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ABSTRACT 

 

 

 

FINITE ELEMENT ANALYSIS OF DEGRADATION, GROWTH FACTOR 

RELEASE AND SIGNALING PATHWAY INTERACTIONS IN A 3D SCAFFOLD  

 

SEZEN ÖZTÜRK 

 

Materials Science and Nano Engineering MSc. Thesis, August 2024 

 

 

Thesis Supervisor: Assoc. Prof. Güllü Kızıltaş Şendur  

 

 

Keywords: Scaffold degradation, signaling pathway, growth factor release, bone 

healing, FEM, optimization 

 

Bone scaffolds promise a great potential to gain new treatment strategies to control bone 

healing and regeneration processes due to their tunable nature. Bone tissue engineering 

(BTE) gains enduring attention of researchers from various disciplines since it is a 

multidisciplinary field. This thesis provides a comprehensive examination modeling 

degradation of a 3D porous polymeric bone scaffold aiming to enhance bone healing with 

growth factor release and the effect of signaling pathway interactions. A set of reaction-

diffusion equations were solved using COMSOL Multiphysics software which employs 

finite element method (FEM). In the first part, we performed a parametric study with the 

developed FEM model focusing on scaffold degradation, BMP-2 growth factor release 

and degradation rates. To validate our 3D model, a previous validation case was 

performed on a simpler geometry. Next, a signaling pathway evolving due to the released 

BMP-2 was also modeled deriving Ordinary Differential Equations (ODEs) based on 

mass action law. The ODE system was subject to Michaelis Menten approach, and a 

detailed mathematical derivation is presented. In the third part, two optimization 

algorithms were developed to find optimum values for some selected set of the previously 

examined parameters effecting the scaffold degradation and growth factor release 

kinetics. This thesis forms the groundwork for an initial FEM model to be used in 

analyzing 3D bone scaffolds for degradation and release kinetics in association with 
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signaling pathway interactions. This model should be very useful for various bone 

scaffold design studies with integration of existing key mechanisms such as angiogenesis 

into the presented model. 
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ÖZET 

 

 

 

3B KEMİK İSKELESİNDE DEGRADASYON, BÜYÜME FAKTÖRÜ SALINIMI VE 

SİNYAL YOLU ETKİLEŞİMLERİNİN SONLU ELEMANLAR YÖNTEMİ (FEM) 

İLE MODELLENMESİ 

 

SEZEN ÖZTÜRK 

 

Malzeme Bilimi ve Nano Mühendislik Yüksek Lisans Tezi, Ağustos 2024 

 

 

Supervisor: Assoc. Prof. Güllü Kiziltas Sendur 

 

 

Keywords: Kemik iskelesi degradasyonu, sinyal yolu, büyüme faktörü salımı, kemik 

iyileşmesi, FEM, optimizasyon 

 

Kemik iskeleleri, ayarlanabilir doğası sayesinde kemik iyileşmesi ve rejenerasyonunu 

kontrol etmek için yeni tedavi stratejileri konusunda büyük potansiyel vaat etmektedir. 

Kemik doku mühendisliği (BTE) çok disiplinli bir alan olduğundan çeşitli disiplinlerden 

araştırmacıların dikkatini çekmektedir. Bu tez çalışması, büyüme faktörü salınımı ve 

sinyal yolu etkileşiminin etkisini artırarak kemik iyileşmesini amaçlayan 3D gözenekli 

polimerik kemik doku iskeletinin bozulmasını modellemeyi kapsamlı bir şekilde 

incelemektedir. Bir dizi reaksiyon-difüzyon denklemi, sonlu elemanlar metotu (FEM) 

kullanan COMSOL Multiphysics yazılımıyla çözülmüştür. Tezin ilk bölümünde, 

geliştirilen FEM modeli kullanılarak iskele bozulması, BMP-2 büyüme faktörü salımı ve 

bunun bozulmasının hızlarına odaklanılarak bir parameter çalışması yapılmıştır. Bu 

modelin doğrulaması için, daha basit bir geometri üzerinde bir doğrulama çalışması 

gerçekleştirilmiştir. Ardından, salınan BMP-2'nin neden olduğu bir sinyal yolu da kütle 

korunumu/hareketi yasasına dayalı bir dizi adi diferansiyel denklem (ODE) türetilerek 

modellenmiştir. ODE sistemi, Michaelis-Menten yaklaşımına tabi tutulmuş ve detaylı 

matematiksel türetim sunulmuştur. Tezin üçüncü bölümünde, iskelet bozulması ve 

büyüme faktörü salınım kinetiğini etkileyen daha önce incelenen bazı parametrelerin 

optimum değerlerini bulmak için iki optimizasyon algoritması geliştirilmiştir. Bu çalışma, 

sonlu elemenlar yöntemine dayalı 3 boyutlu kemik iskelelerinin degradasyon ve büyüme 
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faktörü salınımı kinetiklerinin hücre içi sinyal yollarıyla etkileşimini analiz etmek için bir 

temel oluşturmaktadır. Dolayısıyla, bu tez çeşitli kemik iskelesi tasarım çalışmalarının 

halihazırda varolan damarlanma ve kemik yenilenmesi çalışmalarına entegrasyonu için 

oldukça yararlı bir çalışmadır. 
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CHAPTER 1 

 

 

 

1. INTRODUCTION 

 

 

1.1.Motivation 

 

Musculoskeletal fractures affect thousands of people permanently, causing tissue loss and 

anomalies in daily life. Skeletal autografts and allografts remain the gold standard for 

treating large bone defects, with over 500,000 procedures performed annually in the US, 

representing nearly 20% of all bone treatments (Hettiaratchi & Coulter, 2016). In the 

United States and Europe alone, half a million patients require bone substitutes each year, 

with global bone fracture costs estimated at US$5.5 billion annually and bone repair at 

US$17 billion (Tajvar et al., 2023). Despite medical advances, bone grafting techniques 

face limitations such as low tissue availability, host immune rejection, and infections that 

may require additional surgeries. Bone tissue engineering (BTE) has emerged as a 

promising alternative, leveraging scaffolds, growth factors, and stem cells to enhance 

bone healing and regeneration. This thesis focuses on modeling a 3D porous bone scaffold 

with particular emphasis on specific mechanisms such as degradation, growth factor 

release and signaling pathway interaction. 

Integrating drug delivery systems (DDS) within scaffolds offers significant advantages 

for BTE, enabling controlled release of growth factors essential for promoting 

osteogenesis and enhancing bone healing. Bone tissue scaffolds hold great promise due 

to their customizable nature, allowing fine-tuning of properties to support specific 

functions. Advances in production techniques and computational modeling in BTE are 

enabling the design of scaffolds that meet precise biological and mechanical needs, 

providing a cost-effective alternative to traditional bone transplants. In this thesis we 

develop a model taking into account the BMP-2 release from degrading polymer scaffold. 
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The effect of released BMP-2 on transcription factors which are regulated by BMP-2 are 

numerically investigated. The selected signaling pathway involves Smad1/5, Runx2 and 

Osx. 

Computational modeling utilizes advanced resources to explore the complex mechanisms 

of physical systems through mathematical models. This method involves adjusting inputs 

and boundary conditions in simulations to evaluate diverse scenarios and outcomes. The 

ability to assess scaffold designs before fabrication, ex vivo testing, and in vivo 

implantation saves time and money while providing critical design insights. By virtually 

modifying shape and material properties, various scaffold designs can be evaluated 

without the need for actual manufacturing. Computational outputs are typically validated 

by comparing them with experimental findings. Especially, computational studies allow 

researchers to predict cellular responses to different stimuli, identify potential regulatory 

nodes, and understand the impact of molecular interactions on overall cell behavior which 

if performed experimentally requires lots of time and is extremely hard to achieve. This 

capability is particularly important for elucidating the mechanisms underlying diseases, 

discovering new drug targets, and designing effective therapeutic interventions. Finite 

Element Method (FEM) is a powerful computational technique frequently employed in 

BTE to analyze and predict the behavior of biological structures under different 

conditions. FEM involves discretizing a complex structure into smaller elements and 

simulating their responses to various forces and conditions. This allows researchers to 

develop scaffolds with properties that mimic the mechanical behavior of natural bone, 

improving BTE outcomes. In this thesis we rely on FEM to develop our GF release 

integrated scaffold degradation model in COMSOL Multiphysics software and carry out 

an extensive parametric study to investigate the interplay between the degradation and 

release parameters and the resulting time dependent concentration profiles. 

Optimization algorithms are crucial for advancing scaffold design and functionality since 

they take advantage of mathematical techniques to find the best design that satisfies 

multiple conflicting criteria such as in the case of bone scaffold design considering 

biodegradability. Optimization allows systematic exploration of design parameters and 

configurations, identifying optimal combinations that maximize performance and 

efficiency. These algorithms can also incorporate multiple objectives, balancing factors 

such as drug release and degradation behavior to meet the complex requirements of bone 

tissue regeneration. Optimization algorithms significantly reduce the time and resources 

needed for scaffold development, accelerating the process and enhancing the 



 

3 

 

effectiveness of BTE solutions. Therefore, in the second part of the thesis we integrate 

the developed FEM based integrated release-degradation-signaling pathway model in the 

first part to an optimization framework in MATLAB with a subset of selected design 

variables. 

 

 

1.2.Objective of the Study 

 

The main objective of this study is to develop a Finite Element Analysis (FEA) based 

analysis framework of a 3D scaffold considering different mechanisms known to affect 

bone regeneration. This study considers scaffold degradation and growth factor release 

coupled with the activated signaling pathway by the released growth factor. In the first 

part of the thesis, we evaluate in depth the affecting parameters of this system modeled 

in the form of a combination of Partial Differential Equations and Algebraic Equations. 

Also, another aim of the thesis is to form an initial design optimization toolset for the 

design of affecting parameters utilizing the developed FEA analysis model. A reaction-

diffusion system of equations is used to model a 3D porous bone tissue scaffold from 

which the initially loaded growth factor is released. This equation system is solved using 

a FEM-based numerical solver software in COMSOL. Tailoring the degradation rate, 

degradation mode of the scaffold is crucial before performing in vivo assessments. This 

thesis offers a validated FEM model with a parametric analysis including a vast number 

of simulations to show the tunability and the effect of the degradation and release 

parameters on the resulting concentration solutions of the coupled system. To be more 

specific, we have selected five parameters, hydrolysis reaction rate of the scaffold, 

diffusivity of water, degradation rate, release constant, degradation constant of growth 

factor for the release dynamics. Observations were performed in terms of determining the 

most effective ones on the system, the interplay between these five parameters and their 

tunable ranges for the designed system. Other than FEM, an ODE based signaling cascade 

was modeled to analyze down-regulatory events of BMP-2 since its downregulated 

signaling pathway is crucial for bone regeneration. The temporal changes in Smad1/5, 

Runx2 and Osx which are the well-known transcription factors were studied by 

considering the output of the FEM model. Michaelis-Menten based on Hill function was 

employed for the signaling events, including their detailed derivations for the pathway. 

Furthermore, two optimization models were simulated to validate the selected parameters 
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of the integrated FEM model and provide an initial design framework to be used in future 

studies. The objective functions aim to minimize the deviations of concentration changes 

in scaffold and growth factor obtained from FEM solution incorporating the simulation 

and the optimization tools. In future, this validated design framework can be used with 

other design requirements and constraints addressing various scaffold design problems. 

 

 

1.3.Literature Review 

 

The field of bone tissue engineering (BTE) has become increasingly important in tackling 

the difficulties associated with the repair of bone defects. It improves bone healing and 

regeneration by utilizing scaffolds, growth factors (GFs), and stem cells in concert. Tissue 

scaffolds are highly customizable for a wide range of applications, which makes them 

highly promising for directing and assisting the regeneration process. To construct 

optimal scaffolds that match the multi-scale porous structure required for bone tissue 

scaffolds (BTS), researchers have delved into multiple approaches for scaffold design that 

emerged in parallel to recent developments in computer modeling and simulation. This 

part aims to give a brief summary on previous computational studies focusing on drug 

release, degradation, intracellular signaling pathways, and existing optimization 

algorithms highlighting the gaps to be filled with respect to these studies in this thesis. 

Numerous studies examining constitutive computational models with the intention of 

capturing as many aspects as possible of engineered bone scaffolds are abundant in the 

literature. The literature has been carefully examined and outlined by some researchers 

(Fletcher & Osborne, 2022; Khotib et al., 2021; N. Musthafa et al., 2024). The 

degradation of polymeric materials has been numerically analyzed more than a decade, 

for example in the early work of Gopferich et al. followed and extended by other authors 

in tissue engineering studies (Adachi et al., 2006; Göpferich, 1996; Sanz-Herrera et al., 

2009). The study by Adachi and his coworkers provides a framework for the best possible 

design of the porous scaffold microstructure using a 3D simulation of bone regeneration, 

which entails the formation of new bone and scaffold degradation but ignoring drug 

release effect in their overall design. It was simply assumed that the rate at which the 

hydrolysis of scaffolds causes a decrease in their mechanical properties was related to the 

amount of water that diffuses from the surface into the bulk material. To account for the 

formation of new bone on both scaffold and bone surfaces, the rate equation of 
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mechanically stimulated trabecular surface remodeling was utilized. They performed 

their simulation using a voxel finite element to mesh their lattice-based scaffold (Adachi 

et al., 2006). Later, a multiscale mathematical model was proposed by Sanz-Herrera et al. 

that integrates two different scales: the microscopic level, which represents the pore level 

of the scaffold, and the macroscopic level, which represents the entire bone organ and 

scaffold region where the new bone formation was assessed (Sanz-Herrera et al., 2009). 

They employed a homogenization theory to connect the two distinct levels. The 

microscopic level was focused on the scaffold's pore structure, taking into account cell 

migration, proliferation, differentiation based on Fickian diffusion for vascularization, 

and the production of bone matrix, while the macroscopic level took into account factors 

like mechanical loads and diffusion processes. There was no growth factor release and 

signaling pathways in cellular activities accounted for, so the only parameters in their 

cellular analysis were mechanical load and diffusion. They have used ABAQUS software 

with a voxel mesh based on FEM which they have adapted from Adachi et al. 's work 

(Sanz-Herrera et al., 2009). Another study was performed by Rothstein et al. presenting 

a unified mathematical model to predict controlled release from surface and bulk eroding 

polymer matrices (Rothstein et al., 2009). This model incorporates degradation kinetics 

and drug diffusion mechanisms, providing a comprehensive understanding of release 

dynamics. They have assumed uniform drug loading to their non-porous 2D axisymmetric 

spherical scaffolds since the loading efficiency is a parameter for release dynamics. 

Moreover, pursuing surface or bulk degradation scaffolds offers different release kinetics. 

In their study, the effect of scaffold size and diffusivity of water was analyzed on 

cumulative protein release. They have created their model in MATLAB (MathWorks, 

r2007a), then solved it in a FEM-based simulation software, COMSOL Multiphysics 

(v3.1) (Rothstein et al., 2009). 

An agent-based model for studying neovascularization in porous scaffolds was created 

by Artel et al. (Artel et al., 2011). The process of sprouting angiogenesis, in which new 

blood vessels form from already existing ones, is simulated by the model. They have 

made use of the Recursive Porous Agent Simulation Toolkit (Repast) in JAVA to involve 

both event-driven and time-driven behaviors of the capillary segments. Their scaffold was 

assumed to be non-degradable, and no VEGF load was performed initially. However, they 

have solved a simple equation for VEGF concentration profile which calculates the 

concentration profile in only one direction which provides a constant protein profile 



 

6 

 

throughout the simulation and reflects a steady-state diffusion situation (Artel et al., 

2011). 

Later, Huang et al. developed a model focused on the dual delivery of growth factors to 

create temporally stable concentration profiles (G. X. Huang et al., 2015). The partial 

differential equations controlling the diffusion and release kinetics of the growth factors 

inside the scaffold were solved with FEM using COMSOL Multiphysics. However, their 

PDEs accounted for only variables such as growth factors, their antibodies, which were 

also loaded to scaffolds, and GF-antibody complexes. Their focus has been on the 

biological responses that follow the controlled release of growth factors from non-

degrading scaffolds that are designed layer by layer. Although one of main focuses was 

the biological assessment driven by TGF-β and/or BMP-4, no computational work was 

performed in that aspect. They manufactured their scaffolds in accordance with the best 

designs and analyzed mesenchymal stem cells (MSCs) differentiation into chondrogenic 

and osteogenic lineages by transcription factor expression such as Runx2 and osteopontin 

(OPN) with Western blotting (G. X. Huang et al., 2015).  

Even though the mentioned studies have utilized a great base for the importance of the 

computational tools in BTE, their aspect on overall bone regeneration process was very 

limited. A more comprehensive study was performed by Sun et al., designing a 3D multi-

scale model to simulate multiple biological processes, including CaP scaffold 

degradation, exogenous growth factor release, osteogenic differentiation and 

proliferation, angiogenesis, and nutrient transport with an integrated approach (X. Sun et 

al., 2013).The mathematical approach involves a system of nonlinear partial differential 

equations (PDEs) for scaffold scale analysis and nutrient transport, a set of ordinary 

differential equations to simulate the intracellular signaling pathways, and nonlinear 

probability functions to represent angiogenesis and cellular dynamics. Moreover, 

integrating their previous work in Sun et al., they accounted for cellular population 

dynamics based on stochastic differential equations (SDEs) (X. Sun et al., 2012). The 

numerical methods employed in their study include the implicit Euler method for solving 

the nonlinear ODEs and the Euler-Maruyama method for the SDEs. The model 

simulations were implemented using MATLAB (MathWorks, R2007b). Their model 

relied on an intracellular signaling pathway driven by three important growth factors, 

BMP-2, TGF- β and Wnt. In their signaling cascade, BMP-2 and TGF- β activate a Smad-

Runx2 pathway while Wnt is the up-regulator of β-Catenin. Their dynamic concentrations 

were then differentiation and proliferation of mesenchymal stem cells (MSCs) into 
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osteoblasts and osteoclasts. They also performed a pore size analysis for cumulative 

release of BMP-2, number of endothelial cells and active osteoblasts, and bone mass (X. 

Sun et al., 2012, 2013). Wang et al. (2020) developed a 3D computational model similar 

to Sun et al.'s study eliminating multiple growth factor release effects, intracellular 

pathway dynamics and cellular phenotype switches, but keeping VEGF release, nutrient 

transport and the angiogenesis mechanism (L. Wang et al., 2020). They integrated their 

model with mechanical stimulation on both scaffold and interstitial fluid (filling the 

porous domain of scaffolds) domains by evaluating strain energy density and scaffold 

degradation based on a mechanically loaded scaffold scenario. Their new approach was 

to consider change in diffusion coefficients of transportation elements such as VEGF and 

oxygen, based on porosity creation time due to scaffold degradation. The numerical 

implementation of the model employed the finite element method (FEM) on ABAQUS 

software using Euler finite difference approximation (L. Wang et al., 2020). The main 

differences between our study and Wang et al. 's are the subset of mechanisms such as 

degradation, GF release. They modeled the degradation of scaffold using an exponential 

function representing initial porosity effect and resulting time delay starting from zero 

porosity of bulk scaffold. We did not consider change in porosity; however, we employed 

a second order reaction rate expression representing the irreversible hydrolysis of 

polymer. Also, they used a power function to relate initially loaded growth factor amount 

to released GF amount. Moreover, they did not involve consequent signaling pathway 

effect on bone regeneration which is crucial. Based on Sun et al. 's work, we implemented 

the signaling pathway interactions affected by the released GF amount while the time 

dependent released GF amount modeled with Michaelis Menten approach  (X. Sun et al., 

2013). The signaling pathway interactions were constructed considering regulatory 

systems of BMP-2 under quasi static assumptions, and Smad1/5, Runx2 and Osx were 

the part of this pathway. Furthermore, we conduct a parametric analysis for the parameters 

which are crucial in this degradation-GF release system performed based on FEM. To the 

best of our knowledge, an in-depth analysis of a degradation-GF release model in FEM 

does not exist. It is noted that the 3D model geometry and parametric data is initially 

based on the paper information and correspondence with authors. Next, we developed an 

initial optimization framework on the validated integrated FEM model. As a result of a 

literature review for parameter optimization for 3D scaffold degradation and GF release, 

there are no previous studies found. 
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1.4.Contributions 

 

The tuning ability of patient and fracture specific growth factor release have been a well 

sought topic in bone tissue engineering. The high cost and time-consuming nature of 

experimental studies slows down and makes it difficult to present through research on 

BTE applications. Computational methods offer a valuable research area to fasten in vitro, 

and in vivo analysis required for bone healing strategies. Moreover, they have the ability 

to generate bone scaffolds with precise qualities, providing a strong support for the 

implementation of tissue engineering in the future, particularly in clinical applications. 

Although the literature is rich in modeling different mechanisms related to the 

mechanical, biological and chemical features of the bone regeneration process, 

computational studies focusing on the integration of multiple mechanisms for 3D 

scaffolds is still rare. To the best of our knowledge, an in-depth parametric study of a 

coupled degradation- GF release model for 3D scaffolds incorporating signaling pathway 

interaction mechanism does not exist. Similarly, design optimization studies based on the 

three-way integrated scaffold model are yet to be conducted. Within this thesis we aimed 

to develop a computational bone scaffold analysis model based on an existing model in 

literature performed by Sun et al. and used it for conducting an extensive parametric 

analysis of 3D scaffold behavior, in particular resulting polymer and BMP-2 

concentration profiles using FEA in COMSOL Multiphysics (X. Sun et al., 2013). A 

secondary objective was to present an initial design optimization framework focusing on 

the developed and validated model. Since coupling intracellular signaling pathway 

dynamics and its regulatory effect on gene transcription, which is a requirement for 

cellular activities, is inadequately studied with computer-aided bone scaffolding, this 

thesis tried to shed light on this missing feature.  

In summary, one of the unique focuses of this thesis was to provide an in-depth parametric 

analysis for a 3D biodegradable scaffold which exogenously releases a growth factor, 

namely BMP-2 and degrades over time, solved numerically employing FEM. The 

validation of the developed model was provided by an in-depth parametric analysis to 

observe degradation modes of the designed bone scaffold and its release dynamics in 

comparison to the study by Sun et al. (X. Sun et al., 2013). Thereafter, the dynamics of 

signaling cascade based on phosphorylation and dephosphorylation events of 

transcription factors activated by the released growth factor was analyzed. Completing 
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the parametric analysis that included vast number of simulations runs, the second 

contribution was to develop an optimization framework that was used to perform the self-

validation of the selected parameters (the parameter selection was made based on both 

literature and parametric analysis results) used in the integrated FEM model. Two 

sequential optimization studies using a gradient based optimization algorithm in 

MATLAB were presented targeting polymer and GF concentrations at certain timeframes 

based on the degradation-release integrated FEM model developed in the first part of the 

thesis. 

 

 

1.5.Organization of the Thesis 

 

Chapter 1 introduces bone regeneration mechanisms considering previous studies in 

literature. This chapter delves into the motivations and objectives of this study. A 

comprehensive literature review specifically overviewing similar previous work which 

primarily aimed to construct multi-level computational simulation models considering 

different aspects involved in bone regeneration is provided. It introduces the main goals 

and maps the gaps that are aimed to be filled with this thesis. 

Chapter 2 gives the necessary background information to understand the complex nature 

of the bone organ and related mechanisms. This chapter summarizes the use of 

biodegradable bone scaffolds and drug delivery strategies adapted to bone tissue 

engineering for bone healing and regeneration. Additionally, it provides an overview of 

numerical methods, especially the finite element method, and summarizes the importance 

of computational tools in this research field. 

Chapter 3 introduces the basic requirements of a bone scaffold while focusing on the 

mathematical approaches for biodegradable scaffold design and drug release kinetics. 

Also, the biological connection between a biological signaling pathway driven by the 

growth factors, BMP-2, which are essential for enhanced bone healing strategies is 

presented. For the modeling part, it summarizes the initial validation study in a 2D 

geometry and then details the 3D porous scaffold model. After, it unveils the details of 

mathematical derivations of Michaelis Menten law and Hill function for enzyme-

substrate kinetics to be applied on interactions between growth factors and transcription 

factors based on mass action law. Then, the optimization algorithms targeting to find 
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optimal values of the important parameters decided based on the 3D model and its 

parametric analysis were provided.  

Chapter 4 provides the tabular and graphical results of the FEM model, signaling 

interactions and optimization algorithms. First, the results of the background validation 

study are presented. Then, polymer and growth factor concentrations obtained from the 

3D model are presented. The analysis of the concentration profiles of degrading polymer, 

released growth factor is explained based on the parametric study performed using finite 

element simulations. Afterwards, the signaling pathway components’ dynamics are 

unveiled. Later, the optimization algorithm and its results are explained. 

Chapter 5 summarizes the key conclusions and implications of the study. This chapter 

aims to bring together all the provided information and reveal the contributions of this 

work while explaining the possibilities of future research studies. 
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CHAPTER 2 

 

 

 

2. BACKGROUND AND LITERATURE REVIEW 

 

 

2.1.Formation and Regeneration of Bone 

 

The skeletal system is a body system composed of bone and cartilage tissues. Bone is a 

connective tissue that has multiple functions in the body, including protecting soft inner 

organs, storing minerals and mesenchymal stem cells inside the bone marrow, functioning 

as a reservoir of growth factor and cytokines, and giving its shape to the body with its 

load bearing capacity. There are 213 bones in the body which can be categorized into four 

groups, namely long bones, short bones, flat bones and irregular bones (B. Clarke, 2008).  

Bones include two sections inside them, which are called cancellous and cortical bone as 

shown in Figure 1. The cancellous bone or trabecular bone has a spongy lattice structure. 

The cortical bone or compact bone is dense and forms the outer shell that surrounds the 

marrow space (Hettiaratchi & Coulter, 2016). Although cancellous bone has a larger 

surface area than cortical bone, 80% of total bone mass belongs to cortical bone due to 

its denser structure. Both sections consist of osteons. Cortical osteons are composed of 

Haversian canals (Haversian system) which are longitudinal central canals. They are 

surrounded by equally sized concentric lamellar host osteocytes. Haversian canals 

vascularize bone through blood vessels that penetrate cortical bone from the periosteum 

(Kim et al., 2015). The periosteum is a connective tissue that packs enclosed in the 

cortical bone. Bone is made up of both organic (70-90%) and inorganic (10-30%) 

elements (Ansari, 2019). Inorganic elements are largely minerals including calcium 

phosphate and calcium carbonate. These minerals crystallized to form hexagonal 

hydroxyapatite (Ca10(PO4)6(OH)2). The Organic part is formed of almost 90% fibrous 

proteins and with the remainder being non-collagenous proteins, lipids, and other bone 
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matrix proteins such as osteopontin (OPN) (Ansari, 2019; B. Clarke, 2008; Hettiaratchi 

& Coulter, 2016). Cartilage is a collagen-based connective tissue that covers movable 

parts of bone. Articular cartilage is a gel-like tissue that is made up of large protein-

polysaccharide molecules providing a smooth and lubricated surface for joints and 

lowering the friction coefficient at load bearing surfaces (Lanza, 2014). 

