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ABSTRACT 

 

Milling operations are commonly utilized in many industries. Productivity rate 

becomes prominent in the industries such as automotive due to the need for high-volume 

manufacturing or the requirement to produce large die casts, whereas the aerospace and 

electronics industry must focus on precise manufacturing that does not exceed tolerance 

bands. This condition results in different types of optimization equations such as maximizing 

material removal rate with respect to machining center limits or minimizing the tool 

deflection and chatter risk to achieve conforming parts. Both optimizations will indicate a 

major effect on the unit cost of the product, hence they should describe the trade-off between 

the machining time and tool cost and help the selection of the optimum cutting parameters 

and tool dimensions.  

The increase in AI implementations and their promising accuracy levels were the 

main reasons to choose the supervised machine learning (ML) to investigate the optimum 

solution. In this thesis, Titanium alloy (Ti-6-4) workpiece material cutting process with 

carbide tool has been simulated for many different cutting tool and process parameter 

scenarios to calculate cutting forces, chatter status, surface form errors, machining time, tool 

life and tool breakage. Following the data preparation step, Gaussian Process Regression 

model has been computed for the optimization step with Bayesian approach.  
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ÖZET 

 

Frezeleme işlemleri birçok endüstride yaygın olarak kullanılmaktadır. Otomotiv gibi 

endüstrilerde, yüksek hacimli imalat ihtiyacı veya büyük kalıpların üretilmesi gerekliliği 

nedeniyle üretim hızı öne çıkarken, havacılık ve elektronik endüstrileri tolerans bantlarını 

aşmayan hassas imalata odaklanmak zorundadır. Bu durum, işleme merkezi sınırları 

dahilinde malzeme kaldırma oranını maksimize etmek veya kabul edilebilir parçalar elde 

etmek için takım sapması ve titreşim riskini minimize etmek gibi farklı optimizasyon 

denklemleri gerektirir. Her iki optimizasyon da ürünün birim maliyeti üzerinde büyük bir 

etki yaratacağından, işleme süresi ile takım maliyeti arasındaki dengeyi tanımlamalı ve 

optimum kesme parametreleri ile takım boyutlarının seçimine yardımcı olunmalıdır. 

Bu tezde, yapay zeka uygulamalarındaki artış ve tahminlerdeki doğruluk seviyeleri 

nedeniyle, optimum çözüm, denetimli makine öğrenimini (ML) ile araştırıldı. Titanyum 

alaşımı (Ti-6-4) iş parçası malzemesinin karbür takım ile kesme işlemi, farklı kesici takım 

ve parametre senaryolarıyla simüle edilerek kesme kuvvetleri, titreşim durumu, yüzey 

hataları, işleme süresi, takım ömrü ve takım bükülme stresi hesaplanmıştır. Veri hazırlama 

adımının ardından, verileri test etmek ve eğitmek için Gauss Süreci regresyonu kullanılmış, 

Bayes Optimizasyonu ile en iyi sonuçlar belirlenmiştir. 

 

 

Anahtar Kelimeler: Frezeleme, Bayesçi Eniyileme, Makine Öğrenmesi 
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1. Introduction 

Milling is a widely used process in various industries and the complexity of this process still 

results in a major research area. The operation involves a rotating tool with cutting edges to 

remove metals or alloys by chip formation to obtain the designed geometry within the defined 

tolerance limits. Selection of each milling parameter such as feed rate, axial depth, radial 

depth, spindle speed without chatter generation, and tool related items as diameter, number 

of flutes and helix angle have major effects on machining time, tool cost, dimensional 

accuracy and surface quality. The trade-off between high production rate and acceptable 

dimensional accuracy is still a challenging optimization problem and traditionally selecting 

optimal machining parameters has relied heavily on the expertise and experience of skilled 

machinists, as well as on trial-and-error methods. However, these conventional approaches 

often result in suboptimal performance, increased production costs, and extended lead times. 

 

The optimization process can be divided into two main categories: roughing and finishing 

operations. Both operations require different objective functions and constraints. Roughing 

operations target to complete the tool path with maximum material rate (MRR) to decrease 

machining time that leads to selecting the highest parameters regarding CNC center torque-

power limitation. However, tool life and wear mechanism are pioneer limiting parameters 

since number of tools spent has a major effect on production cost. Tool changes during 

operation are not recommended due to mismatch marks on surface, but this can be neglected 

for roughing operations. Finishing operations refers to final surface generation, which affects 

the dimensional accuracy, and the conformance of the machined part. Especially aviation, 

aerospace and defense industries work with relatively tight tolerances with low production 

volumes and very expensive components can be rejected due to even 0.001-inch non-

conformance values depending on related feature function in design. Hence, objective 

function regards max tool life subject to required form error.  
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Both roughing and finishing operation must avoid one critical occurrence: chatter 

vibrations, meaning that undesirable oscillations causing poor surface finish, tool breakage 

and damage on workpiece and machining center. Hence, optimization of machining 

parameters must always consider chatter mitigation. Currently, advanced technologies are 

available to generate stability lobe diagrams and identify stable cutting conditions. A hammer 

test on the cutting tool needs to be completed in advance to find out natural frequencies and 

mode shapes of the cutting tool.   

 

The optimization process is based on true representation of cutting forces which requires 

a set of experiments to identify orthogonal database parameters to calculate cutting force 

coefficients of cutter-workpiece pair. The experiments require a complex set up including 

highly sensitive sensors and dynamometers, and detailed regression computations. These 

cutting forces are used for form error calculation.  

 

Finally, tool life calculation is an important calculation of the objective function since it 

has a major effect on overall cost of the product, repeatability and sustainability of the process 

and good surface quality. For example, it is of great importance to complete the whole 

finishing process with only one tool because any mismatch on the part can result in rejection 

of the part and has a significant adverse effect on mechanical capability of the part.  

 

The contribution of this thesis is to develop and solve an optimization model for both 

roughing and finishing operation that generates optimum cutting parameters without chatter 

by using hybrid approach that combines analytical calculations and experimental results with 

Machine Learning (ML) algorithms. Prior to optimization step, regression models of the 

machine learning are established with a promising performance for each output. This step 

requires a dataset to predict new datapoints.  Regarding two main types of machine learning 

as supervised and unsupervised, the optimization problems are fitting to the supervised ML 

context. Among many supervised learning algorithms, Gaussian Process (GP) with Bayesian 

Optimization (BO) and Gradient Boosting model only for tool life have been selected to find 

the optimal parameters efficiently since both they are powerful tools for regression, 
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classification and optimization tasks as they define input-output relationships clearly and, a 

consistent, accurate and complete dataset is provided for predictions. The developed models 

have been solved with three different computational methods: genetic algorithm, Bayesian 

optimization and non-linear constrained approach after applying machine learning 

techniques to predict uncalculated parameters effectively without the need for extra testing. 

Genetic algorithm directly utilizes the multi-objective function with defined constraints to 

generate optimum solution(s) with a default equal weight definition. Bayesian optimization 

allows the machinist to define explicit weights with respect to different requirements of any 

process and it follows the weighted sum approach. The final approach, the non-linear 

constrained method, refers to one specific case, when the machining time needs to be longer 

than a specific timing requirement. This specific objective function can be additionally 

solved with Bayesian optimization. Among these methods, Bayesian approach is highlighted 

as the most promising approach. 

1.1 Literature Survey 

Optimum milling parameter selection is a major research area for increased productivity 

with minimum cost and enhanced quality. The repeatability and sustainability of the 

processes require a significant amount of engineering efforts since especially in aviation and 

aerospace industry, even 1-mile nonconformance on the parts forces all design analyses to 

be reassessed respectively for each feature for the acceptance and procurement. Any 

improvement in the machining of the part will have a decreasing effect on both 

manufacturing cost and design engineering effort and the number of rejected parts.  

 

Traditional optimization studies refer to non-linear formulation of objective function 

with relevant constraints for both roughing and finishing operations. These studies suggest 

that optimizing depths of cut, attaching additional masses, and using multi-objective 

optimization models can significantly enhance chatter-free material removal rates in end 

milling, improving machining efficiency and quality [1]. Optimal selection of axial and radial 
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depths of cut pairs in milling maximizes chatter-free material removal, reducing machining 

time and improving productivity and part quality [2]. Ghani et al. suggested the optimal 

combination for low cutting force and good surface finish in end milling is high cutting speed, 

low feed rate, and low depth of cut, using the Taguchi optimization method [3]. Budak 

published a study an optimization method by using variable pitch cutter to mitigate from 

severe chatter conditions and excessive cutting forces was taken under control by an 

analytical approach that keeps a constant cutting force and updated feed rate instantly in G-

Code [4]. Merdol and Altintas has studied the optimization and feed rate scheduling in two 

main streams: preprocess and postprocess optimization. Preprocess contained the 

calculations on maximizing MRR with chatter stability and torque/power constraints taking 

chip thinning affect into account. Post process optimization was focused on feed rate and 

spindle speed scheduling and G-code update for each line of NC tool path [5]. 

 

The rapid developments in Artificial Intelligence (AI) and Machine Learning (ML) have 

significantly transformed various industrial areas, including manufacturing. The number of 

publications about the optimum parameter selection using different ML approaches and 

regression methods are increasing since this approach is quite promising in making 

predictions with very few data by leveraging data-driven algorithms and modeling complex 

relationships with its powerful regression methods. For example, Karandikar et al. utilized 

Bayesian Optimization approach to predict the chatter probability of any cutting condition 

by setting up stability limit diagrams without knowing the tool point frequency response 

function and the cutting force coefficients [6].  

Integrating mechanistic force models with ML provides accurate cutting force estimates for 

power/torque and form error calculations Tansel et al. demonstrated the effectiveness of 

combining cutting force predictions with neural network models for tool wear estimation in 

micro-milling [7]. Li and Chang developed an intelligent optimization system for 

machining parameters using ML, which underlines the practical benefits of such tools in 

real-world applications [8]. In addition to milling processes, Bertsimas and Dunn 

highlighted the broader applications of ML in optimization across various manufacturing 

processes, emphasizing its potential to revolutionize the industry [9]. 
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Many different algorithms and optimizers are available in the machine learning area. ML 

approaches for regression models to predict new outcomes and optimizations are listed in 

Table 1. These methods and techniques can be used together. For example: Bayesian 

Optimization can tune hyperparameters of a Gaussian Process Regression (GPR) model or 

Particle Swarm Optimization (PSO) can optimize parameters in a Neural Network. 

Regression Models Optimization  

Linear Models: Ridge, Lasso, Elastic Net 

and Bayesian Regression models 

Gradient Based Methods 

Non-Linear Models: Polynomial and 

generalized additive models 

Bayesian Optimization with 

hyperparameter optimization 

Tree Based Models: Decision trees, 

random forests and gradient boosted trees 

such as XGBoost and CatBoost 

Evolutionary algorithms such as genetic 

algorithm or differential evolution 

Support Vector Machines Swarm intelligence methods: particle 

swarm or ant colony optimization 

Kernel Based Methods as GPR Simulated Annealing 

Neural Network Models Grid and Random Search 

Ensemble Methods such as bagging, 

stacking or boosting regressors 

Meta-heuristic and hybrid approaches, ie. 

