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ABSTRACT

ACTIVE LEARNING FOR DRUG BLOOD-BRAIN BARRIER
PERMEABILITY PREDICTION

AHMED MOHAMED MAHMOUD ELMOSELHY SALEM

Data Science M.S. THESIS, October 2024

Thesis Supervisor: Assoc. Prof. ÖZNUR TAŞTAN OKAN

Keywords: Active Learning, Dynamic Sampling, Scaffold Splitting, Molecular
Scaffolds, Blood-Brain Barrier, QSAR

The blood-brain barrier (BBB) is a highly selective, semipermeable border that reg-
ulates the transfer of chemicals between the circulatory and central nervous systems
(CNS). Assessing whether a compound can permeate the BBB is critical in drug
development for treating CNS disorders, as it determines the compound’s ability to
reach targets within the brain. The chemical space is vast, and traditional methods
for measuring a chemical compound’s BBB permeability are time-consuming and
costly. However, with the availability of open datasets for compounds with exper-
imentally verified permeability assessments, several machine learning (ML) models
have been proposed to accelerate BBB permeability prediction. A large pool of
labeled examples is necessary for a machine learning model to learn BBB perme-
ability status in a supervised setting. Yet, the size of labeled datasets remains
far from comprehensive when compared to the immense chemical space, limiting
the effectiveness of traditional supervised passive learning procedures. The active
learning (AL) framework offers an alternative. Active learners iteratively achieve
high-accuracy classifiers with fewer label requests compared to passive learning by
strategically selecting which examples to label in each iteration. In this thesis,
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we explored various AL strategies for predicting the BBB permeability of chemical
compounds and compared their effects on the performance of machine learning mod-
els. Specifically, we examined the following sampling strategies: random sampling,
uncertainty-based sampling, and dissimilarity-based sampling. Additionally, we pro-
posed and implemented two novel AL methods: explore-intensify and round-robin
cycle switching. We also performed a comparative analysis of all the AL methods
against passive learning in two separate setups: one based on a label-stratified split-
ting technique and another based on splitting the data by the molecular scaffolds of
the chemical compounds, which is a more challenging evaluation setup. Our results
show that the scaffold-splitting setup resulted in lower performance compared to the
label-stratified setup across both passive and active learning paradigms. Further-
more, our experiments revealed that the active learning approaches we implemented
matched the performance of passive learning in nearly every performance metric we
tested, typically after labeling only 10-65% of the data, depending on the specific
metric. Moreover, the results of our proposed active learning methods demonstrated
that the round-robin cycle switching strategy outperformed other active learning
strategies in the stratified-split setup. This highlights the potential of dynamic AL
methods to efficiently reduce the need for large labeled datasets while maintaining
high performance in predicting BBB permeability.
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ÖZET

İLAÇLARIN KAN-BEYIN BARIYERI GEÇIRGENLIĞINI TAHMIN ETMEDE
AKTIF ÖĞRENME

AHMED MOHAMED MAHMOUD ELMOSELHY SALEM

Veri Bilimi Yüksek Lisans TEZİ, Ekim 2024

Tez Danışmanı: Assoc. Prof. ÖZNUR TAŞTAN OKAN

Anahtar Kelimeler: Aktif Öğrenme, Dinamik Örnekleme, İskele Ayrımı, Moleküler
İskeleler, Kan-Beyin Bariyeri, QSAR

Kan-beyin bariyeri (BBB), dolaşım sistemi ile merkezi sinir sistemi (CNS) arasındaki
kimyasal transferi düzenleyen, oldukça seçici, yarı geçirgen bir sınırdır. Bir bileşiğin
BBB’yi geçip geçemeyeceğini değerlendirmek, beynin içindeki hedeflere ulaşma
yeteneğini belirlediği için CNS bozukluklarının tedavisinde ilaç geliştirme açısın-
dan kritik öneme sahiptir. Kimyasal uzay çok geniştir ve kimyasal bir bileşiğin BBB
geçirgenliğini ölçmek için kullanılan geleneksel yöntemler zaman alıcı ve maliyetlidir.
Bununla birlikte, deneysel olarak doğrulanmış geçirgenlik değerlendirmelerine sahip
bileşikler için açık veri kümelerinin bulunması sayesinde, BBB geçirgenliği tahminini
hızlandırmak için çeşitli makine öğrenimi (ML) modelleri önerilmiştir. Bir makine
öğrenimi modelinin, denetimli bir ortamda BBB geçirgenlik durumunu öğrenebilmesi
için büyük bir etiketlenmiş örnek havuzuna ihtiyaç vardır. Ancak, etiketlenmiş veri
setlerinin boyutu, devasa kimyasal uzay karşısında hala kapsamlı olmaktan uzaktır
ve bu durum, geleneksel denetimli pasif öğrenme prosedürlerinin etkinliğini sınırlar.
Aktif öğrenme (AL) çerçevesi bu duruma bir alternatif sunar. Aktif öğrenme model-
leri, her iterasyonda hangi örneklerin etiketleneceğini stratejik olarak seçerek, pasif
öğrenmeye kıyasla daha az etiket talebiyle yüksek doğruluklu sınıflandırıcılar elde
eder. Bu tezde, kimyasal bileşiklerin BBB geçirgenliğini tahmin etmek için çeşitli
AL stratejilerini inceledik ve bunların makine öğrenimi modellerinin performansı
üzerindeki etkilerini karşılaştırdık. Özellikle şu örnekleme stratejilerini inceledik:
rastgele örnekleme, belirsizlik temelli örnekleme ve benzemezlik temelli örnekleme.
Ek olarak, keşif-yoğunlaştırma ve döngüsel yuvarlak-robin adında iki yeni AL yön-
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temini önerdik ve uyguladık. Ayrıca, tüm AL yöntemlerini pasif öğrenme yöntem-
leriyle iki ayrı kurulumda karşılaştırmalı olarak analiz ettik: biri verilerin etiket
sınıfına göre katmanlı olarak ayrıldığı bir kurulum, diğeri ise kimyasal bileşiklerin
moleküler iskeletlerine dayalı olarak ayrıldığı ve daha zor bir değerlendirme ortamı
sunan bir kurulum. Sonuçlarımız, iskelet ayrımı kurulumunun, hem pasif hem de ak-
tif öğrenme paradigmalarında, etiket katmanlı ayrım kurulumuna göre daha düşük
performansla sonuçlandığını göstermektedir. Ayrıca, deneylerimiz, uyguladığımız
aktif öğrenme yaklaşımlarının, test edilen hemen hemen her performans metriğinde,
genellikle yalnızca verilerin %10-65’i etiketlendikten sonra pasif öğrenme performan-
sıyla eşleştiğini ortaya koymuştur. Dahası, önerdiğimiz aktif öğrenme yöntemlerinin
sonuçları, döngüsel yuvarlak-robin stratejisinin, katmanlı ayrım kurulumunda diğer
aktif öğrenme stratejilerinden daha iyi performans gösterdiğini göstermiştir. Bu,
dinamik AL yöntemlerinin, büyük etiketlenmiş veri setlerine duyulan ihtiyacı etkin
bir şekilde azaltırken BBB geçirgenliğini tahmin etmede yüksek performansı koruma
potansiyelini vurgulamaktadır.
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1. INTRODUCTION

This chapter introduces the research problem that this thesis tackles, shows its
impact, and presents an overview of the prerequisite knowledge needed to understand
the present thesis.

1.1 Problem Description

Predicting the permeability of BBB for a chemical compound is one of the most
critical stages in the drug discovery pipeline. This becomes even more essential
when developing drugs that target the CNS or treat CNS-related diseases. The
traditional method for predicting the BBB permeability for a chemical compound
involves experimental techniques such as in vitro and in vivo testing. However, these
experimental techniques are costly and time-consuming. As a result, computational
approaches, particularly machine learning models, have gained significant attention.
These models can predict BBB permeability by analyzing molecular descriptors,
chemical fingerprints, or other features derived from the chemical structure of a
compound. Using large data sets and sophisticated algorithms, machine learning
models can provide faster and cost-effective, helping optimize the drug discovery
process. Moreover, integration of active learning and advanced molecular represen-
tations, such as embeddings, can further enhance the accuracy and generalizability
of these predictions, mainly when dealing with diverse chemical scaffolds.
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1.2 Background

This section introduces the necessary background for this work. This includes con-
cepts from chem-informatics, chemistry, and active machine learning.

1.2.1 Blood-Brain Barrier Permeability

The Blood-Brain Barrier (BBB) is one of the most complex barriers in the human
body. It is a membrane between the blood vessels in the brain and the other brain
tissues. A longitudinal view of the BBB is shown in figure 1.1. The BBB regulates
the movement of molecules in and out of the brain. One of the most essential
functions of the BBB is protecting the brain from harmful toxic compounds from
sneaking into the brain tissues. However, this functionality comes with a price. The
strict selectivity of the BBB does not always work in favor of the body’s needs. It
follows strict rules when determining whether or not to allow compounds to pass
through it into the brain. These rules can, sometimes, be an obstacle in the way of
a drug targeting an area inside the brain. Thus preventing the drug from reaching
its target, hindering, or even eliminating the effect of that drug. Understanding
how the BBB decides on which to allow and which not to is a long-time research
problem that scientists have been working on for decades (Cornelissen et al., 2023).
Biologists and medicinal chemists have achieved significant advancements in this
area, later joined by computational chemists employing their computational skills
to accelerate the work of biologists in wet labs.
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Figure 1.1 A longitudinal illustration of the BBB.

1.2.2 Computational Representations of Molecules

Molecules are typically represented by their structural and chemical formulas, which
convey essential information about atomic arrangements and connections. For ex-
ample, Figure 1.2 illustrates the 2D and 3D structures of caffeine, with its chemical
formula C8H10N4O2. While these visualizations are intuitive for chemists, compu-
tational tasks require molecules to be translated into machine-readable formats.
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Figure 1.2 2D (A) and 3D (B) representations of caffeine, illustrating its molecular
structure.

Among the many available representations, SMILES (Simplified Molecular Input
Line Entry System) is one of the most widely used. Introduced in 1988 (Weininger,
1988), SMILES encodes chemical structures into linear textual strings, enabling ef-
ficient storage, retrieval, and processing of molecular data. Despite its utility, early
versions of SMILES were non-unique, allowing multiple valid strings to represent
the same molecule. This ambiguity created challenges in machine learning, where
consistent and high-quality data representations are critical. To address this, canon-
ical SMILES were developed (Weininger et al., 1989), ensuring that each molecule
has a unique representation. Additionally, alternative formats like SELFIES (Self-
Referencing Embedded Strings) have emerged, offering syntactic validity and ro-
bustness against errors.

Table 1.1 provides examples of SMILES and SELFIES representations for caffeine.
These formats are vital for integrating chemical data into computational pipelines,
enabling downstream tasks such as property prediction, molecular generation, and
virtual screening. In this thesis, we focus on key molecular representations relevant
to the methodologies employed in our study.

Table 1.1 SMILES and SELFIES Representations of Caffeine

SMILES string of Caffeine:
CN1C=NC2=C1C(=O)N(C(=O)N2C)C
SELFIES string of Caffeine:
[C][N][C][=Branch1][C][=O][C][=C][Branch1]
[#Branch1][N][=C][N][Ring1][Branch1][C][N]
[Branch1][C][C][C][Ring1][N][=O]
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1.2.2.1 Self-Referencing Embedded Strings (SELFIES)

SELFIES, which stands for Self-Referencing Embedded Strings, is a newer textual
representation of molecules that has gained popularity in recent years (Krenn et al.,
2020). SELFIES can be considered an improved and more robust alternative to
SMILES. While SMILES offers advantages, one of its key limitations is that it does
not guarantee the generation of valid molecular structures (i.e., chemically feasible
molecules). SELFIES addresses this issue by ensuring that every generated string
corresponds to a valid molecule, making it particularly attractive for cheminformat-
ics applications. Building upon the SELFIES representation, embedding techniques
have been developed to convert these strings into numerical vectors suitable for ma-
chine learning models. One notable approach is SELFormer (Yüksel et al., 2023),
a transformer-based chemical language model that utilizes SELFIES as input to
learn flexible and high-quality molecular representations. In this thesis, we used
SELFIES embeddings generated via SELFormer to represent molecular structures
numerically. This approach leverages the syntactic validity guaranteed by SELFIES
and the advanced representation learning capabilities of transformer architectures,
facilitating more accurate predictions in our machine learning models.

1.2.2.2 Extended-Connectivity Fingerprints (ECFP)

Extended-Connectivity Fingerprints (ECFP) are another widely used molecular rep-
resentation, particularly suited for machine learning tasks. ECFP captures impor-
tant local substructures of molecules—such as groups of atoms and their connec-
tions—essentially creating a “snapshot” of a molecule’s core building blocks (Rogers
& Hahn, 2010). This representation focuses on the structural features that are most
relevant for predicting molecular properties.

The captured substructures are then transformed into a fixed-length binary vector,
composed of 0s and 1s, that can be directly processed by machine learning models.
Due to their ability to encode critical molecular features effectively, ECFPs are
extensively used for tasks such as property prediction and virtual screening. Their
utility and relevance are key reasons for their inclusion in this thesis.
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1.2.3 Active Learning

Active learning is a powerful approach within the field of machine learning. In
this approach, the learning algorithm selects the most informative data points to be
labeled by an oracle rather than passively receiving a randomly sampled training set
(Settles, 2009). By carefully choosing which data to learn from, active learning aims
to develop accurate models with substantially less data than traditional supervised
learning methods (figure 1.3 ).

Figure 1.3 An Illustration for the general active learning cycle

Figure 1.3 presents a general overview of the iterative active learning process, which
is highly relevant to machine learning tasks where labeled data is scarce, expensive,
or difficult to obtain. The active learning paradigm strategically selects the most
informative samples from an unlabeled data pool for labeling, allowing the model
to improve its performance with minimal labeling effort. Each stage of the active
learning workflow depicted in the figure is described below:

• Start by Training an Initial Model: The active learning cycle begins by
training a machine learning model on an initial labeled data set.

• Utilize Unlabeled Data Pool: A key component of active learning is the
presence of a large pool of unlabeled data from which the algorithm selects new
data points for labeling. This pool remains unlabeled during each iteration,
and only specific samples that are believed to be most informative are selected
to be labeled.
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• Implement Query Strategy: The query strategy is a core element of the
active learning process. It determines how data points are selected from the
unlabeled pool for labeling. Common query strategies include uncertainty
sampling, where the model selects samples it is least confident about, and
diversity-based sampling, where diverse molecular structures are chosen to en-
rich the training data. This ensures that each newly labeled sample maximally
contributes to improving the model’s performance.

• Obtain Labels for Selected Samples: Once the query strategy identifies
informative samples, they are sent to an oracle—usually a human expert or an
experimental process—for labeling. In the case of BBB permeability predic-
tion, this step would involve conducting laboratory experiments to determine
whether selected molecules can cross the blood-brain barrier.

• Update Model with New Labeled Data: After obtaining the labels, the
model is updated/retrained using both the newly labeled data and the previ-
ously labeled data. This step ensures that the models progressively improve
by incorporating the new knowledge gained from the labeled samples.

• Evaluate Updated Model Performance: The performance of the updated
model is evaluated to assess its improvement compared to previous iterations.
This evaluation is based on standard machine learning metrics such as accu-
racy, ROC-AUC, or F1-score.

• Repeat Cycle Until Stopping Criteria Are Met: The active learning
cycle is repeated until predefined stopping criteria are met. These criteria
may include achieving a certain performance threshold, exhausting a labeling
budget, or detecting that further labeled data no longer significantly improves
model performance.