 

 

Figure 1: Hierarchical structure of a long bone from osteons through cancellous and 

cortical bone (Liebschner & Wettergreen, 2003). 

 

Bone cells play essential roles in the maintenance, growth, and repair of bone tissue. They 

can be categorized into four main types: osteoprogenitor cells, osteoblasts, osteocytes, 

and osteoclasts. They are very distinct in their duties however their roles are highly 

interconnected. Osteoprogenitor cells are precursor cells that are derived from stem cells 

and have the ability to form osteoblasts. They are found in both the periosteum (the outer 

layer of bone) and the inner part of bone (Caplan, 2001). Osteoblasts are responsible for 

bone production and are found near the surface of bones. They secrete collagen, alkaline 

phosphatase and other extracellular matrix (ECM) components. They also create space 

for calcium and phosphate enabling them to deposit these minerals(Lanza, 2014). In this 

way, osteoblasts can start bone formation via mineralization. Upon completion of 

mineralization, they either become surrounded by ECM and differentiate into osteocytes 

or approximately 50-70% of them undergo apoptosis (B. Clarke, 2008). Osteocytes are 
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found in osteons and are responsible for homeostasis. They regulate oxygen and mineral 

levels as well as orchestrating bone remodeling via signaling with both osteoblasts and 

osteoclasts. They are able to detect mechanical loads and use this information to regulate 

bone metabolism and remodeling (Tu et al., 2015). Osteoclasts are large and 

multinucleated cells, and their duty is bone resorption. Osteoclasts are derived from 

mononuclear precursor cells of the monocyte-macrophage lineage (B. Clarke, 2008). 

They can travel to the specific defective sites on the bone surface. They secrete acid 

phosphatase and enzymes to dissolve inorganic compounds of bone. Thus, they eliminate 

defective sites in bone. Breaking down defective sites allows bone remodeling and 

conserves mechanical strength of bone (Lanza, 2014). 

 

 

2.1.1. Formation of Bone 

 

Bone formation (ossification) occurs through two mechanisms during fetal development: 

intramembranous ossification and endochondral ossification. Intramembranous 

ossification is mainly responsible for the formation of flat bones like skull bones. 

Mesenchymal stem cells (MSCs) residing in the embryonic connective tissue differentiate 

into osteoprogenitor cells. They further differentiate to form osteoblasts. Osteoblasts 

clusters and secrete collagen and organic components creating a calcification center and 

osteoids (Caplan, 2001; Lanza, 2014). Osteoids mineralize with the presence of calcium 

phosphate and form a bone matrix. Eventually, osteoblasts derived from squamous MSCs 

create trabeculae. The calcification center becomes an ossification center and osteoblasts 

become buried in the newly formed matrix, later differentiating into osteocytes. 

Developing bone becomes a network of trabeculae and forms spongy bone. Also, MSCs 

at the surface of developing bone condense and creates a dense outer layer which is called 

periosteum (Fratzl & Weinkamer, 2007). Contrary to intramembranous ossification, 

endochondral ossification starts with a hyaline cartilage model, which is the first of five 

steps as shown in Figure 2. In the first step, mesenchymal stem cells differentiate into 

chondrocytes which anticipates the hyaline cartilage model. The cartilage model has a 

rough shape of the future bone and consists of the primary ossification center in the 

middle. Chondrocytes secrete extracellular matrix rich in collagens while the bone draft 

enlarges (hypertrophy) through proliferation and matrix production. They also synthesize 

alkaline phosphate for mineralization of the matrix. Meantime, due to the bone collar, 
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there is no nutrition diffusion to the inside of the bone, thus blood vessels are formed 

around the bone in the fourth step (Lanza, 2014). Then hypertrophic chondrocytes are 

invaded by specialized osteoclasts (chondroclasts) and undergo apoptosis. In the second 

step, osteoblasts differentiate into osteoclasts in the periosteum, which is the dense outer 

layer. As the chondrocytes die and osteoclasts degenerate the calcified regions in the 

fourth step, they create spare regions for blood vessels to grow into the matrix. Osteoclasts 

also break down spongy bone and form the medullary cavity which then contains bone 

marrow  (Lanza, 2014; Maes & Kronenberg, 2011). 

 

 

Figure 2: Schematic of endochondral ossification for long bone formation and 

development (Maes & Kronenberg, 2011). 

 

 

2.1.2. Bone Healing Cascade 

 

Bone fracture healing is a complex process that involves various proteins and 

components. Interestingly, during the bone fracture healing of an adult, the 

morphogenetic signaling pathway activations are the same as the ones during embryonic 

skeletal development (Einhorn & Gerstenfeld, 2015).  Bone fracture healing mechanisms 

can be divided into two mechanisms: primary and secondary healing  (M. Wang et al., 

2024). The primary mechanism occurs when the healing process does not require 
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formation of a hematoma. It is possible when the fracture ends are almost aligned and 

there is no critical-sized defect or gap. Osteoclasts and osteoblasts cooperate in the 

primary healing, osteoclasts create an empty cross line at fracture site by resorption and 

then osteoblasts start a remodeling process to fill the empty site with woven bone 

(Einhorn & Gerstenfeld, 2015). 

 

Figure 3: The initial healing can by histological appearance be divided in A) 

inflammatory, B) soft callus, and C) hard callus phase (Lienemann et al., 2012). 

 



 

16 

 

The secondary mechanism occurs if the fracture has a complex shape and its ends are not 

closely aligned (M. Wang et al., 2024). It is the most common healing mechanism and 

consists of both endochondral and intramembranous bone formation (Marsell & Einhorn, 

2011). It involves some overlapping steps which are hematoma formation, inflammation, 

revascularization, cartilage formation and mineralization (soft callus), woven bone 

formation (hard callus), and remodeling as shown in Figure 3 (Hettiaratchi & Coulter, 

2016). As soon as the fracture occurs, the injured blood vessels cause the formation of a 

hematoma (blood clot) around the fracture site. After that, inflammatory cells secrete 

interleukins, and various cytokines start an acute inflammatory phase.  An increasing 

concentration of these proteins calls mesenchymal stem cells to initiate the soft callus 

formation which is followed up by hard callus formation and remodeling (Hettiaratchi & 

Coulter, 2016; Marsell & Einhorn, 2011). Among growth factors that play an essential 

role in secondary fracture healing, there are transforming growth factor-beta (TGFβ), 

bone morphogenetic proteins (BMPs), vascular endothelial growth factor (VEGF). Their 

release and diffusive motion around the fracture site are critical to the healing process (M. 

Wang & Yang, 2017). 

 

 

2.2.Polymer Degradation and Drug Release Dynamics 

 

 

2.2.1. Polymer Degradation 

  

In bone healing studies, biodegradable polymers are frequently preferred together with 

ceramics or composites. Biodegradability is advantageous for bone healing because it 

allows complete disappearance of implanted material, eliminating the secondary surgery 

necessities. Many in vitro and in vivo studies are present in the literature for various 

biodegradable polymers to investigate their degradation mechanisms (Y. Wang et al., 

2008). Understanding the degradation dynamics of biodegradable polymers is one of the 

crucial concerns of these studies to design a polymeric scaffold that has optimal behavior 

in vivo. The scaffolds must continue their functions during healing, as an interplay with 

newly formed bone tissue. This is because the newly formed tissue will take over these 

functions from the implanted scaffold as it degrades (H. S. Kang, 2010). In the literature, 

the degradation term is distinguished from erosion considering their phenomenological 
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differences. Polymer degradation is defined as a chain scission process; chemical events 

that affect polymer backbone such as a decrease in molecular weight of the polymer. On 

the other hand, polymer erosion stands for the depletion of material, a physical 

phenomenon namely dissolution and diffusion. Erosion does not affect the polymer at 

molecular scale; instead, it changes the physical structure of the material (Y. Chen et al., 

2011; Siepmann & Gopferich, 2001; Tzafriri, 2000). The literature is richer in studies on 

polymer degradation dynamics than polymer erosion mode which is a more complex 

event as it depends on many other processes besides degradation, such as morphological 

changes and characteristics of the minor products formed (Davison et al., 2014; Von 

Burkersroda et al., 2002). 

Polymer degradation may be induced by oxidation, thermal activation, chemical or 

mechanical degradation. For biomaterials, chemical degradation plays a greater role 

depending on their intended purpose. They degraded via three fundamental modes of 

degradation: hydrolytic degradation, enzymatic degradation and stimuli-associated 

degradation (D. Yang et al., 2019). Because all polymers have hydrolysable chemical 

bonds, in a very humid environment like the human body, hydrolysis becomes the most 

important degradation reaction for biomaterials (Göpferich, 1996; Tajvar et al., 2023). 

The two primary degradation mechanisms are bulk degradation and surface degradation 

(Gopferich & Langer, 1993; Von Burkersroda et al., 2002). When the polymer scission 

takes place at the surface of the material, it affects the outermost layer of the material and 

does not change the whole geometry during the reaction. As the device ages, its size and 

weight gradually decrease through the inside. However, its molecular weight and 

mechanical properties remain constant over time. If hydrolysis occurs randomly and 

uniformly throughout the bulk material, it is called bulk degradation (Göpferich, 1996; 

Tzafriri, 2000). In Figure 4, it is shown on the left that bulk degradation causes a uniform 

change in the material. The degradation fate of the material depends on the interplay 

between water diffusivity and the hydrolysis reaction rate. The higher the diffusivity of 

water, the faster it reaches the bulk of the material and its chemical bonds and initiates 

hydrolysis reaction. If water penetration is slower than the degradation reaction, then it 

would be limited on the surface of the material. Based on that, materials whose water 

diffusion rate is higher than the hydrolysis reaction rate, then the material undergoes bulk 

degradation. Conversely, if degradation rate is higher than diffusion rate, then surface 

degradation is favored  (Davison et al., 2014; Von Burkersroda et al., 2002). 
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Figure 4: Schematics of change in a polymer matrix during surface and bulk erosion (Von 

Burkersroda et al., 2002). 

 

As the water penetrates the polymer, the water molecules attack the polymer chemical 

bonds in the amorphous regions. Water molecules preferably attack ester bonds because 

anhydrates and ester bonds are the most reactive ones. Destruction of chemical bonds 

yields short alcohol chains and acids (Siepmann et al., 2005). Although the molecular 

weight of the polymer and its mechanical properties change throughout the bulk 

degradation process, they can be conserved by crystal domain chemical bonds until some 

point (Davison et al., 2014). When the concentration of acidic byproducts (e.g., 

carboxylic acids) increases due to the cleavage of ester bonds, the low pH environment 

further catalyzes hydrolysis reaction and thus fastens the overall degradation of polymer. 

This self-accelerating mechanism is called autocatalysis (Siepmann et al., 2005). 

Aliphatic polyesters like polyglycolic acid (PGA), polylactic acid (PLA), and poly(ε-

caprolactone) (PCL) are the most often utilized biodegradable polymers in medical 

applications such as drug delivery systems and are known to follow bulk degradation 

kinetics in the literature (H. S. Kang, 2010). Their polymer backbone has carboxylic acid 

end groups on one end and hydroxyl end groups on the other so that their hydrolysis 

process is an auto catalyzed degradation (Davison et al., 2014; Siepmann et al., 2005). 

Enzymes also play a significant role in the degradation of biodegradable materials 

through a process known as enzymolysis. Enzymolysis involves enzymes catalyzing the 

scission of polymer chains, critically impacting the degradation rate of polymers in 

physiological environments (H. Zhang et al., 2014). Enzymes can degrade polymers 

through hydrolytic or oxidative reactions. Hydrolytic enzymes such as phosphatases, 
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esterases, and proteases, which are abundant in the body, accelerate the breakdown of 

scaffolds by catalyzing hydrolysis reactions. Enzymatic degradation is mostly limited to 

surface erosion due to the larger size of enzymes that prevents their penetration into the 

scaffold. Hence, enzyme availability is restricted to the exterior. Containing paths, 

cavities, and pore sizes inside the material ease enzyme movement throughout the 

material. Enzymes' ability to form a complex with their substrate increases as the 

degradation proceeds because of the formation of micro and macropores (Tajvar et al., 

2023; D. Yang et al., 2019; H. Zhang et al., 2014). 

The degradation behavior of polymers depends on various factors including material 

structure, its chemical composition, molecular weight, crystallinity, hydrophobicity, 

mechanical stress, water diffusivity and environmental factors such as pH and 

temperature(Gopferich & Langer, 1993). There may be a significant feedback impact of 

some of these parameters on the degradation velocity. Molecular weight is the most 

crucial quantity for tracking degradation. In addition to molecular weight loss, other 

measures such as mechanical strength loss, total breakdown into monomers, or monomer 

release have been suggested as indicators of degradation. Although they are all connected, 

they do not all have to follow the same dynamics. Since they have more bonds to break, 

higher molecular weight polymers usually degrade more slowly(Göpferich, 1996). 

Hydrophobic polymers such as PCL and PLA degrade more slowly due to lower water 

uptake(Meyer et al., 2009). The rate of degradation can be altered by the copolymer make 

up; for example, hydrophobic polymers’ degradation velocity can be sped up the rate of 

hydrolysis upon the addition of hydrophilic substitutes. Hydrolysis may also be catalyzed 

or retarded by environmental conditions, including pH levels; degradation is usually 

faster in acidic or basic medium than under neutral conditions. Therefore, the diffusion 

of the shorter chains out of the polymer plays a key role in controlling the overall 

degradation rate. As a result of this interplay between diffusion and hydrolysis reaction is 

that a thicker plate degrades faster than a thinner one, as the short chains with acid end 

groups cannot diffuse out quickly enough, leading to an acidic environment build-up 

inside the thicker plate and autocatalysis (Göpferich, 1996; H. S. Kang, 2010; Y. Wang et 

al., 2008). 

Material structure and geometry also affect degradation behavior of the materials. The 

pore size and porosity are effective parameters for degradation behavior of scaffolds since 

an increasing porosity creates a larger surface area and increases the interconnectivity of 

pores. The higher surface area allows more contact domains for water molecules with the 
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material resulting in higher degradation rate and dominant surface degradation mode. 

Moreover, when the water contact area is larger, the formation of acidic byproducts, 

which cause an autocatalytic effect, fastens the degradation. On the other hand, the higher 

pore interconnectivity enables higher water permeability. If fluids’ diffusivity is easier, 

the accumulation of the byproducts is reduced which decreases the effect of autocatalysis. 

Thus, the porosity of scaffolds has a great importance on degradation mode by tailoring 

the water permeability and hydrolysis effect (Raja et al., 2022; Q. Zhang et al., 2013). 

 

 

2.2.2. Growth Factor Release 

 

Bone is a highly regenerative organ which follows a certain healing process after injury, 

which necessitates external treatments such as grafts for effective healing in large or non-

union defects. Bone scaffolds serve as supportive materials for these types of fractures by 

both mimicking extracellular matrix and providing mechanical strength. They should be 

biocompatible and biodegradable, also have an appropriate material characteristic to 

enhance osteoinductive cells’ attachment and proliferation on their surface; having a 

porous structure to provide cavity for vascularization and new tissue growth and an ability 

to load and deliver bioactive molecules or drugs (De Witte et al., 2018; É. R. Oliveira et 

al., 2021). 

Drug delivery systems for bone tissue engineering, not necessarily a 3D scaffold, aim to 

provide the loaded molecules effectively to enhance signaling pathways initiated by their 

release from native extracellular matrix. They are designed to control spatial and temporal 

release dynamics (É. R. Oliveira et al., 2021). Traditional ways of systematic drug 

administration to the body are not an effective solution for bone healing, since drugs are 

absorbed and distributed to the body by the vascular system and finally removed. 

Consequently, bone, which is not a highly vascularized organ, cannot benefit from the 

given dosage while unrelated organs are exposed to the drug (Ghosh et al., 2018). Drug 

delivery systems can be engineered to achieve controlled release through mechanisms 

such as diffusion, dissolution, swelling, matrix erosion, and osmosis. Polymer-based 

scaffolds have been found to be very appropriate as carriers due to their tailorable material 

properties to manipulate various parameters related to release mechanisms (S. R. P. 

Oliveira et al., 2024). Moreover, bioactivity potential of both natural and synthetic 

polymers can boost osteoinductivity with deposition of growth factors, transcription 
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factors, genes or mesenchymal stem cells (Rama & Vijayalakshmi, 2023; Sharma et al., 

2021). Furthermore, delivering multiple drugs having different physiochemical properties 

is possible without varying their therapeutic efficiency via polymeric scaffolds (S. R. P. 

Oliveira et al., 2024)Synthetic polymers such as PLGA, PLA and PCL are the most 

widely examined ones in drug delivery applications. Among them, PLGA is a copolymer 

which is formed of PLA and PGA exhibiting an excellent example of tailoring polymer 

properties for specific purposes. Consisting of different ratios of PGA and PLA helps 

alter properties of PLGA such as molecular weight, degradation rate which affects release 

profile of the loaded drugs (S. R. P. Oliveira et al., 2024; Sharma et al., 2021). 

Drug release mechanism from polymer matrices depends on the physical and chemical 

characteristics of the polymer and can be classified into three systems. Although the 

concentration gradient is always a driving force in all, the degradation fate of the polymer 

distinguishes these three systems. In the first, only diffusion is involved in non-

biodegradable polymers. If the polymer undergoes a swelling process, it enhances the 

diffusion dynamics and can be treated as a second release system. For biodegradable 

polymers, release dynamics depend on the interplay between polymer cleavage and 

diffusion (Arifin et al., 2006; Leong & Langer, 1987). The release of drug occurs only 

from the surface of non-biodegradable polymer matrices which limits its tuning abilities 

to mainly pore size (Calori et al., 2020). In contrast, in the cases of employing degrading 

polymer as a delivery system, the release mechanism is in accordance with multiple 

processes affecting polymer degradation in addition to interactions between drug and 

polymer such as diffusivity of drug through the polymer (Tzafriri, 2000). Physical and 

chemical interactions between drug and polymer molecules, such as van der Waals forces, 

hydrogen bonds, and electrostatic interactions have a great impact on release rates. Strong 

physical interactions result in slow drug release rates. By contrast, weaker physical 

interactions yield a faster release of the drug before the release rate reaches a steady 

profile at the implantation. It is called burst release which is mostly undesired but 

frequently occurring (X. Huang & Brazel, 2001; Sharma et al., 2021). Dissolution of drug 

in the polymer and unfavorably fast polymer degradation would also yield burst release. 

Drug release studies often mention burst release cases and researchers seek ways to avoid 

the burst due to toxic effects of high concentration of drugs at the implantation site, high 

cost of production of biological molecules in vitro, bioactivity loss of proteins after 

release due to their short half-lives, and the need for additional dosing in the late stages 

of treatment (X. Huang & Brazel, 2001; É. R. Oliveira et al., 2021; Schrade et al., 2022). 
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For example, Yin et al. showed that blood vessels formed under high doses of VEGF can 

exhibit morphological abnormalities and leakage. Additionally, angiogenesis can 

contribute to pathological changes, including tumor formation, arteriosclerosis, and 

retinal proliferative diseases(Yin et al., 2019). Nevertheless, burst release might be an 

optimal delivery mechanism in some cases where high release rates are pursued (X. 

Huang & Brazel, 2001). 

Bioactive signaling molecules play vital roles in bone regeneration. Growth factors such 

as bone morphogenic proteins (BMPs), transcriptional growth factor beta (TGF-β), 

vascular endothelial growth factor (VEGF), fibroblast growth factors (FGFs) and insulin-

like growth factors (IGFs) are essential for stimulating specific signaling pathways for 

bone formation, cell differentiation or angiogenesis. They are involved in different phases 

of the bone regeneration process. BMP-2 is the growth factor most frequently used to 

stimulate bone formation in humans and studied for drug release for bone regeneration. 

Recombinant human BMP-2 is not only a US Food and Drug Administration (FDA) 

approved growth factor, but also a collagen implant for its delivery together with other 

growth factors is the first FDA approved implant (Calori et al., 2020; Takayama et al., 

2023). Growth factors can be attached to scaffolds through physical or chemical methods, 

including adsorption and chemical cross-linking. They can be physically entrapped within 

the scaffold during production. Other than physical entrapment, GFs can be caged in the 

scaffold via formation of ionic complexes. The chemical binding methods include 

covalent or noncovalent binding of GF to the scaffold. Both covalent and ionic 

attachments require modifications in functional groups on the scaffold surface.  Due to 

the stronger interactions in covalent binding, it can prevent burst release and prolong the 

release duration (De Witte et al., 2018). Fibrin-based matrices are frequently utilized due 

to their ability to bind growth factors, such as basic fibroblast growth factor (b-FGF) and 

BMP-2, through heparin-binding sequences. Schrade et al. investigated the release from 

gelatin nanoparticles which shows an incorporation with heparin binding sites. They 

proved that this interaction significantly prolonged the release, reducing the initial burst 

and providing a more sustained release profile (Schrade et al., 2022). Additionally, it has 

been shown that BMP-2 loaded heparin-functionalized nanoparticles are shown to 

drastically improve bone regeneration compared to control groups which consist of only 

fibrin gel and not heparin binding sites (Chung et al., 2007). These GFs are covalently 

cross-linked to fibrin during enzymatic coagulation, a process enhanced by adding 

heparin or hyaluronic acid to the fibrinogen mix. The release of GFs from these matrices 
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occurs passively as the fibrin and heparin degrade simultaneously, resulting in a relatively 

rapid release rate. To achieve a slower and more controlled release of GFs, various 

encapsulation methods have been developed. Encapsulation creates a physical barrier that 

prevents the diffusion of GFs until the encapsulating material degrades sufficiently. By 

adjusting the composition of the capsule, the degradation rate and subsequent release of 

the entrapped GF can be managed. Bioresorbable polymers, particularly aliphatic 

polyesters, are commonly employed for this purpose. These polymers initially undergo 

random hydrolytic breakdown of their amorphous regions, followed by surface erosion, 

which then exposes and releases the GFs in a controlled manner (Hettiaratchi & Coulter, 

2016). 

Dual delivery systems that combine multiple growth factors or drugs can enhance 

osteogenesis and angiogenesis, improving bone healing outcomes (Blackwood et al., 

2012). Patel et al. investigated the effects of dual delivery of VEGF and BMP-2 on bone 

regeneration in a rat cranial critical size defect model (Patel et al., 2008). Their findings 

indicate a synergistic effect of the dual delivery of VEGF and BMP-2 on early bone 

regeneration. The addition of VEGF enhanced early-stage bone formation but did not 

significantly impact the total amount of bone formed (Patel et al., 2008). Another study 

employed BMP-2 and IGF-1 with a nanocomposite scaffold and investigated their dual 

release kinetics and effect on osteogenesis. They obtained a controlled and sustained 

release of both growth factors resulting in enhanced osteogenic differentiation and 

mineralization compared to single growth factor release (Kuttappan et al., 2018). 

In this thesis, the release of BMP-2 is considered from a degrading CaP scaffold. The 

release system is both driven by the degradation of the scaffold and diffusion of BMP-2 

from the eroding surface through the water and scaffold domains.  

 

 

2.3.Background for Biological Signal Transduction Events 

 

Developing cures for health problems requires a deep understanding of how a living body 

operates, which is incredibly complex. Traditional biology approaches were mainly 

limited to individual parts of this highly hierarchical system which prevented 

understanding complex interactions. The exponential evolution of research tools and 

computational technologies eliminates the limitations of figuring out the interactions 

between biological components and providing on-target solutions (Bing, 2005). 
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However, the biological entities and their properties include various time and length 

scales such as from seconds to years or nanometers to meters. Furthermore, the 

hierarchical structure of biological components encompasses different organization levels 

lying down between tissues, organs to cells, molecules and even to atomic interactions. 

Systems biology is an interdisciplinary field including computational sciences, genomics, 

measurement techniques and aims to achieve an in-depth understanding of biological 

system behavior (Klipp et al., 2016). Studying biochemical pathways and gene regulatory 

systems are the major challenges because conventional methods require large 

experimental designs for these interactions. Also, they are essential for cellular behaviors 

and gene regulation predictions. Biochemical dynamics modeling needs a broad 

biological background as well as a mathematical base because they are mostly established 

on basic physical laws such as mass conservation law and thermodynamics which 

requires solving system of equations for multivariable models. Since experimental studies 

are mostly inadequate in generalizing and validating widespread hypotheses due to the 

complexity of the networks, the emerging field of computational sciences allows model 

approaches for these complex regulatory networks and eases the analysis of spatio-

temporal dynamics (Kitano, 2002). Moreover, necessitating less experimental work 

reduces high costs and laboring of experimental studies while helping to eliminate ethical 

issues and harming animals. Another advantage of using computational tools, the 

mathematical terms are tunable for different signaling networks and understanding the 

parameter dominance with single perturbations due to its repeatability. Nevertheless, the 

essential goal of a model or a simulation is to approach reality and experimental results 

(Klipp et al., 2016). 

 

 

2.3.1. Signal Transduction Events in Bone Regeneration and Repair 

 

Bone regeneration consists of a series of well-constructed induction and conduction 

following the above summarized biological events. Current approaches to BTE gain 

significant attention to design effective bone scaffolds that are able to provide an 

appropriate environment for bone repair. Satisfying the requirements of a well-designed 

bone scaffold necessitates understanding the mesenchymal stem cells’ differentiation 

ability, the importance of growth factors and transcription factors that have essential roles 

in endochondral ossification (Majidinia et al., 2018).  
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ECM molecules and cells can communicate with a wide range of receptors to carry out 

controlled reactions to changes in their environment via complex signal transduction 

pathways. Signaling ligands interact with receptors within or on the surface of target cells 

to facilitate communication between cells. These interactions cause the cell's signaling 

pathways to become active, which in turn modifies the levels of gene expression and 

protein activation. These modifications have an inevitable effect on the cellular processes 

of adhesion, migration, proliferation, differentiation, and death (Klipp et al., 2016). All 

cellular communication follows a cascade-like process, despite possible differences in the 

signal transduction routes and responses: When a ligand attaches directly to its receptor, 

the signal is transduced and augmented inside the cell by enzymes and second 

messengers, and the cell reacts accordingly. Signal transduction pathways, also known as 

cellular responses, can have a variety of effects, such as triggering the transcription of 

target genes or opening or closing an ion channel (Lanza, 2014; Mark Saltzman, 2009). 