Firefly algorithm or harmony search 

Probabilistic models  Reinforcement Learning-Based 

optimization 

Table 1: The list of ML regression and optimization methods 
 

In this study, leveraging advanced algorithms like BO and GPR, an optimum parameter set 

is estimated that help manufacturers achieve efficient, cost-effective, high-quality 

outcomes, promising further enhancements in machining stability, precision, and 

automation [10]. Unlike traditional methods such as genetic algorithms and non-linear 

constrained, which can become inefficient in such scenarios, Bayesian Optimization 

leverages a probabilistic model to explore the parameter space more effectively. However, 

the results for these methods have been listed. By incorporating Gaussian process 
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regression as the surrogate model, the algorithm approximates the objective function and 

uses this approximation to guide the search for optimal solutions. This method not only 

helps in finding the best set of machining parameters but also provides a framework for 

systematically balancing competing objectives and constraints. The choice of Bayesian 

Optimization is particularly advantageous for achieving high performance in machining 

processes where the parameter space is intricate and the relationships between parameters 

are complex. 

 

Machine learning approaches used in this thesis are Gaussian Process Regression (GPR) with 

Bayesian optimization (BO) and Gradient Boosting (LS-Boost) only for tool life, that have 

proven effective in finding optimal solutions by exploring and exploiting the parameter 

space. Polynomial regression can provide an explicit formulation for regression model to 

express non-linear relationships between input parameters and output performance, 

providing a flexible framework for predicting machining outcomes that is a compulsory 

requirement for some optimization methods. On the other hand, Bayesian optimization offers 

a non-parametric and probabilistic approach to optimization, balancing exploration and 

exploitation to efficiently search for the global optimum in complex parameter spaces.   

 

The final contribution of this study is its inclusivity for the whole process. Recent studies 

generally focus on a specific parameter such as only tool life extension or form error 

minimization. These can contain energy consumptions [10] or cost functions [11]. Many 

other evolutionary techniques, such as Teaching-Learning-Based Optimization, multi-

objective optimization, simulation-based models, and bio-inspired algorithms have been 

reviewed [12]. These methods offer robust solutions for optimizing machining parameters, 

balancing multiple objectives, and addressing the complexities of modern manufacturing 

environments. This study aims to fulfill the lifespan of manufacturing process with diverse 

outputs to control. 
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1.2 Problem Definition 

In this study, a ML-based optimization technique was employed to optimize the machining 

parameters for a chatter-free milling operation with maximum productivity. Productivity was 

defined as a multi-objective function encompassing the maximization of material removal 

rate, tool life, and minimization of power consumption. A high material removal rate 

combined with a long tool life and low power consumption can significantly reduce 

production costs and enhance the output of machining operations. For the finishing process, 

form error was also considered as one of the objective functions due to its considerable effect 

on surface roughness. The cutting forces used for form error and power consumption 

calculation were estimated using a physics-based ML model. According to the obtained 

results, Bayesian optimization with Gaussian Process Regression offered a robust framework 

for efficiently optimizing the objective functions, while effectively suppressing chatter. 

Chatter not only deteriorates surface quality but also reduces tool life and increases 

production costs. By leveraging a probabilistic model to guide the search process, Bayesian 

optimization balances exploration and exploitation, enabling the discovery of optimal 

solutions with fewer evaluations compared to traditional optimization methods such as 

genetic algorithm and particle swarm optimization. Furthermore, the study demonstrated that 

machine learning-based optimization techniques could provide a more adaptive and 

intelligent approach to milling parameter optimization. The ability to incorporate multiple 

objectives and constraints into the optimization process allowed for a more comprehensive 

and practical solution to real-world machining challenges. This approach not only enhanced 

productivity but also improved the overall quality and efficiency of the milling operations. 

Finally, a specialized software application was developed to enhance the optimization of 

machining parameters.  
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Figure 1. Overall ML process schematic representation 

  

 

 

1.3 Methodology  

The objective of this thesis is to compute an optimization function for the selection of 

optimum cutting parameters as axial depth of cut, radial depth of cut, feed rate and spindle 

speed. Machine learning process requires input data for further prediction, hence a dataset 

including cutting forces, MRR values, form error and tool life calculations has been prepared 

for 24000 different scenarios.  
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Variables to optimize Outputs for Objective Function 

 

X1  n = number of flutes 

X2  a = axial depth of cut 

X3  b = radial depth of cut 

X4  N = spindle speed 

X5  ft = feed rate 

Y1  Material Removal Rate 

Y2  Tool Life  

Y3  Form Error 

Y4  Power Consumption 

Y5  Torque  

Y6  Tool Bending Stress 

Table 2. Variable list of optimization problem 

 

Following the data preparation step, Gaussian Process regression algorithm has been 

compiled to formulate cutting forces and the output parameters. Normalizing the data is 

critical since the scales are different than each other. For roughing operation, maximizing Y1 

and Y2 has been calculated with Bayesian Optimization algorithm. Best 20 solutions have 

been filtered regarding the chatter condition. A similar approach has been repeated for 

finishing operation: the same objective function has been repeated to achieve only the form 

error constraint and chatter condition is not risk for this case unless the depths are increased 

significantly. The constraint for the form error is identified by the tolerance band. The weight 

of each hyperparameter has been verified by a sensitivity check and a GUI was developed 

for user friendly experience.  
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2. Data Preparation for Machine Learning  

In this section, the detailed methodology employed for optimizing machining process 

parameters through machine learning is presented. This approach relies on Bayesian 

Optimization, a powerful probabilistic model-based optimization algorithm that excels in 

managing complex, high-dimensional search spaces where multiple interacting parameters 

are present [13,14]. Figure 2 provides a detailed illustration of the methodology employed in 

the proposed ML-based optimization. 

 

 

Figure 2. f Flowchart of ML-based optimization for milling with maximum productivity 

 

The optimization process begins with the preparation of a dataset comprising input 

parameters and their corresponding outputs. This data contains force calculation, maximum 

material removal (MRR), chatter condition, form error values, tool life and tool bending 

stress calculations based on different cutting scenarios. The list of varying inputs is mainly 

divided into two categories: tool geometry related parameters and process related parameters. 

Tool related parameters contain tool diameter, helix angle, rake angle, and number of flutes. 

Only flute number has been considered as optimization variable, whereas the other tool 
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related parameters have been assumed as constant. Tool diameter, helix angle and rake angle 

are 16mm, 30˚ and 5˚ respectively.  Process related parameters are spindle speed, feed per 

tooth, axial and radial depths, all of them are optimization variables. All calculations have 

been performed on milling operation of Titanium Alloy (Ti-6Al-4V) with carbide tool.  

2.1 Cutting Forces 

Cutting forces are always a major concern of the milling process and different modeling 

approaches are available such as analytical, numeric or mechanistic modeling. Since cutting 

force models contain some assumptions and some of them cannot be measured or observed 

in detail due to technological limitations, generally these models are combined with an 

amount of testing effort.  

 

Cutting force calculations begin with a deep understanding of orthogonal cutting model 

proposed by Merchant [15], which provides an equation for shear angle by using minimum 

energy principle. This equation assumes that of that shear zone is a thin plane. Another shear 

angle calculation by Krystof based on maximum shear stress principle assumes that shearing 

of the workpiece coincides with the maximum shear stress direction. [16] Successively, Lee 

and Shaffer [17] and Palmer and Oxley [18] used a thick zone model to calculate shear angle 

by implementing the law of plasticity.  

 

Armarego and Brown [19] conducted an in-depth study on the mechanics of oblique cutting 

and extended the principles of orthogonal cutting to establish relationships between cutting 

parameters such as shear angle, shear stress, and friction coefficient. Additionally, Altintas 

[20] proposed a practical method to predict oblique cutting forces using orthogonal cutting 

tests. This approach is a highly accurate way to model the oblique cutting process by applying 

oblique transformations to orthogonal data. Conversely, Stabler [21] examined the geometry 

of oblique cutting and introduced a widely accepted chip flow law, which assumes that the 

chip flow angle is equal to the angle of obliquity. However, this law does not account for the 
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effects of tool geometry, friction, and shear angle, potentially leading to significant errors in 

predicting cutting force coefficients under various cutting conditions. In addition to these 

approaches, more recent models have also been developed such as thermo-mechanical model 

by Budak and Ozlu [22], FEM based model by Jin and Altintas [23] and a hybrid approach 

encountering machine learning [24].  

 

Because orthogonal cutting database is more effective method with respect to mechanistical 

method due to lower testing requirements and the database on both shear parameters and 

edge coefficients is available in CutPro software developed by Altıntas [25], cutting forces 

were calculated by using shear angle, shear stress and friction coefficients.  

 

 

 

Figure 3.The representation orthogonal cutting geometry 
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The pseudocode for the simulation of milling cutting forces is shown as below: 

 

Inputs:  

 

(a) Tool geometry related parameters:  

tool diameter, helix angle, rake angle, flute number and rake angle 

(b) Process related parameters:  

Spindle speed, feed rate, axial/radial depth of cut and milling mode as 

up/down milling 

(c) Orthogonal database related to workpiece/tool pair:  

Shear angle, shear stress, friction angle and edge force coefficients (𝐾௧௘, 𝐾௥௘  

and 𝐾௔௘ ) 

(d) Simulation related parameters:  

Increment for angular integration and increment for axial integration 

 

Calculation set 1:  

 

(a) Start and exit angles:  

a. Up milling: 

ϕ௦ = cosିଵ ൬1 −
2𝑎

𝐷
൰ 

ϕ௘ = 0 

 

b. Down milling 

ϕ௦ = 0 

𝜙௘ = cosିଵ ൬1 −
2𝑎

𝐷
൰ 

 

 

 

 

 

(2.1) 

 

(b) Specific cutting force coefficients: 𝐾௧௖, 𝐾௥௖  and 𝐾௔௖  
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a. 𝐾௧௖ =
தೞ ୡ୭ୱ(ஒ೙ି஑೙)ା୲ୟ୬ ௜ ୲ୟ୬ ஗ ୱ୧୬ ೙

ୱ୧୬ ம೙ඥୡ୭ୱమ(ம೙ାஒ೙ି஑೙)ା୲ୟ୬మ ஗ ୱ మ ஒ೙
, 

b. 𝐾௙௖ =
தೞ ୱ୧୬(ஒ೙ି஑೙)

ୱ୧୬ ம೙ ୡ୭ୱ ௜ඥୡ୭ୱమ(ம೙ାஒ೙ି஑೙)ା୲ୟ୬మ ஗ ୱ୧୬మ ஒ೙
, 

c. 𝐾௥௖ =
தೞ ୡ୭ୱ(ஒ೙ି஑೙) ୲ୟ୬ ௜ି୲ୟ୬ ஗ ୱ୧୬ ೙

ୱ୧୬ ம೙ඥୡ୭ୱమ(ம೙ାஒ೙ି஑೙)ା୲ୟ୬మ ஗ ୱ୧୬మ ஒ೙
. 

