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ABSTRACT: This study presents the development of a novel

molecularly imprinted electrochemical sensor for the sensitive and

selective detection of vitamin E acetate (VEA) in e-cigarette =
liquids, a critical step in addressing the rising public health concern e
of e-cigarette, or vaping, product use-associated lung injury. VEA-
imprinted polymeric nanoparticles, intended to serve as the
recognition element on the sensor surface, were synthesized
using surfactant-free emulsion polymerization. The synthesized O+|:
polymer was characterized using Fourier Transformed Infrared —ecommes
Spectroscopy, scanning electron microscope, and zeta potential | !
analyses. The sensor, fabricated using VEA-imprinted poly(HMA- — |:|’b
co-PA)/Nafion on screen-printed carbon electrodes, demonstrated EFS

a limit of quantification (LoQ) of 112.3 ug/mL (3.3% S/N) with a

wide linear range extending to 3.0 mg/mL (10X S/N). While the sensor exhibited limitations in detecting VEA at concentrations
below the LoQ, the integration of machine learning algorithms effectively mitigated these challenges. Machine learning models
successfully classified the presence of VEA, even at subdetection limit concentrations, significantly enhancing the sensor’s analytical
capabilities. Rigorous testing on real-world e-cigarette liquid samples yielded high recovery rates (96.83% + 2.79—102.56% =+ 3.84),
validating the sensor’s accuracy and selectivity in complex matrices. This research not only establishes a promising platform for the
rapid and sensitive detection of VEA in e-cigarette liquids but also underscores the transformative potential of integrating artificial
intelligence with sensor technologies for addressing critical public health challenges.
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1. INTRODUCTION

Electronic cigarette (e-cigarette) devices are designed to
simulate the experience of traditional smoking and deliver

VEA is a fat-soluble vitamin recognized for its antioxidant
properties and its role in mitigating oxidative stress.” As an
esterified form of vitamin E, VEA is commonly used in
pharmaceuticals, cosmetics, and dietary supplements.”® In e-
cigarette liquids, VEA is often added as a humectant and to
enhance the delivery of flavors and nicotine.” However,
inhalation of VEA in aerosol form can pose serious health risks.”

nicotine-containing aerosols. These devices comprise compo-
nents such as a battery, heater, atomizer, e-liquid cartridge, and
mouthpiece, each of which has the potential to adversely affect

human health."” Studies have identified over 113 distinct
chemical components in e-cigarette cartridges and aerosols, with
approximately 70 of these compounds remaining unidenti-
fied.”~* Consequently, the identification of chemicals present in
e-liquids and aerosols is crucial for a comprehensive assessment
of the negative health impacts associated with e-cigarette use.

Mounting evidence suggests a link between e-cigarette use
and lung damage, including respiratory failure. A recent
outbreak of e-cigarette, or vaping, product use-associated lung
injury (EVALI), as defined by the Centers for Disease Control
and Prevention (CDC), underscored this concern and
prompted urgent investigation. Vitamin E acetate (a-tocopherol
acetate) (VEA), a component found in some e-cigarette liquids,
has been implicated as a significant contributing factor in many
EVALI cases.”®
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Pulmonary surfactant (PS), a fluid lining the lung alveoli, plays
a critical role in respiration. PS acts at the air—liquid interface to
reduce alveolar surface tension, facilitating lung inflation under a
pressure of approximately 133 pascal (Pa). Phospholipids,
primarily dipalmitoylphosphatidylcholine (DPPC), constitute
the major component (90%) of PS, along with other lipid
components such as unsaturated phosphatidylcholines (PCs)
and phosphatidylglycerols (PGs).”
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Inhaled VEA can accumulate in the alveolar membrane,
potentially inducing inflammation and lung damage."* Studies
employing model systems have investigated the mechanisms of
VEA-induced lung damage.'"'* Models using DPPC alone have
demonstrated that increasing VEA concentrations negatively
affect membrane fluidity and compressibility. Similar adverse
effects on membrane fluidity and compressibility were observed
in models using a mixture of the four main PS components:
phospholipids (90%), neutral lipids (8%), proteins (2%), and
glycolipids.” These findings suggest that VEA increases PS
fluidity, potentially leading to alveolar collapse and respiratory
symptoms such as shortness of breath and lung inflammation.

A comprehensive review of the existing literature has revealed
an absence of studies pertaining to the development of a sensor
system specifically designed for the detection of VEA in
electronic cigarettes. Additionally, traditional methods for
detecting chemicals in e-cigarette liquids, such as polarographic
analysis, liquid chromatography, UV spectrophotometry, gas
chromatography, and capillary electrophoresis,' often involve
lengthy analysis times, complex sample preparation, and
expensive equipment. Electrochemical sensors offer a compel-
ling alternative for rapid, cost-effective, and sensitive detection
of vitamins and other chemicals."” Their high sensitivity, rapid
response times, and potential for miniaturization have led to
their widespread use in biological and environmental analyses.'*
These sensor systems enable reliable and rapid detection of
harmful substances in biological fluids, making them valuable
tools in public health monitoring.'

Molecularly imprinted polymers (MIPs), characterized by
their inherent capacity for specific molecular recognition, have
garnered significant attention in recent years as a promising
technology for the develoyment of sensitive and selective
sensors for target analytes.'”"” Molecularly imprinted electro-
chemical sensors (MIECS), which employ MIPs as recognition
elements, offer a low-cost, rapid, and reliable detection method
applicable even in complex matrices.”””" Integration with
disposable electrodes, such as screen-printed carbon electrodes
(SPCEs), further expands their utility, particularly in electro-
chemical biosensing.””

Despite the widespread adoption of electrochemical sensors
across diverse analytical domains, their performance under
nonlinear conditions and low analyte concentrations remains a
persistent challenge. Conventional calibration protocols and
signal analysis techniques frequently exhibit limited capacity in
resolving weak, noisy, or ambiguous signals—particularly in the
quantification of analytes such as VEA present at trace levels,
below conventional limits of detection. In light of these
limitations, machine learning (ML) has emerged as a robust
and scalable paradigm, offering data-driven strategies for both
sensor optimization and interpretive enhancement.>* ™ By
systematically extracting latent patterns from historical sensor
outputs, ML algorithms enable the precise characterization of
signal dynamics, drift compensation, and classification of analyte
presence even within chemically complex matrices.”*>” These
capabilities collectively facilitate enhanced analytical resolution,
improved selectivity, and elevated signal-to-noise performance,
particularly under nonideal measurement conditions.””

