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ABSTRACT

GEOMETRICAL AND GROUP CHARACTERIZATION OF SIC-POVMS ON
GENERALISED BLOCH SPHERE

SOLOMON BIRHANU SAMUEL

PHYSICS Ph.D DISSERTATION, June 2024

Dissertation Supervisor: Prof. Mehmet Zafer Gedik

Keywords: Gell-Mann matrices, density matrix, Gram matrix, Bloch sphere

The Symmetric Informationally Complete Positive Operator-Valued Measures (SIC-
POVMs) are a generalized quantum measurements ideal for quantum state tomog-
raphy of finite dimensional quantum systems. In n-dimensional complex space, the
SIC-POVMs are represented by a set of n2 normalized vectors satisfying the condi-
tion |⟨ψj |ψk⟩|2 = 1

n+1 . In this thesis, we classify SIC-POVMs up to a unitary and
anti-unitary equivalence without the restriction of group covariance. First, the gen-
eral geometric properties of SIC-POVMs on the generalized Bloch sphere is explored.
We prove the existence of a simplex implied by the modified version of Kakutani
theorem, and we restate the existence of SIC-POVMs as a geometrical problems
associated with a special polynomial function. Analysis of the Bloch sphere shows
that, solely from geometrical considerations and properties of SU(n) on the Bloch
sphere, simplexes satisfying the criteria stated in the modified Kakutani theorem
form continuous set of solutions, creating path connected generalized equiangular
POVMs. Further classification requires numerical analysis due to the non-linear na-
ture of the problem. For this reason, a numerical method of construction for general
SIC-POVMs is generated, which shows that the SIC-POVMs form disjoint islands of
Gram matrices each corresponding to a distinct class of SIC-POVM. The islands of
Gram matrices are connected though permutation matrices, and have a symmetry
group of size 3n2. The symmetry group contains order-3 and order-n unitaries for
all O(105) and O(104) solutions constructed in dimensions 4 and 5, respectively.
The large number of solutions show that the generating set of the triple products of
the SIC-POVMs is unique in dimensions 4 and 5, and that all SIC-POVMs in these
dimensions are group covariant.
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ÖZET

GENELLEŞTIRILMIŞ BLOCH KÜRESI ÜZERINDE SİTE-PODÖ’LERIN
GEOMETRIK VE GRUP KARAKTERIZASYONU

SOLOMON B. SAMUEL

FİZİK DOKTORA TEZİ, HAZİRAN 2024

Tez Danışmanı: Prof. Dr. Mehmet Zafer Gedik

Anahtar Kelimeler: STE-PODÖ, Yoğunluk matrisi, Gram matrisi, Bloch küresi

Simetrik Tam Enformasyonlu Pozitif Operatör Değerli Ölçüm’ler (STE-PODÖ’ler),
sonlu boyutlu kuantum sistemlerinin kuantum durum tomografisi için ideal kuan-
tum ölçümleridir. n-boyutlu kompleks uzayda, STE-PODÖ’ler, |⟨ψj |ψk⟩|2 = 1

n+1
koşulunu sağlayan n2 birlenmiş normalize vektör kümesi tarafından temsil edilir.
Bu tezde, grup kovaryans kısıtlaması olmaksızın, STE-PODÖ’leri üniter ve anti-
üniter denklik gözeterek sınıflandırdık. İlk olarak, STE-PODÖ’lerin "genelleştir-
ilmiş" Bloch küresi üzerindeki genel geometrik özeliklerini inceledik. Değiştirilmiş
Kakutani teoremini kulanarak bir simpleksin varlığını ispatladık. Ardından, STE-
PODÖ’lerin varlıklarını özel bir polinom fonksiyonuyla belirlenen geometrik prob-
lemle eşileştirdik. Bloch küresinin incelenmesi, geometrik çıkarımlar ve SU(n)
grubunun Bloch küresi üzerindeki özellikleri, göstermektedir ki değiştirilmiş Kaku-
tani teoremini sağlayan bir simpleks vardır ki, genelleştirilmiş eşaçılı PODÖ’ler oluş-
turan, sürekli bir çözüm verir. Problemin doğrusal olmaması nedeniyle, daha ileri
bir sınıflandırma nümerik analiz gerektirir. Bu nedenle, genel STE-PODÖ’leri için
bir sayısal çözüm yöntemi oluşturduk. Bu yöntemle STE-PODÖ’lerin, her biri ayrı
bir sınıfa ait, ayrık Gram matrisi adaları öluşturduğunu gösterdik. 4 boyutta O(105)
ve 5 boyutta O(104) inşa edilen matrislerin tamamı için simetri gruba mertebe-3 ve
mertebe-n üniter matrislerinden oluşur. Yüksek sayıdaki çözümler göstermektedir
ki STE-PODÖ’lerin üçlü çarpımlarının üreteç kümeleri 4 ve 5 boyutta tektir ve bu
boyutlardaki tüm STE-PODÖ’lerin grup kovaryant oldukları görülmektedir.
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1. INTRODUCTION

Measurements in quantum mechanics are mathematically represented by a set of
positive operators known as the positive operator-valued measures (POVMs). The
elements of a POVM Ek satisfy the condition ∑Ek = I. For a density matrix ρ, the
corresponding probability that the kth measurement is obtained is given by Tr(Ekρ).
An informationally complete POVM allows us to reconstruct an arbitrary density
matrix from the probabilities of the measurement Busch (1991); Nielsen & Chuang
(2010); Prugovečki (1977). The most symmetric type of POVM is the Symmetric
Informationally Complete POVM, or the SIC-POVM. The Symmetry in its name
refers to the property that the all element of the SIC-POVM are equidistant from
one another, i.e., Tr(EjEk) = nδjk+1

n2(n+1) . This property makes the SIC-POVMs ideal
for quantum state tomography by minimizing the total number of measurements
needed Scott (2006). In addition to tomography SIC-POVMs have applications
in Quantum cryptography Durt, Kurtsiefer, Lamas-Linares & Ling (2008) and the
foundational study of QBism Fuchs (2010); Fuchs, Hoang & Stacey (2017).

We can perceive the SIC-POVMs as a geometric object to make their structure more
intuitive. This involves mapping the set of operators onto the Bloch sphere, which
allows us to form a geometric description of the density operators. Through a bit
of calculation, one can see that the properties of the SIC-POVMs form a regular
simplex on the Bloch sphere. Each vector of the simplex corresponds to a pure or
separable density matrix, which becomes very intricate for dimensions greater than
2. The Bloch sphere is generated using the generalizations of the Pauli matrices,
known as the Gell-Mann matrices Bertlmann & Krammer (2008). The Gell-Mann
matrices are the generators of the special unitary group SU(n), and for dimensions
larger than 2, the special orthogonal group SO(n2 −1) is larger than SU(n).

The problem of SIC-POVMs from a purely mathematical motivation has been stud-
ied for more than half a century under the study of equiangular vectors, Haantjes
(1948); van Lint & Seidel (1966). The maximum number of equiangular complex
vectors that can be constructed in an n-dimensional complex projective plane is n2.
Whether this bound can be achieved in all dimensions is still an open problem.
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The SIC-POVMs have been constructed in many dimensions using both analytic
and numerical methods. The analytic method was first proposed by Zauner in 1999.
Zauner showed that a group covariant SIC-POVM can be constructed by using the
Weyl-Heisenberg group Zauner (2011) and constructed solutions in dimensions 2-7.
In the same work, Zauner conjectured that a fiducial vector exists in all dimensions,
where it is an eigenvector of a special matrix known as the Zauner matrix. A few
years later, Renes Renes et al. (2004) independently proposed the Weyl-Heisenberg
group for construction of a fiducial vector and explored numerical solutions and
computed the complete list of Weyl-Heisenberg group covariant SIC-POVMs in di-
mensions ≤ 7. Through further researches on the extended Clifford group, Appleby
Appleby, Flammia & Fuchs (2011); Appleby (2005) and Zhu Zhu (2010) showed
more symmetries of fiducial vectors which simplified the search further.

To explore Zauner’s conjecture in the most general form, we start by asking the
following question. Are there SIC-POVMs that are not group covariant to the Weyl-
Heisenberg group? This question is answered for dimensions 2 and 3. In dimension
2, the proof is trivial since SU(2)/{±I} ∼= SO(3), i.e., for every unitary matrix in
SU(2), we can write a rotation matrix on the Bloch sphere.In dimension 3, a proof
was given by Hughston Hughston & Salamon (2016). In these dimensions, all SIC-
POVMs are unitarily equivalent to a Weyl-Heisenberg covariant SIC-POVM. The
only dimension where we know solutions not covariant to the Weyl-Heisenberg group
is dimension 8, where we have the Hoggar solutions. The Hoggar SICs are generated
using the Hadamard matrix, Hoggar (1981). The question can be answered by
classifying all unitarily and anti-unitarily equivalent SIC-POVMs. In general, the
equivalence classes can be identified through the symmetries of the Bloch sphere. We
explore the geometry of the Bloch sphere in detail and prove fundamental geometric
properties associated with the SIC-POVMs.

Further classification of the symmetry of the Bloch sphere requires numerical anal-
ysis because the characteristic equations defining the problem are non-linear. To
generate a numerical method of constructing general SIC-POVMs, we use the con-
cept of frames. The term frame is most commonly used in mathematics and signal
processing. By definition, the SIC-POVMs form tight frames. Tight frames in
general are best described using their Gram matrices Waldron (2018). For a SIC-
POVM, the Gram matrix is formed from the inner products of the vector elements
of the SIC-POVM. The Gram matrix allows for the representation of SIC-POVMs
up to a unitary equivalence, making it ideal for the study of general solutions. The
Gram matrix of SIC-POVMs is a projective matrix having a trace value of n. We
use this property to generate Gram matrices of SIC-POVM without the restriction
of group covariance. By not considering the Weyl-Heisenberg group covariance, the
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number of free parameters becomes of the order of n4 which is much larger compared
to the Welch bound, but it converges to a solution faster in dimensions 4-7.

We derive two functions of the Gram matrix with which we will construct numerical
SIC-POVM Gram matrices. In order to characterize the different solutions, we
explore symmetries in the functions both analytically and numerically. Analytically,
we describe the two trivial symmetries of the equations. Numerically, we show
that the functions only have no symmetry other than the trivial symmetries. The
functions allow us to treat the SIC-POVM Gram matrices as intersections of two
surfaces. We use these to show that SIC-POVMs exist on critical points of both
functions and by using the Hessian matrix of the functions, show that all generated
solutions are isolated in dimensions 4-7, in agreement with Bruzda, Goyeneche &
Życzkowski (2017). Lastly, we characterize the Gram matrices using the generating
set (see 4.1) associated with the Gram matrix and present the unique generating
sets found in dimensions 4 and 5. In dimensions 6 and 7, the number of numerical
solutions we generate is not large enough to make the same claim as the former, but
the results in these dimensions share properties with the SICs in dimensions 4 and
5.

Before proceeding with the more involved calculations, we will provide an overview
of quantum measurements and the generalized Bloch sphere. Subsequently, we will
establish general properties of equiangular vectors on the Bloch sphere and formulate
the problem of constructing equivalent classes. To facilitate numerical analysis, it is
vital to present known solutions and their properties along with numerical methods
used in the construction of group covariant SIC-POVMs. Chapter 3 is dedicated
to illustrating Zauner’s conjecture and order-3 symmetry of the fiducial vector. In
the last chapter, we introduce an alternative method of numerical construction. We
examine general solutions in dimensions 4-7 and supply all necessary derivations.
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2. Geometrical Properties of SIC-POVMs

An isolated quantum mechanical system is described by using a wave function, which
is a complex vector in the Hilbert space. Physically, the wave function of a system
gives us information about the statistics of measured values, i.e., |ψ|2 ∝ Probability.
In practical scenarios, however, making a completely isolated system is impossible,
and all systems we wish to study are subsystems of a much larger quantum system
that includes the environment. Such systems cannot be described using a complex
vector; instead, we describe the system using the density matrix. Another case
where the vector description of a quantum mechanical system fails is when we want
to describe an ensemble of quantum systems. In such a case, the correct predication
of measurements is achieved by using the density operator. For a discrete system,
the density operator is given as follows:

(2.1) ρ̂=
∑
jk

ρjk|ϕj⟩⟨ϕk|.

where |ϕk⟩ are orthogonal basis vectors. The density operator of an ensemble of
states is simply the sum of the density operators of every individual elements.

(2.2) ρ̂=
∑
n
pnρ̂n

where pn is the statistical probability of finding the n-th state in the ensemble.

By definition, the density operator is a Hermitian operator, meaning all its eigen-
values are real. This follows from the fact that the coefficients pn are real and ρ̂n’s
are pure states, i.e., ρ̂n = |ψn⟩⟨ψn|. We can then show that the trace of a density
matrix is one.
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(2.3) Tr(ρ̂) =
∑
k

pkTr(|ϕk⟩⟨ϕk|) =
∑
k

pk = 1

The density matrix may also be written using the wave function ψk(x) as ρ(x,x′) =∑
k pkψ

∗
k(x′)ψk(x). Trace of the operator corresponds to integrating ρ(x,x) over all

values of x, which gives us unity.

For a pure state, the density matrix is pure, i.e., |ψ⟩⟨ψ| for some state ψ. Thus, the
density operator of a pure state is a rank one projector, ρ2 = ρ . To identify the
density operator of a pure state, we can simply check the trace since Tr(ρ̂2) = 1 if
and only if ρ̂ is pure (Nielsen & Chuang (2010); Sakurai & Commins (1995)).

A density matrix, being the most general description of a quantum system, requires
a number of linearly independent measurements to be constructed. For a finite quan-
tum systems, the number of measurements needed for a complete characterization of
the system is determined by the number of free parameters of the density operator.
The density matrix for an n-dimensional system has n2 entries, but since the matrix
is symmetric all diagonal entries are real and only half of the off-diagonal terms are
free. Thus, in total, a finite quantum system requires n2 − 1 linearly independent
measurements for a complete state tomography.

Now that we have introduced the general properties of the density operator, we are
ready to represent the free variables in a geometrically intuitive form by mapping
the operators onto the Bloch sphere.

2.1 Generalized Bloch Sphere

The Bloch sphere is a representation of a 2-dimensional density operators in a 3-
dimensional real space (Bertlmann & Krammer (2008); Bloch (1946)). The Bloch
sphere was first used to visualize the polarization of electromagnetic waves, where it
was referred to as the Poincare sphere. The Bloch sphere representation of quantum
state is generated by using the Pauli matrices σx,σy,σz and the identity matrix
I (2.4). In the Bloch sphere, the pure state density operators are mapped to the
surface of the sphere and the all mixed state density matrices are mapped to the
interior volume of the sphere.
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(2.4) ρ̂= 1
2I+axσx+ayσy +azσz

where ak = Tr(σkρ̂) : k ∈ (x,y,z), and the Pauli matrices are the following 2 × 2
trace-less matrices.

(2.5) σx =
0 1

1 0

 ,σy =
0 −i
i 0

 ,σz =
1 0

0 −1



The Pauli matrices are involuntary matrices, meaning the square of the matrices
gives the identity, and they are orthogonal to each other,Tr(σjσk) = 2δjk. The
coefficient 1

2 comes from the trace condition of the density matrix, since Tr(ρ̂) = a0.
Furthermore, a pure state density operator is a rank-1 projector and consequently
Tr(ρ̂2) = 1. On the Bloch sphere the condition is mapped to a2

x+a2
y+a2

z = 1
4 . Where

as mixed state density operators satisfy the bound Tr(ρ̂2) < 1 → a2
x+a2

y +a2
z <

1
4 ,

meaning the mixed states are mapped to the interior of the Bloch sphere.

σz

σy

σx

r⃗

Figure 2.1 The figure depicts the Bloch sphere, where the vector r⃗ corresponds to
the density operator ρ̂, while the (x,y,z) axes correspond to the three Pauli matrices
(σx,σy,σz) respectively. The interior of the sphere is where mixed states are mapped
to and the surface of the Bloch sphere contains all pure state density operators.

As can be seen, the Bloch sphere allows us to represent the quantum states in a
geometrical manner. Special Unitary operations, which are norm preserving oper-
ators, can intuitively be described as rotations on the Bloch sphere. This follows
from the 2-to-1 homeomorphism of the SU(2) and SO(3) groups. In simple words,
the unitary evolution of a 2-dimensional system can be reduced to 3-dimensional
rotations on the Bloch sphere, where the vector of the rotations corresponds to the
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generator of the evolution. For a unitary operator V̂ ∈ SU(2) given below,

(2.6) V̂ = ei
ϕ
2 n̂σ⃗

the unit vector n̂ corresponds to the axis of rotation in the Bloch sphere represen-
tation.

The Bloch sphere can be generalized to higher dimensions using different choices of
basis. To study the SIC-POVMs and other frames in a geometrically simpler way,
we will use basis matrices that we map the density operators onto the real space.
The basis of choice for these, are the symmetric trace-less generalizations of the
Pauli matrices known as the Gell-Mann matrices.

2.1.1 The Gell-Mann Matrices

The Gell-Mann matrices are a set of 8 trace-less matrices spanning the space of 3×3
trace-less symmetric complex matrices. Before we generalize the matrices to higher
dimensions, let’s look at the Gell-Mann matrices in dimension 3 in more detail.

Λ = {


0 1 0
1 0 0
0 0 0

 ,


0 0 1
0 0 0
1 0 0

 ,


0 0 0
0 0 1
0 1 0

 ,


0 −i 0
i 0 0
0 0 0

 ,


0 0 −i
0 0 0
i 0 0

 ,


0 0 0
0 0 −i
0 i 0

 ,


1 0 0
0 −1 0
0 0 0

 ,


1√
3 0 0

0 1√
3 0

0 0 − 2√
3

}.

(2.7)

The matrices can be split into three subsets based on the entries: the real terms,
the complex terms and diagonal terms. In literature, these are also referred to
as the symmetric, anti-symmetric and diagonal Gell-Mann matrices. Just like the
2-dimensional case, 3-dimensional density operators can be represented using the
Gell-Mann matrices as,
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(2.8) ρ̂= 1
3I+

8∑
k=1

rkλk.

Where r⃗ ∈ R8, and rk = 1
2Tr(λkρ̂). By applying the constraints on the density

operator, we find that the vector |r⃗|2 ≤ 1√
3 where the equality holds if and only if

the ρ̂ is a pure state density matrix. We will prove this for the generalized Gell-Mann
matrices. The similarities to with the 2-dimensional case don’t go further than this,
as the SU(3) ≇ SO(8), the implication of which is, that not all vectors in the Bloch
sphere correspond to physical states. We can visualize the states in the diagonal
subspace of the Bloch sphere.

** Let ρ̂ be an arbitrary diagonal density matrix, and the vector r⃗ be the image of
its on the Bloch sphere. For the Gell-Mann matrices given in (2.7), the image of a
diagonal matrix r⃗ only has 2 none zero elements. These are the coefficients of the
last two matrices in (2.7).

(2.9) r⃗ = {0, . . . ,0, r7, r8}

The three basis vectors,i.e.,{|0⟩, |1⟩, |2⟩}, are mapped to three vectors of length 1
3

forming the edges of a equilateral triangle. The last two elements of which are,
v⃗0 → {0,−1}, v⃗1 → {

√
3

2
1
2}, v⃗2 → {−

√
3

2 ,
1
2}. To visualize the entire diagonal density

matrices, note that we write arbitrary diagonal density operator as a linear com-
bination of pure states as shown in (2.2). This means, we can write all images of
the density operators on the Gell-Mann sphere as a linear combination of the three
vector listed above, with the condition that the coefficient is always positive.

(2.10) r⃗ = p1v⃗1 +p2v⃗2 +p3v⃗3, wherep1 +p2 +p3 = 1

The vector r⃗ lies with in the triangle formed by the images of the basis vectors
as shown in 2.2. Note that, in the diagonal subspace, the only pure states on the
surface of the Bloch sphere are the three basis vectors. This shows that, the surface
of the Bloch sphere in dimension 3 contains nonphysical density operators.
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r7

r8

v⃗1

v⃗2v⃗3

Figure 2.2 The circle depicts the diagonal subsurface of the Bloch sphere, where The
image of all physical diagonal density operators lie in the shaded area. Only the
three orthogonal basis vector exist on the surface of the Bloch sphere.

** We now define the generalized Bloch sphere by using the generalized Gell-Mann
matrices, Bertlmann & Krammer (2008).

Definition 2.1 (Generalized Gell-Mann matrices). Let the matrices λs,λa,λd be
the symmetric, anti-symmetric and diagonal Gell-Mann matrices respectively in the
n-dimensional complex space, where

λjks = |j⟩⟨k|+ |k⟩⟨j| : 0 ≤ j < k ≤ n−1(2.11)

λjka = −i(|j⟩⟨k|− |k⟩⟨j|) : 0 ≤ j < k ≤ n−1(2.12)

λld =
√

2
l(l+1)

l−1∑
k=0

|j⟩⟨j|− l|l⟩⟨l| : 1 ≤ l ≤ n−1(2.13)

The n2 −1 matrices are linearly independent, which is obvious in their matrix form.
consequently, the generalized Gell-Mann matrices form a basis for the n×n sym-
metric matrices. From this point on, we will refer to the basis formed as a set {λk}
where the order we use is {λs,λa,λd}.(This is the same order of the set given for
3-dimensional case in (2.7)).

Using the n2 −1 symmetric trace-less matrices defined, we generate a map from the
density operator to the real vector space which forms the generalized Bloch sphere
as Cn×Cn 7→ Rn

2−1, where

(2.14) r⃗ρ̂ = 1
2

n2−1∑
k=1

Tr(λkρ̂)e⃗k
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and unit vectors e⃗k is the images of λk on the Gell-Mann sphere. The density
operator is then expanded as ρ̂= I/n+ λ⃗ · r⃗ρ̂.

Consider the image of a pure state density operator ρ̂ on the real vector space. Since
the operator is pure, Tr(ρ̂2) = 1.

Tr(ρ̂2) = Tr
(( I
n

+
∑
j

λjrj
)( I
n

+
∑
k

λjrk
))

= Tr
( I
n2 +

∑
jk

λjλkrjrk
)

= 1
n

+
∑
jk

Tr(λjλk)︸ ︷︷ ︸
δjk

rjrk = 1
n

+2|r⃗|2

(2.15)

Therefore, pure states are mapped to points on a sphere of radius |r⃗| =
√
n−1
2n , which

we define as the generalized Bloch sphere. The free parameters of a quantum state
once we apply normalization and remove global phase is 2n− 2, but the surface of
the Bloch sphere is a n2 −2 dimensional manifold. Thus, for n> 2, the surface of the
Bloch sphere contains points which are not density operators to a physical state. In
the next section we will look at the manifold formed by the pure states and mixed
states.