 

(c) Instantaneous Chip thickness: ℎ = 𝑓. sin (𝜃) 

 

 

 

 

(2.2) 

 

 

(2.3) 

Calculation Set 2:  

 

(a) Incremental force calculation to obtain tangential, radial and axial 

forces by 

a. Integrating one spindle rotation 

b. Integration for the total number of cutting edges 

c. Integration for the axial disks 

 

(b) Summation of the forces 

a. 𝐹௧ = ∑ ∑ (𝐾௧௖ ⋅ ℎ + 𝐾௧௘)ଷ଺଴
஘ୀ଴

ே
௜ୀଵ ⋅ 𝑑𝑧 

b. 𝐹௥ = ∑ ∑ (𝐾௥௖ ⋅ ℎ + 𝐾௥௘)ଷ଺଴
஘ୀ଴

ே
௜ୀଵ ⋅ 𝑑𝑧 

c. 𝐹௔ = ∑ ∑ (𝐾௔௖ ⋅ ℎ + 𝐾௔௘)ଷ଺଴
ఏୀ଴

ே
௜ୀଵ ⋅ 𝑑𝑧 

 

 

 

 

 

 

 

 

 

 

(2.4) 

Outputs:  

 

(a) Simulated 𝐹௧, 𝐹௥  and 𝐹௔ forces (tangential, radial and axial forces)  

(b) Simulated 𝐹௫, 𝐹௬  and 𝐹௔ forces (feed, normal and axial forces)  

(c) Power and torque requirements of the process 

 

𝑃𝑜𝑤𝑒𝑟 = 𝐹௧𝑉௖  

𝑇𝑜𝑟𝑞𝑢𝑒 =  𝐹௧𝑅 
(2.5) 
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2.2 Form Error 

For the finishing processes, the form error was also considered in the optimization problem, 

due to its strong correlation with surface roughness. Form error is dependent on tool and 

workpiece deflection, as explained by equation (6): 

 

𝑒(𝑥, 𝑦) = 𝛿௬(𝑧) − 𝑦௣(𝑥, 𝑦) (2.6) 

  

where, where δy(z) is the tool deflection at an axial position z, and yp(x,z) is the work 

deflection at the position (x,z). In this study, the workpiece deflection wasn’t itself included 

in the objective function, since, by minimizing tool deflection, form error is also minimized 

and there is no need to include workpiece deflection in the objective function. To calculate 

the tool deflection, first, the surface generation points must be determined. These points are 

the intersections of the helical flutes with the workpiece surface, satisfying the immersion 

conditions necessary for surface generation [26,27], as explained by equation (7): 

 

𝜙௝ =  𝜙 + 𝑗𝜙௣  −
𝑡𝑎𝑛𝛽

𝑅
 𝑧 =  ൜

0,     𝑓𝑜𝑟 𝑢𝑝 𝑚𝑖𝑙𝑙𝑖𝑛𝑔  
𝜋,     𝑓𝑜𝑟 𝑑𝑜𝑤𝑛 𝑚𝑖𝑙𝑙𝑖𝑛𝑔

 
  (2.7) 

 

where, R is the tool radius, ϕj(z) is the immersion angle for flute j at axial depth of z, ϕp is 

the cutter pitch angle, and β is the helix angle. Consequently, the axial coordinate of the 

flute/surface contact point in axial direction is determined: 

 

 

𝑍௝(𝜙) =

⎩
⎪
⎨

⎪
⎧ 𝑅 (𝜙 +  𝑗𝜙௣)

𝑡𝑎𝑛𝛽
;      𝑓𝑜𝑟 𝑢𝑝 𝑚𝑖𝑙𝑙𝑖𝑛𝑔

𝑅 (𝜙 +  𝑗𝜙௣ −  𝜋)

𝑡𝑎𝑛𝛽
;      𝑓𝑜𝑟 𝑑𝑜𝑤𝑛 𝑚𝑖𝑙𝑙𝑖𝑛𝑔

 (2.8) 
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Using cantilever beam theory, the tool deflection at surface generation points can be 

calculated by equation (9) [15]: 

𝛿௬(𝑘, 𝑚) =
∆𝐹௞௠ 𝑧௠

ଶ

6𝐸𝐼
(3𝜐௠ − 𝜐௞) +

∆𝐹௞௠

𝑘௫
;       0 < 𝜐௞ < 𝜐௠  

𝛿௬(𝑘, 𝑚) =
∆𝐹௞௠ 𝑧௠

ଶ

6𝐸𝐼
(3𝜐௞ − 𝜐௠) +

∆𝐹௞௠

𝑘௫
;      𝜐௠ < 𝜐௞ 

𝛿௬(𝑘) =  ෍ 𝛿௬(𝑘, 𝑚)

௡

௠ୀଵ

 

(2.9) 

where, E is the Young’s modulus, L is the gauge length of the cutter, I is the area moment 

of inertia, n is the number of elements along the axial direction, υk= L–zk, and Fm is the 

normal force at the mth element, which is calculated using a physics-based ML model [24], 

similar to the approach used for power/torque calculation. kx is the linear clamping stiffness 

at the tool-holder interface, equal to 19.8 kN/mm for a carbide end mill with 19 mm 

diameter and 55.6 mm gauge length [26]. To calculate the moment of inertia of the cutting 

tool, the inertia of each region of the tool's cross-section is determined analytically, starting 

with the first region and then transforming and summing the contributions from other 

regions, as illustrated in Figure 4. The inertia of region 1 is obtained by calculating the 

equivalent radius (Req) based on the arc's radius (r) and the position of its center (a), as 

explained by equation (2.10). Then, the total moment of inertia is computed by summing 

the moments from all regions and adding the effect of the arcs due to flute depths as stated 

in equation (2.11) [26,27]. 

 

Req,4-flute(𝜃) = a sin(𝜃) + ඥ(rଶ − aଶ) + aଶ sinଶ(𝜃) ;      0 < 𝜃 ≤
π

2
 

𝑅eq,3-flute(𝜃) = a cos ቀ𝜃 +
𝜋

3
ቁ + ට(rଶ − aଶ) + aଶ cosଶ ቀ𝜃 +

𝜋

3
ቁ ;      0 < 𝜃 ≤

2π

3
 

Req,2-flute(𝜃) = − a cos(𝜃) + ඥ(rଶ − aଶ) + aଶ cosଶ(𝜃) ;      0 < 𝜃 ≤ 𝜋 

(2.10) 
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𝐼௫௫,4-flute = − 
1

8
𝜋 ൬

𝑓ௗ

2
൰

ସ

+  
𝜋

2
൬

𝑓ௗ

2
൰

ଶ

൬𝑟 + 𝑎 −
𝑓ௗ

2
൰

ଶ

 

+  න න ρଷ
ோeq,4-flute(ఏ)

଴

sinଶ(𝜃)

గ
ଶ

଴

 𝑑𝜌 𝑑𝜃 

𝐼௬௬,4-flute = − 
1

8
𝜋 ൬

𝑓ௗ

2
൰

ସ

 +  න න ρଷ
ோeq,4-flute(ఏ)

଴

cosଶ(𝜃)

గ
ଶ

଴

 𝑑𝜌 𝑑𝜃   

(2.11) 

 

The same approach is also applicable to the 3-flute and 2-flute tools. After performing the 

necessary transformations, the moments of inertia are calculated by equation (2.12) [27]: 

 

𝐼௫௫,4-flute;TOTAL = 𝐼௬௬,4-flute;TOTAL = 2൫𝐼௫௫,4-flute + 𝐼௬௬,4-flute൯ 

𝐼௫௫,3-flute;TOTAL = 𝐼௬௬,3-flute;TOTAL = 1.5൫𝐼௫௫,3-flute + 𝐼௬௬,3-flute൯ 

𝐼௫௫,2-flute;TOTAL = 2൫𝐼௫௫,2-flute൯;    𝐼௬௬,2-flute;TOTAL = 2൫𝐼௬௬,2-flute൯ 

(2.12) 

 

 

 

 

Figure 4. Cross section of 2, 3 and 4-flute end mills [15]. 
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2.3 Tool Life 

Cutting tools can be used until cutting edge quality is lost because of wear or breakage. 

When a tool loses its sharpness, the dimensional accuracy is adversely affected, and the 

tool needs to be replaced. The most economical machining time is dependent on the 

tolerances of the part and wear rate of the tool. Wear is mainly dependent on cutting speed 

since higher cutting speeds increase the temperature between tool and workpiece 

exponentially. However, milling process is complex process where the cutting edge 

periodically enters and exits to the workpiece. This intermittent structure causes cyclic 

stress and temperature variation during the process.  

 

Regarding roughing and finishing operations, the approaches about tool life 

changes. For roughing operations, changing the tool during the cutting process may not 

cause a problem since any mark on the surface will be removed with the following pass. 

However, it is of great importance to complete finishing operation with one tool since any 

mismatch mark may result in the rejection of the part depending on the design function of 

the feature.  

 

For the calculation of the tool wear, Taylor’s equation is used.   

 

 

𝑉௖ 𝑇௡𝑓௭
௠ =  𝐶 (2.13) 

 

Lee and Yoon [28] have studied tool life modeling with power consumption using Taylor’s 

equation and developed a direct tool life model, the experimental verification of this study 

is conducted with Titanium alloy and uncoated solid carbide four-flute plain end mill with a 

diameter of 12 mm. The other parameters of the tools are as follows: helix angle 30˚, total 

tool length is 83 mm, and cutting-edge length is 25 mm.  (TSE-4120M-TT5515; Taegutec 

Ltd., Korea). This study contains an adequate number test conducted with different cutting 
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parameters and the constant parameters of Taylor’s equation was obtained by fitting 

experimental results to the equation (2.13). Here, 𝑉௖ represents cutting speed, 𝑓௭ represents 

feed per tooth, and T represents the tool life, where n, m, and C are constants.  

(n = 0.2428, m = 0.890, C = 8.4864) 

 

2.4 Material Removal Rate (MRR) 

 

Material removal rate (MRR) is found by multiplying the process cutting parameters: axial 

depth of cut, radial depth of cut and feed rate as mm/min. The unit of this parameter is 

mm3/min. [29] 

 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 =   𝑎 ∗ 𝑏 ∗ 𝑓௧௢௢௧௛ ∗  𝑁 ∗ 𝑛 (2.14) 

 

2.5 Tool Bending Stress 

The tool breakage limit is estimated based on the Euler-Bernoulli beam theory. This 

estimation involves calculating the bending stress for a beam under uniform load, followed 

by applying Weibull analysis to a four-point bend test, as explained by equation (2.15) [30]. 

 

𝜎௠௔௫ି௖௨௧௧௘ = 1.25 (
87.63

𝐻
)ଵ/௠ (

9.53

𝑅௦
)ଶ/௠ 𝜎௠௔௫ି௕௘௡ௗ௜௡  (2.15)  
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where, H is the flute length, Rs is the shank radius, and m refers to Weibull modulus. The 

tool breakage limit necessitates that the maximum stress in the cutting tool must not exceed 

the mean failure stress of the carbide end mill, which is 1533 MPa [27]. 

2.6 Power and Torque Consumption 

Power and torque values are the parameters that will be limited by the machining center in 

the optimization process. In this step of the study, these values are calculated by using the 

mechanistic force model where, 𝑉௖ is the cutting speed, f is feed rate per tooth, n is spindle 

speed, N is the number of teeth, 𝑉௙ is the feed velocity  (= 𝑓 ∗ 𝑁 ∗ 𝑛), R is the tool radius, 

Ft is the tangential force and Ff is the feed force. During optimization step, this mechanistic 

force calculation will be replaced by the physics-based M model which performs new 

predictions based on the regression function.  

 

2.7 Limits for Data Preparation  

Data preparation is the input for machine learning process, hence wider definitions will be 

helpful for the regression to perform better. The upper and lower limits of the cutting 

parameters were determined according to the machine tool limits and the tool 

manufacturer's data to establish a feasible solution set and save computational time. 