The active learning iterative paradigm aims to minimize labeling efforts while max-
imizing the model’s generalization capabilities. It also enables efficient model im-
provement by focusing labeling efforts on the most informative samples, thus reduc-
ing the overall experimental burden.

The following section provides an overview of key active learning sampling strategies:
random sampling, uncertainty sampling, and dissimilarity sampling, all of which fall
under the category of pool-based active learning.

7



1.2.3.1 Pool-based Active Learning

In a pool-based active learning framework, we assume that we have access to a small
pool of labeled data DL and a large pool of unlabeled data DU . The learner first
trains a model on the labeled data DL. Then, it uses a query strategy to select the
most informative instances from the unlabeled pool DU and requests their labels
from an oracle. The newly labeled data points are then added to DL, and the
process repeats until a stopping criterion is met. The stopping criterion can be
until you run out of the labeling budget or until you reach a predefined performance
threshold.

1.2.3.2 Random Sampling

Random sampling is the most basic method of selecting data points to be labeled.
Data points are randomly selected from the pool of unlabeled data DU and la-
beled. This approach serves as a computationally inexpensive baseline to evaluate
the effectiveness of more advanced sampling strategies.

While random sampling is straightforward, its main drawback is that it does not
prioritize informativeness or diversity. As a result, it may require a larger number
of labeled samples to achieve the same performance as smarter strategies. However,
it remains a critical baseline due to its simplicity and widespread applicability.

1.2.3.3 Uncertainty Sampling

The uncertainty sampling strategy relies on the assumption that the most informa-
tive data point for the model is the one that it is most uncertain about. There are
many available measures to quantify the uncertainty of the model. In our imple-
mentation, we used Shannon entropy.

Given a model that predicts a probability distribution p(y | x) over the possible
labels y for a data point x, the Shannon entropy H(x) can be used as a measure of
uncertainty. Shannon entropy is defined as:
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(1.1) H(x) = −
C∑

i=1
p(yi | x) logp(yi | x)

where:

- C is the number of possible classes,

- p(yi | x) is the predicted probability for class yi.

For binary classification, let p = p(y = 1 | x) be the predicted probability of class 1.
The Shannon entropy H(x) can then be simplified to:

(1.2) H(x) = −p logp− (1−p) log(1−p)

The data point x∗ that the model is most uncertain about, and hence considered
most informative, is the one that maximizes the Shannon entropy:

(1.3) x∗ = argmax
x

H(x)

1.2.3.4 Dissimilarity Sampling

Dissimilarity sampling focuses on selecting data points from the unlabeled pool DU

that are most different from the labeled data DL. The underlying assumption is
that data points which are dissimilar to the already labeled set are likely to add
diversity and provide new information for the model.

To quantify dissimilarity, we used the cosine distance metric. The cosine distance
measures how different two vectors are in terms of their orientation in the feature
space. Given two vectors u and v, the cosine similarity is defined as:

(1.4) cosine similarity(u,v) = u ·v
∥u∥∥v∥
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The cosine distance is then calculated as:

(1.5) cosine distance(u,v) = 1− cosine similarity(u,v)

For dissimilarity sampling, we identify the unlabeled data points that are farthest
from the already labeled data points. Specifically, we used the maximum of the
minimum distances strategy. For each data point x ∈ DU , the dissimilarity score
is computed as the minimum distance between x and every data point in DL:

(1.6) d(x) = min
x′∈DL

cosine distance(x,x′)

The next data point to label, x∗, is the one with the highest minimum distance:

(1.7) x∗ = arg max
x∈DU

d(x)

This strategy ensures that the selected data point is as dissimilar as possible from
the labeled data, encouraging exploration of diverse regions in the feature space. By
selecting dissimilar points, the model can improve its understanding of underrepre-
sented areas in the dataset and potentially reduce bias in its predictions.
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2. Literature Review

This chapter presents a review of the current literature on the topic of drug BBB
permeability prediction and active learning applications in related research areas.
We start this chapter by showing the related research in the area of computational
methods in drug BBB permeability prediction, followed by a section about two string
representation formats of molecules. Then, we end this chapter with a section about
the applications of active learning in drug-related research and the usage of active
learning in the area of high-throughput experimentation.

2.1 Computational Approaches for Drug Blood-Brain Permeability

Prediction

Table 2.1 and the mind map in figure 2.1 depict the landscape of the topic in the
literature. It illustrates the key components and research areas within the topic.
The mind map provides a comprehensive overview of the interconnected factors in-
volved in drug BBB permeability prediction. The regions explained in the mind
map are crucial to understanding the methodologies and tools employed in this
area of research. The first branch, “Chemical Features Used” highlights the im-
portance of molecular descriptors, such as the ECFP Morgan Fingerprints and the
RDKit’s descriptors, in transforming chemical structures into data that can be used
for predictions. The “Methods of Handling Imbalanced Data” branch emphasizes the
various techniques, such as Synthetic Minority Over-sampling (SMOTE) and class
weighting, used to address the common issue of class imbalance in these datasets,
ensuring that models are not biased towards one class. Another essential branch
is the “Chemical String Representations”, which focuses on how compounds are
encoded as SMILES or SELFIES. Finally, the “Algorithms Used” branch touches
on the different machine learning and deep learning approaches employed for drug
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BBB permeability prediction. This includes traditional ML models as well as more
advanced deep-learning techniques.

Drug BBB
Permeability
Prediction

Chemical
Features

ECFP
(Wang et al.

(2018))

RDKit
(Mazumdar

et al. (2023))
Datasets

B3DB
(Meng et al.

(2021))

MoleculeNet’s
Wu et al.

(2018)

Handling
Imbalanced

Data

Balancing

SMOTE
(Mazumdar

et al. (2023))

Generating
multiple non-

canonical SMILES(Li
et al. (2022))

Weighing
classes

(Wang et al.
(2018))

Chemicals
String

Representation

SMILES

Canonical SMILES
(Huang et al. (2024))

Non-Canonical
SMILES

(Mazumdar
et al. (2023))

SELFIES
(Singh et al.

(2023))

Algorithms

ML
(Zhang et al.

(2015))

DL
(Alsenan

et al. (2020))

Figure 2.1 Mind map illustrating the key research areas and methodologies in drug
BBB permeability prediction. The branches represent critical components such as
chemical features, available datasets, methods for handling imbalanced data, chem-
ical string representations, and algorithms used in predictive modeling.
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Table 2.1 Summary of recent drug BBB permeability prediction literature

Reference Features Used Methods Used Handling Imbal-
ance Data

Miao et al. (2019) Molecular Descrip-
tors

Feed-forward NN SMOTE

Alsenan et al.
(2021)

6,394 molecular de-
scriptors

KPCA, enhanced
feed-forward ANN,
and CNN.

Oversampling tech-
niques

Wu et al. (2021) A group contribu-
tion method that
analyzed 52 molec-
ular groups

ANN N/A

Shaker et al. (2021) Dragon Molecular
Descriptors

LightGBM N/A

Cherian Parakkal
et al. (2022)

SMILES MLP and CNN N/A

Singh et al. (2023) SELFIES-based ANN and LSTM N/A
Liang et al. (2024) RDKit2D,

RDKit3D, ECFP4,
RDKit-ECFP4,
molecular graphs
(for GCN)

XGBoost,
ExtraTree, SVM,
AdaBoost, DNN,
GCN

Generating multi-
ple non-canonical
SMILES

van Tilborg &
Grisoni (2024)

ECFP Deep active learn-
ing (graph-Based,
ECFP-based mod-
els)

N/A

In a recent study, Liang et al. (Liang et al., 2024), used six different classification
prediction algorithms with four different molecular feature representations to present
25 models for the prediction of BBB permeability prediction of molecules. The six
algorithms are five molecular descriptor-based, and one based on GCN. For the four
different molecular feature representations, they used RDKit2D, RDKit3D, ECFP4,
and RDKit+ECFP4. That constitutes 24 models with each algorithm trained 4
times each time with one of the above-mentioned 4 molecular feature representations,
plus one model based only on GCN with features being extracted from the molecular
graph itself.

Several articles, mainly by Banerjee and Roy (Banerjee & Roy, 2024), have been
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published that centered on a couple of concepts: quantitative Read-Across Structure-
Activity Relationship (q-RASAR) and classification-based RASAR (c-RASAR) that
are aimed at incorporating read-across with QSAR for the prediction of chemical
properties. However, this trend has not received wide attention from other re-
searchers in the field.

2.2 SMILES, Canonical SMILES, and SELFIES

Multiple text-based representation schemes have been proposed in the literature.
David Weininger introduced early attempts with SMILES back in 1988 (Weininger,
1988). The following year, 1989, came with an improvement that was based on
the initial idea by introducing the canonical form of SMILES, which allowed every
molecule to be uniquely represented by a canonical SMILES string (Weininger et al.,
1989). Recently, in 2020, a new string-based representation method was introduced,
SELFIES (Krenn et al., 2020). As the paper claims, it guarantees 100% robustness.

Most available molecular datasets predominantly consist of non-canonical SMILES
strings. Our analysis reveals that approaches to handling these datasets generally
fall into three categories: directly using non-canonical SMILES strings as input
for feature generation tools such as Mordred and RDKit, converting non-canonical
SMILES to their canonical counterparts first, or, conversely, embracing the non-
uniqueness of the dataset. The latter is achieved by utilizing non-canonical SMILES
in a data augmentation strategy that generates multiple non-canonical SMILES
strings for the same molecule. This technique enhances dataset variability and is
exemplified in the studies by (Liang et al., 2024) and (Tang et al., 2022).

2.3 Active Learning in Related Research Areas

Indeed, active learning, thanks to its effectiveness, has been used in all sorts of areas,
ranging from text classification (Tong & Koller, 2001) to virtual screening (Czarnecki
et al., 2015). Next, we show one of the most related work to our proposed methods.
Then, in other rest of this section, we show AL applications in some drug-related
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research areas.

The authors in (Donmez et al., 2007) propose the DUAL algorithm, a dynamic ac-
tive learning technique that combines density-weighted uncertainty sampling and
standard uncertainty sampling. The algorithm adaptively switches between the
strategies based on the estimated residual classification error, aiming to optimize
performance across different data labeling phases. Empirical results in the paper
demonstrate that DUAL outperforms static strategies on various datasets by effec-
tively balancing density and uncertainty during the active learning process.

2.3.1 Active Learning in Drug-Related Research

This thesis focuses on predicting BBB permeability, a critical molecular property
in drug discovery. To provide context, this section explores the application of AL
across various stages of the drug discovery process, highlighting its utility in tasks
such as compound–target interaction prediction, virtual screening, and molecular
optimization.

The versatility of AL is evident across multiple drug-related research areas. In the
broader domain of biological networks, Sverchkov and Craven (Sverchkov & Craven,
2017) demonstrated how AL integrates data modeling, hypothesis generation, and
experimental validation to refine knowledge of complex systems. By employing
strategies such as entropy-based approaches and the maximum difference criterion,
they showed how AL can prioritize experiments that enhance understanding of gene
regulatory and metabolic networks, as well as uncover causal relationships within
these systems.

Focusing specifically on drug discovery, Reker (Reker, 2019) highlighted AL’s poten-
tial to improve machine learning model performance through efficient data selection.
Similarly, Ding et al. (Ding et al., 2021) illustrated the data efficiency of AL in pre-
dicting blood drug levels while maintaining robust predictive accuracy. These studies
emphasize the importance of AL in handling data scarcity—a common challenge in
drug-related research.

Tilborg and Grisoni (van Tilborg & Grisoni, 2024) further extended the discussion
to low-data drug discovery scenarios, testing six acquisition functions in active deep
learning. Their findings underscored the consistent superiority of models based
on ECFP over graph-based models, demonstrating AL’s effectiveness in leveraging
limited data environments.
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Finally, Wang et al. (Wang et al., 2024) reviewed the application of AL across
various phases of the drug discovery pipeline, showing how it can help overcome
data limitations and optimize workflows from early-stage screening to late-stage
validation.

• Compounds-Target Interaction Prediction: AL helps address challenges
in compound-target interaction (CTI) prediction by creating balanced training
datasets. Reker et al. improved CTI models by iteratively selecting uncertain
molecule-target pairs, enriching training data, while Naik et al. used AL
to predict condition-target phenotypes efficiently with minimal experimental
data.

• Virtual Screening: AL combined with ML enhances virtual screening effi-
ciency. Cao et al. integrated pre-trained molecular representations to screen
ultra-large libraries, identifying 60% of top compounds by sampling only 0.6%
of the data. Similarly, Zhou et al. used the OpenVS platform to screen bil-
lions of compounds, achieving high hit rates in fewer iterations, showcasing
scalability and efficiency.

• Molecular Generation and Optimization: AL improves molecular gen-
eration and optimization by guiding generative models and refining molecule
selection. Iovanac et al. used AL with generative models to produce better
molecules iteratively, while Bengio et al. integrated AL into GFlowNet to
explore chemical space and enhance molecular diversity and binding affinity
predictions.

• Synergistic Drug Discovery: AL accelerates synergistic drug discovery by
navigating combinatorial drug spaces efficiently. Wang et al. incorporated
cellular features like gene expression to boost prediction accuracy, identify-
ing 60% of synergistic drug pairs by testing only 10% of the combinations.
Their dynamic AL strategy balanced exploration and exploitation to improve
detection and reduce experimental workload.

• Molecular Properties Prediction: Recent research has focused on improv-
ing molecular property prediction through AL techniques to reduce annotation
costs. Tyger, a task-type-generic framework, learns a chemically-meaningful
embedding space for active selection across various task types, outperform-
ing existing methods (Zhou et al., 2022). PREVAIL, a pre-trained variational
adversarial approach, selects informative initial datasets and adapts to both
molecular distribution and prediction task information, demonstrating supe-
rior performance in benchmark experiments (Li et al., 2022). Another algo-
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rithm combines a local model of interatomic interactions with active learn-
ing to optimize training set selection, addressing issues of large training set
requirements and outlier errors in previous methods (Gubaev et al., 2018).
These approaches aim to enhance the efficiency and accuracy of molecular
property prediction by strategically selecting the most informative samples for
annotation, potentially accelerating drug discovery processes while reducing
experimental costs. Our presented work falls under this category.

2.3.2 Active Learning in High-throughput Experimentation

High-throughput Experimentation (HTE) typically involves the screening of a vast
number of samples to identify optimal candidates. This process is often computa-
tionally and resource-intensive, requiring significant time and effort to generate and
evaluate large datasets. Active learning offers a strategic solution by intelligently
selecting experiments or samples for evaluation, thereby minimizing the number of
tests needed while achieving comparable or superior outcomes.

In this context, Graff et al. (Graff et al., 2021) highlight the transformative potential
of AL in optimizing HTE workflows. The study introduces a Bayesian optimization
framework leveraging surrogate models—Random Forests, feed-forward neural net-
works, and message-passing neural networks—to effectively prioritize candidate com-
pounds. Remarkably, the proposed approach recovers over 90% of top-performing
compounds from chemical libraries containing millions of molecules while evaluat-
ing less than 3% of the total dataset. By employing acquisition strategies such as
upper confidence bound and greedy metrics, the framework achieves a 40-fold re-
duction in the number of evaluations compared to traditional exhaustive screening
methods. These findings underscore the utility of AL in significantly reducing re-
source demands while maintaining high accuracy, making it an invaluable tool for
accelerating HTE processes across diverse scientific domains.

AL approaches have also demonstrated substantial promise in improving High-
throughput Screening (HTS) efficiency across various fields. For instance, Chen
et al. (Chen et al., 2020) developed a model combining categorical matrix com-
pletion with AL to guide HTS experiments evaluating chemical compound effects
on protein localization. Their method emphasizes exploration over exploitation and
incorporates margin sampling for uncertainty estimation, enabling more informed
decision-making. Similarly, Kumar et al. (Kumar et al., 2019) proposed an AL algo-
rithm based on Gaussian Processes for high-throughput plant phenotyping. Their
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work showcases the ability to efficiently sample the most informative data points
in large agricultural fields, achieving superior performance compared to exhaustive
coverage methods.

