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ABSTRACT

COMPREHENSIVE COMPARISON OF DIFFERENT EARLY BEARING
FAULT DETECTION TECHNIQUES

MOHAMED ELARABY ABDOU SOLIMAN ELGALLAD

MECHATRONICS ENGINEERING M.Sc. THESIS, JULY 2024

Thesis Supervisor: Assoc. Prof. Kemalettin Erbatur
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Bearing fault detection is a part of predictive maintenance for rotating machinery to 
provide early warnings of pending breakdowns, preventing sudden stops in produc-
tion. This study presents two advanced methods for bearing fault detection utilizing 
the Case Western Reserve University (CWRU) and the HUST Bearing Datasets: 
Support Vector Machines (SVMs) optimized by Grey Wolf Optimization (GWO), 
Particle Swarm Optimization (PSO), and the novel Kepler Optimization Algorithm 
(KOA), and a deep learning approach using Bidirectional Long Short-Term Memory 
(BiLSTM) networks.

The SVM parameters, box constraint and kernel scale were tuned with GWO, PSO, 
and KOA to improve fault detection efficiency. These results were compared with 
those of a BiLSTM-based deep learning model. Our comparison showed that the 
BiLSTM model significantly outperformed the optimized SVM m odels. Although 
the optimized SVMs achieved considerable improvements over non-optimized SVM 
models in fault detection accuracy, they were still inferior to the BiLSTM model.

Evaluated based on accuracy, the BiLSTM model consistently performed outstand-
ingly across different fault types and sizes, reaching 100% accuracy on small fault 
sizes, and accuracies as high as 99.92% on bigger ones on the CWRU Dataset and 
accuracies as high as 99.58% on the HUST Dataset. The proposed model outper-
formed several modern models regularly utilized for bearing fault detection. This 
research highlights the potential of deep learning techniques, specifically BiLSTM, 
in bearing fault detection, demonstrating their advantage over traditional machine
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learning models even when optimized with advanced algorithms. This study adds
value to the field by showcasing the capabilities of deep learning to enhance predic-
tive maintenance systems.
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ÖZET

FARKLI RULMAN ERKEN ARIZA TESPİT TEKNİKLERİNİN KAPSAMLI
KARŞILAŞTIRILMASI

MOHAMED ELGALLAD

Mekatronik Mühendisliği YÜKSEK LİSANS TEZİ, TEMMUZ 2024

Tez Danışmanı: Doç. Dr. Kemalettin Erbatur

Anahtar Kelimeler: Rulman arıza tespiti, Optimizasyon, Destek Vektör Makineleri
(SVM), Derin Öğrenme, Çift Yönlü Uzun Kısa Süreli Bellek (BiLSTM)

Rulman arıza tespiti, dönen makineler için öngörücü bakımın bir parçası olup,
beklenen arızalara ilişkin erken uyarılar sağlayarak üretimdeki ani duruşları ön-
ler. Bu çalışma, Case Western Reserve Üniversitesi (CWRU) ve HUST rulman
veri kümelerini kullanarak rulman arıza tespiti için iki gelişmiş yöntem sunmak-
tadır: i) Grey Wolf Optimizasyonu (GWO), Parçacık Sürü Optimizasyonu (PSO)
ve yeni Kepler Optimizasyon Algoritması (KOA) ile optimize edilmiş Destek Vektör
Makineleri (SVM’ler) ve ii) Çift Yönlü Uzun Kısa Süreli Bellek (BiLSTM) ağlarını
kullanan derin bir öğrenme yaklaşımı.

Arıza tespit verimliliğini artırmak için SVM kutu kısıtlaması ve çekirdek ölçeği
parametreleri GWO, PSO ve KOA ile ayarlandı. Bu sonuçlar BiLSTM tabanlı derin
öğrenme modelinin sonuçlarıyla karşılaştırıldı. Karşılaştırmamız BiLSTM modelinin
optimize edilmiş SVM modellerinden önemli ölçüde daha başarılı olduğunu gösterdi.
Optimize edilmiş SVM’ler, optimize edilmemiş SVM modellerine göre hata tespit
doğruluğu açısından önemli gelişmeler elde etmesine rağmen, hala BiLSTM mod-
elinden daha düşük performans gösterdiler.

Doğruluğa dayalı olarak değerlendirilen BiLSTM modeli, farklı hata türleri ve hata
boyutlarında sürekli olarak üstün performans göstererek küçük hata boyutlarında
%100 ve daha büyük olanlarda %99,92’ye varan doğruluğa ulaşmıştır. HUST Veri
Kümesi’nde doğruluk oranı %99,58’e kadar çıkmaktadır. Önerilen model, rulman
arıza tespiti için düzenli olarak kullanılan birçok son teknoloji ürünü modelden daha
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iyi performans göstermiştir. Bu araştırma, rulman arızası tespitinde derin öğrenme
tekniklerinin, özellikle de BiLSTM’nin potansiyelini vurgulamaktadir. Tez, gelişmiş
algoritmalarla optimize edildikleri durumda dahi geleneksel makine öğrenimi model-
lerine göre BiLSTM’nin avantajlarını ortaya koymakta, derin öğrenmenin tahminsel
bakım sistemlerini geliştirmedeki yeteneklerini sergileyerek alana değer katmaktadır.
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1. INTRODUCTION

For an industry to flourish, bearing fault detection in mechanical machinery is oblig-
atory, Holm-Hansen & Gao (2000). Bearing fault detection is a critical component
in the maintenance and monitoring of rotating machinery, essential for ensuring
operational reliability and preventing unexpected failures. Bearings are vital ele-
ments in machinery, facilitating smooth rotation and load-bearing capabilities. The
importance of bearing fault detection cannot be exaggerated. In recent decades,
the modern industry has increasingly incorporated critical and advanced machinery
across various sectors, including power generation, aviation, oil and gas, chemicals,
and manufacturing, Hui, Ooi, Lim & Leong (2016). In these industries, the fail-
ure of a single bearing can halt entire production lines, cause equipment to operate
inefficiently, or lead to safety risks. Early detection of bearing faults allows for
timely repairs and replacement, hence minimizing downtime and financial losses,
Youcef Khodja, Guersi, Saadi & Boutasseta (2020), and preventing secondary dam-
age to other machine components. This thesis explores two advanced methodolo-
gies for bearing fault detection: Support Vector Machines (SVM) optimized using
Grey Wolf Optimization (GWO), Mirjalili, Mirjalili & Lewis (2014), Particle Swarm
Optimization (PSO), Kennedy & Eberhart (1995), and the novel Kepler Optimiza-
tion Algorithm (KOA), Abdel-Basset, Mohamed, Azeem, Jameel & Abouhawwash
(2023), and deep learning with Bidirectional Long Short-Term Memory networks
(BiLSTMs), Graves & Schmidhuber (2005).

Traditional maintenance strategies often relied on scheduled maintenance or reactive
maintenance, which are not always very efficient. Scheduled maintenance may
result in unnecessary downtime and costs, while reactive maintenance frequently
resulted in unexpected failures and extensive repairs, Ran, Zhou, Lin, Wen &
Deng (2019). These limitations emphasized the need for predictive maintenance
techniques that can monitor the condition of bearings in real-time and predict
faults long before they lead to failures.
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1.1 Methods of Bearing Fault Detection

Acoustic Emission Analysis detects the high-frequency sound waves generated
by bearing defects, Gholizadeh, Leman, Baharudin & others (2015). This method
is sensitive to early-stage faults that may not yet produce significant vibration. By
capturing and analyzing these acoustic signals, faults can be detected at an early
stage.

Thermal Imaging involves using infrared cameras to detect temperature variations
in the bearing, Azeez, Alkhedher & Gadala (2020). Faulty bearings often generate
excessive heat due to increased friction. Thermal imaging can visualize these hot
spots, providing a non-invasive way to detect bearing faults.

Electrical Signature Analysis monitors changes in the electrical signals of motors
driving the bearings, Salomon, Ferreira, Sant’Ana, Lambert-Torres, Borges da Silva,
Bonaldi, de Oliveira & Torres (2019). Faults in bearings can cause variations in
current and voltage, which can be analyzed to detect anomalies.

Vibration Analysis is one of the most widely used techniques for machinery fault
detection. It involves measuring the vibrations produced by a machine and analyzing
these signals to identify abnormal patterns indicative of faults, Aherwar (2012).
Vibration Analysis is the method of bearing fault detection used throughout this
thesis.

1.2 Techniques of Bearing Fault Detection

Recent innovations in technology have led to the development of advanced meth-
ods for bearing fault detection. These methods include machine learning and deep
learning techniques, which can analyze large amounts of data and detect complex
patterns associated with bearing faults.

Machine learning algorithms, such as Support Vector Machines (SVM), Artificial
Neural Networks, and K-Nearest Neighbors (K-NN), have been applied to bearing
fault detection. These algorithms can be trained on labeled datasets to classify
different types of bearing faults and predict their occurrence based on input data
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such as vibration signals, Zhang, Zhang, Wang & Habetler (2020).

Deep learning, a subset of machine learning, employs neural networks with
multiple layers to model complex relationships in data. Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs), particularly Long
Short-Term Memory (LSTM) networks, have shown great promise in bearing fault
detection, Zhang et al. (2020). These models can automatically extract features
from raw data and capture temporal dependencies, making them very effective for
analyzing time-series data such as vibration signals.

The traditional machine learning algorithm, Support Vector Machines and the more
advanced deep learning algorithm, Bidirectional Long Short-Term Memory, are both
explored in this thesis.

1.3 Types of Bearing Faults

Three common classifications of bearing faults are inner race, outer race, and ball
faults. As the names suggest, inner race faults refer to bearing faults on the inner
bearing, while outer race faults refer to bearing faults on the outer bearing. Ball
faults refer to faults on the rolling elements of the bearing. Figure 1.1 illustrates a
typical bearing and Figure 1.2 illustrates the three common types of bearing faults
mentioned above.

In addition to detecting the presence of a bearing fault, it is equally important
to be able to classify the type of fault to quicken the process of fixing the fault.
For this reason, the Case Western Reserve University (CRWU) Bearing Dataset,
Wu (2024), and the HUST Bearing Dataset, Thuan & Hong (2023), were used in
this thesis to appraise the performance of the presented models (the HUST Bearing
Dataset was only used with the deep learning model). The Bearing Datasets contain
accelerometer vibration data collected from non-faulty and faulty bearings.

3



1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 reviews some related work.
Following that, Chapter 3 presents our motivation for this thesis. Next, Chapter 4
covers our datasets and methodology. The results are presented in Chapter 5, and
Chapter 6 concludes the thesis and highlights potential future work.

Figure 1.1 Typical Bearing

(a) (b) (c)

Figure 1.2 Fault Types: (a) Inner Race Fault (b) Ball Fault (c) Outer Race Fault
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2. LITERATURE REVIEW

Bearing fault detection has been a hot topic for many years. With the recent
rising popularity of predictive maintenance in Industry 4.0, Zonta, Da Costa,
da Rosa Righi, de Lima, da Trindade & Li (2020), a lot of research has been con-
ducted to apply predictive maintenance to bearing fault detection. Machine learn-
ing, as well as deep learning, are among the most transformative technologies in
artificial intelligence. Their popularity has surged recently due to their capacity to
predict outcomes, analyze vast amounts of data, and deliver insights that were once
unattainable, Sharifani & Amini (2023). Naturally, since predictive maintenance
relies mainly on analysing large amounts of data and detecting failures, machine
learning and deep learning techniques have been widely applied to bearing fault
detection.

2.1 Machine Learning In Bearing Fault Detection

Several Machie Learning techniques have been widely deployed for bearing fault
detection. Schoen, Lin, Habetler, Schlag & Farag (1995) used Artifical Neural Net-
works (ANNs) to learn the characteristics of a good motor and used the learned
model to detect faulty motors by comparing their characteristics with those of the
good motor. Li, Chow, Tipsuwan & Hung (2000) used ANNs to detect bearing faults
based on bearing vibration frequency features. Kanai, Desavale & Chavan (2016)
combined ANNs with Mobel-based estimation (MBE) to diagnose faults of deep
groove ball bearings. Li, Su, Wu, Wang & Chen (2017) diagnosed bearing faults
using a method found on Kernel Extreme Learning Machine and Variational Mode
Decomposition. Fei (2017) proposed an SVM model coupled with wavelet packet
transform-phase space reconstruction-singular value decomposition for bearing fault
diagnosis. Shen, Xiao, Wang & Song (2023) used Support Vector Machines com-
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bined with the optimization algorithms Grey Wolf Optimization and Particle Swarm
Optimization to detect and classify bearing faults using the CRWU bearing dataset.
Yang, Hu & Zhang (2020) also used SVMs combined with IMF sample entropy and
PSO to effectively identify rolling bearing faults. Hadden & Hadi (2023) combined
Wavelet Analysis and K-Means Clustering for early fault detection in roller element
bearings.

