
Algebraic and Combinatorial Properties of t-spread Strongly Stable Ideals

by

Erdem Şafak Öztürk

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

Spring 2024



©Erdem Şafak Öztürk 2024

All Rights Reserved



V · I · T · R · I · O · L ·



ALGEBRAIC AND COMBINATORIAL PROPERTIES OF t-SPREAD

STRONGLY STABLE IDEALS

Erdem Şafak Öztürk

Mathematics, Master Thesis, 2024

Thesis Supervisor: Asst. Prof. Ayesha Asloob Qureshi

Keywords: t-spread monomial ideals, strongly stable ideals, Borel ideals, t-spread

Veronese ideals, Rees algebras of t-spread ideals

Abstract

In this thesis, we study t-spread strongly stable monomial ideals. It is proved
that for an ideal to be t-spread strongly stable, it is sufficient for the definition
criterion to be satisfied only on its minimal monomial generating set. The generators,
height, Cohen-Macaulayness, and minimal free resolution of some special classes
of t-spread strongly stable monomial ideals, namely, t-spread Veronese ideals and
t-spread principal Borel ideals and their Alexander dual are studied. We also study
the Rees algebras of t-spread principal Borel ideals, and it is shown that they have
the so-called ℓ-exchange property. Consequently, the Rees algebra of a t-spread
principal Borel ideal is Koszul.
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Özet

Bu tezde, t-yayılmış fazlasıyla kararlı monomsal idealleri çalıştık. Bir idealin
t-yayılmış fazlasıyla kararlı olması için, tanım kriterinin sadece minimal monomsal
üreteç kümesinde sağlanmasının yeterli olduğu kanıtlanmıştır. Bazı özel t-yayılmış
fazlasıyla kararlı monomsal ideal sınıflarının, yani t-yayılmış Veronese ideallerin ve t-
yayılmış asal Borel ideallerin ve bunların Alexander çifteşlerinin üreteçleri, yüksekliği,
Cohen-Macaulaylığı ve minimal serbest çözünümleri incelenmiştir. Ayrıca t-yayılmış
esas Borel ideallerin Rees cebirlerini inceledik ve bunların ℓ-takas özelliğine sahip
olduğunu gösterdik. Sonuç olarak, bir t-yayılmış esas Borel idealin Rees cebiri
Koszul’dur.
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Introduction
Monomial ideals are one of the fundamental objects in commutative algebra,

algebraic combinatorics, and algebraic geometry, as they provide a rich framework
for exploring the interplay between algebraic structures and combinatorial objects
within polynomial rings. The foundational work on monomial ideals and their
combinatorial aspects started to gain attention during the 1970s due to the work of
Richard Stanley, which led to a new area of research within commutative algebra
known as combinatorial commutative algebra. In this thesis, we studied a special
type of monomial ideal, t-spread strongly stable monomial ideals, both algebraically
and combinatorially.

The first chapter of this thesis is reserved for introducing the basic concepts
that we will use throughout the thesis. All rings considered in this chapter are
commutative Noetherian with unity. In the first chapter, we include the definitions
and some fundamental facts and theorems related to the primary decomposition of
ideals, graded rings and modules, free and projective resolutions, Betti numbers,
etc. Ext and Tor functors are often used to define and calculate many algebraic
and homological invariants in commutative algebra. For example, if M is a finitely
generated graded module over S = K[x1, . . . , xn], then the Betti numbers of M

are given by βi(M) = dimK(Tor
S
i (M,K)). We have also included concepts from

dimension theory. The Stanley-Reisner correspondence is one of the most important
tools in combinatorial commutative algebra. For a given simplicial complex ∆ on the
vertex set [n], we define the Stanley-Reisner ideal I∆ as a monomial ideal generated
by the monomials obtained from the minimal non-faces of ∆. Additionally, we define
the facet ideal I(∆) as the ideal generated by the monomials obtained from the
maximal faces of ∆. Using the Alexander duality of ∆, we provide a surprising
formula for the primary decomposition of I∆. Finally, we discuss linear resolutions
and ideals with linear quotients, proving that a graded ideal of the polynomial ring
K[x1, . . . , xn] has a linear resolution if it has linear quotients.

In the second chapter of the thesis, we investigate the basics of t-spread strongly
stable ideals. Let t be a fixed non-negative integer. A monomial xi1 · · ·xid with
i1 ≤ · · · ≤ id in the polynomial ring S = K[x1, . . . , xn] is called a t-spread monomial
if ij − ij−1 ≥ t for all j = 2, . . . , d. An ideal I ⊂ S is called a t-spread ideal if it is
generated by t-spread monomials. Furthermore, a t-spread ideal I is called t-spread
strongly stable if for all t-spread monomials u ∈ I, and for all j ∈ supp(u) and all
i < j such that xi(u/xj) is a t-spread monomial, it follows that xi(u/xj) ∈ I. We
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first show that t-spread strongly stable ideals have linear quotients, and therefore
they are componentwise linear. We also discuss the graded Betti numbers of these
ideals.

The third chapter of the thesis is devoted to t-spread Borel ideals and their
powers. The smallest t-spread strongly stable ideal containing a given set of t-spread
monomials u1, . . . , um is called a t-spread Borel ideal and is denoted by Bt(u1, . . . , um).
In particular, the ideal Bt(u) is called a t-spread principal Borel ideal, and u is called
the Borel generator of Bt(u). The t-spread Borel ideal becomes a t + 1-spread
Borel ideal under the σ operator. In this chapter, we also discuss t-spread Veronese
ideals in detail. A t-spread Veronese ideal is a special type of t-spread principal
Borel ideal. They are monomial ideals of S generated by all t-spread monomials
of degree d for some d ≥ 1. To show that a t-spread Veronese ideal is a t-spread
principal Borel ideal, we demonstrate that a given t-spread Veronese ideal of degree
d is the smallest t-spread strongly stable monomial ideal containing the monomial
xn−(d−1)txn−(d−2)t · · ·xn. In [11, Theorem 2.3], Ene, Herzog, and Qureshi state the
height, generators of the Alexander dual, and Betti numbers of the quotient ring of a
given t-spread Veronese ideal. The proof of this theorem involves finding a suitable
simplicial complex that admits the t-spread Veronese ideal as its Stanley-Reisner
ideal. We recall this proof in detail.

In the last chapter of this thesis, we mainly review the work of Andrei, Ene and
Lajmari in [1]. We study the Rees algebras of t-spread principal Borel ideals. For
given degree d monomials u, v in K[x1, . . . , xn], we write uv = xi1xi2 · · ·xi2d with
i1 ≤ . . . ≤ i2d. The sorting operator is defined in [9] by sort(u, v) = (u′, v′) where,
u′ = xi1xi3 · · ·xi2d−1

and v′ = xi2xi4 · · ·xi2d . Any subset S of all degree d monomials
in the polynomial ring is called sortable if sort(S × S) ⊆ S × S and a pair of degree
d monomials (u, v) is called sorted if sort(u, v) = (u′, v′). The minimial monomial
generating set of t-spread principal Borel ideals are sortable and possess the so-called
ℓ-exchange property with respect to the sorting order on monomials, as shown in
[1]. The authors in [1] also prove that all powers of Bt(u) have linear quotients
and therefore have a linear resolution. In particular, the Rees algebra of a t-spread
principal Borel ideal R(Bt(u)) is Koszul. After studying the depth and projective
dimension of the t-spread principal Borel ideals, we also give the Krull dimension of
the algebra generated by the minimal monomial generating set of a t-spread principal
Borel ideal. Finally, we conclude with some remarks on t-spread principal Borel
ideals.
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List of symbols

∅ : emptyset

N : {0, 1, 2, . . .} set of natural numbers

Z : {. . . ,−1, 0, 1, . . .} set of integers

Zn
+ : {a = (a1, . . . , an) : ai ∈ N}

[n] : {1, . . . , n} ⊂ N

P(X) : powerset of X

K : a field

∆ : a simplicial complex

∆(i) : i-th skeleton of ∆

I∆ : Stanley-Reisner ideal of ∆

I(∆) : facet ideal of ∆

F(∆) : maximal faces (facets) of ∆

N (∆) : minimal non-faces of ∆

∆∨ : Alexander dual of ∆

I∨ : I∆∨

Ann(X) : annihilator of X

Ass(M) : associated primes of M

K[∆] : face ring of ∆

I : J : colon ideal with respect to the ideals I and J

Min(I) : minimal primes of I

βi,j : i-th Betti number of the j-th graded component

βi : i-th total Betti number

reg(M) : Castelnuovo-Mumford regularity of M

depthI(M) : I-depth of M

heigth(I) : height of I
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dim(A) : Krull dimension of the ring A

dimA(M) : Krull dimension of the A-module M

projdimA(M) : projective dimension of the A-module M

S : the polynomial ring K[x1, . . . , xn]

Mon(S) : monomials of S

Mon(S, t) : t-spread monomials of S

G(I) : minimal monomial set of generators of the monomial ideal I

supp(f) : support of the polynomial f

In,d,t : t-spread Veronese ideal of degree d monomials

Bt(M) : t-spread Borel ideal of M

R(I) : Rees algebra of I

m : graded maximal ideal of S = K[x1, . . . , xn]

in<(f) : initial monomial of the polynomial f

in<(I) : initial ideal of I
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Chapter 1

Algebraic and combinatorial

preliminaries

In this chapter, we will recall some basic notions and results from commutative
algebra that will be used in the subsequent sections. Throughout this work all rings
are considered to be commutative with unity.

1.1 Basics of algebra

Let G ̸= ∅ be a set, ∗ : G×G −→ G be a binary operation, if

• g ∗ (h ∗ k) = (g ∗ h) ∗ h for all g, h, k ∈ G

• there exists an e ∈ G such that, g ∗ e = e ∗ g = g for all g ∈ G

• for all g ∈ G, there exists a g′ ∈ G such that g ∗ g′ = g′g = e

then, (G, ∗) is called a group. For a group, instead of saying (G, ∗) is a group, we call
G is a group for the sake of simplicity. If a group G with the operation ∗ satisfies,

• g ∗ h = h ∗ g for all g, h ∈ G,

then G is called an abelian group. Abelian groups considered as additive groups, so
the group operation of an abelian group is denoted by + unless otherwise stated.
It is well known that, the identity element of a groups is unique, thus we denote it
by 1G or 1 and if G is an abelian group, we denote it by 0G or simply 0. Moreover,
for each element g of a given group G, there exist a unique inverse of g then we
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denote it by g−1. In particular, if G is abelian, we denote the inverse of g by −g for
each g ∈ G. Let (G, ∗) and (H, ⋄) be groups, a map φ : G −→ H is called a group
homomorphism if φ(g1 ∗ g2) = φ(g1) ⋄ φ(g2) for all g1, g2 ∈ G. If H = G with ⋄ = ∗
then, φ is called an endomorphism of G. We denote all endomorphisims of a group
G by End(G) and all endomorphisims of an abelian group G by EndZ(G).

Let (G, ∗) be a group and ∅ ̸= H ⊆ G. If H is a group with the restriction of ∗
on H, H is called a subgroup of G. If gH = Hg for all g ∈ G, H is called a normal
subgroup of G, where gH = {gh : h ∈ H} and Hg = {hg : h ∈ H}. Each subgroup
of an abelian group is normal. Let G be an abelian group and H is a subgroup
of G, then the quotient group G/H = {g + H : g ∈ G} is an abelian group with
(g1 +H) + (g2 +H) = (g1 + g2) +H for all g1, g2 ∈ G.

Let R ̸= ∅ be a set. Let + : R × R −→ R and · : R × R −→ R be two binary
operations on R. We call R is a ring with the opreation + and · if

• (R,+) is an abelian group

• r · (s · t) = (r · s) · t for all r, s, t ∈ R

• r · (s+ t) = r · s+ r · t and (r + s) · t = r · t+ s · t for all r, s, t ∈ R.

The ring R is called commutative ring if

• rs = sr for all r, s ∈ R,

and R is called ring with unity if

• there exists a u ∈ R such that ur = ru = r for all r ∈ R.

Similarly, R is called commutative ring with unity if the last two conditions are
satisfied. A ring with unity R is called division ring if

• for all r ∈ R\{0} there exists an s ∈ R\{0} such that, rs = sr = u.

It is well known that, if a ring R has a unity, then it is unique. Thus, we denote
the unity of R as 1R or simply 1. A field is a commutative ring with unity and a
division ring with 1R ̸= 0R. In this thesis, if a ring R is a field, we prefer to write K
instead of R. A left ideal I ̸= ∅ is a subset of the ring R with I − I ⊆ I and RI ⊆ I,
similarly A right ideal I ̸= ∅ is a subset of the ring R with I − I ⊆ I and IR ⊆ I. If
I is both left and right ideal, then I is called ideal. If the ring is commutative, there
is no difference between the left ideal and the right ideal. Let R be a commutative
ring and I ⊆ R be an ideal, R/I = {r + I : r ∈ R} is a commutative ring with
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the operations (r + I) + (s + I) = (r + s) + I and (r + I)(s + I) = (rs) + I. Let
R be a commutative ring ∅ ̸= X ⊂ R be a subset, then ideal generated by X

is (X) = {
∑n

i=1 rixi : ri ∈ R, xi ∈ X, n ≥ 1}. If an ideal generated by one single
element, then it is called principal ideal. If r, s ∈ R\{0} such that rs = 0 then r and
s are called zero divisors. A ring R is an integral domain if it is a commutative ring
with unity such that R has no zero divisors. Let R be an integral domain, if every
ideal of R is principal then R is called principal ideal domain (PID).

Let R be a commutative ring. If for any chain of ideals of R,

I1 ⊆ I2 ⊆ . . . ⊆ Ii ⊆ . . .

there exist an n such that Ii = In for all i ≥ n we say R satisfies the ascending chaing
condition (ACC) on ideals. A ring that satisfies ACC is said to be Noetherian. It is
equivalent to a ring being Noetherian if all ideals of that ring are generated by finitely
many elements. In particular, a PID is Noetherian. Famous Hilbert basis theorem
says that if R is Noetherian then so is R[x]. Then our main object K[x1, . . . , xn] is
Noetherian for all n ∈ N.

For instance, EndZ(G) is a ring with unity with the operations (φ1 + φ2)(g) =

φ1(g) + φ2(g) and (φ1 ◦ φ2)(g) = φ1(φ2(g)), where φ1, φ2 ∈ EndZ(G) and g ∈ G.
The identity element of EndZ(G) is the zero map and unity of EndZ(G) is the identity
map on G, it is clear that both of these maps are endomorphisms of G. Let (R,+R, ·R)
and (S,+S, ·S) be two rings, a map φ : R −→ S is called a ring homomorphism if
φ(r1 +R r2) = φ(r1) +S φ(r2) and φ(r1 ·S r2) = φ(r1) ·S φ(r2) for all r1, r2 ∈ R. If R
and S are rings with unity then a ring homomorphism between then is also satisfies
1R 7→ 1S where 1R and 1S are denotes the unities of R and S respectively. Definition
of a field homomorphism is same as the definition of the homomorphism between
rings with unities.

Let R be a ring with unity and M is an abelian group, if there exists a ring
homomorphism,

λ :R EndZ(M)

r λr

∈ ∈

with λr ◦ λs = λrs for all r, s ∈ R (and λ1 = idM ) then M is called a left module over
R or called an left R-module. Similarly, if there exists a ring homomorphism

ρ :R EndZ(M)

r ρr

∈ ∈

5



with ρr ◦ρs = ρsr for all r, s ∈ R (and λ1 = idM ) then M is called a right module over
R or called a right R-module. If R is a commutative ring (with unity), the left and
right R-module structure on the abelian group are conincide. We denote a left (or
right) R-module as the triple (M,+, λ : R → EndZ(M)). In particular, if R = K is a
field, then M is called a vector space over K or a K-vector space. Any abelian group
G can be seen as a Z-module with λ0(g) = 0 and λn(g) = ng =

(∑n−1
i=1 g

)
+ g, for all

n ∈ N and g ∈ G. If n ∈ Z\N then, we define λn(g) = −λ−n(g) for all g ∈ G. Let
(M,+M , λ) and (N,+N , λ

′) be left R-modules. A map φ : M −→ N is called a left
R-module homomorphism if φ(m1 +M m2) = φ(m1) +N φ(m2) for all m1, m2 ∈ M

and φ(λr(m)) = λ′
r(φ(m)) for all m ∈ M and for all r ∈ R. The right R-module

homomorphism defines in the similar way. When R = K is a field, M and N are
K-vector spaces and the φ is called a linear map or K-linear map.

Let (M,+, λ) be an R-module (left or right) and N ≤ M be a subgroup of M . If
restriction of λr to N gives a group endomorphism of N for all r ∈ R then N is said
to be a submodule of M . Let M be an R-module and N be a submodule of M , the
abelian group M/N : {m+N : m ∈ M} is an R-module with, λ̄ : R −→ EndZ(M/N)

with λ̄r(m+N) = λr(m) +N for all r ∈ R. Where M/N is called quotient module.
Let R and A be two commutative rings and let f : R −→ A be a ring homomor-

phism. The map

λ :R EndZ(A)

r λr

∈ ∈

with λr(a) = f(r)a gives a ring homomorphism since,

λr+s(a) = f(r+s)a = (f(r)+f(s))a = f(r)a+f(s)a = λr(a)+λs(a) = (λr+λs)(a),

λrs(a) = f(rs)a = (f(r)f(s))a = f(r)(f(s)a) = f(r)(λs(s)) = λr(λs(a)) = (λr◦λs)(a)

for all a ∈ A then,

λr+s = λ(r) + λ(s) and λrs = λr ◦ λs for all r, s ∈ R.

Then the mapping λr(a) = f(r)a makes the ring A into an R-module. Thus,
A has an R-module structure as well as a ring structure, and these two structure
are compatible in the sense∗ λr(ab) = f(r)(ab) = (f(r)a)b = λr(a)b for all a, b ∈ A

and for all r ∈ R. The ring A, equipped with this R-module structure, is said to
∗Compatibility with additive structure on A is done by λr ∈ EndZ(A) for all r ∈ R.

6



be an R-algebra. In other words, an R-algebra is a ring A together with a ring
homomorphism f : R −→ A.