Furthermore, Grave et al. (De Grave et al., 2008) introduced the concept of ac-
tive k-optimization for approximating the k best instances with respect to an un-
known function. They developed a Gaussian process-based algorithm to address
this challenge, applying it to structure-activity relationship prediction. These stud-
ies collectively highlight the versatility and potential of AL techniques to enhance
the efficiency, scalability, and precision of HTS across a wide range of scientific
disciplines.
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3. Methods and Experiments

In this chapter, we describe the dataset used in this thesis and the main flow of the
experiments, highlighting their core stages.

We start with section 3.1 of this chapter by describing the primary dataset that is
used throughout this work. Specifically, in subsection 3.1.1, we show the steps we
conducted to clean the dataset and preprocess it. A preprocessing process specific to
SMILES representation is explained in subsection 3.2.1. We then describe, in section
3.2, the featurization approaches that we followed to prepare the data for training
the machine learning models. The two types of data splittings that are used in the
experiments are shown in section 3.3. In section 3.4, we list the performance metrics
that we used in evaluating the machine learning models throughout this work. In
section 3.5, we mention some details about the hyper-parameters optimization pro-
cess that we used to obtain the best possible parameters for the XGBoost models.
In section 3.6, we show the high-level details of the passive learning models that we
built and used in this thesis. Lastly, we highlight the details of the active learning
models that we developed in section 3.7 showing an overview of the general idea of
our proposed methods in subsections 3.7.1 and 3.7.2.

3.1 Dataset

The dataset utilized in this thesis comprises SMILES strings representing molecules,
each accompanied by a binary label indicating whether the molecule is BBB per-
meable (classified as a positive data point, denoted as BBB+) or non-permeable
(classified as a negative data point, denoted as BBB-).

The dataset, originally introduced by (Martins et al., 2012), was later included in the
MoleculeNet benchmark (Wu et al., 2018). We accessed and downloaded the dataset

19



from the URL provided on the MoleculeNet website. Initially, the dataset consisted
of 2,053 samples (molecules) represented in a non-canonical SMILES format. Table
3.1 provides detailed information about this initial version of the dataset.

Table 3.1 The original distribution of dataset used in this thesis

Total number of molecules 2053
Number of molecules with BBB+ label 1570
Number of molecules with BBB- label 483

3.1.1 Data Cleaning and Pre-processing

The initial stage of data cleaning involved verifying the validity of the SMILES
notations. Using the RDKit library (Landrumet al. , 2006), we checked all the
SMILES strings and found that 2,039 out of 2,053 were valid, resulting in the removal
of 14 invalid SMILES strings during this initial quality control step. This process
ensured a dataset containing 2,039 valid SMILES strings for further analysis.

After conducting preliminary experiments with this version of the dataset and ex-
amining it for duplicates, we identified an issue with the SMILES representation.
Specifically, the type of SMILES notations in the dataset proved unsuitable for
subsequent stages, particularly feature generation. During molecular representation
using Mordred molecular descriptors (Moriwaki et al., 2018), we discovered groups
of data points that shared identical Mordred feature representations despite having
different SMILES strings. These data points corresponded to the same molecule but
were represented by different non-canonical SMILES notations.

Further investigation revealed that the SMILES strings in the MoleculeNet BBB
dataset were not in a unique canonical form. To address this, we transformed
each non-canonical SMILES string into its canonical form using the RDKit library.
This canonicalization process inevitably reduced the dataset size, as multiple non-
canonical SMILES strings representing the same molecule were consolidated into a
single canonical SMILES string.

Table 3.2 summarizes the characteristics of this canonicalized version of the dataset,
while Figure 3.1 outlines the data cleaning and pre-processing steps.
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Figure 3.1 Data cleaning and pre-processing pipeline

3.2 Molecular Features and Representations

To enable machine learning models to process molecular data effectively, we needed
to prepare numerical representations of the molecules. There are many methods
for generating molecular representations, and in this work, we explored several ap-
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proaches. Below, we describe the steps we took to preprocess the data and create
features suitable for machine learning.

Initially, we represented the molecules using SMILES, a widely used notation that
captures the connectivity between atoms in a molecule. However, the dataset we re-
trieved contained non-canonical SMILES, which posed a problem. We observed that
these non-canonical representations led to duplicates, meaning the same molecule
appeared multiple times in different forms. This redundancy could confuse the ma-
chine learning models and reduce the efficiency of our training process.

To resolve this issue, we converted the non-canonical SMILES into their canonical
form using the RDKit library. Canonical SMILES ensures a unique representation
for each molecule, removing duplicates from the dataset. After this preprocessing
step, the size of our dataset was reduced from 2,053 molecules to 1,965 molecules,
providing a cleaner and more reliable dataset for further analysis.

Since SMILES is a textual representation and not inherently numerical, we needed
to transform it into a format that machine learning models could interpret. For
this, we used ECFP, a widely accepted molecular representation in cheminformatics.
Using the RDKit library, we computed ECFP fingerprints for all molecules in the
dataset. These fingerprints are binary vectors that indicate the presence or absence
of specific molecular substructures, making them particularly useful for capturing
chemical information in a way that is amenable to machine learning.

In addition to SMILES, we explored using SELFIES as an alternative molecular rep-
resentation. SELFIES has recently gained attention as a robust method for encoding
molecular structures. Unlike SMILES, SELFIES is designed to be error-resistant
and offers greater flexibility while retaining the essential benefits of SMILES. By
incorporating SELFIES, we aimed to investigate its potential as a more advanced
molecular representation in our experiments.

3.2.1 SMILES Strings Canonicalization

To prepare the dataset for machine learning, we performed SMILES string canoni-
calization, which converts non-canonical SMILES strings into their unique, canonical
representations (Weininger et al., 1989). This step was critical for ensuring that each
chemical compound in the dataset was represented uniquely, avoiding redundancy
that could arise from multiple representations of the same molecule (Deng et al.,
2023).
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In our work, we applied this canonicalization process to all SMILES strings in the
dataset before feature generation. By doing so, we ensured that the dataset was con-
sistent and free from duplicates, a necessary condition for effective machine learning
workflows. The Python library RDKit (Landrumet al. , 2006) was used for this
purpose, as it provides a reliable implementation of SMILES canonicalization. In-
terestingly, while canonicalization reduced the total number of molecules in the
dataset, it did not alter the class distribution significantly. Figure 3.2 illustrates
the class distribution before and after canonicalization, highlighting that the ratio
between classes remained consistent. This result confirmed that the canonicaliza-
tion process preserved the dataset’s overall balance, maintaining its suitability for
machine learning tasks.

(a) The non-canonicalized dataset (b) The canonicalized dataset

Figure 3.2 Class distribution in BBB MoleculeNet dataset before and after SMILES
canonicalization.

Table 3.2 The dataset used in this thesis after performing SMILES canonicalization

MoleculeNet’s BBB
Total number of molecules 1965

Number of molecules with BBB+ label 1500
Number of molecules with BBB- label 465
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3.3 Dataset Splitting

When deciding to train a machine learning model on a data set, that data set must
be split into at least two subsets. That is, training and testing. The training set
can be further split into training and validation. The way data split is performed
has been shown to have a significant impact on model performance (Birba, 2020).
The well-known and most straightforward splitting strategy is random splitting,
and an enhanced version of it is stratified sampling, where you stratify based on a
given column in the dataset to ensure an almost equal ratio of a certain feature in
all the splits to avoid sampling bias. Often, the stratification is done on the class
label column, especially when the data set is imbalanced, which is the case with the
dataset that we worked with; thus, stratification based on the label was the first
strategy that we followed to split the data.

3.3.1 Label-Stratified Splitting

In this splitting strategy, we split the data according to the class label (BBB+ or
BBB-) to ensure that each split (training, validation, or testing) has almost the same
positive (BBB+) to negative (BBB-) sample ratio.

3.3.2 Scaffold-based Splitting

When it comes to molecular datasets, some special characteristics of molecules make
the well-known random splitting strategy not the best splitter ever. That is because
random splitting—in this case—does not reflect the real-world scenario where the
model is expected to be tested on molecules with totally different structures than
those in the training set. For the reasons mentioned above and more, scaffold-based
splitting is believed to be preferred as a splitting strategy for molecular datasets
(Deng et al., 2023).

Naturally, molecular scaffolds can be thought of as an intuitive method to group
chemical compounds based on their structures. A molecular scaffold represents the
core structure of a chemical compound. Many scaffold schemes have been proposed
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in the literature; one of the widely used ones, especially in the computational chem-
istry realm, is known as Bemis and Murcko (BM) scaffolds (Bemis & Murcko, 1996).
In scaffold splitting, molecules are grouped according to their core scaffold (struc-
ture), and then each set of molecules in the same scaffold group (i.e., sharing the
same core scaffold) is assigned to a certain split. This makes scaffold-based splits a
more challenging and realistic scenario because molecules in the test set have unseen
scaffolds during the model training cycle.

3.4 Metrics

In this section, we mention the metrics that we used to evaluate individual machine
learning models that we built and the metrics we used during the comparison phase
among them.

3.4.1 Machine Learning Models Performance Metrics

As the dataset with which we worked is imbalanced, relying on simple metrics such
as accuracy will be misleading. Instead, metrics like ROC-AUC (Receiver Operating
Characteristic - Area Under the Curve) and Average Precision (AP) are commonly
used to measure better the performance of machine learning models trained on
imbalanced datasets.

The AP score is particularly effective for imbalanced datasets, providing a single
scalar value summarizing the precision-recall curve. It calculates a weighted average
of precision values at different recall thresholds, with the weights determined by the
change in recall compared to the previous threshold. This captures how well the
model balances precision and recall across various decision boundaries, making it a
robust metric for this study (Equation 3.1).

(3.1) AP =
∑
n

(Rn −Rn−1)Pn

Where:
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- Pn is the precision at the n-th threshold.

- Rn is the recall at the n-th threshold.

Additionally, as suggested by a recent systematic study (Deng et al., 2023), metrics
such as Negative Predictive Value (NPV) (Equation 3.2) and Positive Predictive
Value (PPV) (Equation 3.3) are included for a more comprehensive evaluation.
These metrics offer additional insights into the model’s ability to identify true neg-
atives and true positives, respectively,

(3.2) NPV = True Negatives
True Negatives+False Negatives

(3.3) PPV = True Positives
True Positives+False Positives

For the purpose of comparing the results in the next chapter, we relied on AP as the
primary metric due to its effectiveness in handling imbalanced data. Unlike ROC-
AUC, which measures overall classifier performance and can sometimes mask poor
performance on specific classes due to class imbalance, AP focuses on the model’s
ability to identify positive instances (BBB+ in our case). AP is useful for evaluating
performance in imbalanced datasets because it captures the precision-recall trade-off
across thresholds. While other metrics, including Accuracy, Recall (TPR), F1 Score,
Specificity (TNR), False Positive Rate (FPR), and False Negative Rate (FNR), are
also reported later for completeness, AP remains the focus here due to its particular
relevance for imbalanced datasets.

3.4.2 Metrics for Performance Comparison

After conducting the experiments and calculating the performance metrics—where
AP was selected as the primary metric as detailed in Section 3.4.1 each experiment
was repeated 20 times with different random seeds to ensure robustness. This in-
cluded evaluations of both passive learning models and all active learning strategies
under stratified and scaffold-splitting setups. The results from these 20 repetitions
were used to construct Win/Tie/Loss (W/T/L) tables, enabling pairwise compar-
isons of model performance. The results are presented in tabular form, where each
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entry contains the count of wins, ties, and losses for one strategy compared to an-
other. These counts are taken across all experimental repetitions and specific points
(25%, 50%, 75%, and 100%). These percentages (i.e., 25%, 50%, 75%, and 100%)
refer to the proportion of labeled training data used at different stages of the active
learning process.

Types of W/T/L Tables:

• Passive vs. Active Learning: Passive learning models (stratified and scaf-
fold splits) were compared against all active learning strategies.

• Active Learning Pairwise: Pairwise comparisons were conducted among
all active learning strategies.

• Binary Tables: Simplified versions of the tables as they condense the com-
parisons to show the majority winner in each case.

3.5 Hyper-parameters Optimization

Bayesian hyperparameter optimization using the Hyperopt python library (Bergstra
et al., 2015) (with the tree-structured Parzen Estimator algorithm) has been used
to obtain the best hyperparameters for the passive learning-based models. The
decision to opt for Hyperopt rather than resorting to random search or grid search
is based on the fact that Hyperopt would result in better performance, be more
efficient, and less time-consuming, which stems from its theoretical basis of how it
works, and also has been supported by empirical studies, specifically for XGBoost
(Putatunda & Rama, 2018). The initial hyperparameters and their range of values
were adopted from (Boldini et al., 2023) and adjusted after many trials to achieve
better performance tailored to the data set specifications.
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3.6 Passive Learning Models

In this thesis, we define passive learning models as XGBoost machine learning models
that are trained in a single step, where the entire training dataset is provided to
the model at once without employing any special data sampling strategy. These
models will serve as a baseline for comparison against models using active learning
techniques.

To represent the molecular data, we utilize two distinct feature encoding methods.
The first is ECFP based on Morgan fingerprints, a widely adopted approach for
capturing molecular substructures through circular fingerprinting. The second en-
coding method involves embeddings generated by the SELFormer model, which was
pre-trained on SELFIES, a robust representation of chemical compounds (Yüksel
et al., 2023). By using both traditional and deep learning-based molecular repre-
sentations, we aim to assess their respective contributions to model performance in
a passive learning training setup.

3.7 Active Learning Models

In this work, we employed a variety of active learning paradigms with different
sampling strategies. We experimented with random sampling, uncertainty-based
sampling, dissimilarity-based sampling, and, finally, our proposed methods.

The subsection below explains the proposed method and its two versions. But
before diving deep into the details of the sampling strategies, we should mention
the configuration of the experiments that are common to all the active learning
strategies.

To mimic the real-world scenario where the active learning training paradigms are
usually applied, we start the training process with very tiny labeled samples of
the dataset. In this work, we start each active learning training loop with an initial
training set of size 4 samples: 2 samples are randomly selected from the BBB+ class
and 2 samples are randomly selected from the BBB- class. We aimed at starting
with an equal number of BBB+ and BBB- samples, even if it means oversampling
the minority class because this will ensure that the model does not become biased
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early on. Then, for each iteration, we select a batch of samples size 5. The selection
of the samples is determined by the sampling strategy employed by the running
active learning strategy. Table 3.3 shows the common key parameters for the active
learning setup across all the active learning strategies that we employed in this work.

Table 3.3 Key parameters for the active learning setup

Parameter Value
Initial Training Set 4 samples (2 BBB+ and 2 BBB-)
Batch Size per Iteration 5 samples

3.7.1 First Proposed Method: Explore-Intensify

The strategy we propose differs from the existing ones in that it employs variable
mechanism(s) during the active learning loop. Contrary to previous approaches,
this strategy does not have one fixed sampling strategy from the start of the active
learning loop until the end of it. This approach allows flexibility during the active
learning loop.

The approach starts the sampling process by following an exploratory fashion and
focusing primarily on exploring the chemical space. More precisely, the sub-space
of the chemical space that the dataset in hand spans. At the beginning of the
active learning loop, the active learner will select data points to be labeled solely
based on the diversity factor. Then, at a later stage the active learner will switch
to considering the areas in the chemical space where the model is most uncertain
about, i.e., the active learner will rely on uncertainty. This approach, which we call
explore first, intensify later, introduces a parameter that determines the transition
point or the balance between exploration and intensification, enabling a variety of
strategy configurations.