Adhesion receptors can function as transmembrane signaling molecules, mediating 

signals initiated by growth factors or substances that regulate gene expression, phenotypic 

modulation, cell replication, differentiation, and apoptosis. These signals can travel all 

the way inside cells, sometimes even to the nucleus. Secreted factors modulate cell-cell 

communication in the normal and pathologic regulation of tissue growth and maturation, 

despite the fact that some ligands with which cells interact are immobilized and not in 

solution, such as the integrins which are the principal adhesion receptors mediating cell-

ECM attachment (Lanza, 2014). The complex connections that regulate tissue 

development, homeostasis, and regeneration are actually brought about by the variety of 

particular bindings of specialized stimuli with cell-surface receptors (Figure 5) (Ratner et 

al., 2013). 
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Figure 5: Schematic representing integrin-ECM molecules interactions. Growth factors 

stimulate receptors to activate signaling pathways (Ratner et al., 2013). 

 

Signaling pathways commonly use phosphorylation and dephosphorylation events which 

add and remove phosphate groups, respectively, to turn on and off enzymes. 

Phosphorylation of proteins is a significant modification that the cell uses to aid in the 

signal's passage from the receptor to the final effector enzyme. The addition of phosphate 

groups to certain protein amino acid residues is catalyzed by kinases. Kinase cascades or 

a sequence of kinase events are used in many signal transduction pathways. A sequence 

of phosphorylation processes known as a "kinase cascade" occurs when one protein 

phosphorylates another, which phosphorylates still another (for example, kinase A 

phosphorylates kinase B, activating it to phosphorylate kinase C). Phosphorylation 

frequently results in the activation of a transcription factor and thereby the expression of 

specific target genes (Ratner et al., 2013). 
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2.3.2. Common Signaling Pathways for Bone Regeneration 

 

A large variety of molecular signaling pathways are involved in bone repair and 

regeneration. Proteins are not responsible for a single duty in these processes and have 

complex regulatory connections between them including crosstalk events. Growth factors 

are cell-secreted proteins which serve as signaling molecules for cell-cell interactions by 

binding of target cells’ surface receptors (Figure 5). The binding of growth factors to 

receptors activates a series of signal transduction events starting from the cell surface and 

laying down to the nucleus until the expression of target genes inside the nucleus 

(Hayrapetyan et al., 2015). Numerous studies have shown that many growth factors have 

crucial roles in in osteoblast activity and local bone formation such as bone 

morphogenetic proteins (BMPs), transforming growth factor-betas (TGF-βs), Wnts, 

fibroblast growth factors (FGFs), platelet-derived growth factors (PDGF), and insulin-

like growth factors (IGFs) (Majidinia et al., 2018). 

BMPs are growth factors belonging to the TGF-β superfamily. The process of fracture 

healing, adult skeletal maintenance, and endochondral ossification all are affected by 

BMP signaling (Majidinia et al., 2018). Besides the common feature of BMP-2, BMP-4, 

BMP-6 and BMP-9 is being an osteogenic regulation factor and BMP-7 is an osteoblast 

differentiation factor, each has distinct roles via different down regulatory molecules in 

endochondral ossification (Nasir et al., 2023). BMP-2 is the most researched, including 

many clinical applications, and commercialized one among BMP proteins (Majidinia et 

al., 2018). BMP-2 preserves bone homeostasis and its strength by tightly regulating 

numerous osteoblast and osteoclast balance. BMP-2 expression is elevated following 

bone damage, which facilitates MSC recruitment and osteoblast development at the 

fracture site. Research has demonstrated that a lack of BMP2 hinders the healing of 

fractures, emphasizing the crucial role that BMP-2 plays in bone regeneration (Celil et 

al., 2005; Rosen, 2009). According to the studies, lack of BMP-2 secretion from skeletal 

cells causes a considerable delay in the formation of secondary ossification centers in 

limb's endochondral bones. Also, microfractures were observed even two weeks after its 

birth that these findings were associated with circumstances of highly loading and 

compressions would result similarly in adult bone in the lack of BMP-2 (Rosen, 2009). 

BMP and TGF-β signaling cascades send signals to cytoplasm via both canonical (Smad-

dependent) and non-canonical (Smad-independent) pathways. Even though transcription 

factors in their downstream are different, they are both activated via BMP receptors type 
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I (BMPR-I) and type II (BMPR-II) (serine/threonine kinases) (Khotib et al., 2021). In the 

canonical pathway, the receptor kinase phosphorylates Smad proteins in response to 

ligand activation, and these proteins subsequently translocate to the nucleus to initiate the 

transcription of particular target genes. On the other hand, the non-canonical pathway 

induces osteoblast differentiation through mitogen-activated protein kinases (MAPK) and 

then p38 transcription factor activation which is a member of the stress-activated protein 

kinases (SAPKs). Both TGF-β and BMP have been shown to activate this pathway (Lee 

et al., 2002). Mitogen-activated protein kinase (MAPK) cascade is widely studied in the 

literature, and it regulates a variety of physiological processes, including osteogenesis, 

cell movement and death. MAPKs activate other kinases, such as ERK and c-Jun N-

terminal kinase (JNK), which subsequently activate key transcription factors like Runx2 

and Sp7/Osterix (Osx) via Sp1, promoting the expression of genes involved in 

osteogenesis (Camal Ruggieri & Feldman, 2020; Hayrapetyan et al., 2015). Thus, the 

crosstalk between BMP and TGF-β is essential for the regulation of osteoblast 

differentiation and the transcriptional activity of Runx2 through non-canonical BMP 

signaling (Lee et al., 2002). 

In the canonical BMP signaling pathway, Smad1, Smad5, and Smad8 are phosphorylated 

by BMP receptors and transmit its signals, Smad2 and Smad3 are phosphorylated by 

TGF-β receptors and promote TGF-β signaling (Lee et al., 2002). There are 8 different 

Smad proteins in mammals. Based on their functioning, they are divided into three 

classes. The first one is receptor-regulated Smads (RSmads) which includes Smad1, 2, 3, 

5, 8. They are activated after binding of BMP-2 and -4 to the type I and II receptors for 

gene regulation. The second group is called co-mediating Smad and only Smad4 belongs 

to this group. It has a crucial role in canonical BMP signaling since it binds to 

phosphorylated RSmads and helps translocate them through cytoplasm to the nucleus for 

transcription. The last category of Smads is I-Smads that include 6 and 7. They negatively 

contribute to BMP signaling due to their inhibitory effect (Song et al., 2009; Zou et al., 

2021). Both in the absence and in the presence of TGFs, Smads continually enter and 

depart the nucleus. Stable nuclear Smad accumulation during active signaling is actually 

dynamically maintained by ongoing cytoplasmic RSmad phosphorylation and nucleus R-

Smad dephosphorylation (Schmierer et al., 2008). After being exposed to TGF-β for about 

20 minutes, cells reach a stable level of Smad2 and 3 phosphorylation that can last for 

many hours. When TGF-β concentration decreases in the extracellular space, Smad 

phosphorylation eventually fades away. This is due to the receptor deactivation through 
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internalization and degradation, or the operation of negative feedback mechanisms (Kopf 

et al., 2012). The under-phosphorylated condition of Smad2 protein exported from the 

nuclei suggests that RSmad dephosphorylation takes place in the nucleus. Dissociation of 

the RSmad–Smad4 complex and export of its constituent parts to the cytoplasm occur 

concurrently with dephosphorylation. As long as TGF-β receptors are present, RSmads 

will repeatedly cycle through receptor-mediated phosphorylation and re-entry into the 

nucleus maintaining their total presence in the cellular space in the meantime (Massagué 

et al., 2005; Song et al., 2009). Wang et al. emphasized that Smad proteins constantly 

shuttle between the nucleus and the cytoplasm in order to sustain active signaling. It was 

highlighted that Smad1/5/8 by BMP receptors and Smad2/3 by TGF-β receptors are 

phosphorylated, which is essential for target gene transcription and signal propagation 

(Q. Wang et al., 2023). In a very similar manner, Lang et al. reported that osteoprogenitor 

recruitment and maintenance were compromised by Smad1/5 suppression, which 

decreased the amount of Osx osteoprogenitor cells, primarily in the metaphysis. 

Additionally, after Smad1/5 depletion, there is a notable decrease in bone volume fraction 

(BV/TV) and Osx in mRNA expression in the metaphysis (Lang et al., 2024). Huang et 

al., have shown that the phosphorylation of Smad1 stimulates osteogenic marker genes 

Runx2, ALP, bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN) to 

promote bone formation under BMP-2 treatment (D. Huang et al., 2020). BMP-2 could 

trigger mesenchymal cells to differentiate into osteoblast lineage by activating 

Smad1/5/8. Shortly, for the importance of Smad4 together with other, reduced bone 

mineral density, volume, velocity of bone formation, and osteoblast count are all 

consequences of conditional deletion of Smad4 in osteoblasts due to the need to transport 

phosphorylated Smads. Zhang et al. implied that an efficient way of regulating bone 

formation is to control Smad4 (Figure 6) (G. Zhang et al., 2020). These findings 

demonstrated that Smad1/5/8 are intracellular signaling proteins that transduce signals 

elicited by members of BMP signaling in osteoblasts (G. Chen et al., 2012; D. Huang et 

al., 2020). 
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Figure 6: Activation of canonical TGF-β/Smad and BMP/Smad pathways leading to gene 

expression (Zou et al., 2021). 

 

Runx2 is a master-regulatory transcription factor for bone formation since it strictly 

controls osteoblast and chondrocyte differentiation through various signaling pathways. 

Furthermore, Runx2 is crucial for the proliferation of chondrocytes and osteoblast 

progenitors, and matrix protein gene expression in both chondrocytes and osteoblasts 

(Komori, 2005; Lee et al., 2000). It is an early osteogenic marker which can directly bind 

to osteoblast-specific elements to downregulate several genes such as OPN and OCN 

(Thaweesapphithak et al., 2023). Consequently, Osx prompts pre-osteoblasts to 

differentiate into osteoblasts by activating terminal osteogenic marker genes, including 

BSP, OPN, and OCN since Runx2 is a direct regulator for Osx (D. Huang et al., 2020; 

Komori, 2022). Typically, one of the first markers to be produced when mesenchymal 

stem cells (MSCs) differentiate into osteoblasts is COL1A1. It has a role in the 

extracellular matrix's early development (Komori, 2022). OPN is involved in cell 

adhesion, motility, and signaling and is expressed early in osteogenic differentiation. By 

activating terminal osteogenic marker genes, Osx, a downstream target of Runx2, further 

initiates the differentiation of preosteoblasts into mature osteoblasts, serving as a marker 
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for subsequent stages of osteogenic differentiation (Z. Huang et al., 2007). Because of 

chondrocyte maturation and cartilage matrix breakdown brought on by Runx2 

overexpression in the articular cartilage, osteoarthritis will result. is thought to serve as a 

marker for osteogenic differentiation's later phases. OCN is a non-collagenous protein 

that osteoblasts release and is present in dentin and bone. It is connected to the 

mineralization stage of bone development and is thought to be a late indication of 

osteogenic differentiation (Tohmonda et al., 2011). 

In this thesis, we selected a compact version of the canonical pathway of BMP-2. As 

described earlier, the canonical pathway is the Smad dependent pathway activated by 

BMP-2. Runx2 is important for signaling pathways consisting of Smad proteins, and it 

strictly regulates Osx. Thus, selected Smads, Smad1/5, Runx2 and Osx forms the 

signaling pathway considered in the present work.  

 

 

2.4.Numerical Methods in BTE 

 

In bone scaffold modeling, computational methods are employed to simulate and 

optimize the design, function, mechanical properties and biological interactions of 

scaffolds at various levels, from tissue to cellular. Computational methods have greatly 

aided the field's advancement by providing insightful and predictive capabilities, thus 

minimizing the need for lengthy experimental trials. The production of better-performing 

and reliable scaffolds can be improved by using these computational methods, which 

enable accurate prediction of scaffold performance under physiological environments, 

mechanical property optimization, and simulation of cellular interactions. However, 

experimental methods are closer to reality and their results attained from are more likely 

to be applied in clinical studies (N. Musthafa et al., 2024). This part aims to give insights 

on previous studies about the drug release, degradation, intracellular signaling pathways, 

and optimization algorithms used in BTE computations. 

Traditionally, scaffolds are created and modified based on the outcomes of in vitro and in 

vivo experiments. This iterative approach is very costly, time-consuming, and 

occasionally lacks precise control over the scaffold's properties. Considering the aim of 

bone tissue scaffolds, the scaffold design part must be supported with biological 

experiments which are additional iterative steps for a comprehensive study. Many studies 

are present in the literature aiming to find optimal mechanical properties for various 
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designs of bone tissue scaffolds. Because computational methods such as computer-aided 

design (CAD), FEA, and computational fluid dynamics (CFD) are great tools to reduce 

the iterative steps of experimental studies, they have been employed to obtain findings 

that are hard to get experimentally such as stress-strain curves or compression analyzes 

of scaffolds (S. Zhang et al., 2019a). 

Computational methods are useful regardless of which scale is considered in bone 

regeneration such as scaffolding, cellular activities or intracellular pathways. In tissue 

level, FEM, CFD and reaction-diffusion type partial differential equations (PDEs) are 

mostly used. CFD simulations are important in this field since the body consists of various 

types of blood vessels which provides room for continuous blood flow and 

nutrient/oxygen transport. It is known that cellular activities require continuous access of 

blood via vessels. Another aspect of its importance is that the scaffold’s pore size and 

interconnectivity affect the movement of interstitial fluid and CFD studies are useful for 

optimizing the flow dynamics. Ordinary differential equations and PDEs are keystones to 

model and solve real life engineering problems (N. Musthafa et al., 2024). Thus, reaction-

diffusion PDEs are used in all levels of bone healing, including growth factor release, 

scaffold degradation, receptor-ligand interactions for signaling pathway activation, 

transcription factor dynamics through gene transcription in the context of this study. 

While PDEs provide a spatio-temporal evolutions of considered variables, concentrations 

of species such as GFs and TFs, ODEs are generally used to evaluate time dependent 

kinetics of signaling cascades.  

Three methods have primarily been used to model the scaffold degradation behavior: 

phenomenological (using the diffusion, reaction, and dissolution governing equations), 

probabilistic (using the Monte Carlo technique to apply the probability distributions of 

the kinematics of molecules), and empirical (based on test data via regression tactics) (S. 

Zhang et al., 2019a). The aforementioned techniques can be used to forecast the temporal 

and geographical changes in scaffold properties together with the growth factor release 

dynamics, allowing for the regulation of scaffold degradation and drug delivery to 

correspond with the pace of tissue regeneration. 

The system-level mechanisms of biological processes can be better understood by 

utilizing experimental data from small-scale investigations and high-throughput 

technology. Quantitative models, particularly those applying systems theory to chemical 

kinetics, have been used to describe metabolic networks, signaling pathways, and gene 

regulation (Piñero et al., 2018). Whereas the computational methods are divided into two 
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generalized sections which are top-down and bottom-up (knowledge-based), some other 

studies classified them as logical, continuous and single molecule levels (Karlebach & 

Shamir, 2008; Le Novere, 2015; R. S. Wang et al., 2012).  The top-down methods include 

statistical analysis and static network models and are used on high-throughput omics data 

to extract information unique to a biological process and interpret the structure of 

underlying systems. Conversely, the bottom-up techniques simulate the ways in which 

metabolites, proteins, and genes interact to produce the dynamic behaviors of biological 

systems. Usually, they are built-up on theories derived from small-scale research and use 

continuous dynamic modeling approaches for the dynamical behaviors (R. S. Wang et al., 

2012). The bottom-up techniques include discrete and continuous dynamic modeling. 

Discrete models, which are increasingly being used to model biological networks, are 

suitable for systems with hundreds of components and do not require kinetic parameters. 

Examples of this type of modeling are Boolean network models, multi-valued logical 

models, and Petri nets (Figure 7) (Le Novere, 2015). 

 

 

Figure 7: A representative schematic for different modeling approaches based on their 

time and variable consideration. The green ones use logic-based methods while the orange 

ones evaluate changes in variables with quantitative mathematical methods. The figure is 

adapted from (Le Novere, 2015). 
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FEM is a mathematical model that allows for a more straightforward analysis by 

discretizing a continuous medium into multiple smaller elements while maintaining the 

original geometry features. It is used to solve partial differential equations (PDEs) in real-

time engineering issues. This ability is useful for modifying the morphological properties 

of scaffolds in order to optimize them (Liu et al., 2021). In FEM, the meshing process 

divides the scaffold geometry into a finite number of elements. In general, the accuracy 

and precision of simulation results are improved by increasing the number of finite 

elements, but this also increases computation time. FE meshes and material 

characteristics are combined in a FE model (Sorgente et al., 2023). FEM can be used to 

forecast how the scaffold will behave when it's in use. Because it is a methodical 

approach, its solution may be applied computationally, increasing the ability to handle 

equations and resolve challenging issues. As a result, FEM has been expanding into other 

fields, including medicine and the treatment of bone fractures. Comparing FEM to in vitro 

and in vivo experiments which are used to investigate the recovery process of certain 

tissues allows for a non-invasive investigation. These are costly, time-consuming 

experiments that address moral dilemmas. Very recently, Zamani et al. employed FEM to 

model the mechanical environment factors like stress, strain, and fluid flow in the fracture 

site using a 2D geometry (Zamani & Mohammadi, 2024). It also facilitated the modeling 

of mechanobiological processes such as the migration and differentiation of mesenchymal 

stem cells (MSCs) and angiogenesis. They introduced weak forms of reaction-diffusion 

equations and applied FEM to discretize their governing equations for calculating 

affecting parameters, which influence cellular activities and tissue metabolism during 

fracture healing. Similarly, Yang et al. developed a FEM framework for bone fracture 

healing to modify element properties according to mechanical and cellular events and 

angiogenesis (Y. Yang et al., 2024). For complex domains and initial/boundary 

conditions, such as the curved shape of bones, FEM offered a strong framework (Zamani 

& Mohammadi, 2024). It is essential for understanding the synchronization of cellular 

dynamics during fracture healing and for making precise predictions about tissue 

differentiation. Boccaccio et al. used FEM to evaluate mechanical performance under 

different boundary conditions (compression, shear, lateral pressure) to determine the best 

scaffold architecture (Rodríguez-Montaño et al., 2019). By simulating different load 

conditions and scaffold designs for randomly oriented scaffolds, the study optimized the 

diameter of scaffold beams to achieve the most favorable mechanical environment for 

bone growth (Rodríguez-Montaño et al., 2019). Additionally, FEM was more stable and 
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efficient in terms of more realistic representations than conventional finite difference 

techniques, which made it a useful tool for biomechanical study (Zamani & Mohammadi, 

2024). 

Finite element analysis-based optimization approaches have been utilized to model the 

mechanical interaction between implants and bones outside of the human body. 

Nevertheless, there is a lack of data in literature for totally implementing FEM outputs to 

in vivo research. Therefore, to make the optimization method more therapeutically 

applicable in the future, biomechanical study in the human body will be required (Wu et 

al., 2023). 

In this thesis, we have employed a FEM based solver COMSOL Multiphysics version 5.4 

for initial validation study explained in Chapter 3 and 6.1 to numerically solve the 

governing PDEs of 3D scaffold degradation and growth factor release. We have used the 

Chemistry interface to define chemical reactions representing scaffold and BMP-2 

degradations and release of BMP-2, and transport of diluted species (TDS) module for 

solving diffusion dynamics for all species; scaffold, water and growth factor. We also 

create both 2D and 3D geometries used in the models in COMSOL software. 
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CHAPTER 3 

 

 

 

3. MATERIALS AND METHODS 

 

 

As a branch of tissue engineering, bone tissue engineering seeks ways to enhance the 

regeneration of bone mass lost due to physiological disorders like tumors, osteoporosis 

which frequently prevails among elderly women or particularly in larger bone defects like 

externally caused bone fractures (Sanz-Herrera et al., 2009). Bone has an inherent 

capacity to regenerate and heal small wounds and cracks. Nevertheless, for fractures 

exceeding a threshold (typically > 2cm) usually require external treatment depending on 

the anatomical location (Meyer et al., 2009; Tajvar et al., 2023). Synthetic scaffolds are 

valuable alternatives as a treatment alternative for critical bone defects, with numerous 

preclinical studies demonstrating successful outcomes (Bazyar & Sheidaee, 2024; De 

Witte et al., 2018). 

 

 

3.1.Properties and Requirements of Bone Scaffolds 

 

A bone scaffold should replace the injured bone site for the healing process promoting 

bone growth and disappear completely at the end of the healing (Liebschner & 

Wettergreen, 2003). Bone scaffolds should satisfy desired physical and chemical 

properties in both macro and micro scales and be able to mimic extracellular matrix 

(ECM), in terms of both mechanically and biologically during the healing process (Tajvar 

et al., 2023). The mechanical strength of the scaffold should match the actual bone in the 

defect site; however, they should have adequate interconnected voids inside for new tissue 

formation and vascularization. Bone scaffolds ought to be porous structures to meet the 
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mass transport, cell nutrition, cell migration and cell attachment requirements (Hollister, 

2005). 

Biocompatibility of the scaffold material is a crucial point. Biocompatibility is the 

capacity to support tissue regeneration without causing any toxic effects on the body and 

inflammatory response (Hussein et al., 2016; D. Yang et al., 2019). Thus, biocompatibility 

is an essential requirement for scaffold materials. On the other hand, bioactivity is the 

ability of a material to react with host tissue in a manner that their reaction increases 

biological activity, such as cellular regulatory events (dos Santos et al., 2017). Bioactive 

materials are available to form chemical bonds with the tissue and ease the interstitial 

integration of them, which eventually boosts the healing process at the defect site (Oyane 

et al., 2003). Unlike biocompatibility, bioactivity is not a necessity for bone tissue 

implants.  Although numerous synthetic polymers are currently used as bone scaffolds 

because of their mechanical properties and degradation dynamics, they often need surface 

modification for biological activity which makes the topic an active research area 

(Bakhshayesh et al., 2018). For example, even though PLA and PCL are highly preferred 

biodegradable and biocompatible synthetic polymers in bone scaffolds, their hydrophobic 

nature does not allow using their pure forms, because they lack in bioactive sites for the 

cell adhesion (Li et al., 2019). To enhance cellular attachment onto scaffold, its surface 

can be chemically modified by adding cell adhesion molecules. Surface modifications 

also increase the biocompatibility of the material (Meyer et al., 2009). Optimal surface 

modifications can enhance osseointegration even in inferior quality implant insertion 

circumstances which frequently results in lack of primary stability of the scaffold (Verardi 

et al., 2018). As a surface property, hydrophilicity and hydrophobicity have a role in cell 

attachment to scaffold. Studies show that cell capability to attach the scaffold is higher in 

hydrophilic surfaces and hydrophilicity is an effective parameter on cellular activities 

(Suamte et al., 2023). 

Scaffolds need to possess adequate mechanical properties, such as tensile strength, elastic 

modulus, and stiffness (Table 1). These properties ensure that scaffolds have sufficient 

strength and stiffness for surgical handling and can maintain functionality from 

implantation until complete degradation. Once transplanted into an animal or human 

body, scaffolds are subjected to various loads, including compression, tension, shear, 

torsion, bending, and biomechanical/physiological forces. Compression is the most 

common load experienced in vivo. If scaffolds lack adequate stiffness to withstand these 

loads, they may quickly lose their integrity and functionality. Additionally, the healing 
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rate of bone tissue varies with age, which is a crucial factor to consider when developing 

scaffolds for orthopedic applications. Therefore, considering the mechanical properties 

and behavior of scaffolds is essential in scaffold design (Suamte et al., 2023; S. Zhang et 

al., 2019a). The degradation rate of the scaffold and its diffusivity are crucial parameters 

for sustaining necessary mechanical strength over the course of time. The degradation 

rate should match the rate of tissue regeneration in that aspect. In a case where the 

degradation of scaffold is too slow compared to bone formation rate, scaffold cannot 

provide the space needed to form new tissue. This leads to problems in scaffold proper 

integration to defect site and transferring function from scaffold to tissue (Hollister, 2005; 

Tajvar et al., 2023). 

 

Table 1: Appropriate scaffold pore size, porosity, and elastic modulus for bone tissue 

applications (S. Zhang et al., 2019b) 

Tissue type Pore size (μm) 
Porosity 

(%) 

Elastic 

modulus 

Cancellous bone 500–1000 50–90 0.01–0.5 GPa 

Cortical bone <500 3–12 3–30 GPa 

Cartilage 400 80 0.7–15.3 MPa 

 

Porosity and pore size are two critical parameters for polymer scaffolds. Studies show 

that 100–500 µm pore sizes provide sufficient room for bone cells to live, move, and 

multiply in three dimensions (Garzón-Alvarado et al., 2012). Furthermore, it has been 

demonstrated that dual-pore scaffolds, which have both micro and macro pores, improve 

the potential for bone tissue regeneration (Abbasi et al., 2020). Because the structure of 

scaffolds affects the surface-to-volume ratio, it has a significant impact on how quickly 

they degrade. According to Zhang et al. recent research has demonstrated the important 

influence of the surface-to-volume ratio on scaffold degradation, with larger ratios 

resulting in a faster breakdown (H. Zhang et al., 2014). Connected pores allow biological 

fluids to seep into the scaffold, encouraging the body's resorption and replacement. 

Additionally, they offer a sizable surface area for interactions with the surroundings 

(Tajvar et al., 2023; von Doernberg et al., 2006). The porous structure of scaffolds lowers 

the mechanical strength but provides interconnectivity for biological processes (Ferraz, 

2024). Pores also serve as cavities for cell attachment and movement (Hollister et al., 

2002; Suamte et al., 2023). Adachi et al., have reported that the new bone formation 
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occurred earlier in spherical pore structure rather than the lattice like structure even 

though the final bone alignment to the loading direction was similar. They have explained 

that the faster bone formation is due to the initial concave scaffold surface (Adachi et al., 

2006). 