2.2 Deep Learning In Bearing Fault Detection

In addition to the many machine learning algorithms used, deep learning models also
had their fair share of applications in bearing fault detection. Two of the most com-
monly used deep learning models are Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs). Lu, Wang & Zhou (2017) applied intelligent
rolling bearing diagnosis using hierarchical CNN-based health state classification.
Hoang & Kang (2019) used CNNs to classify bearing faults based on vibrational
signals. Wen, Li, Gao & Zhang (2017) proposed a novel CNN based on LeNet-5
for diagnosing bearing faults after transforming the signals into 2-D images. Zhang,
Yi, Liang, Hongli, Xin & Hongliang (2020) also converted raw signals into two-
dimensional images and used a CNN to classify the different types of bearing faults.
Liu, Zhou, Zheng, Jiang & Zhang (2018) proposed a novel method for bearing fault
detection using RNN in the form of an autoencoder. Shenfield & Howarth (2020)
developed an intelligent fault diagnosis method using a novel dual-path RNN with a
wide first kernel and deep CNN pathway capable of diagnosing bearing faults using
real-time data streams. Chen, Zhang & Gao (2021) proposed an automatic feature
learning neural network followed by an LSTM network to identify the type of fault.

2.3 Contributions of Thesis

While machine learning and deep learning techniques have been widely utilized for
bearing fault detection, the vast majority of the proposed methods use some sort
of preprocessing on the data before passing it to the model. What sets this thesis
apart from the majority of the related work, is that no preprocessing is performed
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on the data used in the proposed models. The advantage of this is that it simplifies
the integration of the proposed model into any industrial setup where bearing fault
detection is desired. The only inputs required by the model are the raw vibrational
data from the accelerometers installed on the machines within close proximity to
the bearings. The proposed model proved to be extremely accurate in detecting
and classifying bearing faults, reaching an accuracy of 100% on small fault sizes
and accuracies above 99.8% on bigger fault sizes. The proposed model reached an
accuracy of 99.62% when all the fault sizes were combined.
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3. MOTIVATION

In this chapter, we present the motivation for this thesis. The need for bearing fault
detection is ever-growing due to the bloom in the number of machines used in every
industry worldwide, from small workshops to large-scale factories. According to
statistics, bearing failures are responsible for 40% of motor failures, Hakim, Omran,
Ahmed, Al-Waily & Abdellatif (2023). A faulty bearing leads to the failure of the
machine in which it is installed, which in turn leads to undesired outcomes. If a
faulty bearing is not detected early, the failure of the machine cannot be prevented.
This results in costly repairs and downtime. Generally, replacing a faulty bearing
before complete breakdown costs significantly less time and money when compared
with repairing the machine after it has broken down because the faulty bearing can
lead to further complications within the machine. In cases where the bearing fault
is not detected early and the machine completely fails, one might need to replace
multiple parts of the machine, if not the whole machine.

Costly repairs and significant downtime are not the only reasons for the in-
creasing interest in detecting faulty bearings early. Another equally, if not more,
important reason is safety, Selcuk (2017). When a machine has a faulty bearing, it
cannot be determined when and if it will break down. In many machines, especially
large ones, this can pose a serious risk to the safety of the machines’ operators. The
machines could break down while an operator is handling them or while workers
are in their proximity, which can result in serious injuries or even death. Therefore,
identifying a faulty bearing ahead of a machine’s failure is crucial for the well-being
of the workers.

In addition to the reasons outlined above, the life of machines can be greatly
extended with timely bearing fault detection. If a faulty bearing is detected and
replaced before complete machine failure, the damage done by the bearing on the
machine, due to the increased friction and repeated high-temperature contact,
can be minimized, Xiao, Yang & Yang (2023). Moreover, the efficiency of the
machines will increase because the increased friction also leads to higher energy
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consumption by the machine. Finally, even if a machine still works, faulty bearings
can lead to the production of subpar products. Therefore, detecting faulty bearings
early helps maintain the expected quality of the products produced by the machines.

It is clear from the previous paragraphs that early bearing fault detection
cannot just be an option, indeed it is a must. It needs to be easily available
for anyone who wishes to avoid all the complications caused by faulty bearings.
The objective of this thesis is to find a model that can accurately detect and
classify bearing faults into inner race, outer race, and ball faults, using raw
unprocessed vibration data from accelerometers. To do this, this thesis compares
the performance of the machine learning model, Support Vector Machines (SVMs),
with parameters optimized by the optimization algorithms GWO, PSO, and the
novel KOA, and the deep learning model, Bidirectional Long Short-Term Memory
(BiLSTM). Additionally, this thesis aims to come up with a set of hyper-parameters
for the BiLSTM model that maximize the accuracy of detecting and classifying
faulty bearings. The fact that the proposed model uses raw vibration data means
that it is readily available for anyone who wishes to use it without the need for any
kind of data preprocessing.
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4. APPROACH AND METHODS

This chapter presents the approach and methodology of the thesis. In section 4.1,
the Case Western Reserve University (CWRU) Bearing Dataset is inspected closely.
Section 4.2 describes the HUST Bearing Dataset used for the BiLSTM model’s
performance verification. Sections 4.3 and 4.4 present Support Vector Machines
(SVMs) and the three optimization algorithms: Grey Wolf Optimization Algorithm
(GWO), Particle Swarm Optimization Algorithm (PSO), and Kepler Optimization
Algorithm (KOA). In section 4.5, the deep learning models LSTM and BiLSTM are
presented. Section 4.6 includes some definitions for the hyper-parameters that will
be tuned for the BiLSTM model. The codes for the data preparation process, SVM
models, and the deep learning model can be found in Appendix A.

4.1 The Case Western Reserve University Dataset

The Case Western Reserve University (CWRU) Bearing Data Center’s datasets are
used in this thesis to evaluate the models’ performances in detecting and classifying
bearing faults. The datasets contain accelerometer vibration data for normal and
faulty bearings. The faulty bearings are of three kinds: inner race faults, outer race
faults, and ball faults. Experiments were conducted using a 2 hp Reliance Electric
motor, and acceleration data was measured at both the Drive End and the Fan
End. The vibration data was collected using a 16 channel DAT recorder. The Drive
End data was collected at two frequencies: 12 kHz and 48 kHz. The Fan End data
was collected at 12 kHz only.

Motor bearings were intentionally damaged by electro-discharge machining
(EDM). Defects with diameters between 0.007 inches and 0.028 inches were created
individually on the inner raceway, outer raceway, and ball (rolling element). The
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faulted bearings were then reinstalled into the test bench, and vibration data was
collected under motor loads ranging from 0 to 3 horsepower. Throughout this
thesis, a “dataset” would refer to a single column vector of accelerometer data that
has a unique combination of these 5 characteristics:

• Location of the accelerometer:

– Drive End

– Fan End

• Frequency at which the data was collected:

– 12 kHz

– 48 kHz

• Fault type:

– No Fault

– Inner Race Fault

– Ball Fault

– Outer Race Fault

• Size of fault:

– 0.007 inches

– 0.014 inches

– 0.021 inches

– 0.028 inches (this fault size does not contain outer race faults)

• Motor load:

– 0 Horsepower

– 1 Horsepower

– 2 Horsepower

– 3 Horsepower

Throughout this thesis, the datasets used have the 3 common characteristics: ac-
celerometer at the Drive End, data collected at 12 kHz, and 0 Horsepower motor
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load. All 4 fault types and 4 fault sizes are used. Figure 4.1 shows the test stand
used to collect the data and Figure 4.2 shows a simplified drawing of it. Table 4.1
displays the size specifications (in inches) of the bearings used for the data collection.

Figure 4.1 CWRU Bearing Test Stand

Figure 4.2 CWRU Bearing Test Stand Illustration

Table 4.1 CWRU - Bearing Size Specifications

Inside Diameter Outside Diameter Thickness Ball Diameter Pitch Diameter
0.9843 2.0472 0.5906 0.3126 1.537
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4.2 The HUST Bearing Dataset

The HUST Bearing Dataset is used in this thesis to verify the performance of the
BiLSTM model. The HUST Bearing Dataset consists of a large set of vibration
data of different faulty bearings. The Dataset includes vibration data for 6 fault
types: inner race fault, ball fault, outer race fault, and their 3 combinations. All
fault sizes in this dataset have a size of about 0.0079 inches. The Dataset also
includes vibration data for normal bearings. The vibration data is collected from
the bearings at 3 motor loads: 0 Watts, 200 Watts, and 400 Watts. Five different
bearings are used in this Dataset, their sizes (in inches) and other characteristics
can be seen in Table 4.2. The test bench for the HUST Bearing Dataset can be seen
in Figure 4.3 below.

Table 4.2 HUST - Bearing Size Specifications

Bearing Inside Diameter Outside Diameter Ball Diameter Ball Number
6204 0.7874 1.8504 0.2992 8
6205 0.9842 2.0472 0.3071 9
6206 1.1811 2.4409 0.3543 9
6207 1.3779 2.8347 0.4331 9
6208 1.5748 3.1496 0.4724 9

Figure 4.3 HUST Bearing Dataset Test Bench
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In this thesis, the vibration data of the 4 bearings 6205, 6206, 6207, and 6208 are
used. Bearing 6204’s data was not used because it did not have vibration data for
ball faults. The faults used are: inner race faults, ball faults, and outer race faults.
The other 3 fault types were not used to keep the datasets comparable to the CWRU
datasets. For the same reason, the vibration data collected at 0 Watts motor load
was used.

4.3 Support Vector Machines (SVM)

Support Vector Machines (SVM) are powerful machine learning models that
use supervised learning for regression, classification, and outlier detection. The
fundamental concept of SVM is to find the optimal hyperplane that splits the data
points of different classes in a high-dimensional space. The optimal hyperplane is
defined as the one that maximizes the margin between the nearest points (support
vectors) of the classes. Figure 4.4 illustrates the concept of finding the optimal
hyperplane.

Figure 4.4 Input Plane to Optimal Plane
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4.3.1 Mathematical Formulation of SVM

Given a set of training data {(xi,yi)}ni=1 where xi ∈Rn and yi ∈ {−1,1}, SVM aims
to solve the following optimization problem:

minw,b
1
2 ∥w∥

2 (4.1)

subject to the constraints:
yi (w ∗xi + b)≥ 1,∀i (4.2)

Here, w represents the weight vector and b is the bias term. In scenarios where data
is not perfectly separable, a slack variable ξi is introduced to allow some misclassi-
fication:

minw,b
1
2 ∥w∥

2 +C
n∑
i

ξi (4.3)

subject to:
yi (w ∗xi + b)≥ 1− ξi, ξ ≥ 0,∀i (4.4)

where C (Box Constraint) is a regularization parameter that manages the trade-off
between maximizing the margin and minimizing the classification error.

4.4 Optimization Algorithms for SVM

In this thesis, the optimization of the SVM models was done by finding the best
values for the “Box constraint”, C, and “Kernel Scale”, g, to maximize classification
performance. The “Kernel Scale” is a regularization parameter that influences the
complexity of the model. A smaller kernel scale value results in a narrower kernel
width, creating a more complex model capable of capturing finer details in the data,
though it may increase the risk of overfitting. On the other hand, a larger kernel scale
value produces a broader kernel, resulting in a simpler model that may generalize
better but could potentially underfit the data. This thesis utilizes three optimization
algorithms: Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO),
and the Kepler Optimization Algorithm (KOA) to enhance SVM performance.
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4.4.1 Grey Wolf Optimization (GWO)

Grey Wolf Optimization (GWO) is a nature-inspired algorithm based on grey wolves’
social hierarchy and hunting behavior. The population is divided into four cat-
egories: alpha, beta, delta, and omega, which represent the leadership hierarchy.
Figure 4.5 illustrates the different actors of the Grey Wolf Optimization Algorithm.

