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ABSTRACT

UNVEILING THE TRUE IMPACT OF DRUG AND CELL LINE
REPRESENTATIONS IN DRUG SYNERGY PREDICTION

EMINE BEYZA ÇANDIR SOYDEMIR

COMPUTER SCIENCE AND ENGINEERING M.Sc. THESIS, DECEMBER
2024

Thesis Supervisor: Assoc. Prof. ÖZNUR TAŞTAN

Keywords: Drug Synergy, Deep Learning, Generalization, One-Hot-Enoding

Drug combination therapy holds promise as an effective strategy for treating complex
diseases such as cancer. However, due to the vast combinatorial space of drug
combinations, experimental screening of all of them is not feasible. Computational
models have been developed to prioritize drug pairs that could work synergistically to
accelerate experimental screening efforts. These models are trained on large datasets
of previously reported drug combination measurements and use rich representations
of drugs and cell lines that encode chemical, structural, and biological properties.

In this thesis, we first aimed to improve upon our previous synergy predictor, Match-
Maker, by incorporating richer biological information such as pathways and mech-
anism of action or alternative drug representations. Despite all our efforts, none of
the models could perform better. Motivated by these findings, we tested a more
straightforward approach by replacing detailed feature representations with one-hot
encodings of drugs and cell lines. Surprisingly, these models stripped of chemical and
biological information can come very close to the results trained with rich biological
and chemical information.

Here, in this thesis, we systematically experimented with published synergy predic-
tion models by replacing drug representations and cell line features with a simple
one-hot encoding of drugs and cell lines in various evaluation settings. Regardless
of the drug input feature or the architecture, we observe that the simple one-hot
encoding baseline performs similarly in all models. This unexpected result suggests
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that the representations serve as simple identifiers and models that capture general
co-variation patterns of synergy measurements rather than learning chemical or bi-
ological information. This could be why the models do not generalize well to new
drugs and cell lines. While synergy prediction models are still beneficial in deciding
on what pairs to test within a panel of drugs and cell lines, these results demonstrate
that alternative approaches are needed for developing synergy prediction models that
could work across new drugs, cell lines, and patients.
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ÖZET

İLAÇ SINERJISI TAHMININDE İLAÇ VE HÜCRE HATTI TEMSILLERININ
GERÇEK ETKISININ ORTAYA ÇIKARILMASI

EMİNE BEYZA ÇANDIR SOYDEMİR

BİLGİSAYAR BİLİMİ VE MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, ARALIK
2024

Tez Danışmanı: Assoc. Prof. ÖZNUR TAŞTAN

Anahtar Kelimeler: İlaç Sinerjisi, Derin Öğrenme, Genelleme, Tekil Kodlama

İlaç kombinasyon terapisi, kanser gibi karmaşık hastalıkların tedavisinde etk-
ili bir strateji olarak umut vadetmektedir. Ancak, ilaç kombinasyon uzayı çok
geniş olduğundan, tüm kombinasyonların deneysel olarak değerlendirilmesi mümkün
değildir. Bu nedenle, deneysel tarama çabalarını hızlandırmak için sinerjistik
çalışabilecek ilaç çiftlerini önceliklendiren hesaplamalı modeller geliştirilmiştir. Bu
modeller, daha önce raporlanmış ilaç kombinasyonu ölçümlerini içeren büyük veri
kümeleri üzerinde eğitilmektidr ve kimyasal, yapısal ve biyolojik özellikleri kodlayan
zengin ilaç ve hücre hattı temsilleri kullanmaktadır.

Bu tezde, öncelikle sinerji tahmin modeli MatchMaker’ı, yolaklar ve etki mekaniz-
maları gibi daha zengin biyolojik bilgileri veya alternatif ilaç temsillerini dahil ederek
geliştirmeyi amaçladık. Ancak, tüm çabalarımıza rağmen hiçbir model daha iyi per-
formans gösteremedi. Bu bulgulardan hareketle, daha basit bir yaklaşım denedik
ve detaylı özellik temsillerini ilaçların ve hücre hatlarının tek-seçim kodlamalarıyla
değiştirdik. Kimyasal ve biyolojik bilgiler içermeyen bu modeller, beklenmedik bir
şekilde, zengin biyolojik ve kimyasal bilgilerle eğitilen modellerin sonuçlarına oldukça
yakın bir performans sergileyebildi.

Bu tezde, yayınlanmış sinerji tahmin modellerini sistematik olarak inceledik ve çeşitli
değerlendirme kurulumunda ilaç ve hücre hattı temsillerini basit tek-seçim kodla-
malarıyla değiştirdik. Kullanılan ilaç giriş özelliği veya model mimarisi ne olursa
olsun, basit tek-seçim kodlama yaklaşımının tüm modellerde benzer şekilde perfor-
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mans gösterdiğini gözlemledik. Bu beklenmedik sonuç, temsillerin kimyasal veya
biyolojik bilgiyi öğrenmek yerine yalnızca basit tanımlayıcılar olarak hizmet ettiğini
ve modellerin kısa yoldan sinerji ölçümlerinin genel ortak varyasyon örüntülerini
yakaladığını göstermektedir. Bu durum, modellerin yeni ilaçlar ve hücre hatlarına
iyi genelleme yapamamasının bir nedeni olabilir. Sinerji tahmin modelleri, ilaç ve
hücre hattı panelinde hangi çiftlerin test edileceğine karar verirken hala yararlı ol-
salar da, bu sonuçlar, yeni ilaçlar, hücre hatları ve hastalar için çalışabilecek sinerji
tahmin modellerinin geliştirilmesi için alternatif yaklaşımlara ihtiyaç olduğunu or-
taya koymaktadır.

vii



ACKNOWLEDGMENTS

First and foremost, I want to thank my supervisor, Assoc. Prof. Öznur Taştan, for
always being there to guide, support, and encourage me throughout my master’s
journey. Her thoughtful insights, patience, and caring approach have been truly
invaluable. Beyond being an exceptional educator, she has set a remarkable example
as a woman, inspiring me both academically and personally.

I’m also thankful to Halil İbrahim Kuru, author of MatchMaker, for openly sharing
his expertise and experiences. His contributions have greatly enhanced my under-
standing and strengthened the foundation of this work.

My sincere thanks go to my friends, Selcan, Talha, Buse and Ekin, who cheered me
on during the toughest moments. I am also thankful to Berkay and Emine Ayşe for
patiently answering my endless questions and never hesitating to help.

I’m deeply grateful to my dear family, my mother, my father, my brothers , and
my sister-in-law, for their constant belief. I’m also thankful for my niece, Elif. Her
presence reminds me of the reasons I pursued this path in the first place: to hopefully
make the world a better place for others, including her.

Finally, to my soulmate, İhsan Soydemir, I can only say thank you for consistently
inspiring me to be better, for guiding me with your wisdom, and for supporting me
without any conditions. Your love and understanding have meant more to me than
words can say.

viii



Dedicated
to my family

ix



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1. Experimental Screening of Drug Combinations . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1. Synergy Scoring Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2. Drug Synergy Prediction Problem Statement . . . . . . . . . . . . . . . . . . 7

2.2. Evaluation Setups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Data Splitting Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1. Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4. Drug Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5. Cell Line Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6. Drug Synergy Data Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1. Overview of Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1. Drug Synergy Prediction Models Tested . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.1.1. MatchMaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.1.2. DeepSynergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1.3. MARSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1.4. JointSyn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1.5. DeepDDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2. Generalization of Models to Unseen Drugs and Cell Lines . . . . . . . . . . . . 21

4. ATTEMPTS TO IMPROVE MATCHMAKER PERFORMANCE 23
4.1. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

x



4.1.1. Input Features & Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2. Dataset Split Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.3. Applying Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.3.1. Dropout Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.3.2. L2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.4. Improving Drug Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.4.1. Using MoLFormer Embeddings . . . . . . . . . . . . . . . . . . . . . . 27
4.1.4.2. Using SELFormer Embeddings . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.5. Incorporating Richer Biological Information . . . . . . . . . . . . . . . . . . . 28
4.1.5.1. Incorporating Pathway Information . . . . . . . . . . . . . . . . . . 28
4.1.5.2. Mechanism of Action Features . . . . . . . . . . . . . . . . . . . . . . . 28

4.2. Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1. Impact of Regularization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2. Impact of Alternative Drug Representations . . . . . . . . . . . . . . . . . . . 30
4.2.3. Impact of Incorporating more Biological Information . . . . . . . . . . 31
4.2.4. Incorporating Pathway Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.5. Incorporating Mechanism of Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5. ASSESSING THE BENEFIT OF USING CHEMICAL AND BIO-
LOGICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1. Models Compared With . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.2. Datasets The Models Employ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.3. Data Splitting Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.4. Testing Feature Learning with One-Hot Encoded Representa-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.4.1. Procedure For Replacing Original Features with

One-Hot Encoded Representations . . . . . . . . . . . . . . . . . . . 41
5.1.4.2. Application to MatchMaker . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.4.3. Application to DeepSynergy . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.4.4. Application to MARSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.4.5. Application to JointSyn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.4.6. Application to DeepDDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.4.7. Computational Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2. Results & Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.1. Performance with Drug & Cell Line Features vs. OHE Rep-

resentations for MatchMaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.2. Application on Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.3. Possible Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xi



5.2.3.1. Dataset Biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3.2. Biological Process Complexity. . . . . . . . . . . . . . . . . . . . . . . . 50

6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

BIBLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xii



LIST OF TABLES

Table 1.1. Summary of Computational Models for Drug Synergy Prediction 2

Table 2.1. Summary of Datasets for Drug Synergy Prediction . . . . . . . . . . . . . 14

Table 3.1. Performance of Models on Different Stratified Splits . . . . . . . . . . . . 22

Table 4.1. Performance Evaluation of Regularization Hyperparameters on
the MatchMaker Model Using the DrugComb Dataset . . . . . . . . . . . . . . . . 30

Table 4.2. Performance Comparison of the MatchMaker Model Using Dif-
ferent Features on the DrugComb Dataset Across Different Split
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 4.3. Performance Comparison of the MatchMaker Model Using
Pathway Information on the DrugComb Dataset Across Different
Split Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Table 4.4. Performance Comparison of the MatchMaker Model Using
Mechanism of Action Features on the DrugComb Dataset Across Dif-
ferent Split Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 5.1. Summary of Drug and Cell Line Features Used by Each Model 37
Table 5.2. Summary of Synergy Score Metrics and Datasets for Each Model 37
Table 5.3. Performance Comparison of MatchMaker Model Using Drug &

Cell Line Features vs OHE Representations on DrugComb Dataset
Across Different Split Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 5.4. Performance Comparison of MatchMaker Model Using Drug &
Cell Line Features vs OHE Representations on NCI Almanac Dataset
Across Different Split Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table A.1. Drug chemical structure features collected from PyBioMed. . . . . 60
Table A.2. Performance Comparison of DeepSynergy Model Using Drug &

Cell Line Features vs OHE Representations on O’Neil Dataset dataset
with LPO split. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiii



Table A.3. Performance Comparison of MARSY Model Using Drug & Cell
Line Features vs OHE Representations on DrugComb Dataset dataset
with LPO split. *Results using original features were sourced from
its publications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table A.4. MARSY single response prediction results from OHE experi-
ment. RS1 and RS2 represent relative inhibition responses for drugs
in a pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table A.5. Performance Comparison of JointSyn Model Using Drug & Cell
Line Features vs OHE Representations on O’Neil Dataset dataset
with LTO split. *Results using original features were sourced from
its publications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table A.6. Performance Comparison of DeepDDS Model Using Drug &
Cell Line Features vs OHE Representations on O’Neil Dataset dataset
with LTO split. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xiv



LIST OF FIGURES

Figure 2.1. Illustration of data split strategies. Each strategy shows how
drug pairs, individual drugs, and cell lines are included or excluded
in the training and test sets. This figure does not illustrate Group
k-Fold Cross-Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 3.1. Architecture of the MatchMaker model. The model comprises
two Drug Specific Subnetworks and one Synergy Prediction Subnet-
work. Drugs are represented by chemical descriptors, and cell lines
are represented by CLE profiles. Each DSN learns the representation
of the drugs on the cell line. The SPN combines these representations
and predicts the synergy score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.2. Architecture of the DeepSynergy model. The model takes
concatenated input vectors consisting of the two drugs and the cell
line. Chemical descriptors are used for drug representations and CLE
profiles for the cell line. The output layer employs a linear activation
function to predict the synergy score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.3. Architecture of the MARSY model. ENCPair encodes the con-
catenated feature vectors of the drug pair, while ENCTriple encodes
the combined features of the drug pair and cell line. The embeddings
are concatenated and passed to PREDResp. The multitask predic-
tor simultaneously estimates the synergy score and individual drug
responses Drugs are represented with DGE, while CLE profiles are
used for cell lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xv



