolving and independent positions ensures a fair 
comparison. Our primary objective here is not to predict 
protein structure. However, leveraging structural data al
lows us to assess PHACE’s ability to discriminate between 
coevolving and independent position pairs based on its 
scores. We used two thresholds—8 and 16 Å—to define co
evolving and non-coevolving pairs for MCC and F1 score 

Fig. 7. Illustration of selected cases where other tools fail to identify coevolutionary relationships, while PHACE correctly identifies them. a) Fully 
conserved position predicted as coevolving by all MSA-based tools. b) Identification by PHACE when other tools fail. c) Two examples of positions falsely 
predicted as coevolving by DCA and GaussDCA.
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comparisons with CAPS and CoMap, respectively. For the 
ROC curve comparisons with DCA, GaussDCA, PSICOV, 
and MIp, we implemented a method for selecting non- 
coevolving position pairs that involved sorting distances 
from the farthest to the closest up to the 8 Å threshold. 
This ensured an equal number of coevolving and non- 
coevolving pairs to balance the data set, addressing potential 
biases that could affect the AUC metric, which is more sen
sitive to imbalances compared to the MCC. This systematic 
approach maximized the reliability of our comparisons, en
suring that PHACE’s performance was assessed with rigor 
and consistency across different tools and metrics. By care
fully selecting position pairs based on their structural 
distances, we ensured a comprehensive and fair evaluation 
of coevolution predictions across different assessment 
methods.

In our comparisons, we employed two distinct but over
lapping test sets. The first set encompassed all position pairs, 
while the second set comprised position pairs separated by at 
least five amino acids. The rationale for this division is 
rooted in the literature, which suggests that the second set 
presents more challenging cases, as pairs with fewer than 
five amino acids between them are considered easier to pre
dict. However, our observations deviate from these expect
ations. While there was a slight performance increase for 
all tools considered, none of the six tools achieved consist
ently high predictive performance. Moreover, the perform
ance gap between PHACE and all six tools widened when 
considering the test set encompassing all pairs, including 
the “easy” ones.

Figure 6 visually demonstrates PHACE’s superiority over 
other benchmark tools. Particularly noteworthy is our cluster
ing approach, which considers the tolerance of positions to 
amino acid alterations, resulting in a notable performance en
hancement compared to other tools. It is worth mentioning 
that DCA, GaussDCA, PSICOV, and MIp may assign a high 
score, indicating coevolution for conserved position pairs. 
However, we excluded these pairs from our comparisons as 
they deviate from the definition of coevolution, which entails 
correlated changes between positions.

PHACE shares conceptual ground with classical methods 
such as Maddison (1990) and Pagel (1994), which test for cor
related evolution of discrete traits across a phylogeny. 
However, PHACE differs in both focus and implementation: 
it operates at the level of amino acid substitutions, uses prob
abilistic ancestral reconstruction, and quantifies coevolution 
through phylogenetically independent substitutions and 
branch-diversity-based weighting. These design choices help 
mitigate spurious signals arising from shared ancestry and 
pseudo-replication and reduce false inference from unrepli
cated burst events—addressing key concerns raised in more re
cent critiques (Maddison and FitzJohn 2015; Uyeda et al. 
2018). While PHACE does not model causal dependencies, 
it robustly detects non-directional, structurally, or functional
ly coordinated substitution patterns.

Motivated by the substantial performance enhancement 
achieved with PHACE, our next step is to extend our ap
proach to detect protein–protein interactions. Protein–protein 
interactions play a pivotal role in various cellular functions, 
and it is well established that many human diseases arise 
from abnormal protein–protein interactions (Ryan and 
Matthews 2005). However, detecting these interactions 
through experimental methods is time-consuming and 

expensive (Macalino et al. 2018; Chen et al. 2019) while cur
rent computational approaches have yet to reach the desired 
accuracy level (Gandarilla-Pérez et al. 2023). One potential 
avenue for improving the prediction of protein–protein inter
actions is to generate enhanced co-MSAs, where each row rep
resents a combination of two interacting proteins. Our initial 
objective is to develop a phylogeny-aware algorithm to con
struct reliable co-MSAs. Subsequently, PHACE might be use
ful in predicting protein–protein interactions.

Another promising extension of PHACE is to model com
pensatory amino acid changes, where a substitution at one 
site mitigates the deleterious effect of a substitution at an
other site, often through physicochemical compatibility. It 
is well established that coevolving sites may arise from either 
correlated substitution histories or compensatory changes 
(Dutheil and Galtier 2007). While our current framework 
focuses on correlated substitutions, this choice reflects the 
fact that compensatory changes are known to be rare in pro
tein evolutionary history (Chaurasia and Dutheil 2022). 
Nonetheless, as a follow-up study, incorporating 
compensation-aware modeling represents a natural next 
step. This could be achieved by weighting amino acid prob
abilities based on biochemical properties such as size, polar
ity, or charge. Such approaches have been previously 
explored using subalphabet grouping and substitution 
weighting in Neher (1994) and Dutheil and Galtier (2007)
and were more recently expanded to a large-scale structural 
context by Chaurasia and Dutheil (2022). Such 
compensation-focused modeling could serve as a comple
mentary tool to PHACE, offering an alternative perspective 
on coevolution by capturing functionally coupled sites driv
en by mutually mitigating substitutions.