In this thesis, we chose to work on a 3D scaffold made of CaP, the main geometry and 

parameters were based on Sun et al.’s work (X. Sun et al., 2013). Since the bone scaffold 

was modeled as surrounded by an extracellular matrix represented by water, hydrolysis 

is the main degradation mechanism for the polymer scaffold as well as the most 

considered one in literature. For example, from earlier works considered in the literature, 

Adachi et al. and Sanz Herrera et al. considered polymer scaffold degradation to occur 

via hydrolysis, modeling its rate using a linear relationship with local water content 

around the scaffold (Adachi et al., 2006; Sanz-Herrera et al., 2009). Similarly, Wang et 

al. modeled the degradation of polymer scaffold based on a nonlinear relationship 

between its rate and number of fluid elements around a scaffold element, among other 

parameters (L. Wang et al., 2020). We considered a second order chemical reaction rate 

expression to represent the hydrolysis reaction depending on both water and polymer 

presence at the same time. 

 

 

3.2.Drug Release from Porous Scaffolds 

 

Drug release studies aim to deliver minimum or optimal dosage of drug by tailoring its 

release kinetics. To study release kinetics, mathematical modeling is found to be a suitable 

approach (Arifin et al., 2006; Siepmann & Gopferich, 2001; L. Wang et al., 2020). The 

goal of mathematical drug release modeling is to forecast the mechanisms behind the drug 

diffusion, and kinetics affecting the release from delivery systems. By comparing 

experimental data with mathematical methodologies, these mathematical models can be 

used to improve release kinetics, identify the physical principles underlying drug 

transport, and determine the kinetics of release systems. Various mechanistic models, 

semi-empirical and empirical equations have been established for this purpose. Since the 

adaptability of mechanistic models to changing release systems, mechanistic models 

generally provide a better understanding of drug delivery. These models take 

biophysicochemical aspects into account which is critical for release modeling due to its 
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complexity and sensitive nature to geometry, size, porosity of the delivery vehicles and 

drug properties themselves (Askarizadeh et al., 2023). 

Empirical and semi-empirical models have been developed for estimation of drug release 

kinetics by many researchers due to their simplicity. They are developed by fitting a linear 

or nonlinear equation to an experimentally obtained drug release data. To do that, the 

percentage of released drug to the initially loaded total amount of drug is considered as a 

function of time (Mohseni-Motlagh et al., 2023). These types of release models include 

zero-order, first-order, and Higuchi model, Ritger-Peppas model (Rama & 

Vijayalakshmi, 2023). Zero-order release kinetics provides a linear relationship between 

initially loaded amount of drug and its time dependent changes depending on the zeroth 

order release constant such that C(t)=C0+k0*t. However, it is only applicable if the drug 

loaded area remains constant during the process. Due to its easy tunability, it has a 

potential to deal with the burst release problems which are mentioned earlier in the 

literature (Askarizadeh et al., 2023; X. Huang & Brazel, 2001). Assuming steady-state 

conditions, Fick's first law establishes a relationship between diffusive flux and 

concentration, with flux moving from high- to low- concentration locations in a manner 

proportional to the concentration gradient. The first-order release kinetics proposes a 

linear relationship with its release constant based on the first derivative of time dependent 

drug concentration. By contrast to zero-order kinetics, it can be applied to porous delivery 

vehicles or water-soluble matrices. Also, in cases where a drug is encapsulated into nano 

or microparticles to control and sustain their release for a specific time, the first-order 

kinetics are applicable. For example, Wang et al. have implemented a first-order release 

approach to their reaction-diffusion system where VEGF is released from a porous 

degradable bone scaffold (L. Wang et al., 2020). 

Mechanistic drug release models have been attributed to solving diffusion event driven 

equations. Although empirical approaches do not consider the drug carrier’s geometry 

and material characteristics in the model, mechanistic models are discussed based on the 

carrier geometry (Mohseni-Motlagh et al., 2023). Drug release from non-degrading 

porous vehicles is controlled by pure diffusion mechanisms. Such release systems can be 

classified as monolithic (Figure 8a) and reservoir systems. Reservoir systems have a 

reservoir loaded with drugs which is surrounded by a barrier to control the release rate 

whereas monolithic systems do not consist of this barrier around the carrier device. By 

this definition, porous scaffolds as drug release agents can be expected to obey monolithic 

release system dynamics. The release from non-degrading scaffolds follows first order 
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Fickian diffusion in which the concentration is at its steady state (Farzan et al., 2023). 

When it comes to biodegradable delivery vehicles, the release mechanism is highly 

affected by the polymer fate which can undergo a swelling or an erosion depending on 

many factors (Figure 8b). Thus, the diffusion mechanism follows the second order 

Fickian diffusion which involves spatial changes in the species concentration. Also, 

desorption of the drug is effective while degradation mode and rate affects diffusion of 

drug which results in a very complex process. Siepmann and Gopferich stated that the 

most crucial phenomena to consider for biodegradable drug delivery systems are 

chemical reactions responsible for polymer erosion and diffusional mass transport 

(Siepmann & Gopferich, 2001). Theories considering both mass transport and chemical 

interactions offer greater details on the mechanisms governing drug release than the 

empirical models. These models obey Fick's laws and take the concept of diffusivity into 

account. The effects of diffusion on changing concentrations over time are predicted by 

Fick's second law (Askarizadeh et al., 2023). 

  

 

Figure 8: Controlled drug release mechanism for a monolithic system, (a) considering 

dispersion effect. (b) The release mechanism is determined according to polymer 

degradation fate, only diffusion is valid for drug transport in non-degrading polymer. In 

swelling or erosion of polymer, drug transport is affected by these mechanisms. Adapted 

from (Askarizadeh et al., 2023). 

 

In this thesis, we chose to incorporate BMP-2 growth factor release from porous polymer 

scaffold adapted from Sun et al.’s work (X. Sun et al., 2013). Since our scaffold has a 

complex shape in 3D and the scaffold is eroding at the same time, a mechanistic model 
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approach was necessary for the current model. In their work, they assumed an exogenous 

release from scaffold which indicates BMP-2 is assumed to be loaded externally to the 

scaffold. We also loaded BMP-2 to the interface of pores and scaffold. The time 

dependent dynamics of BMP-2 is modeled using a reaction-diffusion equation including 

its degradation, release and diffusion spatially and temporarily. Sun et al. took into 

account three growth factors including BMP-2, Wnt, and TGF-B to study the effect of 

different cytokine therapies on bone mass and endothelial cell number (X. Sun et al., 

2013). However, we aimed to investigate the effect of polymer degradation and parameter 

dominance in the given geometry. The release term is in the form of Michaelis Menten 

(MM) approach, depending on the water concentration, initially loaded BMP-2 amount 

and Michaelis Menten constant. The concentration of water appears in both polymer 

degradation equation (Equation 3.4) and release equation (Equation 3.5) since it has a 

role in both occurrences. MM kinetics were employed for release by treating BMP-2 as a 

substrate and water as an enzyme; in a form of enzyme concentration is the dominant for 

the release. Similarly, Vmax in general MM approach is represented as the remaining 

concentration of BMP-2 in the scaffold by taking the difference between initial loading 

amount and BMP-2 concentration variable. Main assumptions were the neglect of affinity 

between BMP-2 and polymer scaffold during loading and release dynamics.  

 

 

3.3.Construction of FEM Model 

 

 

3.3.1. Background Validation of 2D Axisymmetric Geometry 

 

Before the construction of a 3D porous geometry model presenting complexities both in 

terms of geometry, Boundary Conditions and the coupling of degradation and GF release 

mechanism, a validation study was performed using COMSOL Multiphysics (version 5.5) 

on a simple geometry for the degradation mechanism only. The validation study was 

adapted from Rothstein et al. which models spherical scaffolds in different sizes. The 

scaffolds were initially loaded with finite amount of drugs into the granules formed in the 

production of the scaffold. The granules were assumed to be distributed randomly 

throughout the matrix which provides a uniform distribution of drugs (Rothstein et al., 

2009). As described in the literature, the hydrolysis reaction of the scaffold due to the 
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diffusion of water-like extracellular fluids into the scaffold was assumed to result in the 

breaking of chemical bonds and dissolution (Von Burkersroda et al., 2002). The model 

equations for time-dependent water concentration within a hydrolysable polymer matrix 

of initial molecular weight were calculated from competing diffusion-reaction equations. 

As water diffuses into the matrix, a process described by Fick’s second law, the scaffold 

degrades mainly via hydrolysis of the polymer matrix (Equations 3.1 and 3.2). 

𝜕𝐶𝑊
𝜕𝑡

= 𝛻(𝐷𝑊𝛻𝐶𝑊) − 𝑘𝐶𝑊𝑀𝑊                                       (3.1) 

𝜕𝑀𝑊
𝜕𝑡

= −𝑘𝐶𝑊𝑀𝑊                                                 (3.2) 

Here, CW and MW represent the concentration of water and the molecular weight of the 

polymer, respectively, DW is the diffusivity of water within the polymer scaffold, and k is 

the polymer degradation rate constant. The literature states that the value of DW is in the 

order of 10-12 m2/s for various systems (Von Burkersroda et al., 2002).Wherever the 

gradient of the polymer molecular weight (dMW/dr vs. r) is at its smallest in the polymer 

matrix, it may be said to represent a "degradation front". When the core of the polymer 

matrix is at its initial molecular weight, this minimum is defined as the inflection point of 

the continuous function, Mw(r), so that the initial average molecular weight at this front 

is ½ Mwo (Rothstein et al., 2009). 

Various values collected from literature independent of geometry are also presented in 

Table 2 in more detail. The equation given in the third row of Table 2 is the standard 

Stokes Einstein equation which is used to estimate diffusion coefficients of spherical 

particles diffusing through a fluid. The general assumption is that the fluid particles are 

small enough for fluid to behave as a continuous phase. In the equation, kB is the 

Boltzmann constant, T is the temperature, μ is dynamic viscosity and r is the radius of the 

considered particle. Manhas et al. used the equation to estimate diffusivity of CaCl2 in 

water (Manhas et al., 2017). The equation in the last row is the Young-Carroad-Bell 

method employed by Huang et al. to estimate diffusion coefficients of BMP-4 and TGF-

β (G. X. Huang et al., 2015). In the equation, T is the temperature, η is the dynamic 

viscosity of the fluid and Mi is the molecular weight of the protein. 
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Table 2: Examples for diffusivity of water and growth factor, degradation rate of polymer 

scaffold from literature  

Parameter Value Reference 

DW 

4.6x10-15 m2/s (Adachi et al., 2006) 

10x10-12 m2/s (Rothstein et al., 2009) 

D=kBT6πμr=2.83x10-9 m2/s (Manhas et al., 2017)) 

k 

4.2x10-7 1/s (Adachi et al., 2006) 

2.5x10-10 to 6.9x108 1/s (Göpferich, 1996) 

DG 

2.9x10-10 m2/s (in water, BMP-2) 

(Davis & Leach, 2011) 

5.2x10-11 m2/s (in water, VEGF) 

4.6x10-14 m2/s in PLGA (Siepmann et al., 2005) 

2x10-10 m2/s (in water, VEGF) (Mac Gabhann et al., 2005) 

2.3x10-12 m2/s BMP in hydrogel (Ribeiro et al., 2015) 

2.9x10-11 m2/s (VEGF) (L. Wang et al., 2020) 

D=(8.3x10-8)*T/(ηMi
1/3) (G. X. Huang et al., 2015) 

 

 

The radius of the spherical scaffold in the model was set to 2 and 20 mm for two cases. 

The water pool surrounding the polymer matrix was modeled with varying thicknesses 

relative to the matrix radius. Geometry was created as a 2D axisymmetric quarter-sphere, 

using axisymmetric and symmetry boundary conditions (Figure 9). 
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Figure 9: 2D axi-symmetrical geometry of drug loaded degradable matrix 

 

The Chemistry interface under Chemical Species Transport in COMSOL Multiphysics 

was used for analyzing the chemical reaction and chemical components. In this module, 

the reaction kinetics and rate expressions were defined. The reaction was defined as a 

unidirectional reaction. The reaction rate constants, varying based on the amorphous and 

crystalline structure ratios of the polymer, were taken from the literature ranging from 

8.75x10-9 1/s to 2.7x10-7 1/s (Gopferich & Langer, 1993). To separate the regions where 

the reaction occurs in the created geometry and model the diffusion of species after the 

reaction, the Transport of Diluted Species (TDS) module was added. Two separate TDS 

modules were used for the two distinct regions in the geometry: the matrix and the 

surrounding environment of water to mimic ECM. The TDS module was prepared for 

both regions using parameters given in the literature ranging DW from 1x10-13 to 1x10-11. 

In the model, the biodegradation reaction occurs only within the matrix, and the diffusion 

constants of the species within their respective regions were defined accordingly. Since 

exact values for the diffusion constants of water and species within the polymer matrix 

were not specified in the literature, different values ranging from 10-12 m2/s to multiples 

of 10-14 m2/s were used to run the model. The symmetrical conditions for the quarter-

sphere geometry and the concentration boundary values at the intersections and endpoints 

of the regions were defined to create the spherical matrix. The concentration of water on 

the polymer matrix surface was calculated by dividing the initial water density by the 

molecular weight, as the hydrolysis reaction cannot start within the matrix when the water 

concentration is 0 as hydrolysis reaction is driven by water presence. Initially, the water 

concentration in the polymer matrix was set to 0 mol/m3, and 1 mol/m3 in the surrounding 

environment. The initial molecular weight of the polymer matrix was given as 10 kDa in 



 

46 

 

the scaffold region, as specified in the literature (Rothstein et al., 2009). The simulation 

was solved for a time span of 12 months and for four different reaction rate constants, 

assuming a polymer matrix radius of 2 and 20 mm. The COMSOL model details and 

relevant settings are given in Appendix A. 

 

 

3.3.2. Model Construction for Polymer Degradation and Growth Factor 

Release 

 

The degradation of a 3D spherical porous bone scaffold due to hydrolysis and growth 

factor release from the degrading scaffold is modeled. The non-dimensional molecular 

weight of the polymer and water concentration is modeled using the partial differential 

equations given in Equations 3.3-3.5, that were solved simultaneously. These represent a 

diffusion-reaction system based on second order Fickian diffusion of extracellular liquid 

such as water and the standard second order reaction rate term for hydrolysis of polymer 

scaffold (Equations 3.3 and 3.4, respectively). Water was taken into account to represent 

the extracellular liquid surrounding the implanted bone scaffold. 

𝜕𝐶

𝜕𝑡
= 𝛻(𝐷𝑊𝛻𝐶) − 𝑘𝐶𝐶𝑀                                               (3.3) 

𝜕𝑀

𝜕𝑡
= −𝑘𝑀𝐶𝑀                                                       (3.4) 

where C is the water concentration and M is the polymer molecular weight, DW is water 

diffusivity through the matrix, and kC and kM are degradation reaction rate constants for 

scaffold in water and matrix, respectively. At time zero, the water begins to penetrate the 

matrix, starting the hydrolysis reaction. Meanwhile, exogenous growth factor release 

starts from the degrading scaffold, and they continuously diffuse the extracellular liquid 

filling the pores. The presence of growth factor is modeled with another reaction-diffusion 

equation (Equation 3.5). 

𝜕𝐺

𝜕𝑡
= 𝛻(𝐷𝐺𝛻𝐺) − 𝜒𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑𝑟𝐺𝑖(𝐺𝑚𝑎𝑥 − 𝐺)

𝐶

𝐶 + 𝐾𝑀
− 𝑑𝐺𝐺            (3.5) 

where G is the concentration of growth factor, DG is the growth factor diffusivity, which 

varies in scaffold and pore domains, rG is the release constant, Gmax is the initially loaded 

amount of growth factors to scaffold, KM is the Michaelis constant, dG is the degradation 

constant of growth factors. scaffold is a characteristic function which is equal to 1 in the 

scaffold domain and is equal to 0 otherwise. GF release from the scaffold to pores is 
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employed by Sun et al. and modeled with Hill function according to the Michaelis-

Menten kinetics. The remaining amount of growth factors in the scaffold are related to 

the water concentration such that it is stimulated by presence of water similar to a 

substrate behavior in the second term (X. Sun et al., 2013). Here we exclude porosity 

creation in the polymer matrix due to bulk erosion. The nondimensional molecular weight 

of the polymer decreases through time, but we assume that the bulk degradation will not 

increase porosity inside the scaffold, and not create a specified space for GF to diffuse. 

The diffusion coefficient of water within the scaffold was assumed to be less than one 

order of magnitude of that in pores. Similarly, growth factor diffusivity through the 

scaffold was three orders of magnitude less than that in pores. 

Instead of solving the dynamical changes of concentration of 3 species using PDEs 

modules in COMSOL, the chemistry and transport of diluted species interfaces were 

coupled to model the three equations. The Chemistry interface involves two irreversible 

reactions that correspond to the hydrolysis reaction of the polymer matrix which depends 

on water concentration and the growth factor degradation reaction (Equations 3.6 and 3.7, 

respectively). Although the degradation of polymer occurs via hydrolysis, growth factors 

are not through hydrolysis; however, we assumed a first order degradation reaction for 

growth factor decay (X. Sun et al., 2013; L. Wang et al., 2020). Thus, the effect of water 

presence on growth factor concentration is only on its release kinetics indirectly by 

polymer degradation. The reaction rates of both equations employed the mass action 

kinetics (which described in Chapter 3.2 in detail). A quadratic discretization method was 

used in the Chemistry interface while a linear discretization is applied to the module in 

all domains. 

𝑀+𝑊 → 𝑀𝑊                                                  (3.6) 

𝐺 → 𝐺𝑊                                                        (3.7) 

The release term of GF is implemented as an additional term for species G in the 

COMSOL software, while transport of diluted species (TDS) interface was coupled with 

chemistry interface to solve diffusion of all three species. Therefore, Equation 3.4 and the 

last terms of the remaining equations are solved by the chemistry interface. The TDS 

module employs a second order Fickian diffusion by default which allows direct 

implementation of the first terms of Equations 3.3 and 3.5. Since degradation of scaffold 

occurs only in the scaffold domain, its reaction rate was not employed in the pore domain. 
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Moreover, the degradation rate constant of the growth factor is indicated in the Chemistry 

interface as the rate of Equation 3.7 similar to the rate constant, k, of Equation 3.6.  

The characteristic function used in Equation 3.5 (scaffold) was applied to the model using 

an interpolation function. Since the remaining growth factor term should stand only for 

the scaffold domain, the solution was arranged to consider this term only in the scaffold 

domain. However, the chemistry interface does not allow defining domain-based 

reactions. To solve this issue, the coordinate data of each node belonging to scaffold and 

pore domains were obtained after an initial run. Then, an external interpolation file was 

prepared and coordinates corresponding to scaffold nodes assigned as 1 while pore 

coordinates were assigned as 0. The same approach was applied for the initial growth 

factor loading part. Since the GFs initially loaded only to the pore-matrix interface, the 

coordinate data for each node on the boundaries of the geometry was exported and 

externally manipulated to assign as 0.8 (the initial loading amount) nodes corresponding 

to pore-matrix interface while the remaining were assigned to be zero (Appendix B). 

COMSOL Multiphysics® software (version 6.1) was used to develop the mathematical 

model describing polymer scaffold degradation and growth factor release from degrading 

scaffold as shown in Figure 10. A three-dimensional porous scaffold geometry was 

constructed using COMSOL geometry interface. It was designed as a cubic matrix with 

a size of 1.5mm x 1.5mm x 1.5mm and pore radius of 0.3 mm. The lateral pores are 

tangent to the surfaces of the scaffold on the y- and x-planes. The spherical pores are 

designed to have an intersection whose length corresponds to 10% of the diameter of the 

pores. 

 

Figure 10: a) 3D geometry of the cubic structure of the scaffold, and b) the spherical pores 

inside the cubic matrix. 
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The initial concentration of water is given as 1 in pores and 0 in matrix while the initial 

concentration of matrix is set as 0 in pores and 1 in matrix domain. The homogeneous 

Neumann boundary conditions are applied for all three equations, zero flux is applied 

along the outer boundaries of the geometry as shown in Figure 11. Growth factors were 

initially loaded to the interface of scaffold and pore domains to model the exogenous 

release. In vivo secretion of GF was ignored because its release from the scaffold is 

comparably higher than GF secretion of a cell (X. Sun et al., 2013; L. Wang et al., 2020).  

 

Figure 11: Scaffold surfaces with zero flux condition (green). 

 

Since the three equations (Equations 3.3, 3.4, 3.5) are coupled in Chemistry and TDS 

interfaces, obtaining their solutions requires communication between these interfaces. 

This integration is essentially provided in two different ways. In the first, tds module asks 

the source of diffusions of each species and it was specified as ‘chemistry’ to link the 

diffusivities to the Chemistry interface (Appendix B). Because there are two transport 

properties that were set for scaffold and pore domains separately to distinguish the 

diffusion coefficients of species in different materials, the same is applied to the second 

transport properties section. The second relation between two interfaces was enabled by 

defining two separate reaction conditions in the TDS module for Equations 3.6 and 3.7. 

The rates of both reactions are called from the chemistry interface. While the first reaction 

was assigned for matrix domain only to solve for each species reaction, the latter was 

assigned for pore domain and reaction rate of Equation 3.6 was manually assigned as 0 

since there is no polymer degradation event occurring in pores. All COMSOL model 

settings and details for the 3D model are provided in Appendix B. 

The parameters necessary to solve these equations are given in Table 3. The parameters 

are based on the in-depth parametric study performed in this thesis to match to the extent 

possible the GF and polymer concentration profiles of the chosen reference study (X. Sun 
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et al., 2013). The initial parameters chosen for the parametric study were selected based 

on literature and tuned with an insight gained in the course of the model study part. The 

fitted values are determined to be close to the literature values with some of them 

presented. The values provided can be compared to the ones Table 2 provided above. In 

the parameter fitting process, we initially focused on k and DW in Equations 3.3 and 3.4, 

and our fine tuning was based on the resulting polymer concentration profile and 

distribution. Later, we concentrated on DG, dG, rG in Equation 3.5 with a target of matching 

the GF concentration profiles. 

 

Table 3: Important model parameters and their values used in the simulation studies of 

the thesis. 

Parameter Value Description Reference 

kM 4.00x10-7 1/s degradation rate of polymer Fitted 

kC 4.00x10-7 1/s degradation rate of water Fitted 

DW 4.6x10-8 mm2/s diffusivity of water in matrix Fitted 

DG 2.9x10-9 mm2/s diffusivity of BMP2 in matrix Fitted 

rG 2.0x10-5 1/s release constant for BMP2 Fitted 

KM 0.5 Michaelis Menten constant (Sun et al., 2013) / Fitted 

dG 1.0x10-8 1/s degradation rate of BMP2 Fitted 

MG 26 kDa molar mass of BMP2 (Sundermann et al., 2020) 

 

 

The whole process is simulated for the real time length of 1 day and total period of 28 

days with weekly time steps. A physics-controlled mesh was used with finer element size 

having 0.0825 mm maximum element size. Time-dependent direct solver was used with 

a fully coupled approach to solve for all unknowns simultaneously and to include the 

couplings between them at once. All direct solvers that COMSOL offers (MUMPS, 

PARDISO and SPOOLES) use LU decomposition, however PARDISO tends to be the 

fastest one (COMSOL, 2022). Thus, PARDISO was selected as the solution to avoid out-

of-core memory error of MUMPS due to its need for more memory. The linear direct 

solver used the constant Newton method with a damping factor of 0.9 with maximum 8 
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number of iterations. An implicit BDF scheme was employed for time-stepping with 

initialization using backward Euler scheme. 

 

 

3.4.Modeling of Biological Systems 

 

The intricate nature of biological interactions in the growing field of systems biology 

demands the use of sophisticated computational models to supplement conventional 

experimental methods. Genes, proteins, and metabolites form complex networks within 

cells and tissues that dynamically interact to form biological systems (Kitano, 2002; 

Sobie, 2011). Although crucial for obtaining empirical data, experimental approaches 

frequently lack the capacity to fully capture the range of these interactions because of 

obstacles such as scale and one-by-one variable manipulation. This gap is filled by 

computational modeling, which makes it possible to combine different datasets, simulate 

biological processes, and forecast how a system will behave in different scenarios. These 

models have the capacity to capture the fundamental ideas of biological networks, 

offering insights that are frequently unattainable through experimentation alone. 

Moreover, computational methods make it easier to generate and evaluate hypotheses, 

enabling researchers to investigate possible outcomes and pinpoint important regulatory 

systems (Ideker et al., 2001; Kahlem & Birney, 2006). The information gathered from in 

silico simulations guides the design of experiments and facilitates an integrated strategy 

that hastens the identification of new therapeutic targets and the further development of 

precision medicine techniques (D. C. Clarke, 2000). 

As a subgroup of network-based models, systems of ordinary and partial differential 

equation systems (ODEs and PDEs) are mostly employed to simulate the cellular 

components as dynamically changing variables. Despite using discrete pairing values 1 

and 0 representing presence and absence of transcription factors, ODE systems evaluate 

concentrations of TFs as a continuous variable in time. ODE systems allow treating the 

independent variable of continuous time and the dependent variables of concentration of 

species as discrete steps according to model behavior (Klipp et al., 2016). These equation 

systems can be deterministic and stochastic. While stochastic modeling enables studying 

a system arising from fluctuations or noisy data, deterministic modeling ignores the 

stochastic effects and assumes that these signaling components are homogeneously 

distributed within the cell (Aldridge et al., 2006; Zi, 2012). Selecting the most appropriate 
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method for a model depends on the properties of the system and main expectations from 

the model. ODE-based methods can be extended to study interaction reaction kinetics in 

three common ways: law of mass action, Michaelis-Menten kinetics and Hill function. 

Similarly, they can be simplified by applying well-studied laws such as quasi-steady state 

assumptions (Thakur et al., 2023; Zi, 2012).  

The primary processes responsible for signal transmission in biological systems are 

protein-protein interactions, enzymatic reactions, including cycles of protein 

phosphorylation and dephosphorylation, protein degradation, and intracellular messenger 

proteins. These interactions are communication tools of cells or other components of the 

biological system. Because all these interactions can be represented as chemical reactions, 

the kinetic study is a viable method for dynamical analysis of both small- and large-scale 

signaling pathways. Establishing a connection diagram including the chemical reactions 

and giving the various interactions the right kinetic characteristics or rate laws is essential 

for kinetic studies (Anbumathi, 2014; Crampin et al., 2004). Determining the type of 

reaction intermediates, their interactions (how they react with or change into each other), 

and the rates of these transformations are the main objectives of a mechanistic analysis 

of a biological system. 