Figure 4.5 Grey Wolf Optimization

4.4.1.1 GWO Mathematical Model

The position update equations for GWO are:

D⃗α =
∣∣∣C⃗ ∗ X⃗p− X⃗α

∣∣∣ (4.5)

16



X⃗1 = X⃗α− A⃗∗
(
D⃗α

)
(4.6)

D⃗β =
∣∣∣C⃗ ∗ X⃗p− X⃗β

∣∣∣ (4.7)

X⃗2 = X⃗β− A⃗∗
(
D⃗β

)
(4.8)

D⃗δ =
∣∣∣C⃗ ∗ X⃗p− X⃗δ

∣∣∣ (4.9)

X⃗3 = X⃗δ− A⃗∗
(
D⃗δ

)
(4.10)

where C1, C2, C3 and A1, A2, A3 are coefficient vectors, Xα, Xβ, Xδ are the
positions of the alpha, beta, and delta wolves, and X is the position of the grey wolf.

The new position of the grey wolf is then updated as follows:

X⃗ (t+1) = X⃗1 + X⃗2 + X⃗3
3 (4.11)

4.4.2 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) imitates the social behaviour of a flock of birds
or a school of fish. Each particle adjusts its position according to its own experience
and that of its neighbors. The basic working of the Particle Swarm Optimization
Algorithm is shown in Figure 4.6.
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Figure 4.6 Particle Swarm Optimization

4.4.2.1 PSO Mathematical Model

The velocity and position of each particle are updated as follows:

vi (t+1) = ωvi (t)+ c1r1 [pi−xi (t)]+ c2r2 [g−xi (t)] (4.12)

xi (t+1) = xi (t)+vi (t+1) (4.13)

where vi(t) is the velocity of particle i, xi(t) is the position of particle i, pi is the
best position found by particle i, g is the global best position found by the swarm,
is the inertia weight, and c1, c2, r1, and r2 are constants and random variables that
influence the cognitive and social components of the algorithm.

4.4.3 Kepler Optimization Algorithm (KOA)

The Kepler Optimization Algorithm (KOA) is inspired by the laws of planetary
motion described by Johannes Kepler. It uses principles of gravitational interaction
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and orbital mechanics to optimize search processes. Figure 4.7 shows a flowchart
for the working of the Kepler Optimization Algorithm.

4.4.3.1 KOA Mathematical Model

The velocity update in KOA is based on gravitational forces:

vi (t+1) = vi (t)+ GMmi

r2
i

∆t (4.14)

where G is the gravitational constant, M is the mass of the central body, mi is the
mass of the particle, ri is the distance between the particle and the central body,
and ∆t is the time step.

Figure 4.7 Kepler Optimization Algorithm
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4.5 Deep Learning and Long Short-Term Memory Networks

Deep learning is a subset of machine learning that employs multi-layered neural
networks to model complex patterns in data. It has proven effective in various ap-
plications, including speech and image recognition, time series analysis, and natural
language processing.

4.5.1 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network
(RNN) created to capture long-term dependencies in sequential data. They address
the vanishing gradient problem common in traditional RNNs by adding a memory
cell that maintains its state over time. Figures 4.8 and 4.9 below show the difference
in structure between traditional RNNs and the LSTM network.

Figure 4.8 Traditional RNN

Figure 4.9 LSTM Network
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4.5.1.1 LSTM Cell Equations

An LSTM cell consists of three gates: input gate, forget gate, and output gate.
These gates manage the information flow into and out of the cell. An illustration of
a memory cell and its gates can be seen in Figure 4.10.

Figure 4.10 Memory Cell Structure

The LSTM Cell Equations:

ft = σ
(
Wf ∗ [ht−1,xt]+ bf

)
(4.15)

it = σ (Wi ∗ [ht−1,xt]+ bi) (4.16)

C̃t = tanh(WC ∗ [ht−1,xt]+ bC) (4.17)

Ct = ft ∗Ct−1 + it ∗ C̃t (4.18)

ot = σ (Wo ∗ [ht−1,xt]+ bo) (4.19)

ht = ot ∗ tanh(Ct) (4.20)

where ft is the forget gate, it is the input gate, C̃t is the candidate cell state, Ct is
the cell state, ot is the output gate, ht is the hidden state, xt is the input data, σ

is an activation function, Wf , Wi, WC , and Wo are linear transformation matrices,
and bf , bf , bC , and bo are corresponding biases.
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4.5.2 Bidirectional Long Short-Term Memory (BiLSTM)

Bidirectional LSTMs (BiLSTMs) extend the LSTM architecture by processing the
input sequence in both forward and backward directions. This bidirectional ap-
proach captures information from past and future contexts, which is beneficial for
tasks requiring comprehensive sequence understanding, as it significantly enhances
the information accessible to the network, thereby enriching the context available
to the algorithm.

4.5.2.1 BiLSTM Model

A BiLSTM network comprises two LSTM layers running in opposite directions:

Forward LSTM:

−→
h =−−−−→LSTM (ht−1,xt,Ct−1) (4.21)

Backward LSTM:

←−
h =←−−−−LSTM (ht+1,xt,Ct+1) (4.22)

The Final Output

Ht =
[−→
ht ,
←−
ht

]
(4.23)
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Figure 4.11 below illustrates the BiLSTM model, Lin, Ji & Sun (2023).

Figure 4.11 BiLSTM Network

4.6 BiLSTM Hyper-Parameters

This section provides short definitions of the hyper-parameters that were optimized
for the BiLSTM model.

Array Size: The array size is the size of each data instance used in train-
ing and testing the model. It represents how each dataset is split into data
instances.

Number of Epochs: It is the total number of training data iterations used
in a single cycle to train the deep learning model.

Number of Hidden Layers: A hidden layer is a group of units that per-
form computations on the input or previous hidden layer.

Solver: The solver (also known an optimizer) is an algorithm used to up-
date the parameters (weights and biases) of the model.

Learning Rate: The learning rate is a hyper-parameter that controls how
rapidly a model picks up new information from the data while it is being trained.
It regulates the step size taken in each optimization algorithm iteration.
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5. RESULTS

In this chapter, we present and discuss the results of our models. In section 5.1, the
results of the SVM models optimized by the three optimization algorithms, GWO,
PSO, and KOA will be presented. Section 5.2 presents the results of the deep
learning model using the Bidirectional Long Short-Term Memory network on the
CWRU dataset. Additionally, the process of choosing the best hyper-parameters will
be explained. Section 5.3 presents the results of the BiLSTM model on the HUST
dataset. Finally, in section 5.4, the results of the SVM models will be compared
with those of the deep learning models.

5.1 Results of the SVM Models

In this subsection, the results of the SVM models will be presented. The datasets
used to train and test the SVM models had the following properties:

• Frequency: 12 kHz

• Fault size: 0.021"

• Motor load: 0 Horsepower

• Position of accelerometer: Drive End

• Classes:

– Normal

– Inner race fault

– Ball fault

– Outer race fault
24



Each dataset (Class) was split into 100 x 1 instances and the total instances were
divided in the ratio 80:20 between train and test data. First, to obtain some refer-
ence benchmarks, the SVM model was tested on the datasets without any external
optimization algorithms. The accuracy of the model was found to be 57.41%. The
confusion matrix for this control experiment can be seen in Figure 5.1.

Figure 5.1 Confusion Matrix - SVM Model (Not Optimized)
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Following the control experiment, three SVM models were created, each utilizing a
different optimization algorithm. The first model was the GWO-SVM model. In this
model, the SVM parameters “Box Constraint” and “Kernel Scale” were optimized
using the Grey Wolf Optimization (GWO) algorithm. The number of iterations
of the GWO algorithm was set to 300, and the number of wolves (search agents)
was set to 10. The upper and lower bounds of the two parameters were set to 100
and 0.001, respectively. It took 60.425 hours to optimize the two SVM parameters
using GWO. The accuracy of the model was 64.37%. The confusion matrix for the
GWO-SVM model is shown in Figure 5.2 on the following page.

Figure 5.2 Confusion Matrix - GWO-SVM Model
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The second model was the PSO-SVM model. This model optimized the same two
SVM parameters using the Particle Swarm Optimization (PSO) algorithm. The
number of iterations of the PSO algorithm was set to 300, and the swarm size
(search agents) was set to 10. The upper and lower bounds of the two parameters
were set to 100 and 0.001, respectively. It took 54.625 hours to optimize the two
SVM parameters using PSO. The accuracy of the model was 62%. The confusion
matrix for the PSO-SVM model is shown in Figure 5.3 on the following page.

Figure 5.3 Confusion Matrix - PSO-SVM Model
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The third model was the KOA-SVM model. In this model, the same two SVM
parameters were optimized using the Kepler Optimization Algorithm (KOA). The
number of iterations of the KOA was set to 1500, and the number of planets (search
agents) was set to 30. The upper and lower bounds of the two parameters were
set to 100 and 0.001, respectively. The higher numbers of iterations and search
agents compared to the GWO-SVM and PSO-SVM models are because the KOA
is a lot faster than GWO and PSO. It took 15.725 hours to optimize the two SVM
parameters using KOA. The accuracy of the model was 62.9%. The confusion matrix
for the KOA-SVM model is shown in Figure 5.4 below.

Figure 5.4 Confusion Matrix - KOA-SVM Model
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The GWO-SVM model achieved the highest accuracy, and it also had the longest
optimization time. The KOA-SVM achieved the second-highest accuracy despite
having the shortest optimization time. Despite achieving better accuracies than the
non-optimized model, None of the three SVM models could achieve high accuracies
on the raw, unprocessed datasets. This is expected of SVM models because SVM
models are generally suitable for small to medium sized datasets, and the CRWU
datasets are too big for SVM to handle them as they are. Therefore, the datasets’
sizes were reduced from 100 x 1 instances to 8 x 1 instances. This was done by
calculating 8 time-domain parameters for each 100 x 1 instance and concatenating
them into an 8 x 1 column vector. (Shen, Xiao, Wang, Song, 2023). The parameters,
their formulas and the reasons for choosing them are shown in Table 5.1.

Table 5.1 Datasets Reduction Parameters

Parameter Formula Reasoning

Average value ȳ =
∑u

i=1 yi

u Reflects the signal’s general stability

Peak value ypp = max(yi)−min(yi) Accurately depicts the signal’s strength

Effective value yrms =
√∑u

i=1 y2
i

u Captures the signal’s energy properties

Standard deviation σy =
√∑u

i=1(yi−ȳ2)
u Reflects the dynamic portion of the signal’s energy

Margin coefficient Ce = max(|yi|)(∑u
i=1
√

|yi|
u

)2 Reflects how worn out mechanical equipment is

Pulse Factor Cf = max(|yi|)
|ȳ| Reflects the detecting signal’s impulse energy response

Peak factor Ip = max(|yi|)
yrms

Can reflect the signal’s impact energy

Kurtosis coefficient cq =
∑u

i=1(yi−ȳ)4

u(∑u
i=1(yi−ȳ)2

u

)2 Can reflect the signal’s impact energy

The three models, and the control experiment without any optimization algorithms,
were run again using the reduced datasets. The same numbers of iterations and
search agents, and parameters’ upper and lower bounds were used for the GWO-
SVM and PSO-SVM models. For the KOA-SVM model, the number of iterations
was increased to 5000 to bring the optimization time closer to the other two models.
The number of search agents and the parameters’ upper and lower bounds of the
model were kept the same. Figures 5.5, 5.6, 5.7, and 5.8 below show the confusion
matrices of the three SVM models, and the default model with no optimization,
when the reduced datasets were used.
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Figure 5.5 Confusion Matrix - SVM Model with Reduced Datasets (Not
Optimized)

Figure 5.6 Confusion Matrix - GWO-SVM Model with Reduced Datasets
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Figure 5.7 Confusion Matrix - PSO-SVM Model with Reduced Datasets

Figure 5.8 Confusion Matrix - KOA-SVM Model with Reduced Datasets
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As expected, using the reduced datasets enabled the SVM models to achieve higher
accuracies. The accuracies of the GWO-SVM, PSO-SVM, and the KOA-SVM were
84.75%, 81.98%, 81.08%, respectively. The three models achieved significantly
higher accuracies than the non-optimized model, which achieved an accuracy of
only 56.92%. Despite the increase in accuracies, none of the models could achieve
very high accuracies, especially when compared with the deep learning models whose
results will be presented in the next section.

