
ESTIMATING GREENHOUSE GAS EMISSIONS OF ELECTRIC
DELIVERY TRUCKS

by
MERT ÖZÇELİK

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
July 2024



MERT ÖZÇELİK 2024 ©

All Rights Reserved



ABSTRACT
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Thesis Advisor: Asst. Prof. Tuğçe Yüksel

Thesis Co-advisor: Asst. Prof. Sinan Yıldırım
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In this study, we investigate the regional differences in emission benefits of battery
electric delivery truck electrification. In this regard, we build a simulation framework
to quantify the regional differences in the use phase emissions across the United
States. A vital part of our framework is the machine learning model to predict the
unit energy consumption of a battery electric delivery truck which is based on real
world driving data. Using our framework, we perform two case studies to quantify
the effect of ambient temperature and driving profile on the use phase emissions,
respectively. In the first case study, we observe that our machine learning model can
capture the increase in energy consumption at low temperatures quite well, however
more data is needed to predict high temperature effects. As expected, the emissions
are lower in regions where electricity production is cleaner. In the second case study,
we observe that our framework can differentiate between the energy consumption
under aggressive and gentle driving profiles.
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ÖZET

ELEKTRİKLİ TESLİMAT KAMYONLARININ SERA GAZI SALIMLARININ
TAHMİN EDİLMESİ

MERT ÖZÇELİK

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, TEMMUZ 2024

Tez Danışmanı: Dr. Öğr. Üyesi Tuğçe Yüksel

Tez Eş Danışmanı: Dr. Öğr. Üyesi Sinan Yıldırım

Anahtar Kelimeler: araç elektrifikasyonu, elektrikli teslimat kamyonları, sera gazı
salımları, makine öğrenmesi, benzetim

Bu çalışmada, elektrikli teslimat kamyonu elektrifikasyonunun sağlayacağı emisyon
azaltımındaki bölgesel farklılıklar incelenmiştir. Bu kapsamda, Amerika Birleşik
Devletleri genelinde elektrikli araç şarjından kaynaklı salımlardaki bölgesel farklılık-
ların nicelikselleştirilmesi için bir benzetim çerçevesi geliştirilmiştir. Çerçevenin çok
önemli bir parçası, elektrikli teslimat kamyonunun birim enerji tüketimini tahmin
etmek için geliştirdiğimiz gerçek sürüş verilerine dayalı makine öğrenmesi modelidir.
Bu çerçeve kullanılarak, hava sıcaklığının ve sürüş profilinin şarj kaynaklı salımlar
üzerindeki etkisinin nicelikselleştirilmesi için iki vaka çalışması gerçekleştirilmiştir.
İlk vaka çalışmasında, makine öğrenmesi modelinin düşük sıcaklıklardaki enerji tüke-
timi artışını yakalayabildiği, yüksek sıcaklıklarda doğru tahminler yapabilmek için
ise daha fazla veriye ihtiyaç olduğu görülmüştür. Beklendiği üzere, elektriğin ye-
nilenebilir kaynaklardan üretildiği bölgelerdeki salımlar daha düşüktür. İkinci vaka
çalışmasında, çerçevenin agresif ve yumuşak sürüş profilleri altındaki enerji tüketi-
mini ayırt edebildiği görülmüştür.
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1. INTRODUCTION

Global warming is an ongoing environmental problem: July 2023 has been the
hottest month ever recorded (NASA, 2023). Global warming is caused by the ac-
cumulation of greenhouse gases in the atmosphere. Fossil fuels account for 75%
of greenhouse gas (GHG) emissions worldwide (UN, 2024), and the transportation
sector is one of the largest sources of fossil fuel emissions (How et al., 2020). As
the global warming continues to become a severer concern, strategies to reduce the
greenhouse gas emissions from the transportation sector are coming into prominence.
At this point, electrification of transportation may be a viable strategy (Chen and
Fan, 2013). Battery electric vehicles (BEVs) attract significant research attention
mainly because they emit zero tailpipe emissions (Pan et al., 2023). If the GHG
emissions from the generation of electricity which is used for charging can also be
minimized, BEVs may be a promising alternative to internal combustion engine
vehicles.

Electrification of light-duty passenger vehicles has been studied extensively in the
literature. Many scholars have investigated the emission reduction potential of light-
duty passenger vehicles (Zivin et al., 2014; Yang et al., 2014; Alvarez et al., 2014;
Maia et al., 2015; Li et al., 2015; Zhang and Yao, 2015; Tamayao et al., 2015; Onat
et al., 2015; Yuksel and Michalek, 2015; Archsmith et al., 2015; Yuksel et al., 2016;
Fiori et al., 2016; Woo et al., 2017; Genikomsakis and Mitrentsis, 2017; Fiori et al.,
2018; Jiménez et al., 2018; Wu et al., 2019; Vepsäläinen et al., 2019; Sun et al., 2019;
Fernández et al., 2019). Although the research on the electrification of light-duty
vehicles continues (Al-Wreikat et al., 2021; Ahmed et al., 2022; Perugu et al., 2023;
Pan et al., 2023; Hull et al., 2023), reduction of emissions in the other segments of
road transport is also necessary. Medium and heavy duty vehicles make up 30% of
the road transport emissions, however their electrification has been relatively slower
and there is an increasing shift of focus towards this segment (EVO, 2024; IEA,
2024). In this segment, electrification of medium-duty delivery vehicles have showed
an emerging potential, due to their increasing amount of use with online shopping
(Woody et al., 2021), and relatively smaller size compared to other commercial
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vehicles which makes them easier and cheaper to electrify (Woody et al., 2022a).
In addition, the medium-duty delivery vehicles are usually used in predetermined
routes which provides more flexibility to optimize operational details which can help
with range anxiety and charging issues. Several companies have started testing and
operating electric vehicles for their delivery operations (Woody et al., 2021). These
trends point out the importance of understanding the implications and benefits of
electrifying the delivery operations.

One of the important aspects of assessing the emission benefits of BEVs is to predict
the energy consumption accurately. A precise prediction of energy consumption will
not only help alleviating the so-called range anxiety issue, but it will also allow for a
more accurate forecast of the GHG emissions. Previous studies have shown that the
energy consumption is sensitive to many factors such as driving profile (Karabasoglu
and Michalek, 2013), road profile (Prohaska et al., 2016), and ambient temperature
(Yuksel and Michalek, 2015). As the energy consumption varies regionally depending
on these factors, the emission benefits which will be obtained from BEVs may also
vary regionally. Therefore, it is of utmost importance to take into account the
effects of these factors while modelling the energy consumption of a BEV. Among
these factors, ambient temperature plays a critical role. For example, Yuksel and
Michalek (2015) has shown that the driving range of a BEV may decrease by up
to 40% on too cold winter and hot summer days. Thus, it is important to consider
the effect of ambient temperature while assessing the emission benefits of electrified
medium-duty delivery vehicles as well.

Energy consumption modelling of BEVs has been studied extensively in the litera-
ture. However, most of the studies have focused on passenger vehicles; the studies on
delivery vehicles are sparse. In Table 1.1, we categorize the existing studies about the
energy consumption modelling of delivery vehicles based on the energy consumption
modelling approach, whether or not they consider the effect of ambient temperature
on the energy consumption, and whether or not they analyze the regional variation
in GHG emissions. The energy consumption modelling approach is either constant,
physics-based, or data-driven. If the energy consumption approach is constant, a
constant value is assumed for the unit energy consumption which might be based
on metrics such as depth of discharge (DOD) or laboratory test results such as drive
cycles. A physics-based model predicts the energy consumption based on physical
laws and vehicle dynamics (Maia et al., 2015). A data-driven model is generally
based on data analysis techniques or statistical relationships, and it does not nec-
essarily consider the physical relations between the input variables and the energy
consumption (Pan et al., 2023). It may be constructed based on machine learning
models. The ’Temperature?’ and ’Emissions benefits?’ columns of the table indi-
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cate whether or not the study considers the effect of ambient temperature on the
energy consumption and it discusses the regional variation in the emission benefits,
respectively.

Table 1.1 Summary of studies about the energy consumption modelling of delivery
vehicles

Study
Energy

Consumption
Modelling

Temperature? Emissions benefits?

Lee and Thomas, 2017 Data-driven ✓
Giordano et al., 2018 Constant ✓
Yang et al., 2018 Physics-based ✓
Marmiroli et al., 2020 Physics-based ✓
Woody et al., 2021 Constant ✓
Burnham et al., 2021 Physics-based ✓ ✓
Woody et al., 2022c Physics-based ✓ ✓
Woody et al., 2022b Physics-based ✓ ✓
Woody et al., 2022a Constant ✓
O’Connell et al., 2023 Constant ✓
Qiu et al., 2023 Data-driven ✓
This study Data-driven ✓ ✓

To the best of authors knowledge, the studies which model the energy consumption
of a medium-duty delivery vehicle using a data-driven approach and considering the
effect of ambient temperature are sparse. In fact, the study by Qiu et al. (2023) is
the only such study in Table 1.1. However, they do not analyze the emission benefits
of the delivery trucks. In this study, we develop a data-driven model to predict the
unit energy consumption of a medium-duty delivery vehicle and consider the effect
of ambient temperature. In addition, we quantify the emission benefits of delivery
vehicle electrification and discuss the regional variation in the emissions.

The contributions of this study to the literature are as follows:

• We develop a data-driven model to predict the energy consumption of a
medium-duty delivery vehicle which accounts for factors such as ambient tem-
perature, average speed, acceleration, and road profile.

• We quantify the emission benefits of medium-duty delivery vehicle electrifica-
tion using simulation, and analyze the effect of ambient temperature on the
emission benefits, and

• We capture the regional variability in the emissions through random trip gen-
eration and simulation of energy consumption.

The rest of this thesis is organized as follows: In Chapter 2, we introduce the
3



source data, and devise an algorithm to identify trips from the source data . In
Chapter 3, we develop a machine learning model for unit energy consumption. In
Chapter 4, we build a simulation framework to quantify the regional variability in
greenhouse gas emissions, and present two case studies. In Chapter 5, we summarize
our conclusions.
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2. DATA ANALYSIS AND TRIP IDENTIFICATION

Our purpose is to construct an empirical model to predict the unit energy con-
sumption of a medium-duty battery electric delivery truck. As our source data,
we utilize the National Renewable Energy Laboratory’s (NREL) Fleet DNA data
(NREL, 2017a) which consists of GPS- and sensor-based measurements collected
from medium-duty battery electric delivery trucks. We aim to make the energy
consumption predicition at an aggregate level, so we devise an algorithm to identify
trips of the trucks from the NREL Fleet DNA data. Based on the set of trips, we
develop a Random Forest model for unit energy consumption prediction. The rest of
this chapter is organized as follows: In Section 2.1, we provide detailed information
about the NREL Fleet DNA data. In Section 2.2, we perform data pre-processing,
feature extraction, and post-processing. Finally, in Section 2.3, we present some
descriptive statistics about the post-processed set of trips.