The law of mass action, which was introduced in the nineteenth century, states that the 

probability of the collusion of reactants in a reaction is proportional to the rate of the 

reactions’ rate. This probability is also proportional to the concentrations of each 

reactants’ power of molecularity which indicates how many of them undergo the reaction 

(Klipp et al., 2016). A reaction involves two reactants, and one product is represented as 

𝐴 + 𝐵 ↔ 𝑃                                                           (3.8) 

The reaction rate for Equation 6 is written based on the law of mass action as 

𝜈𝑛𝑒𝑡 = 𝜈𝑓𝑜𝑟𝑤𝑎𝑟𝑑 − 𝜈𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = 𝑘𝑓𝑜𝑟𝑤𝑎𝑟𝑑 ∙ [𝐴] ∙ [𝐵] − 𝑘𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ∙ [𝑃]      (3.9) 

where the νnet is the net reaction rate, kforward and kbackward are the reaction rate constants 

for the forward and backward reactions, respectively, and bracket parentheses are used to 

represent the concentration of the species. Then, the generalized reaction rate equation 

can be written as 

𝜈𝑛𝑒𝑡 = 𝜈𝑓𝑜𝑟𝑤𝑎𝑟𝑑 − 𝜈𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑                                      (3.10) 

𝜈𝑛𝑒𝑡 = 𝑘𝑓𝑜𝑟𝑤𝑎𝑟𝑑∑𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑖 − 𝑘𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑∑𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑗

𝑚𝑗

𝑗=1

𝑚𝑖

𝑖=1

         (3.11) 
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where mi and mj are the reactants and products of the reaction. To derive the ODEs 

evaluating the dynamics of the reaction can be then written based on the net rate as 

−𝑑𝐴

𝑑𝑡
=
−𝑑𝐵

𝑑𝑡
=
𝑑𝑃

𝑑𝑡
= 𝜈𝑛𝑒𝑡                                             (3.12) 

The reason for equal coefficients between differential terms is due to the equal 

stoichiometry in the reactants and product in Equation 6, and the minus coefficient in the 

reactants is due to the consumption of them. 

In a similar manner, a chemical conversion of a substrate S into a product P can occur 

spontaneously  

𝑆
𝑘
→  𝑃                                                            (3.13) 

where k is the reaction rate constant that regulates the speed of the reaction. Enzymes are 

biological catalysts that are naturally found in the body. Enzyme involved reactions have 

a formation of an enzyme-substrate complex as an intermediate step. An enzymatic 

reaction is represented as  

𝑆 + 𝐸   
𝑘1,𝑘−1
↔       𝐶  

𝑘
→𝐸 + 𝑃                                           (3.14) 

where C is the enzyme-substrate complex. Enzymes convert a simple one step elementary 

reaction to two elementary reactions dividing the reaction steps. The first step is a 

reversible interaction between enzyme and its substrate forming a complex, and the 

second step is the formation of product by irreversible dissociation of complex with a 

chemical alter only in substrate. Enzymes accelerate a chemical reaction by working 

similar to a catalyst by lowering the free energy barrier such that the production of P is 

generally faster in the second reaction than the first (Eilertsen et al., 2021). To apply mass 

action law to Equation 3.14 results with the following system of ODEs: 

𝑑𝑆

𝑑𝑡
= −𝑘1 ∙ 𝐸 ∙ 𝑆 + 𝑘−1 ∙ 𝐸𝑆                                     (3.15𝑎) 

𝑑𝐸𝑆

𝑑𝑡
= 𝑘1 ∙ 𝐸 ∙ 𝑆 − (𝑘−1 + 𝑘2) ∙ 𝐸𝑆                               (3.15𝑏) 

𝑑𝐸

𝑑𝑡
= −𝑘1 ∙ 𝐸 ∙ 𝑆 − (𝑘−1 + 𝑘2) ∙ 𝐸𝑆                               (3.15𝑐) 

𝑑𝑃

𝑑𝑡
= 𝑘2 ∙ 𝐸𝑆                                                   (3.15𝑑) 

This system of ODEs cannot be solved analytically (Klipp et al., 2016). This requires an 

application of numerical solution, or a simplification for the system of equations. 

Michaelis and Menten introduced a mathematical model based on a quasi-steady-state 

assumption (QSSA) for the complex. They claimed that ‘if the rate of production 
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formation (k1) is approximately constant over the time interval concerned’, then the 

complex concentration would be approximately constant (
𝑑𝐶

𝑑𝑡
= 0) (Segel & Slemrod, 

1989). However, this assumption is valid only if the enzyme concentration is small 

compared to that of the substrate. The validity of QSSA is limited to 𝐸0 ≪ 𝑆0, but then it 

is more generalized to 𝐸0 ≪ 𝑆0 + 𝐾𝑀 where 𝐾𝑀 =
𝑘−1+𝑘2

𝑘1
 is the Michaelis Menten 

constant (H.-W. Kang et al., 2017). 

The derivation of QSSA applied expression is applied to the current problem of the thesis 

in Chapter 3.2.1, so it is not introduced here. Shortly, the general Michaelis Menten 

kinetics is obtained as 

𝜈 =
𝑉𝑚𝑎𝑥 ∙ 𝑆

𝐾𝑀 + 𝑆
, 𝑉𝑚𝑎𝑥 = 𝑘2 + 𝐸𝑡𝑜𝑡𝑎𝑙                                        (3.16) 

where Vmax is the maximum reaction velocity and Etotal is the initial enzyme concentration 

(unbound). It is necessary to clearly distinguish the timescales of the fast and slow 

species—that is, the substrate and the enzyme–substrate complex in order to use the 

quasi-steady-state approximation in an efficient manner. Reducing the complexity of the 

system by using different timescales to simplify reaction kinetics is an important and often 

used method. Determining the proper time intervals and circumstances for this 

simplification to be true, especially for a process involving just one enzyme and substrate, 

has been a subject of discussion (Crampin et al., 2004). 

Many reactions empirically show sigmoidal kinetics with respect to substrate 

concentration. The Hill equation is a mathematical equation that describes this sigmoidal 

behavior between the substrate concentration and the enzyme that is occupied by the 

substrate. By doing so, it quantifies responses that are either ultrasensitive or sub-sensitive 

to changes in allosteric proteins. In order to mathematically characterize this binding for 

enzyme-substrate processes, the empirical equation derived as 

𝜈 =
𝑉𝑚𝑎𝑥 ∙ 𝑆

𝑛

𝐾𝑀 + 𝑆𝑛
                                                        (3.17) 

where n is the Hill coefficient (Anbumathi, 2014; Crampin et al., 2004). The general form 

of the Hill equation is given as by Klipp et al. by assuming the complete cooperativity in 

binding of protein-ligand (Klipp et al., 2016). 

𝜈 =
𝑉𝑚𝑎𝑥 ∙ 𝐾𝐵 ∙ 𝑆

𝑛

1 + 𝐾𝐵 ∙ 𝑆𝑛
                                                  (3.18) 

where KB is the binding coefficient of protein-ligand. N indicates the degree of 

cooperativity, for n being 1 means the binding of a ligand does not affect the binding of 
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others. For n values larger than 1, there is a positive cooperativity meaning that binding 

of a ligand increases the affinity for others.  

After that, these complexes are either absorbed or take part in phosphorylation processes. 

Through a sequence of events involving ATP and other active components, signaling 

components are phosphorylated. Anyone signaling component has the ability to activate 

several other signaling components; this kind of multi-functionality, such as crosstalk, is 

frequently observed in biological systems. Finally, the downstream effector molecules 

that arise from the signaling pathways are active transcription factors, which are 

indicative of phosphorylated proteins (Min Lee et al., 2008). 

Many of the individual key reactions within this complex signaling network are not 

amenable to experimental investigation, making it impossible to ascertain experimentally 

whether such a hypothesis is consistent with the observed kinetics of nuclear 

accumulation of activated Smad complexes and their behavior after receptor inactivation. 

Furthermore, identifying the reactions that are rate-limiting and, therefore, possible 

targets for therapeutic intervention, is challenging (Schmierer et al., 2008). 

In this thesis we analyze the dynamical changes in transcription factors affected by BMP-

2 concentration by representing their signaling pathway as a chemical reaction system. 

Mass action law is applied to obtain a system of ODEs similar to given in Equation 3.15. 

Also, Michaelis Menten approach is applied under steady state approximation for 

enzyme-substrate complex and Hill function is employed to make the transcription factor 

behavior more sensitive to BMP-2 concentration similar to Equation 3.17. 

 

 

3.4.1. Application of Michaelis Menten and Hill Function to The Current 

Problem 

 

The signaling pathway system is limited to 4 major components, BMP-2, Smad1/5, 

Runx2 and Osx (Figure 12). Osx is downstream of both Smad1/5 and Runx2, so their 

effect on Osx phosphorylation is considered separately. The mathematical model 

consisting of their dynamical changes is a system of 4 nonlinear ODEs with 12 kinetic 

parameters arising from chemical reactions by mass action kinetics. Equation 16 is the 

chemical reaction set representing the cellular signaling events taking place. 
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Figure 12: BMP-2-Smad signaling pathway considered in the model. The red lines 

indicate activation and deactivation of TFs and blue lines are the product formation from 

intermediate complex. 

𝑆1 + 𝐵𝑀𝑃2
𝑎1,𝑑1
↔  𝑆1: 𝐵𝑀𝑃2

𝑘1
→ 𝑝𝑆1 + 𝐵𝑀𝑃2                            (3.19𝑎) 

𝑝𝑆1 + 𝑅𝑢𝑛𝑥2
𝑎2,𝑑2
↔  𝑝𝑆1: 𝑅𝑢𝑛𝑥2

𝑘2
→ 𝑝𝑆1 + 𝑝𝑅𝑢𝑛𝑥2                       (3.19𝑏) 

𝑝𝑅𝑢𝑛𝑥2 + 𝑂𝑠𝑥
𝑎3,𝑑3
↔  𝑝𝑅𝑢𝑛𝑥2: 𝑂𝑠𝑥

𝑘3
→ 𝑝𝑅𝑢𝑛𝑥2 + 𝑝𝑂𝑠𝑥                    (3.19𝑐) 

𝑝𝑆1 + 𝑂𝑠𝑥
𝑎4,𝑑4
↔  𝑝𝑆1: 𝑝𝑂𝑠𝑐

𝑘4
→ 𝑝𝑆1 + 𝑝𝑂𝑠𝑥                         (3.19𝑑) 

where ai, di, are the reaction rate constants for the reversible enzyme-substrate binding 

(association and dissociation rate constants) and ki is the rate of product formation 

reaction. According to Eilertsen et al.’s studies, the enzymatic reactions near the 

thermodynamic limit are modeled by nonlinear ordinary action (Eilertsen et al., 2021). 

Moreover, if the concentrations of the species in the reaction system is not too low, the 

system again can be represented by nonlinear ODEs based on mass action law, under the 

assumption of well-mixed conditions (Eilertsen & Schnell, 2020). Dynamical changes in 

each species of a chemical reaction system can be expressed by rate equations for each 

species. The rate equations obey the law of mass action and form a system of nonlinear 

ODEs. At this point, considering enzyme-substrate kinetics, it is assumed that there are 

no chemical structure changes during the reactions. Furthermore, the association, 

dissociation and product formation rate constants are assumed to be independent of time 
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and concentration. The bracket notation [] refers to concentrations of each species. 

Rename concentrations of each species for the sake of simplicity as following: 

[𝑆1] = 𝑥1, [𝐵𝑀𝑃2] = 𝑥2, [𝑝𝑆1] = 𝑥3, [𝑆1: 𝐵𝑀𝑃2] = 𝑦1, [𝑅𝑢𝑛𝑥2] = 𝑥4, [𝑝𝑅𝑢𝑛𝑥2]

= 𝑥5, [𝑝𝑆1: 𝑅𝑢𝑛𝑥2] = 𝑦2, [𝑂𝑠𝑥] = 𝑥6, [𝑝𝑂𝑠𝑥] = 𝑥7, [𝑝𝑅𝑢𝑛𝑥2: 𝑂𝑠𝑥]

= 𝑦3, [𝑝𝑆1: 𝑂𝑠𝑥] = 𝑦4 

Then, the nonlinear ODE system representing the time dependent changes of variables 

(concentrations of phosphorylated transcription factors) in Equation 3.19 are given in 

Equation 3.20. 

𝑑𝑥1
𝑑𝑡
= −𝑎1𝑥1𝑥2 + 𝑑1𝑦1                                          (3.20𝑎) 

𝑑𝑥2
𝑑𝑡

= −𝑎1𝑥1𝑥2 + 𝑑1𝑦1 + 𝑘1𝑦1                                   (3.20𝑏) 

𝑑𝑦1
𝑑𝑡

= 𝑎1𝑥1𝑥2 − 𝑑1𝑦1 − 𝑘1𝑦1                                       (3.20𝑐) 

𝑑𝑥3
𝑑𝑡

= −𝑎2𝑥3𝑥4 + 𝑑2𝑦2 + 𝑘1𝑦1 − 𝑎4𝑥3𝑥6 + 𝑑4𝑦4 + 𝑘2𝑦2 + 𝑘4𝑦4      (3.20𝑑) 

𝑑𝑥4
𝑑𝑡

= −𝑎2𝑥3𝑥4 + 𝑑2𝑦2                                          (3.20𝑒) 

𝑑𝑦2
𝑑𝑡

= 𝑎2𝑥3𝑥4 − 𝑑2𝑦2 − 𝑘2𝑦2                                        (3.20𝑓) 

𝑑𝑥5
𝑑𝑡

= −𝑎3𝑥5𝑥6 + 𝑑3𝑦3 + 𝑘2𝑦2 + 𝑘3𝑦3                               (3.20𝑔) 

𝑑𝑥6
𝑑𝑡

= −𝑎3𝑥5𝑥6 + 𝑑3𝑦3 − 𝑎4𝑥3𝑥6 + 𝑑4𝑦4                             (3.20ℎ) 

𝑑𝑦3
𝑑𝑡

= 𝑎3𝑥5𝑥6 − 𝑑3𝑦3 − 𝑘3𝑦3                                         (3.20𝑖) 

𝑑𝑥7
𝑑𝑡

= 𝑘3𝑦3 + 𝑘4𝑦4                                                (3.20𝑗) 

𝑑𝑦4
𝑑𝑡
= 𝑎4𝑥3𝑥6 − 𝑘4𝑦4 − 𝑑4𝑦4                                      (3.20𝑘) 

For a closed system, the conservation of mass law can be applied for enzymes to reduce 

the complexity of the equations since they come out of the reaction with no change in 

mass and composition. In the beginning, any phosphorylated component or complex is 

not formed yet, so we can write following initial conditions: 

𝑥3(𝑡 = 0) = 0,         𝑥1(𝑡 = 0) = [𝑇𝑜𝑡𝑎𝑙𝑆1]                         (3.21𝑎) 

𝑥5(𝑡 = 0) = 0,    𝑥4(𝑡 = 0) = [𝑇𝑜𝑡𝑎𝑙𝑅𝑢𝑛𝑥2]                       (3.21𝑏) 

𝑥7(𝑡 = 0) = 0,     𝑥6(𝑡 = 0) = [𝑇𝑜𝑡𝑎𝑙𝑂𝑠𝑥]                         (3.21𝑐) 
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𝑦1 = 𝑦2 =  𝑦3 = 𝑦4 = 0 𝑎𝑡 𝑡 = 0                               (3.21𝑑) 

For the first reaction (Eqn. 3.19a), BMP-2 forms a complex with Smad1/5 reversibly, the 

concentration of total BMP-2 is the sum of concentrations of the intermediate complex 

and its concentration at any time for enzyme conservation (Equation 3.22).  

𝑥2,𝑇 = 𝑥2(𝑡) + 𝑦1                                                 (3.22) 

The same implication that eliminates Equation 3.20b can be mathematically shown by 

adding up Equations 3.20b and 3.20c and using the initial condition 𝑦1 = 0; 

𝑑𝑥2
𝑑𝑡
+
𝑑𝑦1
𝑑𝑡
= 0                                                      (3.23) 

Based on the conservation of mass, we know that the sum of phosphorylated and 

unphosphorylated concentrations of transcription factors are equal to their initial 

concentrations at any time so we can write Equation 3.24. Time dependency of 

concentration changes is dropped for the sake of simplicity: 

𝑥1,𝑇 = 𝑥1 + 𝑥3                                                  (3.24𝑎) 

𝑥4,𝑇 = 𝑥4 + 𝑥5                                                  (3.24𝑏) 

𝑥6,𝑇 = 𝑥6 + 𝑥7                                                  (3.24𝑐) 

Equations 3.22 and 3.23 eliminate Equation 3.20b from the initial ODE system. 

Furthermore, we can substitute Equation 3.22 to all equations consisting of variable y1. 

After that, Equation 24 eliminates three more equations from the initial system: Equations 

3.20a, 3.20e and 3.20h since the total concentrations of transcription factors are constant. 

Then, the ODE system becomes Equation 3.25 as follows 

𝑑𝑦1
𝑑𝑡

= 𝑎1𝑥1(𝑥2,𝑇 − 𝑦1) − 𝑑1𝑦1 − 𝑘1𝑦1                           (3.25𝑎) 

𝑑𝑥3
𝑑𝑡

= −𝑎2𝑥3𝑥4 + 𝑑2𝑦2 + 𝑘1𝑦1 − 𝑎4𝑥3𝑥6 + 𝑑4𝑦4 + 𝑘2𝑦2 + 𝑘4𝑦4     (3.25𝑏) 

𝑑𝑦2
𝑑𝑡

= 𝑎2𝑥3𝑥4 − 𝑑2𝑦2 − 𝑘2𝑦2                                      (3.25𝑐) 

𝑑𝑥5
𝑑𝑡

= −𝑎3𝑥5𝑥6 + 𝑑3𝑦3 + 𝑘2𝑦2 + 𝑘3𝑦3                            (3.25𝑑) 

𝑑𝑦3
𝑑𝑡

= 𝑎3𝑥5𝑥6 − 𝑑3𝑦3 − 𝑘3𝑦3                                   (3.25𝑒) 

𝑑𝑥7
𝑑𝑡

= 𝑘3𝑦3 + 𝑘4𝑦4                                              (3.25𝑓) 

𝑑𝑦4
𝑑𝑡
= 𝑎4𝑥3𝑥6 − 𝑘4𝑦4 − 𝑑4𝑦4                                       (3.25𝑒) 
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Calling standard quasi-steady-state-approximation (sQSSA) for complex formation here 

is necessary to proceed further analytically. sQSSA assumes the complex concentration 

remains constant if the measured reaction rate of product formation is approximately 

constant over the time interval concerned (Segel & Slemrod, 1989). This implies that 

concentration of complex is not changing with time, then it is said that 

𝑑 [𝐶𝑜𝑚𝑝𝑙𝑒𝑥] 𝑑𝑡⁄ = 0. For our case, sQSSA simplifies Equations 3.25a, 3.25c, 3.25e and 

3.25e to simple algebraic equations. Substituting the algebraic forms of the four equations 

to the remaining ones, the system is left with three ODEs representing the concentration 

changes of phosphorylated transcription factors given in Equation 3.26: 

𝑑𝑥3
𝑑𝑡

=
𝑥1𝑥2,𝑇𝑘1

𝑥1 +
𝑑1 + 𝑘1
𝑎1

                                             (3.26𝑎) 

𝑑𝑥5
𝑑𝑡

=
𝑥3𝑥4𝑘2
𝑑2 + 𝑘2
𝑎2

                                                (3.26𝑏) 

𝑑𝑥7
𝑑𝑡

=
𝑥5𝑥6𝑘3
𝑑3 + 𝑘3
𝑎3

+
𝑥3𝑥6𝑘4
𝑑4 + 𝑘4
𝑎4

                                      (3.26𝑐) 

Michaelis constant is defined as 𝐾𝑀 =
𝑑𝑖+𝑘𝑖

𝑎𝑖
 and the maximum velocity of an enzymatic 

reaction that can be reached is 𝑉𝑚𝑎𝑥 = 𝑘𝑖𝑥𝑖,𝑇. Considering the effect of decay rate for 

each transcription factor can be added as an additional rate term to each ODE in an 

elementary reaction form (rate constant times concentration of degrading species). Re-

writing Equation 3.27 in the form of Km and Vmax considering degradation of each 

transcription factor results the following set of equations: 

𝑑[𝑝𝑆1]

𝑑𝑡
=
𝑉𝑚𝑎𝑥,1 ∙ [𝐵𝑀𝑃2]

𝐾𝑀,1 + [𝑆1]
− 𝑑1 ∙ [𝑝𝑆1]                                  (3.27𝑎) 

𝑑[𝑝𝑅𝑢𝑛𝑥2]

𝑑𝑡
=
𝑉𝑚𝑎𝑥,2 ∙ [𝑅𝑢𝑛𝑥2]

𝐾𝑀,2 + [𝑅𝑢𝑛𝑥2]
− 𝑑2 ∙ [𝑝𝑅𝑢𝑛𝑥2]                        (3.27𝑏) 

𝑑[𝑝𝑂𝑠𝑥]

𝑑𝑡
=
𝑉𝑚𝑎𝑥,3 ∙ [𝑂𝑠𝑥]

𝐾𝑀,3 + [𝑂𝑠𝑥]
+
𝑉4,𝑚𝑎𝑥 ∙ [𝑂𝑠𝑥]

𝐾𝑀4 + [𝑂𝑠𝑥]
− 𝑑3 ∙ [𝑝𝑂𝑠𝑥]                  (3.27𝑐) 

where di is the degradation constant for each protein. The derived equations (Equation 

3.27) are a representation of a standard Michaelis Menten approach to enzyme-substrate 

dynamics based on a tailored Hill function. The Hill function can be scaled to tune the 

non-linear responses in a biological system (Ang et al., 2013). BMP-2 behaves as the 

activator of transcription factors such that it phosphorylates Smad1/5 and then Smad1/5 

activates both Runx2 and Osx. The output signal of transcription factors here is modeled 
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as the concentration of the enzyme is more dominant in phosphorylation of the substrates 

rather than the substrate concentration. Thus, Equation 3.27 can be tuned to have enzyme 

concentrations in both numerator and denominator of the Michaelis Menten terms 

whereas the degradation of each TF still obeys first order chemical reaction (Equation 

3.28) (X. Sun et al., 2013). 

𝑑[𝑝𝑆1]

𝑑𝑡
=
𝑉𝑚𝑎𝑥,1 ∙ [𝐵𝑀𝑃2]

𝐾𝑀,1 + [𝐵𝑀𝑃2]
([𝑇𝑜𝑡𝑎𝑙𝑆1] − [𝑝𝑆1]) − 𝑑1 ∙ [𝑝𝑆1]           (3.28𝑎) 

𝑑[𝑝𝑅𝑢𝑛𝑥2]

𝑑𝑡
=
𝑉𝑚𝑎𝑥,2 ∙ [𝑝𝑆1]

𝐾𝑀,2 + [𝑝𝑆1]
− 𝑑2 ∙ [𝑝𝑅𝑢𝑛𝑥2]                        (3.28𝑎) 

𝑑[𝑝𝑂𝑠𝑥]

𝑑𝑡
=
𝑉𝑚𝑎𝑥,3 ∙ [𝑝𝑆1]

𝐾𝑀,3 + [𝑝𝑆1]
−
𝑉𝑚𝑎𝑥,4 ∙ [𝑝𝑅𝑢𝑛𝑥2]

𝐾𝑀,4 + [𝑝𝑅𝑢𝑛𝑥2]
− 𝑑3 ∙ [𝑝𝑂𝑠𝑥]           (3.28𝑎) 

Equation 3.28 is the final system of ODEs representing the dynamics of considered BMP-

2/Smad1/5 signaling pathway to regulate gene expression which cannot be solved 

analytically. At this point, another quasi-steady-state assumption can be applied for 

further simplification. Since the growth factor release is much slower than the 

intracellular signaling pathway reactions, it can be assumed that the changes in growth 

factor concentration affects the ODE system as a discrete input. This assumption is valid 

since the BMP-2 concentration in Equation 3.28a is evaluated from its release from 

degrading scaffold for 28-day period. However, reaching a steady state for intracellular 

reactions takes far less time such that it occurs in minutes or hours (Chung et al., 2007; 

X. Sun et al., 2013). Thus, by applying a QSSA to Equation 3.28, the ODE system can be 

reduced to a system of algebraic equations given in Equation 3.29. 

[𝑝𝑆1] =
[𝑇𝑜𝑡𝑎𝑙𝑆1]

(1 +
𝑑1 ⋅ (𝐾𝑀,1 + [𝐵𝑀𝑃2])

𝑉𝑚𝑎𝑥,1 ⋅ [𝐵𝑀𝑃2]
)

                                 (3.29𝑎) 

[𝑝𝑅𝑢𝑛𝑥2] =
1

𝑑2
⋅ (
𝑉𝑚𝑎𝑥,2 ⋅ [𝑆1]

𝐾𝑀,2 + [𝑆1]
)                                    (3.29𝑏) 

[𝑝𝑂𝑠𝑥] =
1

𝑑3
⋅ (
𝑉𝑚𝑎𝑥,3 ⋅ [𝑝𝑆1]

𝐾𝑀,3 + [𝑝𝑆1]
+
𝑉𝑚𝑎𝑥,4 ⋅ [𝑝𝑅𝑢𝑛𝑥2]

𝐾𝑀,4 + [𝑝𝑅𝑢𝑛𝑥2]
)                   (3.29𝑐) 

The constants used in the model are borrowed from the reference study and 

provided in Table 4 below (X. Sun et al., 2013). Hence, the model used in this thesis relies 

on Michaelis Menten approach with Hill function. Also, a quasi-steady state assumption 

for phosphorylated transcription factor dynamics is solved using the final equations 

provided in Equation 3.29 via a code in MATLAB. 
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Table 4: Parameters used in intracellular signaling pathway 

Vmax,1 1.9608 nM/hr 
maximal activation velocities of Smad1/5 by 

BMP2 

Km,1 33.7255 nM 
Michaelis activation coefficient of Smad1/5 by 

BMP2 

d1 1 hr-1 decay rate of phosphorylated Smad1/5 

Vmax,2 0.8198 nM/hr 
maximal activation velocities of Runx2 by 

Smad1/5 

Km,2 93.451 nM 
Michaelis activation coefficient of Runx2 by 

Smad1/5 

d2 36.8634 hr-1 degradation rate of Runx2 

Vmax,3 0.0519 nM/hr maximal activation velocities of Osx by Smad1/5 

Km,3 984.3137 nM Michaelis activation coefficient of Osx by Smad1/5 

Vmax,4 0.0392 nM/hr maximal activation velocities of Osx by Runx2 

Km,4 139.2157 nM Michaelis activation coefficient of Osx by Runx2 

d4 0.0224 hr-1 degradation rate of Osx 

 

 

 

3.4.2. Model Development Details of BMP2-Smad Signaling Pathway 

 

The derivation of standard Michaelis Menten approach is provided in the previous 

chapter. The final equation system was Equation 3.27. Then, Hill function was employed 

based on reference study to analyze the effect of enzyme concentration more efficiently 

(X. Sun et al., 2013). The output signal of transcription factors is modeled by focusing on 

the concentration of the enzyme, which is more influential in the phosphorylation of 

substrates than the substrate concentration itself. Therefore, Equation 3.27 is adjusted to 

use enzyme concentrations in both the numerator and denominator of the Hill functions. 