Let f : R −→ A and g : R −→ B be homomorphisms between commutative rings.
Thus, we see A and B as R-modules in the manner described above. Considering the
ring structures, A and B are R-algebras. A map φ : A −→ B is called an R-algebra
homomorphism if φ is a ring homomorphism and φ(f(r)a) = g(r)(φ(a)).

Kernel of a homomorphism φ from A to B is Ker(φ) = {a ∈ A : φ(a) = 0B}. The
definition of kernel is exactly the same if the φ is the homomorphism between rings,
modules or abelian groups. When φ is a bijection, then φ is called an isomorphism
and we call A and B are isomorphic. We denote isomorphic groups, rings and
modules by A ≃ B. Kernel of φ is an ideal when φ is a ring homomorphism and
similarly Ker(φ) is a submodule when φ is a module homomorphism. The first
isomoprhism theorem for groups, rings and modules says A/Ker(φ) ≃ Im(φ) with
the isomorphism φ̄(a+ Ker(φ)) = φ(a).

1.2 Primary decomposition and monomial ideals

Let A be a Noetherian ring and M be a finitely generated A-module. We denote
annihilator of a nonempty subset S of M as AnnA(S) and define it by AnnA(S) =

{a ∈ A : as = 0M for all s ∈ S}. For the sake of brevity, we will write Ann(S) instead
of AnnA(S). If S is a singleton, say S = {x}, we’ll write AnnA(x) instead of
AnnA({x}). Let us consider the set Λ = {Ann(x) : x ∈ M and x ̸= 0}. Since A

is Noetherian, all chains in Λ stabilizes. Let p ∈ Λ be a maximal element of Λ
with respect to the inclusion. Then, there exists an element x ∈ M such that
p = Ann(x). Assume that ab ∈ p but b /∈ p. Then abx = 0 and bx ̸= 0 and
a ∈ Ann(bx). If c ∈ Ann(x), by the commutativity of A we have cbx = bcx = 0; thus,
c ∈ Ann(bx). Since Ann(bx) ⊇ Ann(x) = p, we get Ann(bx) = p by the maximality
of p. Hence, a ∈ p, which shows that p ∈ Spec(A). In other words, maximal elements
of Λ = {Ann(x) : x ∈ M and x ≠ 0} are prime ideals of A. Such special prime
ideals are called associated primes of M . Any associated prime of a module M is
denoted and defined by Ass(M) = {p ∈ Spec(A) : p = Ann(x) for some x ∈ M}.

It is a well-known fact that every ideal I of A admits a minimal primary decom-
position, for example see [2]. Let I =

⋂s
i=1Qi be a minimal primary decomposition

of I and for each i = 1, . . . , s, set Pi =
√
Qi. In other words, each Qi is a Pi-primary

ideal. Then Ass(I) = {P1, . . . , Ps}.
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Let K be a field, and let S = K[x1, . . . , xn] be the polynomial ring in n variables
over K. By the Hilbert Basis Theorem, S is Noetherian. Set Zn

+ = {a = (a1, . . . , an) :

ai ∈ N}. For any a = (a1, . . . , an) ∈ Zn
+, the element xa = xa1

1 · · ·xan
n in S is called

a monomial. We denote the set of monomials of S as Mon(S). In particular, if
each ai ∈ {0, 1}, then xa is called a squarefree monomial. An ideal I ⊂ S is called
monomial ideal if it is generated by monomials, and I is called squarefree monomial
ideal if it is generated by squarefree monomials. Moreover, if I is a monomial ideal
then f ∈ I if and only if supp(f) ⊂ I, for all f ∈ S, and converse of this is also true.
Here, supp(f) is defined as the set of monomials which appears in the polynomial f
with non-zero coefficients.

Proposition 1.2.1. [12, Proposition 1.1.6.] Each monomial ideal I of S =

K[x1, . . . , xn] has a minimal monomial set of generators and this generating set
is unique. More precisely, let G(I) denote the set of monomials in I which are mini-
mal with respect to divisibility. Then G(I) is the unique minimal set of monomial
generators of the ideal I ⊂ S.

Throughout the following text, for any given monomial ideal I of S, we will
denote the unique minimal monomial set of generator of I by G(I).

As mentioned above, any ideal of S admits a minimal primary decomposition.
However, if I is monomial ideal, then its primary decomposition take a special form
as described in the following theorem. Observe that a monomial ideal generated by
pure powers of variables is a primary ideal.

Proposition 1.2.2. [12, Theorem 1.3.1] Let I be a monomial ideal of the polynomial
ring S = K[x1, . . . , xn]. Then I =

⋂m
ℓ=1Qℓ, where each Qℓ is generated by pure

powers of the variables, that is, Qℓ is of the following form

Qℓ =
(
xa1
ℓ1
, . . . , xak

ℓk

)
for all ℓ ∈ {1, . . . ,m}.

Moreover, an irredundant presentation of the given form above is unique.

It follows immediately from above theorem that for a monomial ideal I, its
associated primes are also monomial prime ideals. Moreover, if I is a squarefree
monomial ideal then Min(I) = Ass(I). When we take I ⊂ S as a squarefree
monomial ideal, each monomial ideals appearing in the intersection presentation of I
is generated by some collection of variables of the ambient polynomial ring S. Then
we obtain that every squarefree monomial ideal can be seen as an intersection of
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some monomial prime ideals since all monomial prime ideals are generated by some
collection of the variables of S.

Now let us define one of the operations on ideals that we will use a lot. Let I be
an ideal and X be a subset of a given ring A. Then, the set

I : X = {a ∈ A : aX ⊆ I}

is an ideal, called the colon ideal or ideal quotient of I with respect to X. I : X is an
extension ideal of I. While X in I : X can be any subset of A, we will be generally
interested in the colon ideals formed by two ideals.

The following proposition is well-known in the theory of monomial ideals.

Proposition 1.2.3. Let S = K[x1, . . . , xn] be the polynomial ring in n variables and
I, J ⊂ S be two monomial ideals. Then I : J is a monomial ideal, and

I : J =
⋂

v∈G(J)

I : (v) .

Moreover,
{

u
gcd(u,v) : u ∈ G(I)

}
is a set of generators of I : (v).

1.3 Graded rings and modules

In this section, our aim is to introduce and investigate essential concepts of graded
algebraic structures that we used in the thesis.

Definition 1.3.1. Let A be a ring and (G, ∗) be a group (or a monoid). A is called
G-graded or graded ring if following conditions holds:

(i) A =
⊕

g∈G Ag where Ag is an abelian group for each g ∈ G,

(ii) AgAh ⊆ Ag∗h for all g, h ∈ G.

An element a of the graded ring A is called homogeneous element if a ∈ Ag for
some g ∈ G. Every element a ∈ A can be written as a finite sum a =

∑
g ag of

non-zero elements ag ∈ Ag. Where each ag is called a homogeneous component of
a of degree g and each Ag is called a homogeneous component of A. Then, S has a
direct sum decomposition of abelian groups S =

⊕
i∈N Si

Based on the definition of a graded ring, a graded module is defined in a natural
way.
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Definition 1.3.2. Let M be a module over ring A and (G, ∗) be a group (or a
monoid). M is called G-graded if following conditions holds:

(i) M =
⊕

g∈G Mg where Mg is an abelian group for each g ∈ G,

(ii) AgMh ⊆ Mg∗h for all g, h ∈ G.

A graded A-algebra is a graded A-module that is also a graded ring. A ring is a
module over itself and any ideal of the ring A can be seen as a submodule of A. We
give the definition of a graded ideal by applying the definition of graded module to
the ideals of A.

Definition 1.3.3. A proper ideal I in the G-graded ring A is called graded if it
satisfies I =

⊕
g∈G Ig where Ig = Ag ∩ I.

The following well-known theorem gives the conditions equivalent to being a
graded ideal.

Theorem 1.3.4. [20] The following are equivalent:

(1) I is a graded ideal of S.

(2) If f ∈ I, then every homogeneous component of f is an element of I.

(3) If Ĩ is the ideal generated by all homogeneous elements in I, then I = Ĩ.

(4) I has a system of homogeneous generators.

In this thesis, our main object is K[x1, . . . , xn] the polynomial ring of n-variable
over a field K. Let us denote S = K[x1, . . . , xn] and set deg(xi) = 1 for each
i ∈ {1, . . . , n} and deg(α) = 0 for all α ∈ K∗. Note that 0 is an homogeneous
element with arbitrary degree since 0 is an element of each graded component of the
direct sum decomposition. A monomial x = xd1

1 · · ·xdn
n has degree d =

∑n
i=1 di. The

polynomial ring S is an N-graded ring since S can be written as,

K[x1, . . . , xn] = K⊕

(⊕
i

Kxi

)
⊕

(⊕
i,j

Kxixj

)
⊕

(⊕
i,j,k

Kxixjxk

)
⊕ · · · ,

and denote, Sd =
⊕

i1,...,id
Kxi1 · · ·xid = {

∑
αi1,...,idxi1 · · · xid : αi1,...,id ∈ K} for each d.

Thus, following properties are equivalent.

• SiSj ⊆ Si+j for all i, j ∈ N.
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• deg(uv) = deg(u) deg(v) for every two homogeneous elements u, v ∈ S.

Definition 1.3.5. Let A =
⊕

i∈NAi be a graded K-algebra. A is called standard
graded if R is a finitely generated K algebra and all its generators are of degree 1.

Namely, A =
⊕

i∈N Ai is called standard graded K-algebra if A = K[A1] and
dimK(A1) ≤ ∞. Where A = K[A1] denotes the K-algebra generated by the subset
A1. It is immediate to see that S = K[x1, . . . , xn] is a standard graded K-algebra
since S = K [

⊕
iKxi] and dimK(

⊕
i Kxi) = n ≤ ∞. A well-known fact is that any

other standard graded K-algebra is isomorphic to the quotient of a polynomial ring
by a graded ideal [12].

Let M be a graded A-module and G be the system of generators of M . Let G̃ be
the set which is obtained by taking all homogeneous components of each element
in G. Then, G̃ is a system of homogeneous generators of M . Moreover, by the
facts that every element in M is an A-linear combination of the generators and
AiMj ⊆ Mi+j for all i, j; the degrees of the elements in a system of homogeneous
generators determine the grading of M .

Since each graded component Ad of the graded module A is an abelian group,
Ad is K-vector space for each d. A basis of the K-space Ad is called a basis in
degree d. For r ∈ Z we denote Ad−r as A(−r)d for all d. We say that A(−r) is the
module A shifted d degrees, and r is called shift. Note that, A(−r)r = A0. Thus, the
shifted module A(−r) is the free A-module generated by one element in degree r.

For instance, degree of 1 ∈ A(−r) is r since 1 ∈ A(−r)0 and A(−r) is generated by
{1} as an A-module†.

Let M and N be graded A-modules and M
φ−→ N be an A-module homomorphism.

Then, φ has degree i if deg(φ(m)) = i + deg(m) for each homogeneous element
m ∈ M\Ker(φ). That is, the degree of a homomorphism is a measure of how much
it shifts its grade in the image of a homogeneous element. Recall that 0 has arbitrary
degree, thus the condition deg(φ(m)) = i+deg(m) only on the homogeneous elements
of M outside the kernel of the homomorphism φ. We denote Homi(M,N) as the set
of all degree i A-module homomorphisms from M to N . We define

H(M,N) =
⊕
i∈Z

Homi(M,N)

and this is called as graded Hom from M to N . In general, H(M,N) is an A-
submodule of Hom(M,N). Moreover, if U is a finitely generated A-module and T is
a graded R-module, then H(U, T ) = Hom(U, T ), see [20, Proposition 2.7].

†In the book [20], 1 ∈ A(−r) is called 1-generator of A(−r).
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A graded submodule of a graded module is defined similarly to a graded ideal
of a graded ring. Let M be a graded A-module and N be a submodule of M . N is
called graded submodule if N has the direct sum decomposition N =

⊕
i Ni where

Ni = Mi ∩N.

Proposition 1.3.6 ([20]). Let M be a graded A-module and N be a submodule of
M . Then, the following are equivalent.

(i) N is a graded submodule of M .

(ii) If n ∈ N , then every homogeneous component of n is in N .

(iii) If Ñ is the submodule generated by all homogeneous elements in N , then N = Ñ .

(iv) N has a system of homogeneous generators.

The grading structure of M inherits the quotient modules of M/N if N is a
graded submodule of M . That is,

M/N =
⊕
i

(M/N)i where (M/N)i = Mi/Ni .

If φ : M → U is a homomorphism of graded A-modules, then Ker(φ), Im(φ), and
Coker(φ) = U/Im(φ) are graded [20, Proposition 2.9].

The following theorem is called the structure theorem for graded finitely generated
A-modules.

Theorem 1.3.7. [20, Theorem 2.10] The following properties are equivalent.

(1) U is a finitely generated graded A-module.

(2) U ≃ W/T , where W is a finite direct sum of shifted free A-modules, T is
a graded submodule of W and T is called the module of relations, and the
isomorphism has degree 0.

1.4 Free resolution

Chain complexes are one of the fundamental objects in homological algebra. In
this section, we will provide the basics of chain complexes on which we base the
definitions of free resolution and projective resolution.
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Definition 1.4.1. Let A be a ring. A chain complex F• over A is a sequence of
homomorphisms of A-modules

F• : . . . −→ Fi −→ Fi−1 −→ . . . −→ F2
d2−→ F1

d1−→ F0 −→ . . . ,

such that di−1 ◦ di = 0 for each i ∈ Z. For each i the maps {di}i∈Z is called the
differential or differential map or differential homomorphism of F•. In the literature,
the complex is also denoted by (F•, d). If Fi = 0 for all i < 0, it is called a left
complex, that is,

F• : . . . −→ Fi
di−→ Fi−1 −→ . . . −→ F2

d2−→ F1
d1−→ F0 −→ 0

with i ∈ N. Furthermore (F•, d) is called a left complex over W (or a complex over
W ) if it is a left complex and we have a homomorphism ε : Fo −→ W , this map is
called augmentation map.

The complex is called graded if the modules Fi are graded and each di is a
homomorphism of degree 0 [20]. When the homomorphisms have degree i > 0, we
shift the modules by a suitable degree to make the homomorphisms of degree 0. If a
complex is graded, the module F• is actually bigraded since

Fi =
⊕
j∈Z

Fi,j for all i.

For any chain complex F•, an element in Fi,j is said to have homological degree i and
internal degree j. We denote the homological degree by hdeg, and internal degree by
deg. Consider F• as a module and the differential as homomorphism d : F• → F•.

Then d has homological degree −1 and internal degree 0.
If each Fi is a finitely generated graded free module over A in a given complex

F•, we can write
Fi =

⊕
r∈Z

A(−r)βi,r for all i.

Where, the numbers βi,r are the graded Betti numbers of the chain complex. Given a
graded Betti number we say that βi,r is the Betti number in homological degree i and
internal degree r, or i’th Betti number in internal degree r. Namely, βi,r denotes the
number of summands in Fi of the form A(−r).

The homology of a complex F• is defined as follows

Hi(F•) = Ker(di)/ Im(di+1).
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Elements in the kernel of each di are called cycles and the elements in the image of
each di+1 are called boundaries. The complex F• is called exact at Fi (or at step i) if
Hi(F•) = 0. The complex is exact if Hi(F•) = 0 for all i.

Example 1.4.2. Following sequence of Z-module homomorphisms is in the form of
a chain complex.

M• : 0 → Z
( 8
−4)−−→ Z2 (1 2)−−−−→ Z → 0 .

Obviously the composition of consecutive maps are 0. And homology modules are,

H0(M•) =
Z
Z

= 0 , H1(M•) =

〈(
2
−1

)〉
Z〈(

8
−4

)〉
Z

=
2Z× Z
8Z× 4Z

≃ Z
4Z

, H2(M•) =
0

0
= 0.

The remeaning homology modules are equal to 0 since Mi = 0 for all i ∈ Z\{0, 1, 2}

Definition 1.4.3. A free resolution of a finitely generated A-module M is a sequence
of homomorphisms of A-modules

F• : . . . −→ Fi
di−→ Fi−1 −→ . . . −→ F1

d1−→ F0 ,

such that

(i) F• is a chain complex of finitely generated free A-modules Fi,

(ii) the chain complex F• is exact,

(iii) M ≃ F0/ Im(d1).

A resolution is graded if M is a graded module and F• is a graded complex, and
isomorphism between M and F0/ Im(d1) has degree 0. We recommend the reader
refer to the construction in [20, Chapter 4] to see that any A-module M has a free
resolution. Moreover, by the [20, Theorem 7.5] up to isomorphism, there exists a
unique minimal graded free resolution of a given finitely generated module over a
ring. In particular, for the finitely generated modules over a polynomial ring with
finite variable we have a bound for the length of free resolution of the module.

Theorem 1.4.4. Every finitely generated S = K[x1, . . . , xn]-module M has a finite
free resolution of length at most n.

Since each Fi is a free A-module in a complex F•. Then, Fi ≃ An for some n for
each i. Since, HomA(Fi, Fi−1) ≃ HomA(A

n, Am) ≃ Matm×n(A), the differential map
Fi

di−→ Fi−1 can be represented as a matrix with respect to the chosen basis for Fi

and Fi−1. These matrices are called differential matrices.
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Definition 1.4.5. Let S = K[x1, . . . , xn]. A graded free resolution of a graded finitely
generated S-module M is minimal if

di+1(Fi+1) ⊆ (x1, . . . , xn)Fi for all i ≥ 0.

Example 1.4.6. [20] Let A = K[x, y] and I = (x3, xy, y5). Then, the following free
resolution of A/I over A is minimal,

0 A(−4)⊕ A(−6) A(−3)⊕ A(−2)⊕ A(−5) A A/I 0.
d2 d1 π

Where, matrix representations of the homomorphisms with respect to the appropriate
basis are as follows:

d2 7→


y 0

−x2 −y4

0 x

 and d1 7→
(
x3 xy y5

)
.

Let M be a finitely generated module over a ring A and F• be the a minimal
graded free resolution of M over A. For i ≥ 1 the submodule Im(di) = Ker(di−1) ≃
Coker(di+1) of Fi−1 is called i-th syzygy module of M and we denote it by SyzAi (M).
Elemets of SyzAi (M) are called i-th syzygies. We set M = SyzA0 (M).