Beyond signal refinement, ML methodologies contribute to
the rational design and optimization of sensor materials and
configurations by enabling predictive modeling of structure—
performance relationships. This computational foresight not
only expedites sensor development cycles but also fosters the
engineering of customized sensing interfaces with tailored

selectivity and sensitivity profiles.”” In conjunction with
dimensionality reduction and feature extraction techniques—
such as principal component analysis (PCA) and wavelet
transform methods—ML frameworks augment the interpret-
ability of complex electrochemical signals and support reliable
analyte discrimination in multidimensional data spaces.’”’’
Moreover, data-driven approaches have demonstrated efficacy
in addressing instrumental drift, calibration bias, and long-term
signal instability, thereby enhancing the robustness and
reproducibility of electrochemical platforms.*”

Within the scope of supervised ML applications in electro-
chemical sensor analytics, several algorithmic frameworks have
demonstrated consistent effectiveness across a wide range of
data complexities. Techniques such as support vector machines
(SVM), random forest ensembles, artificial neural networks
(ANNs), logistic regression, and gradient-boosted decision trees
(e.g, XGBoost) have been particularly prominent due to their
capacity to model intricate, high-dimensional, and nonlinear
relationships with robust generalization performance.””™*" The
selection of an appropriate algorithm is inherently dependent on
the structure and statistical properties of the data set, including
its dimensionality, variance distribution, and noise character-
istics. In this context, kernel-based models and ensemble
learning approaches have shown distinct advantages, particularly
in handling high-variance data sets or those involving complex
class boundaries. Their ability to capture both linear and
nonlinear feature interactions renders them highly suitable for
the classification tasks frequently encountered in chemometric
and biosensing applications.

In this study, a novel and integrated sensing strategy was
developed for the selective and sensitive detection of VEA in e-
cigarette liquids, addressing a critical gap in current analytical
methodologies. The platform combines MIP-based nanostruc-
tures synthesized via surfactant-free emulsion polymerization
with an electrochemical detection system built upon SPCEs
modified by a poly(HMA-co-PA)/Nafion composite. Extensive
physicochemical and electroanalytical characterization con-
firmed the structural fidelity, binding specificity, and electro-
chemical responsiveness of the fabricated sensor. To overcome
the intrinsic limitations of conventional sensors—particularly
under nonlinear response conditions or subquantification
levels—supervised ML models were systematically integrated
into the analytical workflow. These models not only enhanced
the interpretive capacity of the electrochemical data by
distinguishing subtle signal variations but also enabled reliable
classification of VEA presence in chemically complex and real-
world matrices. Collectively, the interdisciplinary integration of
molecular imprinting, electrochemical transduction, and
artificial intelligence exemplifies a forward-looking and robust
platform, with significant implications for rapid toxicant
detection, public health surveillance, and the future design of
intelligent sensor systems.

2. EXPERIMENTAL DESIGN AND MACHINE LEARNING
INTEGRATION

This section details the synthesis, characterization, electro-
chemical measurements, and ML-based optimization strategy
employed for the development of MIECS for VEA detection.
2.1. Materials and Reagents. VEA was procured from
Sigma-Aldrich. The following reagents were used in the
polymerization process: poly(vinyl alcohol) (PVA) (>99.0%),
potassium persulfate (KPS) (>99.0%), 2-hydroxyethyl meth-
acrylate (HMA) (>99.0%), ethylene glycol dimethacrylate
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Figure 1. Schematic representation of the pre-complex formation between PA and VEA.

(EGDMA) (>99.0%), dimethyl sulfoxide (DMSO) (>99.9%),
methanol (MeOH) (>99.9%), ethanol (EtOH) (>99.5%), and
acetic acid (AA) (>99.7%), methacryloylamido phenylalanine
(PA). For the electrochemical measurements, potassium
chloride (KCl), potassium hexacyanoferrate(IlI) (K;[Fe-
(CN)4]), potassium hexacyanoferrate(Il) trihydrate (K,[Fe-
(CN)¢]-3H,0), and potassium dihydrogen phosphate
(KH,PO,) were employed. All chemicals used in the study
were obtained from Sigma-Aldrich (St. Louis, MO, USA). An
5.0% (w/v) Nafion 117 solution (methanol/isopropyl alcohol)
was sourced from Chemours (Wilmington, DE, USA). All
chemicals were of analytical grade and used as received without
further purification.

2.2. Instrumentation. All electrochemical analyses were
performed using a Potentiostat/Galvanostat (uStat 400-
Metrohm, Herisau, Switzerland) interfaced with a SPCE system.
The SPCE (DropSens, Llanera, Spain) was modified with a
VEA-imp-poly(HMA-co-PA)/Nafion composite, functioning as
the working electrode. The SPCE consisted of a carbon working
electrode (4 mm diameter), a silver pseudoreference electrode,
and a carbon counter electrode. Auxiliary equipment included a
shaking water bath (Memmert, Schwabach, Germany; WiseBath
WSB-30), Centurion Scientific Ltd., St Neots, UK and Beckman
Coulter Avanti J-E, Beckman Coulter, Inc., Brea, CA, USA.

