
REORDERING GRAPHS FOR NODE EMBEDDING

by
BERKAY DEMİRELLER

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
July 2024



REORDERING GRAPHS FOR NODE EMBEDDING

Approved by:

Assoc. Prof. Kamer Kaya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Thesis Supervisor)

Prof. Hüsnü Yenigün . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assoc. Prof. Didem Unat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date of Approval:



Berkay Demireller 2024 ©

All Rights Reserved



ABSTRACT

REORDERING GRAPHS FOR NODE EMBEDDING

BERKAY DEMİRELLER

COMPUTER SCIENCE AND ENGINEERING M.Sc. THESIS, JULY 2024

Thesis Supervisor: Assoc. Prof. KAMER KAYA

Keywords: Graphs, Matrix Reordering, Node Embedding, GPU

In today’s interconnected world, graphs are widely used to model complex relation-
ships and structures across various domains, from social networks and transportation
systems to biological networks and recommendation systems. However, the high di-
mensionality and intricate connectivity of these graphs pose significant challenges
for analysis and processing. Node embedding techniques have emerged as powerful
tools to address these challenges by transforming graph nodes into low-dimensional
vectors while preserving the inherent structural properties and relationships of the
original graph. Despite their effectiveness, node embedding can be an expensive
process, particularly for large-scale graphs, due to the substantial computational
resources and time required. This thesis aims to improve node embedding frame-
works that utilize GPUs by reordering matrices that represent graphs. We propose
a probabilistic part-skipping strategy on reordered graphs that eliminates the over-
head created by moving parts of the graph into and out of the GPU memory and
therefore speeding up the process significantly. The resulting embeddings perform
as well as embeddings learned on a randomly ordered graph and in some cases
perform significantly better on link prediction tasks. We also present link predic-
tion results after reordering on various graphs obtained from SuiteSparse and The
Network Repository. The results show that the class of reordering algorithms that
emphasize the connectivity structure and community information found within the
graphs improve the link prediction results regardless of the graph type used.
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ÖZET

DÜĞÜM GÖMME İÇİN ÇİZGELERİ YENİDEN SIRALAMA

BERKAY DEMİRELLER

BİLGİSAYAR BİLİMİ VE MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, TEMMUZ
2024

Tez Danışmanı: Doç. Dr. KAMER KAYA

Anahtar Kelimeler: Çizgeler, Matris Düzenleme, Düğüm Gömme, GPU

Günümüzün birbirine bağlı dünyasında, çizgeler sosyal ağlardan ulaşım sistemler-
ine, biyolojik ağlardan öneri sistemlerine kadar çeşitli alanlarda karmaşık ilişkileri
ve yapıları modellemek için yaygın olarak kullanılmaktadır. Ancak, bu çizgelerin
yüksek boyutluluğu ve karmaşık bağlantıları, analiz ve işleme konusunda önemli zor-
luklar yaratmaktadır. Düğüm gömme teknikleri, çizge düğümlerini düşük boyutlu
vektörlere dönüştürerek orijinal çizgenin yapısal özelliklerini ve ilişkilerini korurken
bu zorlukların üstesinden gelmek için güçlü araçlar olarak ortaya çıkmıştır. Etk-
ili olmalarına rağmen, düğüm gömme işlemi, büyük ölçekli çizgeler için önemli
hesaplama kaynakları ve zaman gerektirdiğinden pahalı bir süreç olabilir. Bu tez,
çizgeleri temsil eden matrislerin yeniden düzenlenmesiyle GPU’ları kullanan düğüm
gömme çerçevelerini iyileştirmeyi amaçlamaktadır. Çizgelerin yeniden düzenlendiği
olasılıksal bir parça atlama stratejisi öneriyoruz; bu strateji, çizgenin parçalarının
GPU belleğine taşınması ve geri alınması sırasında oluşan yükü ortadan kaldırarak
süreci önemli ölçüde hızlandırmaktadır. Ortaya çıkan gömmeler, rastgele sıralanmış
bir çizgede öğrenilen gömmeler kadar iyi performans göstermekte ve bazı durum-
larda bağlantı tahmini görevlerinde önemli ölçüde daha iyi performans göstermek-
tedir. Ayrıca, SuiteSparse ve The Network Repository’den elde edilen çeşitli çizgel-
erde yeniden düzenleme sonrası bağlantı tahmini sonuçlarını sunuyoruz. Sonuçlar,
çizgeler içinde bulunan bağlantı yapısı ve topluluk bilgilerini vurgulayan yeniden
düzenleme algoritmaları sınıfının, kullanılan çizge türünden bağımsız olarak bağlantı
tahmini sonuçlarını iyileştirdiğini göstermektedir.
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1. INTRODUCTION

Graphs are becoming more and more relevant in today’s world. In social networks,
graphs represent individuals as nodes and their interactions as edges, facilitating
analysis of community structures and influence patterns. In transportation systems,
graphs model cities as nodes and roads or routes as edges, optimizing navigation and
traffic management. Biological networks use graphs to depict molecular interactions,
aiding in the understanding of cellular processes and the development of medical
treatments. The use cases are endless and this leads to extensive research on graph
processing and analysis. The inherent problem with graph analysis is that graphs are
high dimensional structures which makes them very hard to analyse efficiently and
accurately. Node embedding is a technique that helps with graph analysis which
aims to learn how to represent nodes of a graph with lower dimensional vectors.
This technique presents its own set of challenges, it is hard to try and learn how to
accurately represent nodes and their connectivity as is and when the constraints of
computational resources are factored in the need for research on how to learn node
embeddings faster while staying accurate becomes apparent.

Graph/matrix (re)ordering is a technique used to rearrange the rows and columns
of a matrix, which can be an adjacency matrix of a graph, to achieve a more de-
sirable structure. This can enhance computational efficiency, improve numerical
stability, and optimize memory usage in various mathematical and computational
applications. Matrix reordering in the context of graph theory involves the sys-
tematic rearrangement of the rows and columns of an adjacency matrix with the
goal of enhancing computational efficiency and improving the performance of vari-
ous graph algorithms. In real-world applications, the adjacency matrices of graphs
are typically sparse, containing far fewer edges than the total possible number of
connections. Sparse matrices often exhibit large regions with few or no edges, and
regions which are almost dense. Some reordering algorithms can exacerbate these
by creating matrix zones that are particularly sparse/dense. To illustrate, consider
an adjacency matrix (as in Figure 1.1) representing a social network, where each
row and column correspond to individuals in the network, and each entry indicates
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whether a connection exists between two individuals. In this study, we will exploit
these regions in various ways.

Figure 1.1 Figure illustrating the effects of reordering on sub-regions of a graph.
Both adjacency matrices belong to the same graph. Regions colored with darker
shades are denser relative to the overall density of the respective matrix than regions
colored with a lighter shade.