5.2 Results of the BiLSTM models - CWRU Dataset

In this subsection, we present the results of the BiLSTM models and the process of
finding the best hyper-parameters for the BiLSTM model using the CWRU dataset.
The datasets used to train and test the SVM models had the following properties:

• Frequency: 12 kHz

• Fault size: 0.021"

• Motor load: 0 Horsepower

• Position of accelerometer: Drive End

• Classes:

– Normal

– Inner race fault

– Ball fault

– Outer race fault

The first step was to decide how to split each CWRU dataset into data instances.
As previously mentioned, each dataset consists of a single column and thousands
of rows of vibration data from the accelerometer. We started by splitting the data
into 50 x 1 arrays and treating each array as a data instance, either a training data
instance or a test one. The instances were split in the ratio 80:20 between train
and test data. After that, we iteratively increased the size of the data instances by
50 rows. The size that resulted in the highest accuracy was chosen as the optimal
data instance size. The optimal size was found to be 100 x 1. The rest of the
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hyper-parameters were kept, for now, at their default values in the MATLAB code.
Table 5.2 displays the effect of changing the data instances’ size on the accuracy of
the model. Figure 5.9 shows the confusion matrices of the model for different data
sizes.

Table 5.2 Hyper-parameters Tuning - Array Size

Size Epochs Hidden Layers Solver Learning rate Accuracy (%) Time (mins)
50 200 120 Adam 0.002 98.36 46.98
100 200 120 Adam 0.002 99.51 42.57
150 200 120 Adam 0.002 99.51 56.72
200 200 120 Adam 0.002 97.54 92.08

(a) (b)

(c) (d)

Figure 5.9 Confusion Matrices - Array Size: (a) 50 (b) 100 (c) 150 (d) 200
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Next, we tried to find the optimal number of epochs. In general, increasing the
number of epochs should increase the accuracy of the model because it is getting
trained on the data more. However, overfitting becomes a risk if the model is
trained on the training data too much as the model becomes too complex and fits
the training data too closely. On the other hand, if the model is not trained enough,
the model could end up being too simple and consequently underfit the data, not
capturing relationships and patterns accurately. Therefore, it is very important to
find the optimal number of epochs to avoid both overfitting and underfitting. The
starting number of epochs was chosen as 20 and was iteratively increased by 20.
The optimal number of epochs was found to be 280. Table 5.3 shows the effect of
increasing the number of epochs on the accuracy of the model. Figure 5.10 shows
some of the confusion matrices of the model for different epochs.

Table 5.3 Hyper-parameters Tuning - Number of Epochs

Size Epochs Hidden Layers Solver Learning rate Accuracy (%) Time (mins)

100 20 120 Adam 0.002 93.28 8.63

100 40 120 Adam 0.002 97.54 16.17

100 60 120 Adam 0.002 98.44 12.65

100 80 120 Adam 0.002 97.22 17.88

100 100 120 Adam 0.002 99.02 22.02

100 120 120 Adam 0.002 98.61 25.58

100 140 120 Adam 0.002 99.02 29.65

100 160 120 Adam 0.002 98.28 32.27

100 180 120 Adam 0.002 99.10 83.37

100 200 120 Adam 0.002 99.51 42.57

100 220 120 Adam 0.002 97.55 46.92

100 240 120 Adam 0.002 99.51 42.58

100 260 120 Adam 0.002 99.59 74.80

100 280 120 Adam 0.002 99.59 61.25

100 300 120 Adam 0.002 99.10 85.00

100 320 120 Adam 0.002 99.10 67.55

100 340 120 Adam 0.002 99.34 78.37

100 360 120 Adam 0.002 98.28 81.92
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10 Confusion Matrices - Epochs: (a) 40 (b) 100 (c) 140 (d) 160 (e) 220 (f)
260 (g) 280 (h) 340
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The next hyper-parameter to optimize was the number of hidden layers. Like epochs,
increasing the number of hidden layers increases the complexity of the model, which
can lead to over-fitting. Having too little hidden layers can result in the model under-
fitting. Moreover, having too many hidden layers increases the model’s training time.
Hence, optimizing the number of hidden layers is crucial to achieving the highest
possible performance from the model. The starting number of hidden layers was
set as 10 and was increased in increments of 10. The optimal number of hidden
layers was found to be 190. Table 5.4 presents the model’s performance at different
number of hidden layers. Figure 5.11 shows some of the confusion matrices of the
model for different numbers of hidden layers.

Table 5.4 Hyper-parameters Tuning - Hidden Layers

Size Epochs Hidden Layers Solver Learning rate Accuracy (%) Time (mins)

100 280 10 Adam 0.002 96.97 17.42

100 280 20 Adam 0.002 98.12 27.82

100 280 30 Adam 0.002 98.36 37.52

100 280 40 Adam 0.002 98.77 45.63

100 280 50 Adam 0.002 99.51 28.22

100 280 60 Adam 0.002 99.10 31.17

100 280 70 Adam 0.002 99.02 36.18

100 280 80 Adam 0.002 99.10 41.92

100 280 90 Adam 0.002 99.02 46.28

100 280 100 Adam 0.002 99.18 50.70

100 280 110 Adam 0.002 98.28 55.70

100 280 120 Adam 0.002 99.59 61.25

100 280 130 Adam 0.002 99.59 81.65

100 280 140 Adam 0.002 99.34 83.40

100 280 150 Adam 0.002 99.43 74.20

100 280 160 Adam 0.002 98.85 118.18

100 280 170 Adam 0.002 99.43 87.22

100 280 180 Adam 0.002 99.59 95.60

100 280 190 Adam 0.002 99.92 101.33

100 280 200 Adam 0.002 99.51 111.35

100 280 210 Adam 0.002 99.84 116.60

100 280 220 Adam 0.002 99.34 181.65
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.11 Confusion Matrices - Hidden Layers: (a) 10 (b) 50 (c) 80 (d) 120 (e)
130 (f) 160 (g) 190 (h) 210
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The optimal solver was found after the number of hidden layers. The MATLAB deep
learning toolbox offers the choice of three solvers: Adam, RMSprop and SGDM.
While Adam and RMSprop were able to effectively optimize the weights and bi-
ases of the BiLSTM model, SGDM could not replicate their success. The optimal
solver was found to be Adam. Table 5.5 presents the model’s accuracies when each
solver is used. Figure 5.12 shows the confusion matrices of the model for different
solvers. One possible reason why the SGDM solver performed poorly compared to
Adam and RMSprop, despite being somewhat similar in their underlying computa-
tions, is because SGDM is typically sensitive to the choice of learning rate. Adam
and RMSprop adjust the learning rate for each parameter independently, reducing
its dependency on the initial learning rate. On the other hand, SGDM utilizes a
fixed learning rate, slightly modified by momentum, which can be challenging if the
gradients differ greatly in magnitude across the dimensions of the dataset.

Table 5.5 Hyper-parameters Tuning - Solver

Size Epochs Hidden Layers Solver Learning rate Accuracy (%) Time (mins)

100 280 190 Adam 0.002 99.92 101.33

100 280 190 RMSprop 0.002 99.34 107.43

100 280 190 SGDM 0.002 69.21 119.68

(a) (b)

(c)

Figure 5.12 Confusion Matrices - Solver: (a) Adam (b) RMSprop (c) SGDM
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After choosing the optimal solver, the learning rate was optimized. Picking a suitable
learning rate is critical to the model’s learning. A small learning rate can lead to
a slow learning process, while a large one could prevent the convergence of the loss
value, resulting in the failure of the learning process. The initial learning rate was
chosen to be 0.001 and was iteratively increased by 0.001. The optimal learning rate
was found to be 0.002. Even though the model achieved the same accuracy when
the learning rate was set to 0.009, it took longer to train the model. The learning
rate that led to a shorter training time was chosen. Table 5.6 shows the effect of
increasing the learning rate on the accuracy of the BiLSTM model. Figure 5.13
shows some of the confusion matrices of the model for different learning rates.

Table 5.6 Hyper-parameters Tuning - Learning Rate

Size Epochs Hidden Layers Solver Learning rate Accuracy (%) Time (mins)

100 280 190 Adam 0.001 98.77 97.33

100 280 190 Adam 0.002 99.92 101.33

100 280 190 Adam 0.002 99.67 102.88

100 280 190 Adam 0.004 99.34 104.25

100 280 190 Adam 0.005 99.51 121.33

100 280 190 Adam 0.006 99.75 114.83

100 280 190 Adam 0.007 99.59 103.87

100 280 190 Adam 0.008 98.12 115.58

100 280 190 Adam 0.009 99.92 134.77

100 280 190 Adam 0.01 99.51 122.13

The best hyper-parameters found by this thesis for the BiLSTM model are shown
in Table 5.7 below.

Table 5.7 BiLSTM Model Optimal Hyper-parameters

Size Epochs Hidden Layers Solver Learning rate
50 200 120 Adam 0.002
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(a)

(b)

(c)

(d)

Figure 5.13 Confusion Matrices - Learning Rate: (a) 0.002 (b) 0.006 (c) 0.007 (d)
0.009
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After achieving a high accuracy of 99.92% on the datasets of the fault size 0.021”,
the model was tested on other fault sizes, 0.007”, 0.014”, and 0.028”, to test the
model’s competence in detecting and classifying bearing faults of different sizes. The
model achieved accuracies of 100%, 99.84% and 99.9% on the datasets of fault sizes
0.007”, 0.014”, and 0.028” respectively, proving the model’s high performance is not
limited to one fault size. Figure 5.14 shows the confusion matrices of the model for
different fault sizes, including fault size 0.021” for reference.

(a) (b)

(c) (d)

Figure 5.14 Confusion Matrices - Fault Size: (a) 0.007" (b) 0.014" (c) 0.021" (d)
0.028"
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The next challenge for the model was to detect and classify the bearing faults when
all the fault sizes were combined. We tried to train the model on 12 different classes:
1) Normal, 2) 0.007” inner race fault, 3) 0.014” inner race fault, 4) 0.021” inner race
fault, 5) 0.028” inner race fault, 6) 0.007” outer race fault, 7) 0.014” outer race fault,
8) 0.021” outer race fault, 9) 0.007” ball fault, 10) 0.014” ball fault, 11) 0.021” ball
fault, 12) 0.028” ball fault. Figure 5.15 shows the confusion matrix of the model for
this training trial.

Figure 5.15 Confusion Matrix - Combination of Fault Sizes (12 Classes)

The model had 279 misclassifications out of 3166 predictions, achieving an accuracy
of 91.19%. While it might seem that the model was unable to maintain the same
performance in detecting and classifying bearing faults when the fault sizes were
combined, this was not the case. By taking a closer look at the confusion matrix,
only 16 of the 279 misclassifications were wrong fault type classifications while the
remaining 263 were wrong fault size classifications. If we do not consider the wrong
fault size misclassifications as misclassifications, the model’s accuracy in detecting
and classifying the type of the bearing fault was 99.49%.

The reason why bearing fault detection is vital is the need to detect bearing
faults and to know the types of said faults. The size of the fault is not of much
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importance; it should not matter whether the fault size is 0.007” or 0.028”, the
bearing will have to be replaced either way to maintain the correct functionality
of the machine and to avoid drops in the machine’s efficiency and the quality
of production. For this reason, it is reasonable to only care about the model’s
performance in classifying the types of faults and not their sizes as well.

To verify the model’s ability of classifying the types of faults when the dif-
ferent fault sizes are combined, the previous experiment was repeated but with only
4 classes instead of 12: 1) Normal, 2) inner race fault, 3) outer race fault, 4) ball
fault. The 4 inner race fault classes in the previous experiment were all given the
same label, “inner race fault”. Likewise, the 3 outer race fault classes were all given
the label “outer race fault”, and the 4 ball fault classes were all given the label
“ball race fault”. The model was able to achieve an accuracy of 99.62%, with only
12 misclassifications out of 3166 predictions. This shows that the model is highly
capable of detecting and classifying the types of bearing faults of any size. Figure
5.16 shows the confusion matrix of the model for this experiment.

Figure 5.16 Confusion Matrix - Combination of Fault Sizes (4 Classes)
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5.3 Results of the optimized BiLSTM model - HUST Dataset

After choosing the set of BiLSTM hyper-parameters that achieved the best results,
the model was tested on the HUST Bearing Dataset. The BiLSTM was tested
on the vibration data of 4 bearings from the dataset. Table 5.8 shows the model’s
performance on the HUST Bearing Dataset. The confusion matrices of the BiLSTM
model can be seen in Figure 5.17 below. As is evident, the BiLSTM model achieved
very high accuracies on the HUST Dataset, further proving its high capability of
detecting and classifying bearing faults.