2.3. Synthesis of VEA-imp-poly(HMA-co-PA) (MIP) and
Nonimprinted Polymer (NIP). VEA-imprinted polymeric
nanoparticles, intended to serve as the recognition element on
the sensor surface, were synthesized using surfactant-free
emulsion polymerization. A precomplex was prepared by mixing
25 mg of VEA with 25 mL of PA in DMSO and stirring for 2 h.
Separately, 0.5 g of PVA was dissolved in 45 mL of deionized
water under magnetic stirring. HMA (0.6 mL) and EGDMA
(0.3 mL) were then added to this solution, which was
subsequently combined with the precomplex solution in a
polymerization reactor. The mixture was purged with nitrogen
gas for 10 min to remove dissolved oxygen before initiating
polymerization with 0.02 g of KPS dissolved in 45 mL of
deionized water. Polymerization was carried out at 70 °C for Sh
under constant stirring. The resulting polymers included three
MIPs with varying VEA/PA molar ratios (1:1, 1:2, and 1:3) and
one NIP synthesized without the template molecule. Following
polymerization, the MIPs and NIP nanoparticles were
centrifuged at 14,100 rpm for 20 min and washed three times
with a 50% ethanol—water mixture to remove unreacted
monomers and residual impurities. The polymeric nanoparticles
were then dried in an oven at 37 °C for 12 h. Subsequently, to
extract the template molecule, the particles were extensively
washed with a methanol/acetic acid (9:1, v/v) solution, which
was experimentally determined to be optimal for template
removal, and then dried under vacuum at 40 °C overnight. The
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methanol/acetic acid (9:1, v/v) solution was experimentally
determined to be optimal. This solution is commonly used in the
literature for the removal of template molecules from MIPs.
Methanol facilitates the dissolution of the template from the
polymer matrix, while acetic acid disrupts ionic and hydrogen
bonds, collectively enhancing desorption efficiency.*~**

2.4. Fabrication of VEA-imp-poly(HMA-co-PA)/Nafion/
SPCE. The SPCE modification involved preparing a suspension
of VEA-imp-poly(HMA-co-PA) in a 0.05% Nafion solution
(prepared by diluting the $% stock solution with deionized
water) to achieve a final concentration of 1.0 mg/mL. A 15 uL
aliquot of this composite solution was drop-cast onto the SPCE
surface and allowed to dry at room temperature (22 + 2 °C) in
the dark for 2 h. Afterward, the modified electrodes were stored
at 4 °C for subsequent analyses.

2.5. Electrochemical Measurements. Electrochemical
measurements were conducted using differential pulse voltam-
metry (DPV) and cyclic voltammetry (CV) within a potential
range of —0.20 to +0.80 V in 10 mM phosphate buffer saline
(PBS, pH 7.2) containing 5.0 mM [Fe(CN),]*~/3 as the redox
probe. All measurements were performed using a three-
electrode configuration: the modified SPCE as the working
electrode, a silver pseudoreference electrode on the SPCE, and
the carbon counter electrode on the SPCE. Preliminary CV
scans were performed at varying scan rates (10—100 mV/s) to
determine the optimal scan rate of 60 mV/s, which provided the
highest peak current and well-defined peak shape. Further
details regarding the instrumentation and analytical procedures
can be found in our previous publications.*>~*

2.6. Machine Learning-Assisted Optimization and
Classification. Accurate identification of VEA at trace levels
necessitates the deployment of robust classification models
capable of minimizing false negatives—a critical consideration
given the compound’s established association with EVALL* To
address this challenge, five supervised machine learning
algorithms—including SVM, random forest, neural networks
(NNs), logistic regression, and XGBoost—were trained using
electrochemical current responses acquired across a range of
applied voltages. Each sample was labeled with a binary class
indicator denoting the presence or absence of VEA.

The data set was preprocessed to eliminate redundancy and
reduce the risk of overfitting through standardization and
stratified sampling. Hyperparameter tuning was performed
individually for each algorithm to ensure optimal performance.
Evaluation extended beyond overall accuracy and incorporated
recall and Fl-score metrics, which emphasize true positive
identification while accounting for the balance between
sensitivity and precision.49

2.7. Integration of ML Insights into Experimental
Workflow. Rather than functioning as isolated computational
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instruments, the trained ML models were strategically integrated
into the experimental workflow to refine signal interpretation
and enhance resolution, particularly within the low-concen-
tration detection regime. These models enabled characterization
of the sensor’s nonlinear electrochemical behavior at sub-
quantification thresholds—an area where conventional calibra-
tion methods are often insufficient.

By using applied voltage and the corresponding current as
input features, the ML models predicted the likelihood of VEA
presence with high interpretive confidence. This predictive layer
supported the resolution of ambiguous signals and guided the
refinement of experimental validation strategies. As such, the
incorporation of ML not only complemented empirical
observation but also exemplified a synergistic interplay between
data-driven inference and sensor-based experimentation,
ultimately contributing to a more nuanced and reliable detection
process.

3. RESULTS AND DISCUSSION

3.1. Synthesis and Characterization of VEA-imp-
poly(HMA-co-PA). Polymeric nanoparticles imprinted with
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Figure 2. Comparative FTIR spectra of P(HMA) and P(HMA-co-PA)
polymeric nanoparticles.

Figure 3. SEM images of the MIPs: VEA-imp-poly(HMA-co-PA).

VEA, designed to function as the recognition element on the
sensor surface, were synthesized through surfactant-free
emulsion polymerization. As illustrated in Figure 1, the
interaction between VEA and PA in the precomplex is
predominantly driven by hydrophobic interactions originating
from the phenylalanine amino acid, with additional binding
affinities facilitated by other secondary interactions. Upon
polymerization, the removal of VEA from the structure enabled
the synthesis of a polymer matrix containing cavities specific to
VEA.

3.1.1. Fourier Transform Infrared Spectroscopy (FTIR)
Analysis. The FTIR analysis of VEA-imprinted poly(HMA-co-
PA) confirms the successful incorporation of the template
molecule (VEA) within the polymer matrix. Key spectral
differences between the imprinted and nonimprinted polymers
indicate specific interactions, validating the molecular imprint-
ing process and its potential for selective sensing applications.

The FTIR spectrum analysis reveals significant structural
differences between the P(HMA) and P(HMA-co-PA) poly-
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Figure 4. pH effect on VEA binding to VEA-imp-poly(HMA-co-PA)
(Cyga: 1.0 mg/mL, T: room temperature, fyging: 2 h, pH 5.0 sodium
acetate buffer, pH 6.0—7.0—8.0 phosphate buffer, pH 9.0 Tris buffer,
pH 10.0 borate buffer).