Thus, our proposed method introduces a dynamic sampling strategy throughout
the entire active learning loop, as opposed to a static, single-strategy approach from
start to finish.

This dynamic switching is in the form of an “explore-intensify” approach. This
approach splits the sampling process into two distinct phases. In the first initial
phase, which constitutes the first X% of the dataset, the focus is on employing a
diversity sampling strategy. This strategy aims to enhance the representativeness
of the initial training set by selecting a broad group of diverse samples. Following
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this exploratory phase, the method transitions to intensification, which is the second
phase, wherein the uncertainty sampling strategy is employed. This phase focuses
on refining the model’s decision boundaries by prioritizing samples where the model
shows the highest uncertainty.

3.7.2 Second Proposed Method: Round Robin Cycle Switching

In this strategy, we implement a dynamic sampling approach where different sam-
pling strategies are alternated during the active learning iterations using a round-
robin scheduling mechanism. Specifically, we cycle through dissimilarity sampling,
uncertainty sampling, and random sampling in a sequential order. This approach
aims to leverage the strengths of each sampling method: dissimilarity for diversity,
uncertainty for model refinement, and random sampling for exploration.

To ensure a systematic and balanced data exploration, the switching point is set at
every 250 data points. This means that after every 250 samples are added to the
training set, the strategy switches to the next in the cycle. The 250 data points
value represents a key parameter of the strategy, which can be adjusted based on
the dataset size, problem domain, or desired level of balance between the sampling
strategies. For instance, a smaller switching point might lead to more frequent
alternation between strategies, while a larger one allows for a longer focus on each
method before switching.

By combining the complementary strengths of the three sampling strategies through
this structured cycle, the Round Robin Cycle Switching approach seeks to achieve
both broad exploration and focused refinement during the active learning loop. This
method, along with the Explore-Intensify strategy, is evaluated to assess the efficacy
of passive and active learning approaches under different data-splitting strategies.
The subsequent chapter presents the results and discusses their implications.
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4. Results and Discussion

This chapter presents the key findings from the dataset analysis, as well as the results
obtained from training various XGBoost-based models under both passive and active
learning frameworks. The active learning models were assessed using five distinct
sampling methods, providing a comprehensive evaluation of their performance. A
detailed comparison is then presented, contrasting the results of these active learn-
ing methods with those of the passive learning models across two data splitting
setups: label-stratified splitting and scaffold-based splitting. Finally, the chapter
concludes with a discussion of the observed results, focusing on their relevance to
model performance and the effectiveness of the implemented learning strategies.

4.1 Challenges of Non-Canonical SMILES Representations in the

MoleculeNet BBB Dataset

Many open-source molecular datasets, including those in SMILES format, are often
represented as non-canonical SMILES strings. These non-canonical representations
can introduce several challenges to machine learning models when used without stan-
dardization into canonical SMILES. One major issue is duplication or redundancy.
Multiple non-canonical SMILES strings can correspond to a single unique molecular
compound, which is typically represented by its canonical SMILES form. This re-
dundancy effectively results in the same data point being represented multiple times
within the dataset, leading to known challenges in machine learning training pro-
cesses, such as biased training or overfitting. An even more critical problem arises
when non-canonical SMILES strings corresponding to the same canonical SMILES
are assigned contradictory labels. Such inconsistencies introduce confusion to the
model, as it encounters what appears to be a single data point with conflicting
labels. This inconsistency can significantly degrade model performance by impair-
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ing its ability to learn meaningful patterns. Our analysis of the MoleculeNet BBB
dataset (Wu et al., 2018) revealed the presence of such cases. A representative ex-
ample is illustrated in figure 4.1, while nine additional similar cases are detailed in
section A.2 of the Appendix.

Figure 4.1 An example of two non-canonical SMILES strings with differing labels
mapping to the same canonical SMILES string.

4.2 Molecular Scaffold Analysis

To understand the structural characteristics of the molecules in the BBB Molecu-
leNet dataset, we performed a comprehensive scaffold analysis on the BBB dataset.
This analysis focused on the molecular scaffolds that exist within the molecules,
allowing us to gain deeper insights into their structural characteristics. Molecular
scaffolds, which represent the core structures of chemical compounds, play a crucial
role in determining their physicochemical properties and, consequently, their ability
to permeate the BBB. We utilized the BM scaffold generation method using RDKit
to extract the molecular scaffolds from each compound in the dataset. This method
removes all side chain atoms, leaving only the core rings and linker atoms between
them.

During the analysis of scaffold groupings in MoleculeNet’s BBB dataset, we ob-
served that certain scaffold groups were highly enriched in BBB+ compounds. This
enrichment highlights structural features that may contribute significantly to BBB
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permeability. Figure 4.2 illustrates an example of such scaffolds. Additional exam-
ples and a more detailed discussion are provided in Section A.3 of the Appendix.

Figure 4.2 An example of a molecular scaffold where its group is highly enriched
with BBB+ compounds

4.3 Dataset Splitting

All experiments in this thesis were conducted using two parallel dataset splitting
setups:

• A setup based on a stratified splitting strategy, which ensures that the ratio
of the labels (BBB+/BBB-) remains consistent across the training, validation,
and test sets.

• A setup based on the molecular scaffolds of the molecules in the dataset,
where the splitting is guided by the structural cores (scaffolds) of the molecules.

In both splitting mechanisms, we adopted an 80/10/10 scheme. Specifically, 80% of
the data was allocated for training, 10% for validation, and 10% for testing. This
ensures that the training set is representative of the entire dataset while leaving
sufficient data for unbiased validation and testing.

It is important to note that, for the active learning strategies implemented in this
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work, the reference to 100% of the training data corresponds to the 80% training
split of the original dataset. Thus, all active learning iterations operate within this
80% subset, progressively utilizing the available labeled training data.

4.3.1 Label-Stratified Splitting

Table 4.1 presents the distribution of the data and the BBB+:BBB- ratios across the
training, validation, and testing splits when using the stratified splitting strategy.
Since stratified splitting ensures that the ratio of the target classes (BBB+ and
BBB-) remains consistent across all subsets, the class proportions in the training,
validation, and testing splits are nearly identical to those in the entire dataset.

Table 4.1 Data distribution across splits using stratified splitting strategy over the
class label (BBB+ or BBB-)

Training Validation Testing All dataset
BBB+ 1200 (76.38 %) 150 (76.14 %) 150 (76.14 %) 1500 (76.34 %)
BBB- 371 (23.62 %) 47 (23.86 %) 47 (23.86 %) 465 (23.66 %)

1571 197 197 1965

4.3.2 Scaffold-based Splitting

Table 4.2 presents the distribution of the data and the BBB+:BBB- ratios across
the training, validation, and testing splits when using the scaffold splitting strategy.
Unlike stratified splitting, scaffold-based splitting groups molecules based on their
Bemis-Murcko scaffolds—the core structures of the molecules—rather than directly
balancing class proportions. Consequently, the BBB+:BBB- ratios in each split are
not guaranteed to match the overall dataset ratio.

As shown in the table, the class ratios in the training and validation splits closely
align with the overall dataset distribution. However, the test split exhibits a devia-
tion of approximately 10% from the dataset’s overall BBB+:BBB- ratio. This devia-
tion reflects the inherent variability of scaffold splitting, which prioritizes structural
diversity over label balance. Despite this, the scaffold-based splitting setup provides
a more realistic evaluation scenario, as it mimics real-world challenges where test
data often contains novel molecular scaffolds unseen during training. Furthermore,
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the number of unique molecular scaffolds in each split provides additional insight
into the structural diversity introduced by the scaffold splitting strategy. Specifi-
cally, the scaffold splitting resulted in 855 unique scaffolds in the training set, 136
in the validation set, and 166 in the testing set.

Table 4.2 Data distribution across splits using scaffold splitting strategy

Training Validation Testing All dataset
BBB+ 1219 (77.54 %) 149 (76.02 %) 132 (67.01 %) 1500 (76.34 %)
BBB- 353 (22.46 %) 47 (23.98 %) 65 (32.99 %) 465 (23.66 %)

1572 196 197 1965

4.4 Passive Learning-based Models

This section details the two passive learning XGBoost models trained on all the
training data. We have employed two main setups: label-stratified splitting setup
and scaffold-based splitting setup . For each splitting setup, we used two differ-
ent setups as well: one using the XGBoost model utilizing ECFP and the other
using the XGBoost model utilizing SELFIES’s embeddings. To ensure the robust-
ness and fairness of our results, we conducted multiple experiments, each repeated
twenty times with different random seeds. This approach allowed us to account for
variability and avoid biases arising from lucky splits or easy data. The use of mul-
tiple random seeds also enabled us to report the average performance and standard
deviation, providing a comprehensive understanding of the models’ behavior.

Next, we show the results of the passive learning models for these setups. In tables
4.3 and 4.4, bold values indicate better performance for each metric. Metrics where
a higher value is better include ROC AUC, Average Precision, Accuracy, Precision,
Recall, F1 Score, NPV, and Specificity. False Positive Rate (FPR) and False Nega-
tive Rate (FNR) are metrics where lower values are better, with standard deviations
(±) also reported.
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Table 4.3 Performance comparison between ECFP and SELFIES’ embeddings on
the label-stratified split.

Label-Stratified Split
Metric ECFP SELFIES’ embeddings
ROC AUC 0.8922 ± 0.0290 0.8315 ± 0.0290
Average Precision 0.9561 ± 0.0144 0.9257 ± 0.0176
Accuracy 0.8574 ± 0.0229 0.8157 ± 0.0325
Precision (PPV) 0.9138 ± 0.0198 0.8834 ± 0.0196
Recall (TPR) 0.8977 ± 0.0194 0.8740 ± 0.0457
F1 Score 0.9055 ± 0.0152 0.8779 ± 0.0242
NPV 0.6914 ± 0.0464 0.6217 ± 0.0795
Specificity (TNR) 0.7287 ± 0.0672 0.6298 ± 0.0768
FPR 0.2713 ± 0.0672 0.3702 ± 0.0768
FNR 0.1023 ± 0.0194 0.1260 ± 0.0457

In the label-stratified split case (check table 4.3), ECFP outperformed SELFIES’
embeddings across all metrics, including ROC AUC, Average Precision, Accuracy,
Precision, Recall, F1 Score, and Specificity. ECFP also had lower FPR and FNR,
indicating more consistent and reliable performance.

Table 4.4 Performance comparison between ECFP and SELFIES’ embeddings on
the scaffold-based split.

Scaffold-Based Split
Metric ECFP SELFIES’ embeddings
ROC AUC 0.8759 ± 0.0138 0.7977 ± 0.0107
Average Precision 0.9161 ± 0.0116 0.8477 ± 0.0210
Accuracy 0.8381 ± 0.0248 0.7954 ± 0.0153
Precision (PPV) 0.8722 ± 0.0156 0.8406 ± 0.0098
Recall (TPR) 0.8890 ± 0.0391 0.8576 ± 0.0303
F1 Score 0.8800 ± 0.0203 0.8487 ± 0.0139
NPV 0.7708 ± 0.0617 0.7013 ± 0.0386
Specificity (TNR) 0.7346 ± 0.0401 0.6692 ± 0.0306
FPR 0.2654 ± 0.0401 0.3308 ± 0.0306
FNR 0.1110 ± 0.0391 0.1424 ± 0.0303

ECFP consistently outperformed SELFIES’ embeddings in the scaffold-based split
across all metrics, including ROC AUC, Average Precision, Accuracy, Precision,
Recall, F1 Score, NPV, and Specificity. ECFP also achieved lower values for the
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FPR and FNR, further emphasizing its robustness in this more challenging and
realistic evaluation scenario (check table 4.4).

Our experimental results (as can be observed from table 4.3 and 4.4) consistently
demonstrated that the ECFP-based representation outperformed the SELFIES-
based representation across all metrics. This consistent outperformance of ECFP
was a key factor in our decision to continue using ECFP as the primary molecular
feature representation in our work.

An interesting observation from our experiments’ results is that models trained using
ECFP consistently outperform those utilizing SELFIES embeddings. We hypoth-
esize that this performance difference is due to the nature of ECFP as a feature
representation method. ECFP, being a structural fingerprint, focuses heavily on the
core chemical structure of molecules, capturing crucial details about molecular frag-
ments and their connectivity. This structural information encoded in the ECFP bit
vector appears to be particularly advantageous in the context of scaffold splitting,
where the division of molecules based on their underlying scaffolds is crucial for
generalization. Hence, ECFP provides more discriminative power in distinguishing
scaffold groups, leading to better model performance in these cases.

4.5 Active Learning-based Models

Here, we show the active learning strategies applied for the label-stratified and the
scaffold-splitted setups.

In this work, we experimented with the following sampling (querying) strategies:

• Random Sampling

• Uncertainty Sampling

• Dissimilarity Sampling

• Proposed Scheduled Strategies

4.5.1 Random Sampling
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We implemented random sampling as a baseline strategy in our active learning
framework. This approach is a crucial benchmark against which we can com-
pare more sophisticated sampling methods. In our implementation, we employed a
straightforward random selection process. At each iteration of the active learning
loop, we randomly chose -without replacement- a batch of molecules from the unla-
beled pool. This batch is labeled and then added to the previously labeled training
set, and then the model is re-trained on the updated version of the training set.
Figure 4.3 shows an overview of the random sampling active learning strategy. In
the figure, k represents the batch size, when k is 1, only one molecule is randomly
selected at each iteration in the active learning loop.

Figure 4.3 Overview of the random sampling active learning strategy

4.5.2 Uncertainty Sampling

We implemented a sampling strategy based on the model’s uncertainty. This strat-
egy aims to identify and prioritize the labeling of molecules about which the current
model is most uncertain. In active learning, uncertainty is used as a signal to focus
the model’s attention on data points where it is least confident, thereby improv-
ing its performance more efficiently. We quantified the uncertainty of the model’s
predictions for each unlabeled molecule by measuring the entropy of the prediction
probabilities. Entropy is a measure of uncertainty that indicates how spread out the
predicted probabilities are.

At each iteration of the active learning loop, we selected the k most uncertain sam-
ples by ranking the unlabeled molecules based on their entropy scores in descending
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order. These samples were labeled and added to the training dataset, augmenting
it with data points that are likely to improve the model’s performance. The process
of uncertainty sampling is illustrated in Figure 4.4. The diagram demonstrates the
workflow, starting from the model’s predictions on the unlabeled pool, computing
prediction uncertainty, and selecting the top k most uncertain samples for labeling.
This iterative approach enables the model to learn more effectively from challenging
examples.

Figure 4.4 Workflow of the uncertainty sampling strategy in active learning. The
model predicts outputs for the unlabeled pool, calculates prediction uncertainty
(e.g., using entropy), selects the k most uncertain samples, and augments the train-
ing dataset with their labeled counterparts.

4.5.3 Dissimilarity Sampling

In this sampling strategy, we implemented a dissimilarity-based approach to se-
lect the potentially most informative molecules for labeling. The method aimed to
explore the chemical space efficiently by prioritizing compounds structurally differ-
ent from those already in the labeled set. We calculated the dissimilarity between
molecules using the cosine distance metric applied to their ECFP fingerprints. This
metric was chosen for its effectiveness in capturing structural differences between
molecules represented as high-dimensional vectors. At each iteration of the active
learning loop, we employed a greedy batch selection process. For each molecule in
the unlabeled pool, we computed its minimum cosine distance to the set of labeled
molecules. We then selected the molecule with the maximum of these minimum
distances, choosing the compound most dissimilar to any in the labeled set.