2.1.2 Density Matrices in the Generalized Bloch Sphere

Each density operator is mapped to the real space using the Gell-Mann matrices
2.1. As briefly stated in previous section, not all vectors on Bloch sphere correspond
to physical density operators. The reason because not all density operators on the
Bloch sphere are positive definite,i.e., some operators on the Bloch sphere have
negative eigenvalue. To fully characterize and identify physical density operators
on the Bloch sphere, we must classify the operators based on their eigenvalues.
Mixed state density operators are mapped to the interior of the Bloch sphere as the
dimension 3 case shown in figure 2.2, and in general, mixed state density operator
are mapped to vectors r⃗ where |r⃗|<

√
n−1
2n . We will now generate a set of equations

that define the image of all states on the real vector space.

We start by the pure state, which satisfies the condition ρ̂2 = ρ̂. Comparing the
density operators in this manner does not tell us much about the image of the
states. For that we need equations that we can transform to the real space. These
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equations are the trace of power of the density operator.

Definition 2.2. For a given density operator ρ̂, define the functions Fk where Fk =
Tr(ρ̂k).

The functions Fk are mapped to the Bloch sphere as follows:

(2.16) Fk = Tr

(( I
n

+
∑
j

λjrj

)k)

The functions are equivalent to ∑
j x

k
j in terms of the eigenvalues of the density

operators and in general, we can identify a density operator up to a unitary trans-
formation by using the functions {fF1, . . . ,Fn} as shown in the Appendix A. The
number of necessary equations decreases with degeneracy’s of the operator.

Theorem 2.1. A density matrix ρ̂ is pure if and only if F1 = 1, F2 = 1 and F3 = 1.

The theorem was proved by Appleby (2007) and can be found in Appendix A.1 .

The function F1 = 1 is satisfied by definition for all matrices on the Bloch sphere.
The function F2 = 1 maps to |r⃗|2 = n−1

2n which corresponds to the entirety of the
Bloch sphere. The third function F3 = 1 is the characteristic function that de-
termines the geometry of pure states on the Bloch sphere. In the real space, the
function can be reduced to,

F3 = 1
n2 + 6

n

n−1
2n +

∑
ijk

dijkrirjrk

n2 −3n+2
n2 =

∑
ijk

dijkrirjrk

(2.17)

where dijk = Tr(λiλjλk) and 1 ≤ i, j,k ≤ n2 −1.

2.1.3 SU(n) in the Real Vector Sphere

The Pauli matrices allows us to map the special unitary group on to the spe-
cial orthogonal group as shown in equation (2.6), where we have the isomorphism
SU(2)/{±I} ∼= SO(3). We don’t have similar isomorphism between SU(n) and
SO(n2 − 1) in higher dimensions. A given unitary operator U ∈ SU(n) is mapped
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to the orthogonal transformation M ∈ SO(n) where the matrix elements are given
by Mjk = 1

2Tr(U
†λjUλk). We can write any U as an exponential transformation

eiΩ where Ω† = Ω and Tr(Ω) = 0. To derive the exponential form of the orthıgonal
transformations, we break down U into infinitesimal transformations.

(2.18) eiΩ = lim
N→∞

(I+ i

N
Ω)N

We first transform the infinitesimal transformations on to the real space by using
the Gell-Mann matrices Λ = {λk}. For a given density matrix ρ we write the trans-
formation to ρ′ as ρ′ = u†ρu. If u is an infinitesimal transformation,

(2.19) ρ′ = (I− iδΩ)ρ(I+ iδΩ), δ ≪ 1

We can now expand all the symmetric matrices as ρ′ = I
n + Λ · r⃗′, ρ = I

n + Λ · r⃗ and
Ω = Λ · c⃗.

I
n

+Λ · r⃗′ = (I− iδΛ · c⃗)( I
n

+Λ · r⃗)(I+ iδΛ · c⃗)(2.20)

Λ · r⃗′ = Λ · r⃗− iδ(λjλk −λkλj)cjrk +O(δ2)(2.21)

define [λjλk −λkλj ] = −ifjkpλp where fjkp = djkp−dkjp

2i ,

Λ.r⃗′ = Λ.r⃗− iδ(−ifjkpλp)cjrk +O(δ2)(2.22)

r′
p = rp− δ(fjkpcj)rk +O(δ2)(2.23)

r′
p = rp+ δ(fpkjcj)rk +O(δ2)(2.24)

We can now define an orthogonal matrix (to the first order of δ) Mij(δ) = I+
δ
∑
k fijkck. Then the unitary eiΩ corresponds to the product of the infinitesimal

transformations Mij .

(2.25) M = exp(
∑
k

fijkck)
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We can also write the matrix element using the unitary operation U as Mik(U) =
tr(U †ΛiUΛk). In dimension 3, the corresponding generator of the orthogonal trans-
formation is shown below, for an arbitrary vectors c⃗ ∈ R8.

(2.26)

0 2c7 c6 −c5 c4 −c3 −2c2 0
−2c7 0 c5 c6 −c3 −c4 2c1 0
−c6 −c5 0 c7 +

√
3c8 c2 c1 −c4 −

√
3c4

c5 −c6 −c7 −
√

3c8 0 −c1 c2 c3
√

3c3
−c4 c3 −c2 c1 0

√
3c8 − c7 c6 −

√
3c6

c3 c4 −c1 −c2 c7 −
√

3c8 0 −c5
√

3c5
2c2 −2c1 c4 −c3 −c6 c5 0 0
0 0

√
3c4 −

√
3c3

√
3c6 −

√
3c5 0 0



The orthogonal matrix allows us to construct the entire Bloch sphere by applying
it to the diagonal subspace, which has a simple geometry. The diagonal subspace
is a n-simplex where the pure states form the vertices of the simplex. We can then
immediately see that there exists a radius (the distance to the center of the base of
the simplex) beyond which all vectors correspond to physical density operators.

2.2 Generalized Quantum Measurements

Measurement in quantum mechanics is performed by interaction of a system with
a classical measurement apparatus. At a given time, the classical apparatus is
found in one of its’ eigenvectors and the system being measured also gets projected
on to a state determined by the measurements process, Landau & Lifshitz (1977).
Mathematically we write the measurement process thought the set of operators
{Ek}. Each Ek corresponds to a measurement operator where k is the measurement
outcome. These measurement operators project an arbitrary initial state |ψ⟩ to the
non-normalized post measurement state |ϕk⟩ and the probability that the system is
projected to the post measurement state is pk = ⟨ϕk|ϕk⟩. A complete measurement
must account for all the possible measurement outcomes, which is given by the
completeness condition,
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(2.27)
∑
k

E†
kEk = I .

The normalized post measurement state is given by the following, Nielsen & Chuang
(2010).

(2.28) Ek|ψ⟩√
⟨ψ|E†

kEk|ψ⟩

When applied to the density operator, the probability simply becomes Tr(EkρE†
k)

and the post measurement state

(2.29) ρ′ = EkρE
†
k

Tr(EkρE†
k)

.

A familiar measurement is the Von-Neumann measurement, also known as the pro-
jective valued measure, where the measurement operators are orthogonal projec-
tive operators. The maximum number of the Von-Neumann measurements in n-
dimensional Hilbert space is n, in which case we can write the projectors using
the measurements basis vectors as |ϕk⟩⟨ϕk|. For example, in dimension 2, the two
measurement operators P0 = |0⟩⟨0| and P1 = |1⟩⟨1| form a projective value measure.
These two measurements are not enough to reconstruct a density matrix, since the
two operators correspond to two opposite vectors along the z axis of the Bloch
sphere. Obviously, the vectors do not span the entire Bloch sphere and therefor
does not allow for the unique representation of a density matrix. For a complete de-
scription of a 2-dimensional density matrix, we need at least 3 linearly independent
measurement operators.

The generalized quantum measurement formalism is the positive operator-valued
measure, which is abbreviated as POVM. For a set of measurement operators {Ek}
satisfying the completeness conditions, (2.27). The POVM is defined as the set of
positive operators {Πk} where Πk = E†

kEk, satisfying (2.30). The probability of
observing k is then ⟨ψ|Πk|ψ⟩. In general, the POVM elements are not rank-1 or
projective operators. If the measurement operators are rank-1 operators, we can
write Ek = |ϕk⟩⟨ψk| where |ψk⟩ is the post measurement state.In such a case, we can
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write the POVM elements as |ψk⟩⟨ψk|.

(2.30)
∑
k

Πk = I

In general, POVM operators can be mapped onto the real vectors space by the
Gell-Mann matrices. Since the POVM elements are Hermitian, one can represent
them with a density matrix up to some multiplicative factor. This allows for a
simplified geometric representation of many POVMs as we will see in later sections.
In this picture, the probability of the measurement outcomes is correlated to the
dot product of vectors corresponding to the state being measured and the POVM
element. For a complete reconstruction of a density matrix, the image of the POVM
elements must span the entire Bloch sphere. In other words, in n-dimensional Hilbert
space, the vectors representing the operators must be linearly independent and must
have at least n2 − 1 elements. There are two special POVMs that are the subject
of research in quantum computation and information for their efficiency. These are
the symmetric informationally complete POVM and the mutually unbiased bases
abbreviated as SIC-POVM and MUB respectively. The focus for this thesis is the
SIC-POVMs but we shall give a brief definition of the MUBs as well for general
discussion.

2.2.1 Symmetric Informationally Complete POVMs

The SIC-POVMs are a type of generalized measurements consisting of n2 elements
in n-dimensional Hilbert space. The SIC-POVM that minimize the number of mea-
surements required for a complete state tomography Scott (2006).

Definition 2.3 (SIC-POVM). Let the set of positive Hermitian operators {Πk}
be SIC-POVMs for n-dimensional Hilbert space, where Πk = |ϕk⟩⟨ϕk|

n and

(2.31) Tr(ΠjΠk) = δjkn+1
n2(n+1)

The density operator can be expressed using the SIC-POVM and probabilities of
each measurement, pk = Tr(Πkρ).
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(2.32) ρ=
n2∑
k=1

(
pkn(n+1)−1

)
Πk

Since every operator of the SIC-POVM is a rank-1 projector, it is common to rep-
resent it using normalized vectors {|ϕk⟩} where Πk = 1

n |ϕk⟩⟨ϕk|. We will use both
representations interchangeably throughout the thesis. The vectors forming the
SIC-POVMs are equidistant by definition, and they are also known as equiangu-
lar or equidistant complex vectors in mathematics literature Waldron (2018). For
example, in 2-dimensional Hilbert space, the following 4 vectors form a SIC-POVM.

|ψ1⟩ = |0⟩

|ψ2⟩ = 1√
3

|0⟩+
√

2
3 |1⟩

|ψ3⟩ = 1√
3

|0⟩+
√

2
3e

i2π/3|1⟩

|ψ4⟩ = 1√
3

|0⟩+
√

2
3e

i4π/3|1⟩

(2.33)

2.2.2 Mutually Unbiased Bases

Another interesting measurement is the Mutually unbiased bases which consists of
n(n+1) positive operators.

Definition 2.4 (MUB). Let the set of operators Πjk be a set of rank-1 projectors
where

(2.34) Tr(ΠjkΠj′k′) = (1− δjj′) 1
(n+1)n + δjj′δkk′

1
n+1

and the two indices j and k correspond to the basis index and the basis element index
respectively.

Similar to the SIC-POVMs, we can represent the operators forming a MUB by
normalized states, where Πjk = 1

n+1 |ϕjk⟩⟨ϕjk|. The mutually unbiased bases can
be constructed in all prime power dimensions where all n+ 1 bases are known. In
other dimensions how ever it is not known if n+1 bases exist. The smallest of such
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dimensions is dimension 6, where no complete set of bases is known. For example,
in 2-dimensional Hilbert space, the eigenbasis of the Pauli matrices form a MUB.

Π0k = {|0⟩, |1⟩}

Π1k =
{ |0⟩+ |1⟩√

2
,
|0⟩− |1⟩√

2
}

Π1k =
{ |0⟩+ i|1⟩√

2
,
|0⟩− i|1⟩√

2
}(2.35)

2.3 Geometry of SIC-POVMs in the Generalized Bloch Sphere

We know have the necessary tools to explore the geometry formed by the SIC-
POVMs in the Bloch sphere. Let’s start with the SIC-POVM given in (2.33). We
can map each vector given to the Bloch sphere by using the Pauli matrices as follows.
Let r⃗k be the image of the state |ϕk⟩. Then, r⃗k is given by 1

2Tr(σ⃗|ϕk⟩⟨ϕk|). The
corresponding 4 vectors are as follows:

r⃗1 = {0,0, 12},r⃗2 = {
√

2
3 ,0,−1

6}

r⃗3 = {− 1
3
√

2
,− 1√

6
,−1

6},r⃗4 = {− 1
3
√

2
,

1√
6
,−1

6}
(2.36)

Plotting the vectors on the Bloch sphere, the 4 vectors form the vertices of a simplex
as shown in figure 2.3.
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σy

σz

σx

r⃗1

r⃗2

r⃗3
r⃗4

Figure 2.3 The 4 vectors span the entire Bloch sphere and an arbitrary state can
be written as a linear combination of the 4-vectors with only positive expansion
coefficients.

In general the condition Tr(ΠjΠk) = 1
n+1 for j ̸= k is equivalent to the condition

r⃗j · r⃗k = − 1
2n(n+1) as shown below (2.37). Since the norm of the vectors r⃗j =

√
n−1
2n ,

the angle between the vectors is such that cos(θjk) = − 1
n2−1 . This shows that the

SIC-POVM form the vertices of an (n2 −1)-simplex on the Bloch sphere.

Tr(ΠjΠk) = Tr(
( I
n

+ r⃗j · Λ⃗
)( I
n

+ r⃗k · Λ⃗
)
)

1
n+1 = Tr( I

n2 +2r⃗j · r⃗k)

1
2

(
1

n+1 − 1
n

)
= r⃗j · r⃗k

− 1
2n(n+1) = r⃗j · r⃗k

(2.37)

While, in 2-dimensional Hilbert space, the 4 vectors can be rotated arbitrarily to
form a new SIC-POVM, in higher dimensions this is not the case. The rank-1
operators are mapped to the surface of the Bloch sphere and the pure states on the
surface are determined by the equation Tr(ρ3) = 1. Therefore, the SIC-POVMs do
not form an arbitrary simplex, rather the orientation is restricted in a complicated
way. To explore the restriction on the orientation, we go back to the condition of
purity A.1. Restricting our selves to states who’s image is on the surface of the
Bloch sphere, the defining characteristic for a density operator to be pure is the
trace cub condition, which we can equivalently map to the Bloch sphere as follows.
Let ρk = |ϕk⟩⟨ϕk| be an element of a SIC-POVM.
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Tr(ρ3
k) = Tr

( I
n3 +3 1

n2 r⃗ ·Λ+3 1
n

(r⃗ · Λ⃗)2 +(r⃗ · Λ⃗)3
)

1 = 1
n2 +6 1

n
r⃗j · r⃗k +

∑
abc

rarcrcTr(ΛaΛbΛc)

1− 1
n2 −6n−1

2n2 =
∑
abc

rarcrcdabc

(n−1)(n−2)
n2 =

∑
abc

rarcrcdabc

(2.38)

The tensor dijk = Tr(λiλjλk) is zero for most of the indices. For example, the
equation in for Bloch sphere of the 3-dimensional Hilbert space is shown in (2.64)
(see Appendix A).

(2.39)∑
a1a2a3

d3
a1a2a3ra1ra2ra3 = 2

√
3r2

1r8 +6r1r2r3 +6r1r5r6 +3r2
2r7 −

√
3r2

2r8 −6r2r4r6 −3r2
3r7

−
√

3r2
3r8 +6r3r4r5 +2

√
3r2

4r8 +3r2
5r7 −

√
3r2

5r8 −3r2
6r7 −

√
3r2

6r8 +2
√

3r2
7r8 − 2r3

8√
3

= 2
9

In general, a pure state density operators is identified through the homogeneous
polynomial (2.38). We can now define the SIC-POVM vectors as the vertices of
(n2 −1)-simplex such that each vector satisfied the condition (2.38). In other word
the function polynomial function maps the points on the surface of the Bloch sphere
to the real space, f : r⃗ 7→ R,f(r⃗) = ∑

a1a2a3 d
3
a1a2a3ra1ra2ra3 where − (n−1)(n−2)

n2 ≤
f(r⃗) ≤ (n−1)(n−2)

n2 . The polynomials Boundary is maximized for pure states, which
can easily be deduced from the diagonal subspace where the pure states are n points.
on the other limit, since the function is odd, the minimum has to be − (n−1)(n−2)

n2 .
At this point, we can draw a parallel between the construction of SIC-POVMs and a
well known problem in geometry called Kakutani’s theorem (see theorem 2.2). This
will help us lay the ground work for a generalized understanding of the SIC-POVM
existence problem and possible direction of a general proof. In 1947, Bronislaw
Knaster posed the following problem in the Colloquium Mathematicae Col (1947),
which was originally in French and presented in English in the "Life and Work of
Bronislaw Knaster" in Duda (1987) as follows. "Given three points p1,p2,p3 on a 2-
dimensional sphere and a continuous mapping of S2 into the R. Do there exist points
q1, q2, q3 on S2 which are equivalent to rotation to p1,p2,p3 that have the common
image on R, i.e.,
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(2.40) f(q1) = f(q2) = f(q3) ?

More generally, For any given k points (p1, · · · ,pk) on Sn and any continuous map-
ping of Sn into Rn−k+2, where k ∈ {2, · · · ,n+1}, is there a set of points (q1, · · · , qk)
which has the same image in Rn−k+2?" The problem has been answered for various
special sets of vectors. One of the most notable examples is Kakutani’s theorem.
Kakutani proved the conjecture for orthogonal vectors on a 3-dimensional sphere
in Kakutani (1942). Later, Yamebe and Yujobo (1950) generalized the theorem to
orthogonal vectors in arbitrary dimensions. Other examples are the Borsuk-Ulam
theorem, which corresponds to antipodal points on an n-sphere Borsuk (1933) and
Dyson’s theorem, which corresponds to 2 orthogonal lines crossing through the origin
of an n-sphere Dyson (1951).

The Kakutani’s theorem, originally inspired by the geometric problem of a convex
body circumscribed in a cube, states that given a continuous function on a sphere,
there exists 3 orthogonal vectors such that all vectors map to a constant value of the
function Kakutani (1942). Later, the theorem was generalized to higher dimensions
by H. Yamabe et.al. Yamabe & Yujobô (1950). The generalized Kakutani’s theorem
is stated as follows: given a continuous map f : Sn−1 → R, there exists a set of
orthonormal vectors {p⃗j} such that,

(2.41) f(p⃗1) = f(p⃗2) = . . .= f(p⃗n)

As shown in equation (2.38), the SIC-POVM is a set of n2 equi-norm vectors forming
the vertices of an (n2 − 1)-simplex such that ∑dabcrarbrc = constant for all the
vectors. We can not directly apply the Kakutani’s theorem since the vectors forming
the SIC-POVM are not orthogonal. Thus,we will first prove a modified version of
the Kakutani’s theorem for the vertices of a simplex in the next section.

2.3.1 Modified Kakutani’s Theorem

We start by constructing a regular simplex in the n2 − 1 dimensional real space.
This can be done using the Gram-Schmidt process. Start with the one dimensional
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vectors V1 = {(1),(−1)}, which is the equiangular vector in the 1-dimensional vector
space. Then, by applying the algorithm Vn = {{

√
n2−1
n Vn−1,

1
n},{0, ...,0,−1}}, we

construct n+1 equiangular unit vectors. For example, in the 2-dimensional vectors
space, the set of equiangular vectors is V2 = {(

√
3

2 ,
1
2),(−

√
3

2 ,
1
2),(0,−1)} and in the

3-dimensional vector space, the corresponding set is V3 = {(
√

8
3 V2,

1
3),(0,0,−1)}. By

plugging the vectors of V2, we generate the four vectors in V3, which gives the vectors

(2.42) {(
√

6
3 ,

√
2

3 ,
1
3),(−

√
6

3 ,

√
2

3 ,
1
3),(0,−

√
8

3 ,
1
3),(0,0,−1)} .

The vertices of a regular simplex and a set orthonormal basis vectors have geometric
similarities which simplify the proof of Knaster’s conjecture. In both cases, orthog-
onal transformations can be constructed such that any number of chosen vectors in
the set are fixed by the transformations and the rest of the vectors form a connected
subspace as shown in lemma 2.1.

Lemma 2.1. Consider a set of vectors P = {p⃗1, ..., p⃗n} on Sn−1 where p⃗i.p⃗j = − 1
n ,

then there exists a sets of matrices {U1, ...,Un−1} where Ui ∈ SO(n) such that

(2.43)

U1p⃗1 = p⃗1 ,
U2p⃗2 = p⃗2,U2p⃗1 = p⃗1 ,
U3p⃗3 = p⃗3,U3p⃗2 = p⃗2,U3p⃗1 = p⃗1 ,
...
Un−1p⃗n−1 = p⃗n−1, ...,Un−1p⃗2 = p⃗2,Un−1p⃗1 = p⃗1 .

Proof. Let’s take the mutually orthogonal vectors {v⃗1, ..., v⃗n} constructed from the
elements of P using the Gram-Schmidt algorithm. Then the elements of P take the
following form,

(2.44)

v⃗1 = p⃗1 ,
v⃗2 + (v⃗1.p⃗2)

|v⃗1|2 v⃗1 = p⃗2 ,
v⃗3 + (v⃗2.p⃗3)

|v⃗2|2 v⃗2 + (v⃗1.p⃗3)
|v⃗1|2 v⃗1 = p⃗3 ,

...
v⃗n+ (v⃗n−1.p⃗n)

|v⃗n−1|2 v⃗n−1 + ...+ (v⃗2.p⃗n)
|v⃗2|2 v⃗2 + (v⃗1.p⃗n)

|v⃗1|2 v⃗1 = p⃗n .
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By using vector set {v̂1, ..., v̂n} as our basis, we construct the set of matrices Ui as

(2.45) Ui = {

 I 0
0 uk

 : ∀ui ∈ SO(n− i)} .

where I is a k-dimensional identity matrix. The action of the matrices Uk on the
equiangular vectors P fixes the first k vectors. In addition, matrices of the form Uk

exist which map each of the remaining vectors to each other. This shows that the
orbits of these vectors are equivalent.

Given the equiangular vectors, Vn2−1, and the corresponding orthogonal matrices Uk
which fixed the first k vectors, the orbit of the remaining (n−k) vectors is defined
as the collection of points having a fixed inner product with all the k vectors. The
subspaces can be defined as the intersection of the subspaces with a fixed inner
product to each vector of index 1 up to k. Before defining these subspaces, let us
define a representation for a surface. A surface defined by a function g(x⃗) − g0 = 0
is represented as S = {x⃗ ∈ RN |g(x⃗) − g0 = 0}. we will represent such surface in a
slightly shorter form {g(x⃗)−g0 = 0}N .