Our hypothesis is the following: there is an implicit relation between graph re-
ordering and embedding. That is reordering graphs can be exploited for node embed-
ding, where the goal is to learn low-dimensional representations of nodes in a graph
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that capture their structural and relational properties. That is a vector with a given
dimension is generated for each node. In large-scale graphs, the order in which nodes
are presented to an embedding algorithm can significantly influence the quality of
the resulting embeddings. This is because the process of node embedding relies
on the sequential processing of nodes and their neighborhoods to generate vectors
that encode their positions and relationships within the graph. If nodes that are
structurally important or closely related in the graph are processed consecutively,
the embedding algorithm can more effectively capture the underlying structure of
the graph.

When embedding large-scale graphs, GPUs are typically the preferred choice due
to their processing speed. However, the limited memory capacity of GPUs poses a
challenge, as it is often not feasible to fit both the embedding matrix and the entire
graph into memory simultaneously. To address this, embedding pipelines may use
multiple GPUs to partition the matrix across them. Alternatively, if only a single
GPU is available, which is the main case studied in this thesis, the graph and its
corresponding embedding matrix must be processed in batches, with data being
transferred in and out of the GPU as needed. For a given GPU-based embedding
tool, we focus on improving two different quality metrics.

• The accuracy of the embedding for a specific task: If the adjacency matrix is
ordered randomly, the embedding algorithm might process a batch containing
weakly connected nodes that are not similar to each other in the overall graph
topology. This leads to a learning process in which the positive information,
i.e., edges in between these nodes, do not accurately suit the true network
structure. However, if the matrix is reordered such that strongly connected
nodes, or nodes central to the network’s structure, are processed in succession,
the batches used in the embedding process can more accurately capture the
local and global properties of the graph. To this end, in Section 3.4, we use
various reordering algorithms using different strategies with different focuses
to reorder the rows and columns of a matrix on medium- to large-scale graphs
and evaluate the effects of reordering on the accuracy.

• The runtime of the embedding: The batching approach also introduces a sig-
nificant bottleneck; transferring the embedding data between the GPU and
main memory becomes increasingly time-consuming as the graph size and the
latent dimension of the embedding, i.e., size of each vector generated for the
nodes, grow. Transferring the sparse(r), possibly empty, regions and their
corresponding parts of the embedding matrix to the GPU incurs (almost) an
unnecessary overhead. These regions usually contribute little to the learning

3



process. In many cases, they represent small, isolated parts of the graph that
have minimal impact on the overall embedding quality and may even be con-
sidered as noise. After reordering graphs and creating these regions/batches,
we also try to speed up the process of embedding by introducing different
sampling schedules that probabilistically eliminate these regions from the em-
bedding process and, therefore eliminate the execution time overhead created
by carrying these regions into the GPU. Section 3.3 focuses on the runtime
dimension of this thesis.

This work aims to contribute to the literature in following ways: We aim to show
that there is indeed a relation between graph reordering and embedding by providing
results of downstream tasks using embeddings learned from randomly ordered graphs
and graphs reordered by matrix reordering algorithms. We show that link prediction
models and node embedding algorithms perform better when reordered graphs are
used to learn embeddings instead of randomly ordered graphs. We also show that
by reordering graphs we can better exploit the sparsity of real-world graphs and
accelerate the embedding learning process without losing information and lowering
the quality of the final embedding vectors by sparingly including certain parts of a
graph in the learning process instead of treating every part equally. To show these
findings are not dependent on specific node embedding algorithms, we present the
results by using embeddings obtained from the work of Zhu, Xu, Tang & Qu (2019),
GraphVite, and our in-house solution GOSH by Akyildiz, Alabsi Aljundi & Kaya
(2020).

The rest of this thesis is organized as follows: Chapter 2 focuses on the background of
node embedding and graph reordering and examines works that try to use these two
concepts together in some capacity. Chapter 3 explains graph types and reordering
algorithms used in this work and details the experiments performed by defining the
intention behind each decision for both embedding quality and embedding speed.
Chapter 4 presents the results of the experiments and Chapter 5 concludes this
thesis. The appendix contains the visuals for the reordered states of the graphs
used in this thesis.
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2. BACKGROUND

2.1 Notation

A graph G = (V,E) is a data structure that consists of a set of nodes V , which
represent the entities in a dataset. The specific meaning of these entities can vary
depending on the problem context. Additionally, the graph includes a set of edges
E ⊆ (V ×V ) that represent the relationships between these entities. The embedding
of a graph G is represented by a matrix M with dimensions |V |×d where |V | is the
number of nodes in the graph and d is the dimensionality of embeddings. Each row
M[i] corresponds to the embedding of the node i ∈ V where each value of M[i][j]
tries to capture a feature of the node i.

A graph reordering is a permutation σ : V → V that reassigns each node in the
graph to a new position. The reordered graph, denoted as Gσ maintains the same
structure as G but with nodes rearranged according to σ

2.2 Related Work

2.2.1 Graph Embedding

Graph embedding is the process of obtaining d dimensional vectors to represent the
structure and information of nodes of a graph with numerical values while minimiz-
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ing the loss of information. These vectors are then used for various downstream
machine learning tasks such as but not limited to link prediction, node classification
and community detection that aim to understand and model the interaction inside
real-life data.

The challenges of graph embedding depend on what the input and the output of
the embedding algorithm will be. Many different types of graphs represent different
insights about the data. For example, a graph can be used to show how data
points are connected, in which case the embedding should preserve the connection
information. If the graph is a knowledge graph then in addition to the connection
information, the embedding should also preserve what the connections represent for
each data point. As mentioned previously, depending on the task the output of the
process also changes. If the task is related to singular nodes, then obtaining a node
embedding where similar nodes are represented as similar vectors can be enough.
If however, the task requires information on node pairs, subgraphs or edges then a
different type of output (e.g. edge embeddings or whole-graph embeddings) may be
more suitable (Cai, Zheng & Chang, 2018). For this research, this section will only
detail previous work done on node embeddings with structural graphs (Cai et al.,
2018).

2.2.1.1 Node Embedding

Node embedding techniques aim to represent each node in a graph as a low-
dimensional vector while preserving the graph’s structural properties and node at-
tributes. The primary challenge in node embedding is to encode the complex rela-
tionships and dependencies between nodes in a way that meaningful patterns and
similarities are retained in the embedding space. This process involves capturing
both local structures (e.g., immediate neighbours of a node) and global structures
(e.g., communities or clusters within the graph).

One of the critical problems in node embedding is the preservation of various types of
proximities. Proximity in this context refers to the notion of similarity or closeness
between nodes, which can be defined in multiple ways:

First Order Proximity: First-order proximity is the direct connection between two
nodes. The first-order proximity of two nodes u and v being high means that u and
v are directly connected by an edge. LINE (Tang, Qu, Wang, Zhang, Yan & Mei,
2015) models first-order proximity by defining an objective function that directly
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measures the similarity between the embeddings of connected node pairs. LINE’s
first-order proximity model focuses on capturing the direct connections between
nodes. The objective is to maximize the likelihood of observed edges and mini-
mize the likelihood of non-existent edges in the graph. To make the optimization
computationally feasible, LINE employs negative sampling, which approximates the
objective function. For each observed edge (u,v), several non-edge node pairs are
generated. The embedding vector M[u] is updated using stochastic gradient descent
to maximize the probability of observed edges while decreasing the probability of
non-edges. By defining a probabilistic model for edge existence and using nega-
tive sampling to optimize the embeddings, LINE effectively ensures that nodes with
direct connections in the graph are embedded close to each other.