Table 5.8 BiLSTM Model Results - HUST Dataset

Bearing Accuracy (%)

6205 99.27

6206 98.73

6207 99.58

6208 97.09

(a) (b)

(c) (d)

Figure 5.17 Confusion Matrices - HUST Dataset: (a) 6205 (b) 6206 (c) 6207 (d)
6208
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5.4 Discussion of the models’ performances

The Support Vector Machine (SVM) model using no optimization algorithm
achieved the lowest accuracy of all the SVM models on the datasets of fault size
0.021 inches. Integrating the three optimization algorithms, GWO, PSO, and the
novel KOA, into the SVM model, one at a time, resulted in a slight increase in
accuracy. The GWO proved to yield better results than the novel KOA when
coupled with SVMs, while the KOA-SVM model achieved a higher accuracy than
the PSO-SVM model. The accuracies, however, were still very low, with the highest
being 65.37%. Reducing the datasets by calculating the 8 time-domain parameters
further increased the accuracies; the GWO-SVM model’s accuracy on the reduced
datasets was 85.67%, the highest of the three SVM models. Both the GWO-SVM
and the PSO-SVM models performed better than the KOA-SVM model when the
reduced datasets were used. This further proves that the novel KOA does not
outperform the traditional optimization algorithms in every application.

The default hyper-parameters of the BiLSTM model achieved a bearing fault
detection and classification accuracy of 99.51% on the datasets of fault size 0.021
inches. This was already significantly better than the best SVM model. After
running through tens of hyper-parameter fine-tuning experiments, it was possible
to increase the model’s accuracy to 99.92% on the same datasets. Seeing how
well the BiLSTM model performed on said datasets, its performance was tested
on other datasets. The model showed exceptional accuracies on the datasets with
different fault sizes, as well as on a combination of all the fault sizes. Furthermore,
the BiLSTM model was tested on the HUST Dataset, and proved to very capable
of detecting and classifying bearing faults on this dataset as well.

The deep learning model used in this thesis, with the chosen set of hyper-
parameters, proved to be incredibly effective in detecting and classifying faulty
bearings with varying fault sizes. When compared with the SVM models, GWO-
SVM, PSO-SVM, and the novel KOA-SVM model, it is clear that the Support
Vector Machines could not compete with the performance of the BiLSTM model,
even when the datasets were reduced to accommodate the limitations of SVMs.
The BiLSTM model was able to achieve accuracies very close to 100%, and reached
100% on the smallest fault size, which is a very significant improvement compared
to the best SVM model, the GWO-SVM.
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6. CONCLUSIONS AND FUTURE WORK

Bearing fault detection is a critical aspect of maintaining the reliability and effi-
ciency of machinery across various industries. By detecting faults early, predictive
maintenance strategies can significantly reduce downtime, prevent catastrophic
failures, and lower maintenance costs. This thesis explored the integration of
popular optimization algorithms, Grey Wolf Optimization (GWO), and Particle
Swarm Optimization (PSO), as well as the novel Kepler Optimization Algorithm
(KOA) into Support Vector Machine (SVM) models. Additionally, the deep learning
model, Bi-directional Long Short-Term Memory model was explored. The models
were tested on the Case Western Reserve University (CRWU) Bearing Dataset, and
their ability of detecting and classifying bearing faults based on raw accelerometer
data was analyzed. The thesis also provided a set of chosen hyper-parameters for
the BiLSTM model that proved to achieve exceptional accuracies in bearing fault
detection and classification. The BiLSTM model was also tested on the HUST
Bearing Dataset to further verify its ability in detecting and classifying bearing
faults.

The optimized models proved to significantly outperform the non-optimized
SVM model, especially when the datasets’ size was reduced to accommodate the
SVM’s limitation of not being particularly suitable for large datasets. With the
reduced datasets, the GWO-SVM model achieved the highest accuracy of the
optimized SVM models, with an accuracy of 84.75%, while the PSO-SVM and
KOA-SVM models achieved accuracies of 81.98% and 81.08%, respectively. The
novel KOA failed to outperform the established GWO and PSO models with the
reduced datasets, while it did manage to outperform only the PSO algorithm with
the regular non-reduced datasets.

The BiLSTM deep learning model with the set of chosen hyper-parameters
achieved exceptional accuracies on the CWRU Bearing Dataset, outperforming the
best SVM model greatly. The BiLSTM model managed to detect and classify small
(0.007") faults with 100% accuracy, highlighting its outstanding ability in detecting

46



and classifying bearing faults early. The model’s detection and classification
accuracies for the bigger fault sizes, 0.014", 0.021", and 0.028" were 99.84%, 99.92%,
and 99.9%, respectively. The deep learning model also managed to successfully
detect and classify the bearing faults when all the fault sizes were combined,
achieving an accuracy 99.62%. The BiLSTM model also achieved very high
accuracies on the HUST Bearing Dataset, reaching accuracies as high as 99.58%.
The BiLSTM model with the chosen hyper-parameters proved to outperform many
state-of-the-art bearing fault detection techniques, with the added advantage that
it uses raw unprocessed accelerometer data directly, eliminating the need for data
preprocessing and simplifying the process of integrating it into any industrial setup
where bearing fault detection is needed.

One possible area of work for future researchers is to test to BiLSTM model
with the chosen set of hyper-parameters on more bearing datasets. Other possible
areas for future research include:

• Trying to achieve better results with the SVM models by optimizing different
parameters

• Optimizing the BiLSTM model hyper-parameters using optimization algo-
rithms

• Integrating different optimization algorithms into the SVM models
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APPENDIX A

Code for preparing Datasets for SVM

clear
clc

load(’Normal_Dataset.mat’)
load(’Inner_21.mat’)
load(’Outer_21.mat’)
load(’Ball_21.mat’)

Normal = X097_DE_time;
Inner = X209_DE_time;
Outer = X234_DE_time;
Ball = X222_DE_time;

Number_Of_Data_Normal = floor(length(Normal)/100);
Number_Of_Data_Inner = floor(length(Inner)/100);
Number_Of_Data_Outer = floor(length(Outer)/100);
Number_Of_Data_Ball = floor(length(Ball)/100);

Number_Of_Data = Number_Of_Data_Normal + Number_Of_Data_Inner
+ Number_Of_Data_Outer + Number_Of_Data_Ball;

All_Data = cell(Number_Of_Data,1);
Labels = strings(Number_Of_Data,1);

temp_normal = [];
temp_inner = [];
temp_outer = [];
temp_ball = [];

for i = 1:length(Normal)

temp_normal = [temp_normal;Normal(i)];

if rem(i,100) == 0
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All_Data{i/100,1} = temp_normal;
Labels(i/100) = "Normal";
temp_normal = [];

end

end

for i = 1:length(Inner)

temp_inner = [temp_inner;Inner(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal+i/100,1} = temp_inner;
Labels(Number_Of_Data_Normal+i/100) = "Inner";
temp_inner = [];

end

end

for i = 1:length(Outer)

temp_outer = [temp_outer;Outer(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner+i/100,1} = temp_outer;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner+i/100) = "Outer";
temp_outer = [];

end

end

for i = 1:length(Ball)

temp_ball = [temp_ball;Ball(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
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+Number_Of_Data_Inner
+Number_Of_Data_Outer+i/100,1} = temp_ball;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner
+Number_Of_Data_Outer+i/100) = "Ball";
temp_ball = [];

end

end

Labels_Category = categorical(Labels);
classNames = categories(Labels_Category);

numChannels = size(All_Data{1},2);
numObservations = numel(All_Data);
[idxTrain,idxTest] = trainingPartitions(numObservations,[0.8 0.2]);
XTrain = All_Data(idxTrain);
TTrain = Labels_Category(idxTrain);

XTest = All_Data(idxTest);
TTest = Labels_Category(idxTest);

A = cell2mat(XTrain);
Train_Size = size(A,1)/100;
temp_Train = zeros(100,1);
Train_Data = zeros(Train_Size,100);
t1 = 0;

for i = 1:size(A,1)
temp_Train(i-t1*100) = A(i);

if rem(i,100) == 0
Train_Data(i/100,:) = temp_Train’;
t1 = t1 + 1;
temp_Train = zeros(100,1);

end
end

B = cell2mat(XTest);
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Test_Size = size(B,1)/100;
temp_Test = zeros(100,1);
Test_Data = zeros(Test_Size,100);
t2 = 0;

for i = 1:size(B,1)
temp_Test(i-t2*100) = B(i);

if rem(i,100) == 0
Test_Data(i/100,:) = temp_Test’;
t2 = t2 +1;
temp_Test = zeros(100,1);

end
end

Train_Labels = string(TTrain);
Test_Labels = string(TTest);

Code for preparing reduced Datasets for SVM

clear
clc

load(’Normal_Dataset.mat’)
load(’Inner_21.mat’)
load(’Outer_21.mat’)
load(’Ball_21.mat’)

Normal = X097_DE_time;
Inner = X209_DE_time;
Outer = X234_DE_time;
Ball = X222_DE_time;

Number_Of_Data_Normal = floor(length(Normal)/100);
Number_Of_Data_Inner = floor(length(Inner)/100);
Number_Of_Data_Outer = floor(length(Outer)/100);
Number_Of_Data_Ball = floor(length(Ball)/100);
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Number_Of_Data = Number_Of_Data_Normal
+Number_Of_Data_Inner
+Number_Of_Data_Outer + Number_Of_Data_Ball;

All_Data = cell(Number_Of_Data,1);
Labels = strings(Number_Of_Data,1);

temp_normal = [];
temp_inner = [];
temp_outer = [];
temp_ball = [];

for i = 1:length(Normal)

temp_normal = [temp_normal;Normal(i)];

if rem(i,100) == 0
All_Data{i/100,1} = temp_normal;
Labels(i/100) = "Normal";
temp_normal = [];

end

end

for i = 1:length(Inner)

temp_inner = [temp_inner;Inner(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal+i/100,1} = temp_inner;
Labels(Number_Of_Data_Normal+i/100) = "Inner";
temp_inner = [];

end

end

for i = 1:length(Outer)
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temp_outer = [temp_outer;Outer(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner+i/100,1} = temp_outer;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner+i/100) = "Outer";
temp_outer = [];

end

end

for i = 1:length(Ball)

temp_ball = [temp_ball;Ball(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner
+Number_Of_Data_Outer+i/100,1} = temp_ball;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner
+Number_Of_Data_Outer+i/100) = "Ball";
temp_ball = [];

end

end

Labels_Category = categorical(Labels);
classNames = categories(Labels_Category);

numChannels = size(All_Data{1},2);
numObservations = numel(All_Data);
[idxTrain,idxTest] = trainingPartitions(numObservations,[0.8 0.2]);
XTrain = All_Data(idxTrain);
TTrain = Labels_Category(idxTrain);

XTest = All_Data(idxTest);
TTest = Labels_Category(idxTest);
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A = cell2mat(XTrain);
Train_Size = size(A,1)/100;
temp_Train = zeros(100,1);
Train_Data = zeros(Train_Size,8);
t1 = 0;

for i = 1:size(A,1)
temp_Train(i-t1*100) = A(i);

if rem(i,100) == 0

temp_1 = zeros(1,8);
temp_1(1) = mean(temp_Train);
temp_1(2) = max(temp_Train) - min(temp_Train);
temp_1(3) = rms(temp_Train);
temp_1(4) = std(temp_Train);

temp_Train_X = 0;
for j = 1:100

temp_Train_X = temp_Train_X
+sqrt(abs(temp_Train(j)));

end

temp_1(5) = max(abs(temp_Train))/((temp_Train_X/100)^2);
temp_1(6) = max(abs(temp_Train))/abs(mean(temp_Train));
temp_1(7) = max(abs(temp_Train))/rms(temp_Train);

temp_Train_Y = 0;
temp_Train_Z = 0;

for k = 1:100
temp_Train_Y = temp_Train_Y + (temp_Train(k)
-mean(temp_Train))^4;
temp_Train_Z = temp_Train_Z + (temp_Train(k)
-mean(temp_Train))^2;

end

temp_1(8) = (temp_Train_Y/100)/((temp_Train_Z/100)^2);
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Train_Data(i/100,:) = temp_1’;
t1 = t1 + 1;
temp_Train = zeros(100,1);
temp_1 = zeros(1,8);

end
end

B = cell2mat(XTest);
Test_Size = size(B,1)/100;
temp_Test = zeros(100,1);
Test_Data = zeros(Test_Size,8);
t2 = 0;

for i = 1:size(B,1)
temp_Test(i-t2*100) = B(i);

if rem(i,100) == 0

temp_2 = zeros(1,8);
temp_2(1) = mean(temp_Test);
temp_2(2) = max(temp_Test) - min(temp_Test);
temp_2(3) = rms(temp_Test);
temp_2(4) = std(temp_Test);

temp_Train_X = 0;
for j = 1:100

temp_Train_X = temp_Train_X
+sqrt(abs(temp_Test(j)));

end

temp_2(5) = max(abs(temp_Test))/((temp_Train_X/100)^2);
temp_2(6) = max(abs(temp_Test))/abs(mean(temp_Test));
temp_2(7) = max(abs(temp_Test))/rms(temp_Test);

temp_Train_Y = 0;
temp_Train_Z = 0;

for k = 1:100

58



temp_Train_Y = temp_Train_Y + (temp_Test(k)
-mean(temp_Test))^4;
temp_Train_Z = temp_Train_Z + (temp_Test(k)
-mean(temp_Test))^2;

end

temp_2(8) = (temp_Train_Y/100)/((temp_Train_Z/100)^2);