 

 

𝑃𝑜𝑤𝑒𝑟 = 𝐹௧𝑉௖  

 

𝑇𝑜𝑟𝑞𝑢𝑒 =  𝐹௧𝑅 

(2.16) 
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⎩
⎪
⎨

⎪
⎧

0.5 ≤ 𝑎𝑥𝑖𝑎𝑙 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑐𝑢𝑡 ≤ 20 𝑚𝑚
10% 𝑑௧௢௢௟ ≤ 𝑟𝑎𝑑𝑖𝑎𝑙 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑐𝑢𝑡 ≤ 100% 𝑑௧௢௢௟

0.3 ∗ 𝑅௛௢௡௘ ≤ 𝑓𝑒𝑒𝑑 𝑟𝑎𝑡𝑒 ≤ 0.15 𝑚𝑚/𝑡𝑜𝑜𝑡ℎ
1000 ≤ 𝑠𝑝𝑖𝑛𝑑𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 ≤ 10000 𝑟𝑝𝑚

2 ≤ 𝑡𝑜𝑜𝑡ℎ 𝑛𝑢𝑚𝑏𝑒𝑟 ≤ 4 ⎭
⎪
⎬

⎪
⎫
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3. Machine Learning Model: GPR with Bayesian Optimization 

3.1 GPR and BO for all output variables 

This section explains Gaussian Process Regression (GPR), and its integration with 

Bayesian optimization (BO) theory. Bayesian optimization utilizes a more strategic 

approach where it employs a probabilistic model to guide the optimization process, making 

informed decisions about where to sample next based on prior evaluations and predictions 

about the objective function’s behavior. This iterative process involves exploring new 

possibilities and exploiting known high-value areas until an optimal solution is found or a 

stopping criterion is met [32]. The primary advantage of Bayesian optimization is its ability 

to efficiently handle expensive functions (considering both computational time and 

memory), achieving effective optimization outcomes with fewer evaluations. The key 

components of the Bayesian optimization framework include the surrogate model, 

acquisition function, and optimization loop, as described in the following subsections.  

 

A key component of Bayesian optimization is the surrogate model, which approximates the 

objective function. This model serves as a probabilistic approximation of the true, often 

expensive-to-evaluate objective function. By using the surrogate model, Bayesian 

optimization can explore the search space more efficiently and make informed decisions 

about where to sample next. In the context of Bayesian optimization, the Gaussian Process 

Regression (GPR) is commonly employed as the surrogate model due to its flexibility and 

efficacy in capturing complex functions.  

 

Once the data preparation step has been completed, the selection of the most suitable 

machine learning algorithm step started. Regarding the calculation of the output parameters 

to be used for both new data generation before optimization step, GPR model was selected. 

GPR is a non-linear regression method which is distinguished with its ability for high 

dimensional data and complex interactions. The “fitrgp” function is used to fit a Gaussian 
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Process Regression model. The kernel function is set to squared exponential, which is 

commonly used for GPR. For each output variable, predictions are made, and metrics such 

as Mean Squared Error (MSE) and R-squared (R2) are calculated as listed in Table 4. The 

results are printed, and a scatter plot of actual vs. predicted values is generated. 

 

Hyperparameter Description Possible Values 

Basis Function 
The basis function for the 

Gaussian process. 

'none', 'constant', 'linear', 'pure 

quadratic' 

Kernel Function 

The kernel (covariance) 

function for the Gaussian 

process. 

'Squared exponential', 'matern32', 

'matern52', 'rational quadratic', 

'exponential', 'ardmatern52', 'ard 

exponential' 

Sigma 

The noise level to add to the 

diagonal of the covariance 

matrix. 

Any positive real number (e.g., 1e-3, 

1e-4) 

Optimizer 

The optimization algorithm 

used to minimize the 

negative log marginal 

likelihood. 

'fminunc', 'quasi-newton', 'lbfgs' 

Table 3. Hyperparameters of Bayesian Optimization and Gaussian Process Regression 

 

 Summary of Metrics 

Mean Square 

Error (MSE) 

The average of the squares of errors (difference between predicted 

and actual values). 

Root Mean 

Square Error 

(RMSE) 

The square root of the MSE, giving a measure of error in the same 

units as the output variable. 

R-Squared (R2) The proportion of variance in the dependent variable that can be 

explained by the independent variables. 

Table 4: Summary of ML performance metrics 
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The Bayesian optimization process involves iterating between sampling new points and 

updating the surrogate model. The steps are as follows: 

 

Initialize Samples: Select initial points to evaluate the objective function.  

Fit GPR Model: Build the GP model using the initial data.  

Define Acquisition Function: Choose an acquisition function to guide the search for  

the next sampling.  

Optimize Acquisition Function: Find the point that maximizes the acquisition  

function.  

Evaluate Objective Function: Compute the actual objective function value at the  

new point.  

Update GPR Model: Update the model with the new data.  

Repeat: Continue the process until a stopping criterion is met. 

 

GPR provides a robust and probabilistic framework for modeling the objective function, 

making it a popular choice in optimization tasks where evaluations are costly. A Gaussian 

Process is defined as a collection of random variables, any finite number of which have a 

joint Gaussian distribution. It is characterized by a mean function and a covariance function 

(also known as the kernel), which together encode assumptions about the smoothness, 

continuity, and overall behavior of the objective function. The mean function represents the 

expected value of the objective function at any point in the input space, while the 

covariance function describes how values of the function at different points are related to 

each other [33]. However, GPR has one critical limitation: it does not produce a closed-

form regression formula like polynomial regression. Instead, it models a distribution over 

possible functions based on the training data and the specified kernel. 

 

GPR not only provides a prediction of the objective function’s value but also quantifies the 

uncertainty associated with these predictions. This uncertainty estimation is fundamental to 

the Bayesian optimization process, guiding the selection of new candidate solutions by 

balancing exploration of uncertain regions with exploitation of known good regions. 
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Overall, the surrogate model in optimization, and specifically GPR, plays a critical role in 

efficiently navigating the search space and converging to optimal solutions by leveraging 

probabilistic reasoning and adaptive sampling strategies. 

 

 

Let f(x) represent the objective function targeted for optimization, which can be modeled as 

a Gaussian Process with mean function µ(x) and covariance function k(x,x’): 

 

f(x) ∼ 𝒢𝒫൫μ(x), k(x, xᇱ)൯ (3.1) 

 

where the mean function µ(x) represents the expected value of f(x) and the covariance 

function k(x,x’) describes the correlation between function values at different inputs, as 

explained by equation (3.2). 

 

μ(𝑥) = 𝐸[𝑓(𝑥)] 

𝑘(𝑥, 𝑥ᇱ) = 𝐸ൣ൫𝑓(𝑥) − μ(𝑥)൯൫𝑓(𝑥ᇱ) − μ(𝑥ᇱ)൯൧ 
(3.2) 

𝑓(𝑥∗) ∣ 𝑋, 𝑌, 𝑥∗ ∼ 𝒩൫μ∗(𝑥∗), σ∗
ଶ(𝑥∗)൯ 

 
 

where the posterior mean and variance are given by equation (3.3): 

 

μ∗(𝑥∗) = 𝑘(𝑥∗, 𝑋)[𝐾(𝑋, 𝑋) + σଶ𝐼]ିଵ𝑌 

σ∗
ଶ(𝑥∗) = 𝑘(𝑥∗, 𝑥∗) − 𝑘(𝑥∗, 𝑋)[𝐾(𝑋, 𝑋) + σଶ𝐼]ିଵ𝑘(𝑋, 𝑥∗) 

(3.3) 

 

Here, k(x,x) is the covariance matrix computed from the training data, k(x*,x) is the 

covariance vector between the new point and the training points [33]. 
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3.2 Acquisition Function 

 

The acquisition function guides the selection of the next sampling point based on the 

surrogate model’s predictions. It quantifies the trade-off between exploration (sampling in 

regions with high uncertainty) and exploitation (sampling in regions with high predicted 

performance). Common acquisition functions include: 

 

Expected Improvement (EI): 

EI(𝑥) = 𝐸[max(𝑓(𝑥ା) − 𝑓(𝑥), 0)] (3.4) 

where f(x+) is the best observed value so far. 

 

Probability of Improvement (PI): 

PI(𝑥) = Φ ቆ
𝑓(𝑥ା) − μ(𝑥)

σ(𝑥)
ቇ 

(3.5) 

where ϕ is the cumulative distribution function of the standard normal distribution. 

 

Upper Confidence Bound (UCB): 

UCB(𝑥) = μ(𝑥) + κσ(𝑥) (3.6) 

where κ is a parameter that controls the balance between exploration and exploitation. 

 

 

The MATLAB function used for GPR model:  

gprModel = fitrgp(X, Y(:, i), 'KernelFunction', 'squaredexponential', ...  

'OptimizeHyperparameters', 'auto', 'Verbose', 1); 
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Parameter Description Other Possible values 

X The matrix of predictor (input) parameters  

Y The response (output) variable for the 

regression model 

 

Kernel Function The function, used to define the covariance 

structure of the Gaussian Process. The 

choice of kernel affects how the model 

generalizes from the training data. 

'squaredexponential': this function assumes 

that points closer in the input space will 

have more similar outputs. It’s a commonly 

used kernel for smooth and continuous 

functions, ideal for capturing the gradual 

trends in data. 

'matern52', 

'ardsquaredexponential', 

'rationalquadratic' 

Optimize 

Hyperparameters 

When set to 'auto', this parameter triggers 

automatic optimization of the kernel 

hyperparameters (e.g., length scale and 

variance) to best fit the data. 

This allows the model to adapt its 

parameters to achieve the best predictive 

performance. 

In GPR, Bayesian Optimization is selected 

by default among other techniques such as 

Grid Search, Random Search and Genetic 

Algorithm. 

‘sigma’, 

‘basisFunction’, 

‘KernelScale’, 

‘Standardize’, 

‘none’ 

Verbose When Verbose is equal to ‘1’, the function 

displays the optimization process details in 

the command window, which can be useful 

for tracking the optimization progress or 

debugging. 

‘0’, ‘2’, ‘3’ 

Table 5: Selected Parameters of GPR process 
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3.3 Model Performance 

 MSE RMSE 𝑅ଶ 

MRR 141689.7077 376.4169 1.0000 

Tool Life 50814696919.7770 225421.1546 0.2095 

Power 579.8379 24.0798 1.0000 

Torque 1045.3783 32.3323 1.0000 

Tool Bending Stress 63.1071 7.9440 0.9999 

Form Error 0.0000 0.0017 0.9983 

Table 6: GPR Model Performance Results on Output Variables 

 

As seen in Table-4, the model performance is quite promising and has a good capability of 

making accurate predictions apart from Tool Life variable. R-Square value for Tool Life 

shows that the predictions for Tool Life will be very poor. Any optimization based on GPR 

prediction will mislead the optimum results. 

 

 
Figure 4: schematic representation of GPR 
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Figure 5: Comparison for MRR 

 

Figure 6: Comparison for Tool Life 

 

Figure 7: Comparison for Power 

 

Figure 8: Comparison for Torque 

Figure 9: Comparison for Tool Bending Stress Figure 10: Comparison for Form Error 

Table 7: Actual vs Predicted Plots for Output Variables 
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Plots for MRR  

  

Plots For Tool Life 

  

Plots for Power 
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Plots for Torque 

 
 

 

Plots for Tool Bending Stress 

  

Plots for Form Error 
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Table 8: Convergence Plots of each Output Variable 

3.4 An alternative approach for Tool Life 

Investigating the other regression models of machine learning approach, polynomial (as 2nd 

and 3rd degree of functions) and exponential models were tried as well. In addition, given 

that the tool life formula contains only feed rate (X3) and cutting speed (a function of 

spindle speed represented as X4), these two variables were selected as predictors rather than 

including all predictor variables at once. These trials ended up with R2 = 0.5235 value, 

which is still inadequate to move into optimum parameter selection step. Furthermore, 

taking the logarithm of the tool life values did not help with better predictions.  