Second Order Proximity: First-order proximity is needed to ensure that the local
structures within the graph are preserved as much as possible, but it doesn’t account
for global structures and similarities. Many real-world graphs are considered sparse,
which means local connectivity of nodes doesn’t provide much insight into the graph
and many nodes may be considered similar without sharing an edge. Second-order
proximity considers the similarity of nodes based on their shared neighbours. It
has been shown that even if two nodes u and v do not share an edge, they may
have similar roles in the structure if they share many common neighbours. (Dash,
2008; Jin, Girvan & Newman, 2001; Liben-nowell & Kleinberg, 2003) The second-
order proximity also has the advantage of being applicable to both directed and
undirected graphs whereas by definition first-order proximity can only be applied
to undirected graphs. SDNE (Wang, Cui & Zhu, 2016) uses a semi-supervised deep
learning framework that consists of a deep autoencoder network. This network is
designed to capture both first-order and second-order structures of the graph. The
layered structure of the network also allows it to capture the nature of highly non-
linear graphs more effectively. The unsupervised component of the model is designed
to preserve the second-order proximity while the supervised component makes use
of the small amount of information available on the pairwise similarities of pairs of
nodes to preserve first-order proximity.

LINE (Tang et al., 2015) also has a model that utilizes second-order proximity. The
authors treat each vertex as a specific context and assume vertices with similar dis-
tributions over contexts are similar. This means each vertex has two roles for the
embedding process, one as itself and the other being a context for other vertices.
With this information, the probability distribution used in LINE’s first-order prox-
imity model is adapted so that instead of working over the probability of edges and
non-edges, the model instead concerns itself with the probability of a node u gener-
ating a context node v. With this tweak to the distribution, the objective becomes
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maximizing the likelihood of observing the context node given a target node or min-
imizing the distance between the distribution of contexts given the target node and
their empirical probability distribution.

DeepWalk (Perozzi, Al-Rfou & Skiena, 2014) is another method that learns node
embeddings by utilizing both first-order and second-order proximities. DeepWalk
learns node embeddings by performing random walks on graphs and treating the re-
sulting sequences of nodes as sentences in a language model. This approach enables
the model to capture both first-order and second-order proximities through the con-
text provided by random walks. Due to the nature of random walks, the sequences
include directly connected nodes, implicitly preserving first-order structures. Deep-
Walk explicitly captures second-order structures by integrating SkipGram (Mikolov,
Chen, Corrado & Dean, 2013), a model that maximizes the probability of a node’s
neighbours within a certain window in the walk sequence, into the embedding frame-
work. For each node in a walk sequence, the skip-gram model considers the sur-
rounding nodes within a defined context window. This means that not only direct
neighbours but also nodes that are a few steps away contribute to the embedding
process.

node2vec (Grover & Leskovec, 2016) is an algorithm that extends the DeepWalk
method by introducing a more flexible way to generate random walks, which can
capture both first-order and second-order structures more effectively. It does this
by using a biased random walk strategy that balances between breadth-first search
(BFS) which helps more with preserving local neighbourhoods (first-order proxim-
ity), and depth-first search (DFS) which provides a better understanding of macro
structures within the graph (second-order proximity). node2vec achieves this bal-
ance. Similar to DeepWalk (Perozzi et al., 2014), the first-order proximity is cap-
tured implicitly thanks to the nature of random walks. The balance of BFS and
DFS is achieved by two parameters, return parameter p and in-out parameterq, in-
troduced into the random walking process. Quoting Grover & Leskovec (2016), p

"controls the likelihood of immediately revisiting a node in the walk" while q "con-
trols the likelihood of walking to nodes". This means with a higher value of p the
search behaves more like BFS and a higher value of q results in a random walk
process that shows DFS-like behavior. After a node is processed during the random
walk, the probability of visiting a node in the next step is determined by a bias
function π which uses p and q as its inputs.

2.2.2 Graph Reordering

8



Graph reordering is a transformation technique applied to matrices, where the rows
and/or columns of the matrix are rearranged according to a specific criterion or
algorithm. The primary goal of matrix reordering is to enhance the structure of
the matrix to reveal certain properties, improve computational efficiency, or facili-
tate more effective data analysis and visualization. Different approaches to matrix
reordering can cater to specific goals, such as minimizing bandwidth, enhancing
sparsity patterns, or clustering similar elements.

• Approximate Minimum Degree Ordering (AMD): An efficient way of solving
linear systems Ax = b by factorizing A. One factorization method known as
the Cholesky Factorizaiton factors A into LL⊤ where L is a lower triangular
matrix with positive diagonal entries and L⊤ is the transpose of L. If the fill-
in, i.e., the introduction of nonzero elements in positions that were zero in the
original matrix, during factorization is minimal then solvers usually perform
better. The minimum degree algorithm is a heuristic used in sparse matrix
computations to reduce fill-in during matrix factorization. It achieves this
by iteratively selecting and eliminating the node (or variable) with the small-
est degree, thereby aiming to maintain sparsity and optimize computational
efficiency.

The minimum degree algorithm is a heuristic used in sparse matrix computa-
tions to reduce fill-in during matrix factorization. It achieves this by iteratively
selecting and eliminating the node with the smallest degree, thereby aiming
to maintain sparsity and optimize computational efficiency. Directly com-
puting the exact minimum degree ordering can be computationally expensive
for large matrices. Approximate Minimum Degree Ordering (AMD)
Amestoy, Davis & Duff (2004) offer a more efficient approximation that bal-
ances computational cost and reordering quality. AMD achieves this by using
approximation techniques to update degrees and select pivots.

• Batched Order By Attachment (BOBA): Drescher, Awad, Porumbescu &
Owens (2023) propose a graph reordering technique designed to improve the
efficiency of graph algorithms by reducing the number of cache misses during
computation. This method focuses on reordering the vertices of a graph to
enhance data locality. BOBA is based on the idea that reordering vertices by
their connectivity in batches can significantly reduce the frequency of cache
misses. Indeed, grouping vertices that are frequently accessed together ensures
that they are loaded into the cache simultaneously. Highly connected vertices
(those with higher degrees) are processed earlier, ensuring that their adjacent
vertices are more likely to be accessed soon after by maximizing the likelihood
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that adjacent vertices are accessed sequentially.