Test_Data(i/100,:) = temp_2’;
t2 = t2 +1;
temp_Test = zeros(100,1);
temp_2 = zeros(1,8);

end
end

Train_Labels = string(TTrain);
Test_Labels = string(TTest);
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GWO-SVM Main Program

SearchAgents_no=10; % Number of search agents
Function_name=’F1’; % Test function
Max_iteration=300; % Maximum number of iterations
Training = Train_Data;
Classes = Train_Labels;

% Load details of the selected benchmark function
[lb,ub,dim,fobj] = GWO_Get_Functions_details(Function_name);
[Best_score,Best_pos,GWO_cg_curve] =
GWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj,Training,Classes);

figure(’Position’,[500 500 660 290])
semilogy(GWO_cg_curve,’Color’,’r’)
title(’Objective space’)
xlabel(’Iteration’);
ylabel(’Best score obtained so far’);
axis tight
grid on
box on
legend(’GWO’)

display([’The best solution obtained by GWO is : ’,
num2str(Best_pos)]);

display([’The best optimal value of the objective funciton
found by GWO is : ’, num2str(Best_score)]);

time_in_seconds = toc;
time_in_hours = time_in_seconds/3600;

t = templateSVM("BoxConstraint",Best_pos(1),"KernelScale",
Best_pos(2));
Mdl = fitcecoc(Training,Classes,"Learners",t);
TestPredictedLabelsCell = predict(Mdl,Test_Data);
TestPredictedLabels = string(TestPredictedLabelsCell);
acc = mean(TestPredictedLabels == Test_Labels);
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figure
confusionchart(TestPredictedLabels,Test_Labels)

GWO-SVM Initialization

% This function initializes the first population of search agents
function Positions = GWO_Initialization(SearchAgents_no,dim,ub,lb)

Boundary_no= size(ub,2); % number of boundaries

% If the boundaries of all variables are equal and user
entered a single number for both upper bound and lower bound
if Boundary_no==1

Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;
end

% If each variable has a different upper bound and lower bound
if Boundary_no>1

for i=1:dim
ub_i=ub(i);
lb_i=lb(i);
Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;

end
end

GWO-SVM Objective Function Details

% This function containts full information and implementations of
the objective function

% lb is the lower bound: lb=[lb_1,lb_2,...,lb_d]
% up is the uppper bound: ub=[ub_1,ub_2,...,ub_d]
% dim is the number of variables (dimension of the problem)

function [lb,ub,dim,fobj] = GWO_Get_Functions_details(F)
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switch F
case ’F1’

fobj = @F1;
lb = [0.0001,0.0001];
ub = [100,100];
dim = 2;

end

end

function o = F1(parameters,Training,Classes)

t = templateSVM("BoxConstraint",parameters(1),"KernelScale",
parameters(2));
Mdl = fitcecoc(Training,Classes,"Learners",t);

o = resubLoss(Mdl);

end

GWO-SVM Main Code

% Grey Wolf Optimizer
function [Alpha_score,Alpha_pos,Convergence_curve] =
GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj,Training,Classes)

% initialize alpha, beta, and delta wolves’ positions
Alpha_pos=zeros(1,dim);
Alpha_score=inf; %change this to -inf for maximization problems

Beta_pos=zeros(1,dim);
Beta_score=inf; %change this to -inf for maximization problems

Delta_pos=zeros(1,dim);
Delta_score=inf; %change this to -inf for maximization problems
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%Initialize the positions of search agents
Positions = GWO_Initialization(SearchAgents_no,dim,ub,lb);

Convergence_curve=zeros(1,Max_iter);

l=0;% Loop counter

% Main loop
while l<Max_iter

for i=1:size(Positions,1)

% Return back the search agents that go beyond the boundaries
of the search space
Flag4ub=Positions(i,:)>ub;
Flag4lb=Positions(i,:)<lb;
Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))
+ub.*Flag4ub+lb.*Flag4lb;

% Calculate objective function for each search agent
fitness=fobj(Positions(i,:),Training,Classes);

% Update Alpha, Beta, and Delta
if fitness<Alpha_score

Alpha_score=fitness; % Update alpha
Alpha_pos=Positions(i,:);

end

if fitness>Alpha_score && fitness<Beta_score
Beta_score=fitness; % Update beta
Beta_pos=Positions(i,:);

end

if fitness>Alpha_score && fitness>Beta_score &&
fitness<Delta_score

Delta_score=fitness; % Update delta
Delta_pos=Positions(i,:);

end
end
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a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0
% Update the Position of search agents including omegas
for i=1:size(Positions,1)

for j=1:size(Positions,2)
r1=rand(); % r1 is a random number in [0,1]
r2=rand(); % r2 is a random number in [0,1]
A1=2*a*r1-a;
C1=2*r2;
D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j));
X1=Alpha_pos(j)-A1*D_alpha;
r1=rand();
r2=rand();
A2=2*a*r1-a;
C2=2*r2;
D_beta=abs(C2*Beta_pos(j)-Positions(i,j));
X2=Beta_pos(j)-A2*D_beta;
r1=rand();
r2=rand();
A3=2*a*r1-a;
C3=2*r2;
D_delta=abs(C3*Delta_pos(j)-Positions(i,j));
X3=Delta_pos(j)-A3*D_delta;
Positions(i,j)=(X1+X2+X3)/3;

end
end
l=l+1;
Convergence_curve(l)=Alpha_score;

end
end
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PSO-SVM Main Program + Initialization + Code

%% Problem Definition
CostFunction=@PSO_my_objfunc; % Cost Function
nVar=2; % Number of Decision Variables
VarSize=[1 nVar]; % Size of Decision Variables Matrix
VarMin = 0.0001; % Lower Bound of Variables
VarMax = 1000; % Upper Bound of Variables
Training = Train_Data;
Classes = Train_Labels;
%% PSO Parameters
MaxIt=300; % Maximum Number of Iterations
nPop=10; % Population Size (Swarm Size)
% PSO Parameters
w=1; % Inertia Weight
wdamp=0.99; % Inertia Weight Damping Ratio
c1=1.5; % Personal Learning Coefficient
c2=2.0; % Global Learning Coefficient
% Velocity Limits
VelMax=0.1*(VarMax-VarMin);
VelMin=-VelMax;
%% Initialization
empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Velocity=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
particle=repmat(empty_particle,nPop,1);
GlobalBest.Cost=inf;
for i=1:nPop

% Initialize Position
particle(i).Position=unifrnd(VarMin,VarMax,VarSize);

% Initialize Velocity
particle(i).Velocity=zeros(VarSize);

% Evaluation
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particle(i).Cost=CostFunction(particle(i).Position,
Training,Classes);

% Update Personal Best
particle(i).Best.Position=particle(i).Position;
particle(i).Best.Cost=particle(i).Cost;

% Update Global Best
if particle(i).Best.Cost<GlobalBest.Cost

GlobalBest=particle(i).Best;

end
end

BestCost=zeros(MaxIt,1);
%% PSO Main Loop
for it=1:MaxIt

for i=1:nPop

% Update Velocity
particle(i).Velocity = w*particle(i).Velocity ...

+c1*rand(VarSize).*(particle(i).Best.Position
-particle(i).Position) ...
+c2*rand(VarSize).*(GlobalBest.Position
-particle(i).Position);

% Apply Velocity Limits
particle(i).Velocity = max(particle(i).Velocity,VelMin);
particle(i).Velocity = min(particle(i).Velocity,VelMax);

% Update Position
particle(i).Position = particle(i).Position
+particle(i).Velocity;

% Velocity Mirror Effect
IsOutside=(particle(i).Position<VarMin |
particle(i).Position>VarMax);
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particle(i).Velocity(IsOutside)=
-particle(i).Velocity(IsOutside);

% Apply Position Limits
particle(i).Position = max(particle(i).Position,VarMin);
particle(i).Position = min(particle(i).Position,VarMax);

% Evaluation
particle(i).Cost = CostFunction(particle(i).Position,
Training,Classes);

% Update Personal Best
if particle(i).Cost<particle(i).Best.Cost

particle(i).Best.Position=particle(i).Position;
particle(i).Best.Cost=particle(i).Cost;

% Update Global Best
if particle(i).Best.Cost<GlobalBest.Cost

GlobalBest=particle(i).Best;

end

end

end

BestCost(it)=GlobalBest.Cost;

disp([’Iteration ’ num2str(it) ’: Best Cost =
’ num2str(BestCost(it))]);
w=w*wdamp;

end

BestSol = GlobalBest;
%% Results
figure;
%plot(BestCost,’LineWidth’,2);
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semilogy(BestCost,’LineWidth’,2);
xlabel(’Iteration’);
ylabel(’Best Cost’);
grid on;
time_in_seconds = toc;
time_in_hours = time_in_seconds/3600;

t = templateSVM("BoxConstraint",BestSol.Position(1),
"KernelScale",BestSol.Position(2));
Mdl = fitcecoc(Train_Data,Train_Labels,"Learners",t);
TestPredictedLabelsCell = predict(Mdl,Test_Data);
TestPredictedLabels = string(TestPredictedLabelsCell);
acc = mean(TestPredictedLabels == Test_Labels);
figure
confusionchart(TestPredictedLabels,Test_Labels)

PSO-SVM Objective Function

function result = PSO_my_objfunc(Positions, Training, Classes)
t = templateSVM("BoxConstraint",Positions(1),"KernelScale",
Positions(2));
Mdl = fitcecoc(Training,Classes,"Learners",t);
result = resubLoss(Mdl);

end
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KOA-SVM Main Program

N=30; % Number of search agents (Planets)
Tmax=1500; % Maximum number of Function evaluations

fhd = @KOA_my_objfunc;
%fobj = 1;
Training = Train_Data;
Classes = Train_Labels;
[lb,ub,dim] = KOA_Get_Functions_detailsCEC(1);
[Best_score,Best_pos,Convergence_curve]=
KOA(N,Tmax,ub,lb,dim,fhd,Training,Classes);
fitness = Best_score;
% Print the best score
fprintf([’Best Score:\t’, num2str(fitness), ’\n’]);
%Best_pos
% Plotting the convergence curve
figure(1)
h=semilogy(Convergence_curve,’.-’,’MarkerSize’,20,
’Color’,’red’,’LineWidth’,1.5);
h.MarkerIndices = 1000:4000:Tmax;
xlabel(’Iteration’);
ylabel(’Best Fitness obtained so-far’);
axis tight
grid off
box on
legend({’KOA’});
time_in_seconds = toc;
time_in_hours = time_in_seconds/3600;

t = templateSVM("BoxConstraint",Best_pos(1),
"KernelScale",Best_pos(2));
Mdl = fitcecoc(Train_Data,Train_Labels,"Learners",t);
TestPredictedLabelsCell = predict(Mdl,Test_Data);
TestPredictedLabels = string(TestPredictedLabelsCell);
acc = mean(TestPredictedLabels == Test_Labels)
figure
confusionchart(TestPredictedLabels,Test_Labels)
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KOA-SVM Initialization

% This function initialize the first population of
search agents
function Positions =
KOA_Initialization(SearchAgents_no,dim,ub,lb)

Boundary_no= length(ub); % numnber of boundaries

% If the boundaries of all variables are equal and user
entered a signle number for both ub and lb
if Boundary_no==1

Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;
end

% If each variable has a different lb and ub
if Boundary_no>1

for i=1:dim
ub_i=ub(i);
lb_i=lb(i);
Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;

end
end

KOA-SVM Function Details

% This function containts full information and implementations
of the benchmark function