Definition 2.5. Given the set of equiangular vectors {p⃗1, p⃗2, ..., p⃗n} on Sn−1 where
p⃗i.p⃗j = − 1

n , define the subspace Ji = Sn−1⋂i−1
j=1 {x⃗.p⃗j + 1

n = 0}
n

and J1 = Sn−1.

The subspaces Ji correspond to the orbits formed by the matrices Ui−1. This can be
understood from the fact that the inner product of any vector in Ji and the vectors
{p⃗1, · · · , p⃗i−1} is 1

n . A key point to note from the definition is that J1 ⊃ J2 ⊃ ...⊃ Jn,
which will be important in the proof of theorem 2.2. Next, we show that each of
the surfaces Ji is isomorphic to the sphere Sn−i using proof by induction.

Lemma 2.2. Ji ∼= Sn−i : 1 ≤ i≤ n

Proof. For i= 1, by definition J1 = Sn−1.

For i= 2, the set is given by,

(2.46) J2 = Sn−1 ∩{x⃗.p⃗1 + 1
n

= 0}n .

Let {ê1, . . . , ên−1} be a set of orthogonal vectors such that êi.p⃗1 = 0. Then, we can
write the vector x⃗ as,
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(2.47) x⃗=
n−1∑
i=1

αiêi−
p⃗1
n
,αi ∈ R .

This form of x⃗ satisfies the equation x⃗.p⃗1 + 1
n = 0. The vector x⃗ is also an element

of Sn−1, meaning |x⃗|2 = 1. Using the normalization conditions of x⃗ and p⃗1 in

(2.48) |x⃗|2 =
n−1∑
i=1

α2
i + |p⃗1|2

n2 ,

we calculate the sum of α2
i as

(2.49)
n−1∑
i=1

α2
i =

(n2 −1
n2

)
.

Clearly, 2.49 defines a sphere Sn−2, and we can form a homeomorphism between
the subspace J2 and Sn−2 defined as ϕ2 : J2 7→ Sn−2,ϕ2(x⃗) = x⃗+ p⃗1

n which proves
J2 ∼= Sn−2.

For i= 3, we start by writing the subspace J3 and an intersection of J2 and {x⃗.p⃗2 +
1
n = 0}, which becomes

(2.50) J3 = J2 ∩{x⃗.p⃗2 + 1
n

= 0} .

By applying the map ϕ2 on the subspace J3, we generate the subspace ϕ2(J3) which
is homeomorphic to the original space J3. The resulting subspace of Sn−1 is ϕ2(J3) =
ϕ2(J2 ∩{x⃗.p⃗2 + 1

n = 0}) = ϕ2(J2)∩ϕ2({x⃗.p⃗2 + 1
n = 0}). The subspace ϕ2(J2) is a n−1

dimensional sphere of radius
√
n2−1
n2 . Next, we need to write J3 in the same form

as J2, specifically, as an intersection of a sphere and a surface defined by some
continuous equation. This is done by applying the map ϕ2 on the vectors x⃗ and p⃗2.
Let’s define x⃗′ = x⃗+ p⃗1

n and p⃗′
2 = p⃗2 + p⃗1

n . By replacing the vectors in the surface
equation x⃗.p⃗2 + 1

n = 0 by the vectors x⃗′ and p⃗′
2, we form the subspace ϕ2(J3) as
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(2.51)
ϕ2(J3) = ϕ2(J2)∩

{
(x⃗′ − p⃗1

n ) · (p⃗′
2 − p⃗1

n )+ 1
n = 0

}
= ϕ2(J2)∩

{
(x⃗′ · p⃗′

2 − p⃗1
n · p⃗′

2 − x⃗′ · p⃗1
n + p⃗1

n · p⃗1
n )+ 1

n = 0
}

.

Since p⃗1.p⃗′
2 = 0 and for x⃗ ∈ J2 we have p⃗1.x⃗′ = 0, 2.51 simplifies to

(2.52)
ϕ2(J3) = ϕ2(J2)∩

{
x⃗′.p⃗′

2 + 1
n2 + 1

n = 0
}

= ϕ2(J2)∩
{
x⃗′.p⃗′

2 +
(
n+1
n2

)
= 0

}
= ϕ2(J2)∩

{
x⃗′.p⃗′

2 +
(
n2−1
n2

)
1

n−1 = 0
}

.

The magnitude of the vectors x⃗′ and p⃗′
2 is

√
n2−1
n2 as is the radius of the sphere

ϕ2(J2). Thus, we define a normalization map r2 : Rn−1 7→ Rn−1, r2(x⃗′) =
√

n2
n2−1 x⃗

′

and apply it on ϕ2(J3). The map r2(ϕ2(J2)) simply gives Sn−2 and for the equation
of the surface, we replace x⃗′ and p⃗′

2 by r(x⃗′)
√
n2−1
n2 and r(p⃗′

2)
√
n2−1
n2 , respectively.

The resulting subspace is,

(2.53) (r2 ◦ϕ2)(J3) = Sn−2 ∩
{
r(x⃗′) · r(p⃗′

2)+ 1
n−1 = 0

}
.

Since r2 is a homeomorphism, the map r2 ◦ϕ2 is also a homeomorphism. Note that
(r2 ◦ϕ2)(J3) has the same form as J2 with one less dimension. Therefore, we can
go through the same steps as J2 to form a homeomorphism ϕ3 : (r2 ◦ ϕ2)(J3) 7→
Sn−3,ϕ3(x) = x⃗+ p⃗′

2
n−1 , thereby showing J3 ∼= Sn−3. Finally, we repeat the process

for each surface Ji to prove that Ji ∼= Sn−i for all 1 ≤ i≤ n.

Finally, we are ready to show that, given any continuous function on Sn, there exists
a regular simplex for which at least n of its vertices are mapped to a unique value
by the function.

Theorem 2.2. Let f be a continuous function defined on the unit sphere Sn−1 such
that f : Sn−1 7→ R. There exists a set of points {p1,p2, ...,pn} on Sn−1 such that,

(2.54) p⃗i.p⃗j = − 1
n
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and

(2.55) f(p1) = f(p2) = ...= f(pn) = f0 , f0 ∈ R ,

where p⃗i represents the vector from the origin to the point pi.

Proof. We start by noting that, since f is a continuous function and Sn−1 is a
compact space, the value of f(p), ∀p ∈ Sn−1 is continuous and bounded, i.e. a ≤
f(p) ≤ b. Let’s take two points pa and pb where pa,pb ∈Sn−1, such that f(pa) = a and
f(pb) = b and define a set of matrices µ(θ) = {µ(θ) ∈ SO(n),µ(1)p⃗a = p⃗b, θ ∈ [0,1]}.
We then construct a set of equiangular vectors Ψ = {p1,p2, ...,pn} on Sn−1 by using
the method shown in beginning of this section, such that p⃗i.p⃗j = − 1

n and p1 = pa.
When we apply µ(θ) on Ψ we get the set Ψ(θ) = {p1(θ),p2(θ), ...,pn(θ)} and since
µ(θ) ∈ SO(n) the angle between the vectors p⃗i(θ) are invariants.

First, let’s assume that the theorem holds for any continuous function defined on
Sn−2. Then we can construct a set of n−1 points {r1, ..., rn−1} where x⃗i.x⃗j = − 1

n−1 ,
such that ∀k,f(r⃗k) = f0. For a given p1(θ), we construct a subspace J2 defined in
def 2.5. As shown in lemma 2.2, J2 ∼= Sn−2. By using the map ϕ2 introduced in the
proof of lemma 2.2, we can map the vectors pk,2 ≤ k ≤ n, to unit length vectors in
(n−1)-dimensional sphere, where

(2.56) ϕ2(p⃗j) ·ϕ2(p⃗k) =
(

− 1
n−1

)
|ϕ2(p⃗j)||ϕ2(p⃗k)| .

The corresponding function on the subspace becomes f(p⃗k) 7→ f ◦ϕ−1(p⃗′
k), where

p⃗′
k = ϕ2(p⃗k). Based on our assumption, there exists an orthogonal matrix u1 ∈

SO(n− 2) such that f ◦ϕ−1(u1p⃗′
k) = f0 is a constant for all k ̸= 1. The orthog-

onal matrix u1 can be used to form an orthogonal matrix U1 in SU(n− 1) as
shown in 2.45. In other words, by taking µ(θ) = U1, we construct a set of vec-
tors Ψ(θ) = {p1(θ),p2(θ), ...,pn(θ)}, where f(p2(θ)) = f(p3(θ)) = ...= f(pn(θ)) = fθ.
Since f(p1(θ)) goes from a to b continuously as θ goes from 0 to 1 and ∀θ a≤ fθ ≤ b,
there must exist a point θ for which f(p1(θ)) = f(p2(θ)) = ... = f(pn(θ)) = fθ. We
can then conclude that, if the theorem holds for an arbitrary continuous function
on Sn−2, it must also be true for an arbitrary function on Sn−1.

Finally, we need to show the theorem holds for S1 to complete the proof. For S1,
we define the set of points Ψ(θ) = {p1(θ),p2(θ)} where f(p1(0)) = a and f(p1(1)) = b

and a≤ f(p2(θ)) ≤ b. Since f is a continuous function, there exists a point θ where
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f(p1(θ)) = f(p2(θ)).

This concludes the proof that for any continuous function on Sn−1, there exists a set
of equiangular vectors {p⃗1, p⃗2, ..., p⃗n} on Sn−1 where p⃗i.p⃗j = − 1

n and f(p⃗1) = f(p⃗2) =
...= f(p⃗n).

Extending the theorem to all of the n+ 1 vertices of the simplex requires further
analysis of the specific function in question. One simple example is the function
f(r⃗) = 3x2y−y3 on S1. Since the function has D6 symmetry group, we can generate
a 2-simplex where all 3 vertices map to the same value of f(r⃗). Another general
class of functions are ones where f0 takes discrete values. Such functions necessarily
form a subspace Jn where all the vectors map to f0. As a result, n+1 of the vertices
will map to the same value f0.

2.3.2 The Existence Problem of SIC-POVMs in the Bloch Sphere

As shown in 2.3, a vector r⃗ on the surface of the Bloch sphere corresponds to a pure
state density matrix if and only if ∑ijk dijkrirjrk = (n−1)(n−2)

n2 . Let the function
f(r⃗) be the polynomial function ∑

ijk dijkrirjrk. Since the function is continuous,
theorem 2.2 shows that in the Bloch sphere of the n-dimensional Hilbert space, a
regular (n2 −1)-simplex exists such that all but one of its vertices satisfy f(p⃗k) = f0

for some constant f0 ∈ [− (n−1)(n−2)
n2 , (n−1)(n−2)

n2 ]. A SIC-POVM on the other hand
corresponds to a set of n2 vectors r⃗k on the Bloch sphere, where f(r⃗k) = (n−1)(n−2)

n2

for all n2 vectors. Consequently, the SIC existence problem can be equivalently
stated as the following two questions. First, can the value f0 take the maximum
value of (n−1)(n−2)

n2 ? Second, is the last vertex of the simplex, which can be written
in its matrix form as

(2.57) Πn2 = nI−
n2−1∑
k

Πk, where Πk = 1
n
I+Λ⃗ · p⃗k ,

a pure state?

Regarding the first question, the function f(r⃗) was chosen to be the simplest among
all the functions derived from Tr(ρk). In principle, the question can be expressed
for any of the {Tr(ρk),k > 2} functions, which has the maximum value if ρ is a pure
state density matrix.
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In general, theorem 2.2 shows that some orientation of the simplex exists where
all the vertices correspond to density matrices with the same Tr(ρk) value. In
dimensions greater than 3, the existence of SIC-POVMs requires that the theorem
2.2 be valid for continuous values of f0. This result is particularly interesting in the
3-dimensional Hilbert space, where Tr(ρ2) and Tr(ρ3) uniquely identify a density
matrix up to a unitary transformation. If the value of f0 is a maximum value
of the trace functions, then there exist continuous orientations of the simplex for
continuous values of f0, as shown in theorem 2.3. In dimension 3, the continuous
value of f0 means that a set of 8 density matrices, which are equivalent up to unitary
transformations can be constructed. We confirmed the results numerically and found
that, in dimensions 3 and 4, simplexes exist such that all the n2 vertices are mapped
to some values f0 on the functions Tr(ρ3) and Tr(ρ4).

Theorem 2.3. Let V be a set of (n2 − 1) vectors {p⃗k} on the Bloch sphere of
an n-dimensional Hilbert space where n ≥ 3, such that p⃗j · p⃗k = − 1

n2−1 |p⃗j ||p⃗k| and
∀k,f(p⃗k) = f0, for the continuous function f given in A.36. Then, a SIC-POVM ex-
ists in n-dimensional Hilbert space only if the set of vectors V exists for a continuous
value of f0.

Proof. We start by assuming that theorem 2.2 holds for a discrete value of f0 =
(n−1)(n−2)

n2 , Which is the necessary condition for purity of a density matrix. Let the
set of n2 vectors {p⃗k} form the SIC-POVM. Consider the subspace Jn2−2 generated
by the vectors {p⃗k}, which as shown in 2.2 is isomorphic to S1. Based on our
assumption, f(x⃗) = f0 for all vector x⃗∈ Jn2−2. The subspace Jn2−2 contains the last
3 vectors of the set. Let the three density matrices be {ρa,ρb,ρc}, which correspond
to the vectors {p⃗n2−2, p⃗n2−1, p⃗n2} on the Bloch sphere, respectively.

Next, we will construct the circle Jn2−2 by using the vectors. For computational
simplicity, we will use the Gell-Mann matrices as the basis vectors. This will allow
us to write the vectors as matrices, where the dot product of two vectors is replaced
with a trace.

The subspace Jn2−2 can be constructed by using the three vectors as follows. Let the
three vectors r⃗1, r⃗2, r⃗3 represent the vectors {p⃗n2−2, p⃗n2−1, p⃗n2}. Define the midpoint
vector of the three vectors as r0 = 1

3(r⃗1 + r⃗2 + r⃗3) and the vectors connecting r⃗0 to
r⃗k as v⃗k, i.e., v⃗k = r⃗k − r⃗0. The subspace Jn2−1 can then be written as some linear
combination of the basis vectors e⃗1 and e⃗2 given by the expressions
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(2.58)
e⃗1 = v⃗1 ,
e⃗2 = v⃗2 − v⃗2.v⃗1

|v⃗1|2 v⃗1 .

After normalizing e⃗2 to have the same magnitude as e⃗1, we can define the circle as
cos(θ)e⃗1 +sin(θ)e⃗2. First, we express the vectors v⃗k using the matrix representation
by using the Gell-Mann matrices as r⃗k → r⃗.Λ⃗ = ρk − 1

nI as

(2.59)
v⃗1 → 2

3ρa− 1
3(ρb+ρc) ,

v⃗2 → 2
3ρb− 1

3(ρa+ρc) ,
v⃗3 → 2

3ρc− 1
3(ρa+ρb) .

We form the vectors e⃗1 and e⃗2 similarly, where v⃗2.v⃗1 = 1
2Tr

(
(2

3ρ1 − 1
3(ρ2 +ρ3))(2

3ρ2 −
1
3(ρ1 +ρ3))

)
and v⃗1.v⃗1 = 1

2Tr
(
(2

3ρ1 − 1
3(ρ2 +ρ3))2

)
, which becomes

(2.60)
e⃗1 → 2

3ρa− 1
3(ρb+ρc) ,

e⃗2 → 1√
3(ρb−ρc) .

Then, we write the circle Jn2−2 as cos(θ)e⃗1 + sin(θ)e⃗2 + r⃗0, which has the following
form in the matrix representation,

(2.61)
Ω = (2

3 cos(θ)+ 1
3)ρa+(−1

3 cos(θ)+ 1√
3 sin(θ)+ 1

3)ρb
+(−1

3 cos(θ)− 1√
3 sin(θ)+ 1

3)ρc− 1
nI .

If f(x⃗) = (n−1)(n−2)
n2 for all vectors in Jn2−2, then the matrix shown in 2.61 must

satisfy Tr
(
( 1
nI+Ω)3

)
= 1 for all θ. We expand the trace of ( 1

nI+Ω)3 as

(2.62)
Tr
(
( 1
nI+Ω)3

)
= 1

9(n+1)3/2

(
−4α+2cos(3θ)

(
2α+

√
n+1n−2

√
n+1

)
+7

√
n+1n+13

√
n+1

)
,

where α is the cosine of the phase of the triple product Tr(ρaρbρc). From 2.62, the
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coefficient of cos(3θ) vanishes for α = 1
2(

√
n+1n− 2

√
n+1). Since −1 ≤ α ≤ 1, n

can only be 3, where α = −1. Therefore, for dimensions greater than 3, f(x⃗) takes
a continuous value for x⃗ ∈ Jn2−2 and as a result, theorem 2.2 holds for a continuous
value of f0.

In dimension 3, we can use the identity presented in corollary 2 of the article Appleby
et al. (2011),

(2.63)
∑
rst

Tr(ΠrΠsΠt) = n4 ,

to show that all the phases of the triple product can not be π. We can then
choose three vectors of the SIC-POVMs that satisfy Tr(ρaρbρc) ̸= π to show that
f0 takes continuous values, i.e., for all r⃗ ∈ Jn2−2, a ≤ f(r⃗) ≤ (n−1)(n−2)

n2 for some
a < (n−1)(n−2)

n2 . Then, we can apply the orthogonal operators Uk sequentially to
construct a set of vectors such that f(p⃗k) takes a continuous value, there by con-
cluding the proof.

Theorem 2.3 can be extended to all Tr(ρk) functions for k > 3. To show this, note
that pure states can be identified by any one of the functions for powers k ≥ 3, as
shown in section 2.1.2. As a result, if a subspace Jn2−2 containing only pure states
doesn’t exist, then the functions Tr(ρk) cannot be 1 for any subspace Jn2−1 as
well. Consequently, continuous generalized SIC-POVMs must exist for any function
Tr(ρk).

In both dimensions, we searched for generalized SIC-POVMs, such that all of the
elements have the same Tr(ρ3) or Tr(ρ4). In dimension 3, we generated 104 solutions
with precision of O(10−18) by starting from a known SIC-POVM and minimizing
the function ∑n2

k (f(p⃗k) − f0)2 for arbitrary values f0 ∈ [−2
9 ,

2
9 ], where f(r⃗) is the

polynomial

(2.64)
f(r⃗) = 2

√
3r2

1r8 +6r1r2r3 +6r1r5r6 +3r2
2r7 −

√
3r2

2r8

−6r2r4r6 −3r2
3r7 −

√
3r2

3r8 +6r3r4r5 +2
√

3r2
4r8

+3r2
5r7 −

√
3r2

5r8 −3r2
6r7 −

√
3r2

6r8 +2
√

3r2
7r8 − 2r3

8√
3 .

Similarly, we generated general SIC-POVMs {Πk} such that Tr(Π3
k) = f0 and

Tr(Π4
k) = f0 separately. Such general SIC-POVMs have been constructed analyti-
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cally in many dimensions Appleby (2007); Yoshida & Kimura (2022).

2.4 Symmetries of the Bloch Sphere and Invariant Theory

The SIC-POVM as shown in section 2.3 forms the vertices of a regular (n2 − 1)-
simplex in the Bloch sphere oriented such that each vertex satisfies f(r⃗k) =
(n−1)(n−2)

n2 . The unitary group connects SIC-POVM vectors continuously which
define the unitarily equivalence class of SIC-POVM. We will now show that the
only continuous transformation that connects different SIC-POVMs is the subset of
SO(n2 − 1) shown in equation 2.25. Once we show that the equivalent classes are
disconnected we will explore discrete symmetries of the Bloch sphere.

2.4.1 Continuous Symmetry of the Bloch Sphere

The geometry of the pure states on the Bloch sphere is entirely determined by the
Tr(ρ3) function. Thus, a global symmetry in general can derived from the function,

(2.65) f(r⃗) =
∑
ijk

dijkrirjrk.

For a continuous symmetry over the transformations G, we can always define an
infinitesimal transformation I+ ηΩ by using the anti-symmetric generating matrix
Ω.

(2.66) G= {M |M = exp{
∫ 1

0
Ωdη} = lim

N→∞
(I+ 1

N
Ω)N ,ΩT = −Ω}

If the function f is an invariant of a continuous transformation, then it must be
fixed at the infinitesimal form of the transformation. Applying the transformation
on the function [I+ δΩ](f) = f((I+ δΩ).r⃗), we generate the following expression.
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(2.67) f((I+ δΩ).r⃗) =
∑
ijk

dijk(δil+dηΩil)rl(δjm+dηΩjm)rm(δkn+dηΩkn)rn

(2.68) (I+ δΩ)(f(r⃗)) =
∑
ijk

dijkrirjrk +dη
∑
ijk

dijk(
∑
l

Ωilrlrjrk + ri
∑
m

Ωjmrmrk

+ rlrj
∑
n

Ωknrn)+O(dη2)

For the transformation to be a symmetry of the function, the correction in the first
order of η must vanish. This gives us a set of linear equations which we solve to
get the explicit form of the transformation. For dimension 3 example, the general
form of the matrix Ω is an anti-Hermitian matrix with n2(n2 −1)/2 free parameters.
After solving the linear equations, we generate the following generating matrix.

(2.69)

Ω =



0 m3,4 −m5,6 m2,4 −m6,8√
3 −m3,8√

3 −m4,8√
3 −2m4,6 0

m5,6 −m3,4 0 m6,8√
3 −m5,8√

3 −m4,8√
3

m3,8√
3 −2m4,5 0

−m2,4 −m6,8√
3 0 m3,4 m4,6 −m4,5

m3,8√
3 m3,8

m6,8√
3

m5,8√
3 −m3,4 0 m4,5 m4,6

m4,8√
3 m4,8

m3,8√
3

m4,8√
3 −m4,6 −m4,5 0 m5,6 −m5,8√

3 m5,8
m4,8√

3 −m3,8√
3 m4,5 −m4,6 −m5,6 0 −m6,8√

3 m6,8

2m4,6 2m4,5 −m3,8√
3 −m4,8√

3
m5,8√

3
m6,8√

3 0 0
0 0 −m3,8 −m4,8 −m5,8 −m6,8 0 0



Notice that this has the same form as the matrix 2.78. Thus showing that the only
continuous symmetry of the Bloch sphere is the symmetry to unitary transforma-
tions.