• The Reverse Cuthill-McKee Algorithm (RCM): (George & Liu, 1981) is a vari-
ance of the Cuthill-McKee (Cuthill & McKee, 1969) algorithm which is a graph
reordering technique used primarily to reduce the bandwidth of sparse matri-
ces. Using a variation of the BFS algorithm, RCM gives labels to neighbors
of each vertex i ∈ V until each one is labeled. The first vertex used in the
labeling process has severe implications on the final output of the RCM algo-
rithm. Selecting a node with a high eccentricity (shortest path distance from
the farthest other node in the graph) allows RCM to perform better in most
cases but it also means it can get very expensive to execute for certain graphs.

• Rabbit Order: Arai, Shiokawa, Yamamuro, Onizuka & Iwamura (2016) pro-
pose a method that aims to improve the end-to-end (reordering followed by
graph analysis) performance by providing a reordering that reduces fill-in,
achieves a low bandwidth and short reordering time. It improves locality by
producing dense non-zero blocks by detecting and using communities and it
parallelizes the community detection to achieve fast reordering times.

• SlashBurn (SBURN): SBURN by Lim, Kang & Faloutsos (2014) challenges the
conventional block-diagonal view of real-world graphs and introduces a new
approach to graph compression that leverages the presence of hubs and super-
hubs. This methodology aims to improve the understanding and processing
of complex graph structures, moving beyond the limitations of traditional
community detection methods. The algorithm diverges from the traditional
view of graphs as collections of dense communities or cliques. Instead, it
models graphs as collections of hubs (highly connected nodes) and spokes
(nodes connected to hubs). SBURN aims to place hubs in a way that edges
form patterns that are easier to compress.

• Gray: Gray, as described by Zhao, Xia, Li, Zhao, Zheng & Ren (2020), is an
algorithm designed to leverage the insights gained from examining the sparsity
patterns within sub-matrices of the original matrix. Similar to Rabbit (Arai
et al., 2016), the algorithm clusters nodes with comparable edge distributions
using a density-based reordering method. These clusters of similar nodes are
then individually analyzed to establish their performance limits. Finally, the
sub-matrices undergo a bitmap-based reordering to enhance locality, tailored
to the specific requirements identified by their performance bounds.

10



2.2.3 Graph Reordering and Node Embedding

There are various works combining graph reordering and node embedding. These
works mainly try to exploit the performance gains obtained by reordering graphs
in a way that allows for more efficient memory access patterns. Coleman, Segarra,
Shrivastava & Smola (2021) address the challenge of performing efficient nearest
neighbor search in large graphs. The main idea is to optimize the memory layout
of the graph to enhance cache efficiency, thereby speeding up the search process.
The first step is to compute the embeddings for each node in the graph. Using
the computed embeddings, an initial ordering of the nodes is created. Nodes with
similar embeddings (hence similar structural properties) are placed close to each
other in this initial order. The core of the graph reordering algorithm takes the initial
node ordering and further refines it to optimize cache efficiency. Zhao, Rong, Yu,
Huang & Zhang (2020) propose Deep Order Network (DON-RL), a learning-based
approach to find optimal graph orderings to improve the performance of graph-based
algorithms by reordering the graph in a way that enhances computational efficiency.
This is achieved through calculating node embeddings and then learning an optimal
ordering based on these embeddings. The learning objective is usually minimizing
a metric that can offer insight on the quality of the reordering such as fill-in or
bandwidth.

Processing graphs that are reordered usually results in increased performance for
the graph analysis step, but the reordering process itself may introduce a signifi-
cant amount of overhead to the end-to-end runtime depending on the application.
Using this fact as motivation, Balaji & Lucia (2018) compile lightweight reordering
algorithms in their work and test them together with different analysis techniques
to identify the characteristics of these applications. By linking the performance
of lightweight algorithms to the structural properties of the input graph, the au-
thors also propose a way to determine whether an input graph would benefit from
reordering in the context of the analysis.

2.2.4 Embedding Quality

In addition to the efficiency of applications, the embedding quality is also a very
important factor when it comes to graph analysis. If embedding quality is over-
looked then the overall analysis would suffer in terms of performance. In light of
this, Dehghan, Kamiński, Kraiński, Pralat & Theberge (2021a) shows a systematic
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analysis on embedding robustness. Performing several attacks that utilize the la-
bel and connectivity information of nodes on the input data, like edge addition and
rewiring, the authors show that evaluated embedding models are sensitive to certain
types of attacks, especially for downstream tasks such as node classification.

Approaching the problem of embedding quality from a different perspective, De-
hghan, Kamiński, Kraiński, Pralat & Theberge (2021b) aim to provide a thorough
evaluation of various node embedding algorithms on machine learning tasks such as
node classification, community detection, or link prediction. They evaluate models
on how sensitive they are to statistics like network size, degree distribution, noise
levels, maximum degree and community sizes. The authors conclude that node2vec
is the best possible choice if the embedding algorithm has to be chosen before the
analysis starts but also state that the best possible approach is to generate several
embeddings and compare them using a framework before deciding.

Traditional methods usually have an underlying method that require hyper-
parameters which needs to be set before the process of embedding starts (e.g. Deep-
Walk (Perozzi et al., 2014) requires random walk lengths to be set beforehand).
Abu-El-Haija, Perozzi, Al-Rfou & Alemi (2018) explore a novel approach to node
embeddings that leverages an attention mechanism to improve the quality of em-
beddings by automatically learning optimal hyper-parameters.

2.2.5 Embedding Speed

Since it has been established that node embedding is a very time-consuming process,
various works propose different approaches to node embedding intending to reduce
execution time. Neighbourhood Based Node Embeddings (NBNE) (Tiago Pimentel,
2018) borrows the idea of sentence generation from (Grover & Leskovec, 2016; Per-
ozzi et al., 2014) and modifies it to use the neighbourhood of a node to generate
sentences instead of random walks. By limiting the number of neighbours that can be
selected for the sentence and using permutations of neighbourhoods for each round,
the authors create a controlled environment where the trade-off between training
time and dataset size is dependent on an input value that dictates the number of
these permutations. This makes it so that even if the time complexities are similar,
NBNE usually is faster than node2vec (Grover & Leskovec, 2016) and DeepWalk
(Perozzi et al., 2014).

The MERIT framework (Che, Liu, Wang & Liu, 2023) introduces a multi-level graph
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embedding refinement approach designed to enhance both the quality and speed
of embeddings. Unlike traditional methods such as node2vec (Grover & Leskovec,
2016) and DeepWalk (Perozzi et al., 2014), MERIT leverages a hierarchical strategy,
refining embeddings iteratively across multiple levels of the graph’s structure. By
decomposing the graph into smaller subgraphs and performing localized refinements,
MERIT achieves a balance between computational efficiency and embedding quality.
This hierarchical refinement allows the framework to handle large-scale graphs more
effectively, making it significantly faster while maintaining high-quality embeddings.