 

LS-Boost builds a series of decision trees in sequence, with each tree correcting the errors 

of the previous ones. The final prediction is the weighted sum of the outputs from all 

individual trees. Each tree in LS-Boost focuses on minimizing the residual errors 

(differences between predicted and actual values) from the previous trees. This iterative 

correction process results in a model with higher accuracy and lower bias. Since each tree 

only contributes to specific regions of the input space and does not have a simple 

mathematical form, the ensemble does not yield a single, explicit regression equation. 

Instead, predictions are made by passing inputs through the series of trees and summing up 

their weighted outputs. To make a prediction with LS-Boost, each input is run through the 

ensemble, and each tree provides an output. These outputs are then combined (summed) to 

give the final prediction. This happens internally in the model without generating an 

explicit function. 

 

Finally, LS-Boost approach ended up with a good level of predictions and a R2 value very 

close to 1 as can be seen in Table-9. Actual values were compared and plotted in Figure-4. 

Since the results are better than expected, 4 model validation steps have been added:  

1. Train-Test Split: 80% of the data used for train, 20% used for test. (cvpartition) 

2. Cross-Validation: Model stability across different data splits (k-folds =5) 
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3. Feature Importance Check: Identify the dominant predictors 

4. Visualize Residuals: Helpful to detect overfitting 

 

As a result, all output variables have been predicted with Gaussian Process Regression 

apart from Tool Life which has an exponential trend. Tool Life predictions are calculated 

by LS-Boost approach.  

 MSE RMSE 𝑅ଶ 

Tool Life (Y2) 0.0000 0.0000 1.0000 

Table 9: LS-Boost performance results for Tool Life 

 

 

Figure 11: LS-Boost performance on Tool Life Prediction 
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3.5 Feature Importance and Residuals  

Feature Importance reflects the idea that certain predictors (features) have more influence 

or impact on the model’s outcomes. Residuals are named as prediction errors that indicate 

the discrepancy between actual and predicted values, highlighting the error in predictions. 

Feature Importance Plot Residuals Plot 
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Table 10: Feature Importance and Residual Plots for each output variable 
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4. Optimization Method to Identify Optimum Cutting Parameters 

4.1 Objective Function  

The objective function for the roughing operation aims to maximize material removal rate 

and tool life, while suppressing chatter and satisfying tool breakage limit and power/torque 

restrictions. The function to be optimized is described by equation (4.1). Furthermore, the 

boundaries of the machine learning algorithm should be redefined with respect to tool 

catalog inputs for axial depth and feed per tooth or feed rate parameters.  

For the finishing processes, the form error was also considered in the optimization problem 

as the only compulsory constraint, due to its strong correlation with surface roughness. 

Form error is dependent on tool and workpiece deflection, as explained by equation (4.2). 

Form error calculation ignores workpiece deflection, tool wear and lubricant usage at this 

step. The boundaries of the form error constraints directly taken from technical drawing the 

component. The upper can be defined by the tolerance band and lower bound can be 

selected as 70-80% of the upper bound. This approach avoids much better production than 

desired, hence decreases cost respectively. For example, if the tolerance band of the 

component refers to ±0.5mm, the boundaries as 0.4 and 0.5 mm as lower and upper bound 

can be selected respectively. If the part is machined with ±0.1mm, it means that the process 

still has some room to decrease cost by increasing the productivity rate.  

As a unique case of production, tool life might be targeted for a minimum machining cycle. 

The machining operations of very large die casts like the ones to produce vehicle body 

components, one may prefer to define a minimum tool life to complete the entire finishing 

pass with only one tool and not to leave any mismatch line on surface. This type of 

optimization problem addresses a different solution approach. When a parameter is defined 

in both objective function and the constraint set, then this can be solved with non-linear 

constrained optimization.  
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maximize {Material removal rate & Tool life}; while suppressing chatter & 

satisfying power/torque and tool breakage limits 
(4.1) 

 

maximize {Material removal rate & Tool life}; while achieving design tolerance 

requirement so controlling form error 
(4.2) 

4.2 Optimization Methods and Results 

In this chapter, 3 different approaches for optimization are defined in detailed: Genetic 

algorithm for general purpose, bayesian optimization where weight definitions are up of 

importance and non-linear constrainted optimization for a specific condition.  

Different problems require different solutions. Every solution begins with identifying a 

clear problem, and a well-defined problem statement makes it significantly easier to 

develop an effective solution. In this case, we are focused on transitioning from design 

concepts to producing conforming products. This shift starts with having a virtual CAD 

model and a technical drawing that outlines design specifications. 

When a supplier receives a technical drawing along with a quotation request, one of the 

first considerations is the material to be machined and the required tolerance band. For 

instance, is the component a general-purpose automative part with relatively broad 

tolerances, or an aerospace component with extremely tight tolerances? Each of these 

scenarios brings unique requirements. 

When a large die cast for an automotive body part is considered, manufacturing such 

components involves producing two large dies, a process that can take days. For large 

surface areas, it is essential to complete the final pass with a single tool to prevent surface 

mismatches. Another critical factor is the production volume: are you machining a highly 

specialized part that will be produced only once per engine, or a high-volume item like a 

door hinge of a passenger car? 
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Moreover, meeting timing requirements is crucial for a supplier aiming to be reliable. This 

involves assessing the manufacturing capacity relative to demand. Key considerations 

include the capacity of the production facility, the number of available machine centers, and 

whether parallel processing can be implemented to meet production targets efficiently. 

MULTI OBJECTIVE  

With GENETIC 

ALGORITHM 

BAYESIAN 

OPTIMIZATION  

With EXPLICIT 

WEIGHTS 

NON-LINEAR 

CONSTRAINED 

OPTIMIZATION 

Equally-weighted 

optimization for  MRR and 

Tool Life 

 

A Trade-off point is 

calculated inside the 

algorithm 

 

Roughing and Finishing 

Processes with different 

weight calculations  

 

ie. Roughing with max 

MRR (WMRR=100, WTL=0)  

Finishing with increased TL 

(WMRR=0, WTL=100) 

When the tool is expensive 

When your surface is large 

to machine at one pass 

Briefly, when minimum 

tool life is a constraint  

 

Multi Objective 

Optimization for complex 

non-linear problems 

Good at finding diverse set 

of solutions 

No explicit weight 

definition 

Pareto Front for the trade of 

the objective functions 

 

Single Objective Function, 

ideal for expensive-to-

evaluate problems 

 

Weight definition possible 

Scale differences require 

normalization 

 

Better for global optimum 

 

A gradient-based 

optimization method best 

for constrained smooth non-

linear problems 

 

Weight definition possible 

 

Efficiently finds local 

optimum 

GAMULTIOBJ BAYESOPT FMINCON 

 

Table 11: Comparison of the Optimization Methods 
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4.2.1 Genetic Algorithm for Multi Objective Optimization 

Genetic algorithm is an optimization technique inspired of the process of natural selection. 

It is often applied to problems with multiple objectives, where the goal is to optimize two 

or more conflicting objectives simultaneously. In this study, it is selected due to its ability 

to define multi objective function to optimize. The objective function is complex or doesn’t 

have a closed-form expression. The optimization landscape is non-linear and has multiple 

peaks or valleys. 

 

You want to leverage a surrogate model (like GPR) for fast evaluation, which is especially 

beneficial for expensive simulations or experimental setups.However, it is not capable of 

explicitly defined weight inputs, it works with pareto chart which helps illustrate the trade-

offs between multiple objectives in multi-objective optimization problems. The Pareto front 

consists of solutions where improving one objective would lead to a deterioration in at least 

one of the other objectives. In a 2D Pareto chart, one objective is plotted along the x-axis 

and another along the y-axis. Each point on the chart represents a solution, and the curve 

formed by the outer points represents the Pareto front. 

 

𝑓ଵ(𝑥) = MRR(𝑥) 

𝑓ଶ(𝑥) = ToolLife(𝑥) 

Maximize ( MRR(𝑥௜),   TL(𝑥௜) ) 

(4.3) 

 

4.2.2 Bayesian Optimization with Weight Definition 

Bayesian optimization with a weighted sum approach is a robust method used to address 

multi-objective optimization problems, especially when objectives may conflict. In this 
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approach, each objective is assigned a weight reflecting its importance, and the weighted 

sum of all objectives forms a single objective function to optimize. By adjusting the 

weights, different trade-offs can be explored, providing flexibility to achieve desired 

outcomes based on priority. 

 

To ensure comparability among objectives, normalization is often applied. Since each 

objective may operate on different scales, normalization methods help balance the influence 

of each objective within the weighted sum. Common techniques include min-max 

normalization, which scales each objective to a 0-1 range based on minimum and 

maximum values, and z-score normalization, which standardizes objectives based on mean 

and standard deviation, ensuring they have a comparable influence in the optimization 

process. Objective scaling directly adjusts objective values relative to their magnitude, 

while adaptive scaling dynamically re-weights objectives throughout the optimization 

process to improve convergence toward a balanced solution. Another approach, penalty-

based normalization, penalizes objective values that deviate substantially from targets, 

aiding in finding feasible solutions in constrained environments. 

 

Selecting an appropriate normalization method can significantly impact the optimization’s 

performance, helping ensure that the Bayesian optimization process converges toward 

solutions that reflect the intended priorities among objectives. 

 

max
௫

൫𝑤ଵ𝑓ଵ(𝑥) + 𝑤ଶ𝑓ଶ(𝑥)൯ 

𝑓ଵ(𝑥) = MRR(𝑥) 

𝑓ଶ(𝑥) = ToolLife(𝑥) 

(4.4) 
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4.2.3 Non-linear Constrained Optimization 

This optimization is used in a specific condition where tool life is limited with a minimum 

value while maximizing MRR to complete finish pass with at least one tool. Hence, one 

more constraint is added to the finishing constraint. The objective function function is the 

same with Bayesian approach with this one additional limitation as shown in Eqn. 4.7.  

 

4.3 Constraint Definition  

Constraint definition is another important step to establish a feasible solution set and save 

computational time. The upper and lower limits of the cutting parameters were determined 

according to the machine tool limits, the tool manufacturer's data and design requirements.  

 

 

 

𝑇ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑓𝑜𝑟 𝑟𝑜𝑢𝑔ℎ𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

 

Power ≤ 86000 watts 

Torque ≤ 26000 Nm 

Tool Bending Stress ≤ 1533 MPa 

𝑋௜ > 0 and 𝑌௜ > 0 for 𝑖 = 1,2,3, . .. 

 

(4.5) 
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𝑇ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑓𝑜𝑟 𝑓𝑖𝑛𝑖𝑠ℎ𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

 

0.8 ∗ 𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ≤ 𝑌଺(𝑥௜) ≤ 𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑓𝑖𝑛𝑖𝑠ℎ 𝑝𝑎𝑠𝑠 ≤ 𝑌ଶ(𝑥௜) 

𝑋௜ > 0 and 𝑌௜ > 0 for 𝑖 = 1,2,3, . .. 