Meanwhile, the degradation of each transcription factor continues to follow a first-order 

chemical reaction, as described in Equation 3.28.  

The final equation system for signaling pathway (Equation 3.29) is solved for a shorter 

time scale (in hours) using MATLAB software. The GF concentration obtained from the 
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developed model in COMSOL is used as the input of this ODE system. The occurrence 

time period of the GF release is very different compared to signaling events such that GF 

release takes almost a month to reach a certain constant value in scaffold pores. On the 

other hand, the time it takes for transcription factors to be phosphorylated and reach a 

steady state value is reported in the order of minutes. Even though this variation in time 

scales makes it hard to analyze experimentally obtained kinetic data, it allows us to apply 

a quasi-steady-state assumption to simplify the system of ODEs. After QSSA, a nonlinear 

algebraic set of equations was obtained as shown in Equation 3.29. The very detailed 

derivation of Equation 3.29 was not provided here since it is a straightforward procedure. 

Shortly, assuming a steady state condition for each variable one by one as shown in 

Equation 3.30-3.32 

 

𝑑 [𝑝𝑆1] 𝑑𝑡⁄ = 0                                                  (3.30) 

𝑑 [𝑝𝑅𝑢𝑛𝑥2] 𝑑𝑡⁄ = 0                                              (3.31) 

𝑑 [𝑝𝑂𝑠𝑥] 𝑑𝑡⁄ = 0                                                (3.32) 

 

Equation 3.29 is obtained. Although the system is highly nonlinear, since it is in its current 

form an algebraic set of equations, it is easy to implement and solve this system in 

MATLAB (R2021b).   

The Equation 3.29 which is the set of nonlinear algebraic equations requires the total 

Smad1/5 data. Considering that signaling events considered in this study takes place in 

cytoplasm, specifically total Smad 1/5 data is necessary. A singular total Smad1/5 

concentration data is not available in literature; however, studies that cite cellular Smad4 

concentrations (Inman et al., 2002; Schmierer et al., 2008). Also, similar data is available 

for nuclear concentrations of Smad2, Smad3 and Smad4 (D. C. Clarke et al., 2006; A. 

Sun, 2014). Although nuclear and cytoplasmic concentrations of transcription factors 

differ, total Smad1/5 concentration in the cytoplasm was calculated from Smad4 literature 

data based on the observation that there are no significant differences between Smad2, 

Smad3 and Smad4 concentrations in cytoplasm. In his study, Sun et al. employed Smad4 

concentration as 5.61x10-8 mol/L for cell volume of 2.8x10-9 L (A. Sun, 2014). On the 

other hand, Clarke et al. used 1.2x105 Smad4 molecules per cell (D. C. Clarke et al., 2006). 

To convert it to concentration units employed in the model (nM), the number of molecules 

is divided by Avogadro’s number. In terms of nM, the difference between values is higher 
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than an order of magnitude difference between the two literature values (Clarke et al 

suggested as 1993 nM yet A. Sun’s was calculated as 56.1 nM) (D. C. Clarke et al., 2006; 

A. Sun, 2014). Since our reference study did not provide such information, we decided 

total Smad1/5 value considering literature. These abovementioned studies provide more 

detailed information including the GF concentration. In the meantime, the literature did 

not consist in terms of total Smad1/5 concentration. Thus, we have used a value that we 

obtained by tuning the intercepts of the system of algebraic equations to the reference 

study results of the literature data to find our total Smad1/5. Thus, we used 5200 nM for 

total Smad 1/5 concentration.  

The calculated BMP-2 concentration based on the numerical solution of the PDE 

equations given in Equation 3.5 is used as input to Equations 3.29 as described. The 

calculated results obtained from the simulation model in COMSOL software refer 

essentially to time dependent dynamics of BMP-2 released from degrading 3D scaffold 

per the PDE Equation 3.5. However, after the QSSA application, the BMP-2 

concentration must be supplied to the system of algebraic equations as time independent 

discrete values. The reference study did not specify the detail which time step they have 

used explicitly. We have assumed here that the BMP-2 concentration in the pore domain 

reaches a necessary level to activate the Smad1/5 in 21-days starting from the simulation 

events. Thus, we run the COMSOL simulation model constructing two consecutive study 

steps where the first simulates GF release on a weekly basis until the 21st day. The results 

of the first study are assigned as the initial values of the second study which refers to time 

steps of 2 hours for the following 50 hours. The second study results are exported, and 

these were taken as the inputs of the intracellular pathway equations. 

 

 

3.5.Optimization 

 

In this section, details regarding the optimization design study based on the integrated 

simulation model are described. Optimizing the concentrations of polymers and growth 

factors is crucial for enhancing the efficiency and effectiveness of biomedical 

applications, such as controlled drug delivery and tissue engineering. This part 

summarizes the implementation of the optimization study that was solved using 

MATLAB's well-known gradient based optimization solver, namely ‘fmincon’ function 
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to conduct a multivariable design problem for the selected five design parameters of the 

integrated reaction-diffusion-GF release model after conducting an in-depth parametric 

analysis of the 3D scaffold in COMSOL Multiphysics software. The goal is to achieve 

optimal concentrations of both polymer and GF based on the given concentration and 

point coordinate data of the reference study as given in Table 5 (X. Sun et al., 2013). 

Optimizing both metrics at the same time can be achieved with a multi-objective multi-

constraint optimization model. To solve a multi-objective optimization model using built-

in fmincon function is not directly applicable, but instead a weighted sum approach can 

be adapted with pre-selected weights of polymer and growth factor concentrations targets. 

In order to avoid an iterative process to determine weights, we constructed and solved 

two separate and sequential optimization models for each objective target of 

concentrations. 

  

Table 5: Reference study values for polymer concentration M, growth factor 

concentrations at pore and scaffold domains, Gp and Gs, respectively, over time (X. Sun 

et al., 2013). 

 

Day M Gp Gs 

0 1 0 0 

7 0.8 0.5 0.9 

14 0.7 0.7 0.9 

21 0.5 0.8 1 

28 0.3 0.7 1 

 

In these two optimization models, the construction logic was similar, and chosen design 

variables and objective value were assigned either to the polymer or GF concentration 

values. The main goal of the optimization models was to minimize the objective function 

which is defined as the sum of squared errors of desired concentrations of polymer and 

growth factor over respective time intervals, respectively. The minimization of objective 

functions is performed subject to only lower and upper bounds of design variables. The 

objective functions were defined as: 

 

Objective_function_1 = 

∑ ((PC7 - 0.8)
2 + (PC14 - 0.7)

2 +  (PC21 - 0.6)
2
 +(PC28 - 0.4)

2
)    (3.33)  
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Objective_function_2 = 

∑ ((Gs7 - 0.9)
2 + (Gs14 - 0.9)

2

+  (Gs21 - 1)2 + (Gs28 - 1)
2
 + (Gp7- 0.5)

2 + (Gp14- 0.7)
2

+  (Gp21- 0.8)
2

 + (Gp28 - 0.7)
2
)                                                                              (3.34) 

where PCi refers to polymer concentration at the ith time steps in weeks within the 

simulation, and Gsi refers to the growth factor concentration in the scaffold at the ith week 

and Gpi is the growth factor concentration in the ith week within the pores.  

The design variables for the first optimization model for PC are chosen based on the 

important PDE variables that affect the concentration profiles as: 

• Diffusivity of water (DW) 

• Hydrolysis reaction rate constant (k) 

The optimization is subject to the following constraints: 

• Lower and upper bounds for each decision variable. In the performed optimization 

study, these limits are chosen as: (0.1, 100) m2/s for DW and (0.46, 460) 1/s for k. 

• Initial values for DW and k are chosen as: 5 (*10-14) m2/s and 50 (*10-5) 1/s, 

respectively. 

• The objective_function_1 must be minimized. 

Similarly, the design variables for the second optimization model targeting GFs and GFp 

are chosen as the following design parameters affecting the GF release performance based 

on the corresponding PDE in Equation 3.5. 

• Degradation rate of GF (dG) 

• Release constant of GF (rG) 

• Michaelis Menten constant (KM) 

The optimization is subject to the following constraints: 

• Lower and upper bounds for each decision variable. These limits are chosen as: 

(0.04, 50) 1/s for dG, (0.1, 20) 1/s for rG and (0.01, 20) for KM. 

• Initial values for dG, rG and KM are chosen as: 1 (*10-7) 1/s for dG, 0.9 (*10-5) 1/s for 

rG, and 1.5 for KM. 

• The objective_function_2 must be minimized. 

Since the values of each variable in both models are in different magnitudes, they are 

scaled for the optimizers and still their original values are fed back to the COMSOL 

model. For example, values of DW are on the order of 10-14 while that of k is 10-7 in the 
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COMSOL model called by the optimizer. For iterations steps of fmincon function, they 

multiplied by 1014 and 107, respectively. After each iteration of the optimizer, the 

parameters are turned back to their original values and written into COMSOL for the next 

run. The same is applied to the second model for dG and rG. Thus, the values provided in 

bulletheads for each variable are for the optimizer, they multiplied with the multiplier 

within the parenthesis, written bold, next to them. 

The fmincon function in MATLAB was chosen for the optimization due its suitability to 

gradient based optimization and coupled to the COMSOL simulation model using 

MATLAB scripting. Problems involving a limited number of variables within a nonlinear 

optimization such as our integrated model are known to deliver efficient converging 

solutions but are known to be initial design dependent due to its local nature. The 'sqp' 

(Sequential Quadratic Programming) algorithm was selected among its available 

algorithms due to its precision and efficiency. Sequential Quadratic Programming (SQP) 

is an iterative method suitable for constrained nonlinear optimization models. At each 

iteration, SQP solves a Quadratic Programming (QP) subproblem, which approximates 

the original nonlinear problem. First, SQP finds an approximate model of the objective 

function and constraints are created using an approximate quadratic function of the 

objective and linear approximation of the constraints. Then, the QP subproblem is solved 

to determine the search direction. A line search or trust region method is used to find a 

step size that ensures sufficient decrease in the objective function. After arranging an 

appropriate step size for iteration direction, the variables are updated, and the process is 

repeated until convergence. The Hessian for an unconstrained problem is the matrix of 

second order derivatives of the objective function delivering a square matrix of the 

objective function's second-order partial derivatives. It offers key information regarding 

the function's curvature, which is helpful in choosing the direction and size of the search 

step during optimization. Since the Hessian matrix is employed in the SQP technique to 

define the QP subproblem, it is precise in terms of its higher order approximation when 

compared with first order methods yet capable of performing effective optimization. 

Both optimization models use two different files; an M-file consisting of optimization 

scripts and an mph-file to perform COMSOL runs. Starting the optimization involves 

running the m-file, which contains the main optimizer that establishes communication 

between the two environments, initializes all necessary variables, and calls the objective 

function using the fmincon function. Once the fmincon function is executed within the 

main file, it calls the objective file which defines and calls the COMSOL model to be 
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solved in each iteration of the fmincon function. During this process, the values of the 

optimization variables are changed to compute the subsequent objective functions by 

extracting the COMSOL run outputs and using these to compute to objective functions. 

Until the minimal value of the objective function is found, this iteration loop continues 

delivering a converged set of optimization variable values. The main code and script for 

optimization model 2 is provided as an example in Appendix C1 and C2. 
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CHAPTER 4 

 

 

 

4. RESULTS 

 

 

4.1.Results for Background Validation of 2D Axi-symmetric Geometry 

 

The time-dependent concentration changes of spherical CaP scaffolds obtained solving 

coupled reaction-diffusion equations given in Equation 3.1 and 3.2 are shown (Figure 13). 

To observe the effect of crystallinity of the polymer matrix, this validation study was 

adapted from Rothstein et al. and the simulation was run at 4 different hydrolysis rate 

constants representing crystallinity of polymer matrices (Rothstein et al., 2009). 

With a very slow degradation rate constant at the order of 10-11, there is no bulk 

degradation observed (Figure 13c). The polymer concentration remains the same at the 

initial concentration value at the end of the 12-month period (the very below line) 

indicating that the degradation behavior totally obeys the surface degradation mode. This 

behavior is observed with high crystallinity polymer matrices such as poly(lactic-co-

glycolic) acid (PLGA). Increasing the reaction rate constant 100 times (Figure 13a), bulk 

degradation mode starts to appear due to a linear decrease in polymer concentration over 

time within the depths of the scaffold matrix. However, still surface degradation mode is 

dominant since the polymer concentration is still 0.9 at the center at the last time step 

while the concentration drops more than half at the outer surface. The plots in (b) and (d) 

were obtained by decreasing the rate constant 100 times further while the rate constant in 

(b) is almost 3 times larger than that of (d). Both have a degradation mode closer to bulk, 

which implies that to alter the overall degradation behavior, the rate constant should be 

varied in high orders of magnitudes such as on the order of 100-fold. A three-fold 

difference only seems to affect the last 6 months. 
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Figure 13: Concentration profiles of 2 cm spherical scaffolds with different degradation 

rate constants are shown. a) The k=8.75x10-9 1/s, b) k=7.32x10-7 1/s, c) k=3.85x10-11 1/s, 

d) k=2.7x10-7 1/s. Each line represents time, the blue line (on the top of each plot) 

represents the t=0, and the simulation was run for 1 month time steps. 

 

To validate the developed simulation model, model parameters were assigned the same 

values as given in Rothstein et al. (Figure 14 and 15) using the same matrix radius and 

time steps. The validation study was performed for two scaffolds sizes of 20 mm and 2 

mm. The time period was taken as 12 months as in the reference study (Rothstein et al., 

2009). In Figure 14, the hydrolysis rate constant and diffusivity of water were taken as 

5x10-4 1/s and 3.7x10-12 m2/s, respectively. It can be seen that the degradation behaviors in 

both scaffold sizes were very similar. For the smaller scaffold size of 2 mm, reaction rate 

constant and water diffusion coefficient was 6x10-5 1/s and 1.5x10-13 m2/s, respectively. 

This consistency was assumed to validate our previous analysis (given in Figure 13). The 

differences between variables are due to the scaffold sizes. As indicated in the reference 
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model, larger matrix sizes will have a sharper water concentration gradient of water since 

the penetration distance of water increases with the size. 

 

Figure 14: Comparison of the model results with the reference study for 20 mm scaffold 

size. (a) Our simulation results (b) Reference study results. (Rothstein et al., 2009). 

 

 

Figure 15: Comparison of the model results with the reference study for 2 mm scaffold 

size. (a) Our simulation results (b) Reference study results. (Rothstein et al., 2009). 

 

 

 

4.2.COMSOL Model Results of Degradation and Growth Factor Release 

 

After validating the reference model for mainly the diffusion-reaction equations on a 

simple 2 D model as discussed in the previous section, the model was extended to a 3D 

scaffold geometry incorporating the degradation mechanism to a GF release model which 

is discussed in this section. 

First, we constructed a polymer degradation and growth factor release system enhancing 

bone regeneration and investigated effective parameters tailoring concentrations on the 
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model. The nondimensional molecular weight of the scaffold was evaluated on days 7, 

14, 21 and 28. The data is extracted from a point near to a scaffold boundary on the yz 

plane (Figure 16). Although the most effective parameters for polymer degradation in the 

simulation was diffusivity of water (DW) and reaction rate constant (k), other parameters 

related to growth factor dynamics are investigated and taken into consideration in the 

parametric study performed in this thesis. More specifically, the parametric study 

considering DW, and k was performed to analyze the degradation behavior of the scaffold. 

Meanwhile, diffusivity of the growth factor (DG) was kept constant to see the role of the 

other two parameters on polymer concentration. For degradation rate (dG) and release rate 

(rG) of growth factor, there was no observable effect on polymer concentration results, 

thus their variations were ignored in the following analysis. Based upon the literature, the 

diffusivity of water value ranges  from 4.6x10-16 m2/s to 4.6x10-12 m2/s and polymer 

degradation rate constant, k ranges from 8.3x10-6 1/s to 8.3x10-8 1/s in different 

environments and similar use of polymer materials, suggesting different combinations in 

consideration to other model parameters (Little et al., 2008; Ribeiro et al., 2015; X. Sun 

et al., 2013; L. Wang et al., 2020). 

 

 

Figure 16: Representative points of scaffold and pore domains where numerical 

concentration results are extracted (a) point on scaffold with coordinates (1.2, -0.24, 

0.72), and (b) point in pore at coordinates (0.45, -0.03, 0.45). All dimensions are in mm. 

 

The results are shown in Tables 6-10 and a more detailed version in Appendix D. Unless 

otherwise noted, Mi indicates the normalized polymer concentration at the ith day and 

Gsi/Gpi indicates the normalized GF concentration at the ith day in the scaffold vs. pore. 

Overall, the results indicate that degradation rate of the bone scaffold can be tuned for 

specific purposes by tuning hydrolysis reaction rate and diffusivity of water. In addition 

to controlling degradation rate, degradation behavior is a result of the interplay between 
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k and DW. As expected, higher values of k and DW fasten the degradation rate of the 

scaffold. When DW is 4.6x10-14 m2/s with k of 8.3x10-8 1/s, the scaffold degrades very 

slowly, reducing from 0.95 on day 7 to 0.81 on day 28. Increasing k to 8.3x10-7 1/s, almost 

20% degradation was achieved at day 7 and the nondimensional concentration of scaffold 

is 0.46 at day 28. At k=8.3x10-6 1/s M is almost completely degraded by day 7 (M7=0.05). 

For DW of 4.6x10-16 m2/s and k of 8.3x10-7 1/s pursues a more dominant surface degradation 

behavior, increasing DW to 4.6x10-12 m2/s while keeping k constant enhances water 

diffusion into the scaffold and bulk degradation becomes dominant (Table 6). This implies 

that for the chosen geometry and dimensions, DW of 4.6x10-16 m2/s still allows water 

penetration through the scaffold while the value is comparably smaller than the literature 

where larger values are cited (Rothstein et al., 2009). For higher values of hydrolysis 

rates, for example when k is 8.3x10-6 1/s, degradation rate is brutally fast. 

For DW values smaller than 4.6x10-14 m2/s, extending down to 10−16, the degradation of 

scaffold slows down due to decreasing penetration of water molecules to scaffold and 

varies with different k values. On the contrary, the numerical results imply that higher 

values than 4.6x10-14 m2/s for water diffusivity does not affect the scaffold concentration 

regardless of k values. This implies that 4.6x10-14 m2/s for DW is large enough to allow 

diffusion through the scaffold’s struts for the given geometry. 

With DW=4.6x10-12 m2/s and k ranging from 8.3x10−7 to 4x10−7 1/s, molecular weight at 

day 7 changes between 0.66 and 0.81. When k is 8.3x10−6 1/s, M7 is approximately 0.05, 

indicating almost complete degradation in the first week. Besides, having k values around 

10-6 1/s seems to be the best value capable of controlling the variation of M values between 

weeks. Similarly, reducing diffusion of water decreases the percentage drop in molecular 

weight of the polymer. The reason for preventing water penetration to the scaffold is to 

limit the degradation reaction of the surface of the scaffold rather than causing bulk 

degradation of the material. The closest polymer concentration values to the simulation 

data of the chosen reference study of Sun et al. are attained with  DW values of 4.6x10-14 

m2/s  or higher, and hydrolysis rate constants of 3x10-7 1/s and 4x10-7 1/s where k values 

with higher than 4x10−7 (5x10-7) 1/s causes scaffold concentration to drop to 0.78 by day 

7 and to 0.39 by day 28 (X. Sun et al., 2013). Furthermore, there is no observable effect 

on M for DW values of 4.6x10-14 m2/s r or higher neither in degradation rate nor its 

mechanism. The molecular weight distribution plot verifies this outcome as shown in 

Table 7. It may indicate that for the designed scaffold, DW of 4.6x10-14 m2/s is a sufficient 

value for the diffusion rate of water that maintains the degradation mode in a balance 
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between surface and bulk degradation mechanisms. This allows a design flexibility of the 

scaffold in regard to its properties in tailoring them to reach a desired mechanical 

property. 

 

Table 6: Numerical results of parametric analysis for weekly change in non-dimensional 

polymer concentration in scaffold domain. Initial concentration was assigned as M0 is 1 

(DW in water is 10 times higher than the in polymer value). 

DW in 

polymer 

[m^2/s] 

k [1/s] M7 M14 M21 M28 

4.6E-16 8.3E-07 0.90 0.78 0.66 0.55 

4.6E-15 3.0E-07 0.90 0.78 0.67 0.58 

4.6E-15 8.3E-07 0.78 0.55 0.39 0.28 

4.6E-15 1.0E-06 0.75 0.50 0.34 0.21 

4.6E-14 8.3E-08 0.95 0.90 0.86 0.81 

4.6E-14 3.0E-07 0.86 0.74 0.64 0.55 

4.6E-14 4.0E-07 0.82 0.67 0.56 0.47 

4.6E-14 5.0E-07 0.78 0.62 0.49 0.40 

4.6E-14 6.0E-07 0.74 0.57 0.44 0.34 

4.6E-14 8.3E-07 0.67 0.47 0.34 0.23 

4.6E-14 8.3E-06 0.05 0.01 0.01 0.00 

4.6E-13 3.0E-07 0.85 0.73 0.64 0.56 

4.6E-13 8.3E-07 0.66 0.46 0.33 0.24 

4.6E-12 3.0E-07 0.85 0.74 0.64 0.55 

4.6E-12 4.0E-07 0.81 0.67 0.56 0.47 

4.6E-12 5.0E-07 0.77 0.61 0.49 0.40 

4.6E-12 8.3E-07 0.67 0.47 0.34 0.24 

 

The distribution plots are more useful for analyzing the degradation mode in more detail 

than point data and are provided in Table 7. When the hydrolysis rate constant is kept 

constant at 3x10-7 1/s a decrease in water diffusivity of 10-fold causes a slower 

degradation and higher polymer concentration near the outer boundaries of the scaffold. 

This information might not be captured by only analyzing the point data; thus, 

concentration profiles should be examined. By only changing the diffusion coefficient of 
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water 1x10-4 times, the polymer is forced to almost totally degrade at the last time step 

(the bottom row). However, it is obvious that degradation rate constant is more effective 

in tailoring the polymer concentration profile rather than water diffusivity. Also, one of 

the outcomes from the point data was that water diffusivity is not effective for values 

higher than 4.6x10-14 m2/s. Table 7 proves that this outcome is valid only at that point. 

Hence, it can be stated that the effect of water diffusivity is less pronounced as we move 

away from the water interface. 

 

Table 7: 2D cross-sectional concentration distributions of scaffold molecular weight for 

different DW-k values at the course of 4 weeks where Mi is descriptive of the ith day. The 

results are captured near the yz plane at x=-0.05 mm. 
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We also examined growth factor release and spatio-temporal distribution of growth factor 

concentration (Tables 8, 9, 10). The results were obtained from the exact same point date 

used in Table 6 and shown in Figure 16. The diffusivity of the growth factor ranged from 

2.9x10-16 m2/s to 2.9x10-14 m2/s while the other parameters were varied to analyze the effect 

of each parameter separately. Thus, Tables 8, 9 and 10 consist of data obtained using 

DG=2.9x10-16, 2.9x10-15 and 2.9x10-14 m2/s, respectively. GFs initially only present at 

scaffold surface and time independent diffusivity of GF is 1000 times higher in pores (for 

all simulations). For DW of 4.6x10-14 m2/s and k of 8.3x10-7 1/s (dG = 3.4x10-7 1/s and rG= 

2x10-5 1/s); increasing DG from 2.9x10-16 m2/s to 2.9x10-15 m2/s decreases Gs and increases 

Gp. However, increasing DG further to 2.9x10-14 m2/s does not affect Gs while it keeps 

increasing Gp values. For values of DW= 4.6x10-12 m2/s and k = 8.3x10-7 1/s (dG = 3.4x10-

7 1/s and rG = 2x10-5 1/s); increasing DG from 2.9x10-16 to 2.9x10-15 m2/s decreases Gs and 

increases Gp over the course period at all days. Increasing DG further to 2.9x10-14 m2/s 

continues increasing Gpore while decreasing Gscaff values. For DW = 4.6x10-12 m2/s and 

k = 4x10-7 1/s (dG = 1x10-8 1/s and rG = 2x10-5 1/s); raising DG from 2.9x10-16 m2/s to 2.9x10-

15 m2/s results higher GF concentration in pores at day 7 (from 0.55 to 0.60) but no change 

at day 28 (0.78). In the scaffold domain, the same changes induce a decrease in GF 

concentration at day 7 (from 0.74 to 0.72) and no change in day 28 as was the case earlier. 

An order of magnitude increases of DG to 10-14 from 10-15 m2/s has exactly the same effect 

on each day both in the scaffold and pores. 

 

Table 8: Numerical results of parametric analysis for weekly change in growth factor 

concentration in scaffold and pores. Initial concentration was assigned as G0 in pore-

matrix interface as 0.8 (DG is 2.9x10-16 m2/s; DW in water is 10 times higher than the in 

polymer value). 