Let us adapt what we have done so far to understand a given ideal. Let I

be an ideal of A and M = I. Consider a minimal free resolution of I over A

. . . → F2 → F1 → A → I → 0. Indeed, matrix representation of the map d0

generators of the ideal I. The first syzygies are nothing but the non-trivial algebraic
relations between the generators of the ideal I since image of d1 is equal to the
free module F0. And second syzygies are non-trivial algebraic relations between the
generators of the first syzygy module which is the kernel of d1 and other syzygies are
considered in similar way. In general, free resolution of an ideal has the following form

. . .
d3−−−−−−−→

third syzygies
F2

d2=


relations on

the generators

in d1


−−−−−−−−−−−−−−→

second syzygies
F1

d1=


relations on

the generators

of I


−−−−−−−−−−−−−−→

first syzygies
F0

d0=

(
Generators of I

)
−−−−−−−−−−−−−−→ I −→ 0.

For instance, if I = (xy, xz) is an ideal of A = K[x, y], non-trivial algebraic
relations on the generators of I is

z(xy) = y(xz) =⇒ z(xy)− y(xz) = 0
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Therefore, the non-graded minimal free resolution of I over A is

0 −→ A
( z
−y)−−−→
d1

A⊕ A
(xy xz)−−−−−→

d0
I −→ 0.

Now, let us calculate the graded version of the minimal free resolution of I. Let
{f1, f2} be a basis of A⊕A such that the matrix corresponding to d0 written in this
basis then we have,

f1
d07−→ xy and deg(xy) = 2

f2
d07−→ xz and deg(xz) = 2

since we want to d0 to be homogeneous of degree 0, we set

deg(f1) = 2, deg(f2) = 2.

Hence, the free A-module generated by {f1, f2} is A(−2)⊕A(−2) which is identified
with A⊕ A in the non-graded free resolution. Furthermore, let {g} be a basis of A
such that the matrix representation of d1 given in this basis. Since

g
d17−→ zf1 − yf2 and deg(zf1 − yf2) = deg(zf1) = deg(z) + deg(f1) = 3

and since we want d1 to be homogeneous of degree 0, we set

deg(g) = 3.

Then, the free A-module generated by {g} is identified with A(−3). Therefore, the
minimal graded free resolution of I over A is

0 −→ A(−3)
( z
−y)−−−→
d1

A(−2)⊕ A(−2)
(xy xz)−−−−−→

d0
I −→ 0.

As the number of variables in the polynomial ring increases and, correspondingly,
the number of generators in the given ideal increases, it becomes very difficult to
describe differential maps in the free resolution of the ideal. In such a case, we would
like to know at least some numerical invariants of the free resolution to understand
the structure of the ideal.

Definition 1.4.7. Let M be a finitely generated module over A. The i-th Betti number
βA
i (M) defined as rank(Fi) in the free resolution . . . → Fi

di−→ Fi−1 . . . → F1
d1−→ F0.

Instead of βA
i (M), we simple denote i-th Betti number as βi if there is no confusion.

It is well-known fact that, the Betti numbers are invariant numbers of the minimal
graded free resolution of a module.
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Now, let us define the functors Ext and Tor that are frequently used in commuta-
tive algebra. For this, define start with projextive resolution of a module. If each Fi is
graded by N in the minimal free resolution of M over A given in the Definition 1.4.7,
for each j ∈ N it is straightforward to see that

βi(M) =
∑
j∈N

βi,j(M) = rank(Fi) .

This is why if we work on graded structures, i-th Betti number of a module M is
also called i-th total Betti number of M .

Definition 1.4.8. Let A be a ring, and let M be an A-module. A projective resolution
of M over A is an exact sequance of A-module homomorphisms

P+
• : . . .

∂2−→ P1
∂1−→ P0

τ−→ M −→ 0

such that Pi is a projective A-module for each i ≥ 0. The truncated projective
resolution of M associated to P+

• is the chain complex over A

P• : . . .
∂2−→ P1

∂1−→ P0 −→ 0.

As is well known, every free module over the ring A is a projective module over
A. Considering this fact, Definition 1.4.8 generalises the definition of free resolution
of a module over A.

Let M be an A-module. Consider the given projective resolution of M over A

P• : . . .
∂i+2−−→ Pi+1

∂i+1−−→ Pi
∂i−→ Pi−1

∂i−1−−→ . . .
∂2−→ P1

∂1−→ P0 −→ 0.

For each A-module N , the following sequence is a chain complex over A.

P• ⊗A N : . . .
∂i+2⊗N−−−−→ Pi+1 ⊗A N

∂i+1⊗N−−−−→ Pi ⊗A N
∂i⊗N−−−→ Pi−1 ⊗A N

∂i−1⊗N−−−−→ . . .

. . .
∂2⊗N−−−→ P1 ⊗A N

∂1⊗N−−−→ P0 ⊗A N −→ 0.

For each i ∈ Z we define,

TorAi (M,N) = Hi(P• ⊗A N) =
Ker(∂i ⊗N)

Im(∂i+1 ⊗N)

Namely, TorAi (_, N) is a functor from the category of A-modules to itself. To
be more precise, for each N ∈ Obj(ModA) and for each i ∈ Z we have a covariant
functor TorAi (_, N) : ModA → ModA such that
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TorAi (_, N) :Obj(ModA) Obj(ModA)

M TorAi (M,N)

∈ ∈ .

TorAi (_, N) :MorModA(M,M ′) MorModA
(
TorAi (M,N),TorAi (M

′, N)
)

φ TorAi (φ,N)

∈ ∈

Where,
Obj(ModA)

is objects of the category which are A-modules ModA and

MorModA(M,M ′)

is the collection of the morphisms from M to M ′, and

MorModA
(
TorAi (M,N),TorAi (M

′, N)
)

is the morphisms from TorAi (M,N) to TorAi (M
′, N). Indeed they are A-module

homomorphisms, then

MorModA(M,M ′) = HomA(M,M ′)

and

MorModA
(
TorAi (M,N),TorAi (M

′, N)
)
= HomA

(
TorAi (M,N),TorAi (M

′, N)
)
.

Since the tensor product along a commutative ring A satisfies M⊗AN ≃ N⊗AM for
all M,N ∈ Obj(ModA), the results of TorAi (_, N) and TorAi (N,_) are same on ModA‖.

Example 1.4.9. Consider the projective resolution of Z/mZ as given below

P+
• : 0 −→ Z m−→ Z π−→ Z/mZ −→ 0 and P• : 0 −→ Z m−→ Z −→ 0.

Thus,
P• ⊗ Z/nZ : 0 −→ Z⊗ Z/nZ m⊗Z/nZ−−−−−→ Z⊗ Z/nZ −→ 0

‖Of course, this equivalence are not holds for the modules over a non-commutative ring.
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since Z⊗ Z/nZ ≃ Z/nZ, we obtain

0 −→ Z/nZ m−→ Z/nZ −→ 0.

Hence,

TorZ0 (Z/mZ,Z/nZ) =
Ker(Z/nZ −→ 0)

Im(Z/nZ m−→ Z/nZ)
≃ Z/nZ

(Z/ n
gcd{m,n}Z)

≃ Z
gcd{m,n}Z

,

and similarly,

TorZ1 (Z/mZ,Z/nZ) =
Ker(Z/nZ m−→ Z/nZ)

Im(0
m−→ Z/nZ)

≃ Z/ gcd{m,n}Z
⟨0⟩

≃ Z
gcd{m,n}Z

.

Let P• : . . .
∂i+2−−→ Pi+1

∂i+1−−→ Pi
∂i−→ Pi−1

∂i−1−−→ . . .
∂2−→ P1

∂1−→ P0 −→ 0 be
a projective resolution of A-module M . Let fix an A-module N . If we apply
HomA(_, N) to the complex P•, we obtain following chain complex over A

HomA(P•, N) : 0 → HomA(P0, N)
HomA(∂1,N)−−−−−−−→ HomA(P1, N)

HomA(∂2,N)−−−−−−−→ . . .

. . . → HomA(Pi−1, N)
HomA(∂i−1,N)−−−−−−−−→ HomA(Pi, N)

HomA(∂i,N)−−−−−−−→ . . . .

Where, homological degrees of the modules in the chain complex HomA(P•, N)

start with 0 at HomA(P0, N) and decreasing. For instanca, homological degree of
HomA(Pi−1, N) is 1− i.

For each i ∈ Z we define

ExtiA(M,N) = H−1(HomA(P•, N)) =
Ker(HomA(∂i+1, N))

Im(HomA(∂i, N))
.

Similar to what we explained for Tor functor, ExtiA(M,N) ∈ ModA for each N ∈ ModA
and for each i ∈ Z. Thus, ExtiA(_, N) is a functor from the category ModA to itself
such that the action of the functor over the objects and over the morphisms looks as
follows.

ExtiA(_, N) :Obj(ModA) Obj(ModA)

M ExtiA(M,N)

∈ ∈

and
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ExtiA(_, N) :MorModA(M,M ′) MorModA(HomA(M
′, N),HomA(M,N))

∂ HomA(∂,N)

∈ ∈

Considering the order of the indices on the chain complexes P•, P• ⊗A N and
HomA(P•, N) it is clear that TorAi (_, N) preserves the direction of the morphisms
but ExtiA(_, N) reverses the direction of the morphisms. Therefore, TorAi (_, N) is a
covariant functor, while ExtiA(_, N) is a contravariant functor.

Let us now give the theorem and its corollary expressing how the Betti numbers
for any module M over the polynomial ring S = K[x1, . . . , xn] can be computed
using the Tor functor.

Theorem 1.4.10. Let M be an N-graded module over A = K[x1, . . . , xn]. Then we
have,

βi,j = dimK(Tor
A
i (M,K))j.

Proof. Let m denotes the graded maximal ideal (x1, . . . , xn) ⊂ S and

F• : . . . −→ Fi
di−→ Fi−1 −→ . . .

d1−→ F0 −→ 0

be a minimal graded free resolution of M and note that K ≃ S/m . Consider the
chain complex F•⊗AK. Where, Fi⊗K =

(⊕
j∈N S(−j)βi,j

)
⊗AK ≃

⊕
j∈N K(−j)βi,j

and all induced differential maps in the complex F• ⊗A K are identically 0. Thus,
we have the following complex,
. . .

0−→
⊕
j∈N

K(−j)βi+1,j
0−→
⊕
j∈N

K(−j)βi,j
0−→
⊕
j∈N

K(−j)βi−1,j
0−→ . . .

0−→
⊕
j∈N

K(−j)β0,j −→ 0.

Thus,

TorSi (M,K)j = Hi(F• ⊗K)j =
Ker(0)

Im(0)
=

K(−j)βi,j

⟨0⟩
= K(−j)βi,j .

Therefore, βi,j = dimK(Tor
S
i (M,K))j.

Corollary 1.4.11. Let M be an N-graded module over the polynomial ring A =

K[x1, . . . , xn]. Then,
βi = dimK(Tor

S
i (M,K)).

The Theorem 1.4.10 and the corollary above for modules over the polynomial ring
K[x1, . . . , xn] is generalized below for any ring. In addition, the following theorem
shows how the Betti numbers and the Ext functor are related.
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Theorem 1.4.12. [20, Theorem 11.2] Let M be a finitely generated graded A-
module. Then,

βi(M) =number of the minimal generators of SyzAi (M)

=dimK(Tor
A
i (M,K))

=dimK(Ext
i
A(M,K)).

1.5 Regularity and depth

In this section we introduce Castelnuovo-Mumford regularity, regular sequence and
depth. The depth is an algebraic property of modules and ideals, which serves a tool
for investigating Cohen-Macaulay rings in the next section.

Definition 1.5.1. Let M be an A-module. Castelnuovo-Mumford regularity reg(M)

of M is defined by
reg(M) = max{j − i : βi,j(M) ̸= 0}.

In the case of the Castelnuovo-Mumford regularity of an ideal I ⊆ A, we treat
the ideal as a module over the ring A and use Definition 1.5.1.

Before giving the definition of depth, let us give the definition of a regular
sequence.

Definition 1.5.2. Let A be a ring and let M be a module over A. A sequence of
elements in f1, . . . , fk ∈ A is called a regular sequence in A or the sequence f1, . . . , fk

is called an M-sequence if

(i) (f1, . . . , fk)M ̸= M, and

(ii) fi+1 is a non-zero divisor on M/(f1M + . . .+ fiM) for all 0 ≤ i < k.

If M is a graded K-algebra, Definition 1.5.2 and the following are equiva-
lent to each other: f1, . . . , fk are algebraically independent over K and M is a
free K[f1, . . . , fk] - module [21, Definition 5.6].

Let A be a Noetherian ring, M be an A-module and I be an ideal of A such
that IM ̸= M , then each maximal M -sequences in I has the same length. In other
words, inf{i ≥ 0 : ExtiA(A/I,M) ≥ 0} (see [12, Chapter A.4]). This fact gives us the
ground for the following definition.
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Definition 1.5.3. Let M be a finitely generated module over the Noetherian ring A.
Let I ⊆ A be an ideal with IM ̸= M , then the I-depth of M , denoted by depthI(M), is

depthI(M) = inf{i ≥ 0 : ExtiA(A/I,M) ̸= 0}.

If IM = M we set depthI(M) = ∞, and if A is a local ring with the unique maximal
ideal m, we call depth of M instead of I-depth of M . In this case we simply denote
depth of M by depth(M).

Definition of I-depth of the finitely generated module over the Noetherian ring
also can be given as

depthI(M) = sup{k ≥ 0 : there exists an M -sequence f1, . . . , fk in I}.

1.6 Dimension and Cohen-Macaulayness

Let A ̸= 0 be a ring. A finite sequence of n+ 1 prime ideals pn ⊂ pn−1 ⊂ . . . p1 ⊂ p0

is called a prime chain of lenght n. Let us denote Spec(A) as the set of all prime
ideals of A. If p ∈ Spec(A), sup{n : p ⊃ p1 ⊃ . . . ⊃ pn is a prime chain of length n}
is called height of p and we denote it by height(p). Note that a minimal prime
has height zero. Since every proper ideal of a ring lies inside a maximal ideal, and
maximal ideals are also prime, then we can define height of an ideal I ⊂ A as to be
the minimum of the heights of the prime ideals containing the ideal, i.e.,

height(I) = inf {height(p) : p ⊇ I} .

The Krull dimension of A is defined to be the supremum of the heights of the
prime ideals of A, we denote the Krull dimension of A by dim(A):

dim(A) = sup{height(p) : p ∈ Spec(A)}.

Mostly, we call dimension of A instead of Krull dimension of A. If dim(A) ≤ ∞
then it is equal to the lenght of one of the longest prime chain in A. For instance,
any principal ideal domain has Krull dimension one. It is immediate to obtain from
the definition that dim(A/I) ≤ dim(A)− height(I) for any ideal I ⊂ A.

The annihilator of M over A is AnnA(M) = {f ∈ A : fM = 0}. We define the
dimension of an A-module M by
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dim(M) =

dim(A/AnnA(M)) if M ̸= 0

−1 if M = 0.

Let A be a Noetherian ring and M ̸= 0 be a finitely generated A-module, then
the following conditions are equivalent [18]:

(I) M is an A-module of finite length,

(II) the ring A/AnnA(M) is Artinian,

(III) dim(M) = 0.

Let A be a local ring with unique maximal ideal m and I ⊆ A be an ideal, then

depthI(A) ≤ height(I) ≤ height(m) = dim(A).

Furthermore, if M is an A-module, depth(M) ≤ dim(M).

Being Cohen-Macaulay is defined for both local rings and modules over a local
ring. After the material we have given so far, we are now ready to give a definition
of a Cohen-Macaulay ring and a Cohen-Macaulay module.

Definition 1.6.1. Let (A,m) be a local ring. A is called Cohen-Macaulay ring if
depth(A) = dim(A).

Recall where that we consider A as a module over itself and we mean depthm(A) =

dim(A) as we stated in the Definition 1.5.3.

Definition 1.6.2. The module M over a local ring (A,m) is said to be Cohen-
Macaulay if depth(M) = dim(M).

Namely, a ring A is Cohen-Macaulay ring if A is a Cohen-Macaulay module
viewed as a module over itself.

Theorem 1.6.3. [18, Theorem 31] Let A be a Cohen-Macaulay local ring with unique
maximal ideal m. Then, for every proper ideal I ⊂ A, we have

height(I) = depthI(A) and height(I) + dim(A/I) = dim(A).

Let us present the theorem that describes the relationship between the height
and depth of a Cohen-Macaulay local ring. Following proposition states that, Cohen-
Macaulay property on a local ring A is preserved under the ring extension by a
transcendental element over A.
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Proposition 1.6.4. Let (A,m) be a Noetherian local ring. A is Cohen-Macaulay if
and only if the polynomial ring A[x] is Cohen-Macaulay.

Let us continue by giving the definition of projective dimension to state the
Auslander-Buchsbaum formula. We then give the theorem expressing how the graded
Betti numbers obtained from the minimal graded free resolution of the graded ideal
are used to calculate the projective dimension.

Definition 1.6.5. Let M be an A-module. The projective dimension of M is

proj dimA(M) = inf

 n ≥ 0
there exists a projective resolution

0 −→ Pn −→ Pn−1 −→ . . . −→ P1 −→ P0 −→ M −→ 0.

 .

For brevity, proj dim(I) is used instead of proj dimA(I) if it does not cause
confusion.

Theorem 1.6.6. Let S = K[x1, . . . , xn] be the polynomial ring over the field K with
n-variables, and I ⊆ be a graded ideal. Then,

proj dim(I) = max{i : βi,j ̸= 0}.

Proof. Assume that the projective dimension of I is n. Then, there exist a projective
resolution of I with lengt n:

0 −→ Pn −→ Pn−1 −→ . . . −→ P1 −→ P0 −→ I.

Since every free module is projective, then this resolution is minimal if an only if
each Pi is a free module. Namely,

Pi ≃
⊕
j∈Z

S(−j)βi,j for all i ∈ {1, . . . , n}.