% lb is the lower bound: lb=[lb_1,lb_2,...,lb_d]
% up is the uppper bound: ub=[ub_1,ub_2,...,ub_d]
% dim is the number of variables (dimension of the problem)

function [lb,ub,dim] = KOA_Get_Functions_detailsCEC(F)

switch F
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case 1
dim=2;
lb=0.0001*ones(1,dim);
ub=100*ones(1,dim);

end
end

KOA-SVM Objective Function

function result = KOA_my_objfunc(Positions,
Training, Classes)
t = templateSVM("BoxConstraint",Positions(1),
"KernelScale",Positions(2));
Mdl = fitcecoc(Training,Classes,"Learners",t);
result = resubLoss(Mdl);

end

KOA-SVM Main Code

% The Kepler Optimization Algorithm
function [Sun_Score,Sun_Pos,Convergence_curve]=
KOA(SearchAgents_no,Tmax,ub,lb,dim,fhd,Training,Classes)

%%%%-------------------Definitions--------------------%%
%%
Sun_Pos=zeros(1,dim); % A vector to include the best-so-far
Solution, representing the Sun
Sun_Score=inf; % A Scalar variable to include the best-so-far score
Convergence_curve=zeros(1,Tmax);

%%-------------------Controlling parameters--------------%%
%%
Tc=3;
M0=0.1;
lambda=15;
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%% Step 1: Initialization process
%%---------------Initialization----------------------%%
% Orbital Eccentricity (e)

orbital=rand(1,SearchAgents_no); %% Eq.(4)
%% Orbital Period (T)

T=abs(randn(1,SearchAgents_no)); %% Eq.(5)
Positions = KOA_Initialization(SearchAgents_no,dim,ub,lb);
% Initialize the positions of planets
t=0; %% Function evaluation counter
%%
%%---------------------Evaluation---------------%%
for i=1:SearchAgents_no

%% Test suites of CEC-2014, CEC-2017, CEC-2020, and CEC-2022
PL_Fit(i)=feval(fhd, Positions(i,:), Training, Classes);
% Update the best-so-far solution
if PL_Fit(i)<Sun_Score % Change this to > for maximization
problems

Sun_Score=PL_Fit(i); % Update the best-so-far score
Sun_Pos=Positions(i,:); % Update te best-so-far solution

end
end
while t<Tmax %% Termination condition
[Order] = sort(PL_Fit); % Sorting the fitness values of the
solutions in current population
%% The worst Fitness value at function evaluation t
worstFitness = Order(SearchAgents_no);
M=M0*(exp(-lambda*(t/Tmax)));
%% Computer R that represents the Euclidian distance between
the best-so-far solution and the ith solution
for i=1:SearchAgents_no

R(i)=0;
for j=1:dim

R(i)=R(i)+(Sun_Pos(j)-Positions(i,j))^2;
end
R(i)=sqrt(R(i));

end
%% The mass of the Sun and object i at time t is computed
as follows:
for i=1:SearchAgents_no
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sum=0;
for k=1:SearchAgents_no

sum=sum+(PL_Fit(k)-worstFitness);
end
MS(i)=rand*(Sun_Score-worstFitness)/(sum);
m(i)=(PL_Fit(i)-worstFitness)/(sum);

end
%% Step 2: Defining the gravitational force (F)
% Computing the attraction force of the Sun and the ith planet
according to the universal law of gravitation:
for i=1:SearchAgents_no

Rnorm(i)=(R(i)-min(R))/(max(R)-min(R));
MSnorm(i)=(MS(i)-min(MS))/(max(MS)-min(MS));
%% The normalized MS
Mnorm(i)=(m(i)-min(m))/(max(m)-min(m));
%% The normalized m
Fg(i)=orbital(i)*M*((MSnorm(i)*Mnorm(i))
/(Rnorm(i)*Rnorm(i)+eps))+(rand);

end
%% a1 represents the semimajor axis of the elliptical
orbit of object i at time t,
for i=1:SearchAgents_no

a1(i)=rand*(T(i)^2*(M*(MS(i)+m(i))/(4*pi*pi)))^(1/3);
end

for i=1:SearchAgents_no
%% a2 is a cyclic controlling parameter that is decreasing
gradually from -1 to ?2
a2=-1+-1*(rem(t,Tmax/Tc)/(Tmax/Tc));
%% a2 is a linearly decreasing factor from 1 to 2
n=(a2-1)*rand+1;
a=randi(SearchAgents_no); %% An index of a solution
selected at random
b=randi(SearchAgents_no); %% An index of a solution
selected at random
rd=rand(1,dim); %% A vector generated according to
the normal distribution
r=rand; %% r1 is a random number in [0,1]
%% A randomly-assigned binary vector
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U1=rd<r;
O_P=Positions(i,:); %% Storing the current position
of the ith solution
%% Step 6: Updating distance with the Sun
if rand<rand

%% h is an adaptive factor for controlling the
distance between the Sun and the current planet at time t
h=(1/(exp(n.*randn))); %% Eq.(27)
%% An verage vector based on three solutions:
the Current solution, best-so-far solution,
and randomly-selected solution
Xm=(Positions(b,:)+Sun_Pos+Positions(i,:))/3.0;
Positions(i,:)=Positions(i,:).*U1+(Xm+h
.*(Xm-Positions(a,:))).*(1-U1);

else
%% Step 3: Calculating an object’ velocity
% A flag to opposite or leave the search direction
of the current planet
if rand<0.5 %% Eq.(18)

f=1;
else

f=-1;
end
L=(M*(MS(i)+m(i))*abs((2/(R(i)+eps))-(1/(a1(i)
+eps))))^(0.5); %% Eq.(15)
U=rd>rand(1,dim); %% A binary vector
if Rnorm(i)<0.5 %% Eq.(13)

M=(rand.*(1-r)+r); %% Eq.(16)
l=L*M*U; %% Eq.(14)
Mv=(rand*(1-rd)+rd); %% Eq.(20)
l1=L.*Mv.*(1-U);%% Eq.(19)
V(i,:)=l.*(2*rand*Positions(i,:)
-Positions(a,:))+l1.*(Positions(b,:)
-Positions(a,:))+(1-Rnorm(i))*f*U1.*rand(1,dim)
.*(ub-lb); %% Eq.(13a)

else
U2=rand>rand; %% Eq. (22)
V(i,:)=rand.*L.*(Positions(a,:)-Positions(i,:))
+(1-Rnorm(i))*f*U2*rand(1,dim).*(rand*ub-lb);
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end %% End IF

%% Step 4: Escaping from the local optimum
% Update the flag f to opposite or leave the search
direction of the current planet
if rand<0.5

f=1;
else

f=-1;
end
%% Step 5
Positions(i,:)=((Positions(i,:)+V(i,:).*f)
+(Fg(i)+abs(randn))*U.*(Sun_Pos-Positions(i,:)));

end %% End If
%% Return the search agents that exceed the search
space’s bounds
if rand<rand

for j=1:size(Positions,2)
if Positions(i,j)>ub(j)

Positions(i,j)=lb(j)+rand*(ub(j)-lb(j));
elseif Positions(i,j)<lb(j)

Positions(i,j)=lb(j)+rand*(ub(j)-lb(j));
end %% End If

end %% End For
else

Positions(i,:) = min(max(Positions(i,:),lb),ub);
end %% End If
%% Test suites of CEC-2014, CEC-2017, CEC-2020,
and CEC-2022
% Calculate objective function for each search agent
PL_Fit1=feval(fhd, Positions(i,:)’,Training,Classes);

% Step 7: Elitism, Eq.(30)
if PL_Fit1<PL_Fit(i) % Change this to > for maximization
problems

PL_Fit(i)=PL_Fit1; %
% Update the best-so-far solution
if PL_Fit(i)<Sun_Score % Change this to > for maximization
problems

Sun_Score=PL_Fit(i); % Update the best-so-far
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score
Sun_Pos=Positions(i,:); % Update te best-so-far
solution

end
else

Positions(i,:)=O_P;
end %% End IF
t=t+1; %% Increment the current function evaluation
if t>Tmax %% Checking the termination condition

break;
end %% End IF
Convergence_curve(t)=Sun_Score; %% Set the best-so-far
fitness value at function evaluation t in the convergence curve

end %% End for i
end %% End while
Convergence_curve(t-1)=Sun_Score;
end%% End Function
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Data Preparation for BiLSTM - One Fault Size (4 Classes)

clear
clc

load(’Normal_Dataset.mat’)
load(’Inner_Dataset.mat’)
load(’Outer_Dataset.mat’)
load(’Ball_Dataset.mat’)

Normal = X097_DE_time;
Inner = X169_DE_time;
Outer = X197_DE_time;
Ball = X185_DE_time;

Number_Of_Data_Normal = floor(length(Normal)/100);
Number_Of_Data_Inner = floor(length(Inner)/100);
Number_Of_Data_Outer = floor(length(Outer)/100);
Number_Of_Data_Ball = floor(length(Ball)/100);

Number_Of_Data = Number_Of_Data_Normal
+ Number_Of_Data_Inner
+ Number_Of_Data_Outer
+ Number_Of_Data_Ball;

All_Data = cell(Number_Of_Data,1);
Labels = strings(Number_Of_Data,1);

temp_normal = [];
temp_inner = [];
temp_outer = [];
temp_ball = [];

for i = 1:length(Normal)

temp_normal = [temp_normal;Normal(i)];

if rem(i,100) == 0
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All_Data{i/100,1} = temp_normal;
Labels(i/100) = "Normal";
temp_normal = [];

end

end

for i = 1:length(Inner)

temp_inner = [temp_inner;Inner(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+i/100,1} = temp_inner;
Labels(Number_Of_Data_Normal
+i/100) = "Inner";
temp_inner = [];

end

end

for i = 1:length(Outer)

temp_outer = [temp_outer;Outer(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner+i/100,1} = temp_outer;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner+i/100) = "Outer";
temp_outer = [];

end

end

for i = 1:length(Ball)

temp_ball = [temp_ball;Ball(i)];
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if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner
+Number_Of_Data_Outer+i/100,1} = temp_ball;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner
+Number_Of_Data_Outer+i/100) = "Ball";
temp_ball = [];

end

end

Data Preparation for BiLSTM - All Fault Sizes (12 Classes)

clear
clc

load(’Normal_Dataset.mat’)
load(’Inner_7.mat’)
load(’Outer_7.mat’)
load(’Ball_7.mat’)
load(’Inner_14.mat’)
load(’Outer_14.mat’)
load(’Ball_14.mat’)
load(’Inner_21.mat’)
load(’Outer_21.mat’)
load(’Ball_21.mat’)
load(’Inner_28.mat’)
load(’Ball_28.mat’)

Normal = X097_DE_time;
Inner_7 = X105_DE_time;
Outer_7 = X130_DE_time;
Ball_7 = X118_DE_time;
Inner_14 = X169_DE_time;
Outer_14 = X197_DE_time;
Ball_14 = X185_DE_time;
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Inner_21 = X209_DE_time;
Outer_21 = X234_DE_time;
Ball_21 = X185_DE_time;
Inner_28 = X056_DE_time;
Ball_28 = X048_DE_time;

Number_Of_Data_Normal = floor(length(Normal)/100);
Number_Of_Data_Inner_7 = floor(length(Inner_7)/100);
Number_Of_Data_Outer_7 = floor(length(Outer_7)/100);
Number_Of_Data_Ball_7 = floor(length(Ball_7)/100);
Number_Of_Data_Inner_14 = floor(length(Inner_14)/100);
Number_Of_Data_Outer_14 = floor(length(Outer_14)/100);
Number_Of_Data_Ball_14 = floor(length(Ball_14)/100);
Number_Of_Data_Inner_21 = floor(length(Inner_21)/100);
Number_Of_Data_Outer_21 = floor(length(Outer_21)/100);
Number_Of_Data_Ball_21 = floor(length(Ball_21)/100);
Number_Of_Data_Inner_28 = floor(length(Inner_28)/100);
Number_Of_Data_Ball_28 = floor(length(Ball_28)/100);

Number_Of_Data = Number_Of_Data_Normal
+ Number_Of_Data_Inner_7 + Number_Of_Data_Outer_7
+ Number_Of_Data_Ball_7 + Number_Of_Data_Inner_14
+ Number_Of_Data_Outer_14 + Number_Of_Data_Ball_14
+ Number_Of_Data_Inner_21 + Number_Of_Data_Outer_21
+ Number_Of_Data_Ball_21 + Number_Of_Data_Inner_28
+ Number_Of_Data_Ball_28;