2.1 Source Data

The NREL Fleet DNA data was collected from 200 Smith-Newton trucks. Some
of the vehicle specifications for Smith-Newton trucks are presented in Table 2.1
(NREL, 2017b). The data was collected over a period of around two years, from
2013 to 2015, corresponding to 738 operating days. However, not all trucks operate
on all days, and different trucks may have a different number of operating days. The
measurements in the NREL Fleet DNA data were recorded in a second-by-second
manner, and there are measurements for 54 different parameters. NREL (Prohaska
et al., 2016) tested the Smith-Newton trucks on road to

• compare battery electric trucks to internal combustion engine trucks in terms
of energy consumption, charging requirements and cost, and hence learn more
about the energy savings and emission benefits potential of electric trucks in
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commercial delivery operations.

• obtain data about the battery performance and charging of electric trucks,
and possibly understand which charging strategies may be better in terms of
emission reduction

Table 2.1 Smith-Newton Delivery Truck Vehicle Specifications

Specification Value/Range

Curb weight 9,700-10,200 [lbs]
Payload 12,324-16,200 [lbs]

Advertised range < 241 [km]
Electric top speed 50 [mph]
Battery capacity 80 [kWh]

The measurements in the NREL Fleet DNA data were stored daily. For a particular
operating day of a truck, we have records for the entire day. In other words, the
records include not only the times when the truck is moving but also the times when
the truck is parked or being charged. As we aim to predict the energy consumption
resulting from the driving of the truck, we first need to identify the trips (i.e., times
at which the truck is actually moving) from the NREL Fleet DNA data. For this
purpose, we devise a trip identification algorithm which is presented in Section 2.2.
Out of the 54 parameters in the NREL Fleet DNA data, only 10 of them are relevant
for this study. The relevant parameters are described in Table 2.2. The parameter
names in Table 2.2 are the same as in the NREL Fleet DNA data. Whole set of
parameters for the NREL Fleet DNA data is given in Table A.1.

Table 2.2 Relevant Parameters for the Study

Parameter Name Description Symbol Unit

’BMU_Mode_SYS’ Battery management mode bmu -
’Battery_Current_SYS’ Battery current I [A]
’Battery_Voltage_SYS’ Battery voltage V [V]

’GPS_Altitude’ Altitude h [m]
’GPS_Latitude’ Latitude lat [decimal degrees]

’GPS_Longitude’ Longitude long [decimal degrees]
’GPS_Speed’ Speed v [mph]

’RD_Ambient_Temp_degC’ Ambient temperature T [degC]
’SOC_SYS’ State of charge soc [%]
’Timestamp’ Timestamp t [s]

6



Below are some remarks about Table 2.2:

• All of the parameters are data vectors. All vectors give corresponding values
at each time step the measurements are taken, with a resolution of one second
in general.

• The battery management mode does not have a unit, and it has three possible
values: 0, 1, and 2. These values denote that the motor is off, the battery is
being charged, and the motor is on, respectively.

• The battery current shows the amount of current drawn into/from the battery.
There is an important detail about the sign convention: Contrary to the com-
mon practice, the positive current represents charging, and negative current
represents discharging.

• The latitude and longitude are measured up to 13 decimal places.

• The state of charge (SOC) is measured with 1% resolution, and it is recorded
with no decimal places.

The NREL Fleet DNA data was collected from seven states in total. The states the
data was collected from, collection period for each state, and the trucks operating at
each state are presented in Table 2.3. The collection periods are provided by season
and year combinations. The Winter season includes the months from November
to March, the Summer season includes the monts from May to September, and
the transition season (Trans) consists of April and September. We observe that
all states except for California have data collected for all possible season and year
combinations.
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Table 2.3 States the NREL Fleet DNA Data was Collected from along with the
Collection Period and Truck Identification Numbers

State Collection Period Truck IDs

California
Winter’13, Trans’13, Summer’13
Winter’14, Trans’14, Summer’14

113, 163, 214, 217, 282, 384,
385, 387, 396, 431, 432, 437

Illinois
Winter’13, Trans’13, Summer’13
Winter’14, Trans’14, Summer’14

Winter’15
429, 430

Maryland
Winter’13, Trans’13, Summer’13
Winter’14, Trans’14, Summer’14

Winter’15
330

New Jersey
Winter’13, Trans’13, Summer’13
Winter’14, Trans’14, Summer’14

Winter’15
414, 439, 441

New York
Winter’13, Trans’13, Summer’13
Winter’14, Trans’14, Summer’14

Winter’15
106, 167, 173, 426

Virginia
Winter’13, Trans’13, Summer’13
Winter’14, Trans’14, Summer’14

Winter’15
434

Washington
Winter’13, Trans’13, Summer’13
Winter’14, Trans’14, Summer’14

Winter’15
109, 150, 207, 215, 218, 275, 418

In Figure 2.1, we provide the distribution of ambient temperature for each state.
Based on the data from the National Solar Radiation Database (NSRDB) (NSRDB,
2024) and the season and year combinations in Table 2.3, we provide the range
of ambient temperature for each state throughout the data collection period. We
observe that the temperatures of the states can go below −20 degC, and they can
be as high as 40 degC. Based on the mean values of the box plots, the average
temperature is around 15 degC.
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Figure 2.1 Distribution of Ambient Temperature for each State based on National
Solar Radiation Database (NSRDB) data

2.2 Data Pre-processing and Feature Extraction

As we aim to make the energy consumption prediction at an aggregate level, we
need to identify the trips of the trucks from the NREL Fleet DNA data. In this
section, we first devise a trip identification algorithm. Then, we compute a set of
features for the trips. Section 2.2.1, presents an initial trip identification algorithm.
Section 2.2.2 discusses the motivation and proposes a modified trip identification
algorithm. Finally, in Section 2.2.3, we perform feature extraction and compute a
set of features for the trips.

2.2.1 Initial Trip Identification Algorithm

We identify the trips from the NREL Fleet DNA data by using Algorithm 1. Iden-
tifying a trip means identifying the beginning and end points of the trip. As we are
working with data vectors, points correspond to indices of the vectors. Therefore,
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instead of point, the term index will be used hereafter. In Algorithm 1, we define
trip beginning index as an index where the motor is on and speed is positive. Trip
end index is defined as an index where the motor is not on (i.e., either the motor
is off or the battery is being charged) and speed is zero for at least Ψ1 seconds.
There are two main reasons for introducing such a time lapse. First, we want our
algorithm to be robust against erroneous measurements. For example, the GPS
device for speed may malfunction, and record a value of zero although the speed
is nonzero. We do not want the trip to end abruptly in that case. Second, we ac-
knowledge that the speed may become zero temporarily due to natural occurrences
such as stopping at a red light or encountering congestion. We do not want the
trip to end abruptly in such cases either. We take the value of Ψ1 as 300 seconds.
Algorithm 1 has three vector inputs and one scalar input. The vector inputs are
the vectors of battery management mode, speed, and timestamp. The scalar input
is Ψ1 which is defined as the minimum time lapse for trip completion. In line 2, we
initialize the Boolean variable searching_beginning_index which indicates whether
a beginning index or an end index is being searched. As stated in line 10, while
searching a beginning index, we look for an index i where the motor is on and speed
is positive. If such an index is found, we mark it as the beginning index of a trip,
and set searching_beginning_index to False (lines 11-13). On the other hand, while
searching an end index, we first find an index p such that the time lapse between
p and the current index i is at least Ψ1 seconds (line 18). Then, between lines 19
and 23, we check whether the motor is not on and speed is zero throughout the
range from i to p. If this is the case, we mark i as the end index of the trip, and set
searching_beginning_index to True to identify the next trip.

Once all trips are identified, we calculate the distance traveled, duration, and average
speed for each trip using Equations (2.1)-(2.3) , respectively for k = 1, . . . , |K0|

(2.1) xk ≈
ek−1∑
i=bk

vi +vi+1
2 · (ti+1 − ti)

(2.2) τk =
(
tek

− tbk

)

(2.3) s̄k = xk

tk
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where xk, τk, and s̄k are the distance travelled, duration, and average speed during
trip k, respectively. K0 is the set of all trips such that |K0| = 70,046. For a particular
trip k, bk and ek refer to the beginning and end indices of the trip, respectively. In
equation (2.1), we estimate distance travelled using the trapezoidal rule, and v is in
meters per second.

Algorithm 1 Identification of Trips
1: Inputs: bmu, v, t,Ψ1

2: searching_beginning_index = True
3: n = length( bmu)
4: trip_tuples = [ ]
5: i = 1 ▷ current index
6: bk = 0 ▷ beginning index of trip k

7: ek = 0 ▷ end index of trip k

8: while i ≤ n−Ψ1 do
9: if searching_beginning_index = True then

10: if (bmui = 2) and (vi > 0) then
11: bk = i

12: i = i+1
13: searching_beginning_index = False
14: else
15: i = i+1
16: end if
17: else
18: p := index such that tp − ti ≥ Ψ1

19: if (bmui:p ̸= 2) and (vi:p = 0) then
20: ek = i

21: trip_tuples = trip_tuples + {(bk, ek)}
22: i = ek +1
23: searching_beginning_index = True
24: else
25: i = i+1
26: end if
27: end if
28: end while

As we build the trip identification algorithm from scratch, we want to verify that
our algorithm can divide the daily records into trips in a consistent way with the
NREL’s findings. For this reason, we use average daily distance per truck as a
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benchmark metric. The reference value for this metric is provided as 41.7 km in
the Smith Newton Vehicle Performance Evaluation report (NREL, 2017b). At this
point, it is important to emphasize a limitation of our study: Although the NREL
Fleet DNA data consists of 200 trucks, we are provided a partial dataset comprising
only 30 trucks. Thus, we need to customize the reference value to our dataset. We
compute the customized reference value by using Algorithm 2. For each combination
of operating day d and truck j, we calculate Xdj which is the distance travelled by
truck j on day d. At the end of an operating day d, we calculate the average distance
travelled by a truck on day d (xd) by dividing the total distance travelled by the
number of trucks performing trip on day d. At the end, the customized reference
value is equal to the mean of x. We obtain the customized reference value as 40.8
km. One detail regarding the NREL Fleet DNA data is that the speed vectors (v)
may contain null values. If the speed is null at a particular index, we remove that
index from both the speed and timestamp vectors while calculating Xdj . If the speed
vector is all null, we assume Xdj as 0.