140 - —=—MIP
—e—NIP
120 4
100 4
80 -

60

Q (mg/g)

40

20

o] b F—F

0,0 l ofz ' of4 ' o,ls ' o,ls ' 1,0
VEA initial Concentration (mg/mL)

Figure 5. Effect of initial concentration on VEA binding (pH 7.0
sodium phosphate buffer, 25 °C, binding time: 2 h for MIP and NIP).

mers. In the region of 3300—3500 cm ™', broad absorption bands
corresponding to the hydroxyl (—OH) groups of HMA and the
amide (—NH) groups of PA are observed. A slight shift in this
region for the imprinted polymer suggests the formation of
hydrogen bonds with the template molecule, vitamin E. The
aliphatic C—H stretching vibrations in the range of 2900—3000
cm ™! appear in both spectra, though intensity variations indicate
differences in polymerization and cross-linking as shown in
Figure 2. Distinct peaks in the 1700—1750 cm™' region
correspond to the carbonyl (C=0) stretching vibrations of
HMA’s ester groups and PA’s amide groups.”® Notable shifts
and intensity variations in this region for the imprinted polymer
provide strong evidence of interactions between vitamin E and
the polymer matrix, confirming the success of the molecular
imprinting process. The 1500—1650 cm™' region exhibits
characteristic absorption bands associated with C=N stretching
and NH bending vibrations of PA’s amide functionalities, with
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observable differences between the imprinted and nonimprinted
polymers. Furthermore, the 1000—1300 cm™' range features
stretching vibrations of C—O—C bonds from HMA’s ester
structure and C—N bonds from PA, both of which show distinct
spectral features. The fingerprint region (500—900 cm™)
reflects the specific structural characteristics of the polymer,
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where noticeable spectral variations in the imprinted polymer
further support the structural modifications induced by the
presence of vitamin E. Overall, the FTIR data confirm the
successful molecular imprinting process and demonstrate
specific interactions between the polymer matrix and vitamin
E, validating the system’s structural integrity and functionality.
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Table 1. Comparison of This Study with Previously Reported
Voltametric VEA Sensors (DPV: Differential Pulse
Voltammetry and SWV: Square Wave Voltammetry)

linear ran§e LoD

electrode technique (ug/mL (ug/mL) references

p(HMA-co-PA)/SPCE DPV ~112.3 to 37.1 this study
3000

SO/GCPE SWv ~0.24 to ~0.047 65
~1891

Au/Pan/y-AL O, DPV ~0.038 to ~0.03 66
~3.07

SPGNE SWV ~0.08 to ~§ ~0.012 67

platinum microelectrode SWv ~25.83 to ~8.61 68
~905.2

CPE/SDS SWV ~43.06 to ~15,9 69
~516.68

Table 2. % Recovery Values for Different Concentrations (1
mg/mL, 2 mg/mL, and 3 mg/ mL) of VEA in Electronic
Cigarette Liquid after Applying a 20-Fold Dilution With
Fe(CN),>~/* Solution

VEA (mg/mL) in e-cigarette liquid % recovery

1 96.83 + 2.79
2 101.16 + 3.84
3 102.56 + 2.67

3.1.2. Scanning Electron Microscope (SEM) Analysis.
According to the SEM analysis presented in Figure 3, the
VEA-imprinted poly(HMA-co-PA) nanoparticles predomi-
nantly exhibit a spherical morphology with a relatively rough
and porous surface structure. This morphology is highly
advantageous for molecular imprinting applications, as the
spherical shape provides a high surface-to-volume ratio, while
the rough surface offers a greater number of accessible binding
cavities. These structural features enhance the performance of
the polymer by enabling stronger and more specific interactions
with the template molecule.

3.1.3. Zeta Size and Potential Analysis. The zeta potential
analysis of VEA-imp-poly(HMA-co-PA) polymeric nanopar-
ticles provides valuable insights into their surface charge and
colloidal stability (Figure S1). The average zeta potential was
measured as —2.36 mV, indicating a near-neutral surface charge,
which may be beneficial for minimizing nonspecific interactions

in biological applications. A single dominant peak (peak 1:
—2.36 mV, 100%) in the zeta potential distribution suggests a
homogeneous nanoparticle population with consistent surface
charge characteristics. The zeta potential deviation was recorded
as 7.12 mV, indicating a relatively narrow charge distribution.
Additionally, the conductivity was measured at 3.97 mS/cm, and
the result quality was rated as “good”, confirming the reliability
of the measurement. These findings suggest that the synthesized
nanoparticles exhibit a stable and uniform charge profile, which
can be further optimized for enhanced colloidal stability and
potential biomedical applications.

The dynamic light scattering (DLS) analysis of VEA-imp-
poly(HMA-co-PA) polymeric nanoparticles, as presented in
Figure S2, indicates the successful synthesis of nanoparticles.
The Z-average value was determined to be 759.2 nm, providing
essential information about the hydrodynamic diameter of the
polymeric system. A single dominant peak was observed in the
size distribution (peak 1:177.9 nm, 100%), suggesting the
formation of a homogeneous nanoparticle population within a
specific size range. The polydispersity index (PdI) was measured
as 0.726, indicating a well-distributed nanoparticle system.
These findings demonstrate that the synthesized nanoparticles
fall within the desired size range and may be suitable for
potential biomedical applications (Figure S2).

3.2. Optimization of Binding Conditions. A calibration
curve was generated to establish the correlation between
absorbance values and the concentrations of VEA solutions,
serving as a reference for accurately determining VEA
concentrations in subsequent experiments (Figure S3).

The calibration process involved preparing aqueous solutions
with five different concentrations of VEA, ranging from 0.1 to 1
mg/mL. Using a UV—vis spectrophotometer, the absorbance of
each solution was measured at a wavelength of 286 nm. The
calibration curve was then constructed by plotting absorbance
values against the respective VEA concentrations (mg/ mL) (R?
= 0.9884). This calibration curve provides a quantitative
relationship between absorbance and VEA concentration,
offering a reliable reference for accurately measuring concen-
trations in spectrophotometric analyses.