Figure 3.4. Architecture of the JointSyn model. The model includes mul-
tiple inputs: a joint graph of the drug combination, drug fingerprints,
and the cell line’s CLE profile. View 1 processes the joint graph
with a GAT and the cell line with an MLP. Then concatenates that
embedding to feed them through another MLP. View 2 integrates
fingerprints and cell line embeddings processed by an MLP. The Pre-
diction Network combines embeddings from both views through an
MLP to predict synergy scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.5. Architecture of the DeepDDS model. The model uses a GAT
for extracting drug features from molecular graphs and an MLP for
processing CLE profiles. The embeddings from GAT and MLP are
concatenated and passed through a fully connected network to predict
synergy labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 5.1. Heatmap representing the frequency of drug occurrences and
their pairwise groupings in the DrugComb dataset. Drug frequencies
are categorized into distinct groups based on their occurrence counts
in triplets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 5.2. Heatmap representing the frequency of drug occurrences and
their pairwise groupings in the NCI ALMANAC dataset. Drug fre-
quencies are categorized into distinct groups based on their occurrence
counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 5.3. Architecture of the MatchMaker model for OHE Experiment.
The model comprises two Drug Specific Subnetworks and one Synergy
Prediction Subnetwork. Drugs and cell lines are represented using
one-hot-encoding. Each DSN learns the representation of the drugs
on the cell line. The SPN combines these representations and predicts
the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 5.4. Architecture of the DeepSynergy model for OHE Experiment.
The model takes concatenated input vectors consisting of the two
drugs and the cell line. One-hot-encoded representation are used for
drugs and cell lines. The output layer employs a linear activation
function to predict the synergy score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xvi



Figure 5.5. Architecture of the MARSY model for OHE Experiment.
ENCPair encodes the concatenated feature vectors of the drug pair,
while ENCTriple encodes the combined features of the drug pair and
cell line. The embeddings are concatenated and passed to PREDResp.
The multitask predictor simultaneously estimates the synergy score
and individual drug responses Drugs are represented with one-hot-
encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 5.6. Architecture of the JointSyn model for OHE Experiment.
View 2 integrates drugs and cell line embeddings processed by
an MLP. Both drug and cell lines are represented with one-hot-
encoding. The Prediction Network combines embeddings from both
views through an MLP to predict synergy scores. . . . . . . . . . . . . . . . . . . . . . 45

Figure 5.7. Architecture of the DeepDDS model for OHE Experiment.
Cell line embeddings from the MLP and drug representations are
concatenated and passed through a fully connected network to predict
synergy labels. One-hot-encoded representations are used for both
drugs and cell lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 5.8. Comparison of Drug & Cell Line Features vs OHE Repre-
sentations Across Different Models and Datasets. Drug and cell line
features refer to the original representations of drugs and cell lines
used in their respective models. MSE and SEmse results for the eval-
uated models. For MARSY and JointSyn, SEmse was derived from
fold-based calculations (see Appendix, Standard Error of MSE, for de-
tails). For DeepDDS, ROC-AUC is reported. *Results for MARSY
and JointSyn using original features were sourced from their respec-
tive publications.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xvii



LIST OF ABBREVIATIONS

ACC: Accuracy

BACC: Balanced Accuracy

CI: Confidence Interval

CLE: Cell Line Gene Expression Profiles

CNNs: Convolutional Neural Networks

CNV: Copy Number Variation

DGE: Differential Gene Expression Profiles

DNN: Deep Neural Network

DSNs: Drug Specific Subnetworks

ECFP: Extended Connectivity Fingerprints

ELU: Exponential Linear Unit

FC: Fully Connected

FCNN: Fully Connected Neural Network

GAT: Graph Attention Network

GDSC: Genomics of Drug Sensitivity in Cancer

GCN: Graph Convolutional Network

GNN: Graph Neural Networks

HTS: High-Throughput Screening

KAPPA: Cohen’s Kappa

LCO: Leave-Cell-Line-Out

xviii



LDO: Leave-Drug-Out

LODO: Leave-One-Drug-Out

LPO: Leave-Pair-Out

LTO: Leave-Triple-Out

MLP: Multilayer Perceptron

MoA: Mechanism of Action

MSE: Mean Squared Error

MSigDB: Molecular Signatures Database

MUT: Mutation Features

OHE: One-Hot-Encoded

PCA: Principal Component Analysis

PCC: Pearson’s Correlation Coefficient

PPI: Protein-Protein Interaction

PR AUC: Precision-Recall Area Under Curve

ReLU: Rectified Linear Unit

RMSE: Root Mean Squared Error

ROC AUC: Receiver Operating Characteristic Area Under Curve

SE: Standard Error

SCC: Spearman’s Correlation Coefficient

SELFIES: SELF-referencing Embedded Strings

SMILES: Simplified Molecular-Input Line-Entry System

SPN: Synergy Prediction Subnetwork

UMLS: Unified Medical Language System

xix



1. INTRODUCTION

Drug combination therapies are an alternative to monotherapies for treating several
diseases, including cancer(Mokhtari et al., 2017a; Al-Lazikani et al., 2012), bacterial
infections(Tamma et al., 2012), and several others(Möttönen et al., 1999; Gradman
et al., 2010). Synergistic drug combinations provide higher efficacy and reduced
side effects and resistance(Mokhtari et al., 2017b). While high-throughput screening
of drug combinations across cell lines is possible, these technologies still can only
cover a small portion of all combinations (Iorio, 2016; Jaaks et al., 2022a). The
vast number of possible drug combinations and cell lines makes exhaustive clinical
testing infeasible. To tackle this challenge, several computational models have been
developed to assist experimental efforts(Preuer et al., 2017; Zhang et al., 2022; Wang
et al., 2021; Hu et al., 2022a; Kuru et al., 2022; Rafiei et al., 2023; Li et al., 2024b). By
predicting synergistic scores for drug combinations, these models allow prioritization
of which drug combinations to test.

In a typical cell-line-based synergy prediction model, each input example consists of
a triplet: a drug pair and the cell line on which the two drugs’s synergistic effect is
measured. Models numerically represent these triplets using various descriptors for
drug structures and cell lines. While some models cast the problem as a classification
task, synergistic vs antagonistic, others would formulate it as a regression task where
a synergy score is estimated directly.

Recent advancements in drug synergy prediction have introduced various computa-
tional approaches, often leveraging deep learning techniques. DeepSynergy (Preuer
et al., 2017), one of the pioneering deep learning-based models for drug synergy
prediction, outperformed traditional machine learning approaches such as Gradient
Boosting Machines, Random Forests, and Support Vector Machines. Since then,
numerous deep learning models have been introduced(Abbasi and Rousu, 2024).
The summary of a subset of these models can be seen in Table 1.1. Commonly
used architectures in this field include Deep Neural Networks (DNNs), Graph Neu-
ral Networks (GNNs), and Transformers. The models typically use fully connected
networks to process one-dimensional representation of drugs and cell lines (Preuer
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et al., 2017; El Khili et al., 2023; Kuru et al., 2022). Alternative approaches include
GNNs that represent drug structures as graphs, where atoms are represented as
nodes and chemical bonds as edges. Models like DeepDDS and JointSyn leverage
this approach(Wang et al., 2021; Li et al., 2024b). Transformers, such as those em-
ployed in DTSyn (Hu et al., 2022b) and DFFNDDS(Xu et al., 2023), are increasingly
used to capture complex relationships between drugs and biological information.
Some models exclusively focus on synergy prediction, while others adopt a multi-
task approach, predicting single-drug responses or drug-drug interaction classifica-
tions alongside synergy scores. For example, the MARSY model predicts synergy
scores and single-drug responses for both drugs in a combination(El Khili et al.,
2023).

These models utilize a wide range of drug features, including chemical descriptors
(e.g., fingerprints, SMILES), pharmacological properties, and gene expression pro-
files after drug treatment. In addition, information on drug-target relationships and
drug interaction networks is often incorporated. Cell line descriptions primarily rely
on gene expression profiles(Abbasi and Rousu, 2024; Wang et al., 2021).

Table 1.1 Summary of Computational Models for Drug Synergy Prediction

Method Model Type Drug Features Cell Line Features Reference
DeepSynergy DNN Chemical Structures CLE (Preuer et al., 2017)
AuDNNSynergy AE, DNN Fingerprints Genomic Mutations, CNV (Zhang et al., 2021)
DeepDDS GNN, DNN Chemical Structures CLE (Wang et al., 2021)
DCE-DForest BERT, Deep Forest SMILES CLE (Zhang et al., 2022)
DTSyn Transformer SMILES, PPI CLE (Hu et al., 2022a)
MatchMaker DNN Chemical Structures CLE (Kuru et al., 2022)
PRODeepSyn GCN Fingerprints CLE, Genomic Mutations, PPI (Wang et al., 2022)
SynPathy DNN Chemical Structures Pathway (Tang and Gottlieb, 2022)
TranSynergy DNN, Transformer SMILES CLE (Liu and Xie, 2021)
CCSynergy DNN Fingerprints Multi-omics (Hosseini and Zhou, 2023)
DeepTraSynergy Multitask, Transformer SMILES PPI (Rafiei et al., 2023)
DEML DNN, Ensemble Fingerprints CLE (Wang et al., 2023b)
DFFNDDS BERT, DNN SMILES, Fingerprints CLE (Xu et al., 2023)
Forsyn Deep Forest SMILES CLE (Wu et al., 2023)
GAECDS Graph AE, CNN SMILES CLE (Li et al., 2023)
HyperSynergy GNN, DNN SMILES CLE (Zhang et al., 2023)
MARSY DNN, Multitask CLE CLE (El Khili et al., 2023)
JointSyn GNN, DNN Chemical Structures, SMILES CLE (Li et al., 2024b)

Our main goal in this study was to improve upon previous work by incorporating
richer biological information into the models to attain better predictive performance.
Throughout the study, we observe that the existing models in the literature suffer
generalization across unseen drugs and cell lines. While many approaches demon-
strate sufficient performance with randomly split datasets, their performance signif-
icantly reduces the use of cell lines and drugs. This leads us to investigate the real
generalization power of the models systematically.
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1.1 Main Contribution

In this thesis, we provide evidence that many of the models in the literature for syn-
ergy prediction may not be effectively learning from the input biological and chemical
features but are learning from co-variance patterns in the data. We demonstrate
that by replacing the feature representations in the models using one-hot encoded
features versus complex biological descriptors the models rely on. This could be
why models fail to generalize to new drugs and cell lines.

1.2 Thesis Organization

The thesis is organized as follows:

• Chapter 2 presents a comprehensive background on drug synergy research. It
includes experimental screening methods and synergy scoring models. Chapter
also explains evaluation setups and focuses on data splitting strategies and
evaluation metrics. Finally, it provides drug and cell line representations, as
well as the data resources used in the field.

• Chapter 3 reviews related works on drug synergy prediction models. It dis-
cusses the architectures and methodologies of models. The Section 3.2 exam-
ines how these models generalize to unseen drugs and cell lines.

• Chapter 4 presents attempts made to improve the performance of the Match-
Maker model. These include regularization techniques, enhanced drug repre-
sentations, and the integration of biological information. Incorporating addi-
tional biological information covers pathway data and mechanisms of action.

• Chapter 5 evaluates the use of one-hot encoded (OHE) features in drug syn-
ergy prediction. It details the datasets, data splitting strategies, and feature
replacement procedures. Experiments are performed on MatchMaker, Deep-
Synergy, MARSY, JointSyn, and DeepDDS models.

• Chapter 6 concludes the findings and suggests future research directions.
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2. BACKGROUND

2.1 Experimental Screening of Drug Combinations

Traditional methods for assessing drug combinations use manual techniques like
tissue culture cytotoxicity assays. These require a significant amount of effort and
approximately one to two weeks to complete. Disease-relevant cell lines are cultured,
and IC50 values are estimated from studies or literature. Drug combinations are
applied, and effects are measured using assays like cell viability or proliferation.
Although they are reliable, traditional approaches have limitations in terms of time,
cost, and scalability(Chou, 2008). These have led to the adoption of high-throughput
screening (HTS) techniques (Iorio, 2016).

Experimental screening is fundamental in drug synergy research, enabling the as-
sessment of drug combinations for their effects on cell lines. In a typical setup,
disease-relevant cell lines, such as cancer cell lines, are cultured in appropriate me-
dia and seeded into high-density microplates. Drugs are prepared in dose gradients
and applied in combinations to create a dose-response matrix, allowing systematic
evaluation of multiple concentration pairs. Following incubation under controlled
conditions, various assays can be used, such as cell viability, apoptosis, or pro-
liferation. Data from these experiments are normalized and analyzed to generate
dose-response curves, which are further input to synergy models to calculate synergy
scores(O’Neil et al., 2016).

High-throughput combination screening employs automation and advanced data an-
alytics to test thousands of drug combinations rapidly(He et al., 2018). Datasets
such as DrugComb(Zheng et al., 2021) and NCI Almanac (Holbeck et al., 2017)
have emerged as key resources in the field. DrugComb integrates data from multi-
ple studies and uses various mathematical models to calculate synergy scores. NCI
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Almanac focuses on FDA-approved drugs, providing IC50 values and ComboScores.
These resources facilitate the evaluation of drug combinations across diverse cell
lines, significantly expanding the scope of synergy research.