(4.6) 

(4.7) 

 

 

𝑇ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑓𝑜𝑟 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

 

0 ≤ 𝑥ଵ ≤ 8 mm (axial depth of tool catalog) 

0.003 ≤ 𝑥ଷ ≤ 0.085 mm/rev*tooth (max feed rate of tool catalog) 

𝑥ହ  =  2 (fixed flute number)  

 

(4.8) 

4.3.1 Feed per Tooth Limits 

The minimum uncut chip thickness was limited based on the tool hone radius, which is 

suggested to be at least 0.3 times the hone radius (i.e., hmin=0.3*Rhone) [28]. Figure 2 

illustrates hone radius measurement via Nano-focus µ-surf device. 

 

Figure 12: Hone radius measurement using Nano-focus µ-surf explorer. 
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The maximum uncut thickness is selected on the tool catalogue, for 16-mm diameter as 

shown in Figure 13.  

 
Figure 13: Tool Catalog for Feed Rate Upper Limit 

4.3.2 Power and Torque Limits of Machine Center 

Power and torque are calculated by equation (2.16) and their limits are derived from the 

machine tool's power and torque curves, as illustrated in Figure 3 for Mazak Nexus 510 CII 

Milling Center (12.000rpm). 
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Figure 14. Power/torque curve of Mazak Nexus 510 CII Milling Center. 

4.3.3 Axial Depth of Cut Limits 

Axial depth of cut is dependent on tool cutting length as shown in Figure 13. The upper 

bound of axial depth is set to 8mm.  

4.3.4 Radial Depth of Cut Limits 

Radial depth of cut is taken as percentage, it is defined as 10% and 100% of radial 

immersion. For the diameter of 16mm, its lower bound results in 1.6mm and upper bound 

is the diameter itself as full immersion.  
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4.3.5 Spindle Speed Limits 

The cutting speed for Titanium alloy practically varies 400m/min, meaning that with a 

16mm diameter tool, spindle speed is approximately 6700 rpm. For a larger scan of 

optimum solution, the upper bound is set to 5000 rpm and lower bound is 1000rpm since 

the experiment will be under dry cutting conditions.  

4.3.6 FRF Measurement 

Prediction of chatter occurrences is one of the important steps for the optimization process 

because it adversely may cause the waste of workpiece and may damage the machine center. 

Due to the periodic nature of milling operations, cutting force varies with the angle of the 

cutting edge. Furthermore, the number of actively cutting teeth, whether one or more edge is 

cutting at in instance regarding the radial depth percentage and flute number affects the 

cutting forces with the rotation of the spindle. These forces are acting like external excitation 

that can be considered as forced vibration, and they are a combination of sinusoidal forces. 

Fourier transform is utilized to the amplitude and the frequency content of these forces. The 

variation of the cutting forces additionally results in the variation of chip thickness and the 

vibration of the tool may be diminished or grown with successive tooth entry to the 

workpiece.  

A brief historical development of chatter stability modeling begins with Tlusty’s average 

cutting direction approach [36], and he continued his studies that indicate that time domain 

simulations are more effective for stability modeling. Budak [37] has established an 

analytical stability method, verified experimentally and numerically. Later, this method was 

extended for stability lobe diagram generation and even for 3D stability analysis. 

[37,38,39,40]. 

 

Since this thesis is focused on milling operation optimization with one specific carbide 

cutting tool with 16-mm diameter as 2-fluted square end mill, the effect of tool length [41] 
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or the special tool parameters such as variable pitch or serrated geometries have not been 

considered [42,43].  In this thesis, stability diagrams have been generated with the input of 

hammer test processed with Fast-response-function (FRF) by using receptance coupling and 

substructure analysis (RCSA) [44,45]. 

 

FRF measurement is the main part of the chatter mitigation since it enables the machinist to 

generate stability diagram and identify the chatter-free limits for spindle and radial depth 

pair. Tool length is measured as 75 mm and hammer impacts are applied to the tool tip.  

 

 

 

Figure 15: PCB Piezotronics Modal Analysis Sets 

 

Figure 16. Stability lobe diagram 
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X-Direction Y-Direction 

  

 

 

 

 

 

Table 12: FRF Measurement Results to select chatter free solutions 



 

49 
 

4.3.7 Design Tolerance Limits 

Tolerance input is directly related to the design intent of the milling surface. According to 

the function of the milling surface, tolerance bands are indicated in the technical drawings. 

For this optimization approach, tolerance band is not in the constraint list but will be used 

during the iterations for best solutions.  

Furthermore, it is quite critical that finishing operation must be completed without tool 

change since this can cause any mismatch line on the surface and successively the rejection 

of the part.  

In this optimization problem, absolute value of the form error has been considered if the 

milling surface has a bilateral profile tolerance. When the design has unilaterally defined 

profile tolerances, the direction of the form error will be important since it will indicate 

stock-off or stock-on condition.  

 

 

Figure 17. application of surface profile tolerance on a basic contour 
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5. Results 

The optimization of machining parameters was conducted using 3 different algorithms and 

Gaussian process regression, with the aim of maximizing productivity and mitigating 

chatter, as outlined in Equation (5). According to the upper and lower band limits of the 

input parameters (axial/radial depth of cut, feed rate, spindle speed and teeth number), the 

optimization process aimed to maximize material removal rate and tool life, while ensuring 

power/torque limits and tool breakage constraints for roughing as well addressing form 

error for finishing. This comprehensive approach ensures that the process is both efficient 

and cost-effective, leading to improved productivity and profitability without 

compromising the life span of the cutting tools used.  

 

Initially, the cutting forces used for the calculation of power consumption, torque and 

bending stress were estimated using a physics-based ML model, which predicts the milling 

forces with high level of accuracy [24]. After dataset preparation, the hyperparameter 

optimization of Gaussian Process Regression (GPR) was performed, as summarized in 

Table 2.  

5.1 Multi-Objective Optimization with Genetic Algorithm 

Regarding many machining scenarios as described in Chapter 4.2, this multi-objective 

optimization allows the manufacturer to follow an equally weighted solutions when no 

timing or volume restrictions exist. 

This code aims to find optimal values for the inputs x1, x2, x3, and x4 that maximize MRR 

(Y1) and Tool Life (Y2). Since gamultiobj is a minimization function, we use the negative 

values of Y1 and Y2 (minimizing -Y1 and -Y2) to achieve maximization. 
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The constraints are based on predicted values of power (Y3), torque (Y4), tool bending 

stress (Y5) and form error (Y6). Depending on the process type (roughing or finishing), the 

constraints on these outputs differ. For example: 

 In roughing, constraints are:  

o Power  < 86000 Watts 

o Torque < 26000 Nm 

o Tool Bending Stress < 1533 MPa. 

 

 In finishing:  

o 0.04 mm < Form Error  < 0.05 mm. 

The code optimizes four variables: axial and radial depth, feed per tooth, and spindle speed. 

The variable of flute number is fixed at 2 at this point since the tool is consolidated, 

allowing the model to focus on the primary four variables. The upper and lower boundaries 

for these variables are specified as  

o x1: [0, 8]  Tool axial depth limitation 

o x2: [0, 16]  Limited by tool radius 

o x3: [0.003, 0.085]   limited by tool hone radius and tool catalog 

o x4: [0, 5000] reasonable interval for titanium-carbide pair.  

These bounds ensure the search space is constrained to feasible ranges, which can 

significantly influence the optimizer’s performance. 

The objective function, gprObjective, takes the four optimization variables (x1 to x4) and 

appends a fixed x5 value of 2, making it a complete 5-element vector for prediction. The 

function uses the Gaussian Process Regression (GPR) model and another machine learning 

model (e.g., lsboostModel) to predict Y1 and Y2 based on xi.  

The function returns [-Y1_pred, -Y2_pred], thereby converting the maximization of Y1 and 

Y2 into a minimization problem, which aligns with gamultiobj requirements. The 

gamultiobj function is a genetic algorithm tailored for multi-objective problems. It uses 
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population-based search, which simulates evolution through operations like mutation, 

crossover, and selection. The opts structure specifies options such as Display, set to 'iter' to 

show progress at each iteration, and PlotFcns, which includes @gaplotpareto. This function 

plots the Pareto front (showing trade-offs between objectives) during optimization. 

 

By default, gamultiobj will iterate over several generations to evolve a set of solutions. The 

exact number of generations can depend on factors like population size, convergence 

criteria, and stopping conditions (such as maximum generation count). Each generation 

produces a population of potential solutions that are tested and refined. 

 

gamultiobj generates a set of solutions that represent trade-offs between the objectives Y1 

and Y2. This set, the Pareto front, comprises solutions where no single solution is strictly 

better in all objectives than any other (known as “non-dominated” solutions). During the 

optimization, the convergence plot shows how solutions improve over generations, helping 

to visualize how quickly or smoothly the algorithm reaches good solutions. After 

optimization, gamultiobj returns a set of solutions (x_opt) and corresponding objective 

values (fval). These represent various trade-offs between Y1 and Y2 on the Pareto front.  

 

The solutions are sorted based on the objective values, allowing the code to select the 

“best” 20 solutions which will be the input for detecting the chatter condition and filtering 

respectively. The pareto-fornt may help the manufacturer to select among possible 

parameters regarding the balance between Y1 and Y2 and their priorities such as 

prioritizing Y1 over Y2 or vice versa.  

 

The results of genetic algorithm is not so promising when compared to Bayesian 

optimization. For roughing, it suggested a balanced solution set where it increased depths 

while decreasing feed rate and spindle speed or vice versa.  
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Axial 

depth of 

cut (mm) 

Radial 

depth of 

cut (mm) 

Feed per 

tooth  

Spindle 

speed 

(rpm) 

Tooth 

number 

MRR 

(mm3/min

) 

Tool 

life 

(min) 

Power 

(w) 

Torque 

(N.mm) 

Bending 

stress 

(MPa) 

0.1 5.9 0.026 3000 2 92 4.6 37.7 53 0.45 

1.4 7.3 0.003 1000 2 61 1.2e6 41.5 326 5.5 

0.2 3.8 0.023 1000 2 35 665 21 92 0.8 

0.1 3.9 0.065 1000 2 50.7 14.8 37 95 0.6 

Table 13: Roughing Solutions from Genetic Algorithm 
 

 

For finishing operation, the code recommended much higher axial and radial depth than the 
common practice in industry.  

Axial 

depth of 

cut (mm) 

Radial 

depth of 

cut (mm) 

Feed per 

tooth  

Spindle 

speed 

(rpm) 

Tooth 

number 

MRR 

(mm3/min) 

Tool 

life 

(min) 

Power 

(w) 

Torque 

(N.mm) 

Bending 

stress 

(MPa) 

3.38 6.25 0.038 1001 2 1607 105 651 2352 20.9 

5.45 9.5 0.026 3000 2 8077 4.6 2080 2996 36.8 

Table 14: Finishing Solutions of Genetic Algorithm 

5.2 Bayesian Optimization with Explicit Weight Definition 

Regarding the different machining requirements described in Chapter 4.2 and the 

limitations of genetic algorithm, Bayesian optimization method has been investigated since 

it allows explicit weight definition for each optimizer. Both roughing and finishing 
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operations may demand more productivity or longer tool life in different conditions. Since 

weight definitions lead in the weighted sum approach, the scale of each optimizer is 

inevitable requires a normalization step.  5 different normalization techniques have been 

used and compared to understand which approach is more reliable and repeatable.  

