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ABSTRACT

RATIONAL PREPERDIODIC POINTS OF RATIONAL MAPS

KADER BULUT

Mathematics, Master Thesis, December 2025

Thesis Supervisor: Assoc. Prof. Dr. Mohammad Sadek

Keywords: Arithmetic dynamics, elliptic curves, hyperelliptic curves, abelian
varieties, preperiodic points, periodic points

In this thesis we focus on the preperiodic and periodic points of the dynamical
systems associated to rational maps of degree 2. We discuss the state of the art
regarding rational preperiodic points of polynomials of degree 2 defined over the
rational field with an emphasis on the Uniform Boundedness Conjecture on the
number of such points. We then study the known classification results of rational
preperiodic points of rational maps of degree 2, these maps include rational maps
of degree 2 with abelian automorphism groups and rational maps of degree 2 with
a rational periodic critical point of period 2.
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ÖZET

RASYONEL FONKSİYONLARIN RASYONEL PREPERİYODİK NOKTALARI

KADER BULUT

Matematik, Yüksek Lisans Tezi, Aralık 2025

Tez Danışmanı: Assoc. Prof. Dr. Mohammad Sadek

Anahtar Kelimeler: Aritmetik dinamik, eliptik eğriler, hipereliptik eğriler, abelyen
değişkenler, preperiodic noktalar, periodic noktalar

Bu tezde, derecesi 2 olan rasyonel fonksiyonlarla ilişkilendirilen dinamik sistem-
lerin preperiyodik ve periyodik noktalarını inceliyoruz. Rasyonel sayı cismi üzerinde
tanımlı derecesi 2 olan polinomların rasyonel preperiyodik noktalarına ilişkin gün-
cel durumu, bu noktaların sayısı üzerindeki rational field with an emphasis on the
Uniform Boundedness Conjecture’na odaklanarak ele alıyoruz. Ardından, derecesi 2
olan rasyonel fonksiyonların rasyonel preperiyodik noktalarının bilinen sınıflandırma
sonuçlarını inceliyoruz. Bu inceleme, özellikle şu iki sınıfı kapsamaktadır: abelyen
otomorfizm gruplarına sahip derecesi 2 olan rasyonel fonksiyonlar ve periyodu 2 olan
rasyonel bir periyodik kritik noktaya sahip derecesi 2 olan rasyonel fonksiyonlar.
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1. INTRODUCTION

The study of arithmetic dynamics, which brings together number theory and dynam-
ical systems, has emerged as an important field in modern mathematics, especially
within the last few decades. This area focuses on the behavior of orbits under re-
peated applications of functions defined over number fields or other arithmetic rings.
When these maps are iterated, particularly polynomials or rational functions, they
reveal complex structures within number fields. This thesis focuses on the behavior
of periodic and preperiodic rational points under iteration, particularly through the
view of the Uniform Boundedness Conjecture in arithmetic dynamics.

One of the important question in arithmetic dynamics involves periodic points, which
return to their starting point after a fixed number of iterations, and preperiodic
points, which eventually enter a repeating cycle. Classical theorems, such as North-
cott’s Theorem (1950), provide some of the earliest foundational results in this area.
Northcott proved that, for any morphism of a number field and a given bound on
the height of points, there are finitely many periodic points. This finiteness is cru-
cial for understanding how periodic structures form under iteration, particularly
for functions with integer or rational coefficients. Building upon this foundational
work, Morton, Poonen, and Silverman have advanced the study of periodicity and
boundedness within specific families of dynamical systems.

In 1994, Morton and Silverman introduced a seminal conjecture, often referred to
as the Uniform Boundedness Conjecture for preperiodic points of rational functions.
This conjecture offers that for any given number field K and degree d ≥ 2, there
should exist a uniform upper bound on the number of preperiodic points that can
exist for a rational function defined over K with degree d. This conjecture, inspired
by the analogous Uniform Boundedness Conjecture in the context of elliptic curves,
has substantial research, with recent studies attempting to prove or provide bounds
for specific cases. The conjecture remains open in its most general form, though
substantial advances have been made.

Morton and Silverman’s conjecture has significant implications, as it suggests a
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uniform constraint on the periodic and preperiodic structure within arithmetic dy-
namical systems across families of functions. This uniformity would imply a level
of predictability and regularity within the behavior of rational points under itera-
tion, which is an exciting prospect in the study of dynamical systems on algebraic
varieties.

Bjorn Poonen has made considerable contributions to the understanding of peri-
odic points, particularly in the context of quadratic polynomials. One of Poonen’s
key results involves showing the finiteness of rational points in certain cases. For
instance, in his work on quadratic rational functions, Poonen investigated condi-
tions under which rational points exhibit periodic orbits, contributing to a deeper
understanding of the possible periodic structures within this family of functions.
His approach often involves constructing explicit examples and examining how con-
straints on the field affect periodicity, helping to frame specific instances where the
Uniform Boundedness Conjecture holds.

In addition to proving particular cases of boundedness, Poonen’s work is a found-
stion for further research in higher degree cases and in different number fields. His
methods have inspired new approaches to understanding the relationship between
function degree, number field characteristics, and the potential periodic and prepe-
riodic structure.

Michael Stoll has also contributed significantly to arithmetic dynamics, particularly
through his work on modular curves and their application to dynamical systems. Dy-
namical modular curves, analogous to classical modular curves, allow researchers to
parametrize families of dynamical systems with specified periodic behaviors. Stoll’s
research has focused on leveraging these curves to understand constraints on peri-
odic points, providing tools to estimate bounds on periodic and preperiodic points
across certain classes of maps. By studying these modular structures, Stoll has of-
fered a powerful method to examine boundedness properties and periodic behavior
in greater depth, particularly for quadratic and cubic polynomial maps.

Michelle Manes has explored several key questions in arithmetic dynamics, par-
ticularly focusing on the distribution and structure of preperiodic points. Manes
has conducted extensive research on the field-specific characteristics that influence
boundedness, especially over finite fields. One notable area of Manes’ work involves
the relationship between the degree of the map and the density of periodic points,
which provides insight into how rational points distribute over dynamical systems.
Her findings have contributed to a deeper understanding of the periodic structures
that can arise within these systems, particularly through explicit constructions and
computational models that reveal possible configurations of preperiodic points.
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Canci’s work has included proving finiteness results in certain cases for rational
periodic points, often examining how the arithmetic properties of the base field
influence the bounds on periodicity. These contributions offer extensions to the
general conjectures within arithmetic dynamics, providing valuable insights into the
range and limitations of periodic structures across different arithmetic settings.

The aim of this thesis is to further investigate the boundedness of periodic and
preperiodic points within arithmetic dynamical systems, particularly under poly-
nomial maps. By examining specific families of functions and recent results from
Morton, Silverman, Stoll, Manes, and others, this study seeks to clarify the limita-
tions and structures imposed by the Uniform Boundedness Conjecture. This work
contributes to the broader understanding of periodicity and preperiodicity within
rational points, offering new approaches and potentially tighter bounds on the be-
havior of points within dynamical systems defined over number fields.

This thesis is organized as follows: the first chapter for algebraic curves provides an
overview of foundational concepts in arithmetic dynamics, including definitions and
preliminary theorems. Subsequent chapters delve into specific results and techniques
developed by leading researchers in the field, focusing on the behavior of rational
periodic points under iteration. The concluding chapter synthesizes these findings,
offering insights into potential directions for future research, including possible ex-
tensions to higher-degree maps and applications to open problems in Diophantine
geometry.
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2. Affine Spaces

Our purpose in this chapter is to give an introduction to algebraic geometry. We
work over a fixed algebraically closed field K. We define the material we need
for the main objects of the study, which are algebraic varieties, abelian varieties,
singular and non-singular algebraic curves in affine and projective spaces.

Let K be a fixed algebraically closed field. We define the affine n-space over K,
denoted AnK or simply An, to be the set of all n-tuples of elements of K.

AnK = {P = (a1, . . . ,an) : ai ∈K}

An element P ∈ An will be called a point, and if P = (a1, . . . ,an) with ai ∈K, then
the ai’s will be called the coordinates of P .

Let A=K[x1, . . . ,xn] be the polynomial ring in n variables over K. We will interpret
the elements of A as functions from the affine n-space to K, by defining f(P ) =
f(a1, . . . ,an), where f ∈ A and P ∈ An. Thus if f ∈ A is a polynomial, we can talk
about the set of zeros of f , namely

Z(f) = {P ∈ An : f(P ) = 0}.

More generally, if T is any subset of A, we define the zero set of T to be the common
zeros of all the elements of T , namely

Z(T ) = {P ∈ An : f(P ) = 0, for all f ∈ T} =
⋂
f∈T

Z(f).

Since A is a noetherian ring, any ideal a has a finite set of generators f1, . . . ,fr.
If a is the ideal of A generated by T , then Z(T ) = Z(a) = ⋂r

i=1Z(fi). Hence,
Z(T ) can be expressed as the common zeros of the finite set of polynomials f1, . . . ,fr.
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Definition 2.1. A subset Y of An is an algebraic set if there exists a subset T ⊆A

such that Y = Z(T ).

Y is an algebraic set ⇔ ∃ (f1, . . . ,fr) ∈K[x1, . . .xn] such that Y =
r⋂
i=1

Z(fi)

An algebraic set is defined over K if its ideal Z(T ) can be generated by polynomials
in K[X]. We denote this by T/K. If T is defined over K, then the set of K-rational
points of T is the set

T (K) = T ∩An(K).

One of the fundamental problems in the subject of Diophantine geometry is finding
the solution of polynomial equations in rational numbers. This is equivalent to
describing sets of the form T (K) when K is a number field.

Example 2.2. Let I = ⟨x,y⟩ ⊂ A3
K ;

I = ⟨x,y⟩ = Z(x,y) = {p ∈ A3 : f(p) = 0, for all f ∈K[x,y]},

I⟨x,y⟩ = {gx+hy : g,h ∈K[x,y,z]},

⇒ Z(I) = {p ∈ A3 : (gx+hy)(p) = 0, for all g,h ∈K[x,y,z]}

a line in the 3-space.

Proposition 2.3. The union of by two algebraic sets is an algebraic set. The
intersection of any family of algebraic sets is an algebraic set. The empty set and
the whole affine space are algebraic sets.

Proof. If Y1 = Z(T1) and Y2 = Z(T2), then Y1 ∪Y2 = Z(T1T2), where T1T2 denotes
the products of polynomials, i.e., T1T2 = {f1f2 : f1 ∈ T1,f2 ∈ T2}. If p∈ Y1 ∪Y2, then
either p ∈ Y1 = Z(T1) or p ∈ Y2 = Z(T2), so either p is a zero of every polynomial
in T1 or T2. Take any f ∈ T1T2, which is f = f1f2 where f1 ∈ T1, f2 ∈ T2. Then,
f(p) = f1(p)f2(p) = 0. Hence, p ∈ Z(T1T2). So, Y1 ∪Y2 ⊆ Z(T1T2).
Conversely, let p ∈ Z(T1T2) = {p ∈ An : fg(p) = 0, f ∈ T1, g ∈ T2}. So f(p)g(p) =
0, for all f ∈ T1,g ∈ T2. Then p∈Z(f) or p∈Z(g). Hence, p∈ Y1 ∪Y2, so Z(T1T2) ⊆
Y1 ∪Y2.