3.2.1. Effect of pH on VEA Binding. To evaluate the effect of
pH on VEA binding, 10 mM buffer solutions were prepared, and
experiments were conducted at pH levels of 5.0, 6.0, 7.0, 8.0, 9.0,
and 10.0 to examine the working conditions at different pH

https://doi.org/10.1021/acsomega.5c02363
ACS Omega 2025, 10, 27098—-27111


https://pubs.acs.org/doi/suppl/10.1021/acsomega.5c02363/suppl_file/ao5c02363_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.5c02363/suppl_file/ao5c02363_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.5c02363/suppl_file/ao5c02363_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.5c02363/suppl_file/ao5c02363_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02363?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02363?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02363?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02363?fig=fig9&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.5c02363?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

http://pubs.acs.org/journal/acsodf

ACS Omega
Confusion Matrix - Logistic Regression Confusion Matrix - SVM
180.0
B3 o 200.0
z 160.0 -]
g - 116 118 8 0
P4 Z
Z 140.0 Z 150.0
O @)
= F
E - 120.0 2 0o
o o - 100.
Z <
< o
> N - 100.0 Z 9
Z e 8 -350.0
£ & 50
- 80.0
' =00
' Jeo - < o
Negative Positive Negative Predicated Cl Positive
. - redicate ass
Predicted Class cdicate S8
(a) (b)
Confusion Matrix - XGBoost Confusion Matrix - Neural Network
e 200.0 © 200.0
£ H
=0 L
Z Z
. - w 150.0
r;: 150.0 ;53
o o
E El
e s - 100.0
2 - 100.0 g )
é -50.0 & =500
' -00
Negative Positive P Predicated CI sty
. redicated Class
Predicated Class A e
() (d)

Confusion Matrix - Random Forest

Actual Class
Negative

Positive

Positive

Negative
Predicated Class

(e)

200.0

- 150.0

= 100.0

Figure 10. Confusion matrix for ML models. (a) Logistic Regression (b) SVM-RBF Kernel (c) XGBoost (d) NNs (e) Random Forest.

27104

https://doi.org/10.1021/acsomega.5c02363
ACS Omega 2025, 10, 27098—-27111


https://pubs.acs.org/doi/10.1021/acsomega.5c02363?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02363?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02363?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c02363?fig=fig10&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.5c02363?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

Table 3. Performance Metrics of ML Models

model precision recall Fl-score accuracy
Logistic Regression 0.63 0.62 0.62 0.63
SVM (RBF Kernel) 0.98 0.98 0.98 0.98
Random Forest 0.99 0.99 0.99 0.99
XGBoost 0.98 0.98 0.98 0.98
NNs 0.96 0.98 0.98 0.98

values. Binding studies were performed at room temperature
with a total volume of 1 mL. A solution containing VEA and 6
mg of polymer was prepared with an initial VEA concentration
of 1.0 mg/mL, and allowed to adsorb for 2 h using the
continuous binding method. The amount of VEA adsorbed by
the polymer at each pH was calculated using eq 1.

G-
Q=——

m

XV )
In this eq 1, Q represents the amount of VEA bounded per unit
mass of polymer (mg/g), while “c;” and “c;” denote the initial
concentration of VEA in the solution and its concentration in
the aqueous phase after a specified time, respectively. “V”
indicates the volume of the aqueous phase (mL), and “m” refers
to the mass of the polymer used (mg). The calculated values
were subsequently plotted to identify the optimal pH conditions
for efficient binding.

Figure 4 demonstrates a notable increase in the binding
capacity of VEA by the MIP as the pH increased from 5.0 to 7.0.
The highest VEA binding value was observed as 86.538 mg/g in
the pH 7.0 buffer. However, a significant decrease in the binding
capacity was observed at pH 8.0, indicating that the interaction
between VEA and the MIP was less favorable under these
conditions. This reduction could be attributed to the full
deprotonation of the carboxylic acid groups on the polymer
surface, resulting in increased electrostatic repulsion and a
weakened binding affinity for VEA.

At pH values beyond 8.0, such as in the pH 9.0 buffer, the
binding capacity stabilized at a lower level, suggesting that while
some noncovalent interactions (e.g., hydrogen bonding or

hydrophobic interactions) still contribute to binding, the overall
affinity of the MIP for VEA is diminished under these alkaline
conditions. These results highlight the pH-sensitive nature of
the MIP and its optimal performance at neutral pH levels.

3.2.2. Effect of Initial Concentration on VEA Binding. To
investigate the effect of initial concentration on VEA binding,
binding media were prepared with initial concentrations of VEA
ranging from 0.1 to 1 mg/mL, with the final volume adjusted to 1
mL using a pH 7.0 sodium phosphate buffer solution. The
desired concentration was achieved by accurately pipetting a 1
mg/mL VEA/solvent stock solution, followed by the addition of
6 mg of polymer to each solution. The experiments were
conducted at room temperature. After the binding phase, the
samples were centrifuged at 14.000 rpm for 20 min, and VEA
analysis was performed on the resulting supernatants. Control
trials, which did not include the polymer, were carried out using
the same procedure to establish baseline values for each
concentration level. These control results were used to
determine the initial concentration for each value in the
experimental setup. The effect of the initial VEA concentration
on its binding is shown in Figure 5.

Figure S illustrates the effect of the initial concentration of
VEA on the binding capacity of MIP and NIP. For MIP, a
gradual increase in binding capacity was observed at lower initial
concentrations (0.1—0.4 mg/mL), indicating that the specific
binding sites on the polymer surface were not yet saturated and
continued to interact effectively with the target molecules. As the
concentration increased within the range of 0.4—0.8 mg/mL, a
significant rise in binding capacity was noted, highlighting the
strong selectivity and affinity of MIP for the target molecule.
However, beyond 0.8 mg/mL, the binding capacity reached a
plateau at its maximum value (approximately 120 mg/g),
indicating that all specific binding sites on the polymer surface
were fully occupied and further binding could not occur.

When the results of the NIP study are evaluated, the role of
hydrophobic interactions in molecular recognition has been
emphasized in imprinting studies, demonstrating that even in
nonimprinted systems, molecular adsorption can occur through
nonspecific interactions, particularly at higher analyte concen-
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trations.”’ NIPs can exhibit adsorption due to noncovalent
interactions, including m—n stacking and hydrophobic
forces.>”>> However, in molecular imprinting studies, minimiz-
ing nonspecific adsorption in NIPs is crucial to accurately
differentiate the binding performance of NIP and MIP systems.
Ideally, NIPs should exhibit minimal interaction with the target
analyte, serving as a control to validate the selectivity and
specificity of MIPs. Although a slight increase in Q values was
observed in NIP experiments, this increase remained at a very
low level. The selective recognition of VEA by MIP was
confirmed to result from the specific binding sites formed within
the polymer matrix.