39



Mathematically, for each unlabeled molecule u in the pool, we computed its dissim-
ilarity score D(u) as follows:

D(u) = max
u∈U

min
l∈L

(1− cos(u, l))

where U is the set of unlabeled molecules, L is the set of labeled molecules, and
cos(u, l) is the cosine similarity between molecules u and l.

Our results showed that dissimilarity sampling performed well in the early stages of
the active learning process. This suggests that the dissimilarity-based strategy effec-
tively identified diverse and informative molecular scaffolds. However, we observed
that the performance gains from dissimilarity sampling tended to plateau in later
iterations. This may be because, as the labeled set grows, it becomes increasingly
difficult to find highly dissimilar molecules. At this stage, other sampling strategies,
such as uncertainty sampling, began to show comparative advantages.

The process of dissimilarity sampling is illustrated in Figure 4.5. The diagram
demonstrates the steps involved, starting from the pool of labeled and unlabeled
molecules, through the computation of dissimilarity scores using cosine distance, to
the selection of the most dissimilar molecules for labeling. This iterative procedure
effectively expands the training dataset with structurally diverse compounds.

Figure 4.5 Workflow of the dissimilarity sampling strategy in active learning. The
process involves computing the cosine distance between unlabeled and labeled
molecules based on ECFP fingerprints, selecting the most dissimilar molecules, and
augmenting the labeled dataset with these newly labeled samples.

4.5.4 Scheduled Strategy
40



In this strategy, a combination of sampling strategies is used within the active learn-
ing loop, with transitions between them scheduled dynamically. This approach aims
to balance the benefits of exploration, uncertainty-based refinement, and random-
ness in a structured manner.

The first mode is the Explore-Intensify strategy. This begins with an exploratory
phase, where diversity sampling is employed to maximize the representativeness of
the initial training set by selecting a wide range of chemically diverse molecules.
This phase allows the active learner to explore the chemical sub-space spanned by
the dataset comprehensively. After this initial exploratory phase, which spans a
predefined proportion of the dataset, the strategy transitions to the intensification
phase. In this phase, uncertainty sampling is prioritized to refine the model by
focusing on regions in the chemical space where the model exhibits the highest
uncertainty. This phased approach dynamically adjusts the sampling strategy based
on the progress of the active learning loop, ensuring both broad exploration and
targeted refinement.

The second mode is Round-Robin Scheduling, where we alternate between a list of
sampling strategies in a cyclical manner. Specifically, strategies such as dissimilar-
ity sampling, uncertainty sampling, and random sampling are applied sequentially.
Once the list of strategies is exhausted, the process returns to the first strategy in
the list, continuing the cycle. The alternation can be configured in several ways,
with one straightforward method being to switch strategies after a fixed number
of iterations. For instance, we might set the switching point at every 250 samples
added to the training set. This cyclical switching ensures that each strategy con-
tributes to the active learning process, leveraging the strengths of diversity, model
uncertainty, and randomness in a balanced way.

The scheduled strategy provides two distinct modes, each offering a flexible frame-
work for active learning. The Explore-Intensify mode is designed to transition from
an initial exploratory phase, where diversity sampling ensures broad coverage of
the chemical space, to a refinement phase, where uncertainty sampling focuses on
regions of high model uncertainty. In contrast, the Round-Robin Scheduling mode
alternates between multiple sampling strategies in a cyclical manner, ensuring bal-
anced contributions from dissimilarity sampling, uncertainty sampling, and random
sampling.
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4.6 Comparisons of Active Learning and Passive Learning Models

This section presents the experimental results obtained from two primary setups:
stratified splitting and scaffold splitting. Within each setup, we evaluated the per-
formance of XGBoost models trained using two paradigms: passive learning and
active learning.

For passive learning, we trained a single XGBoost model in a one-shot manner on
a fixed static training dataset without iterative interaction. In contrast, for active
learning, we trained multiple XGBoost models iteratively, utilizing the five active
learning strategies outlined in the previous section.

As previously mentioned, scaffold splitting presents a significant challenge for ML
models due to the increased structural diversity in the test set compared to the
training set. This challenge is reflected in the generally lower performance of ML
models under the scaffold splitting setup compared to the stratified splitting setup.

To ensure robustness in our comparisons, we conducted each experiment 20 times
using different random seeds for both the passive learning model and all active
learning methods. From these repeated experiments, we constructed win/tie/loss
(w/t/l) tables to compare the performance of each active learning method against
the passive learning model, as well as against the other active learning methods.

We begin by presenting the results of the comparisons between the active learning
methods and the passive learning model. Then, we discuss the results of the best-
performing active learning method in the label-stratified setup, and we conclude this
chapter by describing the results of the rest of the active learning methods, which
their results are included in the appendix.

Table 4.5 presents the win/tie/loss (w/t/l) results for all active learning methods
compared to the passive learning model under the label-stratified splitting setup. To
simplify the comparison, Table 4.6 provides a binary conversion of Table 4.5, where
each cell is assigned a value of one if the corresponding active learning method
outperformed the passive learning model in more than 10 out of the 20 randomized
experiments and zero otherwise.
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Table 4.5 Win/Tie/Loss counts for split strategy “stratified” against “passive
learning” baseline at specified percentages of labeled training data

Sampling Strategy 25% 50% 75% 100%

dissimilarity 1/0/19 10/0/10 13/0/7 18/0/2
uncertainty 3/0/17 10/0/10 15/0/5 16/0/4
random 4/0/16 10/0/10 15/0/5 17/0/3
rr_cycle_switching_50 0/0/20 8/0/12 15/0/5 19/0/1
explore_intensify_0.1 2/0/18 8/0/12 13/0/7 15/0/5
explore_intensify_0.2 5/0/15 9/0/11 15/0/5 17/0/3
explore_intensify_0.3 1/0/19 10/0/10 14/0/6 15/0/5
explore_intensify_0.4 1/0/19 11/0/9 13/0/7 16/0/4
explore_intensify_0.5 1/0/19 10/0/10 12/0/8 16/0/4
explore_intensify_0.6 1/0/19 10/0/10 15/0/5 15/0/5
explore_intensify_0.7 1/0/19 10/0/10 15/0/5 15/0/5
explore_intensify_0.8 1/0/19 10/0/10 13/0/7 15/0/5
explore_intensify_0.9 1/0/19 10/0/10 13/0/7 16/0/4

Table 4.6 Binary performance of sampling strategies against “passive learning”
in split strategy “stratified” at specified percentages of labeled training data

Sampling Strategy 25% 50% 75% 100%

dissimilarity 0 0 1 1
uncertainty 0 0 1 1
random 0 0 1 1
rr_cycle_switching_50 0 0 1 1
explore_intensify_0.1 0 0 1 1
explore_intensify_0.2 0 0 1 1
explore_intensify_0.3 0 0 1 1
explore_intensify_0.4 0 1 1 1
explore_intensify_0.5 0 0 1 1
explore_intensify_0.6 0 0 1 1
explore_intensify_0.7 0 0 1 1
explore_intensify_0.8 0 0 1 1
explore_intensify_0.9 0 0 1 1

This binary representation highlights that all active learning methods outperformed
the passive learning model when 75% of the training data was labeled. Further-
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more, all active learning methods consistently outperformed the passive learning
model with 100% of the training data labeled. Notably, the “explore_intensify_0.4”
method achieved superior performance with only 50% of the training data labeled.

Tables 4.7 and 4.8 present corresponding results for the molecular scaffold split-
ting setup. In this case, all active learning methods outperformed the passive
learning model with 100% of the training data labeled. Additionally, the “ran-
dom”, “explore_intensify_0.3”, “explore_intensify_0.4”, “explore_intensify_0.5”,
and “explore_intensify_0.7” methods achieved better performance with 75%
of the training data labeled. Furthermore, methods such as “dissimilarity”,
“explore_intensify_0.5”, “explore_intensify_0.6”, “explore_intensify_0.7”, “ex-
plore_intensify_0.8”, and “explore_intensify_0.9” outperformed the passive learn-
ing model with only 50% of the training data labeled.

Table 4.7 Win/Tie/Loss counts for split strategy “scaffold” against “passive
learning” baseline at specified percentages of labeled training data

Sampling Strategy 25% 50% 75% 100%

dissimilarity 0/0/20 11/0/9 8/0/12 20/0/0
uncertainty 2/0/18 2/0/18 5/0/15 16/0/4
random 2/0/18 8/0/12 17/0/3 20/0/0
rr_cycle_switching_50 3/0/17 3/0/17 10/0/10 11/0/9
explore_intensify_0.1 0/0/20 0/0/20 6/0/14 17/0/3
explore_intensify_0.2 2/0/18 2/0/18 5/0/15 15/0/5
explore_intensify_0.3 0/0/20 4/0/16 11/0/9 17/0/3
explore_intensify_0.4 0/0/20 1/0/19 11/0/9 14/0/6
explore_intensify_0.5 0/0/20 11/0/9 12/0/8 13/0/7
explore_intensify_0.6 0/0/20 11/0/9 7/0/13 16/0/4
explore_intensify_0.7 0/0/20 11/0/9 11/0/9 12/0/8
explore_intensify_0.8 0/0/20 11/0/9 8/0/12 19/0/1
explore_intensify_0.9 0/0/20 11/0/9 8/0/12 18/0/2
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Table 4.8 Binary performance of sampling strategies against “passive learning”
in split strategy “scaffold” at specified percentages of labeled training data

Sampling Strategy 25% 50% 75% 100%

dissimilarity 0 1 0 1
uncertainty 0 0 0 1
random 0 0 1 1
rr_cycle_switching_50 0 0 0 1
explore_intensify_0.1 0 0 0 1
explore_intensify_0.2 0 0 0 1
explore_intensify_0.3 0 0 1 1
explore_intensify_0.4 0 0 1 1
explore_intensify_0.5 0 1 1 1
explore_intensify_0.6 0 1 0 1
explore_intensify_0.7 0 1 1 1
explore_intensify_0.8 0 1 0 1
explore_intensify_0.9 0 1 0 1

The best-performing active learning method in the label-stratified setup was the
“round-robin cycle switching” method. As shown in the last two columns (75% and
100%) of Tables 4.9 and 4.10, the “rr_cycle_switching_50” method consistently
outperformed all other active learning methods. We hypothesize that this superior
performance stems from its dynamic strategy, which alternates between different
sampling strategies during the active learning loop, allowing it to adapt effectively
to the data.
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Table 4.9 Win/Tie/Loss counts for “rr_cycle_switching_50” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 10/0/10 9/0/11 11/0/9 12/0/8
uncertainty 13/0/7 11/0/9 11/0/9 11/0/9
random 8/0/12 7/0/13 10/0/10 12/0/8
explore_intensify_0.1 7/0/13 12/0/8 10/0/10 13/0/7
explore_intensify_0.2 5/0/15 9/0/11 13/0/7 10/0/10
explore_intensify_0.3 10/0/10 10/0/10 12/0/8 17/0/3
explore_intensify_0.4 10/0/10 10/0/10 10/0/10 12/0/8
explore_intensify_0.5 10/0/10 9/0/11 11/0/9 13/0/7
explore_intensify_0.6 10/0/10 9/0/11 8/0/12 12/0/8
explore_intensify_0.7 10/0/10 9/0/11 12/0/8 11/0/9
explore_intensify_0.8 10/0/10 9/0/11 11/0/9 14/0/6
explore_intensify_0.9 10/0/10 9/0/11 11/0/9 15/0/5

Table 4.10 Binary performance for “rr_cycle_switching_50” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 1 1
uncertainty 1 1 1 1
random 0 0 0 1
explore_intensify_0.1 0 1 0 1
explore_intensify_0.2 0 0 1 0
explore_intensify_0.3 0 0 1 1
explore_intensify_0.4 0 0 0 1
explore_intensify_0.5 0 0 1 1
explore_intensify_0.6 0 0 0 1
explore_intensify_0.7 0 0 1 1
explore_intensify_0.8 0 0 1 1
explore_intensify_0.9 0 0 1 1
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Figure 4.6 illustrates the performance of the proposed round-robin cycle switching
method, which alternates between three distinct sampling strategies: dissimilarity
sampling (peach background), uncertainty sampling (green background), and ran-
dom sampling (light purple background). The method operates cyclically, repeating
these phases throughout the active learning process. The top panel of the figure
tracks the imbalance ratio across varying percentages of labeled training data, while
the bottom panel highlights the performance metric (average precision).

Figure 4.6 Round-Robin Cycle Switching method in the stratified data splitting
setup

From the bottom panel of the figure, we observe that the round-robin cycle switching
method initially improves rapidly, with the average precision rising from approxi-
mately 0.75 to 0.90 within the first 10% of labeled data. This indicates significant
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early performance gains, particularly during the dissimilarity sampling phase. As
more data is labeled, the average precision continues to improve steadily. The curve
approaches the passive learning baseline (dashed line at 0.96) around the 40–50%
labeled data mark, where the two performances nearly coincide. Beyond this point,
the round-robin cycle switching method consistently exceeds the passive learning
performance for the remaining training data.

The method’s superiority is especially clear as the percentage of labeled training data
approaches 100%, where the average precision of the round-robin cycle switching
method remains marginally higher than the passive learning baseline. This is evident
from the red curve slightly exceeding the dashed line in the figure’s latter stages.

We conducted experiments for all active learning methods in both stratified and
scaffold setups. The detailed results are provided in Chapter B of the appendix.
The win/tie/loss (w/t/l) tables for these methods are presented in tables B.1 to
B.48. Additionally, figures B.1 to B.4 illustrate the performance of each active
learning method as the labeled training set size increases. In all these figures, the
black dashed horizontal line represents the passive learning model’s performance for
comparison.

Figures B.1 and B.3 highlight the exploration and exploitation phases with dis-
tinct background shading. For example, in Figure B.1, panel (a), the Ex-
plore_Intensify_0.1 method switches from the exploration phase (shaded in light
beige, dissimilarity sampling) to the exploitation phase (shaded in pale mint green,
uncertainty sampling) after 10% of the training data is labeled. Similarly, figures
B.4, panel (d), and B.2, panel (d), illustrate the cyclic alternation of the three ba-
sic sampling strategies (dissimilarity, uncertainty, and random) employed by the
round-robin cycle switching method, with their corresponding background colors
highlighting the transitions.
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5. Limitation, Future Work, and Conclusion

In this chapter, we provide the limitations, future work, and conclusion of this thesis.

5.1 Limitation

In this section, we present the limitations or threats to the validity of this work. In
the next subsections, we show the limitations with respect to dataset bias, molecular
representation methods, and biological mechanism.

5.1.1 Dataset Bias

The dataset that is used in this work has an inherent bias, and that is a chal-
lenge common to most available datasets in this domain. The MoleculeNet BBB
dataset used in this thesis has a considerable imbalance. This imbalance likely stems
from sampling bias in the field, where positive cases may be over-represented. We
hypothesize that this bias stems from the historical focus of researchers on identi-
fying compounds that successfully penetrate the BBB. This emphasis on positive
cases may have led to an over-representation of BBB+ molecules in the literature
and, consequently, in curated datasets. While this approach has been valuable for
identifying potential CNS-active drugs, it has inadvertently created a skewed rep-
resentation of the chemical space with respect to BBB permeability. Such bias can
lead to models that are less accurate in predicting BBB- compounds, potentially
limiting their real-world applicability.
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5.1.2 Molecular Representation

While we employed one of the most widely used molecular representation techniques
(ECFP) and evaluated it against SELFIES-based embeddings, we believe that inves-
tigating more advanced approaches, such as graph neural networks or transformer-
based models, could lead to better understanding and improved predictions.