Let p ∈ ∩Yα. Then by the definition p ∈ ⋃
α∈I Z(Tα). So, p ∈ Z(Tα) for all α ∈ I.

This means that for each fα ∈ Tα, fα(p) = 0. Hence p ∈ Z(⋃α∈I Tα). So, ⋂Yα is
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also an algebraic set.

Finally, the empty set ∅ = Z(1), and the whole space An = Z(0).

Example 2.4. A set containing a single point P = (a1, . . .an) ∈ An is algebraic set
because,

f(x1, . . . ,xn) = (x1 −a1)(x2 −a2) . . .(xn−an)

f(a1, . . .an) = 0 ⇒ {(a1, . . .an)} = Z(f)

Example 2.5. The algebraic set

T : Y 2 =X3 +17

has many Q-rational points, for example (−2,3), (5234,378661), (137
64 ,

2651
512 ).

In fact, the set Z(T ) is infinite.

Definition 2.6. We define the Zariski topology on An by taking the open subsets
to be the complements of the algebraic sets. This is a topology, because according
to the proposition, the intersection of two open sets is open, and the union of any
family of open sets is open. Furthermore, the empty set and the whole space are
both open.

Example 2.7. Let us consider the Zariski topology on the affine line over A1
K .

Every ideal in A = K[x] is principal, since K[x] is noetherian and K is an
algebraically closed field. So every algebraic set is the set of zeros of a single
polynomial. Since K is algebraically closed, every nonzero polynomial f(x) can be
written f(x) = c(x−a1) · · ·(x−an) with c,a1, . . . ,an ∈K. Then Z(f) = (a1, . . . ,an)·
Thus the algebraic sets in A1 are just the finite subsets (including the empty set)
and the whole space (corresponding to f = 0). Thus the open sets are the empty set
and the complements of finite subsets.

Definition 2.8. A Hausdorff space is a topological space in which any two distinct
points can be separated by disjoint open sets. In other words, for any x ̸= y, there
exist open sets U and V such that x ∈ U , y ∈ V , and U ∩V = ∅.

Notice in particular that Zariski topology is not Hausdorff because in this topology,
the open sets are either empty or the complements of finite sets. Given two distinct
points x,y ∈ A1

K , it is impossible to find disjoint open sets that separate them. So
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no pair of disjoint open sets can isolate distinct points.

Definition 2.9. A nonempty subset Y of a topological space X is irreducible if it
cannot be expressed as the union Y = Y1 ∪ Y2 of two proper subsets, each one of
which is closed in Y . The empty set is not considered to be irreducible.

Example 2.10. A1 is irreducible, because its only proper closed subsets are finite,
yet it is infinite (because K is algebraically closed, hence infinite).

Definition 2.11. An affine algebraic set T is called an (affine) variety if Z(T ) is
a prime ideal in K̄[X]. Note that if T is defined over K, it is not enough to check
that Z(T/K) is prime in K[X].

To see this, consider the ideal (X2
1 −2X2

2 ) ∈ Q[X1,X2].

Definition 2.12. Let V be a variety, P ∈ V and (f1, . . . ,fm) ∈ K[X] a set of gen-
erators for Z(T ). Then V is nonsingular (or smooth) at P if the m×n matrix

( ∂fi
∂Xj

(P )
)

1≤i≤m,1≤j≤n

has rank n− dim(V ). If V is nonsingular at every point, then we say that V is
nonsingular (or smooth).

2.1 Projective Varieties

To define projective varieties, we proceed in a manner analogous to the definition
of affine varieties, except that we work in projective space. Let K be our fixed alge-
braically closed field. We define projective n-space over K, denoted PnK , or simply
Pn, to be the set of equivalence classes of (n+ 1)-tuples (a0, . . . ,an) of elements of
K, not all zero, under the equivalence relation given by (a0, . . . ,an) ∼ (λa0, . . . ,λan)
for all λ ∈K, λ ̸= 0. Another way of saying this is that Pn as a set is the quotient
of the set An+1 − (0, ...,0) under the equivalence relation which identifies points
lying on the same line through the origin.

Definition 2.13. An element of Pn is called a point. If p is a point, then any
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(n+ 1) − tuple (a0, . . . ,an) in the equivalence class p is called a set of homogeneous
coordinates for p.

Let S be the polynomial ring K[x0, . . . ,xn]. We want to regard S as a graded ring,
so we recall briefly the notion of a graded ring.
A graded ring is a ring S, together with a decomposition S = ⊕d≥Sd

of S into
a direct sum of abelian groups Sd, such that for any d,e ≥ 0, SdSe ⊆ Sd+e. An
element of Sd is called a homogeneous element of degree d. Thus any element of S
can be written uniquely as a (finite) sum of homogeneous elements.

Example 2.14. Let A=K[x1, . . . ,xn]. An is the set of all homogeneous polynomials
of degree n.

Definition 2.15. An ideal a⊆ S is a homogeneous ideal if a= ⊕d≥0(a∩Sd).

An ideal is homogeneous if and only if it can be generated by homgeneous
elements. The sum, product, intersection, and radical of homogeneous ideals are
homogeneous.
To test whether a homogeneous ideal is prime, it is sufficient to show for any two
homogeneous elements f,g, that fg ∈ a implies f ∈ a or g ∈ a.

We make the polynomial ring S = K[x0, . . . ,xn] into a graded ring by taking Sd to
be the set of all linear combinations of monomials of total weight d in x0, . . . ,xn. If
f ∈ S is a polynomial, we cannot use it to define a function on PnK , because of the
non-uniqueness of the homogeneous coordinates. However, if f is a homogeneous
polynomial of degree d, then f(λa0, . . . ,λan) = λdf(a0, . . . ,an), so that the property
of f being zero or not depends only on the equivalence class of (a0, . . . ,an). Thus
f gives a function from Pn to {0,1} by f(p) = 0 if f(a0, . . . ,an) = 0, and f(p) = 1
if (a0, . . . ,an) ̸= 0. Thus we can talk about the zeros of a homogeneous polynomial,
namely

Z(f) = {p ∈ PnK : f(p) = 0}.

If T is any set of homogeneous elements of S, we define the zero set of T to be

Z(T ) = {p ∈ PnK : f(p) = 0, for all f ∈ T} =
⋂
f∈T

Z(f).

Definition 2.16. A subset Y of Pn is an algebraic set if there exists a set T of
homogeneous elements of S such that Y = Z(T ).
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Definition 2.17. A projective algebraic variety (or simply projective variety) is an
irreducible algebraic set in Pn, with the induced topology.

An open subset of a projective variety is a quasi-projective variety. The dimen-
sion of a projective or quasi-projective variety is its dimension as a topological space.

If Y is any subset of Pn, we define the homogeneous ideal of Y in S, denoted I(Y ),
to be the ideal generated by

{f ∈ S : f is homogeneous and f(p) = 0, for all p ∈ Y }.

If Y is an algebraic set, we define the homogeneous coordinate ring of Y to be
S(Y ) = S/I(Y ).

Our next objective is to show that projective n-space has an open covering by affine
n-spaces, and hence that every projective (respectively, quasiprojective) variety has
an open covering by affine (respectively, quasi-affine) varieties. First we introduce
some notation. If f ∈ S is a linear homogeneous polynomial, then the zero set of f is
called a hyperplane. In particular we denote the zero set of xi by Hi, for i= 0, . . . ,n.
Let Ui be the open set Pn −Hi. Then Pn is covered by the open sets Ui, because
if p = (a0, . . . ,an) is a point, then at least one ai ̸= 0, hence p ∈ Ui. We define a
mapping Φi : Ui → An as follows: if p= (a0, . . . ,an) ∈ Ui, then Φi(P ) =Q, where Q
is the point with affine coordinates

(a0
ai
, . . . ,

an
ai

),

with ai
ai

omitted. Note that Φi is well defined since the ratios aj

ai
are independent of

the choice of hemogeneous coordinates.

2.2 Elliptic Curves

Let K be a field. We define an elliptic curve as a non-singular abelian variety of
dimension 1 with a K-rational point O called the point at infinity. It has an equation
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of the form,

F (x,y) = ax3 + bx2y+ cxy2 +dy3 + ex2 +fxy+gy2 +hx+ iy+ j = 0

where the coefficients a,b, ..., j ∈ K, and the non-singularity means that for each
point on the curve, considered in the projective plane P2(K̄) over the algebraic
closure of K, at least one partial derivative of F is non-zero.

2.2.1 Weierstrass Equations

After applying certain birational transformation, one may express any elliptic curve
with a Weierstrass equation of the form,

E : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6

with a1, . . . ,a6 ∈K together with the point O = (0 : 1 : 0).

A projective plane P2(K) is obtained by introducing on the set K3 − (0,0,0) the
equivalence relation (X,Y,Z) ∼ (kX,kY,kZ), k ∈ K, k ̸= 0. A point at infinity ap-
pears naturally if we represent an elliptic curve in a projective plane. By substituting
x= X

Y ,y = Y
Z in the affine equation E, we obtain the projective equation,

Y 2Z+a1XY Z+a3Y Z
2 =X3a2X

2Z+a4XZ
2 +a6Z

3.

If Z ̸= 0, then the equivalence class of (X,Y,Z) has the representative (x,y,1), so we
can identify that class by (x,y). However, there is also an equivalence class which
contains points with Z = 0. It has the representative (0 : 1 : 0) and we identify that
class with the point at infinity O.

Also, if char(K̄) ̸= 2, then we can simplify the equation by completing the square.

Thus the substitution,
y → 1

2(y−a1,x−a3)

gives us an equation of the form

E : y2 = 4x3 + b2x
2 +2b4x+ b6

10



where,
b2 = a1

2 +4a4, b4 = 2a4 +a1a3, b6 = a3
2 +4b6

We also define quantities

b8 = a1
2a6 +4a2a6 −a1a3a4 +a2a3

2 −a4
2,

c4 = b2
2 −24b4,

c6 = −b23 +36b2b4 −216b6,

∆ = −b22b8 −8b43 −27b62 +9b2b4b6.

If the characteristic of the field K is different from 2 and 3, then this equation can
be transformed into the form

y2 = x3 +ax+ b

which is called the short Weierstrass equation. The condition of non- singularity
now means that the cubic polynomial f(x) = x3 + ax+ b does not have multiple
roots (in the algebraic closure K̄ ), which is equivalent to the condition that the
discriminant ∆ = −16(4a3 +27b2) is non-zero.