DW in 

polymer 

[m^2/s] 

k1 

[1/s] 

dGi 

[1/s] 

rGi 

[1/s] 

Pores Scaffold 

G7 G14 G21 G28 G7 G14 G21 G28 

4.6E-14 8.3E-

07 

3.4E-

07 

2.0E-

05 

0.50 0.60 0.63 0.64 0.72 0.74 0.75 0.75 

4.6E-14 8.3E-

07 

1.0E-

08 

1.0E-

05 

0.43 0.58 0.66 0.71 0.68 0.73 0.75 0.77 

4.6E-12 8.3E-

07 

3.4E-

07 

2.0E-

05 

0.50 0.60 0.63 0.64 0.72 0.74 0.75 0.75 
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4.6E-12 4.0E-

07 

3.4E-

07 

2.0E-

05 

0.50 0.61 0.64 0.64 0.72 0.74 0.75 0.75 

4.6E-12 4.0E-

07 

1.0E-

08 

2.0E-

05 

0.56 0.71 0.76 0.78 0.75 0.78 0.79 0.80 

4.6E-12 4.0E-

07 

1.0E-

08 

1.0E-

05 

0.43 0.58 0.67 0.72 0.68 0.73 0.75 0.78 

 

A decreasing value of DG (where DW = 4.6x10-12 m2/s, k = 4x10-7 1/s, dG = 1x10-8 1/s and rG 

= 2x10-5 1/s) gives a rise to the gap between weekly GF concentration results in pores. As 

DG decreases, GF tends to diffuse to the pore domain rather than the scaffold domain 

especially in the first week. For DW = 4.6x10-12 m2/s and DG = 2.9x10-15 m2/s (with dG = 

3.4x10-7 1/s and rG = 2x10-5 1/s) with a decrease of k value from 8.3x10-6 to 8.3x10-7 1/s, 

Gp and Gs slightly increases at all days, however the increase is comparatively higher in 

pores and later days. There is an interplay between hydrolysis rate constant and GF release 

such that as the degradation rate fastens, GF is released more quickly as we expected 

intuitively. On the 28th day the concentration of GF at k = 8.3x10-7 1/s attains a value of 

0.66 and at k = 8.3x10-6 1/s, GF concentration a value of 0.62. As k increases, GF 

concentration decreases in the scaffold domain. Here, we would have expected to have a 

less pronounced but linear relationship between k and DW values because a decrease in k 

is expected to cause slower degradation of the scaffold, and occasionally tends to 

dominate bulk degradation mode. In a more slowly degrading matrix, while all other 

parameters are constant, GF is expected to be released more slowly, especially in a matrix 

that is prone to bulk degradation.  For DG = 2.9x10-15 m2/s (with dG = 3.4x10-7 1/s and rG = 

2x10-5 1/s; even though the DW value is increased from the order of 10-14 to 10-12 while k is 

kept constant at 3.4x10-6 1/s, GF concentration results are the same in both pores and 

scaffold. This is valid at different k values such as 8.3x10-7 1/s where DW changes between 

orders of 10-14 and 10-12 m2/s. For DW = 4.6x10-14 m2/s, DG = 2.9x10-15 m2/s, k = 8.3x10-7 1/s, 

and rG = 2x10-5 1/s; and a dG value of 5x10-9 1/s, scaffold domain values of GF 

concentration at day 28 reach a value of 0.737 whereas a value for dG = 3.4x10-7 1/s the  GF 

concentration reaches a higher value of 0.795 than for dG = 5x10-9 1/s. Also, a similar 

effect on day 7 is to day 28 is observed.  
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Table 9: Numerical results of parametric analysis for weekly change in growth factor 

concentration in scaffold and pores. Initial concentration was assigned as G0 in pore-

matrix interface as 0.8 (DG is 2.9x10-15 m2/s; DW in water is 10 times higher than the in-

polymer value). 

DW in 

polymer 

[m^2/s] 

k1 

[1/s] 

dGi 

[1/s] 

rGi 

[1/s] 

Pores Scaffold 

G7 G14 G21 G28 G7 G14 G21 G28 

4.6E-14 8.3E-

07 

3.4E-

07 

2.0E-

04 

0.78 0.78 0.78 0.78 0.80 0.80 0.80 0.80 

4.6E-14 8.3E-

07 

3.4E-

07 

7.0E-

05 

0.73 0.75 0.75 0.75 0.79 0.79 0.79 0.79 

4.6E-14 8.3E-

07 

2.4E-

07 

2.0E-

05 

0.56 0.66 0.69 0.70 0.71 0.74 0.75 0.75 

4.6E-14 8.3E-

07 

3.4E-

07 

2.0E-

05 

0.54 0.63 0.66 0.66 0.70 0.73 0.74 0.74 

4.6E-14 8.3E-

07 

3.4E-

07 

1.0E-

05 

0.42 0.51 0.55 0.56 0.59 0.63 0.65 0.66 

4.6E-14 8.3E-

06 

3.4E-

07 

2.0E-

05 

0.52 0.60 0.62 0.62 0.68 0.71 0.71 0.71 

4.6E-14 4.0E-

07 

3.4E-

07 

2.0E-

05 

0.55 0.64 0.66 0.67 0.70 0.73 0.74 0.74 

4.6E-14 8.3E-

08 

3.4E-

07 

2.0E-

05 

0.55 0.64 0.66 0.67 0.70 0.73 0.74 0.74 

4.6E-14 8.3E-

07 

2.4E-

07 

1.0E-

05 

0.43 0.54 0.58 0.61 0.60 0.65 0.68 0.69 

4.6E-14 8.3E-

07 

1.0E-

07 

2.0E-

05 

0.58 0.70 0.74 0.75 0.72 0.76 0.77 0.78 

4.6E-14 8.3E-

07 

8.0E-

08 

2.0E-

05 

0.58 0.71 0.75 0.76 0.72 0.76 0.78 0.78 

4.6E-14 8.3E-

07 

5.0E-

08 

2.0E-

05 

0.59 0.72 0.76 0.77 0.72 0.77 0.78 0.79 

4.6E-14 8.3E-

07 

1.0E-

08 

2.0E-

05 

0.60 0.73 0.77 0.79 0.73 0.77 0.79 0.80 

4.6E-14 8.3E-

07 

5.0E-

09 

2.0E-

05 

0.60 0.73 0.77 0.79 0.73 0.77 0.79 0.80 

4.6E-12 8.3E-

06 

3.4E-

07 

2.0E-

05 

0.52 0.60 0.62 0.62 0.68 0.71 0.71 0.71 

4.6E-12 8.3E-

07 

3.4E-

07 

2.0E-

05 

0.55 0.64 0.66 0.66 0.70 0.73 0.74 0.74 

4.6E-12 3.0E-

07 

3.4E-

07 

2.0E-

05 

0.55 0.64 0.66 0.67 0.70 0.73 0.74 0.74 

4.6E-12 4.0E-

07 

1.0E-

08 

2.0E-

05 

0.61 0.73 0.77 0.79 0.73 0.78 0.79 0.80 

4.6E-12 4.0E-

07 

1.0E-

08 

1.5E-

05 

0.55 0.69 0.75 0.77 0.69 0.75 0.78 0.79 

4.6E-12 4.0E-

07 

1.0E-

08 

1.0E-

05 

0.47 0.61 0.69 0.74 0.63 0.70 0.74 0.77 
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Besides, a shift in the dG value causes a decrease in GF concentration in pores with values 

of 0.78 dropping to 0.66 at day 28 and concentrations decreasing from 0.59 to 0.54 at day 

7. It can be stated that the dG value has a more dominant effect in the pore domain because 

the change in scaffold is around 0.06 and reaches a value of 0.12 on day 28. For DW = 

4.6x10-12 m2/s, k = 8.3x10-7 1/s, DG = 2.9x10-15 m2/s, and rG = 2x10-5 1/s; decreasing dG 

value below 1x10-8 1/s does not affect the GF concentration neither in pores nor the 

scaffold domain. For dG values of 3.4x10-7 1/s; rG can tune GF concentration with a value 

of 2x10-5 1/s and less because its higher values result in saturated GF concentrations in 

both pores and scaffold at all days. However, rG can tune GF when its values are at levels 

of 1x10-5 1/s or less if dG = 2.4x10-7 1/s. Thus, for smaller degradation constants of GF, its 

release rate should be arranged accordingly considering higher dG values are likely to 

result in less GF present. Furthermore, changing dG or DG values has no effect when rG 

values are equal to 7x10-5 1/s and 2x10-4 1/s due to significantly higher values of its release 

constant. For dG = 3.4x10-7 1/s, the greatest jump in GF concentration among days were 

obtained when rG values are in the range of 2x10-5 1/s and 7x10-6 1/s. If GFs are released 

more slowly, with rG values ranging from 1x10-8 1/s to 7x10-6 1/s, the GF concentration 

saturates as well but to smaller values than the desired values of the reference study. The 

desired concentration of GF at around 0.8 in the last two weeks is achieved with rG values 

larger than or close to 1x10-5 1/s. 
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Table 10: Numerical results of parametric analysis for weekly change in growth factor 

concentration in scaffold and pores. Initial concentration was assigned as G0 in pore-

matrix interface as 0.8 (DG is 2.9x10-14 m2/s; DW in water is 10 times higher than the in-

polymer value). 

DW in 

polymer 

[m2/s] 

k 

[1/s] 

(x10-

7) 

dG 

[1/s] 

(x10-

7) 

rG 

[1/s] 

(x10-

5) 

Pores Scaffold 

G7 G14 G21 G28 G7 G14 G21 G28 

4.6x10-

12 

4.0 0.1 2.0 0.64 0.76 0.79 0.79 0.71 0.77 0.79 0.80 

4.6x10-

12 

8.3 3.4 2.0 0.59 0.67 0.68 0.68 0.68 0.72 0.73 0.72 

4.6x10-14 8.3 0.1 2.0 0.64 0.76 0.79 0.79 0.72 0.78 0.79 0.80 

4.6x10-14 8.3 3.4 2.0 0.59 0.67 0.68 0.68 0.70 0.72 0.73 0.72 

 

In order to analyze the complete response, GF concentration distribution results are also 

plotted throughout the whole scaffold geometry. as their visual inspection is important 

rather than relying on a single point data as provided in Tables 8, 9 and 10 that were 

obtained from two representative points selected from the scaffold domain and the pore 

domain, respectively. Table 11 shows the concentration distribution of GF in the analyzed 

4-week time period, for different values of the considered parameters. Although polymer 

concentration profiles give more insight on the degradation mode, in the case of growth 

factors, their distributions seem to be not of relevance since they result in almost totally 

uniform distributions in each time step in both domains. It is also noted that the interface 

of pore-matrix is initially loaded with growth factors and their diffusion is mostly through 

the pore domain (as can be observed from Tables 8, 9 and 10) due to the relatively large 

difference orders of diffusivities (which is 1000-fold higher in the pores than the scaffold). 
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Table 11: 2D cross-sectional concentration distribution of released growth factor from 

scaffold-pore interface for different diffusivity of water and growth factor, release and 

degradation constants of GF. The values are taken at the course of 4 weeks where Gi is 

descriptive of the GF concentration at the ith day. The results are captured near the yz plane 

at x=-0.05 mm. DW and DG values in pores are higher by 10x and 1000x than their 

scaffold domain values, respectively. 

 

Figure 17 shows the comparison between our simulation and the reference study results 

as 2D cross-sectional concentration distributions of scaffold molecular weight and 

released growth factor. The results are obtained with the selected values of each parameter 

considered in the parametric study. Finally, the values used are: DW = 4.6x10-12 m2/s, k = 

4x10-7 1/s, DG = 2.9x10-15 m2/s, dG = 1x10-8 1/s and rG = 2x10-5 1/s. 
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Figure 17: 2D cross-sectional concentration distributions of scaffold molecular weight 

and released growth factor; a) Reference study results, b) Our simulation results. The 

profiles are taken over the course of 4 weeks and our results are obtained with the selected 

parameters as a result of the parametric study. The results are captured near the yz plane 

at x=-0.05 mm. 

 

The data on cumulative release of BMP-2 from scaffold are provided in Figure 18 and 

19. Figure 18 demonstrates the cumulative release of BMP-2 from scaffold for a 4-week 

period. It shows a consistent behavior with the literature at the same pore size of 300 μm 

radius (X. Sun et al., 2013). The released cumulative BMP-2 percentage from the matrix-

pore interface is shown in Figure 19 compared to the release profile provided in the 

reference study (X. Sun et al., 2013). It is also noted that their scaffold geometry was the 

same as ours. On day 28, the cumulative released BMP-2 from interface to pores is 75%. 

The cumulative release is evaluated on pore domain only although some of the initially 

loaded BMP-2 remains in scaffold domain due to the decreasing molecular weight of the 

scaffold. Figure 19 is obtained from a point at the center of the middle spherical pore 

(shown in Figure 16) which is assumed to be one of the last points that BMP-2 

concentration is expected to be kept at its maximum value. As expected, the BMP-2 

concentration value at this point reaches almost the maximum and at the same time loaded 

with an initial GF concentration value of 0.8. 
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Figure 18: Growth factor/BMP-2 cumulative release prediction from scaffold (measured 

in the pore domain) at a selected point in the pore domain at (0.45, -0.03, 0.45) 

coordinates. 

 

To evaluate the cumulative release of BMP-2, the volume average on pores for daily time 

steps was obtained from the model. Since there is a significant amount of initially loaded 

BMP-2, the initial volume average value is subtracted from the ones in the later days as 

shown in Equation 3.35. Then, its percentage is calculated based on our loading amount 

which is 0.8. 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑 %                                                                                                                           

=  
(𝑉. 𝐴. 𝑖𝑛 𝑝𝑜𝑟𝑒𝑠(𝑡) − 𝑉. 𝐴.  𝑖𝑛 𝑝𝑜𝑟𝑒𝑠(𝑡 = 0)) ∗ 100

0.8
                                                (3.35) 
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Figure 19: Growth factor/BMP-2 cumulative release prediction from pore-matrix 

interface compared with the reference model’s (X. Sun et al., 2013) cumulative release 

profile. 

 

 

4.3.Intracellular Signaling Pathway Results 

 

Dynamic data of BMP-2 activated intracellular signaling pathway results are presented in 

Figures 20, 21 and 22, respectively. Time span for reaching its steady state for 

phosphorylated Smad1/5 is determined to be 4 hours. However, this value is 

comparatively higher than values cited in literature. For example, the reference study Sun 

et al. reported that phosphorylated Smad2 reaches its steady state in 93 minutes 

corresponding to a shorter timeframe than half of the calculated steady state value of the 

model developed in this thesis (X. Sun et al., 2012, 2013). However, corresponding 

concentration values are consistent with values from the same reference study. Moreover, 

for phosphorylated Runx2, steady state is reached at around 50 hours. The time required 

for phosphorylated Runx2 to reach its steady state was found to be around 30 hours in the 

reference study which implies that our results are not in exact agreement. However, the 

calculated phosphorylated Smad1/5 results are consistent with phosphorylated Runx2 

results of the developed model considering that the Runx2 factor is downstream of 

Smad1/5 factor. Under the circumstances that Smad1/5 factor is faster reaching a steady 
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state concentration, Runx2 results are expected to directly adapt to the same trend. Also, 

steady state condition requires more than 50 hours for Osx factor, and that prediction 

seems to be consistent with cited values of the reference study. However, no information 

as to when exactly Osx reaches its steady state is provided in the reference study. Thus, 

we have not enough information to comment on the exact consistency of Osx factor with 

literature data.  

 

 

Figure 20: Concentration versus time for phosphorylated Smad1/5. 

 

Figure 21: Concentration versus time for Runx2. 
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Figure 22: Concentration versus time for phosphorylated Osx. 

 

We can say that the consistent late steady state reaching time frames of both Smad1/5 and 

Runx2 is most probably due to the difference between the amount of released GF results 

of our simulation model compared to the reference study. The input of the equation set 

given in Equation 3.29 of the intracellular signaling pathway model is the BMP-2 

concentration as explained in Chapter 3 and there is a linear relationship between BMP-

2 concentration and phosphorylated Smad1/5 concentration based on the signaling 

pathway equations. Our simulation results considering both cumulative release and point 

data implied that the reference study reaches higher BMP-2 concentrations at 21st day. 

More importantly, our BMP-2 concentration keeps increasing until the 28th day. This 

tendency is likely to prevent a steady state behavior of phosphorylated Smad1/5.  

 

 

4.4.Optimization Results 

 

4.4.1. Optimization Model 1 

 

The primary objective of the optimization model is to minimize a custom-defined 

objective function that is based in this thesis on matching the desired polymer 

concentration at 4-time steps, namely day 7, 14, 21 and 28, respectively in the first 

optimization model presented here as described in Equation 3.33. The chosen design 

variables correspond to the relevant PDE coefficients and effecting system parameters, 

namely the reaction rate k and diffusion coefficient of water, DW, respectively. Initial 
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values for starting the search for their optimal values reaching the desired polymer 

concentration values of the reference study is chosen to be the design variable vector x0 

= [5x10-14 m2/s, 50x10-7 1/s] where the first element represents the DW, and the second one 

is the initial k value. To avoid order of magnitude differences in the design variable 

values, and hence convergence stability issues when performing sensitivity analysis, these 

are scaled to values of 5 and 50, respectively in the optimization search itself and their 

back-scaled magnitudes are fed back when conducting the simulation analysis in 

COMSOL software with updated values at each iteration of the design cycle. The 

resulting convergence curve of the objective function for optimization model 1 is given 

in Figure 23. The value of the sum of square differences from desired concentration values 

almost diminished completely converging to a value of 0.008.  

 

 

 

Figure 23: Convergence history of optimization model 1 with design variables DW and k 

values to match desired polymer concentration values of the reference study (X. Sun et 

al., 2013). 

 

The optimization model 1 converged to optimum values for DW and k presented in Table 

12 in comparison with the best parameter set that was determined based on the parametric 

study outputs of polymer concentration. 

 

Table 12: Optimum values obtained from optimization model 1 vs. the best values 

obtained via the parametric study presented in Chapter 4.2 . 

Parameter 

Best Parameter Set 

from Parametric 

Study 

Optimum 

Values 

Found 

DW (m2/s) 4.6x10-12  2.99x10-12 

k (1/s) 4x10-7  3.85x10-7 
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The results are within acceptable closeness of the discrete set of values analyzed in the 

parametric study presented in Chapter 4.2. considering the local nature of the gradient 

based optimization schemes. This implies that the optimization model is capable of 

delivering optimal system parameters and the parametric analysis was effective to 

determine a possible best set of DW and k within the analyzed ranges of parametric values. 

The corresponding concentration values at the selected representative point data of the 

optimal values are also compared with the reference study results (Table 13). Although 

the parametric study and optimized values of DW are consistent with each other, a 

deviation still exists in the comparative polymer concentration values especially in the 

last time step (28th day). Therefore, the developed model in this thesis and the reference 

study possess model differences attributed to the uncertainties and lack of data in the 

former as well as possible numerical modeling differences. 

Table 13: Comparison of polymer concentration results obtained using optimized design 

parameter values vs.  reference study results over 28-day period. 

  
Reference Study 

Results 
Our Results 

M1 1 1 

M7 0.8 0.81 

M14 0.7 0.68 

M21 0.5 0.57 

M28 0.3 0.48 

 

 

4.4.2. Optimization Model 2 

 

The primary objective of optimization model 2 presented in this section, is similar to the 

first optimization model, namely, to match the desired GF concentration at 4-time steps, 

namely day 7, 14, 21 and 28, respectively as described in Equation 3.34. The chosen 

design variables correspond to the relevant PDE coefficients and effecting system 

parameters, namely the optimization of design parameters dG, rG, and KM assigned as 

design variables and searched for optimal values to achieve desired growth factor 

concentration values starting with initial design variable vector x0 = [1x10-7 1/s, 0.9x10-5 

1/s, 1.5] in the same variable order. Similar to the first optimization model, to avoid order 

of magnitude differences in the three design variable values, and hence convergence 

stability issues when performing sensitivity analysis, these are scaled to values of 1, 0.9 
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and 1.5, respectively in the optimization search itself and their back-scaled magnitudes 

are fed back when conducting the simulation  analysis in COMSOL software with 

updated values at each iteration of the design cycle. The optimization model 2 converged 

to optimum values for dG, rG, and KM presented in Table 14. Results in comparison to the 

best parameter set as determined per the parametric study show a similarity in the orders 

of magnitude but not exact matching of the parametric study vs. optimization study. The 

locality of the optimization solver and the finite set of discrete values chosen in the 

parametric study are likely the sources of the difference in these two parameter sets. 

The convergence history of the optimization model 2 is given in Figure 24. The value of 

the sum of square differences from desired GF concentration values did not diminish 

completely converging to a value of 0.133 instead of a value close to zero prompting for 

possible improvements within the local neighborhood of the design domain. However, 

overall, the proposed optimization models are capable of locating improved design 

solutions matching desired concentrations at an acceptable level. Further improvements 

could be achieved with increased number of design variables and additional desired 

metrics such as the combination of both optimization models as well as integration of 

desired concentration distributions in the future. 

 

 

Figure 24: Convergence history curve of optimization model 2 with design variables for 

dG, rG and KM to match desired GF concentration values (Gp and Gs) of the reference study 

(X. Sun et al., 2013). 

 

The optimum values of optimization model 2 for design variables found are presented in 

Table 14 in comparison with the best parameter set that was determined based on the 

parametric study carried out in Chapter 4.2. Although rG is found to be very close to the 

determined value of the parametric study, the optimal value of dG differs from the pre-

determined parametric analysis value by 6-fold. This result can be interpreted as a 

numerical uncertainty as the parametric study indicated that GF concentration was not as 
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sensitive as to dG changes among other parameters, and very close GF concentration 

results were obtained with dG values of 3.4x10-7 1/s by tailoring rG in accordance with dG. 

This prompts again that a continuous parametric search over a more inclusive design 

region is needed to exactly match the results of a design optimization model or a given 

concentration of an existing study. As regards the final model parameter, namely the 

Michaelis Menten constant KM of Equation 3.5 is found to be very close to the literature 

value of 0.5. Hence, the assumption of using the KM value provided by the reference study 

to conduct the parametric runs is observed to be a valid method. 

Table 14: Optimum values obtained from optimization model 2 vs. the best values 

obtained based on the parametric study presented in Chapter 4.2. 

Parameter 

Best Parameter Set 

from Parametric 

Study 

Optimum 

Values 

Found 

rG (1/s) 2x10-5  2.48x10-5 

dG (1/s) 1x10-8  6x10-8 

 KM (-)  0.5  0.53 

 

 

 

Table 15: Comparison of GF concentration results obtained using optimized design 

parameter values vs. reference study results over 28-day period. 

  
Reference Study 

Results 
Our Results 

Gp1 0 0 

Gp7 0.5 0.59 

Gp14 0.7 0.72 

Gp21 0.8 0.76 

Gp28 0.7 0.77 

Gs1 0 0 

Gs7 0.9 0.75 

Gs14 0.9 0.78 

Gs21 1 0.79 

Gs28 1 0.81 

 

Finally, the GF concentration values at the selected reference data point obtained from 

optimization model 2 are compared with the reference study results for BMP-2 

concentration both in pores and scaffold domains and the results are shown in Table 15. 



 

90 

 

The difference in later days in both domains are intuitively expected as the parametric 

study results are based on a model with an initial loaded BMP-2 amount of 0.8, hence the 

saturation to a maximum value of 0.8 in each domain in the case of complete release. 

However, although the reference study is based on the same amount of initial loading 

(determined based on their concentration profile results), GF concentration somehow 

increased to the values larger than its initial loaded concentration values, namely to 1, in 

the reference study. Other than that, the change of the GF concentration values had the 

same exact trend in the pores and a similar trend in the scaffold converging to the 

respective maximum values over the same time period. Overall, both similar to 

optimization model 1, optimization model 2 presents the working ability of the 

optimization model to locate improved design solutions matching desired GF 

concentrations at an acceptable level. Further improvements could be achieved with 

increased number of design variables such as the size of the scaffold, the combination of 

all affecting PDE coefficients and additional desired metrics such as the combination of 

both optimization models as well as integration of desired concentration distributions in 

the future. 
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CHAPTER 5 

 

 

 

5. CONCLUSIONS AND FUTURE WORK 

 

 

5.1.Conclusions 

 

This thesis provides an in-depth examination of the degradation of a 3D porous polymeric 

bone tissue scaffold, aiming to enhance bone healing through the release of growth 

factors. The study utilized COMSOL Multiphysics software, which employs the finite 

element method (FEM), to solve a set of time-dependent reaction-diffusion equations. In 

the first part of the thesis, a parametric study was conducted using the developed FEM 

model, focusing primarily on scaffold degradation rate and the release and degradation 

rates of BMP-2. These parameters were fine-tuned based on existing computational 

models and experimental data available in the literature. Prior to the construction of the 

3D scaffold model, an initial validation was performed using a simpler geometry. A 2D 

axisymmetrical non-porous spherical scaffold degradation was analyzed and the results 

were found to be consistent with the reference study selected (Rothstein et al., 2009). 

Moving on to the model development for a 3D scaffold geometry, we had to deal with the 

lack of certain parameter data and tried to solve this problem by performing a detailed 

parametric study. The literature is not very rich in terms of parametric analysis of 

degrading and growth factor release incorporating studies. It is known that degradation 

rate of scaffold and water diffusivity are the most important parameters for tailoring 

polymer concentration and our study proves this effect while providing a tunable range 

for these parameters. Similarly, results showed that degradation rate of BMP-2 and its 

release constant are the most effective parameters on the resulting BMP-2 concentration 

profiles. Also, the dominancy of diffusion coefficient of BMP-2 is not as effective as the 

former two parameters on the initial and final released BMP-2 concentration, however it 
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enables us to tune the BMP-2 concentration at the intermediate time steps in possible 

design studies. 

Additionally, a signaling pathway induced by the released BMP-2 was modeled by 

deriving a set of ordinary differential equations (ODEs) based on the mass action law. 

This system of ODEs was then analyzed using the Michaelis-Menten approach 

incorporating Hill functions, with a mathematical derivation for which the details were 

also provided. We concluded that transcription factor dynamics are extremely dependent 

on BMP-2 release dynamics while a steady state cannot be reached before sustaining the 

BMP-2 concentration. 

Finally, two optimization models were developed to determine optimal values for the 

parameters governing scaffold degradation and growth factor release kinetics in an initial 

FEA based model. The objective functions for these optimization models were defined as 

the minimization of the squared differences between desired and actual polymer and 

growth factor concentrations over the considered time frame of the reference study (X. 

Sun et al., 2013). For the scaffold degradation, design variables included water diffusivity 

and hydrolysis rate constant, while for growth factor release, the variables included 

degradation and release rates, as well as the Michaelis-Menten constant. These algorithms 

successfully identified optimal values for each variable, ensuring acceptable consistency 

with both the literature and the outcomes of the earlier parametric study. The optimization 

models show that our parametric analysis was consistent in terms of reaching a similar 

reference polymer and BMP-2 concentration. Also, we can conclude that an optimization 

algorithm is useful to shorten iterative steps in mathematical approaches while parametric 

study is still necessary to determine the appropriate constraints and bounds as well as the 

more important parameters in performance tuning. 

 

 

5.2.Future Work 

 

Future work on this thesis may involve several key enhancements and integrations to 

advance the current research. First, scaffold degradation may be modeled using a level 

set method to more accurately capture the dynamic changes in scaffold geometry over 

time. Assigning a surface movement velocity defined by a level set method can model 

release dynamics better since the scaffold geometry will change below a certain threshold 

defined for polymer concentration. Additionally, the incorporation of cellular activities 
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on growth factor dynamics will provide a more comprehensive understanding of their 

impact on bone healing. The depletion rate of growth factor due to the 

osteoblast/osteoclast activities, mesenchymal stem proliferation, and differentiation may 

be considered for their effect of growth factor dynamics. 