2.1.1 Synergy Scoring Models

Several mathematical models are used to calculate synergy scores from the dose-
response matrix to provide a quantitative summary of two drugs’ interaction:

• Loewe Additivity: The Loewe additivity model describes the expected out-
come of a drug combination based on the additive effects of each drug when
used individually. The model assumes that the drugs do not interact with
themselves. According to Loewe (Loewe, 1953), the condition for additivity is
expressed as:

(2.1) d1
D1

+ d2
D2

= 1

where for two drug1 and drug2 the doses in combination are represented as
d1 and d2, and D1 and D2 are the doses of drugs required to achieve the
same effect when utilized alone. Deviations from this expected effect indicate
synergy (positive deviation) or antagonism (negative deviation.)

• Bliss Independence: This model assumes that drugs act independently, with
the combined effect calculated as the product of their individual effects. It
predicts the expected combined effect based on the effects of each drug acting
alone. (Bliss, 1939).

(2.2) EBliss = E1 +E2 −E1E2

where E1 and E2 are individual effects of drugs in a pair. If the observed effect
of the drug combination exceeds the Bliss-predicted effect, they are synergistic
(Eobserved > EBliss), otherwise antagonistic.

• ZIP (Zero Interaction Potency): ZIP integrates the Loewe and Bliss models
to evaluate deviations from a non-interaction reference. This model is partic-
ularly useful for more complex interactions (Yadav et al., 2015).
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(2.3)
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where [D1] and [D2] are the concentrations of drugs. EC50,D1 and EC50,D2

represent the concentrations at which the half-maximal response is observed.
λD1 and λD2 are the slope parameters of the dose–response curves(Vlot et al.,
2019).

• ComboScore: This score is used in the NCI Almanac to evaluate drug com-
bination effects based on IC50 values and dose-response data. It provides a
general metric for synergy and combination efficacy (Holbeck et al., 2017).

(2.4) Yexpected =

 min(YD1 ,YD2) if YD1 or YD2 < 0,

YD1 ×YD2/100 otherwise

where YD1 and YD2 represent the observed growth fractions of drugs in a
pair. The ComboScore is determined by summing the differences between the
observed and expected growth fractions for all dose combinations.

These models provide a continuous score. Based on these scores and set thresholds,
it is possible to classify drug combinations into synergistic, additive, or antagonistic
categories, supporting both experimental and computational approaches in drug
discovery.

Despite the power of high-throughput approaches, challenges such as data variability,
high costs, and scalability limitations persist. To address these issues, leveraging
this HTS as training data for machine learning models is a promising strategy to
predict synergy for unexplored drug combinations. This integration enhances the
efficiency and scope of drug synergy research, bridging the gap between experimental
and computational methodologies (O’Neil et al., 2016; Yadav et al., 2015).
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2.1.2 Drug Synergy Prediction Problem Statement

The drug synergy prediction task aims to identify effective drug combinations for
specific cell lines, enabling the discovery of therapies that enhance efficacy while
minimizing side effects. For a given drug pair (i, j) and a cell line k, the goal is to
predict a synergy score yi,j,k, which can be:

• A continuous value (yi,j,k ∈ R) for regression models, representing the magni-
tude of synergy.

• A binary label (yi,j,k ∈ {0,1}) for classification models, indicating whether the
interaction is synergistic.

Drugs i and j are represented by feature vectors (xi, xj), which may include diverse
data types such as molecular descriptors, graphs, or one-hot encoded representations
of drug identities. Similarly, the cell line k is represented by a feature vector (ck),
derived from gene expression profiles, pathway-level features, or one-hot encoded
representations of cell line identifiers.

This prediction problem is challenging due to the heterogeneous nature of the input
datasets, usually culled from different sources and the complexity of the underlying
biology of the drug interactions in the cellular processes.

2.2 Evaluation Setups

Because the models take into account triplets, assessing the predictive performance
of the models necessitates careful evaluation set ups (Whalen et al., 2021). Depen-
dencies between examples, such as shared drugs or cell lines, can result in overly
optimistic performance estimates. To address these limitations, tailored splitting
strategies are required (Baumann and Baumann, 2014; Preuer et al., 2017).
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2.3 Data Splitting Strategies

• Leave-Triple-Out (LTO): In this strategy, drug–drug–cell line triples are ran-
domly excluded from the training set. The test set includes entirely unseen
drug–drug–cell line triplets. However, individual drug, drug pair or cell lines
within these combinations may still appear with another partner in the train-
ing data. The purpose of LTO is to assess the model’s ability to predict entirely
novel drug-pair-cell line combinations.

• Leave-Pair-Out (LPO): In this strategy, drug pairs present in the test set are
not included in the training set. However, individual drugs within these pairs
can still appear in the training data, paired with other drugs. There is no
restriction on cell lines; the test set may include cell lines seen during training.
The purpose of LPO is to evaluate the model’s ability to predict interac-
tions between drug pairs it has not encountered before, while still utilizing the
knowledge of each drug’s behavior from other pairings. This approach tests
the model’s capacity to generalize to new drug combinations based on familiar
components.

• Leave-Cell-Line-Out (LCO): This strategy excludes all data related to specific
cell lines from the training set. Consequently, none of the cell lines in the test
set are shared with the training data. There are no restrictions on drugs or
drug pairs. The purpose of LCO is to test the model’s ability to generalize its
predictions to new biological contexts represented by unseen cell lines. This
is crucial for understanding how well the model can adapt to different cellular
environments, which is important for applications like personalized medicine
where patient-specific cell responses are considered.

• Leave-One-Drug-Out (LODO): In this method, at least one drug in each drug
pair within the test set is completely absent in the training triplets. The
other drug in the pair may still appear in the training set, interacting with
different drugs. There is no restriction on cell lines; the test set may contain
cell lines seen during training. The purpose of LODO is to evaluate the model’s
ability to predict interactions when it has incomplete information—specifically
when one drug is entirely new to the model. This scenario reflects real-world
situations where a new drug is introduced, and the model must rely on existing
knowledge of known drugs to make predictions.

• Leave-Drug-Out (LDO): In this strategy, if a drug is seen in the training data,
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this drug and all of its drug interactions are excluded in the test set. As a
result, the model did not see any of the drugs in the test set during training.
Implementing this split often reduces the dataset since removing drugs and
their associated data decreases the amount of training information available.
There is no restriction on cell lines; the test set can include cell lines present
in the training data. The purpose of LDO is to assess the model’s ability
to handle entirely new drugs, evaluating how well it can predict interactions
involving drugs it has no prior knowledge of.

• Group k-Fold Cross-Validation: Ensures that related entities (e.g., cell lines
from the same tissue) are grouped into a single fold, avoiding information leak-
age that could artificially inflate performance metrics. For instance, grouping
all pairs involving a specific drug within a fold ensures independence between
training and testing datasets.

These structured splitting strategies are essential for assessing model performances
in different real-world scenarios and their true generalization capacities, and are
shown in Figure 2.1

Figure 2.1 Illustration of data split strategies. Each strategy shows how drug pairs,
individual drugs, and cell lines are included or excluded in the training and test sets.
This figure does not illustrate Group k-Fold Cross-Validation.

Cell Line A

Cell Line B

Cell Line C

Leave Triple
Out

Leave Pair
Combination Out

Leave Cell
Line Out

Leave One
Drug Out

Leave
Drug Out

Training
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Test
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2.3.1 Evaluation Metrics

Proper metrics are required to evaluate the performance of models accurately. The
choice of metric depends on whether the task is regression or classification:

• For Regression Tasks:

– Mean Squared Error (MSE): Measures the average squared difference be-
tween predicted and true synergy scores. Lower values indicate better
performance.

(2.5) MSE = 1
n

n∑
i=1

(yi − ŷi)2

where n is the number of observations, yi is the actual value for the i-th
observation, and ŷi is the predicted value for the i-th observation.

– Spearman’s Rank Correlation Coefficient (SCC): Assesses the monotonic
relationship between predicted and true values, capturing ranking perfor-
mance.

(2.6) ρ = 1− 6∑
d2

i

n(n2 −1)

where n is the number of observations, and di is the difference between
the ranks of the predicted and true values for the i-th observation. The
SCC value ranges from −1 to +1, where:

∗ +1: Perfect positive monotonic relationship,

∗ 0: No monotonic relationship,

∗ −1: Perfect negative monotonic relationship.

– Pearson Correlation Coefficient (PCC): Measures the linear relationship
between predictions and true values, often used alongside MSE for com-
prehensive evaluation.

(2.7) r =
∑(xi − x̄)(yi − ȳ)√∑(xi − x̄)2 ∑(yi − ȳ)2

where n is the number of observations, xi and yi are the i-th predicted
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and true values, respectively, and x̄ and ȳ are the mean of the predicted
and true values, respectively.

The PCC value ranges from −1 to +1, where:

∗ +1: perfect positive linear correlation,

∗ 0: no linear correlation,

∗ −1: perfect negative linear correlation.

• For Classification Tasks:

– Definitions of Key Terms:

∗ TP (True Positives): Correctly predicted positive cases.

∗ FP (False Positives): Incorrectly predicted positive cases.

∗ FN (False Negatives): Positive cases incorrectly predicted as nega-
tive.

∗ TN (True Negatives): Correctly predicted negative cases.

– ROC AUC: Measures the trade-off between sensitivity (true positive rate)
and specificity (false positive rate).

(2.8) TPR = TP
TP+FN

(2.9) FPR = FP
FP+TN

The ROC AUC represents the area under the ROC curve, with values
ranging from 0 to 1:

∗ 1: Perfect classification,

∗ 0.5: Random guessing,

∗ < 0.5: Poor classification.

– Precision-Recall AUC (PR AUC): Evaluates the trade-off between pre-
cision and recall(true positive rate), particularly useful for imbalanced
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datasets where the minority class is of primary interest.

(2.10) Precision = TP
TP+FP

(2.11) Recall = TP
TP+FN

The PR AUC is computed as the area under the Precision-Recall curve.
Higher values indicate better performance.

These metrics provide complementary insights into model performance, ensuring
reliable evaluation across different tasks.

2.4 Drug Representations

Drug representations are fundamental in predicting synergy effects. Traditional ap-
proaches often employ chemical fingerprints, such as Extended Connectivity Finger-
prints (ECFPs), to encode molecular structures into fixed-length vectors. These fin-
gerprints capture key chemical features, including functional groups and structural
motifs(Rogers and Hahn, 2010; Pattanaik and Coley, 2020). Additionally, chemical
descriptors generated by tools like ChemoPy(Cao et al., 2013a), PyBioMed(Dong
et al., 2018) provide quantitative measures of properties such as hydrophobicity,
molecular weight, and polarity.

In recent years, graph-based representations have gained attention. Here, drugs are
modeled as molecular graphs, atoms as nodes, and bonds as edges(Yang et al.,
2019). Models like DeepDDS(Wang et al., 2021) and AttenSyn(Wang et al.,
2023a) use GNNs to learn detailed, topological insights from these graphs, improv-
ing the capture of molecular relationships. The graphs are generated from the
SMILES(Weininger, 1988) of the drugs using the RDKit tool(Landrum, 2016).

Transformer-based large language models such as MolFormer(Ross et al., 2022),
ChemFormer(Irwin et al., 2022), and SELFormer(Yüksel et al., 2023) process molec-
ular strings to produce embedded structures that reflect both local and global chem-
ical contexts. Although these representations have not yet been used for the drug
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synergy prediction task, other benchmark tasks from MoleculeNet have shown suc-
cess(Ross et al., 2022).

2.5 Cell Line Representations

Cell line representations aim to characterize the biological context in which drug
interactions occur. Most commonly used feature is the cell line gene expression
profiles(CLE). Gene expression levels in a cell line refer to the amount of RNA
produced by specific genes, indicating their activity(Iorio, 2016; Teo et al., 2016;
Charafe-Jauffret et al., 2005).

Genomic mutations (MUT) and copy number variations (CNV) are also used as
genomic data in cell line representation. The integration of multi-omic data has
broadened the scope of cell line representations. The omic datasets contain tran-
scriptomics, proteomics, and epigenomics to provide a more comprehensive cellular
profile. Research suggests that utilizing more than one complementary omic types
can yield more robust predictive performance(Wang et al., 2022).

Approaches like TranSynergy use protein-protein interaction (PPI) networks, rep-
resenting cellular components and their interactions as graphs(Liu and Xie, 2021).
These graph-oriented frameworks complement multi-omic integration, offering richer
representations of the biological contexts underlying drug synergy.

2.6 Drug Synergy Data Resources

In this section, we provide information on the dataset most used in synergy pre-
diction tasks, and summarize in Table 2.1. O’Neil dataset(O’Neil et al., 2016),
published in 2016, includes 263 drugs, 81 cell lines, and 369,776 combinations. It
was among one of the earliest datasets systematically evaluating drug combinations
in cancer cell lines.

Another dataset is the NCI Almanac dataset(Holbeck et al., 2017), released in 2017,
contains 104 drugs tested across 60 cell lines, with a total of 304,549 combinations.
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It has been widely used in tasks to predict synergy scores.