Conversely, If we take the matrix Ω = ∑
c fabctc for some t⃗ ∈ Rn

2 , the first order
correction becomes,
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=
∑
ijk

dijk(
∑
l

Ωilrlrjrk + ri
∑
m

Ωjmrmrk + rirj
∑
n

Ωknrn)

=
∑
ijk

dijk(
∑
l

∑
a
filatarlrjrk + ri

∑
m

∑
a
fjmatarmrk + rirj

∑
n

∑
a
fknatarn

=
∑
jkla

∑
q

(
dqjkfqla+djqkfqla+djkqfqla

)
tarlrjrk

=
∑
jkla

∑
q

(
djkqfqla+dklqfqja+dljqfqka

)
tarlrjrk

(2.70)

Using the Jacobi identity ∑
q(djkqfqla + dklqfqja + dljqfqka) = 0, we show the first

order correction is indeed zero, (for further detail check Borodulin, Slabospitsky &
Rogalyov (1995)).

2.4.2 Surfaces Formed by the Trace Cube function in Dimension 3

The function f3(x⃗) =∑
dijkxixjxk, where dijk is the trace of triple products of the

Gell-Mann matrices together with f2(x⃗) = ∑
δijxixj form a 6 dimensional smooth

non-singular (has a unique tangent everywhere) surface embedded in R8. To con-
struct the surface we write the following two equations.

(2.71) f2(x⃗)− 1
3 = 0

(2.72) f3(x⃗)− 2
9 = 0

This forms a 6-manifold since one can construct the local tangent space at x⃗0 ∈M6

by solving the following:

(xi−x0i)
∂

∂xi
f2 = 0(2.73)

(xi−x0i)
∂

∂xi
f3 = 0(2.74)
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where the rank[ ∂
∂xi
f2,

∂
∂xi
f3] = 2.

The functions f2 and f3 are invariants of the group Ω = {exp(fijkck), c⃗ ∈ R8,fijk =
− i

2(dijk−djik)}. Therefor we can alternatively generate manifolds using this trans-
formation for any value of the functions f2 and f3.

x7

x8

{f2(x⃗)− 1
3 = 0}

Figure 2.4 We have the diagonal subspace shown in the figure. The vertices of the
triangle correspond to the three pure states. The three red dots belong to a manifold
which is an inverse of the projective plane CP3 which contains all the pure states.

The proper definition of the manifolds we look at the local structure by using the
group Ω. Let u ∈ Ω, then we can write uij = exp(fijkck) where c⃗ ∈ R8 and let r⃗ be
an element of the diagonal subspace where |r⃗|2 = 1

3 . let’s also define a surface M
centered at r⃗ generated by the functions f2 and f3.

We can construct the tangent space applying infinitesimal transformations of Ω on
the vector r⃗ since the polynomials f2 and f3 are invariants of the group ofΩ. I.e.,
We choose u= exp(fijkδck) where δck ≪ 1.

(2.75) u(δc⃗) = exp(fijk)δck ≈ I+f(ijk)δck

Note that the operation u(δc⃗) fixes all vector belonging to the same basis subspace
of c⃗, (I.e., u(δc⃗).r⃗ = r⃗ ). This is easy to see if we think of the operations in the
complex space, where if both the inverse map of δ⃗c and r⃗ commute the operation u
fixes r⃗. This means we that the vector c⃗ must not be in the diagonal subspace since
we chose the vector r⃗ to be in the diagonal subspace.
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r⃗

M
dx⃗1 dx⃗2

χr̃

Figure 2.5 The vectors dx⃗k are the basis vectors of the tangent subspace χr⃗ ∈M .

r⃗ = (0,0,0,0,0,0, r7, r8)(2.76)

δc⃗= (δc1, δc2, δc3, δc4, δc5, δc6,0,0)(2.77)

By using the generating vector we create the orthogonal operation to the first order
in δc⃗ as shown in equation (2.78). The first order approximation defines the tangent
subspace χr⃗ ∈ M . By using U(δc⃗) we generate the tangent subspace TχM around
the point r⃗ (2.79), from which we can form the basis vectors for the subspace.

(2.78)

U(δc⃗) ≈



1 0 δc6 −δc5 δc4 −δc3 −2δc2 0
0 1 δc5 δc6 −δc3 −δc4 2δc1 0

−δc6 −δc5 1 0 δc2 δc1 −δc4 −
√

3δc4

δc5 −δc6 0 1 −δc1 δc2 δc3
√

3δc3

−δc4 δc3 −δc2 δc1 1 0 δc6 −
√

3δc6

δc3 δc4 −δc1 −δc2 0 1 −δc5
√

3δc5

2δc2 −2δc1 δc4 −δc3 −δc6 δc5 1 0
0 0

√
3δc4 −

√
3δc3

√
3δc6 −

√
3δc5 0 1
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(2.79) U(δc⃗).r⃗− r⃗ ≈



−2δc2r7

2δc1r7

−δc4(r7 +
√

3r8)
δc3(r7 +

√
3r8)

δc6(r7 −
√

3r8)
δc5(−r7 +

√
3r8)

0
0



The tangent space shown in equation (2.79) is a 6 dimensional euclidean space given
by (dx̃1,dx̃2,dx̃3,dx̃4,dx̃5,dx̃6,0,0)T . However when the point r⃗ represents a pure
state or the "inverse" of a pure state, i.e.,( r⃗pure or −r⃗pure) the tangent space is 4
dimensional. For example, if we take the point r⃗ = (0, . . . ,− 1√

3)T the corresponding
tangent space is (0,0, δc4,−δc3, δc6,−δc5,0,0)T . For the given example, the tangent
basis vectors are (0,0,dx̃3,dx̃4,dx̃5,dx̃6,0,0). Since any point r⃗ can be constructed
using an orthogonal transformation (which preserves norm) we can generate the
tangent basis vectors at any point by simply applying the same operation to the
basis vectors we generated for the diagonal subspace. From the we conclude that
the equations f2 − 1

3 = 0 and f3 ± 2
9 = 0 form a 4-manifold M4 and the equations

f2 − 1
3 = 0 and f3 −a= 0,−2

9 < a < 2
9 form a 6-manifold M6.

Lemma 2.3. The manifolds M4 and M6 are compact orientable manifolds.

Proof. For a manifold to be compact means, the manifold is both bounded and
closed. The equation f2 − 1

3 = 0 shows that both M4 and M6 are bounded. That is
to say all elements of the manifolds lie with in some finite distance from one another.
The second equation f3 −a= 0 defines a map from S7 to R. This map is continuous
and therefor the preimage of the closed set f−1

3 (a) must be closed. This concludes
the proof that the manifolds M4 and M6 are compact.

To prove the manifolds are orientable, we must find a chart for both manifolds.
Define the coordinate charts (M4,φ) and (M6,ϕ).

Let the vectors r⃗d and r⃗′
d represent a vector belonging to the diagonal subspace of

the Bloch sphere such that we can explicitly write down the manifolds as,

M4 = {U · r⃗d : ∀U ∈ Ω}(2.80)

M6 = {U · r⃗′
d : ∀U ∈ Ω}(2.81)

35



Let the ordered basis for the tangent space TrM4 and Tr′M6 as τd and τ ′
d respectively.

τd = {dx1,dx2,dx3,dx4,dx5,dx6}(2.82)

τ ′
d = {dx3,dx4,dx5,dx6}(2.83)

The two bases generate homeomorphisms describing the neighbourhood around the
point rd and r′

d. Therefore, the coordinate charts at the points r⃗d and r⃗′
d are (r⃗d, τd)

and (r⃗′
d, τ

′
d) respectively. For an arbitrary points x⃗∈ M4 and x⃗′ ∈ M6, the coordinate

charts can be generated by using the orthogonal transformations ∈ Ω.

(2.84) φx = Uxτd , and ϕx′ = Ux′τ ′
d

where, x⃗= Uxr⃗d and x⃗′ = Ux′ r⃗′
d.

Because of the symmetries in the eigenvalues of the operations, Ux are not uniquely
defined. Thus in its current form φx is ill-defined. To fix this, without explicitly
showing how, we assign a single Ũx to define φx. I.e., Ũx ∈ ωx where ωx = {Ux :
∀Ux,Ux · r⃗d = x}. Then we define the chart,

(2.85) φx = Ũxτd

which is well defined. Finally we have coordinate charts in M4 and M6 as

(2.86) {M4, Ũxτd} , and {M6, Ũx′τ ′
d}

Being orientable for a manifold means, we can define charts for the manifold which
have fixed orientations. To shown this, consider two points infinitesimally close
to each other. We parametrize the transformation matrices that maps the charts
to each other can be parameterized with an infinitesimal vector c⃗. For the two
manifolds, the corresponding transformations to the first order in δc⃗ are as follows.
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(2.87) B4 ∼= δ


1 c4 0 c1

−c4 1 c1 0
0 −c1 1 c4

−c1 0 −c4 c1



(2.88) B6 ∼= δ



1 c6 c5 0 −c3 −c2

−c6 1 c4 −c3 0 c1

−c3 −c4 1 c2 c1 0
0 c3 −c2 1 c6 −c5

c3 0 −c1 −c6 1 c4

c2 −c1 0 c5 −c4 1



Since the determinant of both transformations is 1 up to the first order in δc⃗, the
transformation preserve the orientation of the charts.

(2.89) det(B4) ≈ 1+O(|δc|2) , and det(B6) ≈ 1+O(|δc|2)

To show that this extends to the hole of the manifolds, note that we can assign frames
to the charts such that there is at least one continuous line connecting x⃗ ∈ M and
r⃗d ∈ M. For the case of M6, the map ϕ : Ω 7→ M6, x⃗′ = Ux′ · r⃗′

d is a homeomor-
phism. Therefore the corresponding ordered frame τ ′

x = Ux′ · τ ′
d forms a continuous

differentiable vector field on M6. This shows that the manifold.

In the case of M4, the frames τx = Ũxτd may not form a differential vector field.
This is because the elements of M4 do not belong to unique basis. consider the
following continuous transformations to x such that we get two different frames at
x, τx and τ̃x. We have two unitary operators such that x⃗ = Ux · r⃗d and x⃗ = Ũx · r⃗d.
The difference between Ux and Ũx is that it maps the vector r⃗d to two different
bases. Let the two bases be b= {a⃗, b⃗, c⃗} and b̃= {⃗̃a,⃗̃b,⃗̃c}. We construct an operator
Ô such that b̃= Ôb, which has a matrix form shown below.
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(2.90)


α β 0 γ

−β α γ 0
0 −γ α β

−γ 0 −β α



where,

α = 1
2e

√
−c12−c42(1+ e2

√
−c12−c42)(2.91)

β =
c4e−

√
−c12−c42(−1+ e2

√
−c12−c42)

2
√

−c12 − c42(2.92)

γ =
c1e−

√
−c12−c42(−1+ e2

√
−c12−c42)

2
√

−c12 − c42(2.93)

The matrix Ô has determinant 1, thus the operator preserves the orientation. This
shows that even though the orthogonal matrices Ux are not uniquely defined for the
point x⃗, they are all orientation preserving transformations. With that we conclude
the proof that both manifolds M4 and M6 are compact orientable manifolds.

2.4.2.1 Euler Characteristics of M4 and M6

If ν is a smooth vector field with isolated singularities on a closed oriented differen-
tiable manifold Mk, then the sum of the indices of ν is the Euler characteristic of
Mk; that is,

(2.94)
∑
m
im = χ(Mk)

This is known as the Poincare-Hopf theorem.

Since both M4 and M6 are constructed using transformations Ω ∼= SU(3) applied
on the vector r⃗d, The coordinate charts everywhere is similar to the chart on the
point r⃗d. This indicates that the manifolds have no boundary. In conclusion, the
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manifolds are compact orientable manifolds with no boundary. I.e., they are closed
orientable manifolds. Then, we can use the Poincare-Hopf theorem to compute the
Euler characteristics of both manifolds.

To apply the theorem, we start by defining a vector field on the manifolds with
isolated singularities. The infinitesimal transformation U(δc) for a given c⃗ are ideal
for this task, as the displacement vectors associated with the operations form tangent
vectors fields on the manifolds. Define the vector field ν as,

(2.95) ν = {U(δc⃗) · x⃗− x⃗ : ∀x ∈ M, δc⃗= δ(0,0,0,0,0,0, c7, c8)}.

In order for ν to have isolated singularities we require that δc⃗ uniquely belongs to a
basis. One such δc⃗ can be δc⃗= ϵ(0, . . . ,0,sin(π/6),cos(π/6) where ϵ≪ 1. The vector
can be written in its matrix form as below, where we see that it is not degenerate.

(2.96) δc⃗→


1
3 0 0
0 1

3 − ϵ 0
0 0 1

3 + ϵ



Expanding U(δc⃗) to the first order in c⃗ we get the matrix Ojk where O13 = −O24 =
−O31 = O42 = ϵ , −O35 = O53 = 2ϵ and all others terms are zero. We can then
simplify the vector field explicitly as,

(2.97) ν = {ϵ(x4,−x5,−2x6,−x1,x2,2x3,0,0);∀x⃗ ∈ M}

where M can be M4 or M4. The only singularities of the vector field are found in
the diagonal subspace. The 3 blue points and 3 red points in the figure 2.6, generate
the M4 manifolds one for each color. All other vectors form a M6 manifold under
the operations Ω. In other words, each color corresponds to the intersection of M
and the diagonal subspace. Thus, to M4 has 3 singularities and the manifold M6

has 6 singularities.

The index of the vector field ν around a singularity is equal to the degree of the map
µ : ∂D 7→ Sk where D is an infinitesimal closed ball around the singularity and,
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x7

x8

Figure 2.6 The intersection of the diagonal subspace and 2 M4 manifolds formed by
the pure state and its inverse on the Bloch vectors, depicted with colors blue and
red. The purple colored vectors are the intersection with M6 manifold.

(2.98) µ(Y⃗ ) = ν(Y⃗ )
|ν(Y⃗ )|

, where |Y | = 1.

In the case of M4, the map is µ : ∂D 7→ S3 and in the case of M6, µ : ∂D 7→ S5.
Applying the expression of ν(Y⃗ ), for the vector r⃗d = (0,0,0,0,0,0,0,− 1√

3) in M4 we
get,

(2.99) µ(Y⃗ ) = (−y5,−2y6,y2,2y3)√
1+3(y2

3 +y2
6)

.

Similarly for M6 we get,

(2.100) µ(Y⃗ ) = (y4,−y5,−2y6,−y1,y2,2y3)√
1+3(y2

3 +y2
6)

.

Both maps are orientation preserving homeomorphisms, since the transformations
matrices Y → µ(Y ) excluding the normalization has a positive determinant. The de-
gree of an orientation preserving homeomorphism is +1, and noting that all singular
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points on the diagonal subspace have the same index we conclude,

(2.101) χ(M4) = 3 , and χ(M6) = 6

We can generalize these results to higher dimensions where the Euler characteristic
is determined by the degeneracy of the operators. For dimensions 4, we get the
manifolds M6, M11 and M24, with the Euler characteristics 4,6 in the first two
types of manifolds, and in the third type manifold there are surfaces with Euler
characteristics of 12 and 24. The vectors that satisfy 2.2 form an generalized SIC-
POVM (without the rank restriction) exist on these manifolds.

2.4.3 General Symmetries of the Bloch Sphere

The discrete symmetry of a Bloch sphere generates all the disjoint equivalent
classes of SIC-POVMs. First, lets consider trivial symmetries of the trace cube
function. We will once again take dimension 3 to demonstrate the trivial dis-
crete symmetries. The trivial transformations that fix equation (2.64) are re-
flection operations. We can easily identify these transformations by looking
reflections that would fix r1r3r5 + r2r4r5 − r2r3r6 + r1r4r6. We present these
[a,b,c] = {Diag(x1,x2, ...,x8)| ∀k ∈ {a,b,c},xk = −1 and ∀k /∈ {a,b,c},xk = 1}. The
reflection operations are {[126], [135], [234], [456], [2356], [1346], [1245]}. If we in-
clude the identity operation to the list, these set forms a group generated by
< [136], [145], [235], [246]>.

In general, to find the discrete symmetries of the polynomial (2.64), We need to find
linear transformations for which the polynomial is invariant to. The study of the
transformations that fix a polynomial is known as Invariant Theory, (check the book
Derksen & Kemper (2015) for more detail on invariant theory). Invariant theory
allows us to write the problem in its most general and complete form. Let’s solve a
simple example for dimension 3 before we write the problem in its complete form.

Example 2.1. consider the simpler case where r⃗ = {0,0,0,0,0,0, r7, r8}. Then the
trace cube equation reduces to f(r7, r8) = −2r3

8√
3 +2

√
3r2

7r8. we first write the complete
polynomial with two parameters f(r7, r8) = c1r3

7 + c2r2
7r8 + c3r7r2

8 + c4r3
8 where c⃗ =

{0,2
√

3,0,− 2√
3}. A 2×2 orthogonal matrix O acts on f as O(f) 7→ f(Or⃗).
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(2.102) O = {

 a b

−b a

 ,
a b

b −a

},a2 + b2 = 1

we can rewrite the transformation as 4×4 transformations applied on the coefficients
of the vector c⃗. If the function f is an invariant of an operation O, then c⃗ will be
an eigenvector to the matrix Õ. The two types matrices of O have determinant 1
and -1 respectively.

Õ = {


a3 −a2b ab2 −b3

3a2b (a3 −2ab2) b3 −2a2b 3ab2

3ab2 (2a2b− b3) a3 −2ab2 −3a2b

b3 ab2 a2b a3

,

a3 a2b ab2 b3

3a2b −(a3 −2ab2) b3 −2a2b −3ab2

3ab2 −(2a2b− b3) a3 −2ab2 3a2b

b3 −ab2 a2b −a3

}

,a2 + b2 = 1

(2.103)

(2.104)


0

2
√

3
0

− 2√
3

=


a3 ∓a2b ab2 ∓b3

3a2b ±(a3 −2ab2) b3 −2a2b ±3ab2

3ab2 ±(2a2b− b3) a3 −2ab2 ∓3a2b

b3 ±ab2 a2b ±a3




0

2
√

3
0

− 2√
3



This gives 6 solutions which forms a dihedral group of order 6, which is obvious
when we look at the plot of f(r7, r8) shown in figure 2.7.

{

1 0
0 1

 ,
−1

2 −
√

3
2√

3
2 −1

2

 ,
 −1

2

√
3

2
−

√
3

2 −1
2

 ,
−1 0

0 1

 ,
 1

2 −
√

3
2

−
√

3
2 −1

2

 ,
 1

2

√
3

2√
3

2 −1
2

}

(2.105)

For the complete polynomial, the vector c⃗ corresponds to the structure factor of the
Gell-Mann matrices dijk. The dimension of the vector is equal to the number of
order-3 monomias with n2 −1 variables given by the n2 −1 multi-combination 3.
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Figure 2.7 The x-axis is r7 and the y-axis is r8. The D6 symmetry is apparent from
the contour plot of f(r7, r8).

(2.106)
((
n2 −1

3

))
=
(

(n2 −1)+3−1
3

)
=
(
n2 +1

3

)

The corresponding matrix O is the union of the (n2 − 1) × (n2 − 1) orthogonal ma-
trices with determinants +1 and −1. We transform the matrix O to the space of c⃗
in similar manner to the example to form a

(
n2+1

3

)
×
(
n2+1

3

)
matrix. The elements

are polynomials of the 3rd order and even for the simplest dimension of interest, i.e.,
dimension 3 where the matrix Õ is 120 × 120, the number of variables is too large
for a general solution. We can derive the continuous symmetry from the expression
by approximating the operator O to the first order in its generator. For a discrete
symmetry however, we must rely on numerical solutions of the equation:

(2.107) c⃗= Õ · c⃗

We can rely on matrices O which can be written as finite sum of their generates to
generate group structures with in the symmetry of the Bloch sphere. Without any
constraint on the generators, we will have to guess different symmetries and attempt
to construct explicit solutions.
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It is worth noting that the global invariant of the trace cube equation gives us the
smallest set of equivalence classes. We may still have symmetries of SIC-POVMs
that are not shared by the Bloch sphere. To adders the complexity of the solving
(2.107) and to exploring the complete symmetries of the SIC-POVM, We need to
formulate a numerical method to construct and characterise general solutions.

44



3. Structure and Construction of Group Covariant SIC-POVMs

Since the work by Zauner, it has been known that we can construct SIC-POVMs
using the Weyl-Heisenberg group. Group covariance reduces the search of SIC-
POVMs to a search of a fiducail vector. Group covariant SIC-POVMs have been
constructed in all dimensions 2-151 and some higher dimensions, reaching as high
as 1151 Fuchs (2010). We will cover the essentials of the known construction of
SIC-POVMs before we proceed with general approach to the equivalence classes.

3.1 Group Covariant SIC-POVMs

SIC-POVMs are formed by a set of n2 equiangular vectors in an n-dimensional
Hilbert space. The only restriction on these vectors is that the modulus square of
the inner products of the vectors must be 1

n+1 (see definition (2.3)). Applying the
condition on the 2n2(n−1) free parameters gives us a set of polynomials, which has
no general solution. If we assume that our solution is group covariant, meaning that
all the SIC-POVM elements can be generated as the orbit of a special vector on a
group, the problem simplifies significantly and in the dimensions 2-4 can be easily
solved by hand (see Appendix A). The group proposed by Zauner and independently
by Renes et.al. Renes et al. (2004) was the Weyl-Heisenberg group.

3.1.1 The Weyl-Heisenberg Group

The Weyl-Heisenberg group is a generalization of the Pauli group in dimensions
> 2. The group is isomorphic to Zn ×Zn for a given dimension n. The group
is generated by the phase operators Ẑ = ∑n−1

k=0 e
i 2πk

n |k⟩⟨k| and the shift operator
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X̂ =∑n−1
k=0 |(k+1)modn⟩⟨k|.

Definition 3.1. In n-dimensional Hilbert space, the Weyl-Heisenberg group is a set
of unitary operators {D̂p}. The elements of the group are defined as,

(3.1) D̂p = τp1p2X̂p1Ẑp2

where p =
p1

p2

 ,p1,p2 ∈ Zn and τ = −eiπ
n . The product of the group elements gives

us,

(3.2) D̂pD̂q = τ<p,q>D̂p+q

where < p,q >= p2q1 −p1q2D̂p+q.

Note that the Weyl-Heisenberg group forms a proper group under the equivalence
relation {eiθDp ∼ D̂p : ∀θ ∈ [0,2π]}. This is not an issue to the construction of SIC-
POVMs since global phase of the vectors does not appear in the POVM elements.
The particular form of the group elements was chosen to simplify the product of the
elements.

From the definition, one can easily prove that D̂†
p = D̂−p and Tr(D̂p) = δ0,pn.