Considering the minimal resolution, βi,j ̸= 0 for some j if and only if there are S(−j)

components in Pi. Hence, if proj dim(I) = n, there exists βn,j ̸= 0 for some j and for
all i > n we have βi,j = 0.

Suppose that βn,j ̸= 0 for some j, this implies that we have the following free
resoluiton consisting of non-trivial free modules:⊕

j∈Z

S(−j)βn,j −→
⊕
j∈Z

S(−j)βn−1,j −→ . . . −→ I −→ 0.
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Therefore, the minimal free resolution cannot be terminate before the n-th step.
Namely, proj dim(I) ≥ n. By these observations, we have

proj dim(I) = max{i : βi,j ̸= 0 for some j }.

That is to say, projective dimension of a graded ideal in the polynomial ring
over a field is equal to the maximum index i of the graded Betti numbers βi,j of the
graded ideal for which βi,j ̸= 0.

Now let us give the Auslander-Buchsbaum formula, which is the main theorem
of this section. The formula, one of the fundamental results of homological and
commutative algebra, establishes the relation between projective dimension and
depth.

Theorem 1.6.7. (Auslander-Buchsbaum Formula) Let A be a local Noetherian ring
and M be a finitely generated module over A with finite projective dimension. Then,

proj dim(M) + depth(M) = depth(A).

1.7 Simplicial complexes and Stanley-Reisner corre-

spondence

Now we recall the one to one correspondence between monomials ideals in S and
simplicial complexes on the ground set [n] = {1, . . . , n}. To do this, we first recall
some notation and terminologies about simplicial complexes.

Let [n] = {1, . . . , n} ⊆ N be the vertex set. An abstract simplicial complex ∆ is a
subset of P([n]) such that whenever F ∈ ∆ then all subsets of F is also an element
of ∆. Each element of ∆ is called a face of ∆. If ∆ contains no faces, it is called void
complex. If ∆ ̸= ∅ is a simplicial complex; for any face F ∈ ∆, the dimension of F is
defined as |F | − 1, thus each verticies of ∆ is a face of dimension 0. The dimension
of ∆ denoted by dim∆ and defined as the face with the maximum cardinality that
can be found in ∆, namely dim∆ = max{|F | − 1 : F ∈ ∆}. By the definition of the
dimension of simplicial complexes, {∅} ⊆ P([n]) is the unique simplicial complex of
dimension −1. An edge of ∆ is a face of dimension 1 and with respect to inclusion
each maximal face of ∆ called a facet and we denote the facets of ∆ as F(∆). Given
F(∆), ∆ can be determined as taking all subsets of each facet F ∈ F(∆). Thus
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one can see facets as generator set of simplicial complexes. When F(∆) given, we
write ∆ = ⟨F(∆)⟩ = ⟨F : F ∈ F(∆)⟩. For any ∆, the complex recognising a given
collection of faces as facets is a subcomplex of ∆.

Let ∆ be a simplicial complex on the given vertex set [n] with dim∆ = d− 1. For
each i given that 0 ≤ i ≤ d− 1 the i-th skeleton of the complex ∆ is the simplicial
complex ∆(i) on the same vertex set with [n] whose faces are those faces of F of ∆
with |F | ≤ i + 1. A pure complex is a simplicial complex with all facets of same
dimension. A nonface of a given simplicial complex ∆ is an element F of P([n])

with N /∈ ∆ and we denote minimal nonfaces of ∆ as N (∆). The subcomplex ∆(i)

of ∆ is called pure i-th skeleton, its faces are those faces F of ∆ with |F | = i + 1.
Namely,

∆(i) = {F ∈ ∆ : dim(F ) = i} ∪ {f ⊆ F : f ∈ ∆, dim(f) = i}.

Now we will give a fascinating correspondence between commutative algebra and
combinatorics. The theory known as Stanley-Reisner Theory reveals the surprising
relationship between simplicial complexes and squarefree monomial ideals.

Let S = K[x1, . . . , xn] be the polynomial ring in n variables over the field K and
∆ be a simplicial complex on [n]. For each F ⊂ [n] we can attach the monomial
xF =

∏
i∈F xi. Then, it is immediate that simplicies and squarefree monomials are

in natural bijection.
The Stanley-Reisner ideal of a given simplicial complex ∆ is the ideal I∆ ⊂ S

generated by nonfaces of ∆. It is obvious that, instead of taking all monomials
nonfaces as generators,

Instead of taking the monomials derived from nonfaces, it is sufficient to take only
the monomials described by the minimal nonfaces. It is obvious that both generates
the same ideal. Then, the Stanley-Reisner ideal of the simplicial complex ∆ is

I∆ = (xF : F ∈ N (∆)) .

The other ideal defined by ∆ is generated by those monomials which are deter-
mined by facets of ∆. We call the ideal I(∆) as facet ideal of ∆ and it is defined as
follows:

I(∆) = (xF : F ∈ F(∆)).

Determining the minimal nonfaces of a simplicial complex is very difficult even
for simple simplicial complexes, especially when attempted by hand. Therefore, we
will use some other methods to calculate the Stanley-Reisner ideal described by ∆.
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Now we will explain the concept called Alexander-Duality, which is very useful to
calculate the Stanley-Reisner ideal of a simplicial complex.

1.8 The Alexander duality

Let ∆ be a simplicial complex on the vertex set [n], we denoted ∆∨ as Alexander
Dual of ∆ and it is defined as another simplicial complex admitting the complements
of nonfaces of ∆ as its own faces. Let us denote F̄ = [n]\F for all faces of ∆. Then,

∆∨ = {F̄ : F /∈ ∆}.

It can be easily shown that (∆∨)∨ = ∆ and facets of the Alexander dual of ∆, i.e
F(∆∨), is the set consists of complements of minimal nonfaces of ∆, in other words

F(∆∨) = {F̄ : F ∈ N (∆)}.

Complement of a given simplicial complex ∆ is generated by complements of facets
in ∆ and we denote it as follows:

∆̄ =
〈
F̄ : F ∈ F(∆)

〉
.

As a fact, I∆∨ = I(∆̄) is a well-known fact that can be found in [12, Lemma 1.5.3].
Now, for each subset F ⊆ [n] we define the squarefree monomial ideal as follows:

PF = (xi : i ∈ F ) .

Lemma 1.8.1. [12] The standard primary decomposition of I∆ is

I∆ =
⋂

F∈F(∆)

PF̄ .

1.9 Linear resolution and linear quotients

Definition 1.9.1. Let S = K[x1, . . . , xn] be the polynomial ring over the field K
with n variables, M be a graded S-module, and d be a non-negative integer. We say
that M has a d-linear resolution if the graded minimal free resolution of M is the
following form:

0 −→ S(−d− r)βr −→ · · · −→ S(−d− 1)β1 −→ S(−d)β0 −→ M −→ 0.
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Definition 1.9.2. [12] Let I ⊂ S be a graded ideal. If there exists a system of
homogeneous generators f1, . . . , fm ∈ G(I) such that the colon ideal (f1, . . . , fm) : fi
is generated by linear forms∗ for all i ∈ {1, . . . ,m}, then we say that the ideal I has
linear quotients.

Definition 1.9.3. Let ∆ be a simplicial complex over the vertex set [n], then face
ring K[∆] defined by

K[∆] = K[x1, . . . , xn]/I∆ .

Definition 1.9.4. Let ∆ be a simplicial complex. ∆ is a Cohen-Macaulay complex
if the face ring K[∆] is Cohen-Macaulay.

Let ∆ be a simplicial complex on [n] of dimension d − 1. We say that ∆ is
sequentially Cohen-Macaulay simplicial complex if ∆(i) is Cohen-Macaulay for all
i ∈ [n].

Now, we are ready to state the Eagon-Reiner theorem

Theorem 1.9.5 (Eagon-Reiner). Let ∆ be a simplicial complex on the vertex set [n]
and let K be a field. Then the Stanley-Reisner ideal I∆ ⊂ K[x1, . . . , xn] has a linear
resolution if and only if the face ring of ∆∨, that is, K[∆∨] is Cohen-Macaulay.

Now we talk about a larger class of ideals that encompasses the class of ideals
with the linear resolution property. These are ideals with linear quotients. Each
ideal in this bigger class has a d-linear resolution.

Definition 1.9.6. Let S = K[x1, . . . , xn] be the polynomial ring over K with n-
variables and I ⊂ S be a graded ideal. We say that I has linear quotients, if there
exists a system of homogeneous generators f1, . . . , fm ∈ I such that the colon ideal
(f1, . . . , fi−1) : fi is generated by linear forms for all i.

Example 1.9.7. Let S = K[x, y, z], I = (xy, xz, yz) ⊂ S. Set f1 = xy, f2 =

xz, f3 = yz. For j = 2 we have (f1) : f2 = (xy) : xz = (y), for j = 3 we have
(f1, f2) : f3 = (xy, xz) : yz = (x). Then I has linear quotients.

Let I ⊂ S and m = (x1, . . . , xn) the graded maximal ideal of S. If I is a graded
ideal then we define

I<j> = ({f ∈ I : f is homogeneous polynomial and deg(f) = j}) ,
∗Where linear forms means that K-linear combinations of variables.
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and we say that a graded ideal I ⊂ S is componentwise linear if I<j> has a linear
resolution for all j. We know that by the [12, Lemma 8.2.10], if I ⊂ S is a graded
ideal with linear resolution, then mI has a linear resolution. Therefore, any ideal
with linear resolution are componentwise linear.

Let us continue with the exterior algebra information needed to give a definition
of Koszul complex. Let M be an A-module. Recall that the tensor algebra of M
is a graded algebra and defined by T (M) =

⊕
n∈N (

⊗nM), where we set
⊗0M =

A,
⊗1M = M and

⊗n M =
(⊗n−1M

)
⊗A M . Wedge product ∧ of two elements

is an alternating product, that is m1 ∧ m2 = −m2 ∧ m1 for all m1,m2 ∈ M . We
construct exterior algebra of M by adding this alternating product relation on
the tensor algebra, which does not hold in the tensor algebra. Let us denote L
by submodule of M ⊗A M generated by all elements of the form m ⊗ m, that is,
L = ⟨m⊗m : m ∈ M⟩. We denote m ∧ n by the image of m⊗ n under the natural
A-module epimorphism M ⊗A M (M ⊗A M)/L.

Definition 1.9.8. The exterior algebra
∧
(M) is defined to be a the quotient alge-

bra T (M)/L with the wedge product.

We define k-th exterior power of M to be the image of
⊗k M in

∧
(M) and we

denote it by
∧k M . Thus we have

k∧
M ≃

⊗k M

L ∩
⊗k M

=

⊗k M

Lk
,

where Lk = L ∩
⊗k M , that is, considering the N-graded structure over T (M), all

homogeneous elements of degree k in L. The exterior algebra is also an N-graded
A-algebra. Indeed,

∧
(M) inherits its grading from the tensor algebra T (M).

Lemma 1.9.9. Let M be an A-module. Then,

m1 ∧m2 = −m2 ∧m1

in
∧
(M) for all m1,m2 ∈ M .

Proof. By the definition of the exterior product, m ⊗ m 7→ 0 ∈
∧
(M). By the

definition of wedge product, m ∧m = 0 for any m ∈ M . Thus, for all m1,m2 ∈ M ,

0 = (m1 +m2) ∧ (m2 +m1)

= (m1 ∧m1) + (m1 ∧m2) + (m2 ∧m1) + (m2 ∧m2)

= m1 ∧m2 +m2 ∧m1.
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Hence, we obtain m1 ∧m2 = −m2 ∧m1 in
∧
(M) for all m1,m2 ∈ M .

Proposition 1.9.10. If m ∈
∧i M and n ∈

∧j M , then m ∧ n ∈
∧i+j M and

m ∧ n = (−1)i+jn ∧m.

Proof. Suppose that m = m1 ∧ . . . ∧mi and n = n1 ∧ . . . ∧ nj . By Lemma 1.9.9, for
each alternating commutation operation in (m1 ∧ . . . ∧mi) ∧ (n1 ∧ . . . ∧ nj) we get
one multiplier (−1) in the product. Thus,

m ∧ n =m1 ∧ . . . ∧mi ∧ n1 ∧ . . . ∧ nj

=(−1)in1 ∧m1 ∧ . . . ∧mi ∧ n2 ∧ . . . ∧ nj

=(−1)i(−1)in1 ∧ n2 ∧m1 ∧ . . . ∧mi ∧ n3 ∧ . . . ∧ nj

...

=((−1)i)jn1 ∧ . . . ∧ nj ∧m1 ∧ . . . ∧mi

=(−1)i+jn ∧m.

Therefore, m ∧ n = (−1)i+jn ∧m for all m ∈
∧i M and all n ∈

∧j M .

Now, we are ready to construct the Koszul complex. Let f1, . . . , fr be a sequence
of elements in the ring A. We set Ki =

∧iAr, the r-th exterior power of the free
A-module Ar. Let {e1, . . . , er} be the standard basis for Ar. We define differential
maps as follows,

dq :

q∧
Ar −→

q−1∧
Ar

such that, dq(ej1 ∧ . . . ∧ ejℓ) =
∑r

k=1(−1)k+1fjk(ej1 ∧ . . . ∧ ejk ∧ . . . ∧ ejℓ) where ejk
means that ejk is omitted in the wedge product. Also, dq ◦ dq+1 = 0 for all q ≥ 0 is a
well-known fact, see for example [20],[6] or [7].

The chain complex K•(f1, . . . , fr) called Koszul complex on the sequence f1, . . . , fr
and defined as follows

K•(f1, . . . , fr) : 0 −→ Kq
dq−→ Kq−1

dq−1−−→ . . .
d2−→ K1

d1−→ K0 −→ 0 ,

and note that the elements

{ej1 , . . . ejℓ : 1 ≤ j1 < . . . < jℓ ≤ q}
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forms an A-basis for each Ki. Therefore,

rankA(Ki) =

(
q

i

)
.

Let M be a finitely generated A-module, the Koszul homology of M is defined
by K•(f1, . . . , fr;M) = K•(f1, . . . , fr) ⊗A M. Any permutation action on the se-
quence f1, . . . , fr gives us another Koszul complex by simply permuting the basis
of the exterior algebra. We now have the necessary material to prove the following
proposition.

Proposition 1.9.11. [12, Proposition 8.2.1] Assume that the ideal I ⊂ S is a graded
and generated by degree d elements and that I has linear quotients. Thus the ideal I
has a d-linear resolution.

Proof. Let f1, . . . , fm be a system of generators of I where deg(fj) = d for all
j ∈ {1, . . . ,m}, and let us denote Ik = (f1, . . . , fk) and Lk = (f1, . . . , fk−1) : fk.
Assume that Lk is generated by linear forms for all k. We show by induction on k

that Ik has a d-linear resolution. It is immediate to see that the assertion is holds for
k = 1. Suppose now that k > 1 and let the set of linear forms {ℓ1, . . . , ℓr} generates
Lk minimally†. It is easy to see that the sequence ℓ1, . . . , ℓr is regular. Indeed, we
can complete {ℓ1, . . . , ℓr} to a K-basis {ℓ1, . . . , ℓn} for S. Thus, we have a K-vector
-space automorphism given as φ : S ↪↠ S with φ(xi) = ℓi for all i ∈ {1, . . . , n}. Since
x1, . . . , xr is a regular sequence it implies that ℓ1 = φ(x1), . . . , ℓr = φ(xr) is a regular
sequence as well.

The Koszul complex K(ℓ1, . . . , ℓr;S) ensures a minimal graded free resolution of
S/Lk since the sequence ℓ1, . . . , ℓr is regular (see, [12, Theorem A.3.4.]). This implies
that

TorSi ((S/Lk)(−d),K)i+j ≃ TorSi (S/Lk,K)i+(j−d) = 0 for j ̸= d.

Our aim is to show that Tori(Ik,K)i+j = 0 for all i and all j ̸= d. Since I is
generated in degree d, we have Ik/Ik−1 ≃ (S/Lk)(−d), so that we have the following
short exact sequence

0 −→ Ik−1 −→ Ik −→ (S/Lk)(−d) −→ 0 .

The short exact sequence above implies the long exact sequence below,

TorSi (Ik−1,K)i+j −→ TorSi (Ik,K)i+j −→ TorSi ((S/Lk)(−d),K)i+j . (1.1)
†Observe that {ℓ1, . . . , ℓr} is K-linearly independent.
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By applying our induction hypothesis on k, we observe that both ends in this
exact sequence vanish for j ̸= d. Thus this also holds for the term TorSi (Ik,K)i+j in
the sequence. This is what we desired.
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Chapter 2

t-spread strongly stable monomial

Ideals

In this part of the thesis, we will give a new interpretation of the squarefreeness of
a monomial in the terms of the t-spreadness of the indices of the variables in its
support. Below we recall the definition of t-spread monomial introduced in [11] and
some related notions.

2.1 t-spread monomial ideals.

Throughout this section, let S = K[x1, . . . , xn] be the polynomial ring over a field
K. Let t be a non-negative integer. A monomial xi1 · · · xid ∈ S with i1 < · · · < id is
called t-spread monomial if ij − ij−1 ≥ t for all j ∈ {2, . . . , d}. It is easy to see that
any monomial can be regarded as a 0-spread monomial and any squarefree monomials
as a 1-spread. Moreover, any t-spread monomial is also a (t− 1)-spread monomial. A
monomial ideal I ⊂ S is called t-spread monomial ideal if it is generated by t-spread
monomials.

Example 2.1.1. Let I = (x1x5x9, x1x5x8, x2x6x10, x2x8) be a monomial ideal in
K[x1, . . . , x10]. Note that I is a 3-spread monomial ideal. However I is not a 4-spread
monomial ideal because x1x5x9 is not a 4-spread monomial.

We denote by Mon(S) the set of monomials in S. If I ⊆ S is an ideal, we denote
by Mon(I) the set of monomials in I. The set of t-spread monomials of S is denoted
by Mon(S, t). Then we have Mon(S) = Mon(S; 0).
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Let T denotes the polynomial ring K[x1, x2, . . .] in infinitely many variable with
variables indexed by natural numbers.