One of the most extensively used datasets, DrugComb, combines high-throughput
screening studies into a standardized format. It was initially introduced in 2019
with 2,276 drugs, 93 cell lines, and 437,923 combinations(Zagidullin et al., 2019). It
was expanded in 2021, with the latest version including 8,397 drugs, 2,320 cell lines,
and 739,964 combinations(Liu et al., 2019).

The DrugCombDB(Liu et al., 2019), published in 2020, integrates data for 2,887
drugs and 124 cell lines, comprising 448,555 combinations. It aggregates experi-
mental results from various sources. The SYNERGxDB dataset(Seo et al., 2020),
released in 2021, consists of 1,977 drugs, 151 cell lines, and 477,839 combinations.
It also combines multiple high-throughput drug combination studies. It provides
molecular profiles and tools for predicting biomarkers and effective drug combina-
tions.

Notably, there is significant overlap between datasets such as DrugComb, Drug-
CombDB, and SYNERGxDB, as these databases partly incorporate data from ear-
lier studies, including NCI Almanac and O’Neil(Pan et al., 2023).

Lastly, the GDSC-combo dataset(Jaaks et al., 2022b) includes 2,025 drug combi-
nations screened across 125 cell lines, resulting in 108,259 drug-cell line pairs. It
integrates genomic and molecular features to enhance drug synergy analysis.

Table 2.1 Summary of Datasets for Drug Synergy Prediction

Dataset # of Drugs # of Cell Lines # of Combinations Reference
O’Neil 39 38 22,737 (Iorio, 2016)
NCI Almanac 104 60 304,549 (Holbeck et al., 2017)
DrugComb v.1 2,276 93 437,932 (Zagidullin et al., 2019)
DrugComb 8,397 2,320 739,964 (Zheng et al., 2021)
DrugCombDB 2,887 124 448,555 (Liu et al., 2019)
SynergXDB 1,977 151 22,507 (Seo et al., 2020)
GDSC-combo 65 125 108,259 (Jaaks et al., 2022b)
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3. RELATED WORKS

3.1 Overview of Architectures

Deep learning architectures have been widely applied to predicting synergistic drug
combinations. These architectures vary based on their design principles, training
methodologies, and input types. Their input representations range from simple one-
dimensional feature vectors to complex graph-structured data. They also differ in
how they capture interactions between drugs and cell lines.

Deep Neural Networks (DNNs/FCNNs): Many early models rely on fully connected
neural networks to process one-dimensional inputs such as molecular fingerprints,
chemical descriptors, and CLE profiles. These networks combine multiple linear lay-
ers and nonlinear activations, allowing them to learn patterns from integrated drug
and cell line features. Examples include models like DeepSynergy(Preuer et al.,
2017) and AuDNNsynergy(Zhang et al., 2021), as well as later approaches like CC-
Synergy(Hosseini and Zhou, 2023) and MARSY(El Khili et al., 2023). Some meth-
ods adopt subnetworks for each drug to ensure permutation-invariant predictions,
enabling more robust handling of pairwise drug inputs(Kuru et al., 2022).

Convolutional Neural Networks (CNNs): Though not as common in drug synergy
tasks, there are some models that adapt CNNs. CNNs leverage convolutional filters
to extract local patterns. For example, the GAECDS model utilizes CNN in addition
to GNN and DNN(Li et al., 2023).

Graph Neural Networks (GNNs): GNNs are a good option for modeling molecu-
lar structures and biological networks. GNNs can learn detailed topological and
chemical information directly from the graph-structured inputs. Models like Deep-
DDS(Wang et al., 2021) extract structural drug information using drug graphs, while
PRODeepSyn(Wang et al., 2022) builds more complex graphs to encode interactions

15



between drugs and cell lines.

Attention Mechanisms and Transformers: Attention based models, including Trans-
formers, have gained popularity for their ability to handle with long-range depen-
dencies and combine information from different sources. These architectures process
features from various sources, such as drugs, targets, and cell lines, more flexibly.
Models like SynergyX(Guo et al., 2024) employ Transformers to handle diverse omic
data, while CancerGPT(Li et al., 2024a) uses large language models trained on sci-
entific literature of drug combinations.

3.1.1 Drug Synergy Prediction Models Tested

3.1.1.1 MatchMaker

MatchMaker is one of the state-of-the-art models designed for drug synergy predic-
tion. It is a deep neural network based model designed to predict the synergy score
of drug pairs in cell lines. The model takes three inputs, chemical descriptors of each
drug pair, and CLE profile of a cell line. The architecture of MatchMaker(Figure
3.1) consists of two Drug Specific Subnetworks (DSN) and one Synergy Prediction
Subnetwork (SPN). Each DSN processes the chemical descriptors of a drug together
with the CLE profile of the cell line to create a latent representation of the drug on
the cell line profile. These DSNs share the same architecture and consist of three
fully connected (FC) layers with the rectified linear unit (ReLU) activation in the
first two layers, linear activation in the last one, and dropout applied to the first
two layers with probability 0.2 and 0.5, respectively.

The outputs of the two DSNs are combined and fed into a three-layer FC network,
the SPN. SPN also uses ReLU activation in the first two layers, linear activation
in the output layer, and dropout with probability 0.5 applied after the first ReLU
layer. SPN predicts the Loewe score for a given drug pair and cell line.
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Figure 3.1 Architecture of the MatchMaker model. The model comprises two Drug
Specific Subnetworks and one Synergy Prediction Subnetwork. Drugs are repre-
sented by chemical descriptors, and cell lines are represented by CLE profiles. Each
DSN learns the representation of the drugs on the cell line. The SPN combines these
representations and predicts the synergy score.

3.1.1.2 DeepSynergy

DeepSynergy is a deep learning model developed to predict drug synergy scores by
utilizing the input features of two drugs and a cell line. The model takes concate-
nated input vectors containing the chemical descriptors of two drugs and the CLE
profile of the cell line, as shown in Figure 3.2. DeepSynergy uses a structure with
three hidden layers. A dropout rate of 0.2 is applied to the input layer, while a
higher rate of 0.5 is used for the hidden layers. The hidden layers utilize the ReLU
activation function for processing, and the output layer employs a linear activation
function to generate the predicted synergy score. This structure focuses on extract-
ing significant interactions between drugs and cell lines. This architecture has been
widely recognized in the field as a baseline model for drug synergy prediction and
serves as a benchmark for evaluating the prediction performance in related research.

17



Figure 3.2 Architecture of the DeepSynergy model. The model takes concatenated
input vectors consisting of the two drugs and the cell line. Chemical descriptors are
used for drug representations and CLE profiles for the cell line. The output layer
employs a linear activation function to predict the synergy score.

3.1.1.3 MARSY

MARSY is a deep learning model designed to predict drug synergy scores in cell lines
by leveraging two parallel encoders and a multitask predictor. The architecture of
MARSY can be seen in Figure 3.3. MARSY represents drugs using differential
gene expression (DGE) signatures measured in MCF7 and PC3 cell lines after drug
treatment, and it represents the untreated CLE profile of cell lines.

The first encoder, ENCPair, processes the concatenated feature vectors of the drug
pair using two fully connected layers with a dropout rate of 0.2. The second en-
coder, ENCTriple, processes the concatenated features of the drug pair and the CLE
profiles, also with two layers and the same dropout rate. Both encoders use linear
activation for the first layer and ReLU activation for the second.

The embeddings from these encoders are concatenated and passed to the multi-
task predictor, PREDResp, which has two hidden layers and an output layer of size
three. The predictor applies ReLU activation in the hidden layers and linear acti-
vation in the output layer, with dropout regularization at 0.5. This multitask setup
simultaneously predicts the drug pair’s synergy score and individual drug responses.
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Figure 3.3 Architecture of the MARSY model. ENCPair encodes the concatenated
feature vectors of the drug pair, while ENCTriple encodes the combined features
of the drug pair and cell line. The embeddings are concatenated and passed to
PREDResp. The multitask predictor simultaneously estimates the synergy score
and individual drug responses Drugs are represented with DGE, while CLE profiles
are used for cell lines.

3.1.1.4 JointSyn

JointSyn is a deep learning model designed to predict drug synergy scores by com-
bining multiple representations of drug pairs and cell lines. The model takes three
inputs, a joint graph of the drug combination, Morgan fingerprints of the drugs,
and the cell line’s expression profile. It uses two views and a prediction network for
synergy prediction, as detailed in Figure 3.4 .

View 1 constructs a joint graph to capture interactions between drug molecules.
A three-layer Graph Attention Network (GAT) processes this graph, generating a
combined drug embedding. exponential linear unit (ELU) activations are applied to
each GAT layer, and dropout regularization with a rate of 0.2 is used. Simultane-
ously, a two-layer multilayer perceptron (MLP) processes the CLE profile. Similar
to the GAT layers, ReLU activations and 0.2 dropout are applied here as well.

View 2 learns embeddings for individual drugs on the cell line by combining Morgan
fingerprints with the cell line embedding. These are processed through an MLP,
which also uses ReLU activations and dropout with a rate of 0.2, to form represen-
tations of the drugs and the cell line.
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Prediction Network integrates the embeddings from both views. A three-layer MLP
combines these representations to predict the synergy score. ReLU activations are
used in the hidden layers, with a dropout rate of 0.2. The output layer employs
either a softmax or linear activation for classification or regression tasks.

Figure 3.4 Architecture of the JointSyn model. The model includes multiple inputs:
a joint graph of the drug combination, drug fingerprints, and the cell line’s CLE
profile. View 1 processes the joint graph with a GAT and the cell line with an MLP.
Then concatenates that embedding to feed them through another MLP. View 2
integrates fingerprints and cell line embeddings processed by an MLP. The Prediction
Network combines embeddings from both views through an MLP to predict synergy
scores.

3.1.1.5 DeepDDS

DeepDDS is a deep learning model designed to predict synergistic drug combina-
tions. The model processes molecular graphs of drug pairs and CLE profiles of
cancer cell lines to predict synergy label.

This model employs a GNN for drug feature extraction. Specifically, it utilizes the
GAT as the primary method, although a Graph Convolutional Network (GCN) was
also tested. GAT layers, with multihead attention mechanisms, process the molec-
ular graphs, capturing higher-level node features. The GAT configuration includes
two hidden layers, and uses the ELU activation function. Dropout regularization
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with a rate of 0.2 is applied to the GAT layers.

For cell line feature extraction, the model employs a MLP, which processes CLE
profiles. The MLP consists of two hidden layers, applying ReLU activations and a
dropout rate of 0.2.

The extracted embeddings from the GAT and MLP are concatenated and fed into
a fully connected network for final classification, as represented in Figure 3.5. This
network includes three hidden layers, employing ReLU activations and a softmax
function in the output layer for classification.

While both GAT and GCN architectures were tested by DeepDDS, they reported
that the GAT-based implementation performed better than GCN. Therefore, GAT
was preferred while using DeepDDS.

Figure 3.5 Architecture of the DeepDDS model. The model uses a GAT for extract-
ing drug features from molecular graphs and an MLP for processing CLE profiles.
The embeddings from GAT and MLP are concatenated and passed through a fully
connected network to predict synergy labels.

3.2 Generalization of Models to Unseen Drugs and Cell Lines

The table 3.1 highlights the current generalization problem in drug synergy pre-
diction. Even with advanced architectures and data integration strategies, current
models struggle to perform well on splits that involve novel drugs or cell lines(Abbasi
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Table 3.1 Performance of Models on Different Stratified Splits

Method LTO LPO LCO LODO LDO Metric
DeepSynergy – 255.49 405.40 435.92 – MSE
DeepDDS 0.93 0.89 – 0.73 – ROC AUC
DTSyn – 0.78 0.82 0.73 – ROC AUC
DFFNDDS 0.92 0.81 0.82 0.65 – ROC AUC
Forsyn – 0.44 0.45 0.36 – PR AUC
MARSY 5.36 5.62 – – – RMSE
JointSyn 0.89 0.86 0.67 – 0.19 PCC
SynergyX 79.55 90.43 – – – MSE

and Rousu, 2024; Li et al., 2024b). This challenge shows the need for better fea-
ture representations, data augmentation techniques, and incorporation of external
biological knowledge (e.g., protein-protein interaction networks or pathway data,
mechanism of action).

Overall, some models demonstrate strong results under easier splits, such as LTO and
LPO. However, the reduction in performance on LODO and LCO splits highlights
the need for new approaches to overcome generalization barriers.
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4. ATTEMPTS TO IMPROVE MATCHMAKER PERFORMANCE

The MatchMaker model, our previous work, demonstrated strong performance in
drug synergy prediction, outperforming even some recent, more complex mod-
els(Abbasi and Rousu, 2024). Our main goal was further to enhance the overall
predictive capabilities of the MatchMaker model. To achieve this, we explored vari-
ous data splitting strategies and evaluated its performance on unseen drugs and cell
lines.

4.1 Methods

4.1.1 Input Features & Dataset

For the cell line representations, we used the untreated cell line gene expression pro-
files following the same procedure as in the original MatchMaker paper. We obtained
the RMA-normalized gene expression profiles from Genomics of Drug Sensitivity in
Cancer (GDSC) in 2024(Iorio, 2016). We used the expression profiles of landmark
genes, consisting of 972 genes. The list of these landmark genes was obtained from
Subramanian (2017).