The Weyl-Heisenberg group, being the generalization of the Pauli group, spans the
Hilbert space and thus quantum states or density operators can be expanded using
the group ,Appleby, Bengtsson, Flammia & Goyeneche (2019). For a given density
operators ρ̂,

(3.3) ρ̂= I
n

+ 1
n

√
n+1

∑
p
eiθpD̂p

where

(3.4) eiθp =
{ 1 p=0modn√

n+1Tr(D̂†
P ρ̂) else .

To generate a SIC-POVM, one must find vector |ψ0⟩ such that the set of vectors
{D̂p|ψ0⟩} are all equiangular. Such vector is known as a "fiducial" vector. This re-
duces the construction of SIC-POVMs to only 2n−2 variables. The general solution
to dimension 3 and 4 can be found in Appendix A. Renes et al. (2004) presented a list
of fiducial vectors constructed numerically (see Table 3.1). These fiducial vectors
all formed SIC-POVMs as orbits on the standard Weyl-Heisenberg group defined
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above. The connection between the fiducial vectors comes from the Clifford group.
Starting from 2005 by Appleby (2005) later by Zhu (2010) and Scott (2017); Scott &
Grassl (2010), the fiducial vectors were computed studied extensively studies using
the Clifford group.

n Number of SIC-POVMs
2 2
3 ∞(uncountable)
4 16
5 80

Table 3.1 Renes presented the number of fiducial vector for dimensions 2-7 though
exhaustive numerical search. The complete list can be found in Renes et al. (2004)

3.1.2 The Clifford Group

The Clifford group C(n) is a group of unitary operations that maps the Weyl-
Heisenberg group onto its self. In a mathematical language, it is a normalizer of the
Weyl-Heisenberg group. In quantum information, the Clifford group is used in the
stabilizer formalism for quantum error correction code Nielsen & Chuang (2010). We
will define the Clifford group using the indexing of Appleby from Appleby (2005).

Let the n̄ be n for odd dimensions and 2n for even dimensions. Then define the group
SL(2,Zn̄) as a group of 2×2 matrices with determinant 1(mod n̄). For every Clifford
unitary U ∈C(n), there exists a matrix F ∈ SL(2,Zn̄) and a vector χ∈Zn×Zn such
that,

(3.5) UD̂pU
† = τ2<χ,Fp>D̂Fp

For all p ∈ Zn×Zn.

The Clifford unitaries are commonly represented by the pair (F,χ). Given a matrix
F ∈ SL(2,Zn̄),

(3.6) F =
a b

c d
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The matrix form of the Clifford unitary is given by,

(3.7) (F,χ) = D̂χVF

where ⟨j|VF |k⟩ = 1√
n
τ b

−1(ak2−2jk+dj2) and b−1b = 1mod n̄. The product of two
Clifford unitaries (F1,χ1) and (F2,χ2) is given by (F1F2,χ1 + F1χ2). By def-
inition, the Weyl-Heisenberg matrices are also elements of the Clifford group,
since D̂qD̂pD̂

†
q = D̂qD̂pD̂−q = τ2<q,p>D̂p. The generating operators of the Weyl-

Heisenberg group can also be represented in using the symplectic matrix and a vector
as follows.

(3.8) X̂ =
1 0

0 1

 ,
1

0

], Ẑ =
1 0

0 1

 ,
0

1

]

As shown above, given a fiducial vector |ψ0⟩, the SIC-POVM is given by the set,

(3.9) Πp = 1
n
D̂p|ψ0⟩⟨ψ0|D̂†

p.

When we apply a Clifford unitary U(F,χ) on the SIC-POVM operators, we simply
generate another SIC-POVM.

U(F,χ)ΠpU
†
(F,χ) = 1

n
U(F,χ)D̂p|ψ0⟩⟨ψ0|D̂†

pU
†
(F,χ)(3.10)

= 1
n
U(F,χ)D̂pU

†
(F,χ)U(F,χ)|ψ0⟩⟨ψ0|U †

(F,χ)U(F,χ)D̂
†
pU

†
(F,χ)(3.11)

Since U(F,χ)D̂pU
†
(F,χ) = τ2<χ,Fp>D̂Fp, which is just another Weyl-Heisenberg oper-

ator τ2<χ,Fp>D̂Fp, the vector U(F,χ)|ψ0⟩ must be a fiducial vector. The orbit of the
fiducial vector on the Clifford group gives us all the possible fiducial vectors of the
Weyl-Heisenberg group covariant SIC-POVMs.

The complete set of fiducial vectors also includes the complex conjugate of the
vectors. This is generalized in the Extended Clifford group EC(n), which is the
group C(n)∪K̂C(n)K̂† where K̂ is the anti-unitary operator. The Extended Clifford
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group has 2n5Πp|n(1 − 1
p2 ) elements where p goes over all the primes that divide

n. Immediately, we see that the number of fiducial vectors listed in 3.1 is less
than the order of the extended Clifford group |EC(n)|, for example, in dimension 4
|EC(n)| = 1536 and in dimension 5 |EC(n)| = 6000. The difference indicates that
the fiducial vectors are eigenvectors of the Clifford unitaries. This symmetry of the
fiducial vectors is of vital importance in the construction of SIC-POVMs, since it
reduces the number of free parameters. The next question would be, which Clifford
unitaries contain the fiducial vectors in their eigenbasis? This will be the next topic
of discussion.

3.1.3 Zauner Symmetry and Order-3 Unitaries and the Analytic Con-

struction of the Fiducial Vector

When constructing SIC-POVMs, even though group covariance reduces the difficulty
significantly, as dimensions grow we are faced with the inescapable challenge of
solving polynomial equations. Further reduction of the free parameters comes from
the symmetries of the fiducial vectors in the extended Clifford group as discussed
above. Zauner conjectured that a fiducial vector exists which is an eigenvector for
the matrix shown in (3.12). The matrix is now known as Zauner matrix.

(3.12) Ẑ = eiπ
n−1
12

√
n

n∑
jk

τ2jk+j2
|j⟩⟨k|

The eigenvalues of Ẑ are simply the cube roots of unities eikπ/3 for k ∈ {0,1,2}, each
with the dimension of the degenerate subspace dim(Ẑk) = ⌊(n+3−2k)/3⌋. Consider
a 4-dimensional fiducial vector |ψ0⟩ that is an eigenvector of Ẑ, which means

(3.13) Ẑ|ψ0⟩ = |ψ0⟩,

where the eigenvalue is 1. Then, we can expand the vector |ψ⟩ in the degenerate
subspace of dimension 2 spanned by {α0|ξ0⟩,α1|ξ1⟩}.
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(3.14) |ψ0⟩ = α1|ξ1⟩+αs|ξ2⟩

We have reduced the number of free variables to just 2 which simplifies to construc-
tion. The other two eigenbasis have just one vector which we can simply check if
they are fiducial vectors.

The Zauner matrix is not the only symmetry that exists. Appleby et.al. Appleby
(2005) generalized the symmetry and showed that in all the dimensions SIC-POVMs
are known, the fiducial vectors are eigenvectors of order-3 Clifford unitaries. This
included the Zauner matrix which is an order-3 Clifford unitary, i.e., Ẑ3 = I. The
results were further expanded and classified in Scott & Grassl (2010) and later Scott
(2017). The standard representation of the order-3 Clifford unitaries Fz for Zauner
matrix which stabilizes SIC-POVMs in most dimensions known, Fa in dimensions
n = 9k+ 3. Order-2 Clifford unitaries also have been found that stabilize fiducial
vectors in dimensions n= k2 −1 and n= (3k±1)2 +3 labeled as Fb and Fc respec-
tively.

With all the simplifications we have described, the task of analytic solutions is very
challenging. In many dimensions, we rely on numerical methods to construct fiducial
vectors.

3.2 Numerical Construction of SIC-POVMs

The numerical construction of SIC-POVMs can in principle be done by solving the
n2 polynomial equations,

(3.15) |⟨ψ0|D̂†
qD̂p|ψ0⟩|2 = 1

n+1 .

This would unnecessarily complicate the calculation. Instead, we rely on a property
of tight frames, which the SIC-POVMs are, to define a single function and where
the fiducial solution is found by minimizing the functions. Before we introduce the
numerical method, we will describe the SIC-POVMs as a special type of a frames
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and the resulting bounds satisfied by tight frames. The concept of frames is a
familiar topic in mathematics and engineering with applications in signal processing,
Kovacevic & Chebira (2007a,0). We will restrict our discussion of frames to just the
SIC-POVMs and only introduce the relevant properties of frames.

3.2.1 Tight Frames

Frames are a generalization of bases for a vector space. Let the set of vectors {|ξk⟩}
be a frame spanning the vector space V . Then for any vector |ψ⟩ ∈ V we have the
inequality,

(3.16) A⟨ψ|ψ⟩ ≤
∑
k

|⟨ψ|ξk⟩|2 ≤B⟨ψ|ψ⟩

where 0<A≤B <∞, Waldron (2018). If A=B the frame becomes a tight frame.
Examples of tight frames include, any orthogonal basis for the real vector space and
a eigenbasis of a quantum observable or a complete quantum measurement such as
the SIC-POVM and MUBs. Consider the SIC-POVM {Πk = 1

n |ψk⟩⟨ψk|}. Due to
the completeness condition ∑kΠk = I. Then for an arbitrary state |ϕ⟩ we have,

(3.17) ⟨ϕ|I|ϕ⟩ =
∑
k

1
n

|⟨ϕ|ψk⟩|2

The constants become A = B = n proving that the SIC-POVMs are tight frames.
More precisely, the SIC-POVM forms an equiangular tight frame. The approach to
the SIC-POVMs from the frame point of view allows us to write constraints on the
fiducial vectors such as the Welch bound, which is instrumental in the construction
of the operators.
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3.2.2 The Welch Bounds

Consider the n2 normalized tight frame |ξk⟩, where ∑k |ξk⟩⟨ξk| = I. We can describe
the frame up to a unitary equivalence by using the matrix P , where ⟨j|P |k⟩ = ⟨ξj |ξk⟩,
Appleby et al. (2019).

(3.18) P ◦P =


⟨ξ1|ξ1⟩2 ⟨ξ1|ξ2⟩2 . . .

⟨ξ2|ξ1⟩2 ⟨ξ2|ξ2⟩2 . . .
... ... . . .



The matrix P is known as the Gram matrix. The Gram matrix of SIC-POVMs will
be discussed in more detail in the next chapter. For now we only need it show the
emergence of the bound briefly for one of the bounds before we give the full form.
The matrix P ◦P

From the triangle inequality |u⃗|2|v⃗|2 ≥ (u⃗ · v⃗)2, we form the identity,

(3.19) m
∑
k

u2
k ≥ (

∑
k

uk)2

Where we took v⃗ = {1, . . . ,1︸ ︷︷ ︸
m

,0, . . . ,0} and m is the number of non-zero elements of

u⃗. We will apply the inequality on the eigenvalues of the matrix P ◦P as follows.

Tr(P ◦P ) =
∑
k

λk = n2(3.20)

Tr((P ◦P )2) =
∑
k

λ2
k =

∑
jk

|⟨ξj |ξk⟩|4(3.21)

Let uk = λk, then m is the rank of P ◦P and the inequality can be written as,

(3.22)
∑
jk

|⟨ξj |ξk⟩|4 ≥ n4

Rank(P ◦P )

By absolute maximum of the rank of P ◦P is n(n+1)
2 . To show this, consider the
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n×n2 matrix V = (ξ1, . . . , ξn2). By definition the Gram matrix is formed by P =

V †V . Define the set of n vectors {⟨νk|} as the column vectors of V =
( ⟨ν1|

⟨ν2|
...

)
. Then,

we can equivalently write the Gram matrix as P =∑n
k |νk⟩⟨νk|. We can then expand

the P ◦P into rank-1 operators and compute the maximum bound.

(3.23) P ◦P =
∑
k

|νk ◦νk⟩⟨νk ◦νk|+2
∑
j ̸=k

|νj ◦νk⟩⟨νj ◦νk|

since rank(A+B) ≤ rank(A)+ rank(B), the rank of P ◦P is at most n(n+1)
2 . Finally

we find the Welch bound of index 2.

(3.24)
∑
jk

|⟨ξj |ξk⟩|4 ≥ 2n3

n+1

A tight frame that satisfies the bound (3.24) is known as a spherical-2 design. Renes
eq al. Renes et al. (2004) proved that the SIC-POVMs are a only equiangular tight
frames that saturate the bound (3.24). The general Welch bound is given by the
equation , and a frame satisfying the bound for a given t forms a Spherical-t design
Delsarte, Goethals & Seidel (1991). The Spherical designs have applications in
experimental design, geometry and in our case quantum state tomography.

(3.25)
N∑
j,k

|⟨ψj |ψk⟩|2t ≥N2
(
n+ t−1

t

)−1
, where t ∈ Z+

3.2.3 Numerical Construction of the Fiducial Vector

The SIC-POVMs are spherical-2 design, so they satisfy the bound (3.24). For Weyl-
Heisenberg group covariant SIC-POVMs, we write the equation,

(3.26)
∑
q,p

|⟨ψ0|D̂†
qD̂p|ψ0⟩|4 ≥ 2n3

n+1
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in low dimensions, it is possible to directly search for global minima of the sum.
Even though the convergence rate is fast, the function has local minima and the
main time consuming part is to find a suitable initial point. In higher dimensions,
we must us the symmetries described in 3.1.3. So far, numerical solutions are known
in all dimensions up to 151 and some higher dimensions, the highest being 19603
Appleby, Bengtsson, Grassl, Harrison & McConnell (2022). In our research into gen-
eral equivalent classes of SIC-POVMs, the Weyl-Heisenberg solutions are restrictive.
We need to have a means of generating solutions with out the restriction of group
covariance if we are to make general statement about the SIC-POVMs. This will be
the focus of our analysis in the next chapter.
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4. Symmetries of the SIC Gram Matrix in Dimensions 4-7

Identifying the symmetry of the physical state on the Bloch sphere proved to be a
complicated task as discussed in 2.3.2. One of the challenges with the approach of
invariant theory was that we were searching for a symmetry of the entire physical
states, while the symmetry of SIC-POVMs need not be a symmetry of the Bloch
sphere. To further our understanding and to be able to move forward with our
analysis, we need a way of capturing the SIC-POVM vectors in a compact form.
Since the SIC-POVM is a tight frame, the Gram matrix achieves this takes perfectly.
As shown in chapter 2, the Gram matrix has been central in understanding the group
covariant SIC-POVMs. In our case, we want to apply it in its most general form in
order to generalize the geometry of SIC-POVMs.

4.1 Generalized Numerical Construction of SIC Gram Matrices

The Gram matrix of the SIC-POVMs uniquely represents the tight frame up to
unitary transformation. Thus, it is possible to reconstruct the SIC-POVM given
a Gram matrix. Instead of solving the series of polynomials (3.15), we generate
a valid Gram matrix. The Welch bound can also be used to generate a general
SIC-POVMs, however, because (3.24) have local minima that correspond to infor-
mationally complete POVMs it is impractical to search for a general SIC-POVM.
The number of free parameters in (3.24) is 2n2(n−1). We found that generating the
Gram matrix directly, which has n2(n2−1)

2 converges much faster in dimensions 3-7.
We will generate solutions on these dimensions to explore the property of general
SIC-POVMs.

Let’s first introduce the Gram matrix for SIC-POVMs and its properties in detail.
Then we can derive a method for constructing SIC-POVM Gram matrix. The Gram
matrices have both continuous and discrete symmetry groups. we will first explore
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the trivial symmetry groups.

4.1.1 The Gram Matrix

Let the set of projective operators Ek = |ψk⟩⟨ψk|
n form a SIC-POVM, then the Gram

matrix P is the Hermitian matrix where Pjk = 1
n⟨ψj |ψk⟩. The SIC-POVMs are a

tight frame and consequent the Gram matrix become a projective matrix. To show
this, let’s first define an n2 ×n matrix V as shown below.

(4.1) V = 1√
n


⟨ψ1|
⟨ψ2|

...
⟨ψn2|



Using the matrix V , we write the Gram matrix as P = V V † and the completeness
relations as,

(4.2) V †V =
∑
k

|ϕk⟩⟨ψk| = I.

The completeness condition of the POVM shows that all generalized quantum mea-
surements form tight frames whether equiangular or not. The Gram matrix is her-
mitian since (V V †)† = V V †. Now consider the square of the Gram matrix,

P 2 = V V †V V †

= V (V †V )V †

= V (In×n)V † = V V †

= P

(4.3)

Proving that the gram matrix of a tight frame a projective matrix. We can im-
mediately deduce that the eigenvalues of the Gram matrix are either 0 or 1, and
the trace of the Gram matrix gives us the rank. The trace of the Gram matrix
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is Tr(P ) = ∑n2
k

1
n⟨ψk|ψk⟩. Since the vectors of the SIC-POVM are normalized,

Tr(P ) = n and rank (P ) = n.

Once we generate a Gram matrix, we need to reconstruct the SIC-POVM vectors
up to some unitary transformation. We can do this if we can construct the matrix
V from a Gram matrix. Let’s re-write the matrix V = (|ω1⟩, |ω2⟩, . . . , |ωn⟩) where
the vectors |ωk⟩ ∈ Cn

2 are the column vectors of V . By applying the completeness
relation, we can show that ⟨ωj |ωk⟩ = δjk.

(4.4) V †V =
∑
jk

⟨ωj |ωk⟩|j⟩⟨k| = I

In order to get an identity the vectors |ωk⟩ must be orthogonal. Similarly the Gram
matrix can be constructed using the vectors |ωk⟩.

(4.5) P = V V † =
n∑
k

|ωk⟩⟨ωk|

The expression above is just the expansion of the Gram matrix using the basis
vectors |ωk⟩, meaning that the vectors |ωk⟩ are the eigenvectors of the Gram matrix
with the eigenvalue of 1. We can then simply generate the vectors by solving for its
n eigenvectors, and construct the matrix V .

Based on the definition of the SIC-POVMs, the Gram matrix elements take the form
in equation (4.6). Lets define the space of n2 ×n2 hermitian matrices B = {B : ϕjk ∈
[0,2π]} that contains all Gram matrices by letting ϕjk be free parameters.

(4.6) Bjk =


e

iϕjk

n
√
n+1 , j < k

e
−iϕjk

n
√
n+1 , j > k

1
n , j = k

If any matrix B ∈ B is a rank-n projective matrix, then B is a valid Gram matrix
of a SIC-POVM. Now, we just need to derive an equation to identify projective
matrices which are elements of B. Notice the similarity of identifying projective
matrices in Cn

2 ×Cn
2 and identifying the pure states, which are rank-1 projective

matrices, on the Bloch sphere. Thus, we will use to the trace of the Gram matrix
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to generate scalar function that we may use for numerical method. By definition,
Tr(P ) = n and since the Gram matrix is a projective matrix, Tr(P k) = n for all
positive integers k. All matrices ∈ B satisfy Tr(B) = n and Tr(B2) = n.

Tr(B2) = Tr(
∑
k

bijbjk|j⟩⟨k|)(4.7)

=
∑
jk

bkjbjk =
∑
jk

b∗jkbjk(4.8)

= n2
(

1
n2 + (n2 −1)

n2(n+1)

)
= n(4.9)

In theorem 4.1, we show that we only need to show Tr(P 3) = n and Tr(P 4) = n to
identify a projective matrix within the space B.

Theorem 4.1. Given a matrix B ∈ B, the equations Tr(B3) = n and Tr(B4) = n

are sufficient and enough conditions to show that the matrix B is a projective matrix.

Proof. lets define two functions f(x) and g(x) as below, where λk(∈ R) are the
eigenvalues of the matrix.

g(x) =
∑
k

λxk(4.10)

f(x) =
∑
k

|λk|x(4.11)

We derive the following results from the definitions of the functions.

• ∀x ∈ R+,g(x) = Tr(P x).

• ∀x= 2m,m ∈ N,f(x) = g(x).

• f(x) ≥ Re[g(x)], Since ∀λk ∈ R,Re[λxk] ≤ |λk|x.

The function f(x) is a convex function since d2

dx2f =∑
k (ln|λk|)2|λk|x ≥ 0. therefore,

f(a) = f(b) = f(c) ⇐⇒ |λk| ∈ {0,1}.

For even powers, Tr(B2) = g(2) = f(2) = n and Tr(B4) = g(4) = f(4) = n. For odd
powers, since f(x) is an upper bound to g(x) and is a convex function, g(3) ≤ f(3) ≤
n. Therefore, if g(3) = n, then f(3) = g(3). This shows that λks are either 0 or 1.
Finally we conclude that if Tr(B3) = n and Tr(B4) = n for a matrix B ∈ B if and
only if P is a projective matrix.
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4.1.2 Construction of SIC Gram Matrices with out the Constraint of

Group Covariance

We can now expand the equations Tr(B3) = n and Tr(B4) = n, which we will use
to construct SIC-POVMs without the assumption of group covariance. By directly
expanding the functions Tr(B3) and Tr(B4), where the matrix B takes the form
shown in (4.6), we define the functions fn(Φ) = Tr(B3) and gn(Φ) = Tr(B4), where
Φ corresponds to phase parameters as follows:

(4.12) fn(Φ) = 3n−2
n

+ 6
n3(n+1) 3

2

n2∑
a<b<c

cos(ϕab+ϕbc−ϕac)

(4.13) gn(Φ) = 2(n3 +2n2 −n−1)
n2(n+1) + 24

n4(n+1) 3
2

n2∑
a<b<c

cos(ϕab+ϕbc−ϕac)

+ 8
n4(n+1)2

n2∑
a<b<c<d

[
cos(ϕab+ϕbc+ϕcd−ϕad)+cos(ϕab+ϕbd−ϕcd−ϕac)

+cos(ϕac−ϕbc+ϕbd−ϕad)
]

We can think of the phase variables as elements of a n2(n2−1)
2 dimensional vector, and

represent each element of B by a unique vector up to mod(2π). We will refer to the
set of phases as the phase vector of the Gram matrix. For the vector representation
of the phase variables, we define a single index χ(a,b) = (a− 1)n2 − 1

2a(a+ 1) + b

where the indices a and b correspond to the index in the upper triangle of the Gram
matrix. After this point, the phase vector Φ is represented using the index χ(a,b)
where the value ranges from 1 to n2(n2 −1)/2.

The equations fn(Φ) and gn(Φ) are presented in a way that makes some symmetries
of the Gram matrices obvious. That includes the continuous symmetry of n2 − 1
dimension and the discrete symmetry to the permutation operation. These symme-
tries are needed to identify and characterize general SIC-POVM solutions generated
using the functions fn and gn.