NIPs serve as a “control” to evaluate the selectivity of the
interactions between the synthesized MIPs and the template
molecule, as these interactions are specific to MIPs and not to
NIPs; compared to NIPs, MIPs exhibit better binding capacity
and higher selectivity, and the calculated binding ratio between
MIPs and NIPs is referred to as the imprinting factor (IF)
(Equation 2).54

a = Qyp/ Qypp ()

Here, Qyp and Qup represent the binding capacities in a
monolayer polymer surface.

In this study, the calculated imprinting factor (IF) was found
to be 8, indicating a high degree of specificity and successful
imprinting.

3.3. Electrochemical Characterization. 3.3.1. Detection
of the Optimum Scan Rate. The electrochemical behavior of
the VEA-imp-poly(HMA-co-PA)/Nafion/SPCE was examined
in the potential range of —0.20 to +0.80 V using a 5.0 M
Fe(CN)>~/*", with scan rates (v) between 10 and 100 mV/s
(Figure 6A). The Fe(CN)*~/*" system displayed a reversible
single-electron oxidation process. It was also noted that both the
oxidation and reduction peaks increased linearly across the scan
rate range. This helped identify the scan rate at which the
modified SPCE could function eftectively without encountering
diffusion limitations (Figure 6A). To achieve both rapid analysis,
high electrochemical stability and high accuracy in the

experiments, a scan rate of 60 mV/s was selected as the
optimum scan rate.

3.3.2. Fabrication of VEA-imp-poly(HMA-co-PA)/Nafion/
SPCE. The fabrication of the VEA-imp-poly(HMA-co-PA)/
Nafion/SPCE sensor involved performing CV on the bare SPCE
electrode using a 5.0 mM Fe(CN)4*~/*". The potential range for
the measurements was —0.2 to 0.8 V, with a scan rate of 60 mV/
s. To enhance the electrode surface area and immobilize the
synthesized nanomaterials onto the surface, CV measurements
were carried out in the presence of 0.5% (w/v) Nafion polymer.
The electrochemical performance of the SPCE electrode system
was then assessed. Furthermore, the electrochemical behavior of
the sensor was further analyzed after immobilizing both Nafion
and 1.5 mg/mL of VEA-imp-poly(HMA-co-PA) polymer onto
the electrode surface (Figure 6B).

Figure 6B shows that when the bare SPCE electrode was
modified with a Nafion film, a significant increase in current
values was observed in the cyclic voltammograms. This increase
is attributed to the enhanced electrode surface area from the
Nafion polymer modification, as well as Nafion’s conductive
properties, which improved electron transfer and resulted in a
noticeable current increase.”> However, when the synthesized
VEA-imp-poly(HMA-co-PA) was added to the Nafion-modified
SPCE surface, a decrease in current values was observed. This
decrease is due to the nonconductive nature of the added
polymer, which impedes electron flow at the electrode surface.
Based on the obtained CV results, the electrochemical
explanation of the sensor surface modification and sensor
fabrication process has been provided and demonstrated.

3.3.3. Effect of Nafion Concentration. Nafion is a widely
used cation exchange polymer, characterized by its distinct
structure, which includes a fluorocarbon backbone (polytetra-
fluoroethylene) and pendant ionic groups like SO;™ attached to
side chains. This structure imparts Nafion with exceptional
electrochemical and thermal properties, such as efficient proton
transport, selective ion exchange, strong catalyst support, and
chemical stability. These attributes contribute to Nafion’s
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resistance to chemical degradation, even under harsh conditions
like high temperatures and exposure to strong oxidants.***’

It has been reported in several studies that the coating of
Nafion on the electrode surface leads to changes in the effective
electrode area. In addition, as a cation-exchange polymer,
Nafion has a direct impact on the conductivity of the system.
Theoretically, when the electrode surface is modified with a
polymer that influences conductivity, alterations in the surface
area and corresponding changes in current response are to be
expected.”® ™

For this study, a film solution of VEA-imp-poly(HMA-co-
PA)/Nafion was prepared by mixing Nafion 117 solution with
methanol concentrations ranging from 0.1% to 1% (w/v). A 1§
uL drop of the methanol-containing solution was applied to the
surface of each electrode surface, and the electrodes were left to
dry for 2 h at room temperature before being stored at +4 °C for
future use. DPV was conducted at a scan rate of 60 mV/s over a
potential range of —0.20 to +0.60 V. The highest current
response was observed with 0.5% Nafion (Figure 7). Higher
concentrations of Nafion led to a decrease in current, likely due
to diffusion limitations of Fe(CN)>~/*" ions.

Among the various concentrations tested, the highest current
response was observed at 0.5% Nafion, as illustrated in Figure 7.
However, at concentrations exceeding 0.5%, a decline in the
current response was attributed to diffusion limitations of
Fe(CN)s*"/* ions through the thicker Nafion layer. These
results align closely with those reported in the literature.’ The
optimal Nafion concentration was determined to be 0.5% (w/v).

3.3.4. Effect of Polymer Concentration. The VEA-imp-
poly(HMA-co-PA) polymer’s inherently low conductivity leads
to a reduced overall conductivity of the electrode system when
applied to the electrode surface. Therefore, it is crucial to
determine the optimal polymer loading on the electrode to
achieve the highest current values. Polymer concentrations
ranging from 0.25 to 2.0 mg/mL of VEA-imp-poly(HMA-co-
PA), combined with 0.5% Nafion, were tested. As shown in
Figure 8, a concentration of 1.5 mg/mL of VEA-imp-
poly(HMA-co-PA) was identified as the optimal value, offering
an adequate active surface for accurate VEA measurement.