2.2.2 The Group Law

Let E be an elliptic curve given by a Weierstrass equation. Thus E ⊂ P2 consists
of the points P = (x,y) satisfying the Weierstrass equation, along with the point at
infinity O = (0 : 1 : 0).

Now, let L ⊂ P2 be a line. Since the Weierstrass equation is of degree three, the
line L intersects E at exactly three points, denoted P , Q, and R. Note that if L
is tangent to E at one or more points, the points P , Q, and R may coincide, with
appropriate multiplicities.

This result—that L ∩E, counted with multiplicities, always consists of exactly
three points—is a special case of Bézout’s theorem [19].
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2.2.3 Composition Law

Let P,Q ∈ E, and let L denote the line passing through P and Q. If P = Q, L is
taken as the tangent line to E at P . Let R represent the third point of intersection
of L with E. Next, consider the line L′ passing through R and the point at infin-
ity O. The line L′ intersects E at R, O, and a third point, which we denote by P ⊕Q.

Proposition 2.18. The composition law has the following properties:

• If a line L intersects E at the (not necessarily distinct) points P,Q,R, then
(P⊕Q)⊕R = O.

• P
⊕O = P for all P ∈ E.

• P
⊕
Q=Q

⊕
P for all P,Q ∈ E.

• Let P ∈ E. There is a point of E, denoted by ⊖P , satisfying P⊕(⊖P ) = O.

• Let P,Q,R ∈ E. Then (P⊕Q)⊕R = P
⊕(Q⊕R).

In other words, the composition law makes E into an abelian group with iden-
tity element O. Further:

• Suppose that E is defined over K. Then
E(K) = {(x,y) ∈ K2 : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6} ∪ {O} is a sub-
group of E.

One of the most important properties of elliptic curves is that on the set E(K), of
its K-rational points, we can, in a natural way, introduce an operation with which
it will become an Abelian group. In order to explain that, let us take that K = R.
Then the elliptic curve E(R) (without the point at infinity) can be represented as
a subset of the plane. The polynomial f(x) can either have one (if ∆< 0) or three
(if ∆ > 0) real roots. Depending on that, the graph of the corresponding elliptic
curve has one or two components.

Definition 2.19. Let E be an elliptic curve over K. The subgroup E(K)tor of E(K)
which consists of all points of finite order is called the torsion group of E, and the
non-negative integer r is called the rank of E and it is denoted by rank(E) (or more
precisely by rank(E(K))).

Given an elliptic curve E over a number field K, Mordell-Weil Theorem asserts
that the set of K-rational points E(K) of E is a finitely generated abelian group.
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Theorem 2.20. (The Mordell-Weil Theorem) [35] The group E(K) is a
finitely generated abelian group.

In particular, E(K) ∼= Zr⊕T , where T is the torsion subgroup of E(K) and rank r
is a non-negative integer.

The Mordell-Weil theorem states that there is a finite set of rational points
{P1, . . . ,Pk} on E from which all other rational points on E can be obtained by
using the secant-tangent construction. With the knowledge that, each finitely
generated abelian group is isomorphic to the product of cyclic groups we obtain the
followings.

This states that there are r rational independent points P1, . . . ,Pr of infinite order
on curve E such that each rational point P on E can be represented in the form
P = T +m1P1 + · · · +mrPr, where T is a point of finite order and m1, . . . ,mr are
integers. Here m1P1 denotes the sum P1 + · · ·+P1 of m1 summands, which is often
also denoted by [m1]P1.

Theorem 2.21. (Mazur) [26] Let E/Q be an elliptic curve. Then the torsion
subgroup Etor(Q) of E(Q) is isomorphic to one of the following fifteen groups:

Z/kZ for k = 1,2,3,4,5,6,7,8,9,10,12

Z/2Z×Z/kZ for k = 2,4,6,8.

Further, each of these groups occurs as Etor(Q) for some elliptic curve E/Q.

Example 2.22. Consider the elliptic curve given by the equation:

E : y2 = x3 −x.

This elliptic curve has a torsion subgroup E(Q)tors which is isomorphic to Z/4Z.

- Infinity Point: The point at infinity, denoted by O, acts as the identity element in
the group E(Q) and is part of the torsion subgroup.

- Other Torsion Points: To understand the structure of the torsion subgroup, we
need to find points of finite order in E(Q). For this curve, we have the following
torsion points:

P = (0,0), Q= (1,0), R = (−1,0).

13



- Addition of Points in the Group: The point P = (0,0) has order 2 because 2P = O,
the identity element.
Similarly, the points Q= (1,0) and R = (−1,0) also have order 2.

- Structure of the Torsion Subgroup: Now, we can determine the full structure of
E(Q)tors. This torsion subgroup is generated by the points {O,P,Q,P +Q}, and
the structure of this set is isomorphic to Z/4Z.

Here, P acts as a generator for the group since all elements of the torsion subgroup
can be expressed in terms of P (for instance, P, 2P = O).

Therefore, we conclude that E(Q)tors ∼= Z/4Z, which is one of the allowed structures
according to Mazur’s Theorem.

The following theorem provides a comprehensive classification of the possible
torsion points on elliptic curves over quadratic fields.

Theorem 2.23. Let K be a quadratic field and E an elliptic curve over K. Then the
torsion subgroup E(K)tor of E(K) is isomorphic to one of the following 26 groups:

Z/mZ for 1 ≤m≤ 18,m ̸= 17,

Z/2Z×Z/2mZ for 1 ≤m≤ 6,

Z/3Z×Z/3mZ, for m= 1,2,

Z/4Z×Z/4Z.

Example 2.24. Consider the quadratic field K = Q(
√

−1) and the elliptic curve
defined by:

E : y2 = x3 +x.

This elliptic curve E has a torsion subgroup over K given by

E(K)tors ∼= Z/4Z×Z/4Z,

which is one of the allowed structures under the theorem above over quadratic fields.

- Quadratic Field: Here, K = Q(
√

−1) is a quadratic extension of Q.

- Elliptic Curve: The elliptic curve E : y2 = x3 +x over K includes points that are

14



rational over K but may not be rational over Q.

- Torsion Structure: The torsion subgroup E(K)tors contains points that form the
group structure

Z/4Z×Z/4Z,

which satisfies the conditions in the quadratic field K.

The following theorem completes the classification of torsion over cubic number
fields.

Theorem 2.25. Let K/Q be a cubic extension and E/K be an elliptic curve. Then
E(K) is isomorphic to one of the following 26 groups:

Z/N1Z with N1 = 1, . . . ,16,18,20,21,

Z/2Z×Z/2N2Z with N2 = 1, . . . ,7.

There exist finitely many Q̄- isomorphism classes for each torsion subgroup except
for Z/21Z.

The following theorem, which is about a complete classification for torsion points
of elliptic curves defined over Galois quartic fields.

Theorem 2.26. Let E/Q be an elliptic curve, and let K be a quartic Galois exten-
sion of Q. Then E(K)tor is isomorphic to one of the following groups:

Z/N1Z for N1 = 1, . . . ,16, N1 ̸= 11,14,

Z/2Z×Z/2N2Z for N2 = 1, . . . ,6,8,

Z/3Z×Z/3N3Z for N3 = 1,2,

Z/4Z×Z/4N4Z for N4 = 1,2,

Z/5Z×Z/5Z,

Z/6Z×Z/6Z.

Each of these groups, except for Z/15Z, appears as the torsion structure over some
quartic Galois field for infinitely many (non-isomorphic) elliptic curves defined over
Q.
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Example 2.27. Consider the elliptic curve

E : y2 = x3 +2x+1

defined over Q. Now let K = Q( 4√2), which is a quartic Galois extension of Q.

For this curve E over K, the torsion subgroup E(K)tors is isomorphic to Z/8Z×
Z/8Z, which is one of the groups given in the theorem. This group structure arises
from the additional points in E(K) that satisfy the torsion conditions over the ex-
tended field K, which are not necessarily rational over Q but become rational in the
quartic extension K.

- Here, K = Q( 4√2) is a quartic Galois extension of Q, that is a degree 4 extension
with Galois group symmetry over Q.

- The elliptic curve E : y2 = x3 +2x+1 over K includes points that are rational over
K but not necessarily over Q. These points form part of the torsion structure in
E(K).

- In E(K), the torsion subgroup E(K)tors includes points that form the group struc-
ture Z/8Z×Z/8Z, which satisfies the conditions stated in the theorem. Specifically,
the points in E(K) that generate this torsion structure are possible due to the addi-
tional symmetry and solutions in K, which a quartic field provides.

Let K be an algebraically closed field. Let g be a positive integer. Let h(x),f(x) ∈
K[x] such that degf = 2g+1 and degh≤ g. Suppose that f is monic. The curve C
given by the equation

C : y2 +h(x)y = f(x)

is called a hyperelliptic curve of genus g if it is nonsingular for all x,y ∈ K. When
g = 1, we obtain an elliptic curve in generalized Weierstrass form. For a curve of
genus greater than one, we have the following theorem.

Theorem 2.28. (Faltings) [17] Let K be a number field. A curve of genus g > 1
over K has only finitely many rational points.

Example 2.29. Consider the curve defined by the equation:

y2 = x5 −x+1.

This is an example of a hyperelliptic curve, a type of algebraic curve with a specific
form y2 = f(x), where f(x) is a polynomial of degree at least 5 for higher-genus
cases. This particular curve has genus g = 2, which can be computed based on the
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degree of the polynomial f(x). In this example we have genus g > 1 curve and it
is defined over Q, so we can apply Faltings’ Theorem directly. According to the
theorem, since the curve y2 = x5 −x+ 1 has genus 2, it can has only finitely many
rational points. In explicitly, there are only finitely many pairs (x,y), where x,y ∈ Q
that satisfy this equation.

Example 2.30. Fermat curves are a family of algebraic curves defined by equations
of the form:

xn+yn = zn

for some integer n≥ 3. Fermat’s Last Theorem states that the equation xn+yn = zn

has no non-trivial integer solutions for n > 2 when x,y and z are positive integers.
z are positive integers. However, Fermat curves themselves, viewed as algebraic
curves, are interesting objects of study in number theory and algebraic geometry.

The genus of a Fermat curve xn+ yn = zn depends on the exponent n. For n = 3,
the curve has genus g = 1, however, for n > 3, the genus g of these curves is greater
than 1. By a classical result in algebraic geometry, the genus g of the Fermat curve
with n > 3 is:

g = (n−1)(n−2)
2 .

For example, the curve x4 +y4 = z4 has genus g= 3, and any Fermat curve for n> 3
will similarly have g > 1.

Again by Faltings’ Theorem, Fermat curves with n > 3 have only finitely many ra-
tional points.
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3. Arithmetic Dynamics

Throughout this thesis K will be a field and K[x1, . . . ,xn] denotes the polynomial
ring in n variables over K.

Let f(x) be a rational map over the field K. The n-fold composition of the
polynomial f(x) with itself is denoted by fn(x) = f ◦ fn−1(x) for all n ≥ 1, where
f0 is defined as the identity map.