5.1.3 Biological Mechanism

In this thesis, we primarily focused on predictive performance and did not explore
in depth the biological mechanisms underlying BBB permeability. Integrating more
mechanistic insights in future work could enhance the interpretability and reliability
of the models.
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5.2 Future Work

There are many ways to extend this work, specifically in the directions of both active
learning strategies and drug BBB molecular property prediction. Instead of relying
solely on ECFP or SELFIES embeddings, it would be advantageous to incorporate
diverse molecular representations. For instance, integrating pharmacokinetic data,
molecular dynamics simulations, and biochemical interaction profiles could provide
a more holistic view This multidimensional strategy would more accurately mirror
the real-world processes of BBB penetration. On the active learning front, new
sampling strategies can be employed. We briefly describe a few of them below:

We plan to try more variations of the parameters of the proposed active learn-
ing strategies. Specifically, we can explore more switching points in the ex-
plore_intensify paradigm and different switching points and active learning strate-
gies ordering in the Round-Robin Cycle Switching paradigm. A variation of the
dynamic switching strategy that is switching after a predefined x number of itera-
tions of the model not improving its performance on a held-out set. An alternative
strategy is to leverage both molecular feature representations used in this work by
employing an ensemble of models. Unlike existing techniques, this approach involves
training two models in parallel: one using ECFP and the other using SELFIES em-
beddings. The sampling strategy would then focus on selecting data points where
the two models disagree. This method allows for analyzing molecules from different
perspectives; ECFP captures the structural components of molecules, while SELF-
IES embeddings emphasize their sequential and symbolic representation.
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5.3 Conclusion Remarks

Predicting the permeability of chemical compounds through the BBB is a critical
step in the development of drugs designed to treat CNS disorders. Given that the
amount of labeled data available for chemicals with experimentally verified BBB per-
meability is far from comprehensive, there is a need for more efficient and intelligent
methods to maximize the utility of labeling efforts by biologists and chemists in wet
labs. In this thesis, we demonstrated that adopting an AL framework for the prob-
lem of BBB permeability prediction is both effective and efficient. Our results show
that active learning approaches achieved the performance of passive learning models
after utilizing only 10%-65% of the labeled data, depending on the specific perfor-
mance metric. This highlights the efficiency of active learning in reducing labeling
costs while maintaining high model performance. We specifically explored and com-
pared multiple sampling strategies, including random sampling, uncertainty-based
sampling, and dissimilarity-based sampling. Additionally, we introduced two novel
active learning strategies: explore-intensify and round-robin cycle switching. Our
experiments revealed that the round-robin cycle switching strategy consistently out-
performed other active learning strategies in the stratified-split setup, emphasizing
its potential for dynamic and adaptive data selection. Furthermore, we evaluated
the impact of different data splitting techniques, including label-stratified splitting
and scaffold-based splitting. The scaffold-based splitting, a more challenging setup,
resulted in lower performance for both passive and active learning paradigms, un-
derscoring its utility as a rigorous evaluation benchmark. This finding also points
to the need for deeper molecular scaffold analyses, potentially involving domain ex-
perts, to uncover insights into how molecular scaffolds influence BBB permeability.
Such analyses could inform the development of more interpretable and robust ML
models for BBB permeability prediction.
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APPENDIX A Additional Figures

A.1 Multiple non-canonical SMILES mapping to unique SMILES

Figure A.1 Mapping non-canonical to canonical_ 0 for two non-canonical SMILES
strings mapping to a unique canonical SMILES string

Figure A.2 Mapping non-canonical to canonical_ 1 for two non-canonical SMILES
strings mapping to a unique canonical SMILES string

Figure A.3 Mapping non-canonical to canonical_ 2 for two non-canonical SMILES
strings mapping to a unique canonical SMILES string
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Figure A.4 Mapping non-canonical to canonical_ 3 for two non-canonical SMILES
strings mapping to a unique canonical SMILES string

Figure A.5 Mapping non-canonical to canonical_ 4 for two non-canonical SMILES
strings mapping to a unique canonical SMILES string

Figure A.6 Mapping non-canonical to canonical_ 5 for two non-canonical SMILES
strings mapping to a unique canonical SMILES string
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A.2 Interesting cases

The figures below are continuations of the figure 4.1

Figure A.7 Interesting case number 2 for two non-canonical SMILES strings with
different labels mapping to a unique canonical SMILES string

Figure A.8 Interesting case number 3 for two non-canonical SMILES strings with
different labels mapping to a unique canonical SMILES string

Figure A.9 Interesting case number 4 for two non-canonical SMILES strings with
different labels mapping to a unique canonical SMILES string
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Figure A.10 Interesting case number 5 for two non-canonical SMILES strings with
different labels mapping to a unique canonical SMILES string

Figure A.11 Interesting case number 6 for two non-canonical SMILES strings with
different labels mapping to a unique canonical SMILES string

Figure A.12 Interesting case number 7 for two non-canonical SMILES strings with
different labels mapping to a unique canonical SMILES string

Figure A.13 Interesting case number 8 for two non-canonical SMILES strings with
different labels mapping to a unique canonical SMILES string
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Figure A.14 Interesting case number 9 for two non-canonical SMILES strings with
different labels mapping to a unique canonical SMILES string

Figure A.15 Interesting case number 10 for two non-canonical SMILES strings with
different labels mapping to a unique canonical SMILES string

A.3 Enrichment of some Scaffold Groups

The figures below are continuations of the figure 4.2

Figure A.16 Scaffold enrichment number 2
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Figure A.17 Scaffold enrichment number 3

Figure A.18 Scaffold enrichment number 4

Figure A.19 Scaffold enrichment number 5
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APPENDIX B Additional Experimental Results

B.1 Stratified-splitting

Table B.1 Win/Tie/Loss counts for “dissimilarity” compared against other strate-
gies in split strategy “stratified” at specified percentages of labeled training data

Compared Against 25% 50% 75% 100%

uncertainty 14/0/6 9/0/11 10/0/10 8/0/12
random 7/0/13 9/0/11 8/0/12 10/0/10
rr_cycle_switching_50 10/0/10 11/0/9 9/0/11 8/0/12
explore_intensify_0.1 7/0/13 10/0/10 11/0/9 11/0/9
explore_intensify_0.2 6/0/14 12/0/8 13/0/7 7/0/13
explore_intensify_0.3 0/20/0 8/0/12 12/0/8 11/0/9
explore_intensify_0.4 0/20/0 7/0/13 12/0/8 10/0/10
explore_intensify_0.5 0/20/0 0/20/0 9/0/11 12/0/8
explore_intensify_0.6 0/20/0 0/20/0 6/0/14 12/0/8
explore_intensify_0.7 0/20/0 0/20/0 10/0/10 11/0/9
explore_intensify_0.8 0/20/0 0/20/0 0/20/0 12/0/8
explore_intensify_0.9 0/20/0 0/20/0 0/20/0 11/0/9
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Table B.2 Binary performance for “dissimilarity” compared against other strate-
gies in split strategy “stratified” at specified percentages of labeled training data

Compared Against 25% 50% 75% 100%

uncertainty 1 0 0 0
random 0 0 0 0
rr_cycle_switching_50 0 1 0 0
explore_intensify_0.1 0 0 1 1
explore_intensify_0.2 0 1 1 0
explore_intensify_0.3 0 0 1 1
explore_intensify_0.4 0 0 1 0
explore_intensify_0.5 0 0 0 1
explore_intensify_0.6 0 0 0 1
explore_intensify_0.7 0 0 0 1
explore_intensify_0.8 0 0 0 1
explore_intensify_0.9 0 0 0 1

Table B.3 Win/Tie/Loss counts for “uncertainty” compared against other strate-
gies in split strategy “stratified” at specified percentages of labeled training data

Compared Against 25% 50% 75% 100%

dissimilarity 6/0/14 11/0/9 10/0/10 12/0/8
random 5/0/15 11/0/9 9/0/11 10/0/10
rr_cycle_switching_50 7/0/13 9/0/11 9/0/11 9/0/11
explore_intensify_0.1 3/0/17 12/0/8 9/0/11 6/11/3
explore_intensify_0.2 3/0/17 10/0/10 13/0/7 1/12/7
explore_intensify_0.3 6/0/14 11/0/9 10/0/10 12/6/2
explore_intensify_0.4 6/0/14 11/0/9 12/0/8 7/7/6
explore_intensify_0.5 6/0/14 11/0/9 10/0/10 9/7/4
explore_intensify_0.6 6/0/14 11/0/9 7/0/13 8/8/4
explore_intensify_0.7 6/0/14 11/0/9 9/0/11 7/9/4
explore_intensify_0.8 6/0/14 11/0/9 10/0/10 10/5/5
explore_intensify_0.9 6/0/14 11/0/9 10/0/10 11/1/8
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Table B.4 Binary performance for “uncertainty” compared against other strategies
in split strategy “stratified” at specified percentages of labeled training data

Compared Against 25% 50% 75% 100%

dissimilarity 0 1 0 1
random 0 1 0 0
rr_cycle_switching_50 0 0 0 0
explore_intensify_0.1 0 1 0 0
explore_intensify_0.2 0 0 1 0
explore_intensify_0.3 0 1 0 1
explore_intensify_0.4 0 1 1 0
explore_intensify_0.5 0 1 0 0
explore_intensify_0.6 0 1 0 0
explore_intensify_0.7 0 1 0 0
explore_intensify_0.8 0 1 0 0
explore_intensify_0.9 0 1 0 1

Table B.5 Win/Tie/Loss counts for “random” compared against other strategies
in split strategy “stratified” at specified percentages of labeled training data

Compared Against 25% 50% 75% 100%

dissimilarity 13/0/7 11/0/9 12/0/8 10/0/10
uncertainty 15/0/5 9/0/11 11/0/9 10/0/10
rr_cycle_switching_50 12/0/8 13/0/7 10/0/10 8/0/12
explore_intensify_0.1 9/0/11 12/0/8 11/0/9 11/0/9
explore_intensify_0.2 8/0/12 13/0/7 11/0/9 9/0/11
explore_intensify_0.3 13/0/7 12/0/8 12/0/8 11/0/9
explore_intensify_0.4 13/0/7 11/0/9 12/0/8 9/0/11
explore_intensify_0.5 13/0/7 11/0/9 10/0/10 10/0/10
explore_intensify_0.6 13/0/7 11/0/9 10/0/10 8/0/12
explore_intensify_0.7 13/0/7 11/0/9 12/0/8 9/0/11
explore_intensify_0.8 13/0/7 11/0/9 12/0/8 11/0/9
explore_intensify_0.9 13/0/7 11/0/9 12/0/8 9/0/11
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Table B.6 Binary performance for “random” compared against other strategies in
split strategy “stratified” at specified percentages of labeled training data

Compared Against 25% 50% 75% 100%

dissimilarity 1 1 1 0
uncertainty 1 0 1 0
rr_cycle_switching_50 1 1 0 0
explore_intensify_0.1 0 1 1 1
explore_intensify_0.2 0 1 1 0
explore_intensify_0.3 1 1 1 1
explore_intensify_0.4 1 1 1 0
explore_intensify_0.5 1 1 0 0
explore_intensify_0.6 1 1 0 0
explore_intensify_0.7 1 1 1 0
explore_intensify_0.8 1 1 1 1
explore_intensify_0.9 1 1 1 0

Table B.7 Win/Tie/Loss counts for “explore_intensify_0.1” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 13/0/7 10/0/10 9/0/11 9/0/11
uncertainty 17/0/3 8/0/12 11/0/9 3/11/6
random 11/0/9 8/0/12 9/0/11 9/0/11
rr_cycle_switching_50 13/0/7 8/0/12 10/0/10 7/0/13
explore_intensify_0.2 11/0/9 8/0/12 10/0/10 1/10/9
explore_intensify_0.3 13/0/7 7/0/13 11/0/9 11/4/5
explore_intensify_0.4 13/0/7 10/0/10 10/0/10 6/6/8
explore_intensify_0.5 13/0/7 10/0/10 10/0/10 6/9/5
explore_intensify_0.6 13/0/7 10/0/10 7/0/13 7/8/5
explore_intensify_0.7 13/0/7 10/0/10 8/0/12 4/8/8
explore_intensify_0.8 13/0/7 10/0/10 9/0/11 7/7/6
explore_intensify_0.9 13/0/7 10/0/10 9/0/11 10/2/8
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Table B.8 Binary performance for “explore_intensify_0.1” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 1 0 0 0
uncertainty 1 0 1 0
random 1 0 0 0
rr_cycle_switching_50 1 0 0 0
explore_intensify_0.2 1 0 0 0
explore_intensify_0.3 1 0 1 1
explore_intensify_0.4 1 0 0 0
explore_intensify_0.5 1 0 0 0
explore_intensify_0.6 1 0 0 0
explore_intensify_0.7 1 0 0 0
explore_intensify_0.8 1 0 0 0
explore_intensify_0.9 1 0 0 0

Table B.9 Win/Tie/Loss counts for “explore_intensify_0.2” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 14/0/6 8/0/12 7/0/13 13/0/7
uncertainty 17/0/3 10/0/10 7/0/13 7/12/1
random 12/0/8 7/0/13 9/0/11 11/0/9
rr_cycle_switching_50 15/0/5 11/0/9 7/0/13 10/0/10
explore_intensify_0.1 9/0/11 12/0/8 10/0/10 9/10/1
explore_intensify_0.3 14/0/6 10/0/10 8/0/12 13/6/1
explore_intensify_0.4 14/0/6 10/0/10 8/0/12 8/7/5
explore_intensify_0.5 14/0/6 8/0/12 6/0/14 10/9/1
explore_intensify_0.6 14/0/6 8/0/12 6/0/14 9/8/3
explore_intensify_0.7 14/0/6 8/0/12 8/0/12 9/7/4
explore_intensify_0.8 14/0/6 8/0/12 7/0/13 13/3/4
explore_intensify_0.9 14/0/6 8/0/12 7/0/13 12/1/7
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Table B.10 Binary performance for “explore_intensify_0.2” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 1 0 0 1
uncertainty 1 0 0 0
random 1 0 0 1
rr_cycle_switching_50 1 1 0 0
explore_intensify_0.1 0 1 0 0
explore_intensify_0.3 1 0 0 1
explore_intensify_0.4 1 0 0 0
explore_intensify_0.5 1 0 0 0
explore_intensify_0.6 1 0 0 0
explore_intensify_0.7 1 0 0 0
explore_intensify_0.8 1 0 0 1
explore_intensify_0.9 1 0 0 1

Table B.11 Win/Tie/Loss counts for “explore_intensify_0.3” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0/20/0 12/0/8 8/0/12 9/0/11
uncertainty 14/0/6 9/0/11 10/0/10 2/6/12
random 7/0/13 8/0/12 8/0/12 9/0/11
rr_cycle_switching_50 10/0/10 10/0/10 8/0/12 3/0/17
explore_intensify_0.1 7/0/13 13/0/7 9/0/11 5/4/11
explore_intensify_0.2 6/0/14 10/0/10 12/0/8 1/6/13
explore_intensify_0.4 0/20/0 11/0/9 12/0/8 4/6/10
explore_intensify_0.5 0/20/0 12/0/8 9/0/11 7/3/10
explore_intensify_0.6 0/20/0 12/0/8 4/0/16 5/7/8
explore_intensify_0.7 0/20/0 12/0/8 10/0/10 6/6/8
explore_intensify_0.8 0/20/0 12/0/8 8/0/12 9/2/9
explore_intensify_0.9 0/20/0 12/0/8 8/0/12 11/1/8
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Table B.12 Binary performance for “explore_intensify_0.3” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0 1 0 0
uncertainty 1 0 0 0
random 0 0 0 0
rr_cycle_switching_50 0 0 0 0
explore_intensify_0.1 0 1 0 0
explore_intensify_0.2 0 0 1 0
explore_intensify_0.4 0 1 1 0
explore_intensify_0.5 0 1 0 0
explore_intensify_0.6 0 1 0 0
explore_intensify_0.7 0 1 0 0
explore_intensify_0.8 0 1 0 0
explore_intensify_0.9 0 1 0 1