59



4.2 Local Structure of SIC Gram Matrices

4.2.1 Continuity Conditions of SICs

To identifying the continuous symmetry of the functions fn(Φ) and gn(Φ), let’s
first define the vectors K⃗rst such that the phases inside the cosine functions can
be written as a dot product K⃗rst · Φ. In the function fn, the vectors K⃗rst have 3
non zero elements. For example, consider the first cosine functions in fn which is
cos(ϕ1 +ϕ2 −ϕ3), then K⃗1,2,3 = (1,−1,0, . . . ,0,1,0, . . . ,0) has elements 1 at indices
χ(1,2) and χ(2,3), -1 at the index χ(1,3) and 0 everywhere else. We can then write
the cosine function as cos(K⃗1,2,3.Φ). Similarly, we rewrite fn as,

(4.14) fn(Φ) = 3n−2
n

+ 6
n3(n+1) 3

2

∑
r,s,t

cos(K⃗rst.Φ)

The simplest symmetry one would expect from the equations is one where all the
cosine functions in the sum remain fixed, and we can check for such a symmetry by
simply checking for the linear independence of the vectors K⃗rst. Since the vectors
are n2(n2 −1)/2 dimensional, it suffices to take n2(n2 −1)/2 vectors, which we will
prove next.

Proposition 4.1. The vectors K⃗rst which are conjugate to the phase vectors Φ span
a (n2 −1)(n2 −2)/2 vector space.

Proof. The continuous symmetry of the functions fn(Φ) and gn(Φ) corresponds to
the invariance of individual cosine functions in the functions fn(Φ) and gn(Φ) to a
translation on the phase vector Φ. Lets define the vectors K⃗abc for a < b < c such
that cos(K⃗abc.Φ) = cos(ϕab+ϕbc−ϕac). The continuous symmetry appears because
the vectors Kabc do not span a n2(n2 −1)/2 dimensional space.

Let’s define a basis formed with the vectors K = {Kijk : i < j < k,j = i+1}. We will
then show that any vector K⃗abc belongs to the space spanned by K. For simplicity
of further calculations, the vector K⃗abc is presented with its non zero indices as
(a,b)− (a,c)+(b,c).
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Given indices a, b and c the phases (ϕab,ϕbc,ϕac), we will start by adding elements
of the basis K incrementally until we generate K⃗abc.

(4.15) (a,b)− (a,c)+(b,c) → −((a,a+1)− (−a,b)+(a+1, b))

+((a,a+1)− (−a,c)+(a+1, c))+(b,c)

Notice that the indices (a+ 1, b) and (a+ 1, c) are not part of the K⃗abc, so we will
add vectors from K to cancel the two elements. which will leave two terms, (a+2, b)
and (a+ 2, c) that we need to removed. We repeat the process until a+m = b− 1,
as shown below.

(4.16) (a,b)− (a,c)+(b,c) → −
(

(a,a+1)− (a,b)+(a+1, b)
)

+
(

(a,a+1)− (a,c)+(a+1, c)
)

−
(

(a+1,a+2)− (a+1, b)+(a+2, b)
)

+
(

(a+1,a+2)− (a+1, c)+(a+2, c)
)

...

+
(

(b−1, b)− (b−1, c)+(b,c)
)

Note that every index is canceled out in equation (4.16), and only the term (a,b)−
(a,c) + (b,c) remains. This shows that, for arbitrary indices a,b, and c, the vector
K⃗abc is an element of the space spanned by K.

The phases in the function gn can be broken down into sums of the vectors K⃗ijk as
well. As shown above, all such vectors are elements of the space spanned by K.

(4.17) (a,b)− (a,d)+(b,c)+(c,d) →
(

(a,b)− (a,c)+(a,d)
)

+
(

(a,c)− (a,d)+(c,d)
)
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(4.18) (a,b)− (a,c)+(b,d)− (c,d) →
(

(a,b)− (a,c)+(b,c)
)

−
(

(b,c)− (b,d)+(c,d)
)

(4.19) (a,c)− (a,d)− (b,c)+(b,d) →
(

(a,b)− (a,d)+(b,d)
)

−
(

(a,b)− (a,c)+(b,c)
)

The orthogonal vectors to the space spanned by K, form the continuous symmetry
of the functions fn(Φ) and gn(Φ). We can then show the dimension pf the symmetry
as the difference in the dimension of the space Φ⃗ and the space spanned by K as,
n2(n2 −1)/2− (n2 −1)(n2 −2)/2 which is (n2 −1).

This means, the functions fn(Φ) and gn(Φ) are invariant in the orthogonal space
of the vectors K⃗rst. We may also understand the continuous symmetry by noting
that a unitary operation conserves all trace values and the only continuous unitary
operations that form automorphism of B are Γ = {eiΩ,Ω = diag(x1,x2, . . . ,xn2),xk ∈
[0,2π]}. The unitary operations have n2 parameters and equivalent to a (n2 − 1)-
dimensional subspace of B.

*The second trivial symmetry we observe is the permutation symmetry. It is obvious
the permutation operation is an automorphism of B, and thus will be an invariant of
the functions fn(Φ) and gn(Φ). We will represent the permutation operations with a
permutation matrix Xσ. For a Gram matrix of a SIC-POVM, the permutation oper-
ations are equivalent to the reordering of the SIC-POVMs. The permutation group
generates a large set of Gram matrices which will become important in classifying
numerical SIC-POVMs.

4.2.2 Isolated Islands of SIC-POVM Gram Matrices

The two trivial transformations described above are both symmetries of the func-
tions and they map the space of matrices B to its self. For the purpose of generating
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general SIC-POVMs however, we don’t need the transformations to be automor-
phism of the entire matrix space B. We only need the transformation to map one
SIC Gram matrix to another. One such a transformation we can search for is a
continuous transformation that preserves the functions fn(Φ) = n and gn(Φ) = n.
In other words we ask: are the SIC-POVM Gram matrices path connected in the
space of Φ⃗? Based on the Weyl-Heisenberg group solutions, Bruzda et al. Bruzda
et al. (2017) showed that in dimensions 4 − 16, the SIC-POVMs are isolated and
free parameters can not be introduce. Since we are working with the Gram matrix
in the space B, we will re-derive the results using the functions fn(Φ) and gn(Φ).

As shown in the previous section, a matrix B ∈ B is a SIC-POVM Gram matrix
if and only if fn(Φ) = n and gn(Φ) = n. Another way to look at the equations is,
the two functions define two n2(n2 − 1)/2 − 1 dimensional surfaces in the vector
space of Φ⃗ and the SIC-POVM Gram matrices exist on the intersection of the two
surfaces. To characterize the intersection of the two surfaces we need to understand
the local structure of the surfaces. Both surfaces are smooth since the functions
are differentiable, C∞. We can thus explore the local structure by expanding the
functions around a solution point Φ⃗0. The first property we find is that all Gram
matrices exist on critical point of both functions. In theorem 4.2, we show that this
is a general result that holds in arbitrary dimensions.

Theorem 4.2. SIC-POVM Gram matrices are located at the common critical points
of the surfaces fn(Φ) = n and gn(Φ) = n.

Proof. The straightforward method to prove the theorem would be to construct the
gradients of the two functions and confirm that both gradients are 0. However, this
would be an unnecessarily long method. Instead, we will reconstruct the functions
by considering an infinitesimal shift of the vector Φ⃗.

Let G be the Gram matrix of a SIC-POVM of n-dimensional Hilbert space, and the
shift on Φ⃗ be v⃗. We can then write the new Gram matrix as,

(4.20) gjk(Φ⃗+ v⃗) = eiϕjk+iλvjk

n
√
n+1

.

For |v⃗|<< 1, we expand the exponential to the first order in v⃗ and approximate the
Gram matrix as follows.
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(4.21) gjk(Φ⃗+ v⃗) ≃ eiϕjk

n
√
n+1

+ ivjk
eiϕjk

n
√
n+1

(4.22) G(Φ⃗+ v⃗) ≃G(Φ⃗)+∆

We can now compute the trace cube and fourth power and approximate it to the first
order in the shift v⃗. Since the Gram matrices of SIC-POVMs are projective matrices,
we can reduce all powers of G(Φ⃗)k to G(Φ⃗) greatly reducing the calculation.

Tr(G(Φ⃗+ v⃗)3) ≃ Tr(G(Φ⃗)3 +3G2∆+O(∆2))

≃ Tr(G(Φ⃗)+3G∆+O(∆2))

≃ n+3Tr(G(Φ⃗)∆)(4.23)

Similarly,

Tr(G(Φ⃗+ δ⃗)4) ≃ Tr(G(Φ⃗)4 +4G2∆+O(∆2))

≃ n+4Tr(G(Φ⃗)∆)(4.24)

Note that the first order correction on both functions depends on the term
Tr(G(Φ⃗)∆). This shows that if the first order correction of both functions van-
ishes simultaneously. We then expand the first order correction in to its elements
and group the terms based on δjk.

Tr(G(Φ⃗)∆) =
∑
ab

i
eiϕab

n
√
n+1

vba
eiϕba

n
√
n+1

, where a ̸= b

= i

n2(n+1)
∑
ab

ei(ϕab+ϕba)vba

= 0(4.25)

Since the first order correction in equations (4.23) and (4.24) is equal to v⃗ ·∇fn and
v⃗ ·∇gn respectively, and vanished for both functions, all SIC-POVM Gram matrices
exist on critical points of both functions.
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The fact that the Gram matrices exist on critical points means the continuous space
of solutions may be dimension less than n2(n2 −1)/2−2, which is the typical inter-
sections of two n2(n2 − 1)/2 − 1 dimensional surfaces. But, this isn’t enough to say
that the solutions are isolated sets. For this, we need to explicitly use the Hessian
matrix of the functions. The Hessian matrix of a function at a given point is the
matrix Hjk = ∂2

∂ϕj∂ϕk
f
∣∣∣
Φ⃗

. On critical points, the null space of the Hessian matrix
shows the continuous symmetry of the functions.

(4.26) f(Φ+ δΦ) = f(Φ)+ δ⃗Φ ·∇f
∣∣∣
Φ

+ 1
2(δ⃗Φ

T
·H · δ⃗Φ)+O(δΦ3)

For a SIC-POVMs Gram matrix, we compute the Hessian matrix by expanding
the Gram matrix to the second order. The trace functions to the second order
correction take form G(Φ⃗ + v⃗) ≃ G(Φ⃗) +G2∆(1) +G∆(2) +O(∆2)), where ∆(1) =
ieiϕabvab/n

√
n+1 and ∆(2) = −eiϕabv2

ab/n
√
n+1. Then the trace of fn(Φ) and gn(Φ)

can be expanded to the second order, from which we generate the Hessian matrices.

(4.27) Tr(G(Φ⃗+ v⃗)3) ≃ n+3(Tr(G∆(2))+Tr(G∆(1)∆(1)))+O(∆3))

(4.28) Tr(G(Φ⃗+ v⃗)4) ≃ n+4(Tr(G∆(2))+Tr(G∆(1)∆(1)))

+2Tr(G∆(1)G∆(1))+O(∆3))

The second order correction of a functions is given by the Hessian matrix as
1
2Hjkxjxk. In equations (4.27) and (4.28), the variables are the vector elements
vab, and by extracting the terms of the sum based on the vector elements, we gener-
ate the Hessian matrices of the two functions. Unlike the gradient case, the Hessian
matrices are difficult to simplify, and generating a general result of continuity is
challenging. As is evident from expressions, the Hessian matrices involve the triple
products of the SIC-POVM, and general proof of continuity requires further restric-
tions on these products. However, numerically, we can still use the expression to
explore local structure of the surfaces defined by fn(Φ) and gn(Φ). In dimension 3,
the intersection of the null spaces of the two matrices form a 10-dimensional space.
This means that two free parameters exist which describe the continuous fiducial
vectors that have been constructed in dimension 3. In dimensions 4 − 7, the in-
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tersection of the null space of the two Hessian matrices form a n2 − 1 dimensional
space, which is the continuous symmetry Γ introduced above. We explore the local
structures of general solutions by using the numerical solutions in the next section.

4.3 Group Structure of SIC Gram Matrices

4.3.1 Generating Sets of the Gram Matrix

The Bargmann invariants of the SIC-POVMs are the ideal tools to check if two SIC-
POVMs Appleby et al. (2011) belong to the same island. Let’s explain the structure
of these islands and briefly discuss how to group solutions using the Bargmann
invariants. The islands of solutions are formed by the diagonal unitary operations
on the n2 dimensional Hilbert space. Since the Gram matrices of two SIC-POVMs
equivalent up to a unitary operator are identical, a global phase shift on all the SIC-
POVMs does not generate a different Gram matrix. This means that the islands are
generated by unitary operators which are elements of SU(n2). Thus, the operators
can be represented by a set of n2 − 1 free parameters. Let the diagonal unitary
operator U be U = eiΩ where Ω = diag(c1, c2, . . . , cn2), and ∑k ck = 0. Applying the
operator on a P ∈ B as P ′ = U †PU , we generate a different Gram matrix in the
same island as P .

(4.29) P ′
jk = 1

n
√
n+1


ei(ϕjk−cj+ck) , j < k

e−i(ϕjk−cj+ck) , j > k
√
n+1 , j = k

This corresponds to a shift in the phase vector as ϕjk 7→ ϕjk − cj + ck, forming
the n2 − 1-dimensional plane. The Bargmann invariants of a SIC-POVM are given
by the trace of triple products of the Tijk = n3Tr(Ei,Ej ,Ek). If we generate the
Bargmann invariant of the Gram matrix P ′, we see that the variables ck disap-
pear, and the entire island has unique Tijk’s. Conversely, if two SIC-POVMs have
identical Bargmann invariants, then fixing one of the indices gives us two identical
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Gram matrices, which indicates that the two SIC-POVMs belong to the same island
Appleby et al. (2011). By using the Bargmann invariants, we filter all generated
solutions so that all belong to different islands.

The second symmetry of the functions fn(Φ) and gn(Φ) is due to the permutation
operations σ. Not all permutation operations however connect different islands as
shown in theorem 4.3. Compared to the total number of permutations possible, the
number of automorphisms is much less, and the total number of islands is (≈ n2!).

Theorem 4.3. A permutation operation Xσ that form an automorphism of an island
of Gram matrices if and only if there exists a projective unitary operations V and
SIC-POVM vectors {|ψk⟩} such that,

(4.30) V |ψk⟩ 7→ |ψσ(k)⟩ , ∀k ∈ Zn×Zn

where σ is the permutation of indices.

Proof. Let P and P ′ be SIC-POVM Gram matrices, where P ′ =X†
σPXσ and the two

Gram matrices belong to the same island of solutions. We then construct two sets of
SIC-POVMs |ψk⟩ and |ψ′

k⟩ from the Gram matrices, respectively. Since both Gram
matrices belong to the same island of solutions, there necessarily exist projective
unitary matrix that maps one to the other.

(4.31) |ψ′
k⟩ = U |ψk⟩

On the other hand, we can reconstruct the Gram matrix we have by simply applying
the permutation on the SIC-POVM: |ψk⟩ 7→ |ψσ(k)⟩. At this point, we have two SIC-
POVMs that generate an identical Gram matrix and hence are unitarily equivalent
to each other as |ψσ(k)⟩ = C|ψ′

k⟩, where C ∈ U(n).

We can then construct a projective unitary operation that maps the |ψk⟩ to |ψσ(k)⟩.

(4.32) |ψσ(k)⟩ = V |ψk⟩ , where V = CU

Permutations that generate automorphisms indicate the symmetries possessed by
the SIC-POVMs in a given island. For the purpose of describing the group-covariant
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SIC-POVM islands, we will focus on automorphisms that have fixed points in a given
island of SIC-POVM Gram matrices.

The Gram matrices constructed with the functions fn(Φ) and gn(Φ) can be an el-
ement of any island of solution, and checking the equivalence of any two Gram
matrices is difficult due to the large number of possible permutations. All permu-
tations that do not form an automorphism of a given island, generate SIC-POVMs
that are not unitarily equivalent to the initial SIC-POVMs. To identify if two Gram
matrices are equivalent, one can use the Gram matrices. Before explicitly construct-
ing the permutation operations connecting two islands, we will define the generating
set of the Bargmann invariant.

Definition 4.1. The generating set of the Bargmann invariant gen[Tijk] is a set
containing all the phases that appear in the tensor of the Bargmann invariants i.e.,
Tijk = Tr(ΠiΠjΠk).

If two SIC-POVMs have different generating set, then the two Gram matrices are not
equivalent up to unitary operation. This is because two SIC-POVMs are equivalent
up to a projective unitary transformation if and only if their Bargmann invariants are
identical Appleby et al. (2011). The generating set is the first criteria to determine
equivalence of two SIC-POVMs. However, if the generating set of two SIC-POVMs
is the same, the two SIC-POVMs are not necessarily equivalent. therefore, for
solutions that do have a common generating set, we need to explicitly construct the
permutation operation in order to show their equivalence. We will use the Gram
matrix instead of the tensor of Bargmann invariants for the construction of the
permutation operations.

In order to compare the Gram matrices belonging to different island of solutions, we
first define a means of identifying the islands in a way that allows us to construct
a permutation operations between solutions. The best choice for this is to shift the
phases of a given row and column to 0. We can do this by using the continuous
symmetry of the islands.

4.3.2 Construction of Symmetry Group from the Gram Matrices

The numerical solutions we generate have a generating set much smaller than the
n2(n2 −1)/2. This is an indication that the islands are not invariant to all permuta-
tions and as a result have a nontrivial symmetry group. To compute the symmetry
group we must first reduce the phase matrix by mod(2π). This will allow us to
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easily construct fixed points of specific automorphism, i.e., Gram matrices that are
invariant to the automorphism. This is guarantied by the fact that any transforma-
tion with a stationary point in a given island of SIC-POVM is automorphism of the
island if the island is isolated. In dimensions > 3 we can construct automorphisms
by searching fixed points of permutation operations with in the island of Gram ma-
trices. The actual construction of the symmetry matrix is a long processes that
require checking for permutations that fix the matrix. To simplify the search, we
start with the element with the lowest frequency and work our way up. We will de-
scribe the generating sets for the dimensions 4-7, and demonstrate the construction
of the symmetry group.

All the numerical solutions were generated on the Sabanci universities TOSUN HPC
cluster with the Mathematica software. We used the conjugate gradient method to
find global minima of the function

√
(fn(Φ)−n)2 +(gn(Φ)−n)2. In dimensions 4

and 5, the search converges at a reasonable time all searches reach global minima.
This is not the case for dimensions 6 and 7, where we encounter some local minima,
where 43% and 13.5% of the searches yield a solution respectively.

n Gram Matrix (s)
4 ∼ 3.76
5 ∼ 71
6 ∼ 725
7 ∼ 5300

Table 4.1 The table shows the average time it took to generate the solutions for
dimensions 4-7.

4.3.2.1 Dimension 4

In dimension 4, the functions fn(Φ) and gn(Φ) yield general solutions very quickly
despite the large number of parameters. From the numerical solutions, we observe
that all generated solutions have the generating set (4.33), indicating that all the
solutions may be equivalent up to permutation. Notice that the generating set is
the same if we multiply all the phases by −1, which means the set also characterizes
anti-unitarily equivalent SIC-POVMs.
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(4.33)
gen[Tijk] = {0,0.33312,0.571437,0.666239,0.904557,0.999359,1.5708,1.90392,

2.47535,3.80783,4.37927,4.71239,5.28383,5.37863,5.61695,5.71175,5.95007}

After projecting the Gram matrices onto a unique point in their respective island,
the generating phases are distributed in the matrices with the respective frequencies
given below.

(4.34) {49,18,9,18,9,18,18,9,9,18,18,18,18,6,6,6,6}

For example, the matrix in equation (4.35) is a numerical phase matrix reduced to
the in the first index, where the coefficients {a,b, . . . , q} corresponds to the generating
set (4.33) respectively.

(4.35)



a a a a a a a a a a a a a a a a
a a q e h g e l c k q m i o k b
a b a g l i c q m k h e e k o q
a n l a g a e n o i d l a e g j
a k g l a o q h q c k i e m e b
a l j a d a l g e e n o a g i n
a n p n b g a j k h b h d l q f
a g b e k l i a q m h q o e c k
a p f d b n h b a l j k g q h n
a h h j p n k f g a n b l b q d
a b k o h e q k i e a q l c m g
a f n g j d k b h q b a n h l p
a j n a n a o d l g g e a i e l
a d h n f l g n b q p k j a b h
a h d l n j b p k b f g n q a h
a q b i q e m h e o l c g k k a



By starting from the elements with the lowest frequencies which are the last 4
elements, i.e.,{c,f,m,p}. The corresponding indices for the four elements are,

(c) → {(2,9),(3,7),(5,10),(8,15),(11,14),(16,12)}

(f) → {(7,16),(9,3),(10,8),(12,2),(14,5),(15,11)}

(m) → {(2,12),(3,9),(5,14),(8,10),(11,15),(16,7)}

(p) → {(7,3),(9,2),(10,5),(12,16),(14,11),(15,8)}

(4.36)

The simplest symmetry to construct is one that has a fixed point. Thus we start by
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choosing a fixed index and reducing the matrix to the chosen index. For the matrix
above, the fixed index would be 1. We do this because, any symmetry permutation
that exist need not require reducing the matrix for confirmation.

The next step is to check possible permutations one by one. Notice that any permu-
tation we form based of the list (4.36) will contain 12 indices. Meaning the remaining
3 indices, excluding the fixed one, must be mapped to each other. We can easily
verify, the indices (4,6,13) are missing from the list. Thus we start our construction
with permutations of the 3 elements which is just 6 different possibilities. For every
possible permutation that we try, we check it against higher frequency elements.
Ultimately, we find the permutation shown in the diagram 4.1.

Figure 4.1 The blue orbits are clockwise and the red orbits are counter-clockwise,
where the indices follow the angels 2πk/16 for k ∈ Z16

One can see easily that the symmetry operation is an order-3 matrix, i.e., σ3 = I.
We proceed by changing the fixed index through all 16 possibilities. Finally we
find 16 distinct permutation operations that fix the island of solutions. Together
with their square we have 36 matrices forming an automorphism of the island.
At last, the symmetry group Aut(P ) is generates by including all products of the
order-3 permutations we constructed. The products generate 16 more permutations
including the identity. Of these, 15 of which are order-4 permutations, one example
is shown in diagram 4.2. In total the size of the symmetry group becomes |Aut(P )| =
48.

Important to note that the fixed points in dimension 4 are not isolated, meaning they
are not unique. For the order3 permutations, if we shift the phases of each triple of
indices by a constant value, the resulting Gram matrix remains a fixed point to the
automorphism. Thus, the fixed Gram matrices to the order-3 permutations form a
5-dimensional plane.
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Figure 4.2 The permutation set shown in the diagram is
{(1,15,13,5),(2,16,14,11),(3,4,12,6),(7,10,8,9)}, where the indices follow the
angels 2πk/16 for k ∈ Z16

In dimension 4, we constructed 7.55 × 105 numerical Gram matrices. For every
solution we construct the generating set and the corresponding symmetry group
Aut(P ). The corresponding symmetry group we find for all numerical solutions has
48 elements, where 32 of the elements fix a single index and are order-3 permutations,
the remaining matrices excluding the identity operation have no fixed index.