Algorithm 2 Customized Reference Value
1: X := Daily distance travelled matrix
2: x := Average daily distance vector
3: for each operating day d:
4: for each truck j:
5: Calculate Xdj , the distance travelled on day d by truck j
6: nd := Number of trucks performing trip on day d
7: xd = sum(Xd)/nd

8: customized_reference_value = mean(x)

We calculate the average daily distance per truck resulting from the trips in K0 as
41.5 km. One may find this result counterintuitive as we partition the daily records
into trips, and obtain a larger value than the customized reference value (which
is calculated by using the daily records directly, i.e., without any partitioning).
However, it should be noted that we compute the average daily distance per truck,
not the total. Given that the absolute difference between the customized reference
value (40.8 km) and the distance resulting from the trips (41.5 km) is less than 1 km,
we conclude that Algorithm 1 can divide the daily records into trips in a consistent
way with the NREL’s findings.
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2.2.2 Modified Trip Identification Algorithm

Although Algorithm 1 can partition the daily records into trips in a consistent way
with the NREL’s findings, when we analyze the obtained trips in detail, we spot
some trips which have contradictory characteristics within themselves. For example,
there are trips with portions during which the speed is constant at a positive value
for a long time, yet the SOC is also constant. In addition, the coordinates of the ve-
hicle (i.e. latitude and longitude measurements) do not change either. On average,
these trips have a duration of 14.03 h and an average speed of 3.85 mph. Such com-
binations of long duration and low average speed are unlikely. These observations
indicate that the trip has ended at the beginning of the portion, yet the algorithm
failed to determine it. An example of a trip with contradictory characteristics is
shown in Figure 2.2. The speed is constant at 9 mph for more than 17 hours, yet
the SOC, latitude, and longitude are also constant. If this trip were to be performed,
constant SOC would mean that such a long trip is achieved with almost no energy
consumption! All considered, we claim that Algorithm 1 is prone to identifying trips
with contradictory characteristics which might stem from measurement errors.

(a) Speed (b) State of Charge (SOC)

(c) Latitude (d) Longitude

Figure 2.2 Example of a trip with contradictory characteristics

Given the trips with contradictory characteristics, we make some modifications to
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Algorithm 1. These modifications are explained below:

• We hypothesize that the trips with contradictory characteristics may result
from erroneous speed measurements. It is probable that the speed was not
constant for such a long time, but it appeared to be so because of a malfunction
in the GPS device. As a remedy, we introduce a new parameter, Ψ2, which
is defined as the maximum amount of time speed is allowed to be constant
within a trip. With this modification, the average percentage of time speed is
constant becomes 16.28%. In addition, the percentage of trips with duration
greater than 1 hour drops from 6.23% to 0.89%.

• As visualized in Figure 2.3, another issue is that the average speed during
some trips exceeds the top speed of the truck. Although the top speed of the
truck is specified as 50 mph (Table 2.1), we observe average speed values as
high as 91 mph. When we investigate the speed vectors of these trips, we see
that they contain values greater than the top speed. To alleviate this issue,
we introduce a new parameter, Ψ3, which is defined as the maximum amount
of time speed is allowed to exceed the top speed within a trip. After this
modification, the highest average speed during a trip is only 58 mph.

• In line with the items above, we modify the definition of trip end index as
follows: An index starting from which either the motor is not on for at least
Ψ1 seconds, or speed has been constant for Ψ2 seconds, or speed has exceeded
the top speed for Ψ3 seconds. With this new definition of the trip end index,
we aim to design an algorithm which will not identify trips with contradictory
characteristics.

Figure 2.3 Distribution of Average Speed for Selected Vehicles
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The modified algorithm is presented in Algorithm 3. We define trip beginning index
in the same way as in Algorithm 1. However, we modify the definition of trip end
index. We now have three cases for the trip end index. First, if the motor is not
on for at least Ψ1 seconds starting from the current index i, we check the last index
speed was nonzero (u). If the time lapse between u and i is less than or equal to Ψ4

seconds, we set the trip end index as i; otherwise, we set it as u. This is because it
might be undesirable to have a trip in which speed is zero for a long time towards
the end. We take the value of Ψ4 as 30 seconds. Second, if speed has exceeded the
top speed (vmax) for Ψ3 seconds starting from an index p′, we set p′ as the trip end
index. Then, we look for the first index (u′) starting from which speed is less than
or equal to the top speed for at least 300 seconds. If such an index is found, we set
it as the new value of i. Otherwise, we terminate the algorithm. Finally, if speed
has been constant for Ψ2 seconds starting from an index p′′, we set p′′ as the trip
end index. Then, we look for the first index (u′′) at which the speed changes. If
such an index is found, we set it as the new value of i. Otherwise, we terminate the
algorithm. When a trip end index is found, we add the trip tuple (bk, ek) to the list
trip_tuples, and set the Boolean variable searching_beginning_point to True so that
the next trip can be identified. If none of the three cases is satisfied, we increment
the value of i, and continue searching for an end index. We take the values of Ψ1,
Ψ2, and Ψ3 as 300, 300, and 5 seconds, respectively. Let Km be the set of all trips
identified by Algorithm 3 where |Km| = 93,262.
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Algorithm 3 Identification of Trips - Modified
1: Inputs: bmu, v, t

2: vmax := Top speed
3: Ψ1 := minimum amount of time motor is required not to be on for trip completion
4: Ψ2 := maximum amount of time speed is allowed to be constant within a trip
5: Ψ3 := maximum amount of time speed is allowed to exceed the top speed within a trip
6: Ψ4 := maximum amount of time speed is allowed to be zero at the end of a trip
7: n = length( bmu); trip_tuples = [ ]; searching_beginning_index = True
8: i = 1 ▷ current index
9: bk = 0 ▷ beginning index of trip k

10: ek = 0 ▷ end index of trip k

11: while i ≤ n−max(Ψ1,Ψ2,Ψ3,Ψ4) do
12: if searching_beginning_index = True then
13: i = i+1
14: if (bmui = 2) and (vi > 0) then
15: bk = i; searching_beginning_index = False
16: end if
17: else
18: p := index such that tp − ti ≥ Ψ1

19: p′ := index such that ti − tp′ = Ψ3

20: p′′ := index such that ti − tp′′ = Ψ2

21: if (bmui:p ̸= 2) then ▷ Case 1: Motor is not on
22: u := last index before i such that vu ̸= 0
23: ek = i if ti − tu ≤ Ψ4 else ek = u

24: trip_tuples = trip_tuples + {(bk,ek)}; searching_beginning_index = True
25: i = i+1
26: else if vi−p′:i > vmax then ▷ Case 2: Speed exceeds the top speed
27: ek = p′; u′ := first index after i such that vu′:u′+300 ≤ vmax

28: if ∃ u′ then
29: i = u′

30: trip_tuples = trip_tuples + {(bk,ek)}; searching_beginning_index = True
31: else
32: Stop
33: end if
34: else if vi−p′′:i = vi−p′′ then ▷ Case 3: Speed is constant
35: ek = p′′; u′′ := first index after i such that vu′′ ̸= vi

36: if ∃ u′′ then
37: i = u′′

38: trip_tuples = trip_tuples + {(bk,ek)}; searching_beginning_index = True
39: else
40: Stop
41: end if
42: else
43: i = i+1
44: end if
45: end if
46: end while
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The average daily distance per truck resulting from Km is 31.5 km. The difference
between this value and the customized reference value (40.8 km) may seem signifi-
cant, however, when we analyze Km further, we observe that the trip characteristics
have improved significantly. Only 0.89 % of the trips have duration greater than 1
hour, and the average percentage of time speed is constant within a trip is 16.28
%. Previously, we had trips whose average duration was 14.03 hours, and in those
trips, speed used to be constant for large amounts of time.

2.2.3 Feature Extraction

For each trip in Km, we compute the features listed in Table 2.4.

Table 2.4 Trip Features

Feature Symbol Unit Equation

Beginning hour τB - -
End hour τE - -
Distance xk [km] Equation (2.4)
Duration τk [h] Equation (2.5)

Average speed v̄k [km/h] Equation (2.6)
Maximum speed v∗

k [km/h] -
Second maximum speed v∗∗

k [km/h] -
Third maximum speed v∗∗∗

k [km/h] -
Haversine distance xH

k [km] Equation (2.7)
Absolute difference for distance xDiff

k [km] Equation (2.8)
Sum of positive accelerations a+

k [m/s2] Equation (2.10)
Average positive acceleration āk [m/s2] Equation (2.11)

Kinetic intensity Φk [1/km] Equation (2.12)
Net change in SOC during the trip ∆SOCk % Equation (2.13)

Average ambient temperature T̄k [degC] -
Net elevation change per distance ∆hk - Equation (2.14)

Gross vehicle weight wk [ton] -
Energy consumption Ek [kWh] Equation (2.15)

Unit energy consumption ϵk [kWh/km] Equation (2.16)

A trip is primarily identified by its beginning and end indices, and beginning hour
and end hour correspond to the timestamps at the beginning and end indices, re-
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spectively. Then, duration is the difference between the end hour and beginning
hour. The most essential feature in Table 2.4 might be the unit energy consumption
since we aim to construct an empirical model to predict the unit energy consumption
of a medium-duty battery electric delivery truck. The unit energy consumption is
defined as the energy consumption per distance travelled, and hence it is calculated
as the ratio of energy consumption to distance as given in Equation (2.16). We
ensure that the energy consumption is in line with the net change in SOC during
the trip. Similarly, we crosscheck the distance values against another distance mea-
sure, namely Haversine distance. As stated in Equation (2.7), Haversine distance
measures the distance travelled from a geometric point of view. For a particular
trip, we expect the distance and Haversine distance to be close to each other, and
we quantify the closeness by calculating the absolute difference between the two
measures (Equation (2.8)). We observe from the literature that speed and accelera-
tion related measures are important while predicting the energy consumption (Heide
and Mohazzabi, 2013; Lee and Thomas, 2017; Fetene et al., 2017; Modi et al., 2020;
Ahmed et al., 2022). Therefore, as speed related measures, we compute the av-
erage speed, maximum speed, second maximum speed, and third maximum speed
during each trip. As acceleration related measures, we consider sum of positive ac-
celerations and average positive acceleration. Another essential measure for energy
consumption prediction is driving aggressiveness (i.e. aggressive versus gentle driv-
ing profile). As described in the work of O’Keefe et al. (2007), kinetic intensity is
a measure of driving aggressiveness. It is the ratio of characteristic acceleration to
aerodynamic speed, and it might be used to detect drive cycles which are good for
hybridization. In general, the drive cycles with high kinetic intensity are considered
suitable for hybridization. Based on this motivation, we compute kinetic intensity
during each trip as shown in Equation (2.12). As stated in the work of Prohaska
et al. (2016), another factor energy consumption is sensitive to is road profile. We
attempt to capture the effect of road profile through the net elevation change per
distance. As given in Equation (2.14), the net elevation change per distance is the
net change in altitude per unit distance. Woody et al. (2022c) demonstrates that
the impact of vehicle weight on energy consumption may be significant. Thus, we
associate a gross vehicle weight with each trip based on the particular truck the trip
is performed by. Last but not least, ambient temperature is a prominent factor in
energy consumption prediction. Yuksel and Michalek (2015) show that the ambient
temperature may affect the driving range of a BEV up to 40% on too cold winter
or hot summer days. We compute the average ambient temperature during each
trip by using real data from NSRDB (NSRDB, 2024). Although we have ambient
temperature among the parameters in the NREL Fleet DNA data (Table 2.2), the
temperature vector is all null for around 10% of the trips in Km. Therefore, we
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decide to use real data for ambient temperature.