GraphVite (Zhu et al., 2019) is designed to address the time-consuming nature of
node embedding processes by utilizing GPU acceleration to efficiently handle large-
scale graphs. By offloading computationally intensive tasks to GPUs, GraphVite
leverages the parallel processing capabilities of modern GPUs to significantly accel-
erate the embedding process. It supports multiple embedding algorithms, enabling
users to choose the most suitable method for their specific requirements. The frame-
work divides the embedding computations into smaller, parallelizable tasks that can
be executed simultaneously on the GPU, drastically reducing the time needed for
large-scale graph embeddings. This approach allows GraphVite to process graphs
with millions or billions of nodes and edges much faster than traditional CPU-based
methods. The library applies to various tasks such as link prediction, node classifi-
cation, and community detection, providing a balance between execution time and
embedding quality. By improving computational efficiency and scalability through
GPU acceleration, GraphVite demonstrates practical enhancements in embedding
speed, making it a useful tool for working with extensive graph datasets.

GOSH (Akyildiz et al., 2020) is another framework that utilizes the graph coarsen-
ing process like MERIT (Che et al., 2023). GOSH proposes a framework that allows
embedding arbitrarily large graphs on a single GPU without being constrained by
device memory limitations. This is achieved by learning embeddings for smaller
graphs and mapping the learned embeddings to the next level of coarsened graphs
until the whole embedding matrix is obtained. When the graph and its correspond-
ing matrix do not fit into the device memory, GOSH obtains positive edge samples
before copying data into GPU memory and copies the relative portions of the graph
and the corresponding embedding matrix, allowing for batched processing.
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3. REORDERING GRAPHS FOR NODE EMBEDDING

In this chapter, we delve into the core of our research on reordering graphs to enhance
node embedding. Building upon the foundations laid in the previous chapters, we
now present a comprehensive analysis of the reordering algorithms employed, the
experimental framework, and the resultant effects on embedding performance both
in terms of speed and quality. Our investigation aims to systematically explore how
different reordering strategies can impact both the efficiency and quality of node
embeddings, aiming to offer deeper insights into optimizing graph representation
learning.

This chapter is organized as follows: First, in Section 3.1 detailed explanations of
used reordering algorithms are given. Then, Section 3.2 details the graph types used
in the experiments. Experiment details on embedding speed with reordered graphs
and problem definition are given in Section 3.3. Finally, problem definition and
experiment details for experiments on embedding quality are given in Section 3.4.

3.1 Reordering Algorithms

As has been established in Section 2.2, there are multiple ways of reordering graphs
that make it easier to process them for different kinds of tasks. What follows is a
detailed explanation of each of the algorithms used for this research.

• Approximate Minimum Degree Ordering (AMD): AMD is an improvement on
Minimum Degree Ordering, which was explained briefly in Section 2.2. To
explain AMD in detail, a brief explanation of elimination and quotient graphs
is needed. During factorization of a matrix M, represented by a graph G =
(V,E) a nonzero pivot is selected from V at each iteration. An elimination
graph (an example can be seen in Figure 3.1) is a sub-graph Gn = (V n,En),
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that has not been factorized yet, of G where n pivots are already selected
and eliminated. A quotient graph is a structure that efficiently represents
elimination graphs as a combination of sets of eliminated nodes, uneliminated
nodes, and edges within corresponding sets of nodes.

Figure 3.1 Elimination process in an Elimination Graph

If two nodes in the elimination graph are neighbors and they also have iden-
tical neighbor sets they are called indistinguishable, as described by George
& Liu (1989). When a node is eliminated from the graph, these nodes stay
indistinguishable. Using this fact, AMD defines a tight upper bound on the
degree of a node i which is the sum of the weights of its adjacent nodes minus
a value related to overlapping sets of neighbors of i’s already eliminated neigh-
bors. Algorithm 1 provides the details for this process and Figure 3.2 shows
an example of an AMD ordered graph.

Figure 3.2 AMD ordered state of a social graph
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Algorithm 1 ApproximateMinimumDegree(G)
Input: G = (V,E): input graph
Output: σ: Reordering sequence

Initialize the degree of each node
Initialize the reordering sequence σ = []
Initialize a priority queue Q with nodes sorted by degree
while not all nodes are reordered do

Select the node v with the approximate minimum degree from Q
Add v to the reordering sequence σ
Remove v from the graph
for each neighbor u of v do

Update the degree of u in Q
end for

end while
return Reordering sequence σ

• Batched Order By Attachment (BOBA): Instead of directly working on the
degree values of individual nodes, BOBA takes a different approach to node
embedding and is inspired by Preferential Attachment defined by Albert &
Barabási (2002). By analyzing the expected value of a theoretical measure that
scores permutations and defining an upper bound for this measure, the authors
show ordering nodes by their attachment time in the preferential attachment
model is a good selection for ordering nodes. In the permuted graph Gσ

built by BOBA, a vertex v appears in Gσ in the order it would be seen in
a preferential attachment scenario. What follows is a brief explanation of
preferential attachment, algorithm details on BOBA in Algorithm 2 and an
example graph in Figure 3.3.
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Figure 3.3 BOBA ordered state of a social graph

Preferential attachment or the Barabási-Albert (BA) model is used to try and
explain or understand the formation of scale-free networks, which are networks
characterized by a few highly connected nodes (hubs) and many nodes with
fewer connections. The key idea behind preferential attachment is that new
nodes are more likely to connect to existing nodes that already have a high
degree (i.e., many connections). In this model, a new node is connected to
an existing node with a probability proportional to the degree of the existing
node.

• Reverse Cuthill-McKee (RCM): RCM is a fairly straightforward reordering al-
gorithm. It is a degree-based reordering algorithm, meaning a node is re-
ordered concerning some rule relating to its degree. RCM aims to reduce the
bandwidth of the matrix. A brief explanation of the concept of bandwidth
is needed before the algorithm is detailed. Bandwidth can be informally de-
scribed as a measure of how far the non-zero elements are from the diagonal.
Mathematically, it can be described as follows:

– The lower bandwidth of a matrix M, denoted by l is the maximum num-
ber of sub-diagonals containing non-zero elements:

l = max
i,j

{i− j|aij ̸= 0}

– The upper bandwidth of a matrix M, denoted by u is the maximum
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Algorithm 2 BatchedOrderByAttachment(G,batch_size)
Input: G = (V,E): input graph
Input: batch_size: size of each batch
Output: σ: Reordering sequence

Initialize the reordering sequence σ = []
Initialize a set U of unprocessed nodes with all nodes in G
while U is not empty do

Initialize an empty batch B = []
for i from 1 to batch_size do

if U is empty then
break

end if
Select a node v from U based on attachment criteria (e.g., highest degree)
Add v to the batch B
Remove v from U

end for
Add batch B to the reordering sequence σ
for each node v in batch B do

for each neighbor u of v in U do
Update the attachment criteria of u

end for
end for

end while
return Reordering sequence σ
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number of super-diagonals containing non-zero elements:

l = max
i,j

{j − i|aij ̸= 0}

– Then, the bandwidth of M is calculated as:

Bandwidth = l +u+1

Figure 3.4 RCM ordered state of a Delaunay graph

Following the explanation of the bandwidth of a matrix, Algorithm 3 shows
the steps for RCM and Figure 3.4 shows an example of an RCM ordered graph.