The set Of (p) := {fn(p) : n≥ 0} is called the orbit of the point p under f .
Generally, we define K as a number field and construct f(x) = A(x)/B(x) as a
rational function defined over K. In this construction, A(x) and B(x) are coprime
polynomials with coefficients in K.
We say a point α ∈ K is a periodic point of f(x) if fn(α) = α for some n ≥ 1. The
smallest positive integer n with this property is called the period of α. If there is
no positive integer m< n such that fm(α) = α then α is a periodic point of exact
period n. A point β ∈ K is called a preperiodic point of f(x) if fn(β) = fm(β) for
some positive integers such that n ̸=m.
We will denote the K-rational preperiodic points of a polynomial f(x) as the set

PrePer(f,K) := {α ∈K : α is preperiodic under f}.

Example 3.1. [3] The function f(x) = 176z2+1397z−1573
176z2+500z−1144 has an orbit set consisting

of 8 elements, as shown below, which correspond to the preperiodic points of f(x).

PrePer(f,K) := {∞,1,0, 11
8 ,

−11
2 ,

−11
4 ,

55
16 ,2}.

Throughout this study the degree of the rational map f is given by,
deg(f(x)) = deg(A(x)/B(x)), is defined to be the integer d :=max{degA,degB} if
gcd(A(x),B(x)) = 1.
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By a classical theorem of Northcott [29], the set PrePer(ϕ,K) is finite over a number
field K; it can therefore be given a finite directed graph structure, the preperiod-
icity graph of ϕ, denoted by Gϕ, by drawing an arrow from P to ϕ(P ) for each
P ∈ PrePer(ϕ,K). It is a natural question to ask which types of graphs (up to
graph isomorphism) can be obtained from such maps. It is not known whether the
list of possible graphs is finite; this is equivalent to the (1-dimensional) Uniform
Boundedness Conjecture of Morton and Silverman [28] that says #PrePer(ϕ,K) is
bounded by a bound depending only on the degrees of K/Q and ϕ.

Morton and Silverman stated the following conjecture about the size of the orbits
of rational functions;

Conjecture 3.0.1. (Uniform Boundedness Conjecture) [28] For fixed integers n≥ 1
and d≥ 2 there exists a constant M(n,d) such that for every number field K of degree
n, and every rational function f(x) ∈K(x) of degree d,

#PrePer(f,K) ≤M(n,d).

Currently there is limited knowledge about this conjecture. Notably, the existence
of a constant M(n,d) has not been proved, even in the more straightforward
structure, where K = Q and f(x) ∈K[x] is a quadratic polynomial.

Poonen proposed an upper bound for this case and furthermore offered a con-
jectural complete list of all potential graph structures that may arise in this context.

Theorem 3.2. (Poonen) [32] Assume that there is no quadratic polynomial over Q
that has a rational periodic point of period greater than 3. Then, for every quadratic
polynomial f with rational coefficients,

#PrePer(f,Q) ≤ 9.

Graphs of Dynamical Systems

In the context of a dynamical system, the graph of a function f(x) ∈ Q can be
defined as a directed graph where:

- Each point x ∈ Q is represented as a vertex in the graph.
- An edge is drawn from x to f(x), indicating the image of x under the map.
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The orbit of a point x under f(x) is the sequence:

Of (x) = {x,f(x),f2(x),f3(x), . . .}

where fn(x) = f(fn−1(x)) for n≥ 1.

Types of Points on Graphs

• Fixed points: A point x ∈ Q is a fixed point if f(x) = x. In the graph, this
is represented as a vertex with a self-loop.

• Periodic points: A point x ∈ Q is periodic with period n if fn(x) = x for the
smallest such n≥ 1. This forms a cycle in the graph.

• Preperiodic points: A point x ∈ Q is preperiodic if there exists some m≥ 1
such that fm(x) is periodic. In the graph, such points have directed edges
leading into a periodic cycle.

• Critical points: The orbits of critical points (where f ′(x) = 0) are crucial for
understanding the global dynamics.

The simplest case of the graph classification question is for quadratic polynomials
defined over Q. Flynn, Poonen and Schaefer [18] conjectured that for any integer
N > 3 there is no quadratic polynomial with coefficients in Q with a Q-periodic point
of period N . Assuming this conjecture is true, Poonen [32] provided a complete
classification of 12 possible preperiodicity graphs for quadratic polynomials defined
over Q. Another consequence of Poonen’s classification is that the number of Q-
preperiodic points of a quadratic polynomial is at most 9.

Usage in Arithmetic Dynamics

In arithmetic dynamics, understanding the idea of functions behavior of rational
points under iteration of rational maps becomes easy using graphs.

Poonen, Morton, and Silverman have explored the structure of these graphs in
arithmetic dynamics to study:
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• Growth of orbits: Understanding how the number of distinct points in an
orbit increases as the function is iterated.

• Arithmetic properties: Investigating the behavior of orbits over different
fields, such as Q or finite fields.

Flynn, Poonen and Schaefer conjecture was proved for the special cases of a periodic
point of period N = 4 (Morton [27]), N = 5 (Flynn, Poonen and Schaefer [18])
and N = 6 (Stoll [36], depending on the Birch and Swinnerton-Dyer conjecture);
experimental results by Hutz and Ingram [20] and Benedetto et al. [3] provide
further evidence for it.

3.1 Rational Periodic Points of the Quadratic Function f(x) = x2 + c

Definition 3.3. Let ϕ and γ be two rational maps. These maps are linearly conju-
gate if there is some f ∈ PGL2(K̄) such that f−1γf = ϕ. They are linearly conjugate
over K if there is some f ∈ PGL2(K) such that f−1γf = ϕ. Linearly conjugate maps
have the same dynamical behaviour as

αn(P ) = αm(P ) if and only if βn(f−1(P )) = βm(f−1(P )),

where β = f−1αf .

Let ϕ(x) = Ax2 +Bx+C ∈ K[x] be a conjugacy quadratic polynomial map, where
A ∈ K×. Such a map is either linearly conjugate over K to a map of the form
f(x) = x2 + c for some c ∈K. Therefore, we focus on quadratic polynomial maps of
this form.

By the results of Northcott [29], it is known that these maps have only finitely
many rational periodic points. A complete classification of rational quadratic
polynomials f(x) with periodic points of exact period 1, 2, or 3 has been provided
by Walde and Russo [37], and Poonen [31].

Theorem 3.4. [32] Let f(x) = x2 + c, where c ∈ Q.

1) f(x) has a rational fixed point if and only if c = 1/4 −ρ2 for some ρ ∈ Q. In
this case, there are exactly two, 1/2 + ρ and 1/2 − ρ, unless ρ = 0, in which
case they coincide.
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2) f(x) has a rational point of period 2 if and only if c = −3/4 − σ2 for some
σ ∈ Q∗. In this case, there are exactly two, −1/2+σ and −1/2−σ.

3) f(x) has a rational point of period 3 if and only if

c= −τ6 +2τ5 +4τ4 +8τ3 +9τ2 +4τ +1
4τ2(τ +1)2

for some τ ∈ Q, τ ̸= −1,0. In this case, there are exactly three,

x1 = τ3 +2τ2 + τ +1
2τ(τ +1)

x2 = τ3 − τ −1
2τ(τ +1)

x3 = −τ3 +2τ2 +3τ +1
2τ(τ +1)

and these are cyclically permuted by f(x).

Proof. Taking c as above and using the corresponding periodic points we get one
implication. Let p be a rational periodic point of f(x) with period length 1. Then,
we get

c= p−p2.

On the other hand, roots of the equality

x2 +p−p2 = x,

are p and 1 − p. Hence f(x) has a rational fixed point if and only if c = p− p2 for
some p ∈ Q. In this case, rational fixed points are p and 1−p. If we substitute

p= 1
2 +ρ,

this completes the proof of first part.

Let p be a rational periodic point of f(x) with exact period length 2. So we want p
to be a root of the polynomial

f2(x)−x= x4 +2cx2 −x+ c2 + c.
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If we factor this polynomial, we get

(x2 + c−x)(x2 +x+ c+1).

We only want p to be the root of

(x2 + z+x+1),

since we do not want to have f(p) = p. Hence, c = −1 −p−p2. Now, other root of
the polynomial (x2 +x−p−p2) is −1 −p. So f(x) has a rational periodic point of
exact period 2 if and only if c = −1 − p− p2 for some p ∈ Q. In this case, rational
period 2 points of the map are p and −1−p. If we substitute

p= −1
2 +σ,

this completes the second part of theorem. Let ζ ∈ Q be an exact period 3 point
f(x). Assume that ω := f(ζ) = ζ2 + c is not equal to ζ, that is ζ is not a rational
fixed point of f(x). Since we have c= ω− ζ2, we get

f(x) = x2 +ω− ζ2.

Now,

ζ = f3(ζ)

= f2(ω)

= f(ω2 +ω− ζ2)

= ω4 +2ω3 +ω2 −2ω2ζ2 −2ωζ2 + ζ4 +ω− ζ2.

Now, if we rearrange the last equation and divide it by ω− ζ, we get an equivalent
form of

(ω+ ζ)3 +(2−2ζ)(ω+ ζ)2 +(1−2ζ)(ω+ ζ)+1 = 0.

Let τ = (ω+ ζ). Using this equality in the previous one, we get

ζ = τ3 +2τ2 + τ +1
2τ(τ +1) ,

where τ ∈ Q \ {−1,0}. One can see directly, this is formula of x1. So we get the
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following equalities,

x2 = f(ζ) = ω = τ −x1,

c= ω− ζ2 = x2 −x2
1,

x3 = f(x2).

This completes the proof of theorem.

We have some examples of f(x) with both rational fixed and period two point. We
examine a few of them with their graphs.

Example 3.5. Let f(x) = x2 + −21
16 ∈ Q[x]. This function has two fixed point and

period 2 points. We have the following graphs of these points,

7
4 −3

4

Fixed Points: 7
4 ,−

3
4

1
4 −5

4

f

f

Period-Two Points: 1
4 ↔ −5

4

Example 3.6. Let f(x) = x2 + −1849
576 ∈ Q[x]. This function has period 3 orbit as

seen below,

Let start with periodic point 49
24 :

f
(49

24

)
= 23

24 , f
(23

24

)
= −55

24 , f
(

−55
24

)
= 49

24

As a consequence, we have following sequence of images for f(x),

49
24 → 23

24 → −55
24 → 49

24

which has the following graph,
24



49
24

23
24 −55

24

Theorem 3.7. [32] Let f(x) = x2 + c with c ∈ Q. Then,

1) f(x) has rational points of period 1 and rational points of period 2 if and only
if

c= −3µ4 +10µ2 +3
4(µ2 −1)2

for some µ ∈ Q, µ ̸= −1,0,1. In this case the parameters ρ and σ of the
previous theorem is

ρ= −µ2 +1
µ2 −1 σ = 2µ

µ2 −1 .