Definition 2.1.2. [11] Let u =
∏d

j=1 xij ∈ T with i1 ≤ i2 ≤ · · · ≤ id. Then we
define the maps σ : Mon(T ; t) → Mon(T ; t+ 1) and τ : Mon(T ; t) → Mon(T ; t− 1)

by

σ(u) =
d∏

j=1

xij+(j−1) ,

τ(u) =
d∏

j=1

xij−(j−1).

It is immediate to see that σ and τ are inverse of each other. In other words,
we can see σ (resp. τ) as a bijection of Mon(T ). If we iterate the map σ, obviously
σt : Mon(T ) ↪→→ Mon(T ; t) becomes a bijection between all monomials and t-spread
monomials of T .

Definition 2.1.3. Let I be a t-spread monomial ideal. The ideal generated by the
monomials σ(u) with u ∈ G(I) is denoted by Iσ.

2.2 t-spread strongly stable ideals

Let u be a monomial in the polynomial ring S = K[x1, . . . , xn], maximum index i for
which xi divides u denoted by max(u); min(u) defined similarly to max(u) that is,
the minimum index for which xi | u.

Definition 2.2.1. A t-spread monomial ideal I ⊂ S is called t-spread stable, if for
all t-spread monomials u ∈ I and for all i < max(u) such that xi(u/xmax(u)) is a
t-spread monomial, it follows that xi(u/xmax(u)) ∈ I.

Definition 2.2.2. A t-spread monomial ideal I ⊂ S is called t-spread strongly stable,
if for all t-spread monomials u ∈ I and for all j ∈ supp(u) and all i < j such that
xi(u/xj) is a t-spread monomial, it follows that xi(u/xj) ∈ I.

Example 2.2.3. Let us find smallest 2-spread strongly stable monomial ideal which
contains u = x1x4 and v = x2x4x8. Let I be the smallest 2-spread strongly stable
monomial ideal which contains the monomials u and v. If we apply the conditions on
u and v given in the Lemma 2.2.6, we need extra x1x3, x2x4x6 and x2x4x7 in G(I).
Then we obtain, I = (x1x3, x1x4, x2x4x6, x2x4x7, x2x4x8) as a 2-spread strongly stable
monomial ideal.
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It is not difficult to observe that Iσ is actually (t+ 1)-spread ideal. Given that I
is strongly stable, the most natural question after defining Iσ is whether Iσ has the
strongly stability property. The next proposition guarantees us that Iσ is a strongly
stable ideal.

Proposition 2.2.4. [11, Proposition 1.9] Let I ⊂ S be a monomial ideal. If I is a
t-spread strongly stable ideal, this implies that Iσ is a (t+ 1)-spread strongly stable
monomial ideal of S as well.

To facilitate the terminology in the subsequent text, we introduce the following
definition.

Definition 2.2.5. A Borel move or Borel exchange move on a monomial u in S is
an operation which maps u to (xi/xj)u where j ∈ supp(u) and i < j.

Lemma 2.2.6. [11, Lemma 1.2] Let I ⊂ S be a t-spread monomial ideal. The
following conditions are equivalent:

(a) I is t-spread strongly stable.

(b) If u ∈ G(I), j ∈ supp(u) and i < j such that xi (u/xj) is a t-spread monomial,
then xi (u/xj) ∈ I.

Proof. (a) ⇒ (b) is immediate to see by the definition of t-spread strongly stability of
an ideal. Let us prove (b) ⇒ (a). Let u ∈ I be a t-spread monomial. Under the Borel
move, we get u′ = xi(u/xj) where i < j. Assume that u′ is a t-spread monomial. Let
v ∈ G(I) and v divides u. There are exactly two possible case, xj ∈ supp(v) and
xj /∈ supp(v). Now, let us consider these two cases separately.

If xj /∈ supp(v), thus we have v divides u′ and u′ ∈ I. Or else, if xj ∈ supp(v),
then v′ = xi(v/xj) ∈ I by our assumption and v′ divides u′, hence we have u′ ∈ I.

Next, we will show that t-spread strongly stable ideals are componentwise linear.
To do this, we first recall following definitions.

A monomial order on S as a total order < on Mon(S) such that,

• 1 < u for all 1 ̸= u ∈ Mon(S);

• if u, v ∈ Mon(S) and u < v, then uw < vw for all w ∈ Mon(S).

We recall a special monomial order ofen used in the literature (for more details
see,[11, 2.1.2]).
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Definition 2.2.7. Let c = (c1, . . . , ck) and d = (d1, . . . , dn) ∈ Zn
+. We define the

total order <lex by setting xc <lex x
d if the leftmost nonzero component of the vector

c − d is negative. By this way Mon(S) becomes a totally ordered set with <lex.
Namely, <lex is a monomial order on S, which is called pure lexicographic order on
S induced by the ordering x1 > x2 > · · · > xk−1 > xk.

To prove the componentwise linearity of t-spread strongly stable ideals, we first
state the following lemma.

Lemma 2.2.8. [11, Lemma 1.3] Consider a t-spread strongly stable ideal I in the
polynomial ring S = K[x1, . . . , xn], and let ω ∈ I be a t-spread monomial. Then, ω can
be expressed as ω = ω1ω2, where ω1 ∈ G(I), ω2 ∈ Mon(S), and max(ω1) < min(ω2).

Now we give main theorem of this section.

Theorem 2.2.9. [11, Theorem 1.4] Let I ⊂ S be a t-spread strongly stable ideal.
Then, I possesses linear quotients. Consequently, the ideal I is componentwise linear.

Proof. Let the minimal generating set of I be G(I) = {ω1, ω2, . . . , ωm}. Where, we
put pure lexicographic order on G(I). We set ℓ ≤ m and K = (ω1, . . . , ωℓ−1) . In
order to show that K : ωℓ is generated by variables, it is enough to show that for
all k ∈ {1, . . . , ℓ − 1} there exists xi ∈ K : ωℓ such that xi divides ωk/gcd(ωk, ωℓ)

by the [12, Proposition 1.2.2]. Let ωk = xi1xi2 · · ·xis with i1 ≤ i2 ≤ · · · ≤ is and
ωℓ = xj1xj2 · · ·xjt with j1 ≤ j2 ≤ · · · ≤ jt. There exists a δ such that 1 ≤ δ ≤ t

with i1 = j1, . . . , iδ−1 = jδ−1 and iδ < jδ, since ωk >lex ωℓ. Let ν = xiδ (ωr/xjδ).
Then ν = xj1xj2 · · ·xjδ−1

xiδxjδ+1
· · · xjt . Since iδ − jδ−1 = iδ − iδ−1 ≥ t and

jδ+1 − iδ > jδ+1 − jδ ≥ t, it follows that ν is t-spread, and so ν ∈ I and ν > lexωℓ. In
fact, ν ∈ K. Indeed, by Lemma 2.2.8, there exists ωh ∈ G(I) such that ν = ωh ·ξ and
max (ωh) < min(ξ). Suppose that ν /∈ K. Then ωh ≤lex ωℓ. From the presentation
of ν = ωh · ξ, it gives that ν ≤lex ωh, this is a contradiction.

Now, as we know that ν is an element of K, it implies that xiδ ∈ K : ωℓ. Since
xiδ divides ωk/gcd(ωk, ωℓ), we are done.

The following result, which we will use for the Theorem 2.2.12, is a natural
consequence of [16, Lemma 1.5].

Lemma 2.2.10. [11] Let I be a monomial ideal with linear quotients. Then

βi,i+j(I) = |{α ⊂ set(u) : u ∈ G(I)j and |α| = i}|

where G(I)j = {u ∈ G(I) : deg(u) = j}.
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Let I be a t-spread strongly stable ideal with G(I) = {u1, . . . , um} ordered with
respect to the pure lexicographic order. We define

set(uk) = {i : xi ∈ (u1, . . . , uk−1) : uk}

as the collection of indices of the variables appearing in those colon ideals.
By the Theorem 2.2.9, set(uk) is the set of positive integers satisfying

i < max(uk), i /∈ supp(uk) and i− j ≥ t for all j ∈ supp(uk) with j < i. (2.1)

Example 2.2.11. Let us consider the ideal which constructed in the Example 2.2.3
and compute the set(u) and set(v).

set(x1x4) = {3} since (x1x3) : x1x4 = (x3) then x3 ∈ (x1x3) : x1x4 and
set(x1x4x7) = {1, 2, 3, 4, 5, 6, 7, 8} since (x1x3, x1x4, x1x4x6) : x1x4x7 = (1) = S.

Next, we show that Betti numbers t-spread strongly stable ideals are preserved
under sigma operator.

Theorem 2.2.12. [11, Theorem 1.11] Let I be a t-spread strongly stable ideal. Then
βi,i+j(I) = βi,i+j(I

σ) for all i and j.

Proof. Let ω = xi1xi2 · · ·xig ∈ G(I). Let set(ω) = {c1, . . . , cρ} with the ordering
c1 < · · · < cρ and let

di = ci +max{λ : iλ < ci}

for all i ∈ {1, . . . , ρ}. To complete the proof, let us proceed by demonstrating the
following:

d1 < · · · < dρ and set(σ(ω)) = {d1, . . . , dρ}. (2.2)

Let r < j and iλ < cr < iλ+1 and im < cj < im+1. Thus, we obtain immediately
m ≥ λ and dj − dr = cj +m− (cr + λ) = cj − cr + (m− λ) > 0. If we combine (2.2)
and the Lemma 2.2.10, the proof is complete.

Now, our aim is to show that di ∈ set(σ(ω)). If ci ∈ set(ω) and iλ < ci < iλ+1,
then it is immediate to obtain ci − iλ ≥ t by (2.1). This means that, iλ + (λ− 1) <

ci + λ < iλ+1 + λ and ci + λ− (iλ + (λ− 1)) ≥ t+ 1. Since, di = ci + λ, this shows
that di ∈ set(σ(ω)).

Conversely, let e be an element in set(σ(ω)). Hence, by 2.1, we observe that
there exists an integer λ for which iλ+ (λ − 1) < e < iλ+1 + λ and moreover,
e − (iλ + (λ− 1)) ≥ t + 1. This gives us the inequalities iλ < e − λ < iλ+1 and
(e− λ)− iλ ≥ t. Therefore, e− λ = ci for some integer i and e = ci + λ = di. This
concludes the proof.
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Corollary 2.2.13. [11, Corollary 1.12] Let J ⊂ S be a t-spread strongly stable ideal.
Thus we have,

βi,i+j(J) =
∑

ω∈G(J)j

(
max(ω)− t(j − 1)− 1

i

)
.

Proof. We know that Jτ t is strongly stable. From [8], we know that

βi,i+j

(
Jτ t
)
=

∑
ω∈G(Jt)j

(
max(ω)− 1

i

)
.

By Theorem 2.2.12, we have βi,i+j (J
t) = βi,i+j(J), therefore,

βi,i+j(J) =
∑

ω∈G(J)j

(
max (τ t(ω))− 1

i

)
.

The proof follows, because max (τ t(ω))) = max(ω)−t(deg(ω)−1), for all ω ∈ G(J).
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Chapter 3

t-spread Borel ideals and their powers

In this chapter, we introduce t-spread Borel ideals, and some special subclasses of
t-spread Borel ideals, namely, t-spread principal Borel ideals and t-spread Veronese
ideals. Then we give the main theorem of this section which gives the exact form of
the elements in the generating set of the Alexander dual of a t-spread Borel ideal and
a t-spread Veronese ideal. Moreover, we will investigate some algebraic properties of
t-spread Veronese ideals such as, height, Cohen-Macaulayness and Betti numbers.

3.1 t-spread Veronese ideals

Let M = {u1, . . . , um} be a set of t-spread monomials in S = K[x1, . . . , xn]. The
smallest t-spread strongly stable monomial ideal containing M with respect to
inclusion, is called t-spread Borel ideal and denoted by Bt(u1, . . . , um) or Bt(M).
The monomials u1, . . . , um are called the t-spread Borel generators of Bt(u1, . . . , um).
Moreover, if |M| = 1, then I = Bt(M) is called t-spread principal Borel ideal .

Example 3.1.1. Let I = B2(u1, u2) ⊂ K[x1, . . . , x9] where the monomials are chosen
as u1 = x1x3x11 and u2 = x2x5x8 . The monomials in the minimal set of generators
of I are given below:
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x1x3x11 x1x4x8 x1x5x8 x2x4x8 x2x5x8

x1x3x10 x1x4x7 x1x5x7 x2x4x7 x2x5x7

x1x3x9 x1x4x6 x2x4x6

x1x3x8

x1x3x7

x1x3x6

x1x3x5

As we will in see the following example, the t-spread Borel ideal described by a
given collection of monomials can be represented as a principal Borel ideal.

Example 3.1.2. Let I = B2(u1, u2) ⊂ K[x1, . . . , x9] where u1 = x2x4x8 and u2 =

x3x7x9. Then the minimal generators of I and minimal generators of B2(u2) are same.
Indeed, with the appropriate Borel moves, u1 can be obtained from u2. More precisely,
u2 = x3x7x9 gives v1 = x2x7x9 after exchanging x3 with x2. In a similar way, we
obtain v2 = x2x4x9 from v1 after exchanging x7 with x4. Lastly, we obtain u1 = x2x4x8

from v2 after exchanging x9 with x8. Therefore, G(B2(u2)) = G(B2(u1, u2)) and I is
t-spread principal Borel ideal.

Recall that if an ideal I is t-spread strongly stable, then Iσ is also t-spread
strongly stable. Next, we show that the set of Borel generators of a t-spread strongly
stable are preserved under the operator σ.

Proposition 3.1.3. [11, Proposition 2.1] Let I ⊂ S be a t-spread Borel ideal
I = Bt (M) with M = {ν1, . . . , νm}. Then Iσ = Bt+1(σ(M)) where σ(M) =

{σ(ν1), . . . , σ(νm)}.

Proof. Let ω ∈ G(I) and ω = xℓ1 · · ·xℓd . Then there exists a monomial νr =

xk1 · · ·xkd such that ℓs ≤ ks for all s ∈ {1, . . . , d} since I is a t-spread strongly
stable monomial ideal. It is immediate to see that ℓs + (s− 1) ≤ is + (s− 1) for all
s ∈ {1, . . . , d}. Thus, we have the following inclusion

σ(ω) ∈ Bt(σ(νr)) ⊆ Bt+1(σ(M)).

Since we know that Iσ is generated by the elements of type σ(ω) with ω ∈ G(I),

indeed it follows that Iσ ⊆ Bt+1(M). As well, Bt+1(M) is the smallest (t + 1)-
spread strongly stable ideal containing M = {σ(ν1), . . . , σ(νm)}. This means that,
Bt+1(M) = Bt+1(σ(ν1), . . . , σ(νm)) = Bt+1(σ(M)) ⊆ Iσ since σ(ν1), . . . , σ(νm) ∈ Iσ

and Iσ is a (t+ 1)-spread strongly stable monomial ideal.
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It is not difficult to observe the following fact about the elements of the minimal
generating set of a principal Borel ideal: if ω = xk1 · · ·xkd , necessary and sufficient
conditions for xℓ1 · · ·xℓd ∈ G(Bt(u)) are

• ℓ1 ≤ k1, . . . , ℓd ≤ kd and;

• ℓs − ℓs−1 ≥ t for s ∈ {2, . . . , d}.

Now we give the definition of a special class of t-spread principal Borel ideal
which is called t-spread Veronese ideal.

Definition 3.1.4. Let g ∈ Z with g > 0. If a monomial ideal in the polynomial ring
S = K[x1, . . . xN] is generated by all t-spread monomials of degree g, then the ideal is
called a t-spread Veronese ideal of degree g, and we denote it by IN,g,t.

Below we give a straightforward proof of the fact that any t-spread Veronese ideal
of degree g is in fact a t-spread principal Borel ideal.

Proposition 3.1.5. Let I be an ideal of S = K[x1, . . . , xN]. Then, I is a t-spread
Veronese ideal I = IN,g,t if and only if I is a t-spread principal Borel ideal I = Bt(ω)

for ω = xN−(g−1)txN−(g−2)t · · · xN.

Proof. Assume that I = IN,g,t is a t-spread Veronese ideal. Then I is generated by
all t-spread monomials of degree g. Let v ∈ G(IN,g,t). We will show that, v can be
obtained from u by applying Borel move. If we target the smaller indexed variable
in u with a Borel move, t-spreadness property of the monomial will be preserved.
Then, let us define

u1 =
xmin(v)

xmin(u)

u =
xmin(v)

xN−(g−1)t

u.

In this way, the smallest indices of v and u1 are equalised. Moreover, u1 is a t-spread
monomial since we would replace the smallest indexed variable of a t-spread monomial
with a smaller indexed variable of S. Next, we will target the second smallest indexed
variable of u1. If we denote supp(v) = {i1 < i2 < . . . < ig}, then xmin(v) = xi1 and
the second smallest indexed variable of v is xi2 . Let us define,

u2 =
xi2

xN−(g−2)t

u1.

In this way, we guaranteed that the first two smallest indices of u2 and v are
equalized. Moreover, u2 is also a t-spread monomial since the difference

N− (g − 2)t − i2 ≥ t.
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If we continue to applying this process, one can see that at the end of the g-th
step of the process, we will be obtain v. Namely, ug = v. Therefore, under the
appropriate Borel moves, u will be transformed any monomial in the minimal
generating set of IN,g,t. This shows that, v ∈ Bt(u), so IN,g,t ⊆ Bt(u).

By the definition, the converse inclusion follows immediately since Among all
t-spread strongly stable ideals that contain the monomial u, Bt(u) is the smallest
one and, u ∈ IN,g,t since it is a t-spread monomial of degree g in S. This completes
the proof.

We can find the primary decomposition of a given t-spread principal Borel ideal by
viewing it as a Stanley-Reisner ideal of a suitable simplicial complex. Let I = Bt(ω)

be a t-spread principal Borel ideal for a given ω ∈ Mon(S), and let ∆ be the simplicial
complex over [N] whose Stanley-Reisner ideal is I. Then

I =
⋂

F∈F(∆)

PF̄

recall that where F̄ = [N]\F and, PF̄ =
(
xℓ : ℓ ∈ F̄

)
∈ Spec(S).