Furthermore, the developed model may be integrated to key mechanisms such as 

angiogenesis, tissue regeneration, and mechanical response simulations. This integrated 

holistic approach should enable a more complete assessment of the scaffold's 

performance and its interaction with the biological environment. The optimization study 

can also be extended to this integrated model, allowing it to run for different scenarios 

and requirements, thereby identifying optimal parameters that satisfy multiple design 

criteria simultaneously. 

For the signaling pathway model, additional pathways not considered in this thesis may 

be included. In addition to considering BMP-2, TGF-β, Wnt for osteogenesis, VEGF 

could be incorporated into a possible angiogenesis modeling in the future within a more 

comprehensive bone regeneration model. The addition of various growth factors will 

highly increase the complexity of the mathematical model due to their downregulatory 

pathways and crosstalk between their signaling cascades. However, their inclusion should 

provide a more detailed representation of the cellular signaling mechanisms involved in 

bone regeneration. As a final improvement, the signaling pathway model could be solved 

as a time-dependent system to capture the dynamic interactions and changes over the 

healing period. 

By incorporating these enhancements, future work will significantly advance the current 

research, providing a more accurate model which can represent additional regenerative 

events stimulated by bone tissue engineering scaffolds, and offering valuable insights into 

the optimization of scaffold design and functionality for improved clinical outcomes. 
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APPENDICES 

A. COMSOL MODEL SETTINGS FOR BACKGROUND VALIDATION OF 

2D AXISYMMETRIC GEOMETRY OF ROTHSTEIN ET AL. 
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B. COMSOL MODEL SETTINGS FOR INTEGRATED POLYMER 

DEGRADATION AND GROWTH FACTOR RELEASE MODEL 
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C. OPTIMIZATION MODEL SCRIPTS 

C1. Optimizer Module for Optimization Model 2 

 

cd D:\ 

cd D:\sezen\Optimizasyon\dG&rG 

clc 

clear 

%% The optimization code 

%% 

tic  

format long  

diary 'diary.txt' % Saves everything on the Command Window 

 

x0 = [10, 5, 0.1];  % degradation rate and release rate of GF, respecitively 

(1/s) 

A = [];   %Linear and nonlinear inequaility constraints 

B = []; 

Aeq = []; 

Beq = []; 

 

lb = [0.04, 0.1, 0.01]; % lower limit, multiply dG by 1E-7 and rG by 1E-5 

before giving it to COMSOL. 

ub = [50, 20, 20];  % upper limit 

 

import com.comsol.model.* 

import com.comsol.model.util.* 

model = ModelUtil.create('Model'); % Load the model 

 

history.x = []; 

history.fval = []; 

searchdir = []; 

 

opts = optimoptions('fmincon','Display','iter-detailed', 'Algorithm','sqp', 

... 

    'PlotFcn',{@optimplotx,@optimplotfval,@optimplotfirstorderopt}, 

'ScaleProblem', true, ... 

    'OptimalityTolerance',0.01, 'DiffMinChange', 0.05, 'DiffMaxChange', 5); 

opts.Display = ' iter-detailed'; 

sprintf('ScaleProblem : true\n') 
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[xopt, fval,exitflag,output,lambda,grad,hessian]  = fmincon(@(x) Main_obj(x), 

x0, A, B, Aeq, Beq, lb, ub, [], opts); 

 

 

toc  % calculates how long the run took 

 

function [f] = Main_obj(x) 

    sprintf('\n - - - - OBJECTIVE FUNC - - -\n') 

    format long  

     

    [objective_value] = Main_obj_all_t_DG(x); 

    sprintf('%f:');  

    f = objective_value % GF conc. 

 

end 

 

C2. Main Module for Optimization Model 2 

 

function [objective_value] = Main_obj_all_t_DG(x) 

%global x_values 

 

    sprintf('\n - - - - MAIN SCRIPT - - -\n') 

    format long 

 

    import com.comsol.model.* 

    import com.comsol.model.util.* 

    model = ModelUtil.create('Model'); % Load the model 

    model.modelPath('D:\sezen\Optimizasyon\dG&rG');  % lokasyonu ekle 

    model=mphload('Model_FinalResults_Case5h_ForOptof_dGand_rG.mph'); %% ekle 

 

    model.param.set('dG1', [num2str(x(1)*1E-7,'%.9f')], 'degradation rate of 

BMP2'); 

     

    model.param.set('rG1', [num2str(x(2)*1E-5,'%.7f')], 'release constant for 

BMP2'); 

     

    model.param.set('Kc', [num2str(x(3),'%.4f')], 'Michealis Menten 

constant'); 
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   % Define the folder where you want to save Excel files 

   folder1 = 'D:\sezen\Optimizasyon\dG&rG'; 

 

   folder_num=sprintf('dG&rG_%x',x); 

   folder = fullfile(folder1,folder_num); 

        if ~exist(folder, 'dir') 

        mkdir(folder); 

        end 

 

   mphsave(model,'D:\sezen\Optimizasyon\dG&rG_%x\OptimizasyonModel_%x.mph') 

 

    %To activate the progress bar 

    ModelUtil.showProgress(true); 

 

    model.study('std1').run; 

     

    %Get model result by mphinterp in a node 

    point_coord_scaffold = [1.2; -0.24; 0.72];  % coordinates of a scaffold 

point to evaluate, (transposition) --> coords. in column 

     

    point_coord_pore = [0.45; -0.03; 0.45];     % coordinates of a pore point 

to evaluate, (transposition) --> coords. in column 

 

    GF_matrix_scaffold = mphinterp(model,'cG1','coord',point_coord_scaffold); 

% evaluation of polymer concentration (PC) at selected scaffold node 

     

    GF_matrix_pore = mphinterp(model,'cG1','coord',point_coord_pore); % 

evaluation of polymer concentration (PC) at selected scaffold node 

     

    GF7_scaff = GF_matrix_scaffold(2) %GF value at 2nd time step, to be 

optimized 

    GF14_scaff = GF_matrix_scaffold(3) 

    GF21_scaff = GF_matrix_scaffold(4) 

    GF28_scaff = GF_matrix_scaffold(5) 

 

    GF7_pore = GF_matrix_pore(2) %GF value at 2nd time step, to be optimized 

    GF14_pore = GF_matrix_pore(3) 

    GF21_pore = GF_matrix_pore(4) 

    GF28_pore = GF_matrix_pore(5) 
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    % Perform necessary computations on the data to calculate the objective 

value(your computation code here) 

    objective_value = sum((GF7_scaff - 0.9).^2 + (GF14_scaff - 0.9).^2 + 

(GF21_scaff - 1).^2 + (GF28_scaff - 1).^2 + ... 

        (GF7_pore - 0.5).^2 + (GF14_pore - 0.7).^2 + (GF21_pore - 0.8).^2 + 

(G28_pore - 0.7).^2); 

 

end 
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D. RESULTS OF PARAMETRIC STUDIES BASED ON 3D SIMULATION MODEL  

(DW: diffusivity of water, k: hydrolysis rate constant, DG: diffusivity of BMP-2, rG: release constant of BMP-2, dG: degradation 

constant of BMP-2) 

D1. Effect of k (and DW) 

DW: 4.6x10-14 m2/s, DG: 2.9x10-15 m2/s, dG: 3.4x10-7 1/s, rG: 2x10-5 1/s. 

Changing 

parameter 
Pores Scaffold 

k [1/s] M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 

8.30E-06 0.000 0.000 0.003 0.525 0.005 0.604 0.005 0.622 0.006 0.623 1.000 0.000 0.053 0.682 0.013 0.707 0.005 0.710 0.002 0.706 

8.30E-07 0.000 0.000 0.000 0.541 0.001 0.634 0.002 0.658 0.002 0.662 1.000 0.000 0.667 0.698 0.466 0.729 0.343 0.736 0.235 0.737 

6.00E-07 0.000 0.000 0.000 0.547 0.001 0.639 0.001 0.661 0.001 0.665 1.000 0.000 0.743 0.700 0.565 0.731 0.437 0.739 0.343 0.737 

5.00E-07 0.000 0.000 0.000 0.550 0.001 0.640 0.001 0.661 0.001 0.666 1.000 0.000 0.780 0.701 0.615 0.732 0.493 0.740 0.398 0.740 

4.00E-07 0.000 0.000 0.000 0.550 0.000 0.640 0.001 0.662 0.001 0.667 1.000 0.000 0.817 0.701 0.672 0.732 0.559 0.740 0.468 0.741 

3.00E-07 0.000 0.000 0.000 0.550 0.000 0.641 0.001 0.663 0.001 0.668 1.000 0.000 0.857 0.702 0.736 0.733 0.637 0.741 0.555 0.742 

8.30E-08 0.000 0.000 0.000 0.552 0.000 0.643 0.000 0.664 0.000 0.670 1.000 0.000 0.950 0.703 0.901 0.734 0.856 0.742 0.813 0.744 
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DW: 4.6x10-12 m2/s, DG: 2.9x10-15 m2/s, dG: 3.4x10-7 1/s, rG: 2x10-5 1/s. 

Changing 

parameter 
Pores Scaffold 

k [1/s] M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 

8.30E-06 0.000 0.000 0.003 0.524 0.005 0.604 0.006 0.623 0.006 0.624 1.000 0.000 0.056 0.679 0.016 0.705 0.006 0.710 0.003 0.707 

1.00E-06 0.000 0.000 0.000 0.543 0.001 0.634 0.001 0.657 0.001 0.661 1.000 0.000 0.611 0.696 0.405 0.728 0.274 0.735 0.179 0.736 

8.30E-07 0.000 0.000 0.000 0.541 0.001 0.634 0.002 0.658 0.002 0.662 1.000 0.000 0.667 0.698 0.466 0.729 0.343 0.736 0.235 0.737 

6.00E-07 0.000 0.000 0.000 0.545 0.001 0.638 0.001 0.660 0.001 0.664 1.000 0.000 0.738 0.699 0.563 0.731 0.438 0.739 0.345 0.739 

5.00E-07 0.000 0.000 0.000 0.544 0.000 0.634 0.001 0.660 0.001 0.665 1.000 0.000 0.774 0.700 0.611 0.731 0.491 0.738 0.400 0.740 

4.00E-07 0.000 0.000 0.000 0.550 0.000 0.640 0.001 0.661 0.001 0.666 1.000 0.000 0.814 0.700 0.672 0.732 0.559 0.740 0.466 0.741 

3.00E-07 0.000 0.000 0.000 0.551 0.000 0.641 0.001 0.663 0.001 0.668 1.000 0.000 0.854 0.702 0.737 0.733 0.638 0.741 0.557 0.742 

 

D2. Effect of DW (and dG) 

k: 8.3x10-7 1/s, DG: 2.9x10-15 m2/s, dG: 3.4x10-7 1/s, rG: 2x10-5 1/s. 

Changing 

parameter 
Pores Scaffold 

DW in 

polymer 

[m2/s] 

M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 

4.60E-16 0.000 0.000 0.000 0.508 0.001 0.614 0.001 0.647 0.001 0.656 1.000 0.000 0.904 0.606 0.781 0.686 0.662 0.707 0.555 0.714 
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4.60E-15 0.000 0.000 0.000 0.541 0.001 0.635 0.002 0.657 0.002 0.662 1.000 0.000 0.778 0.686 0.554 0.728 0.394 0.737 0.278 0.738 

4.60E-14 0.000 0.000 0.000 0.541 0.001 0.634 0.002 0.658 0.002 0.662 1.000 0.000 0.667 0.698 0.466 0.729 0.343 0.736 0.235 0.737 

4.60E-13 0.000 0.000 0.000 0.543 0.001 0.634 0.002 0.658 0.002 0.662 1.000 0.000 0.662 0.698 0.462 0.727 0.334 0.737 0.240 0.739 

4.60E-12 0.000 0.000 0.000 0.548 0.001 0.637 0.001 0.658 0.002 0.662 1.000 0.000 0.667 0.698 0.467 0.729 0.336 0.737 0.243 0.737 

 

k: 8.3x10-7 1/s, DG: 2.9x10-15 m2/s, dG: 2.4x10-7 1/s, rG: 2x10-5 1/s. 

Changing 

parameter 
Pores Scaffold 

DW in 

polymer 

[m2/s] 

M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 

4.60E-12 0.000 0.000 0.000 0.548 0.001 0.637 0.001 0.658 0.002 0.662 1.000 0.000 0.667 0.698 0.467 0.729 0.336 0.737 0.243 0.737 

4.60E-14 0.000 0.000 0.000 0.557 0.001 0.660 0.002 0.689 0.002 0.696 1.000 0.000 0.667 0.707 0.466 0.741 0.343 0.750 0.235 0.753 

4.60E-15 0.000 0.000 0.000 0.557 0.001 0.662 0.001 0.690 0.002 0.697 1.000 0.000 0.780 0.696 0.556 0.740 0.395 0.752 0.277 0.754 

4.60E-16 0.000 0.000 0.000 0.523 0.001 0.641 0.001 0.679 0.001 0.690 1.000 0.000 0.903 0.619 0.778 0.704 0.657 0.745 0.550 0.736 
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k: 3x10-7 1/s, DG: 2.9x10-15 m2/s, dG: 1x10-8 1/s, rG: 2x10-5 1/s. 

Changing 

parameter 
Pores Scaffold 

DW in 

polymer 

[m2/s] 

M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 

4.60E-15 0.000 0.000 0.000 0.598 0.000 0.733 0.000 0.775 0.001 0.789 1.000 0.000 0.901 0.722 0.777 0.775 0.670 0.791 0.580 0.796 

4.60E-14 0.000 0.000 0.000 0.605 0.000 0.729 0.001 0.774 0.001 0.788 1.000 0.000 0.857 0.731 0.735 0.776 0.636 0.789 0.557 0.799 

4.60E-13 0.000 0.000 0.000 0.600 0.000 0.731 0.000 0.776 0.001 0.789 1.000 0.000 0.852 0.729 0.734 0.773 0.637 0.793 0.556 0.798 

4.60E-12 0.000 0.000 0.000 0.603 0.000 0.734 0.001 0.776 0.001 0.788 1.000 0.000 0.853 0.728 0.735 0.775 0.638 0.791 0.555 0.796 

 

k: 1x10-6 1/s, DG: 2.9x10-15 m2/s, dG: 1x10-8 1/s, rG: 2x10-5 1/s. 

Changing 

parameter 
Pores Scaffold 

DW in 

polymer 

[m2/s] 

M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 

4.60E-15 0.000 0.000 0.000 0.595 0.001 0.728 0.001 0.772 0.002 0.787 1.000 0.000 0.754 0.714 0.504 0.772 0.336 0.789 0.214 0.795 

4.60E-14 0.000 0.000 0.001 0.602 0.001 0.728 0.002 0.770 0.002 0.786 1.000 0.000 0.624 0.728 0.401 0.774 0.264 0.789 0.175 0.794 

4.60E-12 0.000 0.000 0.000 0.599 0.001 0.730 0.002 0.773 0.002 0.788 1.000 0.000 0.612 0.725 0.405 0.773 0.275 0.789 0.180 0.795 

4.60E-11 0.000 0.000 0.000 0.602 0.001 0.727 0.002 0.772 0.002 0.787 1.000 0.000 0.617 0.728 0.402 0.772 0.275 0.790 0.179 0.794 



 

 

 

 

 

128 

 

 

 

 

 

4.60E-06 0.000 0.000 0.000 0.603 0.001 0.730 0.002 0.770 0.002 0.785 1.000 0.000 0.619 0.728 0.407 0.774 0.273 0.789 0.184 0.794 

 

D3. Effect of DG (and DW, k and dG) 

DW: 4.6x10-14 m2/s, k: 8.3x10-7 1/s, dG: 3.4x10-7 1/s, rG: 2x10-5 1/s. 

Changing 

parameter 
Pores Scaffold 

DG in 

polymer 

[m2/s] 

M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 

2.90E-16 0.000 0.000 0.000 0.502 0.001 0.603 0.002 0.631 0.002 0.638 1.000 0.000 0.669 0.720 0.463 0.741 0.330 0.747 0.236 0.747 

2.90E-15 0.000 0.000 0.000 0.541 0.001 0.634 0.002 0.658 0.002 0.662 1.000 0.000 0.667 0.698 0.466 0.729 0.343 0.736 0.235 0.737 

2.90E-14 0.000 0.000 0.000 0.589 0.001 0.669 0.002 0.683 0.002 0.685 1.000 -0.002 0.667 0.698 0.460 0.720 0.329 0.732 0.235 0.722 

2.90E-13 0.000 0.004 0.000 0.624 0.001 0.694 0.002 0.703 0.002 0.702 1.000 -0.021 0.668 0.638 0.467 0.701 0.331 0.710 0.237 0.708 
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DW: 4.6x10-12 m2/s, k: 8.3x10-7 1/s, dG: 3.4x10-7 1/s, rG: 2x10-5 1/s. 

Changing 

parameter 
Pores Scaffold 

DG in 

polymer 

[m2/s] 

M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 

2.90E-16 0.000 0.000 0.000 0.497 0.001 0.602 0.002 0.631 0.002 0.638 1.000 0.000 0.660 0.719 0.470 0.742 0.335 0.748 0.237 0.747 

2.90E-15 0.000 0.000 0.000 0.548 0.001 0.637 0.001 0.658 0.002 0.662 1.000 0.000 0.667 0.698 0.467 0.729 0.336 0.737 0.243 0.737 

2.90E-14 0.000 0.000 0.000 0.589 0.001 0.669 0.002 0.684 0.002 0.685 1.000 -0.002 0.665 0.675 0.472 0.716 0.338 0.731 0.241 0.721 

2.90E-13 0.000 0.004 0.000 0.630 0.001 0.695 0.002 0.703 0.002 0.702 1.000 -0.021 0.668 0.643 0.467 0.703 0.333 0.710 0.239 0.709 

 

 

DW: 4.6x10-12 m2/s, k: 4x10-7 1/s, dG: 1x10-8 1/s, rG: 2x10-5 1/s. 

Changing 

parameter 
Pores Scaffold 

DG in 

polymer 

[m2/s] 

M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 

2.90E-16 0.000 0.000 0.000 0.556 0.000 0.708 0.001 0.763 0.001 0.782 1.000 0.000 0.813 0.745 0.672 0.780 0.560 0.791 0.467 0.796 
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2.90E-15 0.000 0.000 0.000 0.605 0.000 0.734 0.001 0.774 0.001 0.787 1.000 0.000 0.814 0.729 0.672 0.775 0.560 0.791 0.468 0.795 

2.90E-14 0.000 0.000 0.000 0.642 0.000 0.756 0.001 0.786 0.001 0.794 1.000 -0.002 0.811 0.710 0.669 0.774 0.562 0.792 0.474 0.798 

2.90E-13 0.000 0.004 0.000 0.685 0.000 0.772 0.001 0.792 0.001 0.796 1.000 -0.021 0.814 0.694 0.670 0.774 0.560 0.793 0.476 0.796 

 

D4. Effect of rG (and DW, k and dG) 

DW: 4.6x10-14 m2/s, k: 8.3x10-7 1/s, DG: 2.9x10-15 m2/s, dG: 3.4x10-7 1/s. 

Changing 

parameter 
Pores Scaffold 

rG [1/s] M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 

2.00E-04 0.000 0.000 0.000 0.778 0.001 0.778 0.001 0.777 0.001 0.777 1.000 0.000 0.670 0.798 0.468 0.798 0.332 0.798 0.232 0.798 

7.00E-05 0.000 0.000 0.000 0.735 0.001 0.750 0.001 0.750 0.002 0.749 1.000 0.000 0.669 0.789 0.466 0.790 0.319 0.789 0.228 0.789 

2.00E-05 0.000 0.000 0.000 0.541 0.001 0.634 0.002 0.658 0.002 0.662 1.000 0.000 0.667 0.698 0.466 0.729 0.343 0.736 0.235 0.737 

1.00E-05 0.000 0.000 0.000 0.415 0.001 0.508 0.001 0.547 0.001 0.562 1.000 0.000 0.670 0.588 0.464 0.635 0.330 0.655 0.237 0.661 

7.00E-06 0.000 0.000 0.000 0.360 0.001 0.439 0.001 0.479 0.002 0.497 1.000 0.000 0.671 0.527 0.465 0.574 0.331 0.596 0.233 0.607 

2.00E-06 0.000 0.000 0.000 0.242 0.001 0.260 0.001 0.272 0.002 0.280 1.000 0.000 0.668 0.353 0.456 0.368 0.326 0.374 0.235 0.379 
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DW: 4.6x10-14 m2/s, k: 8.3x10-7 1/s, DG: 2.9x10-15 m2/s, dG: 2.4x10-7 1/s. 

Changing 

parameter 
Pores Scaffold 

rG [1/s] M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 

7.00E-05 0.000 0.000 0.000 0.747 0.001 0.764 0.001 0.764 0.002 0.763 1.000 0.000 0.669 0.791 0.460 0.793 0.331 0.792 0.236 0.792 

2.00E-05 0.000 0.000 0.000 0.557 0.001 0.660 0.002 0.689 0.002 0.696 1.000 0.000 0.667 0.707 0.466 0.741 0.343 0.750 0.235 0.753 

1.00E-05 0.000 0.000 0.000 0.430 0.001 0.536 0.001 0.585 0.002 0.607 1.000 0.000 0.670 0.600 0.464 0.653 0.332 0.678 0.235 0.689 

9.00E-06 0.000 0.000 0.000 0.413 0.001 0.516 0.001 0.565 0.002 0.589 1.000 0.000 0.670 0.582 0.464 0.637 0.331 0.663 0.235 0.675 

7.00E-06 0.000 0.000 0.000 0.373 0.001 0.465 0.001 0.516 0.001 0.543 1.000 0.000 0.669 0.546 0.471 0.594 0.326 0.623 0.233 0.637 

2.00E-06 0.000 0.000 0.000 0.254 0.001 0.283 0.001 0.304 0.001 0.319 1.000 0.000 0.668 0.367 0.457 0.392 0.323 0.407 0.230 0.417 

1.00E-08 0.000 0.000 0.001 0.193 0.001 0.168 0.001 0.145 0.002 0.126 1.000 0.000 0.668 0.201 0.469 0.170 0.336 0.147 0.239 0.127 
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DW: 4.6x10-12 m2/s, k: 4x10-7 1/s, DG: 2.9x10-15 m2/s, dG: 1x10-8 1/s. 

Changing 

parameter 
Pores Scaffold 

rG [1/s] M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 

2.00E-05 0.000 0.000 0.000 0.605 0.000 0.734 0.001 0.774 0.001 0.787 1.000 0.000 0.814 0.729 0.672 0.775 0.560 0.791 0.468 0.795 

1.50E-05 0.000 0.000 0.000 0.546 0.000 0.690 0.001 0.749 0.001 0.773 1.000 0.000 0.813 0.691 0.671 0.752 0.559 0.778 0.466 0.790 

1.00E-05 0.000 0.000 0.000 0.468 0.000 0.611 0.001 0.692 0.001 0.736 1.000 0.000 0.812 0.633 0.668 0.704 0.561 0.740 0.478 0.771 

 

D5. Effect of dG and rG 

DW: 4.6x10-14 m2/s, k: 8.3x10-7 1/s, DG: 2.9x10-15 m2/s, rG: 2x10-5 1/s. 

Changing 

parameter 
Pores Scaffold 

dG [1/s] M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 

5.00E-09 0.000 0.000 0.000 0.596 0.001 0.730 0.002 0.775 0.002 0.790 1.000 0.000 0.667 0.728 0.466 0.773 0.338 0.790 0.233 0.796 

1.00E-08 0.000 0.000 0.000 0.595 0.001 0.728 0.002 0.773 0.002 0.787 1.000 0.000 0.667 0.727 0.466 0.773 0.338 0.790 0.237 0.800 

5.00E-08 0.000 0.000 0.000 0.588 0.001 0.716 0.002 0.757 0.002 0.770 1.000 0.000 0.667 0.724 0.466 0.767 0.342 0.782 0.235 0.787 
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8.00E-08 0.000 0.000 0.000 0.583 0.001 0.707 0.002 0.746 0.002 0.758 1.000 0.000 0.667 0.721 0.466 0.763 0.338 0.777 0.235 0.781 

1.00E-07 0.000 0.000 0.000 0.580 0.001 0.701 0.002 0.738 0.002 0.749 1.000 0.000 0.667 0.719 0.466 0.760 0.338 0.773 0.236 0.778 

2.40E-07 0.000 0.000 0.000 0.557 0.001 0.660 0.002 0.689 0.002 0.696 1.000 0.000 0.667 0.707 0.466 0.741 0.343 0.750 0.235 0.753 

3.40E-07 0.000 0.000 0.000 0.541 0.001 0.634 0.002 0.658 0.002 0.662 1.000 0.000 0.667 0.698 0.466 0.729 0.343 0.736 0.235 0.737 

 

DW: 4.6x10-14 m2/s, k: 8.3x10-7 1/s, DG: 2.9x10-15 m2/s, rG: 2x10-4 1/s. 

Changing 

parameter 
Pores Scaffold 

dG [1/s] M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 M0 G0 M7 G7 M14 G14 M21 G21 M28 G28 

5.00E-09 0.000 0.000 0.000 0.800 0.001 0.800 0.002 0.800 0.002 0.800 1.000 0.000 0.671 0.800 0.470 0.800 0.330 0.800 0.237 0.800 

1.00E-07 0.000 0.000 0.000 0.793 0.001 0.793 0.001 0.793 0.001 0.793 1.000 0.000 0.672 0.799 0.461 0.799 0.328 0.799 0.236 0.799 

2.40E-07 0.000 0.000 0.000 0.784 0.001 0.784 0.001 0.784 0.002 0.784 1.000 0.000 0.670 0.798 0.471 0.798 0.332 0.798 0.231 0.798 

3.40E-07 0.000 0.000 0.000 0.778 0.001 0.778 0.001 0.777 0.001 0.777 1.000 0.000 0.670 0.798 0.468 0.798 0.332 0.798 0.232 0.798 

1.00E-06 0.000 0.000 0.000 0.739 0.001 0.737 0.001 0.735 0.001 0.735 1.000 0.000 0.674 0.793 0.455 0.793 0.320 0.793 0.230 0.793 

1.00E-05 0.000 0.000 0.000 0.426 0.001 0.421 0.001 0.417 0.002 0.413 1.000 0.000 0.669 0.737 0.464 0.735 0.329 0.733 0.235 0.732 

 