Since every vertex is processed in some order, the selection of the initial vertex
is important. Since it is out of scope for this section, the selection process will
not be detailed. For completeness, various selection strategies and their details
can be found in (George & Liu, 1981) and (George & Liu, 1979).

• Rabbit Order: One of the reasons why graph reordering is a widely researched
area is to improve the locality of a matrix M representing a graph G so that
during the end-to-end analysis process more efficient memory access patterns
are observed. As shown by Arai et al. (2016), most graph analysis algorithms
show similar patterns seen in sparse matrix-vector multiplication. When the
matrix processed in sparse matrix-vector multiplication shows poor locality,
the algorithm suffers greatly in terms of execution time.
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Algorithm 3 ReverseCuthill-McKeeAlgorithm(G)
Input: G = (V,E): input graph
Output: σ: Reordering sequence

Initialize the reordering sequence σ = []
Select a starting node s with the minimum degree
Initialize a queue Q and enqueue the starting node s
Mark s as visited
while Q is not empty do

Dequeue a node v from Q
Add v to the reordering sequence σ
Get the list of unvisited neighbors of v sorted by increasing degree
for each neighbor u in the sorted list do

if u is not visited then
Enqueue u to Q
Mark u as visited

end if
end for

end while
Reverse the reordering sequence σ
return Reordering sequence σ

Figure 3.5 Rabbit ordered state of a random geometric graph

Arai et al. (2016) show in their that if there are dense blocks of nonzero values
in M, cache misses during the sparse matrix-vector multiplication process are
minimized. They also show that constructing dense blocks of nonzero values
in M is possible by capturing community structures in G. Furthering the
concept of communities within graphs, Rabbit Order as seen in Algorithm 4
and Figure 3.5 detects hierarchical communities in G where each community
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has inner communities that are denser than their parent community. By using
hierarchical community ordering Rabbit Order improves locality, and by using
parallel processing it decreases execution time considerably.

Algorithm 4 RabbitOrderingAlgorithm(G)
Input: G = (V,E): input graph
Output: σ: Reordering sequence

G = (V,E): input graph
Step 1 : Hierarchical Community Detection
C = CommunityDetection(G)
C: hierarchical communities represented as a dendrogram
Step 2 : Generate New Ordering from Dendrogram
σ = OrderingGeneration(C)
σ: new vertex ordering where vertices in the same community are co-located
return σ

• Gray Ordering: Another ordering algorithm aiming to improve the perfor-
mance of Sparse Matrix-Vector Multiplication based applications, Gray by
Zhao et al. (2020) is an algorithm trying to exploit insights obtained by
analysing sparsity structures of sub-matrices inside the original matrix. Like
Rabbit (Arai et al., 2016), nodes that have similar edge distributions are
grouped together in a density-based reordering. Then, each of these simi-
lar groups of nodes is inspected separately to determine their performance
bounds. Finally, the sub-matrices are reordered with a bitmap-based reorder-
ing to improve locality based on the needs of the sub-matrix determined by
its performance bound. An example of a Gray ordered graph can be seen in
Figure 3.6.

Figure 3.6 Gray ordered state of a Delaunay graph
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• Partitioning Tool for Hypergraphs (PaToH): PaToH by Çatalyürek &
Aykanat (2011) is a hypergraph partitioning tool designed to enhance
computational performance by efficiently distributing data across multiple
processors. It utilizes a multilevel partitioning approach, which includes coars-
ening the hypergraph, partitioning the coarsened hypergraph, and refining the
partition to minimize communication costs and balance the computational
load. This method is particularly effective for complex hypergraphs with
edges connecting multiple nodes, but it can also be applied to regular graphs
by treating each edge as a hyperedge connecting two nodes. In this context,
a "cut" refers to a hyperedge that connects nodes in different partitions.
Cuts lead to increased communication costs between processors which means
minimizing cuts is essential to reduce inter-processor communication. It is
possible to use the partitioning information obtained by running PaToH
together with a regular graph to reorder the rows or columns of the matrix
representing the graph, as can be seen in Figure 3.7.

Figure 3.7 PaToH ordered state of a social graph

• DynaDeg: DynaDeg ordering algorithm takes inspiration from minimum de-
gree ordering algorithms. It finds a node with a minimum degree, updates the
reordering structure, removes the vertex from the original graph, and updates
the degrees of its neighbors. An example of a DynaDeg ordered graph can be
seen in Figure 3.8
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Figure 3.8 DynaDeg ordered state of a Delaunay graph

• SlashBurn (SBURN): The SlashBurn algorithm is a graph compression tech-
nique designed to efficiently handle large-scale graphs by leveraging their un-
derlying hub-and-spoke structure. Unlike traditional methods that focus on
dense communities or cliques, SlashBurn identifies and removes highly con-
nected nodes, or "hubs," which simplifies the graph into smaller, more man-
ageable components (an example of this can be seen in Figure 3.9). This
process, termed "slashing," is followed by a "burning" step, where the remain-
ing nodes, now forming smaller connected components, are further analyzed
and compressed.

Figure 3.9 SBURN ordered state of a road graph
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3.2 Graph Types

Understanding the diverse types of graphs is pivotal for grasping the complexities
and nuances involved in reordering graphs for node embedding. Graphs serve as
powerful tools to model relationships and interactions within various datasets, rang-
ing from social networks to biological systems, and their structural differences can
significantly impact the performance and outcomes of embedding algorithms. Each
graph type, with its unique set of properties and characteristics, presents distinct
challenges and opportunities for effective reordering and embedding. This subsec-
tion delves into several prevalent graph types, explaining in detail their traits and
the implications for node embedding processes. Through this exploration, we aim
to establish a solid foundation for understanding how various graph structures can
influence embedding techniques and outcomes.

3.2.1 Random Geometric Graphs

First introduced by Gilbert (1961), random geometric graphs (RGGs) are a type of
random graph where nodes are placed in a geometric space, typically a Euclidean
space, and edges are formed based on the distance between these nodes (Figure 3.10).
Nodes are distributed uniformly at random within a specified geometric space, often
a unit square, unit disk, or higher-dimensional analogs. Two parameters, r and x,
control the construction of an RGG.
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Figure 3.10 Natural state of a random geometric graph

Formally, an RGG has 2x vertices and if u and v are vertices in an RGG, an edge
between them forms if the Euclidian distance between them is below r. For a unit
square r is approximately proportional to

√
logn

n where n is the total number of
vertices. Some use cases in real life include:

• Modelling communication networks in constrained areas such as wireless sensor
networks or radio stations, as seen in the work by Gilbert (1961).

• Estrada, Meloni, Sheerin & Moreno (2016) use RGGs to inspect spatial prop-
erties of disease propagation on populations.

• In robotics and autonomous systems research, RGGs help in planning and un-
derstanding the movement and communication of swarms of robots or drones
within a physical space. Karaman & Frazzoli (2011) makes connections be-
tween sampling-based path planning algorithms and the theory of random
geometric graphs.