The MatchMaker model utilizes chemical descriptors to represent drugs, captur-
ing structural and physicochemical properties. In the original MatchMaker paper,
chemical descriptors were generated using ChemoPy(Cao et al., 2013b). However,
as we used an updated version of the DrugComb dataset in this study, we needed to
generate feature descriptors for new drugs. To address this, we replaced ChemoPy
with PyBioMed(Dong et al., 2018), a more recent library that performs property cal-
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culations while offering improved functionality and compatibility. Using PyBioMed,
we generated a total of 367 features, details of which are provided in Table A.1.

In the original implementation of the MatchMaker model, the authors utilized the
December 2019 version (v1.4) of the DrugComb dataset. After applying their filter-
ing criteria, they obtained a dataset of 286,421 triplets (combinations of two drugs
and a cell line) involving 3,040 drugs tested across 81 cell lines. For our experiments,
we expanded this approach by employing the latest version of the DrugComb dataset,
which includes 739,964 drug-cell line combinations involving 8,397 drugs tested on
2,320 cell lines. This updated dataset provides a broader range of drug interactions.

We filtered this dataset by selecting only those drugs with accessible structural
information in the PubChem database and cell lines with gene expression data from
GDSC(Iorio, 2016). After filtering, we obtained 426,386 combinations covering 3,057
drugs and 167 cell lines. However, when applying the LDO split we faced limitations
in utilizing the entire dataset. The nature of the LDO split inherently reduces the
amount of data available for training because it excludes all interactions involving
the test drugs from the training set. Consequently, this restriction reduced the
dataset to 151,050 samples for the LDO experiments.

4.1.2 Dataset Split Strategies

To systematically evaluate the model’s performance, we partitioned the dataset into
training, validation, and testing sets with a distribution of approximately 60% for
training, 20% for validation, and 20% for testing. The following sections outline the
data split stragies used to evaluate the model’s performances in different scenarios:

• Leave-Pair-Out (LPO): Drug pairs in the test set are entirely excluded from
the training set. However, individual drugs from these pairs may still appear
in other combinations within the training data. This tests the model’s ability
to predict unseen drug interactions.

• Leave-Cell-Line-Out (LCO): All data associated with specific cell lines are
removed from the training set. Consequently, none of the cell lines in the test
set are present in the training data. This assesses the model’s capability to
generalize to entirely new biological contexts.

• Leave-One-Drug-Out (LODO): At least one drug in each drug pair within
the test set is entirely absent from the training data. The other drug in the
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pair may still appear in the training set in different contexts. This scenario
evaluates how well the model can predict interactions involving new drugs by
leveraging knowledge of known drugs.

• Leave-Drug-Out (LDO): Specific drugs and all their associated combinations
are completely excluded from the training set. None of the drugs in the test
set appear in the training data, making this the most challenging split for
assessing the model’s ability to generalize to entirely new drugs.

These strategies simulate real-world scenarios where the model encounters unseen
drugs, cell lines, or drug combinations. For further details, refer to Section 2.3 and
Figure 2.1.

4.1.3 Applying Regularization

Deep learning methods have shown exceptional potential to capture complex biolog-
ical interactions(Esteva et al., 2019). However, this complexity often increases the
risk of overfitting, where the model learns patterns specific to the training data. To
mitigate this issue, regularization techniques are employed to constrain the model’s
capacity. This improves the model to focus on the most relevant patterns and the
ability to generalize to unseen data. Among these techniques, dropout and L2 reg-
ularization are widely utilized for reducing overfitting(Kukačka et al., 2017).

4.1.3.1 Dropout Regularization

Dropout is a regularization method that reduces overfitting in neural networks
by randomly dropping neurons during training. This process is controlled by
the dropout rate, which determines the proportion of neurons deactivated in
each iteration. This prevents overfitting of specific neurons and improves perfor-
mance(Srivastava et al., 2014). The original architecture of MatchMaker already
incorporates dropout regularization. The inDrop parameter applies the dropout
rate to the first layer of each subnetwork, while the drop parameter applies it to
subsequent hidden layers. We increased these dropout rates and conducted experi-
ments for each data split method to assess their impact on model performance.
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4.1.3.2 L2 Regularization

L2 regularization, also known as weight decay or ridge regression, reduces overfitting
by adding a penalty term to the loss function based on the sum of the squared
weights(Goodfellow et al., 2016; Ng, 2004). This approach discourages the model
from assigning excessively large weights to any single feature, promoting better
performance on unseen data. The regularized loss function is expressed as:

(4.1) Ltotal = Loriginal +λ
∑

i

w2
i

where Loriginal is the original loss, λ is the regularization strength, and wi are the
model weights. We applied L2 regularization to the MatchMaker model to further
reduce overfitting and improve generalization across different data splits.

4.1.4 Improving Drug Representations

For all experiments with the MatchMaker model, we used CLE for cell line repre-
sentations. These profiles provide a standardized and consistent representation of
cell lines, ensuring compatibility across all analyses. For drug representations, we
utilized chemical structure descriptors, which capture the structural, topological,
and physicochemical properties of drugs. This approach aligns with the original
implementation of the MatchMaker model and ensures that both cell line and drug
features are represented in a manner that supports interpretable predictions.

To enhance the quality of the chemical descriptors and improve the model’s ability
to handle unseen drugs, we applied Principal Component Analysis (PCA) to reduce
the number of descriptors to 50 components. This reduction retained more than
95% of the variance.

We also used transformer-based molecular language models to further enhance the
model’s performance on unseen drugs. These models learn high-quality molecular
embeddings by analyzing large datasets and chemical notations. They have been
very effective in predicting molecular properties for drug discovery and material
science (Zhang et al., 2024). Both PCA and transformer-based embeddings were
specifically aimed at making the model better at handling unseen drugs and cell
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lines.

4.1.4.1 Using MoLFormer Embeddings

For our experiments, we incorporated embeddings generated by MoLFormer, a
transformer-based molecular language model trained on 1.1 billion SMILES se-
quences. MoLFormer uses rotary positional embeddings and a linear attention mech-
anism to efficiently capture both chemical and structural information. MolFormer
outperforms traditional models in various molecular property prediction tasks(Ross
et al., 2022). We specifically used the MoLFormer-XL-both-10pct model provided
by IBM on Hugging Face1, which is trained on 10% of the original dataset. By
encoding drug SMILES strings using this pre-trained model, we obtained enhanced
drug feature representations for our experiments.

4.1.4.2 Using SELFormer Embeddings

We also use the SELFormer embeddings to enhance drug representations. SELF-
ormer is a transformer-based chemical language model that uses SELFIES (SELF-
referencing Embedded Strings) (Krenn et al., 2020), a molecular notation system
designed to encode molecules as character strings. Unlike SMILES, SELFIES en-
sures that every generated string corresponds to a valid molecule, offering reliabile
molecular representations. SELFormer trained on a dataset of two million drug-
like compounds, and has demonstrated superior performance compared to SMILES-
based methods(). For this study, we obtained the SELFormer model from its official
GitHub repository2 and created drug embeddings by first converting SMILES to
SELFIES and then encoding them using SELFormer.

4.1.5 Incorporating Richer Biological Information

1(https://huggingface.co/ibm/MoLFormer-XL-both-10pct)

2(https://github.com/HUBioDataLab/SELFormer)
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Utilizing that chemical features alone might be insufficient to capture the complexity
of drug synergy. We integrated additional biological data into the model to enhance
its predictive capabilities. By combining chemical and biological information, the
model could gain a deeper understanding of the interactions that drive synergy.

4.1.5.1 Incorporating Pathway Information

Incorporating biological pathway information can improve a model’s ability to cap-
ture the complex interactions underlying cellular processes(Kaynar et al., 2023). We
utilized pathway data from the Molecular Signatures Database (MSigDB), specifi-
cally the 50 Hallmark gene sets(Liberzon et al., 2015). This pathway information
was integrated into the model through a custom neural network layer that trans-
forms gene expression profiles into pathway related features. The transformation is
defined as:

(4.2) ReLU(X · (P⊙W)+b)

where X represents the input gene expression matrix, P is the pathway association
matrix, W and b are trainable weights and biases, and ⊙ denotes element-wise
multiplication. The pathway-specific features were combined with the drug features,
to enable the model to capture interactions between cellular pathways and drug
properties. This integration aimed not only to enhance predictive performance but
also to provide insights into the biological mechanisms underlying cellular responses.

4.1.5.2 Mechanism of Action Features

We incorporated Mechanism of Action (MoA) information in addition to chemical
descriptors to further enrich drug representations. MoA data were sourced from the
DrugBank database(Wishart et al., 2017), which provides comprehensive textual
descriptions of how a drug interacts with its target to produce a therapeutic effect.
For example, the MoA description for dopamine states:

"Dopamine is a precursor to norepinephrine in noradrenergic nerves and
is also a neurotransmitter in certain areas of the central nervous system.
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Dopamine produces positive chronotropic and inotropic effects on the
myocardium, resulting in increased heart rate and cardiac contractility.
This is accomplished directly by exerting an agonist action on beta-
adrenoceptors and indirectly by causing the release of norepinephrine
from storage sites in sympathetic nerve endings. In the brain, dopamine
acts as an agonist to the five dopamine receptor subtypes (D1, D2, D3,
D4, D5)."

These detailed textual descriptions were transformed into numerical embeddings
using SapBERT which a biologically pre-trained language model built upon the
PubMedBERT(Liu et al., 2021). SapBERT was trained on the Unified Medical
Language System (UMLS) dataset(Bodenreider, 2004). We combined the MoA em-
beddings with chemical structure features by concatenating them, creating a unified
representation that incorporates both biological and chemical information. This
combined representation aims to allow the model to better capture the complexity
of drug interactions.

4.2 Results and Discussion

4.2.1 Impact of Regularization Methods

To improve MatchMaker’s performance, we experimented with increasing the
dropout regularization rates and applying L2 regularization. The Table 4.1, ta-
ble shows the evaluation of the performance of different regularization strategies
on the MatchMaker model using the DrugComb dataset across various splits. The
first row for each data split method, represents the results obtained with the orig-
inal MatchMaker hyperparameters. The subsequent rows show the outcomes after
increasing the dropout rates and applying L2 regularization approaches.

Among the methods, increasing dropout rate generally showed the most consistent
improvements, reducing the MSE across all splits while maintaining or slightly im-
proving Spearman and Pearson correlation coefficients. L2 Regularization, on the
other hand, demonstrated inconsistent results. Both strategy showed no significant
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benefit compared to the original configuration.

Notably, the LODO and LDO splits, which involve testing on unseen drugs, exhibited
significantly higher MSE and lower SCC and PCC values than the LPO splits.
This indicates that the current regularization strategies fail to adequately address
the generalization challenge based on these splits. While increased dropout shows
some promise in reducing MSE, the improvements are not sufficient to overcome the
difficulties of predicting drug synergy for unseen drugs or cell lines.

Table 4.1 Performance Evaluation of Regularization Hyperparameters on the
MatchMaker Model Using the DrugComb Dataset

Split Regularization Method MSE SCC PCC Regularization Hyperparameters
LPO Original 99.4 0.71 0.75 inDrop = 0.2, drop = 0.5

Increased Dropout 97.29 0.71 0.75 inDrop = 0.3, drop = 0.7
L2 Regularization 100.83 0.69 0.74 inDrop = 0.2, drop = 0.5, L2 factor = 0.01

LCO Original 174.07 0.47 0.53 inDrop = 0.2, drop = 0.5
Increased Dropout 165.50 0.49 0.55 inDrop = 0.3, drop = 0.7
L2 Regularization 170.30 0.49 0.55 inDrop = 0.2, drop = 0.5, L2 factor = 0.01

LODO Original 216.26 0.39 0.40 inDrop = 0.2, drop = 0.5
Increased Dropout 214.61 0.38 0.40 inDrop = 0.3, drop = 0.7
L2 Regularization 211.71 0.40 0.42 inDrop = 0.2, drop = 0.5, L2 factor = 0.01

LDO Original 248.98 0.17 0.15 inDrop = 0.2, drop = 0.5
Increased Dropout 246.54 0.15 0.15 inDrop = 0.3, drop = 0.7
L2 Regularization 261.31 0.15 0.14 inDrop = 0.2, drop = 0.5, L2 factor = 0.01

4.2.2 Impact of Alternative Drug Representations

The results in the Table 4.2 highlight the varying performance of different drug
feature types in the MatchMaker model across distinct split methods. Chemical de-
scriptors, originally used in the MatchMaker model, provide a strong baseline. This
is particularly evident in simpler splits like LPO and LCO, where they achieve com-
petitive correlation metrics and reasonable MSE values. Applying PCA to chemical
descriptors shows little improvement. This indicates that dimensionality reduction
does not significantly enhance predictive power. Transformer-based models, such as
MoLFormer and SELFormer, demonstrate inconsistent results. While MoLFormer
achieves the lowest MSE in the LPO split, it struggles to generalize in more chal-
lenging splits as showing low correlation values. On the other hand, SELFormer
performs similarly to chemical descriptors. However it excels in the LDO split,
achieving the highest Spearman and Pearson correlations.