Equations (2.4)-(2.16) show how each feature is calculated, and more details about
the calculations are provided below for k = 1, . . . , |Km|.

xk ≈
ek−1∑
i=bk

vk,i +vk,i+1
2 · (ti+1 − ti)(2.4)

τk =
(
tek

− tbk

)
(2.5)

s̄k = xk

tk
(2.6)

ζk =
ek−1∑
i=bk

sin2
(

latk,i+1 − latk,i

2

)
+cos

(
latk,i

)
· cos

(
latk,i+1

)
· sin2

(
longk,i+1 − longk,i

2

)

xH
k = R

(
2 ·arctan

(√
ζk/

√
1− ζk

))

(2.7)

xDiff
k =

∣∣∣xk −xH
k

∣∣∣(2.8)

ak,i = vk,i −vk,i−1
ti − ti−1

∀i = 1, . . . , ek(2.9)

a+
k =

ek∑
i=bk

1ak,i>0{ak,i}(2.10)

āk = a+
k

1ak,i>0{1}
(2.11)

Φk =

ek−1∑
i=bk

max
(
0,0.5 ·

(
v2

k,i+1 −v2
k,i

)
+g ·

(
hk,i+1 −hk,i

))
ek−1∑
i=bk

v3
k,i+1+v2

k,i+1vk,i+vk,i+1v2
k,i+v3

k,i

4 · (ti+1 − ti)
(2.12)

∆SOCk = socek
− socbk

(2.13)

∆hk = hek
−hbk

xk
(2.14)

Ek ≈ −
ek−1∑
i=bk

Vk,iIk,i +Vk,i+1Ik,i+1
2 · (ti+1 − ti)(2.15)

ϵk = Ek

xk
(2.16)
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Below are further details about the calculations:

• In equation (2.7), we compute the Haversine distance during a trip. R is the
Earth’s radius in kilometers. We take R = 6,373 km.

At this point, it is important to mention that we have spotted some spikes
in the latitude and longitude vectors (Figure 2.4). We believe that these
spikes may result from temporary malfunctions in the GPS device. Since
these spikes may affect the Haversine distance results, we perform smoothing
on the latitude and longitude vectors before computing the Haversine distance.
The smoothing algorithm is presented in Algorithm 4.

In Algorithm 4, we first define a smoothing threshold, s. If the magnitude of
the difference between consecutive entries of the input vector is greater than
s, we apply smoothing.

To smooth the latitude and longitude vectors, we choose the value of s as
0.015 decimal degrees. According to Wisconsin State Cartographer’s Office
(Wisconsin, 2022), a change of 0.01 decimal degrees in latitude corresponds to
a distance of 1.1 km; and at 47.7 degrees latitude, a change of 0.01 decimal
degrees in longitude corresponds to a distance of 0.75 km. Given these pieces
of information, we are aware that 0.015 decimal degrees is a loose thresh-
old. However, one should note that the distance estimations are sensitive
to location. We refrain from selecting a tight threshold and smoothing the
latitude/longitude vector too much.

• In equation (2.9), acceleration vector of the trip is computed using the back-
ward finite difference method. Initial acceleration at i = 0 is assumed to be
zero.

• In equations (2.10) and (2.11), we calculate the sum of positive accelerations
and average positive acceleration during a trip, respectively. 1. is the indicator
function.

• In equation (2.12), we compute the kinetic intensity during a trip. g is the
gravitational acceleration, and we take g = 9.81 m/s2.

• In equation (2.13), we calculate the net change in SOC during a trip. However,
similar to the case for latitude and longitude, we observe spikes in the SOC
vectors (Figure 2.4c). Therefore, using Algorithm 4, we apply smoothing on
the SOC vector prior to the calculation. We take the value of s as 1%.

• In equation (2.15), we approximate the energy consumption of a trip using the
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trapezoidal rule. Minus sign is due to the sign convention of current: Positive
current represents charging, and negative current represents discharging.

(a) Example of a spike in latitude
measurements

(b) Example of a spike in longitude
measurements

(c) Example of a spike in latitude mea-
surements

Figure 2.4 Examples of spikes in latitude, longitude, and state of charge measure-
ments

As a final touch to the set of trips, we apply post-processing on Km. There are
two main reasons for post-processing: We do not perform any pre-processing at
the beginning, and we still observe some undesired trip characteristics. As we do
not perform any input checks, we encounter missing values for the speed-related
features, energy consumption, and kinetic intensity. In addition, we notice that
the speed-related features, energy consumption, kinetic intensity, and net elevation
change per distance take values out of their bounds. Regarding the undesired trip
characteristics, we see that some trips are very short (either by duration or distance)
or have an unlikely duration and average speed combination. Besides, we observe
that some trips have inconsistencies among their features. For example, both dis-
tance and Haversine distance measure the distance travelled during a trip, and hence
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Algorithm 4 Smoothing
1: Input: ϕ := Vector to be smoothed
2: s := Smoothing threshold
3: n = length(ϕ)
4: for i = 1 to n−1 do
5: if i = 1 then
6: if |ϕ2 −ϕ1| > s and |ϕ3 −ϕ2| ≤ s then
7: ϕ1 = ϕ2
8: end if
9: else

10: if |ϕi+1 −ϕi| > s then
11: ϕi+1 = ϕi

12: end if
13: end if
14: end for

we expect their values to be close to each other. However, we see that this is not
the case for some trips.

Criteria for post-processing and details of the eliminations are shown in Table 2.5.
We take the upper bound for the speed-related features as 50 mph since it is the
top speed value specified in Table 2.1. To overcome the issue of very short trips,
we eliminate a trip if its duration is less than 3 or its distance is lower than 1.
To remove the trips with unlikely duration and average speed combinations, we
eliminate all trips whose duration is greater than 1 h, but the average speed is
below 5 km/h. Finally, to address inconsistencies among the features of a trip, we
eliminate a trip for which the absolute difference for distance is greater than 10 km
or both Haversine distance and change in SOC are zero. An important detail about
Table 2.5 is that the second column shows the number of trips failing each criterion;
it does not show the number of eliminated trips. In other words, the second column
includes duplicates since a trip may fail multiple criteria. In total, 52,223 trips are
eliminated in post-processing.

22



Table 2.5 Post-Processing

Criterion Number of Trips Failing the Criterion

τk < 3 min 34,897
τk > 1 h && v̄k < 5 km/h 165
v∗

k = null || v∗
k > 50 mph 8,358

v∗∗
k = null || v∗∗

k > 50 mph 1,657
v∗∗∗

k = null || v∗∗∗
k > 50 mph 3,649

v̄k > 50 mph 12
xk < 1 km 40,235

xDiff
k > 10 km 1,966

Ek = null || Ek ≤ 0 654
Φk = null || Φk > 10.50 1/km 37,041

xH
k = 0 && ∆SOCk = 0 1,040

|∆h| > 0.4 2

Let Kp be the set of remaining trips after post-processing where |Kp| = npost =
41,037. The average daily distance per truck resulting from Kp is 29.31 km. Distri-
butions of daily number of trips, duration per trip, average ambient temperature per
trip, and unit energy consumption per trip based on the trips in Kp are presented in
Figures 2.6a, 2.6b, 2.6c, and 2.6d, respectively. A machine learning model to predict
unit energy consumption based on Kp is developed in Chapter 5.

2.3 Descriptive Statistics of the Post-Processed Trips

In this section, we present some descriptive statistics based on the post-processed
set of trips (Kp). Figure 2.5 shows the monthly average energy consumption for each
state. The black line labelled "ALL" shows the average energy consumption based
on all states. We observe that the energy consumption is high in winter season, low
in spring and fall, and then high again in winter. For all states (and the black line),
the energy consumption is higher in winter compared to summer.
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Figure 2.5 Average monthly energy consumption for each state. The black line
labelled "ALL" shows the energy consumption based on all states.
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Figure 2.6 shows some histograms for the post-processed set of trips. We present
histograms for the daily number of trips, and the trip features duration, average
ambient temperature, unit energy consumption, and distance travelled.