• Modeling various natural systems where spatial relationships are crucial, such
as neural networks in the brain. Ajazi, Fioralba (2018) have done a compre-
hensive study on how random geometric graphs can be applied to understand
neuronal network structures.

3.2.2 Delaunay Graphs
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Delaunay graphs, also known as Delaunay triangulations, are another important
type of geometric graph with significant applications in various fields. In a Delaunay
graph, nodes are placed in a geometric space, and edges are formed such that no
node lies inside the circumcircle of any triangle in the graph (Figure 3.11).

Figure 3.11 Natural state of a Delaunay graph

The construction of a Delaunay graph is closely related to the Voronoi diagram,
with the Delaunay graph being the dual of the Voronoi diagram. Formally, given
a set of points P = {p1,p2, ...,pn} in a 2D Euclidean plane, for each subset of three
points in P a triangle is formed and an edge is formed between pi and pj if and only
if there is a circumcircle of some triangle containing pi and pj that does not contain
any other points from P within it. Some real-life use cases include:

• Martinez Santa, Martínez & Gómez (2014) use Delaunay graphs and Voronoi
diagrams to craft a prediction algorithm "applicable for mobile robots with
range sensors".

• In the work of Kang, Kim & Shin (2006), Delaunay triangulations are used
for efficient terrain rendering for video games.

• Dakowicz & Gold (2003) use Delaunay triangulations and Voronoi diagrams
to construct interpolated terrain models to obtain a realistic model of real
surfaces.

3.2.3 Social Graphs
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Social graphs, also known as social networks, are a type of graph used to represent
relationships and interactions among individuals, organizations, or other entities
(Figure 3.12). In a social graph, nodes represent the entities, and edges represent
the relationships between them. These edges can be undirected, indicating mutual
relationships like friendships, or directed, indicating one-way interactions such as
followers on social media.

Figure 3.12 Natural ordering of a social graph

Formally, given a set of entities, an edge is formed between two entities if there
exists a relationship or interaction between these two entities. The definition of a
relationship or interaction varies depending on the type of entity group the graph
is trying to represent. Social graphs can also include weighted edges, where the
weight represents the strength or frequency of the interaction. They are used in
works trying to understand the structure and dynamics of social interactions. Some
real-life use cases include:

• Stattner & Vidot (2011) compile works showing the application of social net-
work analysis and how to use it to understand the spread of infectious diseases.

• He & Chu (2010) introduce SNRS, a paradigm utilizing social network analysis
to expand the usage of traditional recommender systems.

• (Ribeiro, Macambira & Neiva, 2017) is a work examining the use of social
network analysis in organizational contexts. It focuses on the methodology of
analysis and important choices when conducting such analyses.
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3.2.4 Road Graphs

Road graphs, road networks or transportation networks are a type of graph repre-
senting the physical layout of roads and pathways within a geographic area. In a
road graph, nodes represent intersections, endpoints, or key locations, while edges
represent the road segments connecting these nodes (Figure 3.13). Edges, or roads,
can be directed or undirected depending on whether an edge represents a one-way
or a two-way road. Weights are often assigned to edges to represent distances, travel
times or other relevant costs.

Figure 3.13 Natural ordering of a road graph

Road graphs are typically planar, reflecting the physical constraints of road layouts.
Formally, given a set of intersections in a geographic space, an edge between two
intersections is formed if there exists a road segment connecting these two intersec-
tions. Some real-life use cases include:

• Gharaee, Kowshik, Stromann & Felsberg (2021) presents a learning-based ap-
proach to classify road types by training a graph convolutional neural network.

• Barthélemy & Carletti (2017) use road graphs to tackle the problem of pre-
dicting traffic conditions and road demands, treating travelers as agents whose
strategy is modeled by a neural network.

• Yuan, Wang & Fang (2023) propose a method based on geographic information
systems (GIS) to evaluate and analyze the importance of various road segments
using road graphs.
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3.2.5 Protein K-mer Graphs

K-mers are substrings of length k contained within a sequence of biological se-
quences. Protein k-mer graphs are used in bioinformatics to analyze and represent
protein sequences.

Figure 3.14 Natural state of a Protein K-mer Graph

In a protein k-mer graph, nodes represent k-mers, substrings of length k derived
from a protein sequence. Edges are formed between nodes if the suffix of length
k −1 of one k-mer matches the prefix of length k −1 of another kmer (Figure 3.14).
Some real-life use cases include:

• REINDEER, introduced by Marchet, Iqbal, Gautheret, Salson & Chikhi
(2020), is a computational method used to index k-mer sequences and their
abundances using k-mer graphs.

• Rcorrector is an error correction method proposed by Song & Florea (2015)
where k-mer graphs are used to correct random sequencing errors.

3.3 Reordering for Embedding Speed

One of the aims of this project is to come up with a scenario where reordering matri-
ces results in a faster learning process for embeddings. One of the bottlenecks of the
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node embedding process, especially for large-scale graphs, is the positive sampling
process. Positive sampling involves selecting pairs of nodes that are close to each
other in the graph (e.g., direct neighbors or nodes within a certain distance). These
sampled pairs are then used to train the embedding model to learn representations
that preserve the graph’s local and global structure. For this part of the project, we
use GOSH by Akyildiz et al. (2020) as the embedding tool.

3.3.1 Sampling in GOSH

For a normal scale graph, GOSH performs sampling and training Without going
into specifics, for a graph G = (V,E) GOSH needs to store the embedding matrix M
which has d×|V | elements and the Compressed Sparse Row (CSR) representation of
the graph which has (|V |+1)+ |E| elements inside a single GPU. If the matrix rep-
resents a large-scale graph with millions of vertices this scenario becomes impossible
because at one point a single GPU memory stops being sufficient, however large it is.
GOSH overcomes this issue by choosing not to store M and G as a whole inside the
GPU. How G is handled in this case is of particular importance to us for this part of
the project. Before sampling starts, GOSH partitions the graph into k parts as seen
in Figure 3.15. Then, the sampling procedure is carried out individually for each
of these parts (Figure 3.16). When sampling for a part is completed, the positive
samples are carried to their respective "sample pools", which are then carried over
to the GPU memory. The overall part switching process is described in Figure 3.17.

30



Figure 3.15 GOSH Graph Partitioning Schema Before Sampling

Figure 3.15 shows an example of how GOSH partitions a graph with |V | = 1000 and
k = 5. Each partition has the same amount of rows and columns assigned to them,
except the last partition for rows and columns since they just include whatever is
left after the rest of the graph is partitioned.

Figure 3.16 GOSH sampling process. Each sampling thread fills their respective
sample pool and when the pool fills the samples are carried into the GPU memory.
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Figure 3.17 GPU-CPU Part switches happening during the embedding process.
Needed parts for the next few stages are determined, and parts that are in GPU but
not needed for the next stages are flagged for removal. For each part to be removed
a new part arrives in the GPU and older parts are flagged for removal if they are
not needed in the future.