2) If f(x) has rational points of period 3, it cannot have any rational points of
period 1 or 2.

Proof. By Theorem 3.4, x2 + c has rational points of period 1 and 2 if and only if
c = 1/4 −ρ2 = −3/4 −ρ2, where ρ,σ ∈ Q with σ ̸= 0. The curve in the (ρ,σ)-plane
described by this equation is a conic with a rational point (1,0), so it is birational
to P1 over Q, with the rational function µ = (1 − ρ)/σ giving the birational map.
Solving for c,ρ, and σ in terms of µ gives the result. The values of µ not allowed
are −1,1,0,∞, because these correspond to the two points at infinity on the conic
and the two points where σ = 0.
If x2 + c has rational points of period 1 and 3, then

c= 1/4−σ2 = −τ6 +2τ5 +4τ4 +8τ3 +9τ2 +4τ +1
4τ2(τ +1)2 ,

so (τ,2τ(τ +1)ρ) is a point on the hyperelliptic curve,

C : y2 = x6 +2x5 +5x4 +10x3 +10x2 +4x+1.

Also this is an equation for the modular curve X1(18). But X1(18) has only six
rational points, so the only rational points on C besides the two points at infinity
are (−1,1), (−1,−1),(0,1), and (0,−1). These do not give rise to a valid pair (τ,ρ),
since τ is not allowed to be 0 or -1 in Theorem 3.4. Hence it is impossible for the
maps to exist rational periodic points of period 1 and 3.
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Similarly, if x2 + c has rational points of period 2 and 3, then

c= −3/4−σ2 = −τ6 +2τ5 +4τ4 +8τ3 +9τ2 +4τ +1
4τ2(τ +1)2 ,

so (τ,2τ(τ +1)ρ) is a point on

C
′
: y2 = x6 +2x5 +x4 +2x3 +6x2 +4x+1.

This curve is X1(13), since if we dehomogenize the model

x2
1x

2
2 −x1x

3
2 −x1x2x

2
3 +x1x

3
3 +x3

2x3 −x2
2x

2
3

of X1(13) in [6] by setting x3 = 1, we find the discriminant of the resulting quadratic
in x1 is

x6
2 +2x5

2 +x4
2 +2x3

2 +6x2
2 +4x2 +1.

The curve X1(13) also has exactly six rational points, so the only rational points on
C

′ besides the two points at infinity are (-1, 1), (-1, -1), (0, 1), and (0, -1). Again
this implies that x2 + c cannot have both rational points of period 2 and 3, since τ
is not allowed to be 0 or -1.

If m and n are positive integers, then a point of type mn for f(x) is a preperiodic
point that enters an m-cycle after n iterations. For example, 3

4 is a point of type 32

for f(x) = x2 − 29
16 .

Theorem 3.8. Let f(z) = z2 + c with c ∈ Q. Then,
1. For each m ≥ 1, x is a rational point of type m1 for f(z) if and only if −x is
a nonzero rational point of period m. The number of rational points of type m1

equals the number of rational points of period m, except when c = −1, m = 2, or
c= 0, m= 1, in which case there is one less.
2. f(z) has rational points of type 12 if and only if

c= −2(η2 +1)
(η2 −1)2

for some η ∈ Q, η ̸= −1,1. In this case, there are exactly 2 such points, 2η
η2−1 and

− 2η
η2−1 unless η = 0 (c= −2), in which they coincide. The parameter ρ is

ρ= −−2(η2 +1)
(η2 −1)
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3. f(z) has rational points of type 22 if and only if

c= −ν4 −2ν3 −2ν2 +2ν−1
(ν2 −1)2

for some ν ∈ Q, ν ̸= −1,0,1. In this case, there are exactly 2 such points, ν2+1
ν2−1 and

−ν2+1
ν2−1 . The parameter σ is

σ = ν2 +4ν−1
2(ν2 −1)

4. f(z) has rational points of type 32 if and only if c = −29/16. For c = −29/16,
the rational points of type 32 are 3/4 and -3/4.
5. If f(z) has rational points of type m2 with 1 ≤m≤ 3, then there are no rational
points of period b≤ 3 unless b= a.
6. f(z) cannot have rational points of type 1n,2n, or 3n for any n≥ 3.

Moreover, there are exactly 12 graphs that arise from PrePer(f,Q) as f varies
over all quadratic polynomials with rational coefficients.

Figure 3.1 [32] Finite rational preperiodic points of z2 + c for selected values of c.
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Theorem 3.9. [27] There is no quadratic polynomial f(x) ∈ Q[x] with a rational
point of exact period 4.

E. V. Flynn, Bjorn Poonen, and Edward F. Schaefer established that no quadratic
polynomial over Q has a rational periodic point with a period of m= 5.

Theorem 3.10. [18] There is no quadratic polynomial g(x) ∈ Q[x] with a rational
point of exact period 5.

Proof. (Sketch)
Flynn, Poonen, and Schaefer’s proof addresses the nonexistence of rational periodic
points of exact period N = 5 for quadratic polynomials over Q by analyzing the
curve C0(5), which parametrizes these rational maps.

Goal. They start by defining a quadratic polynomial f(x) = x2 + c over Q. The
objective is to determine whether any value of c ∈ Q allows f(x) to have a rational
periodic point of exact period 5. A point x0 ∈Q is said to have period 5 if f5(x0) = x0

and fk(x0) ̸= x0 for k < 5, ensuring it does not belong to a smaller cycle.

Setting Up the Curve C0(5). The existence of such a periodic point implies
a set of polynomial relations that x0 and c must satisfy. These relations define
an algebraic curve in the (x0, c)-plane, known as C0(5). This curve is designed to
capture all possible quadratic polynomials with periodic points of exact period 5 by
parametrizing the values of c that yield such cycles. Importantly, C0(5) is a curve
of genus 2, which is crucial to the proof.

Genus Constraints and Faltings’ Theorem. The genus of C0(5) is significant
due to Faltings’ theorem (formerly the Mordell conjecture), which states that a curve
of genus g≥ 2 over Q has only finitely many rational points. Thus, if C0(5) has genus
2 and lacks sufficient rational points that could correspond to exact period-5 cycles,
then it follows that no such quadratic polynomial exists with a rational point of
period 5.

Analysis of Rational Points on C0(5). By explicitly computing rational points on
C0(5), the authors confirm that none of these points correspond to an actual period-
5 cycle under a quadratic polynomial over Q. This involves a detailed analysis of the
possible solutions, where each candidate either fails to meet the period-5 condition
or does not satisfy the requirements for f(x) = x2 + c ∈ Q.

Conclusion and Nonexistence. The absence of suitable rational points on C0(5)
thus implies that there cannot be a quadratic polynomial over Q with a rational pe-
riodic point of period N = 5. This approach leverages both the geometric properties
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of the curve and arithmetic constraints on rational points, resulting in a proof by
contradiction.

This proof shows how advanced tools in arithmetic geometry, such as arithmetic of
elliptic curves and Faltings’ theorem, help answer questions in dynamical systems
and periodic points for polynomials.

They also list in [18] (see Table 2) all quadratic polynomials in Q[x] (up to linear
conjugacy) with a Gal(Q̄/Q)- stable 5-cycle.
A Galois-stable n-cycle refers to a set of elements structured as an n-cycle that
remains invariant under the action of a Galois group. This stability under the
Galois group action essentially means that each element in the cycle, when mapped
by any Galois transformation, maps to another element within the same cycle,
preserving the structure as a whole.

Definition 3.11. If α is an element of the Galois group Gal(L/K) (where L is
a field extension of K) and (a1,a2, . . . ,an) is an n-cycle of elements in L, then
α(ai) = ai+k (modn) for all i, where k is a spesific to α.

Each point in such a cycle generates a degree 5 cyclic extension of Q, which we
describe.

Theorem 3.12. [36] Under the assumption of standard conjectures on L-series of
curves, the same conclusion applies for m= 6.
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4. Rational Maps of Degree 2 With an Automorphism

This chapter focuses on the behavior of morphisms of degree 2 defined on the pro-
jective line P1 and the properties of their periodic points. Let ϕ : P1 → P1 be a
morphism defined over a field K, and denote by ϕn the n-th iterate of ϕ under
composition, ϕn = ϕ◦ ...◦ϕ (n times). A point P ∈ P1 is said to be periodic if there
exists an integer n > 0 such that ϕn(P ) = P . A point P is called preperiodic if
there exist integers n >m≥ 0 such that ϕn(P ) = ϕm(P ). If ϕn(P ) = P , and n is the
smallest positive such integer, then P has period n. For P to have formal period
n, it must be a root of the n-th dynatomic polynomial.

In this chapter, the focus is specifically on morphisms on P1, where every rational
map is in fact a morphism. Further, if we write ϕ(z) ∈ K(z) as a rational map
ϕ(z) = F (z)/G(z), F (z),G(z) ∈K[z], then ϕ= max{deg(F (z)), deg(G(z))}, which
corresponds to the usual notion of the degree of a morphism of projective curves.

4.1 Rational Maps of Degree 2 With Aut(ϕ) ∼= Z/2Z

Theorem 4.1. [24] Let ϕ : P1 → P1 be a morphism of degree 2 defined over Q,
and suppose that Aut(ϕ) ∼= Z/2Z, the cyclic group of order 2. Then we have the
following:
(a) The map ϕ has at least one rational fixed point.
(b) There is a one-parameter family of maps such that ϕ(z) has exactly three
rational fixed points. No such map has exactly two rational fixed points.
(c) There is another one-parameter family of maps such that ϕ has a rational point
of primitive period 2.
(d) No such rational maps have a rational point of primitive period 3.
(e) There is a one-parameter family of maps such that ϕ has a rational point of
period 4.
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(f) These maps have exactly four such rational points. No such rational maps have
more than four rational points of primitive period 4.

Conjecture 4.1.1. If ϕ(z) ∈ Q(z) is a degree-2 rational map with Aut(ϕ) ∼= Z/2Z,
then ϕ has no rational point of exact period N > 4.

Theorem 4.2. [24] Let ϕ : P1 → P1 be a morphism of degree 2 defined over Q, and
suppose that Aut(ϕ) ∼= Z/2Z. Then
#{P ∈ Q|P is preperiodic and lands on a cycle of length at most 4} ≤ 12.

These results contrast with the case of quadratic polynomials, where it is known
that there exists a one-parameter family of maps having rational points of period 3,
and there are no Q-rational points of primitive period 4, [24].

Figure 4.1 [24] The complete list of possible directed graphs of rational maps with
automorphism group Z/2Z
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As Poonen explains in [32], these directed graphs serve as analogs to the possible
torsion subgroups of elliptic curves over Q, as classified by Mazur’s theorem [25].
Consider a rational map ϕ(z) of degree 2 with Aut(ϕ) ∼= Z/2Z (up to linear conju-
gacy), and let G denote a specific graph of rational preperiodic points. The pairs
(ϕ(z),G) are parametrized by points on an algebraic curve, just as elliptic curves
with prescribed level structures correspond to points on modular curves. Determin-
ing whether a given graph is possible thus translates to identifying rational points
on the associated algebraic curves.