Loading different concentrations of the polymer onto the
SPCE surface altered the electrode surface and disrupted the
diffusion equilibrium. This disrupted diffusion equilibrium
resulted in a decrease in current values in the presence of a
redox agent. Due to the significant reduction in diffusion at high
polymer quantities, an optimal value was determined to achieve
both maximum selectivity and maximum current values. Current
values were observed to dramatically decrease at polymer
concentrations higher than 1.5 mg/mL, thus establishing 1.5
mg/mL polymer as the optimal concentration. Changes in the
electrode microstructure and capacitive behavior were observed
through polymer modification. The peak potential shifted from
0.2 V to approximately 0.15 V. It is known in the literature that
peak potentials can vary with surface modification.”>~%*

3.3.5. Analytical Performance of VEA-imp-poly(HMA-co-
PA)/SPCE. Under the obtained optimal conditions, the analytical
performance of VEA-imp-poly(HMA-co-PA)/SPCE system was
elucidated in the presence of different VEA concentrations. To
perform analytical analyses, six different samples were prepared
with VEA concentrations of 0.1, 0.25, 0.375, 0.5, 0.75, and 1.0
mg/mL. The obtained DPV current values were statistically
calculated, and limit of detection (LoD) (3.3X S/N) and limit of
quantification (LoQ) (10X S/N) values were statistically
determined from Figure 9. Under the defined optimal

conditions, LoD value for VEA-imp-poly(HMA-co-PA)/SPCE
was found to be 37.1 ug/mL and LoQ value was 112.3 pg/mL
(R*: 0.9986). The linear working range of the modified sensor
extends from 112.3 to 3000 pg/mL.

In studies examining lung injuries (EVALI) associated with e-
cigarette use, the concentrations of VEA typically range from 0.1
mg/mL to 10 mg/mL.6 In this context, the VEA-imp-
poly(HMA-co-PA)/Nafion/SPCE sensor system demonstrates
a LoQ_value very close to the lowest concentration associated
with EVALIL 0.1 mg/mL, indicating that the system can detect
even the lowest concentrations linked to EVALI symptoms.
Additionally, the modified sensor system operates with high
sensitivity at concentrations as high as 3 mg/mL, further
supporting the potential use of this system in EVALI-related
cases.

According to Table 1, the p(HMA-co-PA)/SPCE sensor
platform developed in this study offers a broader linear range
compared to similar VEA detection systems in the literature.
Our sensor provides a wide linear range from 112.3 pug/mL to
3.0 mg/mL. This feature presents a significant advantage
compared to previous studies and demonstrates that our sensor
exhibits high performance over a wider concentration range.
Another important contribution of this study is that the sensor
can effectively operate in complex matrices such as electronic
cigarette liquids. Our newly developed sensor platform is
designed to accommodate a broader spectrum of applications. In
conclusion, this study introduces an innovative sensor platform
for the electrochemical detection of vitamin E acetate, making a
valuable contribution to the literature. Notably, its capability to
provide reliable analysis in challenging matrices enhances its
potential for practical applications.

3.4. Determination of VEA in E-Cigarette Liquid. To
assess the performance of the VEA-imp-poly(HMA-co-PA)/
SPCE sensor in real e-cigarette liquid samples (containing
nicotine, propylene glycol, and vegetable glycerin), VEA was
added to commercially purchased e-cigarette liquids using the
standard addition method. Due to the high viscosity and
diffusion limitations of e-cigarette liquids, direct measurement
on the sensor resulted in unstable signals. To mitigate these
issues, a 20-fold dilution was applied using a Fe(CN)g ™4~
solution, which provided stable current responses.

The diluted e-cigarette liquid samples were analyzed, and the
current values obtained were compared with those from a
standard PBS solution to evaluate matrix effects and assess the
sensor’s performance in the presence of potential interferences.
The results were expressed as percent recovery, allowing for a
quantitative assessment of sensor accuracy and reliability in
complex e-cigarette liquid matrices (Table 2).

As a result of VEA determination experiments in electronic
cigarette liquid samples, recovery values ranging from 96.83% to
102.56% were obtained for three selected concentrations within
the linear working range. The 20-fold dilution played a crucial
role in obtaining stable current values, effectively addressing the
viscosity issue and enabling the acquisition of stable signals.
These results indicate that the VEA-imp-poly(HMA-co-PA)/
SPCE sensor system operates with high selectivity and stability
in liquid samples. Thus, it is understood that the designed sensor
system has strong potential for use in real sample analyses.

3.5. Machine Learning to Improve Sensitivity. To
evaluate the effectiveness of machine learning algorithms in
classifying VEA-positive cases, five supervised learning models
were implemented, trained, and tested. These models include
Logistic Regression, SVM with an RBF kernel, Random Forest,
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XGBoost, and NNs. Each model was evaluated based on critical
metrics, such as accuracy, precision, recall, and F1-score.

Logistic Regression served as a baseline model due to its
simplicity and interpretability. It is a linear model that predicts
the probability of a binary outcome using a logistic function.
Despite its computational efficiency, Logistic Regression
struggled to capture the nonlinear relationships inherent in the
data, resulting in moderate performance metrics. The model
achieved an accuracy of 63%, with a recall of 62% and an F1-
score of 62%, indicating its limited capacity to handle the
complexity of the data set. The lower accuracy and Fl-score
observed in logistic regression may be attributed to the
nonlinear nature of the sensor measurements, which this
model is inherently less equipped to capture. The confusion
matrix highlights its limitations in handling the nonlinear
complexity of the data set, as it frequently misclassifies positive
and negative cases as shown in Figure 10a.

SVM, equipped with a RBF kernel, demonstrated superior
performance compared to Logistic Regression. By transforming
the input data into a higher-dimensional space, SVM effectively
handled the nonlinear decision boundaries present in the data
set. The model achieved an accuracy of 98%, with a recall of 98%
and an Fl-score of 98%. These results highlight the strength of
SVM in classifying complex data sets with well-separated classes.
The confusion matrix Figure 10b shows minimal false negatives
and false positives, emphasizing its robustness in classifying
VEA-positive cases.