Theorem 3.1.6. [11, Theorem 2.3] Let t ∈ Z with 0 < t and IN,g,t ⊂ S be the
t-spread Veronese ideal generated in degree g where, S = K[x1, . . . , xN]. In order to
ensure consistency is easily attained, we make the assumption of

⋃
ω∈G(IN,g,t)

supp(ω) = {1, . . . ,N} .

The subsequent results are as follows:

(a) height (IN,g,t) = N− t(g − 1).

(b) I∨
N,g,t is generated by the following type of monomials

N∏
α=1

xα/
(
Vi1,t · · · Vig−1,t

)
=

x1 · · ·xN

Vi1,t · · · Vig−1,t

with iℓ+1−iℓ ≥ t, for ℓ ∈ {1, . . . , g−2}

where Vir,t = xirxir+1 · · ·xir+t−1 for r ∈ {1, . . . , g − 1}.

(c) IN,g,t has Cohen-Macaulay property and it has a linear resolution.

(d) βi (S/IN,g,t) =
(
g+i−2
g−1

)(
N−(t−1)(g−1)

g+i−1

)
for all integer i with i > 0. In partic-

ular, µ (IN,g,t) =
(
N−(t−1)(g−1)

g

)
.
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Proof. Consider the simplicial complex ∆ with Stanley-Reisner ideal of ∆ is IN,g,t,
and let F(∆) denote the set of facets of ∆. We demonstrate that each facet H of ∆
can be expressed in the form provided below:

H = {ℓ1, ℓ1 + 1, . . . , ℓ1 + (t− 1), ℓ2, ℓ2 + 1, . . . , ℓ2 + (t− 1), . . . ,

ℓg−1, ℓg−1 + 1, . . . , ℓg−1 + (t− 1)}

for some ℓ1, ℓ2, . . . , ℓg−1 such that ℓl ≤ il for l ∈ {1, . . . , g − 1} and jl − jl−1 ≥ t

for l ∈ {2, . . . , g − 1}.
This shows that all the facets of ∆ have the same cardinality, that is |H| = t(g−1)

for all H ∈ F(∆), thus dim∆ = t(g−1)−1. This means that dim (S/IN,g,t) = t(g−1),
thus height (IN,g,t) = N− t(g − 1) which clearly proves and supports the validity of
(a). Furthermore, IN,g,t has the following primary decomposition

IN,g,t =
⋂

H∈F(∆)

PH̄,

where H̄ denotes the complement of H, that is, H̄ = [N]\H and PH̄ is the monomial
prime ideal generated by all variables of the form xℓ such that ℓ ∈ [N]\H (see: [12,
Corollary 1.5.5]).

We show that every set

H = {ℓ1, . . . ℓ1 + (t− 1), ℓ2, . . . , ℓ2 + (t− 1), . . . ℓg−1, . . . , ℓg−1 + (t− 1)} (3.1)

for some ℓ1, . . . , ℓg−1 such that ℓb− ℓb−1 ≥ t for b ∈ {2, . . . , g− 1} is a facet of ∆. We
have H ∈ ∆ since xH =

∏
α∈H xα /∈ I∆, where I∆ is the Stanley-Reisner ideal of the

simplicial complex ∆. In addition, we claim that H ∪ {ℓ} /∈ ∆ for every ℓ ∈ [N]\H.
This will show that H is indeed a facet of ∆. Let ℓ ∈ [N]\H. In the situation where
ℓ < ℓ1, we also obtain

xℓxℓ1+(t−1) · · ·xℓg−1+(t−1) ∈ I∆

hence the set {ℓ, ℓ1 + (t− 1), . . . , ℓg−1 + (t− 1)} is a non-face of ∆, then it is immedi-
ate to see that H∪{ℓ} /∈ ∆. If ℓ ≥ ℓg−1+ t, we get the non-face {ℓ1, . . . , ℓg−1, ℓ}, thus
H∪{ℓ} /∈ ∆. Lastly, if there exists b ∈ {2, . . . , g−1} such that ℓb−1+(t−1) < ℓ < ℓb,
then {ℓ1, . . . , ℓb−1, ℓ, ℓb + (t− 1), . . . , ℓg−1 + (t− 1)} is a nonface of ∆. As a result,
H ∪ {ℓ} /∈ ∆. Consequently, we have established that each set H, as described in
the (3.1), indeed constitutes a facet of the simplicial complex ∆. This demonstrates
that the sets satisfying the given conditions in (3.1) are precisely the facets of the
simplicial complex ∆.
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Our objective is to demonstrate that the sets described in equation (3.1) are the
sole facets present in our simplicial complex. This is equivalent to proving that for
every face Γ in ∆, there exists a facet H in F(∆) having the form specified in (3.1),
that includes the face Γ as a subset.

Let Γ ∈ ∆ and i1 = minΓ. Inductively, for b ≥ 2, we set γb = min {γ ∈ Γ : γ ≥ γb−1 + t}.
Maximum possible number of elements in the sequence γ1 < γ2 < · · · is g − 1.

Otherwise, Γ ⊇ {γ1, . . . , γg} with γb ≥ γb−1 + t for 2 ≤ b ≤ g. But {γ1, . . . , γg} /∈ ∆

since xγ1 · · ·xγg ∈ I∆. Thus Γ /∈ ∆, a contradiction. Therefore, Γ has the form

Γ = {γ1, γ1 + 1, . . . , γ1 + k1, . . . , γr, γr + 1, . . . , γr + kr}

for some r ≤ g − 1, k1, . . . , kr ∈ {0, . . . , t− 1}, and γb ≥ γb−1 + t for b ∈ {2, . . . , r}.
Obviously,

Γ ⊆ {γ1, γ1 + 1, . . . , γ1 + (t− 1), . . . , γr−1, γr−1 + 1, . . . , γr−1 + (t− 1), γr, . . . , γr + k} .

Let us denote Γ′ as the right hand side of the inclusion above, namely,

Γ′ = {γ1, γ1 + 1, . . . , γ1 + (t− 1), . . . , γr−1, γr−1 + 1, . . . , γr−1 + (t− 1), γr, . . . , γr + k} ,

and, Γ ⊆ Γ′ here, we identify k = kr.
To complete the proof of the theorem, we prove the following claim.
Claim. For r ≤ g − 2, there is a face Ξ ∈ ∆, where the relationship Ξ ⊃ Γ′ ⊃ Γ

holds true, along with the following

Ξ =
{
γ′
1, . . . , γ

′
1 + (t− 1), . . . , γ′

r, γ
′
r + 1, . . . , γ′

r + (t− 1), γ′
r+1, . . . , γ

′
r+1 + k′}

for some 0 ≤ k′ ≤ t− 1, γ′
1 ≤ t, and γ′

b ≥ γ′
b−1 + t for 2 ≤ b ≤ r + 1.

Proof. (Proof of the Claim.) If minΓ′ − 1 = γ1 ≥ t, then Γ ⊂ Γ′ ⊂ Ξ ∈ ∆ where
Ξ = {1, . . . , t} ∪ Γ′ and our claim immediately follows. Assume initially that γ1 ≤ t

and let γb = γb−1 + t for each b in the set {2, . . . , r} ⊂ N. Then

γr = γ1 + (r − 1)t ≤ rt ≤ (g − 2)t ≤ N− t− 1.

In the previous inequality, we incorporated the condition N ≥ 1 + (g − 1)t, which
establishes a lower bound for N by ensuring that it is at least one more than the
product of degrees of the monomials in the generating set and our spreading t thereby
providing a crucial constraint for our calculations. Since we obtain γr + t ≤ N− 1,
we may consider Ξ as follows:

Ξ = {γ1, γ1 + 1, . . . , γ1 + (t− 1), . . . , γr, γr + 1, . . . , γr + (t− 1), γr+1 = γr + t} .
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To finalize the proof of the claim, we need to address the scenario where there exists
an index η such that γη > γη−1 + t. Let b = max {η : γη > γη−1 + t}. Then, we
obtain γr > γb−1 + (r − b+ 1)t and we may set Ξ as

Ξ = {γ1, . . . , γ1 + (t− 1), . . . , γb−1, . . . , γb−1 + (t− 1), γ′
b, . . . , γ

′
b + (t− 1), . . . ,

γ′
r, . . . , γ

′
r + (t− 1), γ′

r+1 . . . , γ
′
r+1 + σ′}

for some σ′ ∈ N, note that, where γ′
b = γb−1 + t, γ′

b+1 = γb−1 + 2t, . . . , γ′
r+1 =

γb−1 + (r − b+ 2)t.

According to our claim, it is now apparent that each face Γ ∈ ∆ is contained in a
larger face Ξ of the form given in below

Ξ = {γ1, . . . , γ1 + (t− 1), . . . , γg−2, . . . , γg−2 + (t− 1), γg−1, . . . , γg−1 + σ}

for some natural number σ ∈ {0, . . . , t − 1}, where γ1 ≤ t, and γb ≥ γb−1 + t for
b ∈ {2, . . . , g − 1}. It remains to show that there exists H ∈ F(∆) which contains Ξ.
But this follows if we show that for every σ ≤ t− 2, there exists a ∆ such that H is
contained in a face of the ∆ of the form{

γ′
1, . . . , γ

′
1 + (t− 1), . . . , γ′

g−2, . . . , γ
′
g−2 + (t− 1), γ′

g−1, . . . , γ
′
g−1 + (σ + 1)

}
.

Let σ ≤ t− 2. Indeed, if γg−1+σ < N, then we can immediately obtain the larger
face by adding the vertex γg−1 + (σ + 1) to Ξ. Let γg−1 + σ = N. If γb = γb−1 + t for
all b ∈ {2, . . . , g − 1}, then γg−1 = γ1 + (g − 2)t, thus γ1 + (g − 2)t+ σ = N which
consequently implies the following

γ1 = N− (g − 2)t− σ ≥ 1 + (g − 1)t− (g − 2)t− σ > 2.

At that point, we can set

Ξ ⊂
{
γ′
1, . . . , γ

′
1 + (t− 1), . . . , γ′

g−2, . . . , γ
′
g−2 + (t− 1), γ′

g−1, . . . , γ
′
g−1 + (σ + 1)

}
where γ′

1 = γ1 − 1, γ′
2 = γ2 − 1, . . . , γ′

r = γr − 1.
Ultimately, let us pick the maximal ℓ for which γb > γb−1 + t. In this part of the

proof, we set Ξ as follows,

Ξ ⊂
{
γ′
1, . . . , γ

′
1 + (t− 1), . . . , γ′

g−2, . . . , γ
′
g−2 + (t− 1), γ′

g−1, . . . , γ
′
g−1 + (σ + 1)

}
for which γ′

1 = γ1, . . . , γ
′
b−1 = γb−1, γ

′
b = γb − 1, γ′

b+1 = γb+1 − 1, . . . , γ′
g−1 = γg−1 − 1.

As a natural consequence of the Theorem 2.2.9, the t-spread Veronese ideal IN,g,t has
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a linear resolution. Since we know the fact that IN,g,t is generated by monomials of
fixed single degree, it follows that the t-spread Veronese ideal has a linear resolution.

Subsequently, we demonstrate that the ideal I∨
N,g,t has linear quotients. This

means that there exists a particular ordering of the minimal monomial generators
µ1, . . . , µk of I∨

N,g,t such that, under this ordering, the following condition is sat-
isfied: for each γ < ℓ there exists an integer r < γ and an integer b for which
xb divides (µγ/gcd (µγ, µℓ)) and xb = µr/gcd (µr, µℓ). Therefore, as established by
[12, Proposition 8.2.5], the simplicial complex ∆ is shellable. Consequently, [12,
Theorem 8.2.6] implies that the ideal I∆ = IN,g,t is Cohen-Macaulay.

Let G(I∨
N,g,t) = {µ1, . . . , µk} be the minimal monomial generators of the ideal

t-spread Veronese ideal and let G(I∨
N,g,t) ordered with respect to the lexicographic

order such that µ1, . . . , µk are decreasing. Let

µi =
N∏

α=1

xα/
(
Vi1 · · · Vig−1

)
and µj =

N∏
α=1

xα/
(
Vj1 · · · Vjg−1

)
where i ̸= j and also we removed the index t that is Vir denotes Vir,t and Vjr denotes Vjr,t

for the sake of simplifying the notation to work easily on calculations. Following
equality is immediate after some easy calculations:

µi

gcd (µi, µj)
=

Vj1 · · · Vjg−1

gcd
(
Vi1 · · · Vig−1 ,Vj1 · · · Vjg−1

) .
At this point, we use the assumption i < j. Hence, µi >lex µj, that is,

Vj1 · · · Vjg−1 >lex Vi1 · · · Vig−1 equivalently we obtain the following condition:

There exists a non-zero natural number σ such that
j1 = i1, . . . , jσ−1 = iσ−1 and jσ < iσ.

We first observe that xjσ divides (µi/ gcd (µi, µj)) since xjσ divides Vj1 · · · Vjg−1 and
it does not divide the product Vi1 · · · Vig−1 since we have the inequality iσ > jσ. Let
us assume that there exists a least integer b ≤ g − 2 such that jb+1 > jb + t. Let

µr =
N∏

α=1

xα(
Vj1 · · · Vjσ−1Vjσ+1Vjσ+2 · · · Vjb+1

Vjb+1
· · · Vjg−1

) .

Obviously, µr >lex µj, thus r < j, and we claim that µr/ gcd (µr, µj) = xjσ .
Following equality is immediate after a simple calculation

gcd
(
Vj1 · · · Vjσ−1Vjσ+1Vjσ+2 · · · Vjb+1Vjb+1

· · · Vjg−1 ,Vj1 · · · Vjg−1

)
=

∏g−1
i=1 Vji

xjσ

.
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Thus we obtain,

µr

gcd (µr, µj)
=

Vj1 · · · Vjg−1((
Vj1 · · · Vjg−1

)
/xjσ

) = xjσ .

If jb+1 = jb + t for b ∈ {2, . . . , g − 2}, we get

N− t+ 1 ≥ ig−1 ≥ iσ + (g − σ − 1)t > jσ + (g − σ − 1)t = jg−1.

This means that jg−1 + (t− 1) ≤ N indeed. Thus, we may consider the monomial
Vjg−1+1. In this case we take

µr =

∏N
α=1 xα(

Vj1 · · · Vjσ−1Vjσ+1Vjσ+2 · · · Vjg−1+1

)
and check that µr/gcd (µr, µj) = xjσ . In summary, to calculate the Betti numbers
of IN,g,t and I∨

N,g,t, we engage [5, Theorem 4.1.15]. This theorem provides the Betti
numbers for a Cohen-Macaulay ideal I in a polynomial ring S with type - (g1, . . . , gq)
pure resolution. We have the following for all i ≥ 1

βi

(
S

I

)
= (−1)i+1

∏
ℓ̸=i

gℓ
gℓ − gi

.

In our case, the type of the resolution of S/IN,g,t is given by gℓ = g + ℓ− 1 for
1 ≤ ℓ ≤ q = N− t(g − 1). Therefore,

βi

(
S

I

)
= (−1)i+1

i−1∏
ℓ=1

g + ℓ− 1

ℓ− i

q∏
ℓ=i+1

g + ℓ− 1

ℓ− i

=
g(g + 1) · · · (g + i− 2)

(i− 1)!
· (g + i)(g + i+ 1) · · · (g + q − 1)

(q − i)!
=

=

(
g + i− 2

g − 1

)(
N− (g − 1)(t− 1)

g + i− 1

)
.

Example 3.1.7. In this example, we demonstrate an application of Theorem 3.1.6
by computing the generators of I∨ where

I = I9,3,3 ⊂ S = K[x1, . . . , x9]

and (N, g, t) = (9, 3, 3).
Let us first list Vik,t, recall that Vik,t = xikxik+1 · · ·xik+t−1 for 1 ≤ k ≤ g − 1. By

the inequality ik + t− 1 ≤ N, we get ik ≤ 7 as suitable non-negative integer values
of ik. Then we obtain the following.
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for ik = 1 for ik = 2 for ik = 3 for ik = 4

V1,3V4,3 V2,3V5,3 V3,3V6,3 V4,3V7,3

V1,3V5,3 V2,3V6,3 V3,3V7,3

V1,3V6,3 V2,3V7,3

V1,3V7,3

Thus we obtain 10 monomials as minimal generators. Let us denote each of them as ξj :

ξ1 = x7x8x9 ξ5 = x1x8x9 ξ8 = x1x2x9 ξ10 = x1x2x3

ξ2 = x4x8x9 ξ6 = x1x5x9 ξ9 = x1x2x6

ξ3 = x4x5x9 ξ7 = x1x5x6

ξ4 = x4x5x6 .

For instance we get ξ6 =
x1···x9

x2x3x4·x6x7x8
= x1x5x9 by the formula given in (b) of 3.1.6.

Then, I∨ = (G(I∨)) = (ξ1, . . . , ξ10). For other part of this example, we calculate the
minimal generators of the ideal itself. For I = I9,3,3, by the Proposition 3.1.5, we
have I = B3(x3x6x9). We compute the minimal generators of the smallest 3-spread
ideal containing x3x6x9, as we did in Example 3.1.1 above, we obtain the minimal
generators of B3(x3x6x9) as follows:

x3x6x9 x2x5x9 x2x5x8 x1x4x9

x2x6x9 x1x5x9 x1x5x8 x1x4x8

x1x6x9 x1x4x7

.

Now we calculate the Betti numbers of S
I where I = I9,3,3 = B3(x3x6x9). By the

formula (d) of Theorem 3.1.6, βi(
S

I9,3,3 ) =
(
1+i
2

)(
5

2+i

)
. Then non-zero Betti numbers

are:
β1(S/I9,3,3) =

(
2

2

)(
5

3

)
= 10

β2(S/I9,3,3) =

(
3

2

)(
5

4

)
= 15

β3(S/I9,3,3) =

(
4

2

)(
5

5

)
= 6.

Then minimal free resolution of S/I9,3,3 is

0 −→ S6 −→ S15 −→ S10 −→ S −→ S/I9,3,3 −→ 0.
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Using Theorem 3.1.6, now we can compute the height of t-spread strongly stable
ideals.

Theorem 3.1.8. [11, Theorem 2.4] Let J be a t-spread strongly stable monomial
ideal. Then

height(J) = max {min(ω) : ω ∈ G(J)} .