The specific curves whose rational points we need to identify have genus 0, 1, or 3.
The genus 0 and 1 curves have rational points at infinity, so they are, respectively,
the projective line P1 and elliptic curves. All the elliptic curves involved have a
small conductor and rank 0, allowing us to enumerate their rational points fully.
For the genus 3 curve, it covers an elliptic curve which, unfortunately, has rank
1, preventing a complete listing of its (necessarily finitely many) rational points.
However, it also covers a genus 2 curve. By determining all the rational points on
the genus 2 curve, we are able to identify all the rational points on the original
genus 3 curve.

Conjecture 4.1.2. Let K/Q be a number field of degree D, and let ϕ : PN → PN

be a morphism of degree d≥ 2 defined over K. There is a constant κ(D,N,d) such
that

#PrePer(ϕ,K) ≤ κ(D,N,d).

This conjecture, for instance, implies uniform boundedness for torsion points on
abelian varieties over number fields. On elliptic curves, torsion points correspond
precisely to preperiodic points under the multiplication-by-2 map on the curve.
Points on the elliptic curve are mapped to P1 via their x-coordinates, and the
multiplication-by-2 map induces a degree-4 rational map ϕ : P1 → P1, where the
x-coordinates of the torsion points map to the preperiodic points of ϕ.
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4.2 Preperiodic Points

Given a morphism ϕ : P1 → P1, we may write ϕ(z) ∈K(z) as a rational map

ϕ(z) = F (z)/G(z), F (z),G(z) ∈K[z],

and degϕ=max{degF,degG}. For any such ϕ(z), we create a homogeneous poly-
nomial Φn,ϕ ∈K[x,y] with roots that are precisely points of period n for ϕ. If we ho-
mogenize ϕ(z) = ϕ(x,y) = [F (x,y) :G(x,y)] and write ϕn(x,y) = [Fn(x,y) :Gn(x,y)],
then

Φn,ϕ(x,y) = yFn(x,y)−xGn(x,y).

If P = [x : y] ∈ P1 is a root of this polynomial, then by construction ϕn(P ) = P.

The polynomial Φn has as its roots all points of period n, including those of primitive
period k < n but satisfying k|n. We would like to examine points of primitive period
n, so we define the n-th dynatomic polynomial for ϕ by

Φ∗
n,ϕ(x,y) =

∏
k|n

(Φk,ϕ(x,y))µ(n/k) =
∏
k|n

(yFk(x,y)−xGk(x,y))µ(n/k),

where µ is the Moebius function. It is not clear that Φ∗
n(x,y) is a polynomial, but

this is in fact the case. The roots of Φ∗
n(x,y) are points of formal period n, which

include all points of primitive period n.

Definition 4.3. We say that two rational maps ϕ and ψ are linearly conjugate if
there is some f ∈ PGL2(K̄) such that ϕf = ψ.

If P is a point of primitive period n for ϕ, then f−1(P ) has the same property for ϕf ,
and the same holds for preperiodic points. Consequently, linearly conjugate maps
exhibit essentially identical dynamical behavior.

Let a rational map ϕ(z), a point P , and f ∈ PGL2(K) all be defined over K, with
ϕn(P ) = P . Then both ψ(z) = ϕf (z) and Q = f−1(P ) are defined over K, and
ψn(Q) = Q. However, if f is instead defined over some finite extension of K, it is
possible that ψ remains defined over K, but the periodic point Q is not.

Example 4.4. Consider the following two rational maps, both defined over the ra-
tional field Q:
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ϕ(z) = 2z+ 5
z
, ψ(z) = z2 −3z

3z−1

Both ϕ(z) and ψ(z) have a fixed point at infinity. The finite fixed points of ψ(z) are
rational numbers, namely z = −1 and z = 0. However, the finite fixed points of ϕ(z)
are not rational; they are the complex numbers ±i

√
5.

Despite this apparent difference, the rational maps ϕ(z) and ψ(z) are conjugate over
Q. In other words, there exists a linear fractional transformation f(z) ∈ PGL2(Q)
such that ϕf (z) = ψ(z), where ϕf (z) = f−1(ϕ(f(z))) denotes the conjugation of ϕ(z)
by f(z). This conjugating map f(z) is given by:

f(z) = i
√

5(z−1)
1+ z

One can verify that ϕf (z) = ψ(z) by direct computation. This conjugacy implies that
ϕ(z) and ψ(z) have the same dynamical behavior, despite having different fixed point
sets over Q.

The significance of this example is that it demonstrates how two rational maps
defined over Q, with seemingly different fixed point structures, can be conjugate
and hence have equivalent dynamical properties. The existence of a conjugating
map f(z) ∈ PGL2(Q) guarantees that the dynamics of ϕ(z) and ψ(z) are essentially
the same, just expressed in different coordinate systems.

Usually, ϕh(z) ̸= ϕ(z) for rational maps, but this is not always the case. For example,
the map ϕ(z) = 2z+ 5

z defined above has a nontrivial PGL2 automorphism h(z) = −z.
We can easily verify that h−1(z) = −z. Therefore, we have:

ϕh(z) = h−1(ϕ(h(z))) = −ϕ(−z) = −
(

2(−z)+ 5
−z

)
= 2z+ 5

z
= ϕ(z)

Thus, ϕh(z) = ϕ(z) for this particular rational map ϕ(z) and the automorphism
h(z) = −z. In other words, ϕ(z) is invariant under the automorphism h(z) = −z,
which is a symmetry of the map.

Definition 4.5. The stabilizer group (or automorphism group) of a map ϕ is defined
as

Aut(ϕ) = {f ∈ PGL2(K̄) | ϕf = ϕ},

where ϕf denotes the map obtained by conjugating ϕ with f .
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If h ∈ Aut(ϕ), then then f−1hf ∈ Aut(ϕf ). Thus, linearly conjugate maps have
isomorphic stabilizer groups.

Lemma 4.6. [24] Let K be a field with char K ̸= 2,3, and let ϕ be a rational map of
degree 2 defined over K. Then Aut(ϕ) ∼= Z/2Z if and only if ϕ is linearly conjugate
over K to some map of the form ϕk,b = kz+ b

z , with k ∈K{0,−1/2} and b ∈K∗.

Furthermore, two such maps ϕk,b and ϕk′
,b

′ are linearly conjugate over K if and
only if k = k

′ and b/b
′ ∈ (K∗)2. The map ϕk,b has the automorphism z → −z.

Remark 4.7. Note that for a fixed k, all maps of the form ϕk,b(z) are linearly
conjugate over K̄. Conjugate by fb(z) = (z/

√
b) to see that

ϕfb
k,b(z) = kz+ b/z = ϕk,b(z).

Now consider a rational map ϕ(z) ∈ K(z) of degree 2, satisfying Aut(ϕ) ∼= Z/2Z.
To examine the rational periodic points of ϕ, it suffices, by Lemma 4.6, to
focus on the case ϕ(z) = kz + b/z, where k ∈ K \ {0,−1/2} and b ∈ K∗/(K∗)2.
Throughout, we will use the expressions ϕ(z) = kz+ b/z and its homogeneous form
ϕ(x,y) = [kx2 + by2 : xy] interchangeably.

Proposition 4.8. [24] Let ϕ(z) = kz+b/z, with k ∈K∗ and b ∈K∗/(K∗)2, with K
a field of characteristic different from 2. Then we have the following.
(a) For all k and b, the point at infinity is a K-rational fixed point for ϕ(z).
(b) If b ≡ 1 − k modulo squares, then ϕ(z) has two finite K-rational fixed points;
otherwise, ϕ(z) has no finite K-rational fixed points.

Proof. Consider the dynatomic polynomial Φ∗
1(x,y) = (k− 1)x2y+ by3. The roots

of this polynomial correspond to the fixed points of ϕ(x,y). Notably, the point at
infinity P = [1 : 0] is always a root. When k = 1, P becomes a triple root of the
polynomial, which implies that there are no finite fixed points in this case.

To determine the finite fixed points for k ̸= 1, we dehomogenize the polynomial by
setting y = 1, obtaining

Φ∗
1(z) = (k−1)z2 + b.

Solving Φ∗
1(z) = 0, we find

z = ±
√

b

1−k
.

These roots are K-rational if and only if b
1−k ∈ (K∗)2. Since b ̸= 0, the two finite
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fixed points are distinct.

Remark 4.9. Proposition 4.8 and Lemma 4.6 together imply that every degree-2
rational map defined over K with automorphism group Z/2Z has at least one K-
rational fixed point. This follows from the fact that ϕ must be linearly conjugate
over K to a map of the form ϕk,b, and the fixed point at infinity is mapped to a
K-rational fixed point of ϕ.

Suppose Aut(ϕ) = ⟨f⟩ ∼= Z/2Z. Then f ∈ PGL2(K), as shown below. Let σ ∈
Gal(K̄/K). Since ϕ is defined over K, it follows that ϕ= ϕσ. Moreover, we have

ϕσ = (ϕf )σ = (ϕσ)f
σ

= ϕf
σ

.

This implies that fσ ∈ Aut(ϕ), so fσ ∈ {id,f}. Because fσ must have order 2, we
conclude that f = fσ. Therefore, f is also defined over K.

Now, f must permute the fixed points of ϕ. If ϕ has only one fixed point, it is
evident that f must fix that point. If ϕ has three fixed points, f must interchange
two of them while leaving the third fixed, since f has order 2 (recall that ϕ cannot
have exactly two fixed points, as stated in Proposition 4.8).

In either case, there exists exactly one point P that is fixed by both f and ϕ. We
claim that P is a K-rational point.

To see this, let σ ∈ Gal(K̄/K). Since f is defined over K, we have

f(P σ) = (f(P ))σ = P σ.

Similarly, the same calculation applies to ϕ(P σ), which shows that P σ is the common
fixed point of f and ϕ. Therefore, P σ = P , implying that P is K-rational.

Again, let σ ∈ Gal(K̄/K). Then, f(P σ) = (f(P ))σ = P σ since f is defined over K.
The same calculation works for ϕ(P σ), so P σ is the common fixed point of f and
ϕ. In other words, P σ = P .

Proposition 4.10. [24] Let ϕ(z) = kz+ b/z, with k ∈ K∗ and b ∈ K∗/(K∗)2, with
K a field of characteristic different from 2. Then ϕ(z) has a K-rational point of
primitive period 2 if and only if b≡ −(k+1) modulo squares.

Proof. We begin with the dynatomic polynomial

ϕ∗
2(x,y) = k((k+1)x2 + by2).
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The roots of this polynomial correspond to the points of formal period 2 for ϕ(x,y).
First, consider the point at infinity, P = [1 : 0]. Substituting P into the polynomial,
we see that P is a root if and only if k = −1.