As another future direction, we aim to enhance PHACT by 
integrating coevolution information obtained from PHACE 
scores. PHACT predicts the pathogenicity of missense muta
tions by utilizing phylogenetic trees and phylogenetically inde
pendent amino acid alterations. While it is an accurate variant 
effect predictor, PHACT currently assumes each protein pos
ition to be independent, which is an incorrect assumption. It 
would be useful to incorporate coevolution information and 
the branches contributing to coevolution into the PHACT al
gorithm to improve its performance.

Materials and Methods
Details of PHACE
The PHACE algorithm utilizes MSAs, phylogenetic trees, and 
ASR probabilities to calculate coevolution scores. These ele
ments crucially shape the algorithm’s framework, providing 
a robust basis for distinguishing genuine coevolutionary pat
terns from those arising from shared ancestry. The method 
consists of three key components, each exploiting this phylo
genetic and ancestral data to effectively identify true co
evolutionary interactions.

Constructing MSA1

Initially, we detect tolerable/intolerable amino acids by deter
mining the amino acid with the highest frequency at each cor
responding position in the MSA. This amino acid serves as a 
baseline for identifying tolerable amino acids.

Tolerable and intolerable amino acids are determined 
based on their scores computed over phylogenetically inde
pendent substitutions. We traverse the tree from the root, 

10                                                                                                                           Kuru and Adebali · https://doi.org/10.1093/molbev/msaf150
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/42/7/m

saf150/8196535 by guest on 22 January 2026



assessing the probability difference per amino acid over 
neighboring nodes. The final score is derived through 
weighted summation of positive probability differences. 
Amino acids with scores higher than the baseline are labeled 
tolerable; otherwise, they are considered intolerable. In the 
first alternative MSA, MSA1, we designate the character 
“C” for tolerable amino acids and “A” for intolerable amino 
acids and maintain gaps as they are.

To compute the total phylogenetically independent change 
per branch, we traverse the tree, calculating the summation 
of positive probability differences per branch. Thus, we have 
a matrix of number of branches by 2 including total change 
per branch.

Constructing MSA2

The limitation with MSA1 and the total changes computed 
over MSA1 is that the gap character is not considered in the 
ASR step. Consequently, the probability distribution is fo
cused solely on characters A and C, disregarding gaps. This 
oversight poses an issue, as branches where the probability 
of a character increases may erroneously include 
substitutions to gaps, even if those gaps did not occur 
phylogenetically independently. To address this issue, we 
introduce a second MSA, MSA2, comprising two charac
ters: “C,” representing all 20 amino acids and “G” for 
gaps. With MSA2, we rerun ASR and apply the same tree 
traversal process as with MSA1. This enables us to identify 
branches where phylogenetically independent substitu
tions to G occur, along with the corresponding amount of 
change.

We then update the initial matrix constructed over MSA1 

with information regarding the branches where gap altera
tions occur and the associated amount of change. This update 
ensures that our matrix encompasses all phylogenetically inde
pendent alterations, thereby providing insights into co
evolution through correlation analysis.

Score Computation
The WCCC serves as a pivotal metric in our analysis, particu
larly for quantifying the parallelity between the total amounts 
of changes for branches per position. While traditionally em
ployed to measure agreement between two variables, WCCC 
proves invaluable in our context due to its ability to assess cor
relation while accounting for both the magnitude of change 
and the importance of each branch through the application 
of weights.

To adapt WCCC to our specific needs, we have refined the 
original formula to incorporate these considerations. The up
dated formula is as follows:

WCCC(x, y, z) =
2covz(x, y)

Varz(x) + Varz(y) + (meanz(x) − meanz(y))2 

where x and y represents the total amount of change per 
branch for position 1 and 2 in the pair, respectively, and the 
subscript z corresponds to the weighted version, where each 
term is weighted by the weight associated with the branch. 
This refined formulation of WCCC enables us to effectively 
capture the nuanced relationship between changes across 
branches and positions, while accommodating variations in 
the importance of individual branches in terms of coevolution 
signal. Thus, it serves as the most suitable measure for our ana
lytical needs.

We utilize two distinct weights in PHACE: one pertains to 
the incompatibility related to gap characters, denoted as ω1, 
while the other is assigned per branch. The formula of the first 
weight is as follows:

ω1 = max 1 −
total gap − common gap

number of branches
, 0

􏼒 􏼓

where total gap refers to the total number of branches with 
gaps for the first and second positions in the pair and 
common gap corresponds to the number of branches with 
gaps that are common for both positions.