Proof. Consider ω0 ∈ G(J) with min(ω0) = max {min(ω) : ω ∈ G(J)} , and take

Q = (xj : j ≤ min(ω0)) .

Then J ⊂ Q, because for all η ∈ G(J) immediately we have min(η) ≤ min(ω0). This
shows that height(J) ≤ min(ω0). On the other hand, let ω0 = xj1 · · ·xjg . Thus, we
have the following

ω′
0 = xj1xj1+t · · ·xj1+t(g−1) ∈ J

given that J is a t-spread strongly stable monomial ideal. Let J ′ = Bt(ω
′
0). Then

J ′ ⊂ J and Theorem 3.1.6 implies that

min(ω0) = min(ω′
0) = j1 = j1 + t(g − 1)− t(g − 1) = height(J ′) ≤ height(J)

The proof is thus complete.

Applying the theorem above to the Example 3.1.7, it is immediate to obtain that
height(I9,3,3) = max({1, 2, 3}) = 3.

3.2 t-spread Borel ideals

We have seen before that any t-spread Veronese ideal is a t-spread Borel ideal. So,
t-spread Borel ideals are more general class of ideals than t-spread Veronese ideals.
In this section, we give a description of the generators of the Alexander dual of an
arbitrary t-spread principal Borel ideal Bt(u) and we use this description to show
that S/Bt(u) is Cohen-Macaulay if Bt(u) is a t-spread Veronese ideal.

Theorem 3.2.1. [1, Theorem 1.1] Let t ≥ 1 be an integer and I = Bt(u) be
the t-spread principal Borel ideal of S = K[x1, . . . , xN] where the monomial u =

xℓ1xℓ2 · · ·xℓg is a t-spread monomial. We set
⋃

ω∈G(I) supp(ω) = [N]. Then, I∨ is
generated by the monomials of the following forms∏N

α=1 xα

Vℓ1 · · · Vℓg−1
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with ℓl ≤ γl for 1 ≤ l ≤ g−1 and ℓl−ℓl−1 ≥ t for 2 ≤ l ≤ g−1, Vℓk = xℓk · · ·xℓk+(t−1)

for 1 ≤ k ≤ g − 1.
γ1∏
α=1

xα.(
γs∏
α=1

xα

)
/
(
Vℓ1 · · · Vℓs−1

)
with 2 ≤ s ≤ g − 1, ℓl ≤ γl for 1 ≤ l ≤ s− 1, ℓl − ℓl−1 ≥ t for 2 ≤ l ≤ s− 1, where
Vℓk = xℓk · · · xℓk+(t−1) for 1 ≤ k ≤ s− 1.

Proof. Let ∆ be the simplicial complex whose Stanley-Reisner ideal is I and let
F(∆) be the set of the facets of ∆. We prove that every facet of ∆ is of one of the
forms below:

(i) H1 = {ℓ1, ℓ1 + 1, . . . , ℓ1 + (t− 1), ℓ2, ℓ2 + 1, . . . , ℓ2 + (t− 1), . . . , ℓg−1,

ℓg−1 + 1, . . . , ℓg−1 + (t− 1)}

for some ℓ1, ℓ2, . . . , ℓg−1 such that ℓl ≤ γl for 1 ≤ l ≤ g − 1 and ℓl − ℓl−1 ≥ t

for 2 ≤ l ≤ g − 1.

(ii) H2 = {γ1 + 1, γ1 + 2, . . . , n}.

(iii) H3 = {ℓ1, ℓ1 + 1, . . . , ℓ1 + (t − 1), . . . , ℓs−1, ℓs−1 + 1, . . . , ℓs−1 + (t − 1), ℓs, ℓs +

1, . . . , n}

for some ℓ1, ℓ2, . . . , ℓs such that 2 ≤ s ≤ g − 1, ℓl ≤ γl for 1 ≤ l ≤ s − 1,
ℓs = γs + 1 and ℓl − ℓl−1 ≥ t for 2 ≤ l ≤ s.

The ideal I = Bt(u) has the primary decomposition

I =
⋂

H∈F(∆)

PH̄,

where H̄ denotes the complement of H, that is, H̄ = [N]\H and PH̄ is the monomial
prime ideal generated by all variables xj with j ∈ [N]\H (see: [12, Corollary 1.5.5]).
Since (x1, . . . xγ1) ∈ Min(I) by Theorem 3.1.8, we obtain H2 ∈ F(∆). We have H1

and H3 ∈ ∆, since ξH1 , ξH3 /∈ I where ξH1 =
∏

i∈H1
xi and ξH3 =

∏
i∈H3

xi. Indeed,
if ξH1 ∈ I, then there exists v = xk1 · · ·xkg ∈ G(I) such that v | ξH1 . Since v is
the product of g distinct variables and H1 consists of g − 1 intervals of the form
[ℓr, ℓr + (t− 1)] , 1 ≤ r ≤ g − 1, there exist l ∈ {2, . . . , g} and 1 ≤ r ≤ g − 1 such
that kl−1, kl ∈ [ℓr, ℓr + (t− 1)]. This implies that kl − kl−1 < t, which is false.
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If ξH3 ∈ I, then there exists v = xk1 · · ·xkg ∈ G(I) such that v | ξH3 . Since
kl − kl−1 ≥ t for 2 ≤ l ≤ s and H3 consists of s − 1 intervals of the form
[ℓr, ℓr + (t− 1)] , 1 ≤ r ≤ s − 1, and only one interval of the form [ℓs,N], we have
ks ∈ [ℓs,N]. It follows that ℓs = γs + 1 ≤ ks, which is false because v ∈ G(I) and
ks ≤ γs.

We claim that Hi ∪ {j} /∈ ∆ for every j ∈ [N]\Hi and i ∈ {1, 3}. This will prove
that every set of the form (i) or (iii) is a facet of ∆.

Let j ∈ [N]\H1. We have exactly three cases given as below:

(A) j < ℓ1. Then xjxℓ1+(t−1) · · ·xℓg−1+(t−1) ∈ I because j < ℓ1 ≤ γ1 and ℓl+(t−1) ≤
γl + (t− 1) < γl+1 for 1 ≤ l ≤ g − 1.

(B) j ≥ ℓg−1 + t. Then xℓ1xℓ2 · · ·xℓg−1xj ∈ I.

(C) There exists 1 ≤ l ≤ g − 2 such that ℓl + (t− 1) < j < ℓl+1. Then

xℓ1xℓ2 · · ·xℓlxjxℓl+1+(t−1) · · ·xℓg−1+(t−1) ∈ I,

since ℓk ≤ γk for 1 ≤ k ≤ l, j < ℓl+1 ≤ γl+1 and ℓk + (t− 1) ≤ γk + (t− 1) <

γk+1 for l + 1 ≤ k ≤ g − 1.

Therefore, we have proved that for j ∈ [N]\H1,H1 ∪ {j} /∈ ∆ which implies that
H1 is a facet in ∆. Let j ∈ [N]\H3. We show that xjξH3 ∈ I, thus H3 ∪ {j} /∈ ∆.

(A) If j < ℓ1, then

xjxℓ1+(t−1) · · · xℓs−1+(t−1)xℓs+(t−1)xℓs+(2t−1) · · ·xℓs+(g−s)t−1 ∈ I

because j < ℓ1 ≤ γ1, ℓk + (t− 1) ≤ γk + (t− 1) < γk+1 for 2 ≤ k ≤ s− 1 and
ℓs + (kt− 1) = γs + 1 + (kt− 1) = γs + kt ≤ γs+k for 1 ≤ k ≤ g − s.

(B) If there exists 2 ≤ l ≤ s such that ℓl−1 + (t− 1) < j < ℓl, then

xℓ1xℓ2 · · · xℓl−1
xjxℓl+(t−1) · · ·xℓs+(t−1) · · ·xℓs+(g−s)t−1 ∈ I.

Indeed, ℓk ≤ γk for 1 ≤ k ≤ l. If l = s, then j < ℓs = γs+1 and ℓs+(kt− 1) =

γs + 1 + (kt − 1) = γs + kt ≤ γs+k for 1 ≤ k ≤ g − s. In the case that l < s,
we have j < ℓl ≤ γl, ℓk + (t− 1) ≤ γk + (t− 1) < γk+1 for l ≤ k ≤ s− 1 and
ℓs + (kt− 1) = γs + 1 + (kt− 1) ≤ γs+k for 1 ≤ k ≤ g − s.
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We still need to prove that the sets of forms (i)-(iii) are the exclusive facets of ∆.

This is equivalent to showing that for every face Γ ∈ ∆, there exists H ∈ F(∆) of
one of the forms (i)-(iii) which contains Γ. Let Γ ∈ ∆ and ℓ1 = min{j : j ∈ Γ}.
Inductively, for l ≥ 2, we set

ℓl = min {j : j ∈ Γ and j ≥ ℓl−1 + t} .

If ℓl ≤ γl for all l, then the sequence ℓ1 < ℓ2 < . . . < ℓl < . . . has at most g − 1

elements. Otherwise, xℓ1 · · ·xℓg ∈ I, which implies that Γ /∈ ∆, a contradiction. Let
ℓ1 < ℓ2 < . . . < ℓr with r ≤ g − 1. Then Γ ⊂ H1 where

H1 = {ℓ1, . . . , ℓ1 + (t− 1), . . . , ℓr, . . . , ℓr + (t− 1), γr+1, . . . , γr+1 + (t− 1), . . . ,

γg−1, . . . , γg−1 + (t− 1)} ∈ F(∆).

If there exists l ≤ g such that ℓl > γl, then we denote by s the smallest
index with this property. In the case that s = 1, ℓ1 = min{j : j ∈ Γ} and
Γ ⊂ H2 = {γ1 + 1, γ1 + 2, . . . , n} ∈ F(∆). If s > 1, then Γ ⊂ H3 where

H3 = {ℓ1, ℓ1 + 1, . . . , ℓ1 + (t− 1), . . . , ℓs−1, ℓs−1 + 1, . . . , ℓs−1 + (t− 1),

γs + 1, γs + 2, . . . ,N} ∈ F(∆).

So the theorem is proved.

It is clear that the last two generators given in the Theorem 3.2.1 does not appear
as generators of IN,g,t, since the degrees of the monomials are less than g. The type
of monomials that we can take as generators are all of the following form by the
Theorem 3.2.1:

N∏
α=1

xα/
(
Vγ1,t · · · Vγg−1,t

)
with γj+1 − γj ≥ t, for 1 ≤ j ≤ g − 2

where Vγk,t = xγkxγk+1 · · ·xγk+t−1 for 1 ≤ k ≤ g − 1. This is one of the remarkable
differences between the two theorems that is particularly worth emphasizing.

It follows that I∨
N,g,t is also Cohen-Macaulay and has a linear resolution by Eagon-

Reiner theorem [12, Theorem 8.1.9]. This means that, the Betti numbers of S/I∨
N,g,t

may be computable via S/IN,g,t as we did before. Note that, in this case, we have
height

(
I∨
N,g,t

)
= projdim

(
S/I∨

N,g,t

)
= g, moreover the degree of the generators of

I∨
N,g,t is exactly same as the height of IN,g,t. Remaining part of the calculation of

Betti numbers is quite similar to the above, so we omit the remaining part.
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Corollary 3.2.2. [11, Corollary 2.5] Let J ⊂ S = K[x1, . . . , xn] be a t-spread
strongly stable monomial ideal such that

⋃
ω∈G(J) supp(ω) = {x1, . . . , xn}. Then S/J

is Cohen-Macaulay if and only if there exists ω ∈ G(J) of degree d such that
ω = xn+t(d−1) · · ·xn−txn.

In particular, if J is generated in a single degree then the quotient ring S/J is
Cohen-Macaulay if and only if J is t-spread Veronese ideal.

Proof. From (2.2.13), this implies that

projdim
(
S

J

)
= max{max(ω)− t(deg(ω)− 1) : ω ∈ G(J)}.

and from Theorem 3.1.6, it follows that

dim

(
S

J

)
= n−max{min(ω) : ω ∈ G(J)}.

Utilizing the Auslander-Buchsbaum theorem, we deduce that S/J is Cohen-Macaulay
if and only if

max{max(ω)− t(deg(ω)) : ω ∈ G(J)} = max{min(ω) : ω ∈ G(J)}. (3.2)

Let ω0 be a monomial in the generating set G(J) such that min(ω0) = max{min(ω) :

ω ∈ G(J)}. Since
min(ω) ≤ max(ω)− t(deg(ω)− 1)

for all ω ∈ G(J), equality 3.2 above holds if and only if

min(ω0) = max(ω0)− t(deg(ω0)− 1).

Namely, S/J is a Cohen-Macaulay ring if and only if there exists a monomial
ω0 ∈ G(J) such that

min(ω0) = max{min(ω) : ω ∈ G(J)} and ω0 = xi1xi1+t · · ·xi1t(d−1).

Since
⋃

ω∈G(J) supp(ω) = {x1, . . . , xn}, there exists ω ∈ G(J) such that max(ω) = n

and min(ω) ≤ min(ω0). Note that

max(ω)− t(deg(ω)− 1) ≤ i1 = min(ω0).

Hence, this implies that n ≤ i1 + t(deg(ω) − 1). Assume that deg(ω) less than
or equal to deg(ω0) = d, then this gives us the equality n = i1 + t(d − 1), as
required. Conversely, if d < deg(ω), we get ω = xℓ1 · · ·xℓd−1

xℓdxℓd+1
· · ·xn such that
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n ≥ · · · ≥ ℓd ≥ ℓd−1 ≥ · · · ≥ ℓ2 ≥ ℓ1. Let the monomial ω′ is equal to xℓ1 · · ·xℓd .

Since ω is an element in G(J), we obtain ℓd > i1 + t(d− 1), and also we have

max(ω)− t(deg(ω)− 1) ≥ max(ω′)− t(deg(ω′)− 1) > i1,

this is a contradiction. Therefore, we are done.
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Chapter 4

The Rees algebra of t-spread principal

Borel ideals

In this chapter, we investigate the Rees algebra of t-spread principal Borel ideals.
To do this, we first recall some definitions and notations. We refer reader to [9] for
more prospection.

Let u and v be two monomials of degree d in S = K[x1, . . . , xn]. We can
write uv = xi1xi2 · · ·xi2d with i1 ≤ . . . ≤ i2d. We set u′ = xi1xi3 · · ·xi2d−1

and
v′ = xi2xi4 · · ·xi2d . We denote the set of all degree d monomials of S by Sd. The
sorting operator on Sd is defined as follows:

sort : Sd × Sd Sd × Sd

(u, v) (u′, v′)

∈ ∈ .

For any subset S ⊆ Sd, if sort(S × S) ⊆ S × S then S is called a sortable subset
of Sd. Any pair (u, v) of Sd is called sorted pair or sorted if sort(u, v) = (u, v).
Let m = (u1, . . . , ur) ∈ Sd × . . . × Sd be any r-tuple of degree d monomials. If
(ui, uj) is sorted for all pairs (ui, uj) appearing in m with 1 ≤ i < j ≤ r, then
the monomial r-tuple m is called sorted. It is immediate to see that if we have
u1 = xi1 · · ·xid , u2 = xj1 · · ·xjd , . . . , ur = xk1 · · ·xkd , then m is sorted if and only if
iδ ≤ jδ ≤ . . . ≤ kδ and kδ ≤ iρ when δ < ρ, for all δ, ρ ∈ {1, . . . , d}. Moreover, by [9,
Theorem 6.12] for every r-tuple (u1, . . . , ur) ∈ Sd × . . .× Sd, there exists a unique
sorted r-tuple (u′

1, . . . , u
′
r) ∈ Sd × . . .× Sd such that u1 · · ·ur = u′

1 · · ·u′
r.
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4.1 Rees algebras, toric rings and toric ideals

Let us express the fundamental material of toric rings, toric ideals and Rees algebras.
Let S = K[x1, . . . , xn] be the polynomial ring over the field K with n variables.

For each graded ideal I = (g1, . . . , gm) of S we define the Rees ring R(I) as follows,

R(I) =
⊕
j∈N

Ijtj = S[g1t, . . . , gmt].

Considering the the surjective ring homomorphism φ : R = S[y1, . . . , ym] ↠ R(I)
defined by xi

φ7−→ xi for all i and yj
φ7−→ gjt for all j, we have R(I) ≃ R/Kerφ. Kernel

of the homomorphism φ is called presentation ideal of R(I). When I = (w1, . . . , wm)

is a monomial ideal, we define L as the toric ideal of K[w1, . . . , wm] which is the kernel
of the surjective ring homomorphism π : T = K[y1, . . . , ym] ↠ K[w1, . . . , wm] defined
by π(yi) = wi for all i. It is immediate to see that, K[w1, . . . , wm] ≃ R(I)/mR(I)

where m = (x1, . . . , xn) ⊆ S is the graded maximal ideal. In addition, R(I)/mR(I)

is called the fiber ring of R(I).
If f ̸= 0 is a polynomial in S and < be a monomial order on S, we set in<(f) to

be the largest monomial u ∈ supp(f) with respect to <, and we call in< by initial
monomial of f . The coefficient c of in<(f) in f is called leading coefficient of f with
respect to <, and cin<(f) is called leading term of f . Note that, we set in<(0) = 0

and set in<(0) < in<(f) for all f ̸= 0 in S for convenience. Let 0 ̸= I ⊂ S be an
ideal. The initial ideal of I is the monomial ideal

in<(I) = (in<(f) : f ∈ I, f ̸= 0).

Let < be a monomial order on the polynomial ring T = K[y1, . . . , ym]. If a
monomial ya = ya1j1 y

a2
j2
· · · yakjk , k ∈ {1, . . . ,m}, does not belong to in<(L), ya is called

a standard monomial of L with respect to the monomial order <.

Definition 4.1.1. [9, Definition 6.23] The monomial ideal I satisfies the ℓ-exchange
property with respect to the monomial order < on T , if the following condition is
satisfied: let yc and yd be any two standard monomials of L with respect to the
monomial order < of the same degree with ω = π (yc) and ν = π

(
yd
)

satisfying

• degxt
ω = degxt

ν for t = 1, . . . , q − 1 with q ≤ n− 1,

• degxq
ω < degxq

ν.