The weighted sum approach targets to optimize Material Removal Rate (MRR) and Tool 

Life (TL)—represented by Y1 and Y2, meaning that the objective function combines Y1 

and Y2 using predefined weights w1 and w2, respectively. The summation of these weights 

is set to 100 (or 1.0, when normalized) to maintain consistency. Bayesian approach, as 

many other optimization algorithms, minimize rather than maximize, hence the scaled 

objective function is represented as minimize  −(𝑤1 ⋅ 𝑠𝑐𝑎𝑙𝑒𝑑 𝑌1 + 𝑤2 ⋅ 𝑠𝑐𝑎𝑙𝑒𝑑 𝑌2).  

The raw predictions for Y1 and Y2 (obtained through Gaussian Process Regression and LS-

Boost models) may differ significantly in scale. To ensure a fair comparison and 

combination, each objective has been scaled before applying the weights. This way, both 

objectives contribute meaningfully regardless of their magnitude, aligning their values 

closer and mitigating the impact of one variable's natural scale over the other. The choice of 

weights w1 and w2 determines the relative importance of each objective. A higher weight 

on Y1 (MRR) means the optimization process will prioritize maximizing material removal 

rate, while a higher weight on Y2 (TL) will favor maximizing tool life. By adjusting w1 

and w2, you can explore trade-offs, such as achieving a high MRR with acceptable tool life 

or prioritizing longevity at the expense of material removal. 

The constraints are the same as genetic algorithm and based on predicted values of power 

(Y3), torque (Y4), tool bending stress (Y5) and form error (Y6). Depending on the process 

type (roughing or finishing), the constraints on these outputs differ. For example: 

 In roughing, constraints are:  

o Power  < 86000 Watts 

o Torque < 26000 Nm 

o Tool Bending Stress < 1533 MPa. 

 

 In finishing:  

o 0.04 mm < Form Error  < 0.05 mm. 
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The code optimizes four variables: axial and radial depth, feed per tooth, and spindle speed. 

The variable of flute number is fixed at 2 at this point since the tool is consolidated, 

allowing the model to focus on the primary four variables. The upper and lower boundaries 

for these variables are specified same as genetic algorithm as  

o x1: [0, 8]  Tool axial depth limitation 

o x2: [0, 16]  Limited by tool radius 

o x3: [0.003, 0.085]   limited by tool hone radius and tool catalog 

o x4: [0, 5000] reasonable interval for titanium-carbide pair.  

 

Since normalization is quite critical for reasonable solutions, 5 common normalization 

techniques have been tried and compared.  

 Min-Max Normalization scales each objective to a specific range [0,1], the 

critical limitation of this approach is that it is very sensitive to outliers.  

 

𝑌scaled =
𝑌 − 𝑌min

𝑌max − 𝑌min
 (5.1) 

 

 Z-score Normalization scales data based on its mean and standard deviation, 

resulting in a distribution with a mean of 0 and standard deviation of 1. 

 

𝑌scaled =
𝑌 − μ

σ
 (5.2) 

 

 

 Objective-Specific Scaling adjusts each objective by factors relevant to its 

practical interpretation, such as typical ranges, limits, or target values specific to 

each objective. Fine-tuning that aligns normalization with domain-specific 

insights, ensuring that the scaled objectives contribute meaningfully to 

optimization is the strength of this algorithm.  
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 Adaptive Scaling (Dynamic Range Adjustment) is like min-max but 

recalculated iteratively as the optimization progresses. 

 

𝑌scaled =
𝑌 − 𝑌min, current

𝑌max, current − 𝑌min, current
 (5.3) 

 

 Penalty-Score Scaling introduces penalties for deviations from desired values or 

ranges, often rewarding values within a specified range. It is useful when 

specific constraints or ranges are critical to optimization. 

 

𝑌scaled = ቐ
1 −  ቤ

𝑌 − 𝑌target

𝑌acceptable range

ቤ ,  𝑖𝑓 𝑌 𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑟𝑎𝑛𝑔𝑒

𝑝𝑒𝑛𝑎𝑙𝑡𝑦,  𝑖𝑓 𝑌 𝑖𝑠 𝑜𝑢𝑡 𝑜𝑓 𝑟𝑎𝑛𝑔𝑒

 (5.3) 

 

 

 

Matlab code block for Bayesian optimization for multi-objective optimization results: 

bayesopt(objectiveFcn, vars, 'IsObjectiveDeterministic', true, ... 'NumCoupledConstraints', 

0, 'PlotFcn', @plot, ... 'AcquisitionFunctionName', 'expected-improvement-plus', ... 

'UseParallel', true, 'MaxObjectiveEvaluations', 20, ... 'Verbose', 1); 

 

objectiveFcn: The function that evaluates the objectives you want to optimize is described 
with this function. Either a single-objective or multi-objective function can be solved 
depending on your use case. The function generates an acceptable set of variables and 
returns the objective value(s). 

vars: The variables being optimized is defined here, typically using optimizableVariable. 
For example, vars = [optimizableVariable('x', [0, 1]), optimizableVariable('y', [0, 5])]. 

IsObjectiveDeterministic: This parameter is set to true here, indicating that the objective 
function is deterministic (i.e., it always returns the same value for the same input). If your 
objective function is random, it needs to be set as false. 

NumCoupledConstraints: This parameter is set to 0 here, meaning there are no coupled 
constraints on the optimization, meaning that the constraints are defined independently of 
each other, not in a relationship.  
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PlotFcn: This input is indicating the demand for the plotting function for displaying 
progress. Here, @plot is used. MATLAB’s bayesopt offers other plot options, such as 
@plotMinObjective for the minimum objective value. 

AcquisitionFunctionName: This sets the acquisition function used to explore the objective 
function’s unknown landscape. Expected-improvement-plus is a popular acquisition 
function that balances exploration and exploitation. 

UseParallel: In this study, it is set to true, meaning Bayesian optimization will evaluate 
points in parallel if possible. This is useful if you have multiple cores available or if 
running on a cluster. 

MaxObjectiveEvaluations: The maximum number of objective function evaluations (in this 
study, 20 solutions). Any increase in this parameter may yield better optimization results 
but will take more computational time. 

Verbose: It is set to 1 to Control the level of output to the command line, which provides 
basic information on the optimization’s progress. Using higher values will provide more 
detailed output. 

 

Sensitivity analysis 

Sensitivity analysis is performed to understand how the changes of input parameters affect 

the outputs. This algorithm estimates which parameters is dominant on each output so that 

decision making process will be clearer. For example, the optimization of tool life is not 

affected by the depths of machining process, it is dependent on feed rate and spindle speed. 

Hence, any adjustment on tool life can be achieved with the change only in these two 

parameters, not with the depth of cut or flute number. Sensitivity analyses help the operator 

select among optimized solutions for any specific case of milling process.  
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Axial 

depth of 

cut (mm) 

Radial 

depth of 

cut (mm) 

Feed per 

tooth 

Spindle 

speed 

(rpm) 

Operation 

(R / F) 

Weight for 

MRR 

Weight for 

Tool Life 

Scaling 

Type 

3.5 13.5 0.07 4713 R 100 0 Adaptive  

7.2 15.6 0.04 2074 R 100 0 Adaptive  

7.7 13.7 0.049 2021 R 100 0 Min-max 

7.6 14.1 0.018 4153 R 100 0 Min-max 

6.5 11.5 0.065 4638 R 100 0 Objective 

7.2 13.2 0.041 4355 R 100 0 Objective 

4.15 12.03 0.083 2794 R 100 0 Penalty 

7.08 4.58 0.071 4823 R 100 0 Penalty 

7.0 11.2 0.079 2574 R 100 0 z-Score 

3.7 11.9 0.073 4341 R 100 0 z-Score 

6.3 9.2 0.015 527 R 0 100 Adaptive 

3.6 12.4 0.044 375 R 0 100 Adaptive 

7.6 7.8 0.021 472 R 0 100 Min-Max 

4.7 9.2 0.011 931 R 0 100 Min-Max 

3.8 13.9 0.010 296 R 0 100 Objective 

4.8 3.8 0.005 781 R 0 100 Objective 

7.0 12.6 0.010 539 R 0 100 Penalty 

2.0 15.2 0.006 1296 R 0 100 Penalty 

0.6 11.6 0.006 379 R 0 100 z-Score 

6.7 0.3 0.001 4740 R 0 100 z-Score 

Table 15. Best two optimal solutions per each normalization technique for a chatter-free 

roughing operation with different weight definitions 
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Best Solutions Scatter Plot For Roughing Operation with WMRR=0, WTL=100 

  

  

 

Table 16:Best Solutions Scatter Plot for Roughing Operation with WMRR=0, WTL=100 
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Best Solutions Scatter Plot For Roughing Operation with WMRR=100, WTL=0 

  

  

 

Table 17: Best Solutions Scatter Plot for Roughing Operation with WMRR=100, WTL=0 
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Axial 

depth of 

cut (mm) 

Radial 

depth of 

cut (mm) 

Feed per 

tooth 

Spindle 

speed 

(rpm) 

Operatio

n 

(R / F) 

Weight 

for MRR 

Weight 

for Tool 

Life 

Scaling 

Type 

3.5 3.0 0.044 3521 F 100 0 Adaptive 

5.8 5.5 0.067 422 F 100 0 Adaptive 

6.8 4.3 0.053 3604 F 100 0 Min-max 

4.3 10.3 0.028 1595 F 100 0 Min-max 

4.4 1.2 0.081 638 F 100 0 Objective 

1.8 1.7 0.020 2651 F 100 0 Objective 

2.4 1.6 0.077 2538 F 100 0 Penalty 

0.4 6.4 0.085 1179 F 100 0 Penalty 

1.1 6.6 0.077 2849 F 100 0 z-Score 

0.7 6.5 0.033 2320 F 100 0 z-Score 

7.3 0.2 0.014 913 F 0 100 Adaptive 

5.3 1.3 0.010 1324 F 0 100 Adaptive 

0.4 5.9 0.081 352 F 0 100 Min-Max 

0.9 16.0 0.031 924 F 0 100 Min-Max 

1.6 2.8 0.002 3504 F 0 100 Objective 

0.4 1.2 0.007 2130 F 0 100 Objective 

0.2 12.3 0.024 1302 F 0 100 Penalty 

1.9 1.3 0.043 893 F 0 100 Penalty 

0.01 11.5 0.002 615 F 0 100 z-Score 

4.5 12.0 0.003 522 F 0 100 z-Score 

Table 18: Best two optimal solutions per each normalization technique for a chatter-free 
finishing operation with different weight definitions 
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Best Solutions Scatter Plot For Finishing Operation with WMRR=0, WTL=100 

  

  

 

Table 19: Best Solutions Scatter Plot for Finishing Operation with WMRR=0, WTL=100 
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Best Solutions Scatter Plot For Finishing Operation with WMRR=100, WTL=0 

  

  

 

Table 20: Best Solutions Scatter Plot for Finishing Operation with WMRR=100, WTL=0 
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5.3 When Tool Life has a minimum machining time 

When the machinist has to achieve a certain machining time for finishing operation of a 
large surface not to leave any mismatch line on the surface, the optimization problem turns 
into a new type problem that requires a specific solution: a parameter is defined in both 
objective function and constraints. Both Bayesian and nonlinear constrainted optimization 
are applicable to this specific requirement. One more additional constraint for finishing has 
been added to the formulation:  

minimize  −(𝑤1 ⋅ 𝑌1௦௖௔௟௘ௗ + 𝑤2 ⋅ 𝑌2ୱୡୟ୪ୣୢ) 

 Subject to 

o 0.04 mm < Form Error  < 0.05 mm. 

o 0 min < Y2 < 300 min 

As seen in the Table 20 and 21 showing the best solution results and scatter plots, Bayesian 

optimization can still offer diverse solution set, however nonlinear constrained optimization 

approach ends up with only one optimal solution. The weakness of this nonlinear 

constrained approach is that it can be stuck in local optimum and results are very dependent 

on the initialization point. Hence, it should be iterated more than once before decision 

making about parameters.  