Despite utilizing a wide range of drug representations, including chemical descrip-
tors, PCA-applied chemical structures, and transformer-based embeddings, the per-
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formance across different split methods remains remarkably similar. Metrics such as
MSE, Spearman, and Pearson correlations show only minor variations, regardless of
the feature type used. Addressing this issue may require more advanced strategies,
such as incorporating additional data sources or redesigning the predictive frame-
work.

Table 4.2 Performance Comparison of the MatchMaker Model Using Different
Features on the DrugComb Dataset Across Different Split Methods

Split Method Drug Feature Type MSE SCC PCC
LPO MatchMaker-Chemical Descriptors 99.4 0.71 0.75

PCA-applied Chemical Structures 99.85 0.71 0.74
MoLFormer 98.21 0.70 0.75
SELFormer 99.48 0.71 0.75

LCO MatchMaker-Chemical Descriptors 174.07 0.47 0.53
PCA-applied Chemical Structures 170.84 0.48 0.54
MoLFormer 171.74 0.47 0.54
SELFormer 171.87 0.47 0.54

LODO MatchMaker-Chemical Descriptors 216.26 0.39 0.40
PCA-applied Chemical Structures 213.58 0.38 0.40
MoLFormer 225.72 0.31 0.35
SELFormer 218.91 0.35 0.39

LDO MatchMaker-Chemical Descriptors 248.98 0.17 0.15
PCA-applied Chemical Structures 249.03 0.15 0.14
MoLFormer 251.56 0.01 0.09
SELFormer 236.31 0.19 0.23

Notes: Chemical descriptors were originally used in the MatchMaker model as its primary feature
representation. These descriptors serve as the baseline for comparison with alternative feature
representations.

4.2.3 Impact of Incorporating more Biological Information

4.2.4 Incorporating Pathway Information

We aimed to improve the MatchMaker model by integrating biological pathway
features from MSigDB. However, as shown in Table 4.3, this addition did not yield
the expected performance improvement. While there were slight increases in MSE
and minimal changes in SCC and PCC, the pathway data ultimately failed to provide
a meaningful advantage for predicting synergy scores. These results indicate that
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adding pathway information as biological context does not effectively address the
lack of improvement.

Table 4.3 Performance Comparison of the MatchMaker Model Using Pathway
Information on the DrugComb Dataset Across Different Split Methods

Split Method Cell Line Feature Type MSE SCC PCC
LPO MatchMaker - CLE 99.4 0.71 0.75

Pathway-Enriched Features 100.2 0.70 0.74
LCO MatchMaker - CLE 174.07 0.47 0.53

Pathway-Enriched Features 178.06 0.46 0.52
LODO MatchMaker - CLE 216.26 0.39 0.40

Pathway-Enriched Features 222.63 0.37 0.37
LDO MatchMaker - CLE 248.98 0.17 0.15

Pathway-Enriched Features 253.47 0.19 0.15
Notes: Cell line gene expression levels were originally used in the MatchMaker model as its primary
feature representation. These features serve as the baseline for comparison with pathway-enriched
cell line representations.

4.2.5 Incorporating Mechanism of Action

The results in the Table 4.4 demonstrate the inconsistent impact of incorporating
MoA features into the MatchMaker model alongside chemical descriptors. In sim-
pler splits like LPO, MoA features slightly decrease performance, increasing the
MSE and lowering the correlation metrics compared to using chemical descriptors
alone. In the LCO split, MoA features showed small improvements, which indicates
they may help in capturing drug combination effects. For the LODO split, MoA
features made a bigger impact, lowering MSE and improving correlations signifi-
cantly. This shows that MoA features can capture biological mechanisms that help
with generalization. However, in the hardest split, LDO, where entirely new drugs
are introduced, both feature types performed poorly, and the MoA features didn’t
provide much improvement. Overall, while MoA features help in some situations,
they do bot improve performance for all scenarios.
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Table 4.4 Performance Comparison of the MatchMaker Model Using Mechanism of
Action Features on the DrugComb Dataset Across Different Split Methods

Split Method Drug Feature Type MSE SCC PCC
LPO MatchMaker - Chemical Descriptors 101.18 0.71 0.75

Mechanism of Action Enriched Features 116.67 0.65 0.72
LCO MatchMaker - Chemical Descriptors 166.67 0.45 0.54

Mechanism of Action Enriched Features 165.32 0.47 0.56
LODO MatchMaker - Chemical Descriptors 257.55 0.26 0.29

Mechanism of Action Enriched Features 229.79 0.35 0.44
LDO MatchMaker - Chemical Descriptors 262.76 0.09 0.14

Mechanism of Action Enriched Features 261.81 0.07 0.08
Notes: Chemical descriptors were originally used in the MatchMaker model as its primary feature
representation. These descriptors serve as the baseline for comparison with MoA-enriched drug
representations.
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5. ASSESSING THE BENEFIT OF USING CHEMICAL AND

BIOLOGICAL INFORMATION

Our primary objective was to improve the performance of the MatchMaker model.
To achieve this, we explored various approaches, including regularization techniques,
improved drug representations, and the integration of additional biological informa-
tion. Despite these efforts, the model’s performance did not significantly improve
and remained consistent across the tested strategies.

The lack of improvement raised questions about how the MatchMaker model cap-
tures the drug pair-cell line synergy relationship from the features. It led us to
hypothesize that the model might not fully utilize the provided chemical and ge-
netic features. To test this hypothesis, we replaced the original drug and cell line
features with one-hot encoded (OHE) representations. These representations con-
tain only identity information. Upon observing that the one-hot encoded models’
performances are on par with the models that include biological and chemical in-
formation, we subsequently expanded our analysis and systematically experimented
with other well-known drug synergy prediction models to investigate whether other
models behave the same.

5.1 Methods

5.1.1 Models Compared With

We compared different models that are well-recognized and/or recent. To observe the
performance of models when using OHE representations, we experimented with five
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state-of-the-art drug synergy prediction models. In our selection, we also paid atten-
tion that diverse drug representations are used in each model: MatchMaker(Kuru
et al., 2022) , DeepSynergy (Preuer et al., 2017), MARSY(Li et al., 2024b), and
DeepDDS(Wang et al., 2021). Each model uses different approaches and features
for drug synergy prediction, while all utilize gene expression profiles for cell line
features. Below, we provide a summary of these approaches. The details about
the architectures are provided in Chapter 3 and their datasets are detailed in the
subsequent sections:

• DeepSynergy, one of the pioneer models in this field, uses a fully connected
neural network that takes as input the concatenated feature vectors of two
drugs and the cell line. Drug features include three types of chemical fea-
tures: extended connectivity fingerprints (ECFP6) with 1309 features, physic-
ochemical properties with 802 features, and toxicophore features with 2276 fea-
tures. For cell lines, employs gene expression profiles of untreated cells(Iorio,
2016), filtered to include 3984 genes. The profiles were processed using
FARMS(Hochreiter et al., 2006) for normalization and summarization, retain-
ing only informative genes(Preuer et al., 2017).

• MatchMaker, our earlier model employs two parallel drug-specific subnetworks
alongside a Synergy Prediction Network. Each DSN processes the chemical
features of one drug and the gene expression features of the cell line. The
outputs of the DSNs are concatenated and fed into the SPN to predict syn-
ergy scores. In this work, we represent drugs using 367 chemical descriptors
calculated with the PyBioMed library. These descriptors encode the chem-
ical structure of each drug. For cell lines, baseline gene expression profiles
of untreated cells were used, consisting of 972 landmark genes. The data
were obtained from the ArrayExpress database (accession number E-MTAB-
3610)(Iorio, 2016) and normalized using the RMA method(Kuru et al., 2022).

• MARSY is a very recent model. It generates representations for the drug pair
and the drug–cell line interaction through separate encoders. These represen-
tations are combined in a multitask predictor to output synergy scores and
single-drug responses. MARSY represents drugs using their differential gene
expression(DGE) signatures obtained from the LINCS database(Subramanian,
2017). The signatures are measured in two cell lines, MCF7 and PC3, 24 hours
after drug treatment. Each drug is represented by a concatenation of 978 land-
mark genes from both cell lines, resulting in 1956 features per drug. For cell
lines, MARSY uses baseline gene expression profiles of untreated cells from
the CCLE from CellMiner database(Reinhold et al., 2012). After filtering out
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lowly expressed and low-variance genes, the final representation includes 4639
genes(El Khili et al., 2023).

• DeepDDS is an GNN-based model designed to learn drug representations from
molecular graphs created from SMILES strings. In these graphs, nodes rep-
resent atoms, and edges represent bonds. Each node is described by a binary
vector containing five atomic properties, including atom type and aromaticity.
For cell lines, DeepDDS uses baseline gene expression profiles of untreated
cells, filtered to include 954 genes. These genes were selected by intersecting
CCLE expression data with LINCS landmark genes and removing noncoding
RNA transcripts(Wang et al., 2021).

• JointSyn, which was published in 2024, is one of the latest models achieving
competitive results against other state-of-te-art methods. The model inte-
grates a joint graph of drug combinations, drug features, and cell line repre-
sentations into a dual-view architecture. These views extract embeddings for
the drug combination and cell line, which are passed to a prediction network
to estimate synergy scores (Figure 3.4). JointSyn uses molecular graphs and
Morgan fingerprints to represent drugs. Molecular graphs are derived from
SMILES strings using RDKit(Landrum, 2016), where atoms are represented
as nodes and bonds as edges. Each node is characterized by a 78-dimensional
atomic feature vector computed with DeepChem(Ramsundar et al., 2019).
Morgan fingerprints, with 1309 features, capture additional structural char-
acteristics. For cell lines, JointSyn employs baseline gene expression profiles
with 2087 genes, filtered from the CCLE database based on drug sensitivity
relevance(Li et al., 2024b).

The Table 5.1 highlights the diverse methodologies used across models to encode
drug and cell line features.

5.1.2 Datasets The Models Employ

Synergy datasets consist of drug pairs, cell lines, and their associated synergy scores,
providing the foundation for training and evaluating predictive models. In this study,
we primarily used the datasets reported in the original publications for each model.
However, for the MatchMaker model, we opted for an updated version of the Drug-
Comb dataset. This updated dataset offers a more comprehensive coverage of drug
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Table 5.1 Summary of Drug and Cell Line Features Used by Each Model

Model Drug Features Cell Line Features
MatchMaker Chemical descriptors of drugs (367 features). Untreated gene expression

profiles with 972 landmark
genes.

DeepSynergy ECFP6 molecular fingerprints (1309 fea-
tures), physicochemical properties (802 fea-
tures), and toxicophore features (2276 fea-
tures).

Untreated gene expression
profiles with 3984 genes.

MARSY Differential gene expression profiles mea-
sured in two cell lines (MCF7 and PC3) after
drug treatment, with 978 landmark genes per
cell line (total 1956 features per drug).

Untreated gene expression
profiles with 4639 genes.

JointSyn Molecular graphs: Molecular graphs derived
by SMILES; nodes represent atoms, and
edges represent bonds, with 78-dimensional
atomic feature vectors.
Morgan fingerprints: ECFP6 molecular fin-
gerprints (1309 features).

Untreated gene expression
profiles with 2087 genes.

DeepDDS Molecular graphs derived by SMILES; nodes
represent atoms, and edges represent bonds,
with node features as binary vectors contain-
ing 5 atom-related properties.

Untreated gene expression
profiles with 954 genes.

combinations and cell lines. These improvements make it particularly suitable for
the leave-drug-out split, where a subset of the dataset has to be discarded. Addition-
ally, while the NCI Almanac dataset was not provided in the original publication,
we obtained and processed it for our experiments. Table 5.2 summarizes the char-
acteristics of the datasets used, including the synergy score metrics, the number of
combinations, drugs, and cell lines.

Table 5.2 Summary of Synergy Score Metrics and Datasets for Each Model

Models Synergy Score # of Combinations # of Drugs # of Cell Lines
MatchMaker - DrugComb Loewe 426,386 3,057 167
MatchMaker - NCI Almanac ComboScore 264,528 99 54
MARSY - DrugComb Zip 86,348 670 75
DeepSynergy - O’Neil Loewe 23,052 38 39
JointSyn - O’Neil Loewe 12,033 38 34
DeepDDS - O’Neil Binarized classification label 12,415 36 31
Notes: While some models utilize datasets from same sources, the sizes of these datasets vary according to the distinct
filtering criteria employed in each study.

We used the DrugComb and NCI Almanac datasets for the MatchMaker model.
The DrugComb dataset comprises 739,964 combinations of 8,397 drugs and 2,320
cell lines. We filtered this data set as consisting of only drugs if their structural
information is available in the PubChem database and cell lines if their gene expres-
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sion data are accessible from GDSC(Iorio, 2016). Following to filtering process, we
obtained 426,386 combinations covering 3,057 drugs and 167 cell lines.