4.3.2.2 Dimension 5

In dimension 5, the numerical solutions converge relatively fast without for all ar-
bitrary initial search points used. This allowed us to generate 4.8 × 104 numerical
solutions. Similar to dimension 4, all solutions constructed have the generating set
(4.37) with 73 elements.
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(4.37)
gen[Tijk] = {0,0.00220427,0.00903612,0.0460726,0.123129,0.23881,0.295211,

0.321435,0.434237,0.487521,0.498761,0.536226,0.675251,0.720412,0.757876,

0.885633,0.905025,1.02595,1.10858,1.11982,1.24631,1.25884,1.30271,1.37977,1.45798,

1.48732,1.55185,1.60825,1.62764,1.63447,1.93189,2.02575,2.07904,2.13544,2.36521,

2.6501,2.75208,3.5311,3.63309,3.91797,4.14775,4.20415,4.25743,4.3513,4.64871,

4.65554,4.67494,4.73134,4.79586,4.8252,4.90342,4.98048,5.02434,5.03688,

5.16337,5.17461,5.25723,5.37816,5.39755,5.52531,5.56277,5.60793,5.74696,

5.78442,5.79566,5.84895,5.96175,5.98797,6.04437,6.16006,6.23711,6.27415,6.28098}

The corresponding frequency is given in (4.38). Similar to the case of dimension
4, we generating permutation matrices by starting with the lowest frequency and
work our way up. For all constructed Gram matrices, we were able to construct a
unique permutation that maps the numerical solutions to a Weyl-Heisenberg group
covariant SIC-POVM Gram matrix.

(4.38)
{73,9,9,3,3,9,9,9,9,3,9,9,9,9,9,3,9,9,9,9,9,9,3,3,9,9,9,9,3,9,9,3,9,9,9,9,9,

9,9,9,9,9,3,9,9,3,9,9,9,9,3,3,9,9,9,9,9,9,3,9,9,9,9,9,3,9,9,9,9,3,3,9,9}

We construct the automorphisms using similar approach to dimension 4. With the
Key difference being that the lowest frequencies of the generating set is 3, which
corresponds to a 2 pairs of 3 indices that must map to on another. For example,
we constructed a gram matrix reduced in the index, where the indices of the lowest
frequencies form the following groups of set of indices we can permute.

{(13,2),(15,21),(23,17)}

{(4,24),(5,16),(6,12)}

{(7,20),(8,9),(25,18)}

{(10,3),(11,14),(22,19)}

(4.39)

The only permutation that can be constructed that fixes the reduced Gram matrix, is
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the permutation {(2,17,21),(3,14,19),(4,5,6),(7,8,25),(9,18,20),(10,11,22)}. Fig-
ure 4.3 shows these permutation. In total we find 50 order-3 permutation operations
that map the island of Gram matrices to its self. To generate the group Aut(P ),
we multiply the permutations matrices generating a group of 75 permutation oper-
ations, which also contains 24 order-5 permutations.

Figure 4.3 The blue orbits are clockwise and the red orbits are counter-clockwise,
where the indices follow the angels 2πk/25 for k ∈ Z25

The fixed points in dimension 5, like the case of dimension 4, are not isolated. For
the order-3 operators, the fixed Gram matrices form a 8-dimensional plane within
the island.

4.3.2.3 Dimensions 6 and 7

In dimensions 6 and 7, in addition to the difficulty of obtaining numerical solutions
due to the large number of free parameters, we also encounter local minima. This
makes the time needed to generate a numerical solution long. As a result, we con-
structed 162 solutions in dimension 6 and 50 solutions in dimension 7. The Gram
matrices in dimension 6 found all have a single generating set. The Gram matrices
generated in dimension 7, however, belonged to two different generating sets, corre-
sponding to two unitarily in-equivalent classes of SIC-POVMs. The generating set
in these dimensions can be found in Appendix A. The exact form of these generating
sets can be constructed the analytic solutions in Scott (2017).

Using the generating set of dimension 6, which can be found in Appendix A, we
construct permutations that have fixed points.The automorphisms of the islands in
dimension 6, unlike the previous two dimensions are not n2 in number. In dimensions
n = 0 mod 3, automorphisms with a single fixed index can not be formed. Instead
we have matrices that fix 3 indices for each order-3 permutation, forming 12 distinct
elements. The Aut(P ) group has 36 elements with where 12 of the permutations do
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not fix any index.

In Dimension 7, for both generating sets, we get 98 permutations each fixing a single
index. The total Aut(P ) group has 147 elements with the 48 elements being order-7.
The generating set of dimension 7 can be found in Appendix A.

4.3.3 Analysis of the Symmetry Group and Connection to the W-H group

In all 4 cases presented above, the group Aut(P ) contains elements that fix a sin-
gle index, with exception of dimension 6 where 3 indices are fixed by the order-3
automorphisms. Let X be a permutation which is an order-3 automorphism for
an Island of SIC-POVM in a given dimension n. By definition, X3 = I. Since the
permutation maps the island to it self, the SIC-POVMs the operator connects are
equivalent up to a projective unitary operator. For a SIC-POVM operators, this
means equivalence up to a unitary operator. For a given X such that P ′ =XPX†,
we can define a unitary matrix Ux such that {Π′

k} = {UxΠ′
kU

†
x}. We can easily see

that U3
x = I. If P is a fixed Gram matrix of the permutation X for n = {4,5,7},

there exists a vector elements of the corresponding SIC-POVM where,

(4.40) U |ψk⟩ = eiθ|ψk⟩

The remaining n2 elements of Aut(P ) in dimensions 4,5,7 do not fix any index as
described in previous section. Let Y represent the permutations of order-n where
Y n = I. Since Y maps the island to it self, we can again define a unitary matrix Uy
where Uny = I.

The permutation matrices Y in the dimensions 4,5 and 7 form a group ∼= Zn×Zn,
which means that the corresponding unitary matrices Uy also form a group, up to a
phase equivalence. Since applying the set Y on the Gram matrix rotates the indices,
the unitary Uy must map the SIC-POVM vectors to each other up to a phase factor.
Thus, we can write the SIC-POVM as the orbit of the unitary group {Uy|ϕk⟩}.
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(4.41) X


|ϕ1⟩
|ϕ2⟩

...
|ϕn2⟩

=


|ϕσ1⟩
|ϕσ2⟩

...
|ϕσn2 ⟩



This makes the SIC-POVM a group covariant SIC-POVM. As discussed in chap-
ter 2, for a Weyl-Heisenberg group covariant SIC-POVMs the set of unitaries Uy
corresponds to Dp. The other elements of the Aut(P ) fix a single index in the di-
mensions 4,5 and 7, which means that there exists a vector that is an eigenvector of
the unitaries Ux such that the its orbit on the matrices {Uy} forms a SIC-POVM.
In other words, the |ψ⟩ is a fiducial vector. In the Weyl-Heisenberg group covariant
solutions, the unitary matrices Ux correspond the the order-3 unitaries such as Za-
uner’s matrix. The automorphism of the islands show a close relation between the
group ∼= Zn×Zn and order-3 unitaries. In dimension 6, we still get order-3 unitaries
which fix a fiducial state. We don’t generate the entire order-6 permutations which
are similar to the Weyl-Heisenberg group, but the remaining set can obtained once
the equivalence of the two groups is established.

All solutions we computed exhibit the group covariant property in all 4 dimensions.
Zhu Zhu (2010) showed that in prime dimensions, group covariant SIC-POVMs
are covariant to the Weyl-Heisenberg group. To confirm that the numerical solu-
tions we constructed are covariant with respect to the Weyl-Heisenberg group, we
explicitly generated transformations matrices that map each solutions to a known
Weyl-Heisenberg solutions for all 4 − 7 dimensions. The result we find is that, all
the numerical islands constructed are equivalent to islands of Weyl-Heisenberg group
covariant SIC-POVMs up to a permutation operation.
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5. Conclusion And Discussion

The Weyl-Heisenberg group covariant SIC-POVMs have been shown to have sym-
metries which allowed us to simplify the construction of fiducial vectors. These
fiducial vectors define equivalent classes defined by the orbit they form on the Clif-
ford group. In dimension 3, it is known that all SIC-POVMs are equivalent to
a Weyl-Heisenberg solution. In Higher dimensions, the only solutions we know are
Weyl-Heisenberg solutions with the exception of dimension 8. To further understand
the structure of general SIC-POVMs, we explored general solutions by starting from
the geometrical properties of the SIC-POVMs in the real space and continuing with
numerical solutions to classify general SIC-POVMs in dimensions 4−7.

In our geometrical approach to the SIC-POVM problem, we showed that the n2 −1
vertices of a regular simplex can be oriented such that Tr(ρ3) of all the points is
equal. We showed that the existence of SIC-POVMs is equivalent to showing the
solution satisfying the modified Kakutani’s theorem can be achieved for the extreme
values of the Tr(ρ3) function. We further analyzed quantum states on the Bloch
sphere, by defining a set of manifolds of different topology on the Bloch sphere. The
manifolds have continuous symmetry, which is the special unitary group. The global
symmetry, however, was much more complicated due to the non-linear nature of the
characteristic polynomial of the Bloch sphere.

We continued our analysis by generating SIC-POVM Gram matrices without using
the Weyl-Heisenberg group. The characteristic equations for general SIC-POVM
Gram matrix involve two trace functions. The solutions are found on the critical
points of the functions, allowing the solutions to form a disjoint islands of solutions.
Each solution forming an equivalent class. Using similar methods as the Bloch
sphere, we showed that the islands of solutions can be related by a permutation
operation.

We generated ∼ 105 solutions in dimension 4 and ∼ 104 in dimension 5, where we
found that all constructed solutions are equivalent to the Weyl-Heisenberg solutions
up to a permutation operation. We expected to find solutions which are not covariant
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to any group, which due to the lack of any symmetry group, should be much larger
in number compared to the group covariant solutions. For the solutions we have
generated, in addition to the 3n3 elements of symmetry group we formed, exists
2n5∏

p|n(1−p−2) Clifford unitaries, where p goes over all prime numbers that divide
n. This reduces the number of distinct islands by a factor of ∼ 103. despite this
difference in number, we did not find any Gram matrix with less symmetry group
than Zn×Zn. This strongly indicates that the group structure of SIC-POVM Gram
matrices can only exist with the aforementioned symmetry group. From a purely
probabilistic point of view, the chances of not finding a non-group covariant Gram
matrix for N solutions is (∼ 10−3N ). Since the symmetries of the Bloch sphere are
also symmetries of the SIC-POVM, the lack of nontrivial symmetry of the Gram
matrices indicate that the only symmetry of the Bloch sphere is the unitary and
anti-unitary groups.

Even though the numerical results may provide a strong reason to expect group
covariance property in SIC-POVMs, an analytic proof is still needed. One possible
approach to an analytic proof is to use the surfaces fn(Φ) = a and gn(Φ) = b. Nu-
merical solutions show that the intersection of the two surfaces is continuous and
connected. This allows us to characterize the intersection as a manifold.

The methods used in exploring the general SIC-POVMs are not unique to these
frames, and can be extended to mutually unbiased bases. MUBs form a tight frame,
and consequently, their Gram matrices is a projective. We can apply the numerical
methods to the MUBs to explore group covariant properties in those frames. In
particular, the problem of dimension 6 can be explored using similar approach to
both search for a solution and classify the symmetries of the solutions.

78



BIBLIOGRAPHY

(1947). PROBLÈMES vol. 1, fasc. 1. volume 1. Colloquium Mathematicae.
Appleby, D. (2007). Symmetric informationally complete measurements of arbitrary

rank. volume 103. Springer, Optics and Spectroscopy.
Appleby, D., Flammia, S. T., & Fuchs, C. A. (2011). The lie algebraic significance

of symmetric informationally complete measurements. volume 52. American
Institute of Physics, Journal of Mathematical Physics.

Appleby, D. M. (2005). Symmetric informationally complete–positive operator val-
ued measures and the extended Clifford group. volume 46. American Institute
of Physics, Journal of Mathematical Physics.

Appleby, M., Bengtsson, I., Flammia, S., & Goyeneche, D. (2019). Tight frames,
hadamard matrices and zauner’s conjecture. volume 52. IOP Publishing,
Journal of Physics A: Mathematical and Theoretical.

Appleby, M., Bengtsson, I., Grassl, M., Harrison, M., & McConnell, G. (2022). Sic-
povms from stark units: Prime dimensions n2+ 3. volume 63. AIP Publishing,
Journal of Mathematical Physics.

Bertlmann, R. A. & Krammer, P. (2008). Bloch vectors for qudits. volume 41. IOP
Publishing, Journal of Physics A: Mathematical and Theoretical.

Bloch, F. (1946). Nuclear induction. volume 70. American Physical Society, Physical
Review.

Borodulin, V., Slabospitsky, S., & Rogalyov, R. (1995). Core compendium of rela-
tions: version 2.1. Technical report, SCAN-9606079.

Borsuk, K. (1933). Drei sätze über die n-dimensionale euklidische sphäre. vol-
ume 20. Polska Akademia Nauk. Instytut Matematyczny PAN, Fundamenta
Mathematicae.

Bruzda, W., Goyeneche, D., & Życzkowski, K. (2017). Quantum measurements with
prescribed symmetry. volume 96. APS, Physical Review A.

Busch, P. (1991). Informationally complete sets of physical quantities. volume 30.
Springer, International Journal of Theoretical Physics.

Delsarte, P., Goethals, J.-M., & Seidel, J. J. (1991). Spherical codes and designs.
In Geometry and Combinatorics (pp. 68–93). Elsevier.

Derksen, H. & Kemper, G. (2015). Computational invariant theory. Springer.
Duda, R. (1987). Life and work of bronislaw knaster (1893–1980). volume 51.

Colloquium Mathematicae.
Durt, T., Kurtsiefer, C., Lamas-Linares, A., & Ling, A. (2008). Wigner tomography

of two-qubit states and quantum cryptography. volume 78. APS, Physical
Review A.

Dyson, F. J. (1951). Continuous functions defined on spheres. JSTOR, Annals of
Mathematics.

Fuchs, C. A. (2010). QBism, the perimeter of quantum Bayesianism. arXiv preprint
arXiv:1003.5209.

Fuchs, C. A., Hoang, M. C., & Stacey, B. C. (2017). The SIC question: History and
state of play. volume 6. MDPI, Axioms.

Haantjes, J. (1948). Equilateral point-sets in elliptic two-and three-dimensional
spaces. volume 22. Nieuw Arch. Wiskunde (2).

79



Hoggar, S. G. (1981). Two quaternionic 4-polytopes. In The Geometric Vein: The
Coxeter Festschrift (pp. 219–230). Springer.

Hughston, L. P. & Salamon, S. M. (2016). Surveying points in the complex projective
plane. volume 286. Elsevier, Advances in Mathematics.

Kakutani, S. (1942). A proof that there exists a circumscribing cube around any
bounded closed convex set in r 3. JSTOR, Annals of Mathematics.

Kovacevic, J. & Chebira, A. (2007a). Life beyond bases: The advent of frames (part
i). volume 24. IEEE, IEEE Signal Processing Magazine.

Kovacevic, J. & Chebira, A. (2007b). Life beyond bases: The advent of frames (part
ii). volume 24. IEEE, IEEE Signal Processing Magazine.

Landau, L. D. & Lifshitz, E. M. (1977). Quantum mechanics: non-relativistic theory,
volume 3. Pergamon Press.

Nielsen, M. A. & Chuang, I. L. (2010). Quantum computation and quantum infor-
mation. Cambridge university press.

Prugovečki, E. (1977). Information-Theoretical aspects of quantum measurement.
volume 16. Springer, International Journal of Theoretical Physics.

Renes, J. M., Blume-Kohout, R., Scott, A. J., & Caves, C. M. (2004). Symmetric
informationally complete quantum measurements. volume 45. American In-
stitute of Physics, Journal of Mathematical Physics.

Sakurai, J. J. & Commins, E. D. (1995). Modern quantum mechanics, revised edition.
American Association of Physics Teachers.

Scott, A. J. (2006). Tight informationally complete quantum measurements. vol-
ume 39. IOP Publishing, Journal of Physics A: Mathematical and General.

Scott, A. J. (2017). SICs: Extending the list of solutions. arXiv preprint
arXiv:1703.03993.

Scott, A. J. & Grassl, M. (2010). Symmetric informationally complete positive-
operator-valued measures: A new computer study. volume 51. American
Institute of Physics, Journal of Mathematical Physics.

van Lint, J. H. & Seidel, J. J. (1966). Equilateral point sets in elliptic geometry.
volume 69. Proceedings of the Koninklijke Nederlandse Akademie van Weten-
schappen: Series A: Mathematical Sciences.

Waldron, S. F. (2018). An introduction to finite tight frames. Springer.
Yamabe, H. & Yujobô, Z. (1950). On the continuous function defined on a sphere.
Yoshida, M. & Kimura, G. (2022). Construction of general symmetric-

informationally-complete–positive-operator-valued measures by using a com-
plete orthogonal basis. volume 106. APS, Physical Review A.

Zauner, G. (2011). Quantum designs: Foundations of a noncommutative design
theory. volume 9. World Scientific, International Journal of Quantum Infor-
mation.

Zhu, H. (2010). SIC POVMs and Clifford groups in prime dimensions. volume 43.
IOP Publishing, Journal of Physics A: Mathematical and Theoretical.

80



APPENDIX A

Eigenvalues of Density operators

Given a density matrix ρ of an n-dimensional quantum system, with eigenvalues
{λ1, . . . ,λn}. We write the trace functions using the eigenvalues as follow.

(A.1) Tr(ρm) =
n∑
k=1

λmk

We can immediately write the bounds of the trace functions, since the eigenvalues
of a density matrix are all positive and adds up to 1.

(A.2) 1
nk−1 ≤

∑
k

λmk ≤ 1

The eigenvalues of the density matrix are solutions to the equation Det(λI− ρ) =
0. Using newton’s identity we expand the determinant in to a sum of the trace
functions.

(A.3) Det(λI−ρ) = c0λ
n+ c1λ

n−1 + . . .+ cn−1Λ+ cn

where cm’s are the elementary symmetric polynomials formed by (λ−λk)’s. The
real solution of the polynomial corresponds to the eigenvalue of the density matrix.

purity condition of a density matrix

If a given density matrix represents a pure state, then ρ= ρ2.since density matrices
by definition satisfy Tr(ρ) = 1, pure state density matrices satisfy the equalities
Tr(ρm) = 1 where mϵN . It’s can be shown that three of this trace equalities can be
used to check if a density matrix represents a pure state or not. Taking the equalities
Tr(ρ) = 1, Tr(ρ2n) = 1 and Tr(ρm) = 1 where m,n ϵN and m ̸= 2n. These give us
the following expressions respectively.
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(A.4)
∑
i

λi = 1

(A.5)
∑
i

λ2n
i = 1

(A.6)
∑
i

λmi = 1

where λi are eigenvalues of the density matrix. From equation 1 and 2 we conclude
that −1 ≤ λi ≤ 1.

(A.7)
∑
i

λmi −
∑
i

λ2n
i = 0

(A.8)
∑
i

(λm−2n
i −1)λ2n

i = 0

This is possible only for λi = 0,1. This with the condition of equation 1 gives us a
pure state condition.

Gell-Mann expansion of density matrix

A given d dimensional density matrix ρ can be expanded using generalized Gell-
Mann matrices by the following equation.

(A.9) ρ= I
n

+Λkrk

where rk ϵ Rn
2−1 and Λk are the generalized Gell-Mann matrices.

The generalized Gell-Mann as defined in (2.1), are n2 −1,n×n symmetric matrices
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given as follows.

(A.10) λm = |j⟩⟨k|+ |k⟩⟨j| , 1 ≤ m ≤ n(n−1)
2 , 0 ≤ k < j ≤ n−1

(A.11) λm = −i(|j⟩⟨k|− |k⟩⟨j|) , n(n−1)
2 +1 ≤ m ≤ n(n−1) , 0 ≤ k < j ≤ n−1

(A.12) Λm =
√

2
l(l +1)

 l∑
k=1

|k⟩⟨k|+ l|l +1⟩⟨l +1|

 , n(n−1) ≤ m ≤ n2 −1 , 0 ≤ l ≤ n−1

the Gell-Mann matrices satisfy the following,

(A.13) Tr(Λn) = 0

(A.14) Tr(ΛnΛm) = 2δnm

Defining dijk = Tr(ΛiΛjΛk) we can write the product of two gellmann matrices

(A.15) ΛnΛm = 2
d
δnmI+ dnmk

2 Λk

using this we can write,

(A.16) ΛiΛjΛkΛl = 2
d
δijΛkΛl+

dijx
2 ΛxΛkΛl

(A.17) ΛiΛjΛkΛlΛn = 2
d
δijΛkΛlΛn+ dijx

2 ΛxΛkΛlΛn

(A.18) ΛiΛjΛk...Λz = 2
d
δijΛk...Λz + dijx

2 ΛxΛk...Λz
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using this relations we can write dna1a2...an
= Tr(Λa1Λa2 ...Λan) in-terms of dijk tensor,

(A.19) dna1a2...an
= 2
d
δa1a2d

n−2
a3a4...an

+ da1a2x

2 dn−1
xa3a4...an

here d0 = d and d1
a1 = 0, then the recursion relation gives us all traces of multiples

of Gell-Mann matrices. d3
a1a2a3 = da1a2a3

purity conditions Tr(ρm) in dimension 3

the purity conditions for d×d density matrices can be checked by taking Tr(ρ) = 1,
Tr(ρ2) = 1 and Tr(ρm) = 1 for any m≥ 3. the first equation is a given, the second
equation restricts us to the surface of a (d2 − 1)-sphere of radius

√
d−1
2d . the third

equation can be written for any m as,

(A.20) Tr(ρm) = Tr

((
I

d
+Λkrk

)m)

(A.21) Tr(ρm) =
(

1
d

)m−1
+

m∑
i=1

(
m

i

)(
1
d

)m−i ∑
a1a2...ai

dia1a2...ai
ra1ra2..rai

for the case of d= 3 the purity condition with m= 3 and m= 4 are,

(A.22)

Tr(ρ3) = 1
9 +

(
3
1

)
1
9
∑
a1

d1
a1ra1 +

(
3
2

)
1
3
∑
a1a2

d2
a1a2ra1ra2 +

(
3
3

) ∑
a1a2a3

d3
a1a2a3ra1ra2ra3

(A.23) 1
9 + 6

9 +
∑

a1a2a3

d3
a1a2a3ra1ra2ra3 = 1
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(A.24)
∑

a1a2a3

d3
a1a2a3ra1ra2ra3 = 2

9

in the diagonal basis (0, ...,0, r7, r8),

(A.25)
∑

a1a2a3

d3
a1a2a3ra1ra2ra3 = 2

√
3r2

7r8 − 2r3
8√
3

similarly for m= 4,

(A.26) Tr(ρ4) = 13
27 + 4

3

(
2
√

3r2
7r8 − 2r3

8√
3

)
+2(r2

7 + r2
8)2

Figure A.1 Tr(ρ4) plotted against r7 on the circle r2
7 + r2

8 = 1
3

Quantum States in Dimension 3 Gell-Mann space

By using the Gell-Mann matrices, we map density matrices to the real space as
ρ = I

3 +∑8
k=1 Λkrk, where the Gell-Mann matrices Λ in dimension three are given

as,
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Λ = {


0 1 0
1 0 0
0 0 0

 ,


0 0 1
0 0 0
1 0 0

 ,


0 0 0
0 0 1
0 1 0

 ,


0 −i 0
i 0 0
0 0 0

 ,


0 0 −i
0 0 0
i 0 0

 ,


0 0 0
0 0 −i
0 i 0

 ,


1 0 0
0 −1 0
0 0 0

 ,


1√
3 0 0

0 1√
3 0

0 0 − 2√
3

}.