However, P = [1 : 0] is already a fixed point of ϕ, not part of a 2-cycle. Thus, when
k = −1, there are no 2-cycles. Furthermore, for a fixed point to have formal period
2, it must have a multiplier of −1. This condition is only satisfied when k = −1,
confirming the absence of 2-cycles in this case.

Now, let us determine the points of period 2 for k ̸= −1. Dehomogenizing ϕ∗
2(x,y)

by setting y = 1, we obtain

ϕ∗
2(z) = k((k+1)z2 + b).

Solving ϕ∗
2(z) = 0, we find

z = ±
√

−b
k+1 .

These points are rational if and only if −b/(k+ 1) ∈ (K∗)2. Since b ̸= 0, the two
roots are distinct, giving exactly two points of period 2.

Theorem 4.11. [24] Let ϕ(z) = kz+ b/z with k,b ∈ Q∗. Then ϕ(z) has no rational
point of primitive period 3.

Theorem 4.12. [24] Let ϕ(z) = kz+ b/z with k ∈ Q∗ and b ∈ Q∗/(Q∗)2.
(a) There is a one-parameter family of such maps

ϕm(z) = 2mz
m2 −1 − m

z(m4 −1) , m ∈ Q−{0,±1},

with a rational point of primitive period 4. In this case, ϕ(z) has exactly four points
of primitive period 4.
(b) The map ϕ(z) cannot have more than four points of primitive period 4.

Proof. First calculate the fourth dynatomic polynomial for ϕ.

Φ∗
4(b,k,z) = Ψ∗

4(b,k,z)Λ∗
4(b,k,z),

where Ψ∗
4(b,k,z) = k3z4 +2bk2z2 +2bz2 + b2k and

Λ∗
4(b,k,z) = z8k9 +4bz6k8 + bz6k4 +2bz6k6 +6b2z4k7 +4b2z4k5

+3b2z4k3 + b2z4k+4b3z2k6 + b3z2k4 +2b3z2k2 + b3z2 + b4k5.
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We will demonstrate that there is a one-parameter family of k- and b-values for which
Ψ∗

4(b,k,z) has four rational z-roots, and that Λ∗
4(b,k,z) has no rational z-roots.

The polynomial Ψ∗
4(b,k,z) is even in z, so we substitute z2 = x, leading to the family

of curves
k3x2 +kx2 +2bk2x+2bx+ b2k = 0.

(Again, we start with the family of curves Ψ∗
4 = 0 and form the quotient by the

automorphism z 7→ −z.)

Next, we apply a change of coordinates by setting x = bx1 and dividing by b2,
yielding the expression

k3x2
1 +kx2

1 +2k2x1 +2x1 +k = 0.

Then, we make another substitution x2 = x1
k , and multiplying by k simplifies the

equation to
k2x2

2 +x2
2 +2k2x2 +2x2 +k2 = 0.

This equation is quadratic in x2, and the discriminant is given by

∆ = 4(1+k2).

The curve Ψ∗
4(b,k,z) is birational to the rational curve

C : d2 = (1+k2).

The curve C is parametrized by k= 2m/(m2 −1) and d= (m2 +1)/(m2 −1). Tracing
back the change of coordinates, we find that

x2 = −2(1+k2)±2d
2(1+k2) = −1± d

1+k2 .

Therefore, let
x2 = −1+ d

1+k2 = − 2
m2 +1 ,

thus,
x1 = kx2 = − 4m

m4 −1 , bx= − 4m
m4 −1 .

We now define
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b= − m

m4 −1 .

This gives the rational map

ϕm(z) = kz+ b

z
= 2mz
m2 −1 − m

z(m4 −1) .

Now, we recalculate the fourth dynatomic polynomial for the map ϕm(z). After
performing the necessary algebraic manipulations, we obtain the fourth dynatomic
polynomial:

Φ∗
4 =

(
−2m4

(m−1)12(m+1)12(m2 +1)6

)
(m2z+ z−1)(m2z+ z+1)(m2z− z−m)(m2z+ z−m)(

−512z8m14 −2048z8m12 −3072z8m10 −2048z8m8 −512z8m6 +16z6m16

+112z6m14 +1104z6m12 +2864z6m10 +2864z6m8 +1104z6m6

+112z6m4 +16z6m2 −2z4m16 −16z4m14 −88z4m12 −752z4m10

−1356z4m8 −752z4m6 −88z4m4 −16z4m2 −2z4 + z2m14 − z2m12

+292z2m10 +227z2m8 +29z2m4 − z2m2 −32m6
)
.

For m ̸∈ {−1,0,1}, the rational points of period 4 are given by,

1
m2 +1

ϕm−−→ −m
m2 +1

ϕm−−→ −1
m2 +1

ϕm−−→ m

m2 +1
ϕm−−→ 1

m2 +1
ϕm−−→ ·· ·

Note that the condition on m ensures that all four points in the cycle are distinct.

If ϕ(z) = kz+ b
z were to have more than four rational points of primitive period 4,

then there must be rational roots of Λ∗
4(b,k,z) = 0. Following Morton’s method, we

define the trace of an n-cycle in C for ϕ(z) = kz+ b
z as the sum of the elements in

the cycle. The polynomial τn(z,b,k) has roots that correspond to the traces of all
the n-cycles.

Rational solutions to Λ∗
4(b,k,z) = 0 lead to rational solutions to τ∗

4 (b,k,z) = 0. How-
ever, τ∗

4 (b,k,z) = 0 has infinitely many rational solutions, indicating that there are
infinitely many rational values of b and k such that ϕk,b has three Galois-stable
4-cycles (See Remark 4.14 following this proof).

Let α be a root of Λ∗
4(b,k,z). The other roots of Λ∗

4(b,k,z) = 0 are
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ϕ(α),ϕ2(α),ϕ3(α),−α,−ϕ(α),−ϕ2(α),−ϕ3(α).

Let
t1 = α+ϕ2(α) t2 = ϕ(α)+ϕ3(α)

t3 = −α−ϕ2(α) t4 = −ϕ(α)−ϕ3(α).

We let τ4,2(z,b,k) ∈ Q(b,k)[z] be the polynomial with roots for generic b,k that are
the ti for i = 1, . . . ,4. We see that τ4,2(z,b,k) must have degree 4 in z, and that
the coefficients of the linear and cubic terms both vanish because the set of roots is
invariant under z 7→ −z. Let τ4,2(z,b,k) = z4 +Uz2 +V and solve for U and V so
that this polynomial in z vanishes identically modulo Λ∗

4(z,b,k). We find that

τ4,2(z,b,k) = z4 + 4bk4 +4bk2 + b

k5 z2 + 4b2k4 +4b2k2 + b2

k8 .

Since τ4,2 is even in z, we may substitute x= z2 and consider instead the roots of

x2 + 4bk4 +4bk2 + b

k5 x+ 4b2k4 +4b2k2 + b2

k8 = 0.

A change of variables x→ bx and dividing by b2 removes dependence on b:

x2 + 4k4 +4k2 +1
k5 x+ 4k4 +4k2 +1

k8 = 0.

This curve is already quadratic in x, and the discriminant is

d2 = (2k2 −2k+1)(2k2 +2k+1)(1+2k2)2

k10 .

Therefore we may search for rational points on the genus 1 curve

y2 = (2k2 −2k+1)(2k2 +2k+1).

Letting k → 2k/y and y → −1 + 2k3/y2 and multiplying both sides by y4/k3 puts
the curve in Weierstrass form

y2 = k3 −16k,

which has the minimal model
y2 = k3 −k.
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This corresponds to curve 32a2 in Cremona’s tables [12]. It has rank 0 and a torsion
subgroup of order 4. therefore the curve in equation must have exactly four rational
points. It has a double point at infinity (since it is of the form y2 = quartic) and
the obvious points (k,y) = (0,±1). They have found all of the rational points, so
the only possible finite value for k is 0, which does not yield a valid rational map of
degree 2.

Example 4.13. Let m = 2. By computing k and b from equations, we obtain the
rational map

ϕ2(z) = 4z
3 − 2

15z .

This map has the following 4-cycle:

1
5

ϕ2−→ −2
5

ϕ2−→ −1
5

ϕ2−→ 2
5

ϕ2−→ 1
5

ϕ2−→ . . . .

Remark 4.14. Let ϕm1 = k1z+ b1/z and ϕm2 = k2z+ b2/z with k1,k2, b1, and b2

as given in equation (4). By Lemma 4.6, these rational maps are linearly conjugate
over Q if and only if k1 = k2 and b1/b2 ∈ (Q∗)2.

If m1 ̸= m2, then k1 = k2 if and only if m1 = −1/m2. We can now compute the
relevant b1 and b2 in this case:

b1 = − m1
m4

1 −1 , b2 = − m2
m4

2 −1 = − (−1/m1)
(−1/m1)4 −1 = − m3

1
m4

1 −1 =m2
1b1.

We see, therefore, that ϕm1 is linearly conjugate over K to ϕm2 if and only if
m1 =m2 or m1 = −1/m2.

Remark 4.15. For a fixed b, the curve Cb : Λ∗
4(b,k,z) = 0 has an automorphism

(b,k,z) 7→ (b,k,ϕ(z)). The curve τ4,2(b,k,z) = 0 represents Cb/ ∼, the quotient of
Cb by this automorphism. Each curve Cb also has an automorphism (b,k,z) 7→
(b,k,ϕ2(z)), and the quotient of Cb by this second automorphism is τ4,2(b,k,z) = 0.

Examining τ4(b,k,z), we can show that for any k-value, we may choose b so that
ϕk,b has three Galois-stable 4-cycles, but no rational points of primitive period 4.

If α is a root of Ψ∗
4, then so is −α. In fact, Ψ∗

4 corresponds to a single 4-cycle with
trace 0, which clearly results in a Galois-stable 4-cycle. For a detailed description
of the polynomials Ψ∗

n and the justification of these claims, see Chapter 3 of [23].

To compute τ4, we need the traces of the cycles given by Λ∗
4(b,k,z). As a result, we
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expect τ4 to be a quadratic polynomial. Additionally, we can observe that the sum
of the two traces will vanish: if α belongs to one 4-cycle, then −α must belong to
the other. Therefore, the irreducible polynomial for the traces will have the form

τ4(z,b,k) = z2 +V,

for some V ∈ Q(b,k). Using computational tools such as Mathematica, we can
compute

τ4(z,b,k) = z2 +
b
(
4k4 +4k3 +4k2 +2k+1

)
k5 .

Since τ4 is even in z, let x= z2 and consider instead the polynomial

x+
b
(
4k4 +4k3 +4k2 +2k+1

)
k5 = 0.

After a change of variables x→ bx/k5 and then multiplying by k5/b, we have

x+
(
4k4 +4k3 +4k2 +2k+1

)
= 0.