(a) Daily number of trips (b) Duration per trip [h]

(c) Average ambient temperature per
trip [degC]

(d) Unit energy consumption per trip
[kWh/km]

(e) Distance Travelled per trip [km]

Figure 2.6 Distributions of daily number of trips, duration per trip, average ambient
temperature per trip, unit energy consumption per trip, and distance travelled per
trip
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3. MACHINE LEARNING MODEL FOR UNIT ENERGY

CONSUMPTION

Our purpose is to build a machine learning model to predict the unit energy con-
sumption of a medium-duty battery electric delivery truck. To decide on the machine
learning model, we first consider the tradeoff between the accuracy and explainabil-
ity of a model. On one hand of the spectrum, we have linear regression models which
are the most explainable, but also the least accurate in general. On the other hand,
we have neural network models which can achieve high levels of accuracy, yet they
usually have a low level of explainability (Qiu et al., 2023). We aim to build a model
which is more accurate than the linear regression models, but also more explainable
than the neural network models. Thus, we focus on tree-based algorithms. In their
study on medium-duty and heavy-duty electrified passenger and delivery vehicles,
Qiu et al. (2023) develop three tree-based algorithms (gradient boosted trees, ran-
dom forest, and XGBoost) to predict the unit energy consumption of an electric
vehicle. They observe that all three models yield very close R2 values. Given this
observation and the similarity of their study to our study (Table 1.1), we decide to
build a Random Forest model although this might be a suboptimal decision. We
develop a Random Forest model, and evaluate its performance relative to a Least
Absolute Shrinkage and Selection Operator (LASSO) regression model. The LASSO
model serves as our base model following the work of Qiu et al. (2023). In Section
2.2, we compute the features listed in Table 2.4 for each trip. As the predictors of
Random Forest, we choose nine of these features which are listed in Table 3.1. In
the literature, speed (Fetene et al., 2017; Modi et al., 2020; Ahmed et al., 2022),
acceleration (Heide and Mohazzabi, 2013; Fetene et al., 2017; Ahmed et al., 2022),
ambient temperature (Yuksel and Michalek, 2015; Woody et al., 2022c; Qiu et al.,
2023), and weight (Weiss et al., 2020; Ahmed et al., 2022; Woody et al., 2022c) have
been shown to be impactful factors while predicting energy consumption. Road pro-
file (Prohaska et al., 2016) and driving profile (Karabasoglu and Michalek, 2013) are
other factors which impact the energy consumption. Road profile is informative on
the gradient of a road, i.e. whether a road is a level road (zero gradient) or a steep
road. We account for the effect of road profile on energy consumption by including
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net elevation change per distance among the features. Driving profile is informative
on whether a vehicle is driven under aggressive (e.g. sudden accelerations) or gen-
tle conditions. We attempt to include the effect of driving profile through kinetic
intensity.

As the predictors of LASSO, we use all the predictors in Table 3.1, and in addition,
we populate some of the predictors. Based on our literature review, the relation-
ship between unit energy consumption and some predictors may be polynomial. For
example, Yuksel and Michalek (2015) demonstrates a polynomial relationship be-
tween unit energy consumption and average ambient temperature. Lee and Thomas
(2017) presents a polynomial relationship between unit energy consumption and av-
erage speed. Thus, we decide to add polynomial terms for average speed, sum of
positive accelerations, average positive acceleration, kinetic intensity, and average
ambient temperature. For each predictor we populate, except for average ambient
temperature, we add the square, natural logarithm, and reciprocal of the predictor
to the model. For average ambient temperature, we consider a fifth order polynomial
based on the work of Yuksel and Michalek (2015). As LASSO can force the regres-
sion coefficients of some predictors to be zero, it may help us identify the polynomial
terms which are relevant for the energy consumption model. The list of predictors
of LASSO is given in Table 3.2. XRF and XLASSO in Equations (3.1) and (3.2) are
the predictor matrices for Random Forest and LASSO, respectively. Each column
of XRF corresponds to a predictor in Table 3.1 (in the same order), and each row
corresponds to a trip in Kp. XRF is an npost x 9 matrix as there are npost many trips
in Kp and nine predictors in the Random Forest model. Similarly, each column of
XLASSO corresponds to a predictor in Table 3.2, and each row corresponds to a trip
in Kp. Differently than XRF, XLASSO has 25 columns since there are 25 predictors
in the LASSO model.

Table 3.1 Predictors of Random Forest

Predictor Symbol

(i) Duration τk

(ii) Average speed v̄k

(iii) Maximum speed v∗
k

(iv) Sum of positive accelerations a+
k

(v) Average positive acceleration āk

(vi) Kinetic intensity Φk

(vii) Average ambient temperature T̄k

(viii) Net elevation change per distance ∆hk

(ix) Gross vehicle weight wk
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Table 3.2 Predictors of LASSO

Predictor Self Square Log Reciprocal Cube Power 4 Power 5
(i) τk ✓

(ii) v̄k ✓ ✓ ✓ ✓

(iii) v∗
k ✓

(iv) a+
k ✓ ✓ ✓ ✓

(v) āk ✓ ✓ ✓ ✓

(vi) Φk ✓ ✓ ✓ ✓

(vii) T̄k ✓ ✓ ✓ ✓ ✓

(viii) ∆hk ✓

(ix) wk ✓

XRF =
[
(xRF

1 )⊤ . . . (xRF
npost)

⊤
]⊤

(3.1)

where the kth row is

xRF
k =

[
τk V̄k v∗

k a+
k āk Φk T̄k ∆hk wk

]
The feature matrix of LASSO can be written as a block matrix

XLASSO =
[
XRF XLASSO

v̄ XLASSO
a+ XLASSO

ā XLASSO
Φ XLASSO

T

]
(3.2)

where the matrices in the block are

XLASSO
v̄ =

[
(xLASSO

v̄,1 )⊤ . . . (xLASSO
v̄,npost )⊤

]⊤
XLASSO

a+ =
[
(xLASSO

a+,1 )⊤ . . . (xLASSO
a+,npost

)⊤
]⊤

XLASSO
ā =

[
(xLASSO

ā,1 )⊤ . . . (xLASSO
ā,npost )⊤

]⊤
XLASSO

Φ =
[
(xLASSO

Φ,1 )⊤ . . . (xLASSO
Φ,npost)

⊤
]⊤

XLASSO
T̄

=
[
(xLASSO

T̄ ,1 )⊤ . . . (xLASSO
T̄ ,npost

)⊤
]⊤

such that the rows of those matrices are

xLASSO
v̄,k =

[
v̄2

k log(v̄k) v̄−1
k

]
xLASSO

a+,k =
[
(a+

k )2 log(a+
k ) (a+

k )−1
]

xLASSO
ā,k =

[
ā2

k log(āk) ā−1
k

]
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xLASSO
Φ,k =

[
Φ2

k log(Φk) Φ−1
k

]
xLASSO

T̄ ,k
=
[
T̄ 2

k T̄ 3
k T̄ 4

k T̄ 5
k

]
.

We split XRF and XLASSO into train and test matrices using the default train-test
split ratio of 80% − 20%. The split is stratified with respect to the predictors in
the Random Forest model (Table 3.1). In other words, the range of each predictor
in the train and test datasets are similar. The minimum and maximum values of
each predictor in the train and test datasets are reported in Table 3.3. The columns
Interval{Train} and Interval{Test} show the range of a predictor in the train and
test datasets, respectively.

Table 3.3 Range of each Predictor in the Train and Test Datasets

Predictor Interval{Train} Interval{Test}
Duration [h] 0.05 - 2.95 0.05 - 2.80

Average speed [km/h] 2.86 - 71.9 2.66 - 70.3
Maximum speed [km/h] 20.9 - 80.5 24.1 - 80.5

Average ambient temperature [degC] -22.1 - 37.5 -22.5 - 37.6
Sum of positive accelerations [m/s2] 5.36 - 1,584 6.26 - 1,312
Average positive acceleration [m/s2] 0.447 - 2.53 0.447 - 1.84

Kinetic intensity [1/km] 0.112 - 10.5 0.0617 - 10.5
Net elevation change per distance [ ] -0.309 - 0.0826 -0.159 - 0.0871

Gross vehicle weight [ton] 7.5 - 12.0 7.5 - 12.0

Let KPost, Train and KPost, Test be the set of trips in the train and test splits, respec-
tively where |KPost, Train| = npost, train = 32,829 and |KPost, Test| = npost, test = 8,208.
Then, for LASSO only, we standardize the train and test matrices. We ensure
that the standardized train matrix is full-rank so that the ordinary least squares
(OLS) solution exists. Rank of a matrix is defined as the number of independent
columns, i.e., the number of independent predictors. Therefore, ensuring that the
augmented matrix is full-rank also ensures that all predictors are independent of
each other. Let XLASSO, Train be the standardized and augmented train matrix for
LASSO, XLASSO, Test be the standardized test matrix for LASSO, and XRF, Train

and XRF, Test be the train and test matrices for Random Forest, respectively. Also,
let yTrain and yTest in Equations (3.3) and (3.4) be the response vectors for train
and test, respectively.

yTrain =
[
ytrain

1 . . . ytrain
npost, train

]⊤
(3.3)

yTest =
[
ytest

1 . . . ytest
npost, test

]⊤
.(3.4)
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We develop our machine learning models in Python. For LASSO, we use the LAS-
SOCV package from the sklearn.linear_model library. The objective of the LASSO
model is to minimize the error term given by

(3.5) 1
npost, test

npost, test∑
k=1

yTest
k −β0 −

25∑
j=1

βjXLASSO, Test
kj

2

+λ
25∑

j=1
|βj |,

where β is the vector of regression coefficients, β0 is the intercept, and λ is a tuning
parameter. To decide on the value of λ, we perform 10-fold cross validation, and
pick the λ which yields the lowest mean squared error (MSE).

We construct the LASSO model with the hyperparameter values shown in Table
3.4. The hyperparameters which are not listed in the table are kept at their default
values. In Table 3.4, eps defines the range of values which are cross validated for
λ. In other words, it is the ratio of the minimum λ value to the maximum λ value.
max_iter is the maximum number of iterations that can be performed to identify
the best λ. tol defines the duality gap between the best value identified for λ and
the optimal λ value. Finally, cv is the number of folds in cross validation.

Table 3.4 Hyperparameter Values for LASSO

Hyperparameter Value

eps 1e-04
max_iter 1e+05

tol 1e-07
cv 10

After 10-fold cross validation, the best value for λ is identified to be 1.92e−05. The
intercept is 0.851. Such a low value for λ might seem counterintuitive, however, as
visualized in Figure 3.1, the lowest MSE is yielded by λ = 1.92e−05. In Figure 3.1,
the average MSEs resulting from the 10-folds are plotted against the cross validated
λ values. The λ values are shown in logarithm base 10. The β coefficients for each
predictor, in the descending order of the magnitudes of βj ’s, is given in Table A.2.
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Figure 3.1 Average Mean Squared Error versus Cross Validated Lambda Value for
LASSO

For Random Forest, we use the RandomForestRegressor package from the
sklearn.ensemble library. We change the values of only three hyperparameters:
max_samples, max_features, and min_samples_split. We keep the other hyper-
parameters at their default values. max_samples indicates the fraction of samples
to be used while training each tree. max_features is the number of features to be
considered while determining the best split of a node into its children. Finally,
min_samples_split is the minimum number of samples necessary to split a node
further. To decide on the values of these three hyperparameters, we perform hyper-
parameter tuning. For each hyperparameter, we consider a set of possible values.
Then, we check all resulting combinations of the hyperparameters. We construct
a Random Forest model with each combination, train the model with XRF, Train,
test the model with XRF, Test, and record the R2 value yielded at the test. At the
end, we label the combination which yields the highest R2 at the test as the best
combination. The set of values considered for each hyperparameter is given in Table
3.5. The best hyperparameter combination is presented in Table 3.6.