Let S = K[x1, . . . , xn] be the polynomial ring over the field K with n variables.
A finite subset U = {u1, . . . , um} ⊆ Mon(S) is called a monomial configuration of
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S. The polynomial ring K [U ] = K[u1, . . . , um], which is K-algebra generated by U is
called the toric ring of U . Indeed, a toric ring of a given monomial configuration U
can be seen as the ring extension of K with transcendental elements {u1, . . . , um} = U .

Let R = K[t1, . . . , tm] denote the polynomial ring in m variables over the field K
and consider the surjective ring homomorphism

π :R K[U ]

ti ui

∈ ∈

for all i ∈ {1, . . . ,m}. We call Ker(π) as the toric ideal of U . Since R/Ker(π) ≃ K[U ],
the toric ring of U is determined by kernel of π. To refer to this, the toric ideal Ker(π)

of U is also called the defining ideal of the toric ring K[U ]. We denote the toric ideal
of U by IU . It is well-known fact that, every toric ideal is a prime ideal [12].

A binomial of R is a polynomial of the form u − v such that, u, v ∈ Mon(R).
A binomial ideal is an ideal which is generated by binomials. By the [12, Proposi-
tion 10.1.1], it is known that, IU is a binomial ideal.

Definition 4.1.2. [9, Definition 6.3] Let F = {f1, . . . , fs} ⊂ R be a finite family of
marked binomials in R. In other words, fi = mi−m′

i for some monomials mi,m
′
i ∈ R

for all i = 1, . . . , s, where the monomial mi in fi is marked by underline. F is called
marked coherently if there exists a monomial order < on R such that in in< (fi) = mi

for 1 ≤ i ≤ s.

4.2 Rees algebras of t-spread principal Borel ideals

Let us consider the Rees algebra R(I) =
⊕

j≥0 I
jtj of the ideal I = Bt(u). Since the

minimal generators of Bt(u) have the same degree, the fiber ring R(I)/mR(I) of
the Rees ring R(I) is isomorphic to K[G(I)]. Let us consider the following algebra
homomorphism

π : T = K[tv : v ∈ G(I)] K[G(I)]

tv v

∈ ∈ .

Let Sd be degree d homogeneous component of the polynomial ring S, and B ⊂ Sd

be a sortable set of monomials and K[B] the semigroup ring generated over K by B.
Let t ≥ 1 be an integer and say I = Bt(u) with some degree d monomial u. If

v, w ∈ I and sort(v, w) = (v′, w′) then, by the proposition above v′, w′ ∈ G(I).
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Proposition 4.2.1. [11, Proposition 3.1] Let S = K[x1, . . . , xn] be the polynomial
ring and u ∈ Mon(S) be any monomial. Then G(Bt(u)) is sortable.

Proof. Let u = xi1 · · ·xid with i1 ≤ · · · ≤ id. Let v, w ∈ G (Bt(u)) and write wv =

xj1xj2 · · ·xj2d . Then w′ = xj1xj3 · · ·xj2d−1
, v′ = xj2xj4 · · ·xj2d . By [19, Lemma 2.7],

we know that j2k, j2k−1 ≤ ik for all k ∈ {1 . . . , d}.
To complete the proof, it is enough to show that j2ℓ+1−j2ℓ−1 ≥ t and j2ℓ+2−j2ℓ ≥ t

for all ℓ ∈ {1, . . . , d− 1}. To prove j2ℓ+1 − j2ℓ−1 ≥ t: we may consider the two cases
below,

(I) xj2ℓ−1
and xj2ℓ+1

divides same monomial, say v but they do not divide w;

(II) xj2ℓ−1
divides w but does not divide v and xj2ℓ+1

divides v but does not divide w.

Let us start with first case. Assume that xj2ℓ−1
and xj2ℓ+1

divides v but they do
not divide w. Since v ∈ G(Bt(u)), v is a t-spread monomial. Then the inequality
j2ℓ+1−j2ℓ−1 ≥ t holds for all ℓ ∈ {1, . . . , d−1}, otherwise the t-spreadness property of
v would be broken. For the second case of the proof, let us assume that, xj2ℓ+1

divides
v and xj2ℓ−1

divides w, then j2ℓ+1 − j2ℓ−1 ≥ j2ℓ − j2ℓ−1 ≥ t, since w ∈ G (Bt(u)). If
xjℓℓ | v, then j2ℓ+1 − j2ℓ−1 ≥ j2ℓ+1 − j2ℓ ≥ t since v ∈ G (Bt(u)). One can do similar
to prove the other inequality.

Theorem 4.2.2. [9, Theorem 6.15] Let B be a sortable subset of monomials of Sd

and

F =
{
tutv − tu′tv′ : u, v ∈ B, (u, v) unsorted pair and (u′, v′) = sort(u, v)

}
.

Then there exists a monomial order < on R which is called the sorting order such
that for every g = tutv − tu′tv′ ∈ F , in in<(g) = tutv.

As it was proved in [11, Theorem 3.2], the set of binomials

G = {tvtw − tv′tw′ : (v, w) unsorted , (v′, w′) = sort(v, w)}

is a Gröbner basis of the toric ideal Iu = Ker(π) with respect to the sorting order on T .
A monomial tu1 · · · tuN

is called standard with respect to < if tu1 · · · tuN
/∈ in<(P ).

Where in<sort(tvtw − tv′tw′) = tvtw for tvtw − tv′tw′ ∈ G .
Let I ⊂ S be a monomial ideal and assume that the minimal generating set G(I)

consists of the monomials with same degree and K[tu : u ∈ G(I)] the polynomial
ring in | G(I) |-many variables equipped with a chosen monomial order <.

58



Proposition 4.2.3. [1, Proposition 2.2] Let ω = xi1 · · ·xid be a t-spread monomial
in S. Therefore the t-spread principal Borel ideal Bt(ω) ⊂ S has the ℓ-exchange
property defined in 4.1.1 with respect to the sorting order which we denoted as <sort .

Proof. Let T = K [tµ : µ ∈ G (Bt(ω))] and tω1 · · · tωM
, tµ1 · · · tµM

∈ Mon(T ) be two
standard monomials with respect to the <sort and let be deg(tω1 · · · tωM

) = deg(tµ1 · · · tµM
) =

M such that the all of the two conditions given in the Definition 4.1.1 above be
satisfied. Since the selected monomials are standard with respect to the sorting
order, it consequently follows that the products ω1 · · ·ωM , µ1 · · ·µM are sorted. Since
degxi

ω1 · · ·ωM = degxi
µ1 · · ·µM for 1 ≤ i ≤ q−1, we also have degxi

(ωγ) = degxi
(µγ)

for all 1 ≤ γ ≤ M and 1 ≤ i ≤ q − 1. If we consider the condition degxq
ω1 · · ·ωM <

degxq
µ1 · · ·µM , then it is immediate to see that, the condition implies that there

exists 1 ≤ δ ≤ M such that degxq
(ωδ) < degxq

(µδ).
Let ωδ = xj1 · · ·xjd , µδ = xℓ1 · · ·xℓd , and assume that q = ℓη for some 1 ≤ η < d.

It follows that j1 = ℓ1, . . . , jη−1 = ℓη−1 and jη > ℓη = q. Now we have two cases
that is jη /∈ supp (µδ) and jη ∈ supp (µδ). Therefore, we proceed with the proof by
considering these two cases separately.

If jη /∈ supp (µδ), then we take j = jη. Then the monomial xqωδ/xj is t-
spread, thus it is an element of Bt(ω), since q = ℓη ≥ ℓη−1 + t = jη−1 + t and
jη+1 ≥ jη + t > q + t.

If jη ∈ supp (µδ), we can pick any j ∈ supp (ωδ) such that j /∈ supp (µδ) with
j > q. This choice of j is possible; it is because, deg (ωδ) = deg (µδ) and degxq

(ωδ) <

degxq
(µδ). Since q, jη ∈ supp (µδ), therefore xqωδ/xj is a t-spread monomial.

Before the theorem, let us recall the definition of the Gröbner basis.

Definition 4.2.4. [9] Let I ⊂ S = K[x1, . . . , xn] be an ideal, and let < be a
monomial order on S. A sequence g1, . . . , gm of elements in I with in<(I) =

(in<(g1), . . . , in<(gm)) is called a Gröbner basis of I with respect to the monomial
order I.

Theorem 4.2.5. [1] Let I = Bt(u) be a t-spread principal Borel ideal. Gröbner basis
of the toric ideal J with respect to < consists of the monomials tvtw−tv′tw′ where (v, w)

is unsorted and (v′, w′) = sort(v, w), together with the binomials of the form xitv −
xjtw where i < j, xiv = xjw and j is the largest integer for which xiv/xj ∈ G(I).

Proof. We know that any principal Borel ideal satisfies the ℓ-exchange property with
respect to the sorting order, by the Proposition 4.2.3. Then we finish the proof by
applying [14, Theorem 5.1].
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Proposition 4.2.6. [1, Proposition 2.4] All the powers of Bt(u) have linear quotients.
In particular, all the powers of Bt(u) have a linear resolution.

Corollary 4.2.7. [1, Corollary 2.5] The Rees algebra R(Bt(u)) is Koszul.

4.3 Asympototic behavior of Borel ideals

In this section, we investigate the asymptotic behavior of the depth of the t-spread
principal Borel ideals and we give some remarks for when the case a t-spread Borel
ideal is a t-spread Veronese ideal.

Let S = K[x1, . . . , xn] be the polynomial ring over the field K with n variables.
Let us take the ideal Bt(u) ⊂ S with u = xi1xi2 · · ·xid . Our aim is to compute that
the limit depth of S/Ik. Since, by Borel moves, we cannot obtain a monomial with
xj in its support such that j > id, so we can restrict ourselves to the case when
id = n.

Theorem 4.3.1. [1] Let t ≥ 1 be an integer and I = Bt(u) ⊂ S the t-spread principal
Borel ideal generated by u = xi1 · · ·xid where t+ 1 ≤ i1 < i2 < . . . < id−1 < id = n.

Then we have,

depth
(
S

Ik

)
= 0, for k ≥ d.

Proof. By the Proposition 4.2.3, we know that I satisfies the ℓ-exchange property.
Then, [10, Theorem 3.6] implies that Ik has linear quotients with respect to >lex

for all k ≥ 1. Let us say G(Ik) = {w1, . . . , wm} with w1 >lex . . . >lex wm for
1 ≤ j ≤ m. We define rj by the number of variables appearing in the colon ideal
(w1, . . . , wj − 1) : wj as a generator. Then by the [12, Corollary 8.2.2] we have

projdim
(
S

Ik

)
= max{r1, . . . , rm}+ 1. (4.1)

By the Auslander - Buchsbaum formula, we have

projdim
(
S

Ik

)
+ depth

(
S

Ik

)
= depth(S) = n

then, we can write

depth
(
S

Ik

)
= n− projdim

(
S

Ik

)
.
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Therefore by the composing Auslander-Buchsbaum formula with (4.1), to prove the
first statement of the theorem, it is enough to show that max{r1, . . . , rm}+ 1 = n

for k ≥ n or it is also enough to show that projdim
(

S
Ik

)
= n.

Let us denote w0 = v1v2 · · · vd, here

v1 = x1xt+1 . . . x(d−3)t+1x(d−2)t+1xn

v2 = x1xt+1 . . . x(d−3)t+1xid−1
xn

...

vd−1 = x1xi2 . . . xid−2
xid−1

xn

vd = u = xi1xi2 . . . xid−2
xid−1

xn.

It is immediate to see that vi ∈ G(I) for all i ∈ {1, . . . , d}. Let k ≥ d be an
integer and let us define w as follows

w = w0u
k−d ∈ G(Ik).

If is shown to be(
w′ ∈ G(Ik) : w′ >lex w

)
: w ⊇ (x1, . . . , xn−1) ,

the equality projdim
(

S
Ik

)
= n given in just above to be proved.

Consider the ideal defined as J =
(
w′ ∈ G

(
Ik
)
: w′ >lex w

)
. Our aim is to show

that xjw ∈ J for all 1 ≤ j ≤ n− 1. Let be 1 ≤ s ≤ d such that is−1 ≤ j < is, where
we set i0 = 1. We consider the monomial

v′d−s+1 =
xjvd−s+1

xis

= x1xt+1 · · · x(s−2)t+1xjxis+1 · · ·xid−1
xn.

Since we have j < is and v′d−s+1 is a t-spread monomial in S, it is immediate to
see that v′d−s+1 ∈ G(I). Indeed, we have

is+1 − j > is+1 − is ≥ t,

j − (s− 2)t− 1 ≥ is−1 − (s− 2)t− 1 ≥ (i1 + (s− 2)t)

−(s− 2)t− 1 = i1 − 1 ≥ t

Let w′
0 be monomial obtained from w0 by the Borel move v′d−s+1

vd−s+1
and let w′ =

w′
0u

k−d. Then w′ >lex w, thus w′ ∈ J and since xjw = xisw
′, we have xjw ∈ J ,

which implies that xj ∈ J : w.
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If the interested reader would also like to see the results obtained on analytic
spread of a principal Borel ideal, they can see the [1, Chapter 3]. However, analytic
spread of an ideal is not discussed in this thesis.

By the last theorem which we just proved, we give the exact number of the
Krull dimension of the K-algebra generated by the minimal generating set of a given
principal Borel ideal. Let us give this result in the following corollary.

Corollary 4.3.2. [1] Let t ≥ 1 be an integer and Bt(u) ⊂ S the t-spread principal
Borel ideal generated by u = xi1 · · ·xid where t+ 1 ≤ i1 < i2 < · · · < id−1 < id = n.
Then dim

(
K [G (Bt(u))]

)
= n.

4.4 Remarks on t-spread principal Borel ideals

Let I be a monomial ideal in S = K[x1, . . . , xn] and let T be the polynomial ring
over K in (n+ |G(I)|)-many variables. We assign a new variable to each monomial
in I, such that

G(I) ∋ u 7−→ yu ∈ T.

In this way, we are able to denote T as T = K[x1, . . . , xn, {yu}u∈G(I)] the polynomial
ring in (n+ | G(I) |)-many variables.

Let us denote <lex denote the lexicographic order on S such that <lex comes
from x1 > x2 > · · · > xn. Fix an arbitrary monomial order <# on K

[
{yu}u∈G(I)

]
.

Then, we are able to define a new monomial order denoted by <#
lex on R and defined

as below:
For monomials

(∏n
i=1 x

ai
i

)(∏
u∈G(I) y

au
u

)
and

(∏n
i=1 x

bi
i

)(∏
u∈G(I) y

bu
u

)
belong-

ing to R, one has(
n∏

i=1

xai
i

)( ∏
u∈G(I)

yauu

)
<#

lex

(
n∏

i=1

xbi
i

)( ∏
u∈G(I)

ybuu

)

if either

(i)
∏

u∈G(I) y
au
u <#

∏
u∈G(I) y

bu
u or,

(ii)
∏

u∈G(I) y
au
u =

∏
u∈G(I) y

bu
u and

∏n
i=1 x

ai
i <lex

∏n
i=1 x

bi
i .

Now, we give an important remark for distinction of the monomial orders which
we used below. The following difference in ordering is essential for understanding
the techniques and results in each case.
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Remark 4.4.1. [1] Note that the ordering used to establish that all powers of the
principal Borel ideal Bt(u) have linear quotients in Proposition 4.2.6 is distinct from
the decreasing lexicographic order applied in the proof of Theorem 4.3.1.

Actually, the toric ideal of K[Bt(u)] does not have a quadratic Gröbner basis in
terms of the lexicographic order. Let us give an example for this:

Example 4.4.2. [1] Let S = K[x1, . . . , x10] and u = x6x8x10 ∈ Mon(S) and I =

B2(u). Let f = tu1tu2tu3 − tv1tv2tv3 with u1 = x1x3x8, u2 = x1x7x9, u3 = x2x4x6 and
v1 = x1x3x9, v2 = x1x6x8, v3 = x2x4x7. As a result, f can be identified as a binomial
within the toric ideal of K [B2(u)]. The leading monomial of f , when considered
under the lexicographic order, is tu1tu2tu3.It is immediate to obtain that there is
no quadratic monomial in the initial ideal of the toric ideal that divides tu1tu2tu3.
Consequently, in terms of the lexicographic order, the reduced Gröbner basis of the
toric ideal of K [B2(u)] is not quadratic.

Lastly we state a remark on the maximal number of variables which generate the
colon ideals of Ik (see [1]). In the proof of Theorem 4.3.1, we consider the following
monomials

v1 = x1xt+1 · · · x(d−2)t+1xdt,
...

vd−1 = x1x2t · · ·xdt,

vd = u = xtx2t · · ·xdt ;

and the one shows that, for k ≥ d,(
w′ ∈ G

(
Ik
)
: w′ >lex w

)
: w ⊇ (xj : j ∈ [n]\supp(u)) ,

where w = v1 · · · vduk−d. Nonetheless, we show that if an index j ∈ supp(u), then
xj does not appear among the variables in the minimal generating set of the colon
ideals of Ik. Let us assume that there exists k ≥ 1 and a monomial ξ = ξ1 · · · ξk ∈ Ik

with ξ1, . . . , ξk ∈ I, such that xj ∈
(
ξ′ ∈ Ik : ξ′ >lex ξ

)
for some j ∈ supp(u). This

follows that there exists ξ′ = ξ′1 · · · ξ′k ∈ Ik and an integer s > j such that xjξ = ξ′xs.
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Let j = qt for some 1 ≤ q ≤ d. Then

qt∑
ℓ=(q−1)t+1

degxℓ
(xjξ) =

qt∑
ℓ=(q−1)t+1

degxℓ
(xjξ1 · · · ξk)

= k + 1 > k

=

qt∑
ℓ=(q−1)t+1

degxℓ
(ξ′1 · · · ξ′kxs)

=

qt∑
ℓ=(q−1)t+1

degxℓ
(ξ′xs) ,

and then we obtain the following inequality:

qt∑
ℓ=(q−1)t+1

degxℓ
(xjξ) >

qt∑
ℓ=(q−1)t+1

degxℓ
(ξ′xs) .

This is a contradiction. Therefore, the maximal number of variables which generate
the colon ideals of Ik for k ≥ d is n− d. Hence, projdim S

Ik
= n− d+1, for all k ≥ d.
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