Table B.13 Win/Tie/Loss counts for “explore_intensify_0.4” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0/20/0 13/0/7 8/0/12 10/0/10
uncertainty 14/0/6 9/0/11 8/0/12 6/7/7
random 7/0/13 9/0/11 8/0/12 11/0/9
rr_cycle_switching_50 10/0/10 10/0/10 10/0/10 8/0/12
explore_intensify_0.1 7/0/13 10/0/10 10/0/10 8/6/6
explore_intensify_0.2 6/0/14 10/0/10 12/0/8 5/7/8
explore_intensify_0.3 0/20/0 9/0/11 8/0/12 10/6/4
explore_intensify_0.5 0/20/0 13/0/7 11/0/9 10/5/5
explore_intensify_0.6 0/20/0 13/0/7 6/0/14 9/7/4
explore_intensify_0.7 0/20/0 13/0/7 9/0/11 8/6/6
explore_intensify_0.8 0/20/0 13/0/7 8/0/12 12/4/4
explore_intensify_0.9 0/20/0 13/0/7 8/0/12 12/0/8
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Table B.14 Binary performance for “explore_intensify_0.4” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0 1 0 0
uncertainty 1 0 0 0
random 0 0 0 1
rr_cycle_switching_50 0 0 0 0
explore_intensify_0.1 0 0 0 0
explore_intensify_0.2 0 0 1 0
explore_intensify_0.3 0 0 0 0
explore_intensify_0.5 0 1 1 0
explore_intensify_0.6 0 1 0 0
explore_intensify_0.7 0 1 0 0
explore_intensify_0.8 0 1 0 1
explore_intensify_0.9 0 1 0 1

Table B.15 Win/Tie/Loss counts for “explore_intensify_0.5” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0/20/0 0/20/0 11/0/9 8/0/12
uncertainty 14/0/6 9/0/11 10/0/10 4/7/9
random 7/0/13 9/0/11 10/0/10 10/0/10
rr_cycle_switching_50 10/0/10 11/0/9 9/0/11 7/0/13
explore_intensify_0.1 7/0/13 10/0/10 10/0/10 5/9/6
explore_intensify_0.2 6/0/14 12/0/8 14/0/6 1/9/10
explore_intensify_0.3 0/20/0 8/0/12 11/0/9 10/3/7
explore_intensify_0.4 0/20/0 7/0/13 9/0/11 5/5/10
explore_intensify_0.6 0/20/0 0/20/0 6/0/14 6/10/4
explore_intensify_0.7 0/20/0 0/20/0 8/0/12 4/9/7
explore_intensify_0.8 0/20/0 0/20/0 11/0/9 9/6/5
explore_intensify_0.9 0/20/0 0/20/0 11/0/9 7/4/9
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Table B.16 Binary performance for “explore_intensify_0.5” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 1 0
uncertainty 1 0 0 0
random 0 0 0 0
rr_cycle_switching_50 0 1 0 0
explore_intensify_0.1 0 0 0 0
explore_intensify_0.2 0 1 1 0
explore_intensify_0.3 0 0 1 0
explore_intensify_0.4 0 0 0 0
explore_intensify_0.6 0 0 0 0
explore_intensify_0.7 0 0 0 0
explore_intensify_0.8 0 0 1 0
explore_intensify_0.9 0 0 1 0

Table B.17 Win/Tie/Loss counts for “explore_intensify_0.6” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0/20/0 0/20/0 14/0/6 8/0/12
uncertainty 14/0/6 9/0/11 13/0/7 4/8/8
random 7/0/13 9/0/11 10/0/10 12/0/8
rr_cycle_switching_50 10/0/10 11/0/9 12/0/8 8/0/12
explore_intensify_0.1 7/0/13 10/0/10 13/0/7 5/8/7
explore_intensify_0.2 6/0/14 12/0/8 14/0/6 3/8/9
explore_intensify_0.3 0/20/0 8/0/12 16/0/4 8/7/5
explore_intensify_0.4 0/20/0 7/0/13 14/0/6 4/7/9
explore_intensify_0.5 0/20/0 0/20/0 14/0/6 4/10/6
explore_intensify_0.7 0/20/0 0/20/0 11/0/9 3/10/7
explore_intensify_0.8 0/20/0 0/20/0 14/0/6 9/5/6
explore_intensify_0.9 0/20/0 0/20/0 14/0/6 10/2/8
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Table B.18 Binary performance for “explore_intensify_0.6” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 1 0
uncertainty 1 0 1 0
random 0 0 0 1
rr_cycle_switching_50 0 1 1 0
explore_intensify_0.1 0 0 1 0
explore_intensify_0.2 0 1 1 0
explore_intensify_0.3 0 0 1 0
explore_intensify_0.4 0 0 1 0
explore_intensify_0.5 0 0 1 0
explore_intensify_0.7 0 0 1 0
explore_intensify_0.8 0 0 1 0
explore_intensify_0.9 0 0 1 0

Table B.19 Win/Tie/Loss counts for “explore_intensify_0.7” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0/20/0 0/20/0 10/0/10 9/0/11
uncertainty 14/0/6 9/0/11 11/0/9 4/9/7
random 7/0/13 9/0/11 8/0/12 11/0/9
rr_cycle_switching_50 10/0/10 11/0/9 8/0/12 9/0/11
explore_intensify_0.1 7/0/13 10/0/10 12/0/8 8/8/4
explore_intensify_0.2 6/0/14 12/0/8 12/0/8 4/7/9
explore_intensify_0.3 0/20/0 8/0/12 10/0/10 8/6/6
explore_intensify_0.4 0/20/0 7/0/13 11/0/9 6/6/8
explore_intensify_0.5 0/20/0 0/20/0 12/0/8 7/9/4
explore_intensify_0.6 0/20/0 0/20/0 9/0/11 7/10/3
explore_intensify_0.8 0/20/0 0/20/0 10/0/10 9/7/4
explore_intensify_0.9 0/20/0 0/20/0 10/0/10 9/3/8
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Table B.20 Binary performance for “explore_intensify_0.7” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 0 0
uncertainty 1 0 1 0
random 0 0 0 1
rr_cycle_switching_50 0 1 0 0
explore_intensify_0.1 0 0 1 0
explore_intensify_0.2 0 1 1 0
explore_intensify_0.3 0 0 0 0
explore_intensify_0.4 0 0 1 0
explore_intensify_0.5 0 0 1 0
explore_intensify_0.6 0 0 0 0
explore_intensify_0.8 0 0 0 0
explore_intensify_0.9 0 0 0 0

Table B.21 Win/Tie/Loss counts for “explore_intensify_0.8” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0/20/0 0/20/0 0/20/0 8/0/12
uncertainty 14/0/6 9/0/11 10/0/10 5/5/10
random 7/0/13 9/0/11 8/0/12 9/0/11
rr_cycle_switching_50 10/0/10 11/0/9 9/0/11 6/0/14
explore_intensify_0.1 7/0/13 10/0/10 11/0/9 6/7/7
explore_intensify_0.2 6/0/14 12/0/8 13/0/7 4/3/13
explore_intensify_0.3 0/20/0 8/0/12 12/0/8 9/2/9
explore_intensify_0.4 0/20/0 7/0/13 12/0/8 4/4/12
explore_intensify_0.5 0/20/0 0/20/0 9/0/11 5/6/9
explore_intensify_0.6 0/20/0 0/20/0 6/0/14 6/5/9
explore_intensify_0.7 0/20/0 0/20/0 10/0/10 4/7/9
explore_intensify_0.9 0/20/0 0/20/0 0/20/0 8/2/10
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Table B.22 Binary performance for “explore_intensify_0.8” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 0 0
uncertainty 1 0 0 0
random 0 0 0 0
rr_cycle_switching_50 0 1 0 0
explore_intensify_0.1 0 0 1 0
explore_intensify_0.2 0 1 1 0
explore_intensify_0.3 0 0 1 0
explore_intensify_0.4 0 0 1 0
explore_intensify_0.5 0 0 0 0
explore_intensify_0.6 0 0 0 0
explore_intensify_0.7 0 0 0 0
explore_intensify_0.9 0 0 0 0

Table B.23 Win/Tie/Loss counts for “explore_intensify_0.9” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0/20/0 0/20/0 0/20/0 9/0/11
uncertainty 14/0/6 9/0/11 10/0/10 8/1/11
random 7/0/13 9/0/11 8/0/12 11/0/9
rr_cycle_switching_50 10/0/10 11/0/9 9/0/11 5/0/15
explore_intensify_0.1 7/0/13 10/0/10 11/0/9 8/2/10
explore_intensify_0.2 6/0/14 12/0/8 13/0/7 7/1/12
explore_intensify_0.3 0/20/0 8/0/12 12/0/8 8/1/11
explore_intensify_0.4 0/20/0 7/0/13 12/0/8 8/0/12
explore_intensify_0.5 0/20/0 0/20/0 9/0/11 9/4/7
explore_intensify_0.6 0/20/0 0/20/0 6/0/14 8/2/10
explore_intensify_0.7 0/20/0 0/20/0 10/0/10 8/3/9
explore_intensify_0.8 0/20/0 0/20/0 0/20/0 10/2/8
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Table B.24 Binary performance for “explore_intensify_0.9” compared against
other strategies in split strategy “stratified” at specified percentages of labeled
training data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 0 0
uncertainty 1 0 0 0
random 0 0 0 1
rr_cycle_switching_50 0 1 0 0
explore_intensify_0.1 0 0 1 0
explore_intensify_0.2 0 1 1 0
explore_intensify_0.3 0 0 1 0
explore_intensify_0.4 0 0 1 0
explore_intensify_0.5 0 0 0 0
explore_intensify_0.6 0 0 0 0
explore_intensify_0.7 0 0 0 0
explore_intensify_0.8 0 0 0 0
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(a) Explore Intensify 0.1 (b) Explore Intensify 0.2 (c) Explore Intensify 0.3

(d) Explore Intensify 0.4 (e) Explore Intensify 0.5 (f) Explore Intensify 0.6

(g) Explore Intensify 0.7 (h) Explore Intensify 0.8 (i) Explore Intensify 0.9

Figure B.1 Explore Intensify strategies (Stratified-split)
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(a) Dissimilarity Sampling (b) Random Sampling

(c) Uncertainty Sampling (d) RR Cycle Switching

Figure B.2 Random, Uncertainty, Dissimilarity sampling and RR Cycle Switching
(Stratified-split)
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B.2 Scaffold-splitting

Table B.25 Win/Tie/Loss counts for “dissimilarity” compared against other
strategies in split strategy “scaffold” at specified percentages of labeled training
data

Compared Against 25% 50% 75% 100%

uncertainty 14/0/6 15/0/5 9/0/11 17/0/3
random 7/0/13 10/0/10 5/0/15 1/0/19
rr_cycle_switching_50 12/0/8 13/0/7 7/0/13 14/0/6
explore_intensify_0.1 14/0/6 19/0/1 10/0/10 16/0/4
explore_intensify_0.2 10/0/10 14/0/6 13/0/7 15/0/5
explore_intensify_0.3 0/20/0 15/0/5 9/0/11 14/0/6
explore_intensify_0.4 0/20/0 18/0/2 10/0/10 19/0/1
explore_intensify_0.5 0/20/0 0/20/0 8/0/12 18/0/2
explore_intensify_0.6 0/20/0 0/20/0 11/0/9 12/0/8
explore_intensify_0.7 0/20/0 0/20/0 7/0/13 15/0/5
explore_intensify_0.8 0/20/0 0/20/0 0/20/0 15/0/5
explore_intensify_0.9 0/20/0 0/20/0 0/20/0 4/0/16

Table B.26 Binary performance for “dissimilarity” compared against other strate-
gies in split strategy “scaffold” at specified percentages of labeled training data

Compared Against 25% 50% 75% 100%

uncertainty 1 1 0 1
random 0 0 0 0
rr_cycle_switching_50 1 1 0 1
explore_intensify_0.1 1 1 0 1
explore_intensify_0.2 0 1 1 1
explore_intensify_0.3 0 1 0 1
explore_intensify_0.4 0 1 0 1
explore_intensify_0.5 0 0 0 1
explore_intensify_0.6 0 0 1 1
explore_intensify_0.7 0 0 0 1
explore_intensify_0.8 0 0 0 1
explore_intensify_0.9 0 0 0 0
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Table B.27 Win/Tie/Loss counts for “uncertainty” compared against other strate-
gies in split strategy “scaffold” at specified percentages of labeled training data

Compared Against 25% 50% 75% 100%

dissimilarity 6/0/14 5/0/15 11/0/9 3/0/17
random 5/0/15 7/0/13 5/0/15 1/0/19
rr_cycle_switching_50 10/0/10 8/0/12 4/0/16 11/0/9
explore_intensify_0.1 9/0/11 11/0/9 8/0/12 7/4/9
explore_intensify_0.2 10/0/10 10/0/10 9/0/11 8/4/8
explore_intensify_0.3 6/0/14 9/0/11 7/0/13 8/2/10
explore_intensify_0.4 6/0/14 9/0/11 7/0/13 10/2/8
explore_intensify_0.5 6/0/14 5/0/15 4/0/16 13/2/5
explore_intensify_0.6 6/0/14 5/0/15 6/0/14 10/0/10
explore_intensify_0.7 6/0/14 5/0/15 5/0/15 14/0/6
explore_intensify_0.8 6/0/14 5/0/15 11/0/9 12/0/8
explore_intensify_0.9 6/0/14 5/0/15 11/0/9 4/0/16

Table B.28 Binary performance for “uncertainty” compared against other strate-
gies in split strategy “scaffold” at specified percentages of labeled training data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 1 0
random 0 0 0 0
rr_cycle_switching_50 0 0 0 1
explore_intensify_0.1 0 1 0 0
explore_intensify_0.2 0 0 0 0
explore_intensify_0.3 0 0 0 0
explore_intensify_0.4 0 0 0 0
explore_intensify_0.5 0 0 0 1
explore_intensify_0.6 0 0 0 0
explore_intensify_0.7 0 0 0 1
explore_intensify_0.8 0 0 1 1
explore_intensify_0.9 0 0 1 0
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Table B.29 Win/Tie/Loss counts for “random” compared against other strategies
in split strategy “scaffold” at specified percentages of labeled training data

Compared Against 25% 50% 75% 100%

dissimilarity 13/0/7 10/0/10 15/0/5 19/0/1
uncertainty 15/0/5 13/0/7 15/0/5 19/0/1
rr_cycle_switching_50 16/0/4 15/0/5 15/0/5 19/0/1
explore_intensify_0.1 16/0/4 17/0/3 16/0/4 18/0/2
explore_intensify_0.2 13/0/7 15/0/5 16/0/4 16/0/4
explore_intensify_0.3 13/0/7 12/0/8 16/0/4 16/0/4
explore_intensify_0.4 13/0/7 18/0/2 12/0/8 19/0/1
explore_intensify_0.5 13/0/7 10/0/10 15/0/5 20/0/0
explore_intensify_0.6 13/0/7 10/0/10 15/0/5 15/0/5
explore_intensify_0.7 13/0/7 10/0/10 15/0/5 19/0/1
explore_intensify_0.8 13/0/7 10/0/10 15/0/5 20/0/0
explore_intensify_0.9 13/0/7 10/0/10 15/0/5 11/0/9

Table B.30 Binary performance for “random” compared against other strategies in
split strategy “scaffold” at specified percentages of labeled training data