Table 3.5 Set of Possible Hyperparameter Values for Random Forest

Hyperparameter Value

max_samples {0.2, 0.4, 0.6, 0.8, 1.0}
max_features {0.2, 0.4, 0.6, 0.8, 1.0}

min_samples_split {2, 4, 6}

The Gini importance values for each predictor, resulting from the best combination
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of hyperparameters, is given in Table 3.7. Gini importance quantifies the contri-
bution of each feature to the Random Forest model. The Gini importance of a
particular feature is calculated based on the reduction in Gini impurity achieved by
splitting a node in a tree based on that feature. To calculate the Gini importance
of a particular feature, all trees in the Random Forest are considered. At the end,
the Gini importance of a particular feature is the overall reduction in Gini impurity
achieved by splitting a node based on that feature. Features which provide greater
reductions in Gini impurity are assigned higher importance values (GeeksForGeeks,
2024).

Table 3.6 The Best Hyperparameter Combination for Random Forest

Hyperparameter Value

max_samples 1.0
max_features 0.6

min_samples_split 6

Table 3.7 Gini Importance Values for Random Forest

Predictor Gini Importance [%]

Net elevation change per distance 33.3
Gross vehicle weight 10.4

Kinetic intensity 9.89
Sum of positive accelerations 9.16
Average ambient temperature 8.32

Average speed 8.22
Maximum speed 7.69

Duration 6.99
Average positive acceleration 6.07

For both LASSO and Random Forest, the summary of error statistics is presented
in Table 3.8. For both models, we present the results of the best solutions (i.e. the
LASSO model with λ = 1.92e−05 and the Random Forest model constructed with
the hyperparameters specified in Table 3.6). To evaluate the performance of a model,
we use four error statistics: mean squared error (MSE), mean absolute percentage
error (MAPE), coefficient of determination (R2), and adjusted R2. The suffixes
{Train} and {Test} refer to the results obtained in the train and test, respectively.
Looking at the test results, we observe that Random Forest outperforms LASSO.
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Table 3.8 Summary of Error Statistics for the Machine Learning Models

LASSO Random Forest

Intercept 0.851 -
MSE{Train} 0.0265 0.00328

MAPE{Train} 17.1% 5.63%
R2{Train} 0.427 0.929

Adjusted R2{Train} 0.427 0.929
MSE{Test} 0.0261 0.0140

MAPE{Test} 19.2% 11.6%
R2{Test} 0.440 0.690

Adjusted R2{Test} 0.438 0.690

The Random Forest model for unit energy consumption will be used in Chapter 4.
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4. SIMULATION

We develop a simulation framework to predict the use phase emissions of medium-
duty battery electric delivery trucks across the United States (US). There are three
main reasons for building this framework: First, we aim to predict the emissions for
the entire US; however the NREL Fleet DNA data comprises a limited number of
counties. In other words, we do not know the trip details in all counties. Second,
even if a county is present in the NREL Fleet DNA data, we do not have its trip
records for the entire year. Finally, we perform simulation to quantify the effects
of regional differences on the use phase emissions. The simulation framework is
illustrated in Figure 4.1.

Figure 4.1 Illustration of the simulation framework
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We feed the set of trips Kp as an input into the simulation framework. Then, based
on a set of trip features which is determined by the user, we select a trip from Kp.
We calculate the energy consumption of the selected trip using the Random Forest
model we developed in Chapter 3. Depending on the daily number of trips, we
repeat these steps for all trips of a day. At the end of the day, we calculate the
daily energy consumption, and apply a charging scheme. We combine the charg-
ing duration and time with the marginal emission factors (MEFs) from electricity
generation to compute the use phase emissions. We repeat this procedure for one
year to estimate the annual energy consumption and emissions. As both the energy
consumption and emissions are random variables (i.e., they are sampled from math-
ematical distributions), we perform 100 Monte Carlo (MC) runs for our simulations
to obtain more reliable results. Using our simulation framework, we perform two
case studies. In the first case study, we quantify the effect of ambient temperature
on the use phase emissions across the US, and in the second case study, we attempt
to quantify the effect of driving profile.

4.1 Effect of Ambient Temperature on Use Phase Emissions

In the first case study, we aim to quantify the effect of ambient temperature on the
use phase emissions. Details of trip generation, charging scheme, and computation
of the use phase emissions are presented below.

1) Trip generation

We generate the trips of a particular county KSim
l as described in Algorithm 5. Let

L and D be the set of counties and days, respectively where |L| = 3,052 and |D| =
365.
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Algorithm 5 Trip Generation
1: KSim

l
2: for d = 1 to 365 do
3: nd ∼ FN

4: Scheduled := Schedule for the trips on day d
5: flag_battery_capacity_failed = True
6: while flag_battery_capacity_failed do ▷ Rejection sampling
7: for k = 1 to nd do
8: tripk = generate_trip(SF

k ,SV
k ,Sh

k )
9: end for

10: Calculate total daily energy consumption εDay in kWh
11: flag_battery_capacity_failed = False
12: if εDay > battery_capacity then
13: flag_battery_capacity_failed = True
14: end if
15: end while
16: KSim

ld := Set of trips on day d
17: KSim

l = KSim
l ∪KSim

ld
18: end for

Details of Algorithm 5 are explained below:

• We generate trips for each day of the year. For a particular day, we first
determine the number of trips (nd) which comes from the discrete empirical
distribution FN . FN is the underlying empirical distribution of the histogram
in Figure 2.6a.

• Once nd is determined, we generate a schedule for the trips (Scheduled) which
shows the beginning hour, duration, and end hour of each trip. We generate the
schedule based on a Gamma distribution. The scale parameter of the Gamma
distribution is taken as 0.22 because 0.22 h is the average trip duration based
on Figure 2.6b. The shape parameter of the distribution is adjusted such that
the earliest beginning time for the first trip of the day is 8 am, the latest end
time for the last trip of the day is 10 pm, and the average duration between
consecutive trips is half an hour.

• We generate each trip of the day by using the subroutine
generate_trip(SF

k ,SV
k ,Sh

k ). The arguments SF
k , SV

k , and Sh
k are the set

of features, feature values, and feature tolerances, respectively for generating
the kth trip. Details of generate_trip(.) are presented in Algorithm 6.

• At the end of the day, we check whether the total daily energy consumption in
kWh (εDay

d ) exceeds the battery capacity. If this is the case, we apply rejection
sampling, and regenerate all trips until the battery capacity is not exceeded.
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We take the value of battery capacity as 80 kWh in line with the specifications
in Table 2.1.

Details of the subroutine generate_trip(.) are presented in Algorithm 6:

Algorithm 6 generate_trip
1: Input: SF,SV,Sh := Set of features, desired values, and tolerances
2: Input: XSim

3: n = length(XSim) ▷ Number of trips in XSim

4: nF = |SF| ▷ Number of features

5: wi =∏
j∈|SF | exp

− 1
2SV

j

(
X(sim),SF

j

i −SV
j

)2 , i = 1, . . . ,n

6: pi = wi∑n
j=1 wj

, i = 1, . . . ,n

7: i∗ ∼ Categorical(p1, . . . ,pn) ▷ Random generation
8: trip = XSim

i

9: tripj = SV
j ∀j = 1, . . . , nF ▷ Modify the selected trip to generate a new trip

Details of Algorithm 6 are explained below:

• SF is a set of features, SV is the set of desired values of the features, and Sh

is the set of tolerances for the desired values. In this algorithm, we generate a
trip by first selecting a trip from XSim, and then modifying the values of some
of its features. We aim to select a trip such that the values of the features
specified in SF are as close as possible to those specified in SV.

– We utilize three features for trip generation: beginning hour, duration,
and average ambient temperature, i.e., we take SF = {τB, τ, T̄}.

– Values of beginning hour and duration come from the schedule in Algo-
rithm 5. We use the beginning hour as it is, but we further randomize
duration as stated in Equation (4.1) where U denotes the uniform dis-
tribution, τ

′ is the duration in the schedule, and 0.05 h (3 min) is the
minimum duration of a trip in line with Table 2.5. For average ambient
temperature, we use real data from NSRDB (NSRDB, 2024). As we per-
form our simulation for a typical year, we use the Typical Meteorological
Year (TMY) temperature values.

(4.1) τ =

U(0.05, τ
′) if τ

′
< 1

U(0.05, τ
′
/2) otherwise

– We define the tolerances for each feature as Sh =
{0.25 h,10 min,20 degC}. Giving such a high tolerance for tem-
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perature has a similar effect to not including temperature in SF at all.
However, we want temperature to be one of the features since it is the
only regional difference across the counties in our first simulation, and
we believe that temperature may have an effect on other trip features
although marginal. Therefore, we prefer to include average ambient
temperature in SF, but give it a high tolerance.

• XSim is defined as XSim =
[
τB XRF

]
where τB is the column vector of begin-

ning hours for each trip, i.e.,

τB =
[
τB

1 . . . τB
npost

]⊤

• In Algorithm 6, we generate a trip by first selecting a trip from XSim, and then
modifying some of its feature values. To select a trip whose feature values are
as close as possible to those specified in SV, we form Gaussian kernels around
the trips. The dimension of the space the Gaussian kernels lie in is equal to
the number of features in SF. The Gaussian kernels are formed based on the
feature values specified in SV and the bandwidths specified in Sh. The closer
the features of a trip are to the values in SV, the higher the probability of
that trip to be selected. In lines 5 and 6, we compute the probability of each
trip being selected based on how close their feature values are to those in SV.
Then, in line 7, we select the ith trip by generating a random number between
1 and n with respect to the selection probabilities of the trips.

• In this algorithm, we generate a new trip by modifying the values of some of
the features of the selected trip. For all features in SF, we replace the value of
the feature in the trip with the value specified in SV, and we keep the values
of the remaining features unchanged. In other words, the new trip has exactly
the same values for the features specified in SF, and the other features are
compensated from the selected trip. This way of trip generation may be a
remedy for the following cases:

– The user cannot provide the values of all the predictors in the energy
consumption model (Table 3.1). The Random Forest model requires the
values of all nine predictors to make a prediction, however, it might be
difficult for a fleet owner to know the values of some predictors such as
sum of positive accelerations, kinetic intensity, and net elevation change
per distance. In this case, the fleet owner can provide as many predictors
as they can, and the remaining predictors can be compensated from the
selected trip.
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– Even though the value of a predictor is available to the fleet owner, they
might think that the value is erroneous, and may not want to use it. In
this case, similar to the previous item, the value of that predictor can be
substituted from the selected trip.