Axial depth 

of cut (mm) 

Radial depth 

of cut (mm) 

Feed per 

tooth 

Spindle 

speed (rpm) 
Optimizer Scaling Type 

1.9 0.7 0.067 1831 Bayesian Adaptive 

0.6 11.1 0.012 1313 Bayesian Min-max 

0.6 7.3 0.045 1233 Bayesian Objective 

1.3 1.9 0.026 687 Bayesian Penalty 

1.8 12.3 0.032 540 Bayesian z-Score 

4 8 0.04 2500 
Nonlinear 

Constrained 
All Types 

Table 21: Best Solutions for Finishing Operation with min machining time constraint and WMRR=0, 
WTL=100 with different scaling techniques 
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Best Solutions Scatter Plot For Finishing Operation with WMRR=0, WTL=100 and min 
machining time limitation 

Bayesian Optimization Non-Linear Constrained Optimization 

  

  

 
 

Table 22: Best Solutions Scatter Plot for Finishing Operation with WMRR=0, WTL=100 and min 
machining time limitation solved with Bayesian Optimization 
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Figure 18: The best Solutions Scatter Plot for Finishing Operation with WMRR=0, WTL=100 and 
min machining time limitation solved with Nonlinear Constrained Optimization 

 
  



 

67 
 

6. Experimental Verification 

6.1 Cutting Tool  

For testing, a cutting tool with 16mm diameter, 2 flute inserted carbide tool has been 
selected, which is capable of cutting Ti6Al4V material (HB~330-375) described with S7 
code. The codes for the tool and the insert has been listed in Table 22.  

 

Cutting Tool Walter F4042.Z16.016.Z02.08 

Cutting insert Walter ADMT080308R-F56 WSP45S 

Table 23: The codes for the cutting tool 
 

 

 

Figure 19: The cutting tool on machining center 
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6.2 Parameter Selection for Testing 

The results used for testing prupose was selected by Bayesian Optimization process. 

Regarding the trend that tool life extension directs the operator to select lower spindle 

speed and feed rate with one higher and one lower depth, rounded values of different 

scalings has been used as shown in the Table 24. One higher and one lower depth can be 

used interchangeably since the optimum value will not be effected. The operation type such 

as profiling or pocketing may help the operator decide efficiently.  

In contrast, higher MRR requirement generally tends to select higher depths and spindle 

speed with lower feed rate. Here in this scenario, productivity rate has been increased by 14 

times, however tool lif has been decreased by 80%. This is valid when tool is really cheap 

and scrapable.  

Assuming that spindle speed can be lowered by half, the operation will still have 7 times 

improvement and tool life can be still preserved respectively.  

 a b f N MRR 
Tool 

Life 

Form 

Error 
Wear 

Roughing 

Tool Life-

Optimized 
8 0.1 0.085 700 95.2 43 0.011 163 

MRR 

Optimized 
2.5 8 0.02 1750 1400 7.4 0.110 144 

Finishing 

Tool-Life 

Optimized 
0.3 0.5 0.05 1200 18.2 58 x x 

MRR 

Optimized 
0.5 1.7 0.03 1450 63 63 x x 

Table 24: Summary for Test Results for both MRR and Tool-Life Optimizes solutions 
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6.3 Measurements 

The machine center used for the cutting test is shown in Figure-21.  

 

Figure 20: Mazak Nexus 510 CII Milling Center (12.000rpm) 

6.3.1 Force Measurement 

For the force meaurement, the equipment to measure the forces is shown in Figure-22.  

 

 

Figure 21: Kistler Piezo-Dynamometer with Large Measuring Range 
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Figure 22: Cutting Force Plot 

 

 

 

Figure 23: The Cutting Forces for Tool-Life Optimized Experiment 
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Figure 24: The Cutting Force Measurement for MRR-Optimized Test 
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The forces of the tests are listed below in the Table-25.  

 
mm mm mm/tooth mm/min rpm 

   

Test No Axial Radial Feed  Feed S.Speed Max_Fx Max_Fy Max_Fz 

0           4.5 6.5 6.0 

1 8 0.1 0.085 119 700 338.4 115.8 14.0 

2 8 0.1 0.085 119 700 443.7 149.3 19.2 

3 8 0.1 0.085 119 700 520.3 155.4 21.1 

4 8 0.1 0.085 119 700 588.6 195.3 25.6 

5 8 0.1 0.085 119 700 602.8 174.1 26.6 

6 8 0.1 0.085 119 700 629.5 217.9 48.5 

7 8 0.1 0.085 119 700 642.4 228.8 61.4 

8 8 0.1 0.0567 119 1050 741.0 316.1 303.3 

9 8 0.1 0.0567 119 1050 573.2 191.2 63.6 

10 8 0.1 0.0567 119 1050 526.8 136.4 38.8 

11 8 0.1 0.0567 119 1050 528.1 202.1 71.3 

12 8 0.1 0.0567 119 1050 511.3 143.8 25.3 

13 8 0.1 0.0567 119 1050 508.7 190.8 58.1 

14 8 0.1 0.0567 119 1050 466.9 191.8 35.9 

15 8 0.1 0.0476 119 1250 497.2 172.8 48.5 

16 8 0.1 0.0476 119 1250 492.3 178.0 63.6 

17 8 0.2 0.0476 119 1250 808.9 420.2 541.3 

18 8 0.2 0.0476 119 1250 611.2 245.3 100.0 

19 2.5 8 0.02 70 1750 529.0 223.7 342.2 

Table 25: The cutting force results of the experimental verification 
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6.3.2 Tool Wear  

Tool wear measurement was conducted with Dino-Lite Digital Microscope at the end of 

each cutting test. As presumed with respect to optimization results, tool life was much 

longer with higher feed rate and lower spindle speed. The impact of the spindle speed is 

more dominant than the feed rate for tool life exponentailly. In order to maximize MRR in 

parallel, the selection of the highest feed rate of the tool catalog combined with lower 

spindle speed will be the optimal solution.  

 

Figure 25: The instrument to measure tool wear: Dino-Lite 
 

 

Figure 26: Wear status of Tool-life 

optimized result 

 

Figure 27: Wear status of MRR-optimized 

result. 

Machining Time: 187 seconds 

Wear status: 163 microns 

Machining Time: 446 second 

Wear Status: 144 microns 
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6.3.3 Surface Roughness 

Surface roughness measurements have been conducted with KTaylor Hobson – Form 

Talysurf 50 as shown in Figure-28. As can be seen in the experiment table in Table-25, final 

surface generated for tool life extended version is refering to a different parameter set, axial 

depth and the feed rate were changed to observe the tool wear. Comparing the surfaces of 

18th and 19th experiments resulted in the same amount of the form error as 110 microns. 

The calculated values for these parameters are are 0.0169 and 0.0071 mm for the 18th and 

19th test respectively.  

 

 

Figure 28: Surface Roughness measurement with KTaylor Hobson – Form Talysurf 50 
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Figure 29: Surface Roughness result for Tool Life maximized solution. 

 

Figure 30:Surface Roughness result for MRR optimized solution. 

 

Table 26 shows that more than one measurement has been evaluated and the average value 

is considered as results regarding the z values which refer to the surface generation point. 

Hence, for a back-to-back comparison purpose, the surface roughness of the height z=0 has 

been reported.  
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  Tool Life-Optimized MRR Optimized 

test No. 1 2 3 4 1 2 3 4 5 

z (height) 0 0 0 0 4 4 4 0 0 

Ra 0.0786 0.1368 0.1128 0.1165 0.0729 0.0864 0.0871 0.115 0.104 

Average       0.1112     0.08213   0.110 

Table 26: Surface Roughness comparison between Tool Life and MRR optimized results 

 

 

Figure 31: Surface generation and Form Error for two optimized parameters 

 

 
Tool Life 

Maximized 

MRR 

maximized 

Machining 

Time (sec) 
187 446 

Surface 

Roıugnness 

(microns) 

0.111 0.110 

Table 27: Surface Roughness comparison 
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7. Conclusion  

This study employed a machine learning-based optimization technique to refine machining 

parameters for a chatter-free milling operation aimed at maximizing productivity and 

extended tool life. Productivity definition includes a multi-objective function targeting to 

maximize material removal rate and tool life while adhering to power/torque limitations 

and preventing tool breakage. Such an extensive optimization strategy can significantly 

reduce production costs and improve machining operations' output. For the finishing 

process, the same multi-objective function was set with different constraints: form error 

referring to the tolerance requirements of the design and minimum tool life requirement 

depending on the machining time of the finishing surface not to leave any mismatch line. 

Cutting forces estimations have used a physics-based machine learning model and used to 

calculate power, torque, form error, and bending stress. The results for 3 different 

optimization methodology is available in this study and an experimental verification test set 

is listed separately.  

The study conducted several conclusions: 

1. Machine Learning with Gaussian process regression resulted with high performance 

apart from tool life output so that tool life estimations is using Gradient Boosting 

approach.  

2. Bayesian optimization, compared to Genetic Algorithm and Non-Linear 

Constrained, has provided a more effective framework for optimizing the objective 

functions. The solution sets of Bayesian optimization can help better in decision 

making.  

3. Chatter degrades surface quality, reduces tool life, and increases production costs. 

Since chatter cannot be added to optimization function mathematically, the results 

need a filtering step with a quick hammer test.  

4. Sensitivity analysis showed that feed rate and axial depth of cut significantly affect 

form error and bending stress. Tooth number, feed rate, and axial depth of cut are 

primary factors for power; radial depth of cut and feed rate are crucial for torque; 
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and spindle speed and feed rate most influence tool life. All input parameters 

equally affect material removal rate (MRR). 

5. When the manufacturer wants to achieve higher MRR and higher tool life at equal 

importance, the feed rate can be set as the maximum tool catalog and the rest can be 

optimized, respectively. Bayesian optimization is leading better results with respect 

to genetic algorithm.  

6. When only MRR is the main concern, manufacturers can tend to select highest 

parameters limited by the machine center. Thermal conditions have not been 

considered in this study, hence the MRR optimized results turned the tool color into 

red with dry cutting conditions. These parameters are the edge of the cliff for 

maximum MRR.  

7. Explicit weight definition is available only with Bayesian Optimization technique.  

8. Each algorithm is developed to give 20 solutions due to chatter filtering step. These 

20 solutions additionally refer to different cutting scenarios like pocketing and 

profiling because if axial and radial depth is replaced vice versa, the optimum 

solution result will not be affected.  

9. When manufacturers will machine large die casts, the minimum tool life for 

finishing needs to be defined in the optimization problem. Highest MRR objective 

will tend to list the maximum parameters, however primarily spindle speed, 

secondarily feed rate must be limited according to minimum tool life requirement. 

Bayesian optimization performs better results with respect to non-linear constrained 

approach.  

In summary, this study demonstrated that a machine learning-based optimization technique 

offers a more adaptive and intelligent approach to optimizing machining parameters. By 

incorporating multiple objectives and constraints, this method provides a comprehensive 

and practical solution to real-world machining challenges, enhancing productivity and 

improving the overall quality and efficiency of milling operations. 
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