Any rational k yields a rational x. We may then choose b so that k5x
b is a square. In

fact, it is sufficient to let b= −
(
4k4 +4k3 +4k2 +2k+1

)
. These choices guarantee

that ϕk,b will have three Galois-stable 4-cycles.

However, if this relationship between k and b, along with the one in the equations,
is satisfied by rational numbers, we would have a rational root of

m10 +4m9 +13m8 +23m7 +50m6 +3m5 +50m4 −27m3 +13m2 −3m+1 = 0.

This is impossible; thus, if ϕk,b has three Galois-stable 4-cycles, it does not have any
rational points of primitive period 4.

Torsion points on elliptic curves correspond precisely to preperiodic points under
the multiplication-by-2 map on the curve. Points on the elliptic curve are mapped
to P1 via their x-coordinates, and this multiplication-by-2 map induces a degree-4
rational map ϕ : P1 → P1, with the x-coordinates of the torsion points mapping to
the preperiodic points of ϕ.
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Example 4.16. Let f(x) = 330x2−187x−143
330x2+1217x+429 ∈ Q[x]. We have the following orbit and

graph for f(x),

f(∞) = 1, f(1) = 0, f(0) = −1
3 , f

(
−1

3

)
= −11

15

f
(

−11
15

)
= −3

5 , f
(

−3
5

)
= −55

114 , f
(

− 55
114

)
= −13

44 , f
(

−13
44

)
= −3

5

∞ 1 0 −1
3 −11

15 −3
5 − 55

114 −13
44

In this study, our goal is to determine an upper bound for periodic points of the
rational function f(x) with Q-coefficients. Specifically, we focus on the following
conjecture;
Conjecture 4.2.1. [3] For a rational function f(x) ∈ Q(x) with deg(f) = 2, and
any x ∈ P1(Q), the followings hold;

1. #PrePer(f,Q) ≤ 14.
2. If x is preperiodic, then #Of (x) ≤ 8.
3. If x is periodic, then #Of (x) ≤ 7.

Benedetto, Chen, Hyde, Yordanka Kovacheva, and White give a list of some degree 2
rational polynomials with preperiodic points 8 in [3]. Also they found many degree-2
polynomails with 14 Q-rational preperiodic points. One known example of rational
polynomials with exact period 7 is:

f(x) = 4655z2 −4826z+171
4655z2 −8071z+798

with orbit,

∞ → 1 → 0 → 3
14 → 19

21 → 1
7 → 57

35 → ∞ [3].

In fact, when K is any quadratic field, it becomes easier to generalize rational
functions that produce preperiodic points with a specified orbit size. For example,
an algorithm presented in [15] computes all the preperiodic points of a given
quadratic polynomial defined over a number field. This algorithm can be applied
to quadratic polynomials over any number field. Using this approach, the authors
were able to compute the set PrePer(f,K) for approximately 250,000 pairs (K,f),
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where K is a quadratic field and f is a quadratic polynomial with coefficients in K.
As a key result of [15], they identified a total of 46 non-isomorphic graphs (listed in
the Appendix), with the maximum number of preperiodic points for the considered
polynomials being 15.

Theorem 4.17. [15] Suppose that there exists a constant N such that
#PrePer(f,K) ≤ N for every quadratic number field K and quadratic poly-
nomial f with coefficients in K. Then N ≥ 15. Moreover, there are at least
46 directed graphs that arise from the set PrePer(f,K) for such a field K and
polynomial f .

Theorem 4.18. [15] For each of the graphs of type; 8(1,1)a, 8(1,1)b, 8(2)a, 8(2)b,
8(4), 10(2,1,1)a, 10(2,1,1)b there exist infinitely many pairs (K,c) consisting of an
imaginary quadratic field and an element c∈K for which G(fc,K) contains a graph
of this type. The same holds for the graphs 10(3,1,1) and 10(3,2), but these occur
only over real quadratic fields.

Showing the existence of infinitely many pairs for which G(fc,K) not only contains
a graph of a given type but is, in fact, itself of this type is a more difficult problem.
Such a result was achieved in the article [16] for several of the graphs G(fc,Q) with
c ∈ Q.

In most cases, the difficulties do not appear excessively complex, but the methods
required to analyze these graphs can differ substantially from those previously
employed. Moreover, for some of the graphs, only partial results have been obtained
concerning the quadratic points on the parameterizing curve. The primary obstacle
lies in the difficulty of determining all rational points on certain hyperelliptic curves.

An open question remains regarding functions with period 5. Current research
strongly suggests that no quadratic polynomial f defined over a quadratic field K

possesses a K-rational point of period 5. Such a polynomial did not appear in our
computations, or identified in related searches.

Through their extensive search for periodic points with large periods over quadratic
fields, Hutz and Ingram [20] provide compelling evidence supporting the conjecture
that 6 is the maximum possible cycle length in this context. Furthermore, they
identified precisely one instance of a 6-cycle over a quadratic field, which aligns with
the results of our computations and matches the example previously discovered by
Flynn, Poonen, and Schaefer. While proving that 6 is the absolute maximum cycle
length may be an ambitious objective, our focus is on studying and classifying all
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instances of 6-cycles over quadratic fields.

In [11], Canci and Solomon Vishkautsan investigate rational maps with a critical
periodic point of period 2. They provide a comprehensive classification of the
possible graphs of rational preperiodic points for degree-2 endomorphisms of the
projective line, defined over the rationals, with a rational periodic critical point of
period 2. This classification is made under the assumption that these maps have
no periodic points of period 7 or greater. Their work extends the earlier results
of Poonen on quadratic polynomials. Specifically, they identify exactly 13 possible
graphs and demonstrate that such maps can have at most 9 rational preperiodic
points.

We define ϕ : P1 → P1 as an endomorphism over a field K. A periodic point of ϕ
corresponds to P ∈ P such that ϕn(P ) = P for some n≥ 1, and the minimal such n
is called the period of P.

A point P ∈ P1 is called preperiodic if some iterate of P is periodic, i.e. there
exists an m ≥ 0 such that ϕm(P ) is periodic. We denote by PrePer(ϕ,K) the set
of preperiodic points for ϕ in P1(K) (similarly Per(ϕ,K) is the set of K-periodic
points and Pern(ϕ,K) is the set of K-periodic points of period n).
For a quadratic map defined over Q with a Q-rational periodic critical point
of period 2, we have a complete classification of possible preperiodicity graphs,
assuming a conjecture similar to that of Flynn, Poonen and Schaefer. [18]

Conjecture 4.2.2. [11] Let ϕ be a quadratic map defined over Q with a Q-rational
periodic critical point of period 2, then ϕ has no Q -periodic point of period greater
or equal to 3.

Theorem 4.19. Assuming the Conjecture, there are exactly 13 possible preperiod-
icity graphs for quadratic maps defined over Q with a Q-rational periodic critical
point of period 2 (see in [11]). Moreover, the number of preperiodic points of such
maps is at most 9 (as in the quadratic polynomial case).

Next theorem provide an evidence for the previous Conjecture;

Theorem 4.20. Let ϕ be a quadratic map defined over Q with a Q-rational periodic
critical point of period 2, then ϕ has no Q-periodic point of period 3, 4, 5 or 6.
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An endomorphism of P1 is called post-critically finite (PCF) if all of its critical
points are preperiodic. Lukas, Manes, and Yap [22] provided a complete classifica-
tion, over Q, of the possible graphs realized by PCF quadratic maps defined over Q.
Here, we present a comprehensive list of all preperiodicity graphs associated with
PCF quadratic maps over Q that have a Q-rational periodic critical point of period 2.

Two rational functions ϕ,ψ : P1 → P1 are said to be linearly conjugate if there exists
an f ∈ PGL2, acting as a projective automorphism of P1, such that ϕ= ψf = f−1ϕf .

Conjugate rational functions exhibit the same dynamical behavior. Specifically, if
P is a periodic point for ϕ with period n, then f−1(P ) is a periodic point for ψ
with the same period n (the same applies to preperiodic points). Moreover, when
ϕ, ψ, and f are all defined over the same number field K, it follows that Gϕ =Gψ.
Thus, in the classification of realizable graphs, we focus on the conjugacy classes of
quadratic maps rather than on individual maps.

They establish Theorem 1 by demonstrating that the graphs listed as 5.5 in [11] are
inadmissible. This result is sufficient to conclude that no graph other than those
presented in Tables 5.1 and 5.2 of [11] can be realized by a quadratic map defined
over Q with a Q-rational periodic critical point of period 2.

The approach involves constructing an affine curve C(G) for each graph G in Table
5.5, where the points of C(G) parametrize PGL2(Q)-conjugacy classes of quadratic
maps with a Q-rational periodic critical point of period 2 that admit G. They then
demonstrate that these curves have no Q-rational points.

To generate the graphs in the tables, they employed a recursive algorithm described
in Lemma 3.2 of [11], producing a list of approximately eighty potentially realizable
graphs with up to 14 vertices. Initially, they assumed the conjecture of Benedetto
et al. [3], which states that a quadratic map defined over Q has at most 14 Q-
preperiodic points. However, this conjecture is not used in the proofs.

Question: Except for graph R2P4 in Table 5.2 which has a unique class realizing
it (see Proposition 3.7 in [11]), are there infinitely many conjugacy classes realizing
each of the graphs in Table 5.2?

Assuming Conjecture 4.2.2, it is evident that the graphs R2P5, R2P6, and R2P7
in Table 5.2 are realized by infinitely many classes. This follows from the fact that
the associated curves C(G) have infinitely many rational points, as they are genus
0 curves with a rational point (see Corollary 3.11 in [11]). Moreover, these graphs
are maximal with respect to the isomorphic subgraph relation among the realizable
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graphs (refer to the Hasse diagram in Proposition 4.2 of [11]).

However, it may be possible to demonstrate that all graphs, except for R2P4, are
realizable by infinitely many classes without relying on this conjecture. This could
be achieved by adapting the method of Faber in [16], who proved a similar result
for quadratic polynomials.

Arithmetic dynamics is a relatively new and rapidly evolving field, characterized by
its significant potential for further exploration and cross-disciplinary research. Its
foundations lie at the intersection of number theory and dynamical systems, offering
a fertile ground for uncovering deep mathematical structures and connections.

Arithmetic dynamics, being a relatively young and evolving field, offers a vast array
of open questions that remain to be explored. Many of these questions are funda-
mental to advancing our understanding of the intricate connections between number
theory and dynamical systems. The field’s interdisciplinary nature and its founda-
tional aspects make it a fertile ground for uncovering new mathematical insights
and addressing long-standing problems.

For those interested in delving deeper into the subject, [4] provides a comprehen-
sive overview, including a detailed discussion of the key challenges and unresolved
problems currently shaping the field. Additionally, it highlights several promising
directions for future research, offering valuable guidance for researchers aiming to
contribute to this rapidly growing area of study.
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Figure 4.2 Total of 46 non-isomorphic graphs over a quadratic field K
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