– There exist some physical relations between the predictors which must be
respected in order to make a reliable prediction. Nevertheless, it might be
difficult for a fleet owner to ensure that there are no measurement errors
and hence the physical relations are satisfied among the feature values
they provide. Imputing the values of some predictors from the selected
trip increases the chance that the physical relations will be respected.

2) Charging scheme

As the charging scheme, we apply convenience-full charging. The charging begins
when the last trip of the day ends, and the battery is charged up to 100% SOC. The
charging duration is calculated by

(4.2) δld = εDay
ld

η r
∀l ∈ |L|, d ∈ D,

where δld is the charging duration in hours, η is the charging efficiency, and r is the
constant charging rate. We take η = 85% and r = 15 kW.

Then, as in the work of Yuksel et al. (2016), we distribute the charging duration
into hourly bins using Equation (4.3):

∆Charging
ldh =

1∑
n=0


1 if τE

ld +1 ≤ tn ≤ τE
ld + δld

0 if τE
ld ≥ tn or τE

ld + δld ≤ tn −1

min(tn, τE
ld + δld)−max(tn −1, τE

ld ) otherwise

(4.3)

∀l ∈ L, d ∈ D, h ∈ H

tn = h+24n,

where ∆Charging
ldh is the charging duration falling into hourly bin h, and τE

ld is the end
time of the last trip of the day. tn is used to handle the cases where the charging
continues on the following day.
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3) Use phase emissions

We define the use phase emissions as the direct emissions from the electric grid as a
result of recharging events. We compute the use phase emissions based on marginal
emission factors (MEFs). Marginal emissions can be defined as the amount of GHG
emissions released from the power plants which are utilized to meet the extra demand
due to BEV charging. We only consider CO2 emissions in this study. Therefore
MEF shows the amount of CO2 in kg that is released per each 1 MWh extra elec-
tricity generation. We utilize the seasonal hourly MEFs (CEDM, 2021) for the eight
North American Electric Reliability Corporation (NERC) regions: Northeast Power
Coordinating Council (NPCC), Florida Reliability Coordinating Council (FRCC),
Texas Reliability Entity (TRE), Western Electricity Coordinating Council (WECC),
SERC Reliability Corporation (SERC), ReliabilityFirst Corporation (RFC), South-
west Power Pool (SPP), and Midwest Reliability Organization (MRO). The MEFs
include only the carbon dioxide (CO2) emissions from the grid. Regional average
CO2 emissions in grams/km γl (averaged over all trips and days of the year) can be
calculated by

(4.4) γl =

∑
d

∑
h

r∆Charging
ldh MEFldh∑

d

∑
k∈KSim

ld

xldk
∀l ∈ |L|,

where MEFldh is the regional time of day marginal emission factor for county l in
kg-CO2/MWh.

As the energy consumption and emissions are random variables (i.e. they are sam-
pled from mathematical distributions), we perform 30 Monte Carlo (MC) runs for
our simulations to obtain more reliable results.

4.1.1 Results

The average annual energy consumption and use phase emissions for each county are
shown in Figures 4.2 and 4.3, respectively. We calculate the average annual energy
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consumption of a particular county εYear
l , in kWh/km, by

(4.5) εYear
l =

∑
d∈D

εDay
ld∑

d

∑
k∈KSim

ld

xldk
∀l ∈ |L|,

Figure 4.2 Average annual energy consumption for each county in the US. The
energy consumption values are reported in Wh/km, and they are averages of 30
Monte Carlo runs

Figure 4.3 Average annual use phase emissions for each county in the US. The
emissions values are reported in g-CO2/km, and they are averages of 30 Monte
Carlo runs

The average annual energy consumption per km (averaged over all trips over a
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full year and averaged over all MC runs) is shown for each county in Figure 4.2.
We observe a 10% increase in average energy consumption in the Upper Midwest
where a colder climate exists compared to Pacific Coast or Florida where milder
temperatures are experienced throughout the year. This is consistent with previous
literature which states BEVs consume more energy in cold days due to cabin heating
and poorer battery temperature at lower temperatures (Barnitt et al., 2010; Yuksel
and Michalek, 2015).

Similar to cold temperatures, hot temperatures can also increase energy consumption
due to AC use in hot days. For example, Yuksel and Michalek (2015) reports that the
electric driving range of a BEV can drop by 29% in Phoenix, Arizona compared to
San Francisco, California due to temperatures that can reach to 41 degC in summer.
However, according to our results, average energy consumption does not change
between these two regions. To investigate this result, we looked into the relationship
between unit energy consumption and average ambient temperature based on our
Random Forest model. Figure 4.4 shows how unit energy consumption changes with
respect to temperature when all other features are kept constant. We note that the
energy consumption can increase up to 18% in cold temperatures compared to the
case at 20 degC. However, after 20 degC, the energy consumption does not change.
This shows that our model can capture the energy consumption increase in cold
temperatures but not in hot temperatures. One reason for this might be the smaller
number of trips at high temperatures compared to other temperatures (see Figure
2.6c). Another reason might be about the driver behaviour in hot temperatures.
Looking at our trips, we note that the energy consumption values of some of the
trips performed in hot temperatures are lower than anticipated. It is possible that
the driver did not turn on AC during the trip. This might be reasonable if we
consider that most of our trips are short. The average trip duration based on Figure
2.6b is around 15 minutes. The NREL Fleet DNA data does not provide any details
about the driver behaviour; i.e. we do not know if AC was used in hot temperatures
or not.

Based on the MEFs in Tables A.4 and A.5, respectively, NPCC and MRO regions
have the least and most carbon intensive electric grids, respectively. Consequently,
the lowest emissions are observed in northeast (NPCC) and southeast (FRCC) re-
gions, and the highest emissions are attained in northern midwest (MRO) as shown
in Figure 4.3. The high emissions in MRO are anticipated due to both high energy
consumption and high emission factors. Although the energy consumption in MRO
region was only 8% higher than NPCC region, we see that the emissions increase
by 1.8 times. This shows that the most significant factor affecting the regional
differences in emissions is the grid mix.
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Figure 4.4 Unit Energy Consumption versus average ambient temperature based on
the Random Forest model

4.2 Effect of Driving Profile on Use Phase Emissions

In this simulation, we attempt to quantify the effect of driving profile on the use
phase emissions. In other words, we want to distinguish between a region with an
aggressive driving profile and a region with a gentle profile. However, we were unable
to come up with a feature which would allow us to classify the driving profiles of
counties as aggressive or gentle. For this reason, we could not perform a simulation
for the entire US. Instead, we create two hypothetical counties, County 1 and County
2, such that they represent the aggressive and gentle driving profiles, respectively.
We compute the energy consumption and emissions of these two counties based on
synthetic data. In addition, we use the MEFs of the NPCC and MRO regions for
County 1 and County 2, respectively.

Similar to the first case study, we generate the trips of these two counties using
Algorithm 5. However, we now consider four features for trip selection: average
speed, sum of positive accelerations, kinetic intensity, and average ambient temper-
ature. We distinguish between an aggressive and a gentle driving profile based on
average speed, sum of positive accelerations, and kinetic intensity. Average ambient
temperature is kept among the features for trip generation since we use real data for
it from the NSRDB TMY database based on the day of the year. Since we use the
temperature values of a typical year, we assume the same average ambient tempera-
ture for both counties. For County 1, we assume aggressive driving conditions. For
County 2, we assume gentle driving conditions. In line with these assumptions, the
average speed, sum of positive accelerations, and kinetic intensity values we consider
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for County 1 and County 2 are given in Table 4.1. The tolerances of the features
are taken as 5 km/h, 10 m/s2, 0.5 1/km, and 20 degC, respectively.

Table 4.1 Synthetic Data for Case Study 2

County 1 County 2

Average Speed [km/h] 75 30
Sum of Positive Accelerations [m/s2] 520 80

Kinetic Intensity [1/km] 4 1

Same as in the first case study, we calculate the annual average emissions and energy
consumption (averaged over all trips and days of the year) using Equations (4.4)
and (4.5), respectively. The results are shown in Table 4.2 below. The values in
parantheses are the standard deviations.

Table 4.2 Average annual energy consumption and emissions for aggressive and
gentle driving profiles

County 1 County 2

Average annual energy consumption [Wh/km] 970 (5.35) 908 (3.74)
Average annual emissions [g-CO2/km] 758 (1.63) 520 (3.09)

We observe a 7% increase in energy consumption in County 1 compared to County
2. Studies on passenger vehicles have shown that aggressive driving can increase en-
ergy consumption by 23−27% (Karabasoglu and Michalek, 2013; Mohammadnazar
et al., 2024). Our Random Forest model captures the increasing trend, however
the amount of increase could have been larger. Detailed investigation of both the
machine learning model and simulation framework is necessary to explore possible
causes of the discrepancy.
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5. CONCLUSION

In this study, we quantify the regional differences in the emission benefits of medium-
duty delivery vehicle electrification. A vital part of the simulation framework is the
Random Forest model which we develop to predict the unit energy consumption of
a battery electric delivery truck at a trip level. In order to make predictions at the
trip level, we devised an algorithm to identify trips from the source data. Our en-
ergy consumption model accounts for various factors such as ambient temperature,
driving profile, and road profile. Using our Random Forest model, we develop a
simulation framework which can predict the use phase emissions across the United
States. Using our framework, we perform two case studies. In both case studies,
we perform simulations for one year. In the first case study, we aim to quantify the
effect of ambient temperature on the regional variation in use phase emissions. We
simulate the annual energy consumption and annual use phase emissions in each
county across the United States. We observe that our model predicts higher energy
consumption values in regions with a colder climate. For example, we note a 10%
increase in the average annual energy consumption in the Upper Midwest compared
to a region with a milder climate such as Pacific Coast or Florida. This result is
in line with the literature as the energy consumption is expected to increase at low
temperatures due to the use of heater or decrease in the battery efficiency. However,
our model cannot capture the increase in the energy consumption in regions with a
hotter climate. The energy consumption is expected to increase at high tempera-
tures as well due to the use of air conditioning. One reason for this unanticipated
result might be that most of our trips were short, and it is possible that the driver
did not turn on the AC during the trip. The source data does not provide any
details regarding the driver behaviour during the trips. Regarding the use phase
emissions, the lowest and highest emissions are observed in the NPCC and MRO re-
gions, respectively point out the impact of electricity grid mix in regional emissions
variations. In the second case study, we attempt to quantify the effect of driving
profile on the use phase emissions. However, we were unable to come up with a
feature which would help us decide whether a region has an aggressive or a gentle
driving profile. Therefore, we perform our simulations with synthetic data. Our
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Random Forest model still captures the increase in energy consumption under an
aggressive driving profile, yet the amount of increase could have been larger if we
could find a better way of distinguishing between aggressive and gentle driving.