DrugComb dataset demonstrates a significant imbalance in the frequency with
which drugs appear across combinations. Approximately two-thirds of the drugs
are present in only one or two combinations within the dataset. In contrast, some
drugs appear in more than ten thousand combinations. This imbalance also extends
to drug pairs. As illustrated in Figure 5.1, one drug in a pair may appear in just a
single combination, while the other in more than 7,000 combinations. Such imbal-
ances pose significant challenges for model training, evaluation, and generalization,
particularly when predicting interactions involving rare drugs.

Figure 5.1 Heatmap representing the frequency of drug occurrences and their pair-
wise groupings in the DrugComb dataset. Drug frequencies are categorized into
distinct groups based on their occurrence counts in triplets.
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As the imbalanced nature of the DrugComb dataset might be leading to certain
issues, we extended our experiments to include the NCI Almanac dataset, which
offers a more balanced representation of drug combinations. The original NCI Al-
manac dataset comprised 304,549 combinations of 104 drugs and 60 cell lines. After
applying the same filtering criteria as for DrugComb, we retained 264,528 combina-
tions involving 99 drugs and 54 cell lines. As illustrated in Figure 5.2, over 75% of
the drug pairs in the filtered dataset feature both drugs appearing between 5,000
and 6,000 times. Additionally, every drug in the dataset appears in at least 4,000
combinations, resulting in a more evenly distributed dataset. This balance makes
the NCI Almanac dataset a valuable resource for evaluating drug synergy models
under more uniform conditions.

Figure 5.2 Heatmap representing the frequency of drug occurrences and their pair-
wise groupings in the NCI ALMANAC dataset. Drug frequencies are categorized
into distinct groups based on their occurrence counts.

For DeepSynergy, we used the O’Neil dataset, available on the DeepSynergy website
1, which includes 23,052 combinations of 38 drugs and 39 cell lines.

1https://www.bioinf.jku.at/software/DeepSynergy/
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The MARSY model was trained on a filtered version of the DrugComb dataset
provided by its authors. This dataset contained 86,348 combinations involving 670
drugs and 75 cell lines.

The JointSyn model was evaluated on a subset of the O’Neil dataset, as detailed
in its publication, containing 12,033 combinations of 38 drugs and 34 cell lines.
Similarly, the DeepDDS model used another subset of the O’Neil dataset, which
included 12,415 combinations involving 36 drugs and 31 cell lines.

These datasets also report various synergy scores for a given drug interactions.
The DrugComb dataset, used for MatchMaker and MARSY, incorporates different
synergy scores. MatchMaker uses the Loewe Additivity score, which evaluates drug
synergy by analyzing dose-response matrices. Scores above zero indicate synergy,
while scores below zero suggest antagonism. MARSY, on the other hand, uses
the ZIP score from the DrugComb dataset. ZIP measures synergy by assessing
deviations from expected dose-response curves, assuming minimal changes for non-
interacting drugs.

The O’Neil dataset, used for DeepSynergy and JointSyn, also employs the Loewe
Additivity score. However, in the case of DeepDDS, the dataset applies a threshold.
Combinations with a synergy score greater than 10 are classified as synergistic, while
scores below zero are categorized as antagonistic.

Finally, the NCI Almanac dataset, used for MatchMaker, employs the ComboScore
instead of Loewe. ComboScore evaluates drug synergy by summing the differences
between observed and expected growth fractions across all dose combinations.

5.1.3 Data Splitting Strategies

For evaluating the models, structured data splitting strategies were employed, as
detailed in Section 2.3 and illustrated in Figure 2.1. These include:

• Leave-Triple-Out (LTO): Entirely unseen drug–drug–cell line triples in the test
set.

• Leave-Pair-Out (LPO): Unseen drug pairs in the test set, but individual drugs
may appear in the training set.

• Leave-Cell-Line-Out (LCO): Unseen cell lines in the test set, testing general-
ization to new biological contexts.
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• Leave-One-Drug-Out (LODO): At least one drug in the test set is entirely
absent from training data.

• Leave-Drug-Out (LDO): Completely excludes certain drugs and all their in-
teractions from training.

5.1.4 Testing Feature Learning with One-Hot Encoded Representations

We trained the models using OHE representations, which preserve only identity in-
formation without incorporating detailed chemical, biological, or genetic attributes.
These OHE representations remove the influence of feature-based insights, allowing
the models to operate based only on associations between drugs and cell lines. This
approach evaluates whether the models’ performance depends on detailed feature
representations or simpler identity-based patterns.

To ensure a fair comparison and assess the impact of OHE representations, we
followed the original architectures, hyperparameters, datasets, and splitting methods
as reported in the publications of the selected models. These architectures are
detailed in Section 3.1.1. Initially, the models were trained and tested with their
original drug and cell line features. Subsequently, the same models were retrained
and tested using OHE representations in place of the original features. This setup
allowed a direct comparison of the models’ performance across different types of
input representations.

5.1.4.1 Procedure For Replacing Original Features with One-Hot En-

coded Representations

In the OHE method, drugs and cell lines are represented with binary feature vectors.
For drugs, each column corresponds to a specific drug, where the active drug’s col-
umn is set to 1 and all others to 0. Similarly, for cell lines, each column corresponds
to a specific cell line, which is set to 1 if it is active and 0 otherwise.

The primary objective of these experiments was to assess how the models perform
when original feature representations are replaced with OHE representations. To
ensure fair evaluation, the models’ original architectures, hyperparameters, datasets,
and split methods were preserved. This approach allowed us to isolate the impact
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of OHE representations on model performance while maintaining consistency across
experimental setups. In the following sections, we detail for each model what specific
actions are performed.

5.1.4.2 Application to MatchMaker

The original MatchMaker architecture, illustrated in Figure 3.1, was trained us-
ing chemical structure and CLE features. In the OHE experiments, the chemical
structure features were replaced with OHE representations of drugs, and CLE fea-
tures were replaced with OHE representations of cell lines. These experiments were
conducted using the original MatchMaker GitHub repository 2, ensuring consistency
with the published model. The architecture for OHE experiments is shown in Figure
5.3.

MatchMaker was evaluated using the DrugComb and NCI Almanac datasets. While
the original MatchMaker study reported results using the LPO split, we extended
the evaluation to include all four split methods: LPO, LCO, LODO, and LDO. Each
split followed a distribution of approximately 60% for training, 20% for validation,
and 20% for testing.

Figure 5.3 Architecture of the MatchMaker model for OHE Experiment. The model
comprises two Drug Specific Subnetworks and one Synergy Prediction Subnetwork.
Drugs and cell lines are represented using one-hot-encoding. Each DSN learns the
representation of the drugs on the cell line. The SPN combines these representations
and predicts the

2https://github.com/tastanlab/matchmaker/tree/master
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5.1.4.3 Application to DeepSynergy

The DeepSynergy model, as shown in Figure 3.2, was initially trained on its original
dataset and input features, as outlined in its publication. For the OHE experiments,
the original input features (Fingerprints for drugs and CLE for cell lines) were re-
placed with OHE representations for both drugs and cell lines. The model architec-
ture, hyperparameters, and evaluation setup were consistent with the original study
as the codebase3 provided. Figure 5.4 illustrates the DeepSynergy architecture used
in the OHE experiments.

The O’Neil dataset was used for training. 5-fold cross-validation for training and
testing. During training, 60% of the data was used for hyperparameter selection,
20% for validation, and the remaining 20% was reserved for unbiased testing. LPO
split strategy was used for this model.

Figure 5.4 Architecture of the DeepSynergy model for OHE Experiment. The model
takes concatenated input vectors consisting of the two drugs and the cell line. One-
hot-encoded representation are used for drugs and cell lines. The output layer
employs a linear activation function to predict the synergy score.

5.1.4.4 Application to MARSY

MARSY could not be retrained with the original drug and cell line features (DGE
for drugs and CLE for cell lines) due to the large vector size of 8551, which caused
an out-of-memory error during training. Instead, the results reported in the paper

3https://github.com/KristinaPreuer/DeepSynergy/tree/master
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were used. For OHE experiments, input features were replaced with OHE represen-
tations, as shown in Figure 5.5. The model code was obtained from the authors’
repository4. The only change made for this experiment is to replace the drug and
cell line representations with OHE.

The DrugComb dataset was used for MARSY. Experiments employed the provided
five-fold cross-validation splits with the LPO strategy for consistency.

Figure 5.5 Architecture of the MARSY model for OHE Experiment. ENCPair en-
codes the concatenated feature vectors of the drug pair, while ENCTriple encodes
the combined features of the drug pair and cell line. The embeddings are concate-
nated and passed to PREDResp. The multitask predictor simultaneously estimates
the synergy score and individual drug responses Drugs are represented with one-
hot-encoding.

5.1.4.5 Application to JointSyn

The original JointSyn implementation3.4, with its graphs, could not be retrained
due to incompatibilities among the graph libraries utilized in the framework. In-
stead, the published results used for original drug and cell line features. In OHE
experiments, graph-based features were excluded, and Morgan fingerprints and cell
line features were replaced with OHE representations. The modified architecture
for OHE experiments is shown in Figure 5.6.

4https://github.com/Emad-COMBINE-lab/MARSY/tree/main
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Figure 5.6 Architecture of the JointSyn model for OHE Experiment. View 2 in-
tegrates drugs and cell line embeddings processed by an MLP. Both drug and cell
lines are represented with one-hot-encoding. The Prediction Network combines em-
beddings from both views through an MLP to predict synergy scores.

To ensure fairness, the implementation adhered to the original paper’s setup, except
for the graph exclusion in OHE experiments. The JointSyn code was obtained from
the official GitHub repository5. Both the original and OHE experiments used the
O’Neil dataset. We followed the authors’ protocol for five-fold cross-validation with
an LTO split, repeating the procedure 10 times for evaluation.

5.1.4.6 Application to DeepDDS

DeepDDS was evaluated using both its original features (molecular graphs and CLE)
and OHE representations. The implementation and code were sourced from the
authors’ repository 6. DeepDDS includes implementations for both GAT and GCN
architectures. Since the paper reported better performance, the GAT architecture
was used (Figure 3.5). For OHE experiments, graph-based features were excluded,
and drug representations were replaced with OHE features. The modified OHE
architecture is shown in Figure 5.7.

The experiments were conducted on the O’Neil dataset. The LTO split was applied
as per the original work, with random splits saved and reused for consistency. A
five-fold cross-validation protocol was employed for all experiments.

5https://github.com/LiHongCSBLab/JointSyn/tree/main

6https://github.com/Sinwang404/DeepDDs/tree/master
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Figure 5.7 Architecture of the DeepDDS model for OHE Experiment. Cell line
embeddings from the MLP and drug representations are concatenated and passed
through a fully connected network to predict synergy labels. One-hot-encoded rep-
resentations are used for both drugs and cell lines.

5.1.4.7 Computational Setup

We performed all experiments on systems equipped with Tesla V100-PCIE-32GB
and Tesla V100S-PCIE-32GB GPUs. The Tesla V100-PCIE-32GB featured 31.74
GiB of memory, 80 cores, and a memory bandwidth of 836.37 GiB/s, while the Tesla
V100S-PCIE-32GB offered the same memory and cores but with an enhanced band-
width of 1.03 TiB/s. These systems also included CPUs with frequencies ranging
from 2.29 GHz to 3.59 GHz, supporting AVX2, AVX512F, and FMA instructions.
TensorFlow with CUDA 10.1 and cuDNN 7 was used for training, ensuring consis-
tent performance across sessions.

5.2 Results & Discussion

The use of drug and cell line features is based on the assumption that deep learning
models learn the synergistic relationships between drugs and cell lines by leveraging
these features. Therefore, when a model encounters a drug or cell line it has never
seen during training, it is expected to make accurate predictions by analyzing these
features. However, according to various data reported in the literature and our
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experiments with the MatchMaker model, we observed issues during the generaliza-
tion phase. Attempts to overcome this with different methods were unsuccessful.
This led us to question whether the models are effectively capturing the chemical
and biological information about synergistic relationships from the features and the
quality of the representations used. To investigate this, we experimented with five
different synery model where we replaced their features with OHE features.

5.2.1 Performance with Drug & Cell Line Features vs. OHE Represen-

tations for MatchMaker

In the experiments conducted with the DrugComb dataset, we compared the Match-
Maker model’s performance using chemical descriptors and gene expression levels
against OHE representations for drugs and cell lines. As shown in Table 5.3, the
results across all split methods were very similar for both feature types.

Table 5.3 Performance Comparison of MatchMaker Model Using Drug & Cell Line
Features vs OHE Representations on DrugComb Dataset Across Different Split

Methods

Split Method Feature Type MSE SCC PCC
LPO Drug & Cell Line Features 99.4 0.71 0.75

One-Hot-Encoded 101.36 0.69 0.74
LCO Drug & Cell Line Features 174.07 0.47 0.53

One-Hot-Encoded 168.46 0.47 0.54
LODO Drug & Cell Line Features 216.26 0.39 0.40

One-Hot-Encoded 223.61 0.30 0.34
LDO Drug & Cell Line Features 248.98 0.17 0.15

One-Hot-Encoded 237.26 0.11 0.12
Notes: Chemical descriptors were originally used to represent drug features, while cell line gene
expression levels represented cell line features in the MatchMaker model. These representations
serve as the baseline for comparison with one-hot-encoded drug and cell line representations.