(A.27)

These matrices span the space of three dimensional trace one symmetric matrices
and allow us to represent quantum states with vectors in the space Rn

2−1. However,
the Gell-Mann space is a larger space that the space of density matrices (i.e. ρ† = ρ,
tr(ρ) = 1 and all eigenvalues of ρ are positive). We therefor need the equations
tr(ρ2), tr(ρ3), ..., tr(ρn) to check if a matrix represents a quantum state. The number
of equations reduces with the degeneracy of the state we are interested in. In the
case of the pure state density matrix (i.e. one of the eigenvalues is one and all the
rest are zero), we only requires two trace equations, as is proven in lemma A.1.

If a given density matrix represents a pure state, then ρ= ρ2. Since density matrices
by definition satisfy tr(ρ) = 1, pure state density matrices satisfy the equalities
tr(ρm) = 1 for all mϵN . It can be shown that we only need two of such equalities
to check if a density matrix represents a pure state or not. We now prove that,
tr(ρ2n) = 1 and tr(ρm) = 1 where m,n ϵN and m ̸= 2n are sufficient conditions to
identify pure state density matrices in the Gell-Mann space.

Lemma A.1. If ρ is a density matrix where tr(ρ2n) = 1 and tr(ρm) = 1 where m,n
ϵN and m ̸= 2n, then ρ is a pure state density matrix, i.e. ρ = |ϕ⟩⟨ϕ| for some
ϕ ∈ Cn.

Proof. The two equalities in the diagonal basis give the following equations.

(A.28)
∑
i

λ2n
i = 1

(A.29)
∑
i

λmi = 1
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where λi are eigenvalues of the density matrix ρ. From equation (A.28) we conclude
that −1 ≤ λi ≤ 1. Then by subtracting the (A.28) from (A.29) we write the following.

(A.30)
∑
i

λmi −
∑
i

λ2n
i = 0

(A.31)
∑
i

(λm−2n
i −1)λ2n

i = 0

This is possible only for λi = 0,1, and by equation (A.28) only one of the eigenvalues
can be one and the rest must be zero. This implies that ρ is a pure state density
matrix.

Equations (A.28) and (A.29) form polynomial equations that classify a subspace of
pure states in the real space of the Gell-Mann space. We then choose m = 3 and
n= 1 to get the simplest of the polynomial equations.

(A.32) Tr(ρm) =
(

1
d

)m−1
+

m∑
i=1

(
m

i

)(
1
d

)m−i ∑
a1a2...ai

dia1a2...ai
ra1ra2...rai

Where dia1a2...ai
= tr(Λa1Λa2 ...Λai︸ ︷︷ ︸

i

).

(A.33) Tr(ρ2) = 1
3 +

(
2
1

)
1
3
∑
a1

d1
a1ra1 +

∑
a1a2

d2
a1a2ra1ra2

(A.34)

Tr(ρ3) = 1
9 +

(
3
1

)
1
9
∑
a1

d1
a1ra1 +

(
3
2

)
1
3
∑
a1a2

d2
a1a2ra1ra2 +

(
3
3

) ∑
a1a2a3

d3
a1a2a3ra1ra2ra3

After few simplifications we get the following two equations for m = 2 and m = 3
respectively.

(A.35)
8∑

k=1
r2
k = 1

3
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(A.36)∑
a1a2a3

d3
a1a2a3ra1ra2ra3 = 2

√
3r2

1r8 +6r1r2r3 +6r1r5r6 +3r2
2r7 −

√
3r2

2r8 −6r2r4r6 −3r2
3r7

−
√

3r2
3r8 +6r3r4r5 +2

√
3r2

4r8 +3r2
5r7 −

√
3r2

5r8 −3r2
6r7 −

√
3r2

6r8 +2
√

3r2
7r8 − 2r3

8√
3

= 2
9

It is worth to mention that on the sphere defined by equation (A.35), equation (A.36)
maps points on the sphere to the real space, f : r⃗ 7→R,f(r⃗) =∑

a1a2a3 d
3
a1a2a3ra1ra2ra3

where −2
9 ≤ f(r⃗) ≤ 2

9 .

fiducial Vectors in Dimension 3

If the vector |ψ⟩ is a fiducial vector, then the set {D̂p|ψ⟩,(p1,p2) ∈ Z3 ×Z3} is a
SIC-POVM. I.e. for every element of the SIC set, |⟨ψ|D̂p|ψ⟩|2 = 1

4 is satisfied. This
gives us nine equations to solve, but since we only have four free parameters in our
vectors solving four must suffice. We re-write this equations in the Gell-Mann space
by using the density matrix formalism ρ= |ψ⟩⟨ψ| = I

3 +Λ.r⃗.

(A.37) tr(ρD̂pρD̂
†
p) = 1

4

(A.38)
8∑

α=1,β=1
Mαβ(p)rαrβ = − 1

24

After Solving equation (A.38), we get the following four equations for each p =
(p1,p2).

(A.39) (10),(20) : −1
2

6∑
k=1

r2
k + r2

7 + r2
8 = − 1

24
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(A.40) (0,1),(0,2) : r1r2 + r2r3 + r1r3 − (r4r5 + r5r6 − r4r6) − 1
2(r2

7 + r2
8) = − 1

24

(A.41) (1,1),(2,2) : −1
2(r1r2 + r2r3 + r1r3)+ 1

2(r4r5 + r5r6 − r4r6)− 1
2(r2

7 + r2
8)

+
√

3
2 (r2r4 − r3r4 + r1r5 − r3r5 + r1r6 − r2r6) = − 1

24

(A.42) (2,1),(1,2) : −1
2(r1r2 + r2r3 + r1r3)+ 1

2(r4r5 + r5r6 − r4r6)− 1
2(r2

7 + r2
8)

−
√

3
2 (r2r4 − r3r4 + r1r5 − r3r5 + r1r6 − r2r6) = − 1

24

This equations reduce in to three equations (A.43),(A.44) and (A.45) as expected,
and since we have four free parameters this is an indication that we have a continuous
solutions.

(A.43) r2
7 + r2

8 = 1
12

(A.44) r2r4 − r3r4 + r1r5 − r3r5 + r1r6 − r2r6 = 0

(A.45) r1r2 + r2r3 + r1r3 − (r4r5 + r5r6 − r4r6) = 0

The three equations together with equations (A.35) and (A.36) define the fiducial
vectors in the Gell-Mann space. The first trivial solutions to the three equations are
the sets {r1,0,0, r4,0,0, r7, r8},
{0, r2,0, r5,0, r7, r8} and {0,0, r3,0,0, r6, r7, r8}, and by applying equations (A.35)
and (A.36) we get the following solutions.
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(A.46) {



cosθ
2
0
0

sinθ
2
0
0
0
1√
12



,



0
cosθ

2
0
0

sinθ
2
0
1
4

− 1
4
√

3



,



0
0

cosθ
2
0
0

sinθ
2

−1
4

− 1
4
√

3



}

We then use a little trick to get the other fiducial solutions. Note that the operators
X and Z are equivalent up to a unitary operator, and the fact that all three circles
above are generated by phase operators. This indicates to the existence of more
solutions. We calculate the additional solutions by a change of basis to the basis of
X.

(A.47) {



1
12 − cosθ

6
1
12 + cosθ

12 + sinθ
4
√

3
1
12 + cosθ

12 − sinθ
4
√

3
− 1

4
√

3 + cosθ
2
√

3
1

4
√

3 + cosθ
4
√

3 + sinθ
4

− 1
4
√

3 − cosθ
4
√

3 + sinθ
4

sinθ
2
√

3
−cosθ

2
√

3



,



1
12 − cosθ

6
1
12 + cosθ

12 − sinθ
4
√

3
1
12 + cosθ

12 + sinθ
4
√

3
1

4
√

3 − cosθ
2
√

3
− 1

4
√

3 − cosθ
4
√

3 + sinθ
4

1
4
√

3 + cosθ
4
√

3 + sinθ
4

− sinθ
2
√

3
−cosθ

2
√

3



,



−1
6 − cosθ

6
−1

6 + cosθ
12 − sinθ

4
√

3
−1

6 + cosθ
12 + sinθ

4
√

3
−cosθ

2
√

3
−cosθ

4
√

3 + sinθ
4

cosθ
4
√

3 + sinθ
4

− sinθ
2
√

3
−cosθ

2
√

3



}

This six continuous solutions contain the entire fiducial vectors in dimension three
in agreement with ?. Note that the the thee first three solutions have intersections
with each with each of the second three solutions, showing that the fiducial vectors
form a connected subspace.
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Figure A.2 The geometry of fiducial vectors in dimension three. the colors corre-
spond to the two sets (A.46) and (A.47).

Fiducial Vectors in Dimension 4

Similar to dimension three, we can calculate the fiducial solutions in dimension four
by using the W-H group. We have fifteen equations and six variables, but for a
fiducial solution the equations reduce to six and we end up with a finite set of SIC
solutions.

The W-H group in dimension four is generated by the phase shift operator
Z = |k⟩⟨k|eiπk

2 and the shift operator X = |k+ 1⟩⟨k|. The Weyl-Heisenberg group
elements are defined as D̂p = τp1p2Xp1Zp2 up to phase equivalency. Lets consider
the unit vector |ψ⟩ = [z0, z1, z2, z3]. If the vector is a fiducial vector, then for all p

we have |⟨ψ|D̂p|ψ⟩|2 = 1
5 .

Starting with the equations |⟨ψ|Zk|ψ⟩|2 = 1
5 . In its diagonal basis the operators Zk

is presented as follows.

(A.48) Zk =


1 0 0 0
0 ei

πk
2 0

0 0 eiπk 0
0 0 0 ei

π3k
2



Then the corresponding square of the expectation value of Zk gives us three equa-
tions for each k.

91



(A.49) |⟨ψ|Zk|ψ⟩|2 =
∣∣∣|z0|2 + ei

πk
2 |z1|2 + eiπk|z2|2 + ei

π3k
2 |z3|2

∣∣∣2 = 1
5 ,k ∈ {1,2,3}

After expanding equation (A.49), we solve for |zk| with a parameter χ. Here we
only take the positive values of the solutions since any phase information will be
included in to the phases of the vectors.

|z0| =
√

1
4

(
1+ 1√

5

)
+ 1

2
√

5
cos(χ)(A.50)

|z1| =
√

1
4

(
1− 1√

5

)
+ 1

2
√

5
sin(χ)(A.51)

|z2| =
√

1
4

(
1+ 1√

5

)
− 1

2
√

5
cos(χ)(A.52)

|z3| =
√

1
4

(
1− 1√

5

)
− 1

2
√

5
sin(χ)(A.53)

At this point we have to apply the X operator in our equations, but which ones of the
equations should we solve? We approached this by noting that the number of must
drop to six in order to find a solution. I.e. there must be some symmetries in the
equations that would reduce the number of equations. With this idea we reduce our
equations to three, |⟨ψ|D̂10|ψ⟩|2 = 1

5 ,|⟨ψ|D̂11|ψ⟩|2 = 1
5 and |⟨ψ|D̂22|ψ⟩|2 = 1

5 Where
|ψ⟩ = [|z0|, |z1|eiϕ1 , |z2|eiϕ2 ,−i|z3|eiϕ1 ]. Finding the solution is a matter of finding
the correct χ so the lines expressed by the three equations intersect at a single point
as shown on figure A.3.
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1 2 3 4 5 6

Φ1

1

2

3

4

5

6

Φ2

Figure A.3 plots of |⟨ψ|D̂10|ψ⟩|2 = 1
5 ,|⟨ψ|D̂11|ψ⟩|2 = 1

5 and |⟨ψ|D̂22|ψ⟩|2 = 1
5 equa-

tions. Each intersection represents a solution.

After solving the three equations arrive at a single solution for χ = arccos
√

1+
√

5
2 ,

and 4 solutions for ϕ2 and 16 solutions for ϕ1, thereby finding all the intersection
points on figure A.3.

|z0| = 1
2

√√√√√1
5 + 1√

5
+ 1√

5
+1(A.54)

|z1| = 1
2

√√√√√3
5 − 1√

5
− 1√

5
+1(A.55)

|z2| = 1
2

√√√√−
√

1
5 + 1√

5
+ 1√

5
+1(A.56)

|z3| = 1
2

√
1
5(−

√
15−5

√
5−

√
5+5)(A.57)

(A.58) ϕ2 = 1
2 cos−1(3−

√
5

5+
√

5
)

ϕ1 = 1
2 tan−1


√

5+3
√

5−2
√

5+2
√

5√
4
√

55+25
√

5+9
√

5+25

+kπ, k = {0,1,2,3}
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(A.59) ϕ2 = π− 1
2 cos−1(3−

√
5

5+
√

5
)

ϕ1 = 1
2 tan−1

(
−

(1+
√

5)(
√√

5−1−2)

2
√

2(2
√

2(2+
√

5)+
√

5+4)

)
+kπ, k = {0,1,2,3}

(A.60) ϕ2 = π+ 1
2 cos−1(3−

√
5

5+
√

5
)

ϕ1 = 1
2 tan−1

(
−

√
1+

√
5+

√
5−1√√

5−1−2

)
+kπ, k = {0,1,2,3}

(A.61) ϕ2 = 2π− 1
2 cos−1(3−

√
5

5+
√

5
)

ϕ1 = 1
2 tan−1

(
−

√
5(

√
5−1)+3

√
5−5√

10−20
√

5
√

5−11

)
+kπ, k = {0,1,2,3}

And Finally, the numerical values of the sixteen fiducial vectors is presented bellow.
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(A.62)

0.750285 0.06891 +0.480799i 0.298029 +0.268063i 0.199154 −0.0285434i
0.750285 −0.480799+0.06891i 0.298029 +0.268063i 0.0285434 +0.199154i
0.750285 −0.06891−0.480799i 0.298029 +0.268063i −0.199154+0.0285434i
0.750285 0.480799 −0.06891i 0.298029 +0.268063i −0.0285434−0.199154i
0.750285 0.480799 +0.06891i −0.298029+0.268063i 0.0285434 −0.199154i
0.750285 0.06891 −0.480799i −0.298029+0.268063i −0.199154−0.0285434i
0.750285 −0.06891+0.480799i −0.298029+0.268063i 0.199154 +0.0285434i
0.750285 −0.480799−0.06891i −0.298029+0.268063i −0.0285434+0.199154i
0.750285 −0.29125+0.388703i −0.298029−0.268063i 0.161006 +0.12064i
0.750285 0.388703 +0.29125i −0.298029−0.268063i 0.12064 −0.161006i
0.750285 −0.388703−0.29125i −0.298029−0.268063i −0.12064+0.161006i
0.750285 0.29125 −0.388703i −0.298029−0.268063i −0.161006−0.12064i
0.750285 0.29125 +0.388703i 0.298029 −0.268063i 0.161006 −0.12064i
0.750285 −0.388703+0.29125i 0.298029 −0.268063i 0.12064 +0.161006i
0.750285 −0.29125−0.388703i 0.298029 −0.268063i −0.161006+0.12064i
0.750285 0.388703 −0.29125i 0.298029 −0.268063i −0.12064−0.161006i



Generating Set of D=6

The generating set of the Gram matrix in dimension 7 is given below.
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{0,0.00813836,0.0446798,0.0626793,0.136054,0.167773,0.188038,0.204613,

0.219766,0.290583,0.295695,0.366512,0.413095,0.418499,0.503337,0.634103,0.668086,

0.680387,0.717227,0.720073,0.788044,0.790891,0.866819,0.876862,0.913701,0.984518,

1.00252,1.02106,1.07049,1.10988,1.21753,1.34034,1.37717,1.41371,1.42631,1.49998,

1.5708,1.65677,1.681,1.7987,1.83524,1.91402,1.92662,1.95834,2.03172,2.0657,2.0711,

2.08626,2.12309,2.26217,2.29901,2.42152,2.70396,2.92183,2.95355,3.0081,3.27509,

3.32963,3.36136,3.57922,3.86167,3.98418,4.02102,4.16009,4.19693,4.21208,4.21749,

4.25147,4.32484,4.35656,4.36917,4.44794,4.48448,4.60218,4.62642,4.71239,4.78321,

4.85688,4.86948,4.90602,4.94285,5.06565,5.17331,5.2127,5.26213,5.28067,5.29867,

5.36948,5.40632,5.41637,5.49229,5.49514,5.56311,5.56596,5.6028,5.6151,5.64908,

5.77985,5.86469,5.87009,5.91667,5.98749,5.9926,6.06342,6.07857,6.09515,6.11541,

6.14713,6.22051,6.23851,6.27505}

(A.63)

The corresponding frequency is given below.

{106,18,36,9,18,9,36,9,9,9,9,3,9,18,9,9,18,9,9,36,18,9,18,9,9,9,9,

9,36,3,18,18,9,9,9,18,9,3,9,9,9,9,9,18,9,3,9,9,9,9,9,18,9,18,21,21,9,

3,3,9,18,9,9,9,12,12,9,12,9,18,9,12,18,9,3,9,9,9,9,1,9,9,9,9,18,1,9,

9,18,9,18,3,3,9,9,3,3,3,9,9,18,3,18,9,9,9,3,3,3,3,3}

(A.64)

Generating Set of D=7

The generating set of the Gram matrix in dimension 7 is given below.
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{0,0.0262707,0.0371246,0.0785547,0.0916918,0.0965666,0.112387,0.122846,0.143147,

0.177678,0.193142,0.20097,0.216661,0.24742,0.26626,0.266655,0.293199,0.331247,

0.336556,0.367239,0.368539,0.396932,0.401543,0.41468,0.415772,0.417233,0.429441,

0.436073,0.456374,0.481825,0.486976,0.585191,0.592631,0.605334,0.610642,0.630943,

0.633232,0.652073,0.657223,0.679043,0.688766,0.704456,0.716665,0.73046,0.73415,

0.746357,0.760154,0.773291,0.774751,0.858184,0.871327,0.878485,0.884728,0.903568,

0.908178,0.910732,0.923869,0.934722,0.949451,0.976153,0.98929,0.993742,0.994165,

1.02191,1.06474,1.14026,1.14312,1.14502,1.16425,1.18986,1.1908,1.20257,1.23455,

1.2517,1.2543,1.28644,1.30822,1.31228,1.33882,1.36575,1.39365,1.42481,1.42796,

1.45825,1.45864,1.46395,1.47894,1.50293,1.50824,1.52854,1.52894,1.53083,1.64396,

1.65965,1.71664,1.75847,1.78233,1.78462,1.80117,1.80807,1.82147,1.83193,1.86805,

1.89134,1.97613,1.99617,2.00174,2.00403,2.03557,2.03786,2.1076,2.11145,2.16558,

2.19213,2.23642,2.25157,2.25672,2.32425,2.47613,2.48625,2.54965,2.55535,2.55724,

2.58216,2.61424,2.65338,2.67966,2.70566,2.85624,2.87047,2.98506,3.29813,3.41271,

3.42694,3.57752,3.60353,3.62981,3.66895,3.70103,3.72594,3.72784,3.73354,3.79693,

3.80705,3.95893,4.02646,4.03162,4.04677,4.09106,4.1176,4.17173,4.17558,4.24532,

4.24761,4.27916,4.28145,4.28702,4.30706,4.39185,4.41514,4.45126,4.46172,4.47512,

4.48202,4.49857,4.50086,4.52472,4.56654,4.62354,4.63923,4.75236,4.75425,4.75464,

4.77495,4.78025,4.80424,4.81924,4.82454,4.82494,4.85523,4.85838,4.88953,4.91743,

4.94436,4.97091,4.97497,4.99675,5.02889,5.03149,5.04864,5.08062,5.09239,5.09332,

5.11893,5.13817,5.14006,5.14292,5.21845,5.26128,5.28902,5.28944,5.2939,5.30703,

5.33373,5.34846,5.35932,5.37245,5.37501,5.37962,5.39846,5.4047,5.41186,5.425,5.50843,

5.50989,5.52303,5.53683,5.54904,5.55272,5.56652,5.57873,5.59442,5.60414,5.62596,

5.63111,5.64995,5.65224,5.67254,5.67785,5.69055,5.69799,5.79621,5.80136,5.82681,

5.84711,5.85374,5.86595,5.86741,5.86851,5.88164,5.88625,5.91465,5.91595,5.94663,

5.95194,5.98999,6.01653,6.01693,6.03576,6.06652,6.08222,6.09004,6.10551,6.14004,

6.16034,6.1708,6.18662,6.19149,6.20463,6.24606,6.25691}

(A.65)

The corresponding frequency is given below.
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{145,9,9,9,45,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,3,9,

9,9,9,9,9,9,9,9,9,9,3,9,9,9,9,9,9,9,9,9,9,9,45,9,9,9,9,9,9,9,9,9,9,

9,9,9,9,9,9,9,9,9,3,9,9,9,9,9,9,9,9,9,9,3,9,9,9,9,9,9,3,9,9,9,9,9,9,

9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,3,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,

9,9,9,9,9,3,9,9,9,9,3,9,9,9,9,9,9,3,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,3,

9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,6,9,9,9,9,9,9,9,9,3,9,9,9,9,9,9,9,

9,9,9,9,9,9,3,9,3,9,9,9,9,9,9,9,9,9,9,3,9,9,9,9,9,9,9,3,3,9,9,9,9,9,

9,9,6,9,9,9,9,6,9,9,9,9,6,9,9,9,9,3,3,9,3,3,3,9,3,3,3}

(A.66)
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