The second weight, ω2, reflects the diversity of each branch 
in terms of phylogenetically independent alterations across all 
positions. However, to ensure that each branch contributes 
proportionately to the final score relative to the amount of 
change, we take the geometric mean of the evolutionary rate 
of each branch and the maximum amount of change per 
branch over the position pair. The formula for the weight 
per branch i is as follows:

ω2(i) =

�������������������������������

ωbranch max dif1(i), dif2(i)
( 􏼁􏽱

max dif1(i), dif2(i)
( 􏼁

> 0
�����������
ωbranch ·1

􏽰
max dif1(i), dif2(i)

( 􏼁
= 0

􏼨

where ωbranch is the weight computed over the evolutionary 
rate of the branch and dif1(i) and dif2(i) correspond to the to
tal change for branch i for the first and second positions in 
the pair, respectively. We note that if there is a nonparallel 
change (|dif1(i) − dif2(i)| ≥ 0.5) on branch i, we assign 
ω2(i) = 1 to ensure that the effect of nonparallel change is 
not reduced.

The final PHACE score is computed by considering both 
weights and WCCC as follows:

PHACE = ω1WCCC(dif1, dif2, ω2) 

Here, it is important to note that in the case of a nonparallel 
change, we examine the original MSA. If the amino acid in 
question is observed only once, we disregard the impact of 
this change and assume that there is no change on the corre
sponding branch for both positions in the pair. Additionally, 
substitutions between amino acids and substitutions to gaps 
are not considered correlated changes, even if they occur on 
the same branch for both positions. We penalize the score 
for these types of parallel changes.

PDB Structures
The experimentally studied protein structures are acquired us
ing a batch download script directly from the PDB (Berman 
et al. 2002 ). For each UniProt ID, the corresponding PDB 
ID is retrieved from the UniProt database (UniProt 2021). 
Among the proteins from Kuru et al. (2022), PDB structures 
are available for 2,390. To assess the compatibility of the se
quences in the structures, we collected three types of informa
tion: number of compatible positions, number of different 
positions, and if the sequence at PDB is longer, the length dif
ference between our sequence and PDB sequence. If a structure 
has more than 10 incompatible amino acid positions or if the 
ratio of mapped positions to total sequence length is less than 
50%, it is discarded. From the remaining proteins and struc
tures, if there are multiple candidate structures for a protein, 
we select the one with the highest number of compatible and 
minimum number of incompatible positions. That resulted 
in 652 proteins in total.
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Benchmark Tools
We utilized CAPS, CoMap, DCA, GaussDCA, PSICOV, and 
MIp as benchmark tools, obtained from the GitHub page or 
web server of the corresponding tool. For a completely fair 
comparison, each tool was executed over the masked MSA 
and phylogenetic tree, if required, which are also used for 
PHACE computation.

The details regarding the parameters are as follows: 

1. CAPS was executed with default parameters.
2. The “Correlation” version of CoMap clustering analysis 

was employed using the LG08 model, considering all sites 
and employing a Gamma rate distribution with four 
categories.

3. DCA and GaussDCA were run with default parameters 
over the masked MSA, except GaussDCA, which re
ported position pairs with at least five amino acids be
tween them. To obtain their predictions over all pairs, 
we changed the parameter min_separation to 1.

4. PSICOV was run with the minimum sequence separation 
parameter set to 1, similar to GaussDCA.

5. MIp was executed with default parameters.

The scripts used to run each tool with these parameters are 
available in our GitHub repository.

MSA and Phylogenetic Trees
The MSA and phylogenetic trees of 5,123 human proteins are 
obtained from the PHACT database (Kuru et al. 2022). They 
obtained the homologs of each query sequence through 
PSI-BLAST (Altschul et al. 1997) against a nonredundant 
database of 14.010.480 proteins produced from the reference 
proteomes in the UniProtKB/Swiss-Prot Knowledgebase 
(UniProt 2021). Two iterations of PSI-BLAST with 5,000 
maximum target sequences were performed. The number of 
hits was limited to maximum 1,000 sequences with a min
imum 30% identity and E-value of 0.00001 due to computa
tional limitations of building phylogenetic trees. The 
sequences were aligned using MAFFT FFTNS (Katoh and 
Standley 2013), and the MSAs were trimmed with the 
trimAl tool gappyout method (Capella-Gutierrez et al. 
2009). The resulting MSA was used to generate a maximum 
likelihood phylogenetic tree with the RaxML-NG (Kozlov 
et al. 2019) tool using LG4X model and leaving the remaining 
parameters at default settings.

Ancestral Reconstruction
Positions with “gap” character in the query sequence are re
moved from the original MSA (without trimming). The result
ing MSA is used to perform ASRs by using IQTREE. To ensure 
that amino acid properties do not influence the resulting prob
ability distributions, we employed a user-defined model that 
assigns equal substitution rates and baseline frequencies to 
each character. ASR is executed for three versions of the MSA: 

1. The original MSA used to compute tolerance scores per 
position

2. MSA with three characters: the dominating amino acid, 
the alternating amino acid, and gaps

3. MSA with two characters: one character representing all 
amino acids and another representing gaps

A similar user-defined model is applied to all three versions, 
with matrix sizes adjusted based on the number of characters 
in the MSA. While the tree topology is preserved in the ASR 
step, it reoptimizes the branch length. To prevent changes in 
branch lengths based on alternative MSAs, we utilize the -blfix 
option, which ensures fixed branch lengths.

Supplementary Material
Supplementary material is available at Molecular Biology and 
Evolution online.
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