Random Forest, an ensemble learning algorithm, emerged as
one of the top-performing models in this study. By constructing
multiple decision trees and aggregating their outputs, Random
Forest achieved high robustness and generalization capabilities.
It attained an accuracy of 99%, a recall of 99%, and an F1-score of
99%. Furthermore, its feature importance analysis provided
valuable insights into the most influential factors contributing to
VEA-positive classification, making it an interpretable and
reliable choice. As illustrated in Figure 10e, its confusion matrix
highlights its near-perfect classification performance, with
negligible false negatives and false positives. The model’s feature
importance analysis further emphasized the key drivers for
accurate predictions.

XGBoost, a scalable and efficient gradient-boosting algorithm,
matched Random Forest in performance while offering faster
training times. The model achieved an accuracy of 98%, a recall
0f 98%, and an F1-score of 98%. Its ability to handle imbalanced
data sets and provide probabilistic predictions further solidified
its suitability for the classification task. Additionally, XGBoost’s
hyperparameter tuning capabilities allowed for enhanced model
performance without significant computational overhead.
Despite achieving comparable classification accuracy to
XGBoost, as shown in Figure 10c, Random Forest exhibited
superior performance, particularly with respect to F1-score and
precision

NN, designed to learn complex, nonlinear relationships, also
performed strongly. Composed of multiple layers of inter-
connected neurons, the model achieved an accuracy of 98%, a
recall of 98%, and an F1-score of 98%. While NNs demonstrated
competitive performance, they required more computational
resources for training and exhibited slightly lower precision
compared to Random Forest and XGBoost. Nonetheless, their
flexibility and scalability make them a viable option for similar
classification tasks. While its confusion matrix as illustrated in
Figure 10d indicates high recall and overall performance, it
slightly underperformed compared to Random Forest and

XGBoost in precision, making it less suitable for applications
where false positives must be minimized.

Table 3 presents the performance metrics of five machine
learning models—Logistic Regression, SVM with RBF Kernel,
Random Forest, XGBoost, and NNs—evaluated for their ability
to classify VEA. The metrics used for evaluation include
precision, recall, F1-score, and accuracy, providing a compre-
hensive understanding of each model’s classification capabilities.
Random Forest outperformed other models in all metrics,
making it the most reliable choice for this classification task.
Models like SVM and XGBoost balanced precision and recall
effectively, while NN slightly favored recall over precision. As a
linear model, Logistic Regression was unable to model the
complexity of the data set, leading to significantly lower
performance compared to other models.

The feature importance analysis derived from the Random
Forest model highlights the relative contribution of each
feature—potential (V) and current (4A)—to the classification
of VEA. The computed weights indicate that current (#A) has a
higher relative importance compared to potential (V).
Specifically, current (#A) accounts for a larger percentage of
the model’s decision-making process, which aligns well with the
underlying principles of the sensor’s operation.

The residuals distribution of the Random Forest model, as
depicted in Figure 11, illustrates its strong predictive perform-
ance and reliability. The residuals are centered around zero,
indicating that the model’s predictions are unbiased on average
and closely align with the actual values. The narrow spread of
residuals suggests that the model makes consistent predictions
with minimal errors, further supported by the absence of
extreme outliers. Additionally, the approximate symmetry of the
distribution, resembling a normal curve, demonstrates that the
model generalizes well and does not overfit to the training data.
The high frequency of residuals near zero highlights the model’s
ability to accurately predict most instances, while the low
frequency of larger residuals confirms that significant prediction
errors are rare. Overall, this analysis underscores the robustness
of the Random Forest model in capturing the underlying
relationships in the data and its capability to make reliable
classifications.

These findings highlight the critical role of integrating
machine learning models with advanced sensor technologies,
particularly to address challenges associated with detecting
analytes at low concentrations, thereby enhancing the overall
sensitivity and reliability of the sensing system (Figure 12).

4. CONCLUSION AND FUTURE WORK

This study successfully demonstrated the development of a
novel MIECS integrated with ML algorithms for the sensitive
and selective detection of VEA in e-cigarette liquids, addressing
a critical need in public health monitoring. The sensor,
fabricated using VEA-imprinted poly-(HMA-co-PA)/Nafion
on SPCE, exhibited exceptional analytical performance with a
LoQ of 112.3 pg/mL and a wide linear detection range
extending to 3.0 mg/mL. Rigorous validation with authentic e-
cigarette liquid samples demonstrated high accuracy and
selectivity, with recovery rates ranging from 96.83% to
102.56%, confirming the sensor’s robustness in complex
matrices.

Despite the sensor’s strong performance, limitations were
encountered in detecting VEA at concentrations below the LoQ.
To address this challenge, machine learning algorithms,
specifically the Random Forest algorithm, were effectively
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integrated into the sensing system. The ML model demon-
strated exceptional performance, achieving an accuracy of 99%
along with high precision, recall, and F1-scores, enabling reliable
classification of VEA presence even at subdetection limit
concentrations. This integration significantly enhanced the
analytical capabilities of the sensor system, minimizing the risk
of false negatives—a critical factor for accurate and reliable
health risk assessments.

Moreover, the integration of ML models into the sensing
workflow enabled the reliable identification of VEA even in
electrochemical measurements with ambiguous or subthreshold
signal profiles. By learning from the voltage—current response
patterns, the models effectively classified the presence of VEA
with minimal false negatives, thereby serving as a crucial
interpretive layer within the analytical process and strengthening
the validity of the detection outcome.

Future research will focus on translating this promising
technology into a practical and user-friendly platform for real-
time VEA detection. This involves the development of a
miniaturized and portable device compatible with mobile
platforms, enabling rapid, on-site analysis of e-cigarette liquids.
Leveraging the computational power of mobile devices for on-
device ML-driven data processing will enhance the accessibility
and practicality of this technology. Furthermore, future studies
will explore the versatility of this hybrid MIECS-ML approach
by extending its application to the detection of other harmful
compounds present in e-cigarette liquids and other complex
matrices. This will involve optimizing the sensor’s molecular
imprinting process for various target analytes and exploring
advanced ML techniques, such as deep learning, to further
enhance detection accuracy and address more complex
analytical challenges. This research exemplifies the trans-
formative potential of integrating AI with advanced sensor
technologies for addressing critical public health concerns and
advancing the field of environmental and biomedical monitor-
ing.
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