All_Data = cell(Number_Of_Data,1);
Labels = strings(Number_Of_Data,1);

temp_normal = [];
temp_inner_7 = [];
temp_outer_7 = [];
temp_ball_7 = [];
temp_inner_14 = [];
temp_outer_14 = [];
temp_ball_14 = [];
temp_inner_21 = [];
temp_outer_21 = [];
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temp_ball_21 = [];
temp_inner_28 = [];
temp_ball_28 = [];

for i = 1:length(Normal)

temp_normal = [temp_normal;Normal(i)];

if rem(i,100) == 0
All_Data{i/100,1} = temp_normal;
Labels(i/100) = "Normal";
temp_normal = [];

end

end

for i = 1:length(Inner_7)

temp_inner_7 = [temp_inner_7;Inner_7(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+i/100,1} = temp_inner_7;
Labels(Number_Of_Data_Normal
+i/100) = "Inner_7";
temp_inner_7 = [];

end

end

for i = 1:length(Outer_7)

temp_outer_7 = [temp_outer_7;Outer_7(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+i/100,1} = temp_outer_7;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+i/100) = "Outer_7";
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temp_outer_7 = [];
end

end

for i = 1:length(Ball_7)

temp_ball_7 = [temp_ball_7;Ball_7(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+i/100,1} = temp_ball_7;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+i/100) = "Ball_7";
temp_ball_7 = [];

end

end

for i = 1:length(Inner_14)

temp_inner_14 = [temp_inner_14;Inner_14(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+i/100,1} = temp_inner_14;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+i/100) = "Inner_14";
temp_inner_14 = [];

end

end

for i = 1:length(Outer_14)
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temp_outer_14 = [temp_outer_14;Outer_14(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+i/100,1} = temp_outer_14;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+i/100) = "Outer_14";
temp_outer_14 = [];

end

end

for i = 1:length(Ball_14)

temp_ball_14 = [temp_ball_14;Ball_14(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+i/100,1} = temp_ball_14;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+i/100) = "Ball_14";
temp_ball_14 = [];

end

end

for i = 1:length(Inner_21)

temp_inner_21 = [temp_inner_21;Inner_21(i)];

if rem(i,100) == 0
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All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+i/100,1} = temp_inner_21;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+i/100) = "Inner_21";
temp_inner_21 = [];

end

end

for i = 1:length(Outer_21)

temp_outer_21 = [temp_outer_21;Outer_21(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+i/100,1} = temp_outer_21;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+i/100) = "Outer_21";
temp_outer_21 = [];

end

end

for i = 1:length(Ball_21)

temp_ball_21 = [temp_ball_21;Ball_21(i)];
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if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+Number_Of_Data_Outer_21
+i/100,1} = temp_ball_21;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+Number_Of_Data_Outer_21
+i/100) = "Ball_21";
temp_ball_21 = [];

end

end

for i = 1:length(Inner_28)

temp_inner_28 = [temp_inner_28;Inner_28(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+Number_Of_Data_Outer_21
+Number_Of_Data_Ball_21+i/100,1} = temp_inner_28;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+Number_Of_Data_Outer_21
+Number_Of_Data_Ball_21+i/100) = "Inner_28";
temp_inner_28 = [];

end

end
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for i = 1:length(Ball_28)

temp_ball_28 = [temp_ball_28;Ball_28(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+Number_Of_Data_Outer_21
+Number_Of_Data_Ball_21+Number_Of_Data_Inner_28
+i/100,1} = temp_ball_28;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+Number_Of_Data_Outer_21
+Number_Of_Data_Ball_21+Number_Of_Data_Inner_28
+i/100) = "Ball_28";
temp_ball_28 = [];

end

end

Data Preparation for BiLSTM - All Fault Sizes (4 Classes)

clear
clc

load(’Normal_Dataset.mat’)
load(’Inner_7.mat’)
load(’Outer_7.mat’)
load(’Ball_7.mat’)
load(’Inner_14.mat’)
load(’Outer_14.mat’)
load(’Ball_14.mat’)
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load(’Inner_21.mat’)
load(’Outer_21.mat’)
load(’Ball_21.mat’)
load(’Inner_28.mat’)
load(’Ball_28.mat’)

Normal = X097_DE_time;
Inner_7 = X105_DE_time;
Outer_7 = X130_DE_time;
Ball_7 = X118_DE_time;
Inner_14 = X169_DE_time;
Outer_14 = X197_DE_time;
Ball_14 = X185_DE_time;
Inner_21 = X209_DE_time;
Outer_21 = X234_DE_time;
Ball_21 = X185_DE_time;
Inner_28 = X056_DE_time;
Ball_28 = X048_DE_time;

Number_Of_Data_Normal = floor(length(Normal)/100);
Number_Of_Data_Inner_7 = floor(length(Inner_7)/100);
Number_Of_Data_Outer_7 = floor(length(Outer_7)/100);
Number_Of_Data_Ball_7 = floor(length(Ball_7)/100);
Number_Of_Data_Inner_14 = floor(length(Inner_14)/100);
Number_Of_Data_Outer_14 = floor(length(Outer_14)/100);
Number_Of_Data_Ball_14 = floor(length(Ball_14)/100);
Number_Of_Data_Inner_21 = floor(length(Inner_21)/100);
Number_Of_Data_Outer_21 = floor(length(Outer_21)/100);
Number_Of_Data_Ball_21 = floor(length(Ball_21)/100);
Number_Of_Data_Inner_28 = floor(length(Inner_28)/100);
Number_Of_Data_Ball_28 = floor(length(Ball_28)/100);

Number_Of_Data = Number_Of_Data_Normal
+ Number_Of_Data_Inner_7 + Number_Of_Data_Outer_7
+ Number_Of_Data_Ball_7 + Number_Of_Data_Inner_14
+ Number_Of_Data_Outer_14 + Number_Of_Data_Ball_14
+ Number_Of_Data_Inner_21 + Number_Of_Data_Outer_21
+ Number_Of_Data_Ball_21 + Number_Of_Data_Inner_28
+ Number_Of_Data_Ball_28;
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All_Data = cell(Number_Of_Data,1);
Labels = strings(Number_Of_Data,1);

temp_normal = [];
temp_inner_7 = [];
temp_outer_7 = [];
temp_ball_7 = [];
temp_inner_14 = [];
temp_outer_14 = [];
temp_ball_14 = [];
temp_inner_21 = [];
temp_outer_21 = [];
temp_ball_21 = [];
temp_inner_28 = [];
temp_ball_28 = [];

for i = 1:length(Normal)

temp_normal = [temp_normal;Normal(i)];

if rem(i,100) == 0
All_Data{i/100,1} = temp_normal;
Labels(i/100) = "Normal";
temp_normal = [];

end

end

for i = 1:length(Inner_7)

temp_inner_7 = [temp_inner_7;Inner_7(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+i/100,1} = temp_inner_7;
Labels(Number_Of_Data_Normal
+i/100) = "Inner";
temp_inner_7 = [];
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end

end

for i = 1:length(Outer_7)

temp_outer_7 = [temp_outer_7;Outer_7(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+i/100,1} = temp_outer_7;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+i/100) = "Outer";
temp_outer_7 = [];

end

end

for i = 1:length(Ball_7)

temp_ball_7 = [temp_ball_7;Ball_7(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+i/100,1} = temp_ball_7;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+i/100) = "Ball";
temp_ball_7 = [];

end

end

for i = 1:length(Inner_14)

temp_inner_14 = [temp_inner_14;Inner_14(i)];

if rem(i,100) == 0
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All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+i/100,1} = temp_inner_14;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+i/100) = "Inner";
temp_inner_14 = [];

end

end

for i = 1:length(Outer_14)

temp_outer_14 = [temp_outer_14;Outer_14(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+i/100,1} = temp_outer_14;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+i/100) = "Outer";
temp_outer_14 = [];

end

end

for i = 1:length(Ball_14)

temp_ball_14 = [temp_ball_14;Ball_14(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+i/100,1} = temp_ball_14;
Labels(Number_Of_Data_Normal
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+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+i/100) = "Ball";
temp_ball_14 = [];

end

end

for i = 1:length(Inner_21)

temp_inner_21 = [temp_inner_21;Inner_21(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+i/100,1} = temp_inner_21;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+i/100) = "Inner";
temp_inner_21 = [];

end

end

for i = 1:length(Outer_21)

temp_outer_21 = [temp_outer_21;Outer_21(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+i/100,1} = temp_outer_21;
Labels(Number_Of_Data_Normal
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+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+i/100) = "Outer";
temp_outer_21 = [];

end

end

for i = 1:length(Ball_21)

temp_ball_21 = [temp_ball_21;Ball_21(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+Number_Of_Data_Outer_21
+i/100,1} = temp_ball_21;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+Number_Of_Data_Outer_21
+i/100) = "Ball";
temp_ball_21 = [];

end

end

for i = 1:length(Inner_28)

temp_inner_28 = [temp_inner_28;Inner_28(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
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+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+Number_Of_Data_Outer_21
+Number_Of_Data_Ball_21+i/100,1} = temp_inner_28;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+Number_Of_Data_Outer_21
+Number_Of_Data_Ball_21+i/100) = "Inner";
temp_inner_28 = [];

end

end

for i = 1:length(Ball_28)

temp_ball_28 = [temp_ball_28;Ball_28(i)];

if rem(i,100) == 0
All_Data{Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+Number_Of_Data_Outer_21
+Number_Of_Data_Ball_21+Number_Of_Data_Inner_28
+i/100,1} = temp_ball_28;
Labels(Number_Of_Data_Normal
+Number_Of_Data_Inner_7+Number_Of_Data_Outer_7
+Number_Of_Data_Ball_7+Number_Of_Data_Inner_14
+Number_Of_Data_Outer_14+Number_Of_Data_Ball_14
+Number_Of_Data_Inner_21+Number_Of_Data_Outer_21
+Number_Of_Data_Ball_21+Number_Of_Data_Inner_28
+i/100) = "Ball";
temp_ball_28 = [];

end

end
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Code for Partitioning Data into Train and Test Data

function varargout
= trainingPartitions(numObservations,splits)

arguments
numObservations (1,1) {mustBePositive}
splits {mustBeVector,mustBeInRange(splits,0,1,"exclusive")
,mustSumToOne}

end

numPartitions = numel(splits);
varargout = cell(1,numPartitions);

idx = randperm(numObservations);

idxEnd = 0;

for i = 1:numPartitions-1
idxStart = idxEnd + 1;
idxEnd = idxStart + floor(splits(i)*numObservations) - 1;

varargout{i} = idx(idxStart:idxEnd);
end

% Last partition.
varargout{end} = idx(idxEnd+1:end);

end

function mustSumToOne(v)
% Validate that value sums to one.

if sum(v,"all") ~= 1
error("Value must sum to one.")

end

end
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BiLSTM Main Code

Labels_Category = categorical(Labels);
classNames = categories(Labels_Category);

numChannels = size(All_Data{1},2);
numObservations = numel(All_Data);
[idxTrain,idxTest]
= trainingPartitions(numObservations,[0.8 0.2]);
XTrain = All_Data(idxTrain);
TTrain = Labels_Category(idxTrain);

XTest = All_Data(idxTest);
TTest = Labels_Category(idxTest);

numHiddenUnits = 190;
numClasses = 4;

layers = [
sequenceInputLayer(numChannels)
bilstmLayer(numHiddenUnits,OutputMode="last")
fullyConnectedLayer(numClasses)
softmaxLayer];

options = trainingOptions("adam", ...
MaxEpochs=280, ...
InitialLearnRate=0.002, ...
GradientThreshold=1, ...
Plots="training-progress", ...
Shuffle="never", ...
Metrics="accuracy", ...
Verbose=false);

net
= trainnet(XTrain,TTrain,layers,"crossentropy",options);
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numObservationsTest = numel(XTest);
for i=1:numObservationsTest

sequence = XTest{i};
sequenceLengthsTest(i) = size(sequence,1);

end

[sequenceLengthsTest,idx] = sort(sequenceLengthsTest);
XTest = XTest(idx);
TTest = TTest(idx);

scores = minibatchpredict(net,XTest);
YTest = scores2label(scores,classNames);

acc = mean(YTest == TTest)

figure
confusionchart(TTest,YTest)
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