The results in Table 5.4 for the NCI Almanac dataset show that models trained
with original drug and cell line features and those trained with OHE representations
perform similarly across all split methods.

In both datasets, the performance of OHE representations closely matches or, in
some cases, slightly surpasses that of original features. This consistent pattern
suggests that the models may not be learning from the intended features. Instead,
it becomes evident that they rely on identity-based correlations, which are also well
captured by OHE representations.
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Table 5.4 Performance Comparison of MatchMaker Model Using Drug & Cell Line
Features vs OHE Representations on NCI Almanac Dataset Across Different Split

Methods

Split Method Feature Type MSE SCC PCC
LPO Drug & Cell Line Features 2759.38 0.53 0.56

One-Hot-Encoded 2728.38 0.54 0.56
LCO Drug & Cell Line Features 2788.02 0.48 0.61

One-Hot-Encoded 2805.84 0.49 0.61
LODO Drug & Cell Line Features 3766.30 0.25 0.26

One-Hot-Encoded 3726.41 0.27 0.29
LDO Drug & Cell Line Features 4970.01 0.16 0.20

One-Hot-Encoded 5212.88 0.24 0.32
Notes: Chemical descriptors were originally used to represent drug features, while cell line gene
expression levels represented cell line features in the MatchMaker model. These representations
serve as the baseline for comparison with one-hot-encoded drug and cell line representations.

5.2.2 Application on Other Models

The results in Figure 5.8 reveal a consistent trend across multiple models and
datasets. The performance differences between using original drug and cell line
features and OHE representations are minimal. This finding raises critical questions
about the role of detailed features in these models and whether their predictions
genuinely depend on the biological or chemical information provided.

For MatchMaker on the DrugComb dataset under the LPO split, the MSE difference
between the original features and OHE representations was just 1.97%, indicating
that the model performance remains largely unaffected by learning from the feature
representation. This aligns with earlier observations where MatchMaker also dis-
played similar results across various drug representations, further suggesting that
its predictive capabilities might rely more on inherent patterns in the data than on
complex feature learning.

DeepSynergy exhibited a slightly larger deviation (-4.93%) on the O’Neil dataset
with OHE representations, yet the performance remains competitive. Similarly,
MARSY, tested on the DrugComb dataset, showed a marginal improvement (-
4.40%) with OHE, suggesting that the model’s dependency on intricate biological
features may be limited.

For models like JointSyn and DeepDDS, which incorporate graph-based and em-
bedding techniques, the performance gap was negligible as well. JointSyn reported
only a 1.07% deviation in MSE under the LTO split, while DeepDDS showed a mere
0.61% deviation in AUC. This indicates that even for advanced architectures, OHE
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representations are sufficient for comparable performance.

Figure 5.8 Comparison of Drug & Cell Line Features vs OHE Representations Across
Different Models and Datasets. Drug and cell line features refer to the original
representations of drugs and cell lines used in their respective models. MSE and
SEmse results for the evaluated models. For MARSY and JointSyn, SEmse was
derived from fold-based calculations (see Appendix, Standard Error of MSE, for
details). For DeepDDS, ROC-AUC is reported.
*Results for MARSY and JointSyn using original features were sourced from their
respective publications.

Percent 
Deviation

(%) 

(●-●) /●

One-Hot 
Encoding

Drug & 
Cell Line 
FeaturesMetric

Split 
MethodDatasetModel

 1.97101.3699.40 ±1.17MSELPODrugCombMatchmaker

-4.93

±0.50

±2.06199.12209.44 ±10.52MSELPOO’NeilDeepSynergy

-4.4030.1931.58 ±0.76*MSELPODrugCombMARSY

 1.0777.38

±1.14

±9.84

±1.10

±2.2176.56MSELTOO’NeilJointSyn

 0.610.940.93AUCLTOO’NeilDeepDDS

±0.48*

The performance and standard errors remained largely consistent regardless of
whether original features or OHE representations were used. In addition to these
results, the MARSY model also predicts single-drug responses and strong results
were obtained with OHE despite the lack of any transcriptomic or other genomic
information(Table A.4). This finding suggests that this issue may extend beyond
the drug synergy prediction domain.

5.2.3 Possible Explanations

5.2.3.1 Dataset Biases

Synergy score datasets are structured as drug pair and cell line triples, where in-
dividual drugs or cell lines often appear in thousands of such combinations. This
repeated presence helps the model take shortcuts and just focus on the identity of
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the drugs and cell lines. For example, in the Leave Pair Out split, specific drug
pairs in the test set are excluded from the training set. However, the individual
drugs and cell lines within those pairs may still frequently appear in the training
data. This overlap allows the model to repeatedly encounter the same drugs and cell
lines, which leads the model towards learning correlations based on their occurrences
rather than understanding true synergistic interactions.

Similarly, in the Leave Drug Out split, drugs in the test set are entirely unseen during
training. Nevertheless, within the training set, the remaining drugs appear repeat-
edly across different drug pairs. This repetition in the dataset structure increases
the likelihood of the model relying on occurrence patterns and take a shortcut rather
than learning from the intended feature information.

5.2.3.2 Biological Process Complexity

Predicting drug synergy in cell lines involves modeling highly complex biological pro-
cesses that occur sequentially. Initially, drugs enter the cells through mechanisms
like membrane permeability or transporter proteins. Once internalized, they bind
to specific biological targets such as proteins, enzymes, or receptors. This binding
alters cellular signaling pathways, either activating or inhibiting them, which in turn
impacts cellular functions such as gene expression, protein synthesis, and metabolic
activities. These changes disrupt essential survival mechanisms of the cells, leading
to outcomes like inhibited proliferation, apoptosis induction, or increased oxidative
stress. Additionally, genetic and epigenetic factors, such as DNA methylation and
histone modifications, may further enhance drug responsiveness. The combined ef-
fects of these processes ultimately result in phenotypic outcomes, including reduced
cell growth, tumor shrinkage, or improved sensitivity to treatment. The current
input features used in models may be insufficient to capture this biological complex-
ity, potentially limiting the models’ ability to predict drug synergy accurately on
new drugs and cellular contexts. Incorporating more detailed information about the
mechanisms of action of drugs holds promise for addressing this limitation. Such
data could provide a more comprehensive understanding of the underlying interac-
tions and improve the predictive capabilities of the models.
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6. CONCLUSION

This thesis investigates whether the synergy prediction models benefit from complex
chemical and biological features and how this sets limitations in improving the model
performances on unseen drugs and cell lınes. We evaluated the performance of
models utilizing detailed feature representations against those using only one-hot
encoding for drugs and cell line identities. Surprisingly, we discovered that models
show comparable performance even when replacing detailed features with basic one-
hot encoded representations. This suggests that rather than capturing the biological
or chemical complexities, the models could just be remembering correlation drugs
and cell lines they have already encountered.

Moreover, the minimal impact of replacing detailed features with OHE representa-
tions highlights a broader concern regarding the generalization capabilities of these
models. If their predictions are driven more by dataset-specific patterns rather than
an understanding of feature-based relationships, their applicability to novel scenarios
could be significantly constrained.

There are a few reasons why this could be happening. First, the data often contains
the same drugs and cell lines appear repeatedly. This can lead the models to focus
on these repeated patterns rather than learning the deeper biological relationships
needed to predict synergy. This situation, also known as shortcut learning, describes
the process by which an artificial intelligence model learns to solve a task by relying
on spurious correlations that are present in the data rather than attributes that
are directly connected to the task itself(Ong Ly et al., 2024; Geirhos et al., 2020).
Second, the actual biology behind drug interactions is very complex and may not
be fully captured by the features we currently use. As a result, the models may rely
on essential signals instead of learning the real underlying mechanisms.

To improve this situation, future work could involve adding more meaningful biolog-
ical or chemical information that helps models understand how drugs and cell lines
interact. We can also change how we split the data, ensuring the model does not just
memorize the same drugs and cell lines from training to testing sets. Finally, we can
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explore new modeling approaches that encourage the model to learn the biological
patterns rather than shortcuts.

In short, while today’s models perform well on benchmark tests, they may not truly
understand drug synergy. By focusing on richer features, better splitting strategies,
and improved model designs, we can advance toward models that genuinely capture
the underlying biology. This progress can ultimately enable the discovery of more
effective drug combinations.
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APPENDIX A

Chemical Features of MatchMaker

The chemical features of drugs are derived using the PyBioMed library, which offers a
wide range of tools for calculating molecular descriptors. These descriptors include
various chemical and physical properties of the molecules. A total of 12 distinct
descriptor categories, comprising 367 individual features, are computed using the
available functionalities in the library. Table A.1 provides a detailed breakdown of
these descriptor categories and their corresponding feature counts.

Table A.1 Drug chemical structure features collected from PyBioMed.

Descriptor Category Count
Kappa Descriptors 7
Charge Descriptors 25
Connectivity Descriptors 44
Constitution Descriptors 28
Geary Descriptors 32
MOE Descriptors 59
Moran Descriptors 32
Moreau-Broto Descriptors 32
Topology Descriptors 19
Molecular Properties 4
Basak Descriptors 21
Burden Descriptors 64

Performance Comparisons of Original Features vs. OHE Across Models

Table A.2 Performance Comparison of DeepSynergy Model Using Drug & Cell
Line Features vs OHE Representations on O’Neil Dataset dataset with LPO split.

Feature Type MSE PCC SCC
Drug & Cell Line Features 209.44 0.72 0.72
One-Hot Encoded 199.12 0.74 0.72
Notes: Chemical descriptors (ECFP6 molecular fingerprints, physicochemical properties, and
toxicophore features) were originally used to represent drug features, while cell line gene expression
levels represented cell line features in the DeepSynergy model. These representations serve as the
baseline for comparison with one-hot encoded drug and cell line representations.
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Table A.3 Performance Comparison of MARSY Model Using Drug & Cell Line
Features vs OHE Representations on DrugComb Dataset dataset with LPO split.

*Results using original features were sourced from its publications.

Feature Type MSE PCC SCC
Drug & Cell Line Features 31.58* 0.88* 0.75*
One-Hot Encoded 30.19 0.88 0.75

Table A.4 MARSY single response prediction results from OHE experiment. RS1
and RS2 represent relative inhibition responses for drugs in a pair.

Metric MSE PCC SCC
RS1 35.05 0.94 0.92
RS2 35.03 0.94 0.92

Table A.5 Performance Comparison of JointSyn Model Using Drug & Cell Line
Features vs OHE Representations on O’Neil Dataset dataset with LTO split.

*Results using original features were sourced from its publications.

Feature Type MSE R2 PCC
Drug & Cell Line Features 76.56* 0.78* 0.89*
One-Hot Encoded 77.38 0.78 0.88

Table A.6 Performance Comparison of DeepDDS Model Using Drug & Cell Line
Features vs OHE Representations on O’Neil Dataset dataset with LTO split.

Feature Type AUC PR_AUC ACC BACC PREC TPR KAPPA
Drug & Cell Line Features 0.93 0.93 0.85 0.85 0.86 0.83 0.70
One-Hot Encoded 0.94 0.93 0.86 0.86 0.86 0.84 0.72
Notes: Molecular graphs and atom-related properties were originally used to represent drug features, while cell line gene
expression levels represented cell line features in the DeepDDS model. These representations serve as the baseline for
comparison with one-hot encoded drug and cell line representations.

Standard Error of MSE

The standard error of the MSE (SEmse) is calculated based on the standard deviation
(σ) of the squared errors and the sample size N , using the formula:

SquarredError = (truth−pred)2

SEmse = σsquared_error√
N
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Standard Error for MARSY

For the MARSY model, the authors reported the RMSE across 5 folds as 5.62±0.15.
To compute the standard error of MSE (SEmse), we must first convert RMSE to
MSE:

1.1 Convert RMSE to MSE:
MSE = RMSE2

1.2 Propagate the error during the RMSE-to-MSE conversion:

σmse = 2×RMSE ×σrmse

Substituting values:

σmse = 2×5.62×0.15 = 1.686

1.3 Calculate SEmse:
SEmse = σmse√

5
= 1.686√

5
= 0.76

Standard Error for JointSyn

For the JointSyn model, the authors reported the MSE across 10 replicates as 76.562,
along with the 95% confidence interval (CI): 75.612,77.511.

CI = mean± z ×SE

where z = 1.96 for a 95% confidence interval, the standard error SE can be derived
as:

75.612 = 76.562− (1.96×SE)

77.511 = 76.562+(1.96×SE)

Solving for SE:
(77.511−75.612) = 2× (1.96×SE)

SE = 1.899
2×1.96 = 0.48
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Percent Deviation and Its Standard Error

The percent deviation is calculated as:

PercentDeviation = y1 −y2
y2

where y1 is the OHE value and y2 is the reference.

To compute the standard error of percent deviation:

2.1 Compute the squared error difference:

∆ = (pred1 − truth)2 − (pred2 − truth)2

2.2 Standard error of ∆:
SE∆ = σ∆√

N

2.3 Scale by the reference MSE (MSE2) to express as a percentage:

SEpercent deviation = SE∆
MSE2

×100
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