As future work, the robustness of our results can be tested under different charging
schemes or emission factors. Besides, to improve the accuracy of energy consumption
prediction, a neural network model can be developed. Finally, to investigate the
emission benefits potential of medium-duty delivery truck electrification further,
one may attempt to differentiate between the driving profiles of regions or consider
the impact of different factors on the use phase emissions such as road profiles.
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APPENDIX A
Table A.1 Whole Set of Parameters for the NREL Fleet DNA Data

Parameter Description

’BMU_Mode_SYS’ Battery management mode
’Battery_Current_SYS’ Battery current
’Battery_Voltage_SYS’ Battery voltage

’CT_Air_Con_Current_RD’ An indication of if the AC is in use
’CT_Heater_Current_RD’ Cabin heater current

’GPS_Altitude’ Altitude
’GPS_Latitude’ Latitude

’GPS_Longitude’ Longitude
’GPS_Speed’ Speed

’Highest_Cell_Temperature_SBS1’ Highest battery cell temperature 1
’Highest_Cell_Temperature_SBS2’ Highest battery cell temperature 2
’Highest_Cell_Temperature_SBS3’ Highest battery cell temperature 3
’Highest_Cell_Temperature_SBS4’ Highest battery cell temperature 4
’Highest_Cell_Temperature_SBS5’ Highest battery cell temperature 5
’Highest_Cell_Temperature_SBS6’ Highest battery cell temperature 6

’Highest_Cell_Voltage_SBS1’ Highest battery cell voltage 1
’Highest_Cell_Voltage_SBS2’ Highest battery cell voltage 2
’Highest_Cell_Voltage_SBS3’ Highest battery cell voltage 3
’Highest_Cell_Voltage_SBS4’ Highest battery cell voltage 4
’Highest_Cell_Voltage_SBS5’ Highest battery cell voltage 5
’Highest_Cell_Voltage_SBS6’ Highest battery cell voltage 6

’Lowest_Cell_Temperature_SBS1’ Lowest battery cell temperature 1
’Lowest_Cell_Temperature_SBS2’ Lowest battery cell temperature 2
’Lowest_Cell_Temperature_SBS3’ Lowest battery cell temperature 3
’Lowest_Cell_Temperature_SBS4’ Lowest battery cell temperature 4
’Lowest_Cell_Temperature_SBS5’ Lowest battery cell temperature 5
’Lowest_Cell_Temperature_SBS6’ Lowest battery cell temperature 6

’Lowest_Cell_Voltage_SBS1’ Lowest battery cell voltage 1
’Lowest_Cell_Voltage_SBS2’ Lowest battery cell voltage 2
’Lowest_Cell_Voltage_SBS3’ Lowest battery cell voltage 3
’Lowest_Cell_Voltage_SBS4’ Lowest battery cell voltage 4
’Lowest_Cell_Voltage_SBS5’ Lowest battery cell voltage 5
’Lowest_Cell_Voltage_SBS6’ Lowest battery cell voltage 6
’RD_Ambient_Temp_degC’ Ambient temperature

’RD_Cab_Temp_degC’ Cabin temperature
’SOC_SYS’ State of charge
’Timestamp’ Timestamp
’VS_DCMD’ Accelerator pedal position
’ms_nmot’ Motor speed
’ms_ths1’ Motor temperature sensor 3
’ms_ths2’ Motor temperature sensor 4
’ms_ths3’ Motor temperature sensor 5
’ms_ths4’ Motor temperature sensor 6
’ms_ths5’ Motor temperature sensor 7
’ms_tmf1’ Motor temperature sensor 1
’ms_tmc1’ Motor temperature sensor 2
’vs_24vbat’ 24V system voltage
’vs_bcmd’ Brake pedal position
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Table A.2 Regression Coefficients for LASSO

Predictor β |β|

Average positive acceleration 0.12795 0.12795
Average speed -0.12037 0.12037

Average speed - Squared 0.11789 0.11789
Gross vehicle weight 0.09813 0.09813

Average positive acceleration - Reciprocal 0.07067 0.07067
Duration -0.06785 0.06785

Average ambient temperature -0.06771 0.06771
Kinetic intensity - Log 0.06758 0.06758

Net elevation change per distance 0.06412 0.06412
Kinetic intensity 0.06392 0.06392

Average positive acceleration - Squared -0.06031 0.06031
Average ambient temperature - Power 5 -0.05220 0.05220

Sum of positive accelerations - Log 0.05168 0.05168
Average ambient temperature - Cubed 0.05123 0.05123
Sum of positive accelerations - Squared 0.04427 0.04427

Sum of positive accelerations -0.04385 0.04385
Kinetic intensity - Squared -0.04079 0.04079

Sum of positive accelerations - Reciprocal -0.04054 0.04054
Average ambient temperature - Power 4 0.03041 0.03041

Kinetic intensity - Reciprocal 0.02223 0.02223
Maximum speed 0.01678 0.01678

Average speed - Reciprocal 0.00329 0.00329
Average ambient temperature - Squared -0.00020 0.00020

Average speed - Log 0.00000 0.00000
Average positive acceleration - Log 0.00000 0.00000
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Table A.3 Marginal Emission Factors for FRCC [kg-CO2/MWh]

Hour of Day Summer Trans Winter

0 539 567 491
1 514 552 479
2 497 435 496
3 442 425 477
4 454 512 502
5 447 451 428
6 356 426 405
7 474 473 446
8 499 519 449
9 490 512 468
10 441 462 464
11 480 490 472
12 531 541 482
13 522 483 482
14 511 437 477
15 530 448 491
16 507 464 425
17 556 507 441
18 488 454 455
19 460 469 468
20 492 525 471
21 449 425 488
22 489 480 486
23 468 493 498
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Table A.4 Marginal Emission Factors for NPCC [kg-CO2/MWh]

Hour of Day Summer Trans Winter

0 494 417 440
1 440 394 478
2 415 466 473
3 451 488 477
4 462 421 436
5 403 386 386
6 386 383 367
7 491 432 356
8 481 436 385
9 479 432 450
10 479 448 396
11 461 438 457
12 462 427 411
13 459 428 417
14 443 413 423
15 463 418 424
16 471 431 413
17 484 441 424
18 510 407 445
19 491 457 445
20 515 440 427
21 490 400 425
22 486 410 428
23 451 403 449
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Table A.5 Marginal Emission Factors for MRO [kg-CO2/MWh]

Hour of Day Summer Trans Winter

0 749 709 766
1 832 818 846
2 844 815 871
3 837 790 830
4 843 787 822
5 854 732 766
6 847 755 722
7 809 838 749
8 836 744 841
9 844 761 794
10 741 769 795
11 709 735 786
12 695 729 744
13 775 703 775
14 761 775 783
15 794 768 810
16 771 794 774
17 777 783 764
18 751 757 813
19 735 723 781
20 739 756 788
21 763 745 818
22 756 823 823
23 767 824 860
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Table A.6 Marginal Emission Factors for RFC [kg-CO2/MWh]

Hour of Day Summer Trans Winter

0 690 705 630
1 723 732 699
2 702 667 642
3 629 650 729
4 641 635 659
5 676 606 578
6 695 637 552
7 697 615 619
8 708 627 616
9 672 635 631
10 662 598 636
11 628 631 654
12 597 620 624
13 611 602 622
14 607 608 670
15 641 604 627
16 652 634 561
17 644 652 571
18 617 644 667
19 623 616 654
20 623 631 659
21 635 605 624
22 603 551 613
23 653 515 567
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Table A.7 Marginal Emission Factors for SERC [kg-CO2/MWh]

Hour of Day Summer Trans Winter

0 599 738 559
1 669 657 594
2 664 584 609
3 599 607 603
4 592 594 624
5 645 635 619
6 689 609 595
7 623 633 596
8 674 630 639
9 634 639 584
10 616 600 584
11 620 615 591
12 595 617 582
13 636 618 591
14 621 642 574
15 656 619 570
16 662 647 590
17 632 608 625
18 631 621 581
19 629 651 637
20 626 640 588
21 620 627 628
22 641 592 619
23 625 653 569
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Table A.8 Marginal Emission Factors for SPP [kg-CO2/MWh]

Hour of Day Summer Trans Winter

0 695 637 637
1 751 695 659
2 762 703 712
3 744 734 738
4 679 666 715
5 696 657 667
6 735 592 614
7 724 684 596
8 663 600 694
9 688 639 638
10 652 630 680
11 635 651 675
12 628 641 686
13 609 635 688
14 624 639 683
15 657 598 701
16 631 612 703
17 629 647 637
18 626 640 642
19 601 633 718
20 618 637 745
21 626 644 695
22 648 638 724
23 680 605 656
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Table A.9 Marginal Emission Factors for TRE [kg-CO2/MWh]

Hour of Day Summer Trans Winter

0 649 588 606
1 702 640 630
2 664 676 648
3 659 751 658
4 656 677 655
5 659 625 577
6 593 542 530
7 684 692 569
8 632 544 572
9 648 592 577
10 639 581 595
11 582 531 565
12 524 543 520
13 512 537 541
14 514 525 576
15 506 552 588
16 513 573 605
17 515 549 581
18 504 564 555
19 527 527 628
20 514 571 641
21 485 549 594
22 510 547 556
23 617 550 553
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Table A.10 Marginal Emission Factors for WECC [kg-CO2/MWh]

Hour of Day Summer Trans Winter

0 513 534 543
1 472 501 529
2 504 511 479
3 512 596 498
4 565 592 525
5 570 606 560
6 634 584 585
7 607 533 561
8 587 551 569
9 545 567 545
10 576 519 552
11 599 482 532
12 572 553 538
13 554 606 524
14 529 528 518
15 511 559 593
16 516 591 546
17 556 551 567
18 546 516 534
19 579 518 529
20 583 581 601
21 595 592 570
22 614 644 568
23 542 605 569
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