Compared Against 25% 50% 75% 100%

dissimilarity 1 0 1 1
uncertainty 1 1 1 1
rr_cycle_switching_50 1 1 1 1
explore_intensify_0.1 1 1 1 1
explore_intensify_0.2 1 1 1 1
explore_intensify_0.3 1 1 1 1
explore_intensify_0.4 1 1 1 1
explore_intensify_0.5 1 0 1 1
explore_intensify_0.6 1 0 1 1
explore_intensify_0.7 1 0 1 1
explore_intensify_0.8 1 0 1 1
explore_intensify_0.9 1 0 1 1
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Table B.31 Win/Tie/Loss counts for “explore_intensify_0.1” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 6/0/14 1/0/19 10/0/10 4/0/16
uncertainty 11/0/9 9/0/11 12/0/8 9/4/7
random 4/0/16 3/0/17 4/0/16 2/0/18
rr_cycle_switching_50 9/0/11 8/0/12 7/0/13 12/0/8
explore_intensify_0.2 8/0/12 8/0/12 13/0/7 7/4/9
explore_intensify_0.3 6/0/14 6/0/14 9/0/11 11/0/9
explore_intensify_0.4 6/0/14 11/0/9 7/0/13 13/1/6
explore_intensify_0.5 6/0/14 1/0/19 9/0/11 12/3/5
explore_intensify_0.6 6/0/14 1/0/19 7/0/13 11/0/9
explore_intensify_0.7 6/0/14 1/0/19 7/0/13 14/0/6
explore_intensify_0.8 6/0/14 1/0/19 10/0/10 13/0/7
explore_intensify_0.9 6/0/14 1/0/19 10/0/10 5/0/15

Table B.32 Binary performance for “explore_intensify_0.1” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 0 0
uncertainty 1 0 1 0
random 0 0 0 0
rr_cycle_switching_50 0 0 0 1
explore_intensify_0.2 0 0 1 0
explore_intensify_0.3 0 0 0 1
explore_intensify_0.4 0 1 0 1
explore_intensify_0.5 0 0 0 1
explore_intensify_0.6 0 0 0 1
explore_intensify_0.7 0 0 0 1
explore_intensify_0.8 0 0 0 1
explore_intensify_0.9 0 0 0 0
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Table B.33 Win/Tie/Loss counts for “explore_intensify_0.2” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 10/0/10 6/0/14 7/0/13 5/0/15
uncertainty 10/0/10 10/0/10 11/0/9 8/4/8
random 7/0/13 5/0/15 4/0/16 4/0/16
rr_cycle_switching_50 11/0/9 9/0/11 5/0/15 13/0/7
explore_intensify_0.1 12/0/8 12/0/8 7/0/13 9/4/7
explore_intensify_0.3 10/0/10 9/0/11 6/0/14 9/2/9
explore_intensify_0.4 10/0/10 12/0/8 5/0/15 12/1/7
explore_intensify_0.5 10/0/10 6/0/14 5/0/15 11/3/6
explore_intensify_0.6 10/0/10 6/0/14 8/0/12 10/2/8
explore_intensify_0.7 10/0/10 6/0/14 6/0/14 11/1/8
explore_intensify_0.8 10/0/10 6/0/14 7/0/13 10/0/10
explore_intensify_0.9 10/0/10 6/0/14 7/0/13 6/0/14

Table B.34 Binary performance for “explore_intensify_0.2” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 0 0
uncertainty 0 0 1 0
random 0 0 0 0
rr_cycle_switching_50 1 0 0 1
explore_intensify_0.1 1 1 0 0
explore_intensify_0.3 0 0 0 0
explore_intensify_0.4 0 1 0 1
explore_intensify_0.5 0 0 0 1
explore_intensify_0.6 0 0 0 0
explore_intensify_0.7 0 0 0 1
explore_intensify_0.8 0 0 0 0
explore_intensify_0.9 0 0 0 0
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Table B.35 Win/Tie/Loss counts for “explore_intensify_0.3” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0/20/0 5/0/15 11/0/9 6/0/14
uncertainty 14/0/6 11/0/9 13/0/7 10/2/8
random 7/0/13 8/0/12 4/0/16 4/0/16
rr_cycle_switching_50 12/0/8 9/0/11 8/0/12 15/0/5
explore_intensify_0.1 14/0/6 14/0/6 11/0/9 9/0/11
explore_intensify_0.2 10/0/10 11/0/9 14/0/6 9/2/9
explore_intensify_0.4 0/20/0 14/0/6 11/0/9 11/4/5
explore_intensify_0.5 0/20/0 5/0/15 10/0/10 14/0/6
explore_intensify_0.6 0/20/0 5/0/15 9/0/11 12/0/8
explore_intensify_0.7 0/20/0 5/0/15 7/0/13 15/0/5
explore_intensify_0.8 0/20/0 5/0/15 11/0/9 14/0/6
explore_intensify_0.9 0/20/0 5/0/15 11/0/9 8/0/12

Table B.36 Binary performance for “explore_intensify_0.3” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 1 0
uncertainty 1 1 1 0
random 0 0 0 0
rr_cycle_switching_50 1 0 0 1
explore_intensify_0.1 1 1 1 0
explore_intensify_0.2 0 1 1 0
explore_intensify_0.4 0 1 1 1
explore_intensify_0.5 0 0 0 1
explore_intensify_0.6 0 0 0 1
explore_intensify_0.7 0 0 0 1
explore_intensify_0.8 0 0 1 1
explore_intensify_0.9 0 0 1 0
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Table B.37 Win/Tie/Loss counts for “explore_intensify_0.4” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0/20/0 2/0/18 10/0/10 1/0/19
uncertainty 14/0/6 11/0/9 13/0/7 8/2/10
random 7/0/13 2/0/18 8/0/12 1/0/19
rr_cycle_switching_50 12/0/8 6/0/14 8/0/12 10/0/10
explore_intensify_0.1 14/0/6 9/0/11 13/0/7 6/1/13
explore_intensify_0.2 10/0/10 8/0/12 15/0/5 7/1/12
explore_intensify_0.3 0/20/0 6/0/14 9/0/11 5/4/11
explore_intensify_0.5 0/20/0 2/0/18 9/0/11 13/0/7
explore_intensify_0.6 0/20/0 2/0/18 12/0/8 6/1/13
explore_intensify_0.7 0/20/0 2/0/18 9/0/11 10/1/9
explore_intensify_0.8 0/20/0 2/0/18 10/0/10 9/0/11
explore_intensify_0.9 0/20/0 2/0/18 10/0/10 2/0/18

Table B.38 Binary performance for “explore_intensify_0.4” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 0 0
uncertainty 1 1 1 0
random 0 0 0 0
rr_cycle_switching_50 1 0 0 0
explore_intensify_0.1 1 0 1 0
explore_intensify_0.2 0 0 1 0
explore_intensify_0.3 0 0 0 0
explore_intensify_0.5 0 0 0 1
explore_intensify_0.6 0 0 1 0
explore_intensify_0.7 0 0 0 0
explore_intensify_0.8 0 0 0 0
explore_intensify_0.9 0 0 0 0
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Table B.39 Win/Tie/Loss counts for “explore_intensify_0.5” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0/20/0 0/20/0 12/0/8 2/0/18
uncertainty 14/0/6 15/0/5 16/0/4 5/2/13
random 7/0/13 10/0/10 5/0/15 0/0/20
rr_cycle_switching_50 12/0/8 13/0/7 14/0/6 10/0/10
explore_intensify_0.1 14/0/6 19/0/1 11/0/9 5/3/12
explore_intensify_0.2 10/0/10 14/0/6 15/0/5 6/3/11
explore_intensify_0.3 0/20/0 15/0/5 10/0/10 6/0/14
explore_intensify_0.4 0/20/0 18/0/2 11/0/9 7/0/13
explore_intensify_0.6 0/20/0 0/20/0 10/0/10 5/1/14
explore_intensify_0.7 0/20/0 0/20/0 11/0/9 7/2/11
explore_intensify_0.8 0/20/0 0/20/0 12/0/8 7/1/12
explore_intensify_0.9 0/20/0 0/20/0 12/0/8 4/0/16

Table B.40 Binary performance for “explore_intensify_0.5” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 1 0
uncertainty 1 1 1 0
random 0 0 0 0
rr_cycle_switching_50 1 1 1 0
explore_intensify_0.1 1 1 1 0
explore_intensify_0.2 0 1 1 0
explore_intensify_0.3 0 1 0 0
explore_intensify_0.4 0 1 1 0
explore_intensify_0.6 0 0 0 0
explore_intensify_0.7 0 0 1 0
explore_intensify_0.8 0 0 1 0
explore_intensify_0.9 0 0 1 0
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Table B.41 Win/Tie/Loss counts for “explore_intensify_0.6” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0/20/0 0/20/0 9/0/11 8/0/12
uncertainty 14/0/6 15/0/5 14/0/6 10/0/10
random 7/0/13 10/0/10 5/0/15 5/0/15
rr_cycle_switching_50 12/0/8 13/0/7 9/0/11 11/0/9
explore_intensify_0.1 14/0/6 19/0/1 13/0/7 9/0/11
explore_intensify_0.2 10/0/10 14/0/6 12/0/8 8/2/10
explore_intensify_0.3 0/20/0 15/0/5 11/0/9 8/0/12
explore_intensify_0.4 0/20/0 18/0/2 8/0/12 13/1/6
explore_intensify_0.5 0/20/0 0/20/0 10/0/10 14/1/5
explore_intensify_0.7 0/20/0 0/20/0 9/0/11 10/1/9
explore_intensify_0.8 0/20/0 0/20/0 9/0/11 12/0/8
explore_intensify_0.9 0/20/0 0/20/0 9/0/11 3/3/14

Table B.42 Binary performance for “explore_intensify_0.6” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 0 0
uncertainty 1 1 1 0
random 0 0 0 0
rr_cycle_switching_50 1 1 0 1
explore_intensify_0.1 1 1 1 0
explore_intensify_0.2 0 1 1 0
explore_intensify_0.3 0 1 1 0
explore_intensify_0.4 0 1 0 1
explore_intensify_0.5 0 0 0 1
explore_intensify_0.7 0 0 0 0
explore_intensify_0.8 0 0 0 1
explore_intensify_0.9 0 0 0 0
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Table B.43 Win/Tie/Loss counts for “explore_intensify_0.7” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0/20/0 0/20/0 13/0/7 5/0/15
uncertainty 14/0/6 15/0/5 15/0/5 6/0/14
random 7/0/13 10/0/10 5/0/15 1/0/19
rr_cycle_switching_50 12/0/8 13/0/7 10/0/10 8/0/12
explore_intensify_0.1 14/0/6 19/0/1 13/0/7 6/0/14
explore_intensify_0.2 10/0/10 14/0/6 14/0/6 8/1/11
explore_intensify_0.3 0/20/0 15/0/5 13/0/7 5/0/15
explore_intensify_0.4 0/20/0 18/0/2 11/0/9 9/1/10
explore_intensify_0.5 0/20/0 0/20/0 9/0/11 11/2/7
explore_intensify_0.6 0/20/0 0/20/0 11/0/9 9/1/10
explore_intensify_0.8 0/20/0 0/20/0 13/0/7 6/1/13
explore_intensify_0.9 0/20/0 0/20/0 13/0/7 5/0/15

Table B.44 Binary performance for “explore_intensify_0.7” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 1 0
uncertainty 1 1 1 0
random 0 0 0 0
rr_cycle_switching_50 1 1 0 0
explore_intensify_0.1 1 1 1 0
explore_intensify_0.2 0 1 1 0
explore_intensify_0.3 0 1 1 0
explore_intensify_0.4 0 1 1 0
explore_intensify_0.5 0 0 0 1
explore_intensify_0.6 0 0 1 0
explore_intensify_0.8 0 0 1 0
explore_intensify_0.9 0 0 1 0
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Table B.45 Win/Tie/Loss counts for “explore_intensify_0.8” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0/20/0 0/20/0 0/20/0 5/0/15
uncertainty 14/0/6 15/0/5 9/0/11 8/0/12
random 7/0/13 10/0/10 5/0/15 0/0/20
rr_cycle_switching_50 12/0/8 13/0/7 7/0/13 12/0/8
explore_intensify_0.1 14/0/6 19/0/1 10/0/10 7/0/13
explore_intensify_0.2 10/0/10 14/0/6 13/0/7 10/0/10
explore_intensify_0.3 0/20/0 15/0/5 9/0/11 6/0/14
explore_intensify_0.4 0/20/0 18/0/2 10/0/10 11/0/9
explore_intensify_0.5 0/20/0 0/20/0 8/0/12 12/1/7
explore_intensify_0.6 0/20/0 0/20/0 11/0/9 8/0/12
explore_intensify_0.7 0/20/0 0/20/0 7/0/13 13/1/6
explore_intensify_0.9 0/20/0 0/20/0 0/20/0 3/0/17

Table B.46 Binary performance for “explore_intensify_0.8” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 0 0
uncertainty 1 1 0 0
random 0 0 0 0
rr_cycle_switching_50 1 1 0 1
explore_intensify_0.1 1 1 0 0
explore_intensify_0.2 0 1 1 0
explore_intensify_0.3 0 1 0 0
explore_intensify_0.4 0 1 0 1
explore_intensify_0.5 0 0 0 1
explore_intensify_0.6 0 0 1 0
explore_intensify_0.7 0 0 0 1
explore_intensify_0.9 0 0 0 0
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Table B.47 Win/Tie/Loss counts for “explore_intensify_0.9” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0/20/0 0/20/0 0/20/0 16/0/4
uncertainty 14/0/6 15/0/5 9/0/11 16/0/4
random 7/0/13 10/0/10 5/0/15 9/0/11
rr_cycle_switching_50 12/0/8 13/0/7 7/0/13 19/0/1
explore_intensify_0.1 14/0/6 19/0/1 10/0/10 15/0/5
explore_intensify_0.2 10/0/10 14/0/6 13/0/7 14/0/6
explore_intensify_0.3 0/20/0 15/0/5 9/0/11 12/0/8
explore_intensify_0.4 0/20/0 18/0/2 10/0/10 18/0/2
explore_intensify_0.5 0/20/0 0/20/0 8/0/12 16/0/4
explore_intensify_0.6 0/20/0 0/20/0 11/0/9 14/3/3
explore_intensify_0.7 0/20/0 0/20/0 7/0/13 15/0/5
explore_intensify_0.8 0/20/0 0/20/0 0/20/0 17/0/3

Table B.48 Binary performance for “explore_intensify_0.9” compared against
other strategies in split strategy “scaffold” at specified percentages of labeled train-
ing data

Compared Against 25% 50% 75% 100%

dissimilarity 0 0 0 1
uncertainty 1 1 0 1
random 0 0 0 0
rr_cycle_switching_50 1 1 0 1
explore_intensify_0.1 1 1 0 1
explore_intensify_0.2 0 1 1 1
explore_intensify_0.3 0 1 0 1
explore_intensify_0.4 0 1 0 1
explore_intensify_0.5 0 0 0 1
explore_intensify_0.6 0 0 1 1
explore_intensify_0.7 0 0 0 1
explore_intensify_0.8 0 0 0 1
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Next, we show the performance figures for all the active learning strategies in the
scaffold-split setup.

(a) Explore-Intensify 0.1 (b) Explore-Intensify 0.2 (c) Explore-Intensify 0.3

(d) Explore-Intensify 0.4 (e) Explore-Intensify 0.5 (f) Explore-Intensify 0.6

(g) Explore-Intensify 0.7 (h) Explore-Intensify 0.8 (i) Explore-Intensify 0.9

Figure B.3 Explore Intensify strategies (Scaffold-split)
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(a) Dissimilarity Sampling (b) Random Sampling

(c) Uncertainty Sampling (d) RR Cycle Switching

Figure B.4 Random, Uncertainty, Dissimilarity sampling and RR Cycle Switching
(Scaffold-split)
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