The part switches depicted in Figure 3.17 are the performance bottleneck for GOSH’s
learning process. In the figure, there are two parts flagged for removal and three
parts that need to be carried over to the GPU memory. This means there will be
two part switches for the next step and at least one more for the next since the one
part left out won’t be carried into the GPU in the current step. Also, if the part
coming into the GPU has a low amount of edges there is no guarantee the part will
stay in there for a long time and this leads to more part switches.

GOSH uses multiple sampling strategies whose particulars are not relevant to the
problem. What is relevant is that each strategy performs some task on the nonzero
values existing in the part assigned to the thread executing the strategy. Depending
on the structure and layout of the graph, this may present a problem. As shown
by Wang, Yao, Tong, Xu & Lu (2019), all edges are not of the same importance
when it comes to learning representational embeddings and changing the structure
of the network may even be beneficial, depending on certain factors. Using this as
motivation, we implement a scheduling strategy that aims to ignore edges that may
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not be as impactful for the embedding stage while speeding up the overall process
by eliminating some of the part switches.

3.3.2 Problem Definition

Figure 3.18 Nonzero ratios per part for a randomly ordered graph

Figure 3.18 shows the distribution of nonzero values per part for a randomly ordered
graph after GOSH calculates the part limits. As seen in the figure, a randomly
ordered matrix representing a graph has its nonzero values (edges of the graph)
about evenly distributed between each part. This means the number of positive
samples coming from a part should be about as equal to the amount coming from
other parts with no way of making use of a meaningful distinction between edges.
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Figure 3.19 Nonzero ratios per part for a Rabbit ordered graph

The matrix shown in Figure 3.19 is the Rabbit ordered version of the same graph seen
in Figure 3.18. The difference between the two figures is clear, as the Rabbit ordered
matrix has partitions that are denser in terms of nonzero ratios. The problem then
becomes what happens when we schedule the sampling such that the parts with
nonzero ratios lower than a threshold value t are skipped in sampling rounds with
probability p. In theory, this would speed up the embedding process since not only
the sampling process itself is performed less but also the results that would have
been obtained from these samplings won’t be carried into the GPU memory. To
test this theory, we introduce simple changes to GOSH’s sampling algorithm to
accommodate the skipping strategy.

3.4 Reordering for Downstream Task Accuracy

Node embeddings are almost always learned to use them for some downstream task
(e.g. link prediction, node feature prediction). Therefore it is logical to expect
that any change to any embedding strategy, whether it is changing the algorithmic
details of the learning process or changing the topology and structure of the input
data, should result in better or at the very least similar to the state of the art in
terms of task accuracy. Reordering graphs is no different, and to show the effects
of reordering graphs on embedding quality for link prediction we test two different
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node embedding algorithms, LINE and DeepWalk, on reordered graphs. We use the
implementations of LINE and DeepWalk provided by the work of Zhu et al. (2019),
GraphVite.

3.4.1 LINE Algorithm

LINE (Tang et al., 2015) is a network embedding algorithm that aims to preserve
first-order proximity and second-order proximity of nodes while being able to scale
for large graphs with millions of nodes and being able to process arbitrary types of
edges (e.g. directed, undirected, weighted). LINE first learns the representations
for first-order proximity and second-order proximity separately. After the initial
learning process is done, LINE concatenates the representations to preserve first-
order and second-order proximity together in a single representation.

Algorithm 5 LINE-FirstOrderProximityLearning(epochs,nodes,edges)
Input: epochs: training epoch count
Input: nodes: node set of the graph G = (V,E)
Input: edges: edge set of the graph G = (V,E)

for each epoch in epochs do
Randomly initialize weights
for each edge between nodes in edges do

Compute the similarity between the two connected nodes
Calculate the error between predicted and actual similarity
Backpropagate the error to update weights

end for
end for

To learn first-order proximity representations, LINE first defines a joint probability
p1 for an undirected edge (i, j) between any vertex pair i and j. Then, minimizing
the KL divergence of the distribution of p1 and the distribution of its empirical
probability p̂1 becomes the learning objective for this part of LINE (Algorithm 5).

For second order proximity, LINE takes a similar approach in terms of logic. This
time a vertex has two different uses, one as itself and one as the context for other
vertices. This leads to the definition of another probability for the context repre-
sentations. With this, the objective becomes to minimize the distance between the
conditional distribution of the context representations given a vertex i and their em-
pirical probability distributions. A value is introduced that represents the "prestige"
of a vertex, and KL divergence is chosen as the distance function again.
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Algorithm 6 LINE-SecondOrderProximityLearning(epochs,nodes,neighbors)
Input: epochs: number of training epochs
Input: nodes: node set of the graph G = (V,E)
Input: neighbors: neighbor set of each node in nodes

for each epoch in epochs do
Randomly initialize weights
for each node in nodes do

for each neighbor of the node in neighbors do
Compute the similarity between the node and its neighbor’s neighbour-
hoods
Calculate the error between the predicted and actual similarity of neigh-
bourhoods
Backpropagate the error to update weights

end for
end for

end for

Algorithm 6 provides a simplified version of this process.

3.4.2 DeepWalk Algorithm

DeepWalk (Perozzi et al., 2014) is a framework that treats random walk sequences
that are obtained from sampling as sentences. DeepWalk starts by performing ran-
dom walks on the graph. For each node in the graph, DeepWalk generates multiple
random walks of fixed length. These walks serve as sentences in the analogy to
natural language processing (NLP). Similar to how words have context in sentences,
nodes in random walks have context within a window. A sliding window of a fixed
size moves over the nodes in the random walk, treating each node as a word and its
neighboring nodes within the window as its context.

DeepWalk uses the skip-gram model, a neural network architecture from NLP, to
learn node embeddings. The skip-gram model aims to predict the context nodes
given a center node. The input to the skip-gram model is the center node, and
the output is the context node. The objective is to maximize the probability of
predicting the correct context nodes for each center node (Algorithm 7).

3.5 Problem Definition
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Algorithm 7 DeepWalkNodeEmbeddingAlgorithm(G,wpn,wl,ws,ed,epochs)
Input: G = (V,E): input graph
Input: wpn: number of random walks per node (walks per node)
Input: wl: length of each random walk (walk length)
Input: ws: context window size for skip-gram model (window size)
Input: ed: dimension of node embedding vectors (embedding dimension)
Input: epochs: number of training epochs

Step 1 : Generate random walks
for each node v in G do

for each i from 1 to walks_per_node do
Perform a random walk of length walk_length starting from v
Add the random walk to the corpus

end for
end for
Step 2 : Train skip-gram model
Initialize weights randomly for the skip-gram model
for each epoch from 1 to epochs do

for each random walk in the corpus do
for each node in the random walk do

Use the node as the center word
Extract the context nodes within the window size
Maximize the probability of the context nodes given the center node using
the skip-gram model
Calculate the error between predicted and actual context nodes
Backpropagate the error to update weights

end for
end for

end for
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The challenge arises when considering the impact of reordering graphs on the per-
formance of embedding algorithms like LINE and DeepWalk. Specifically, we aim
to understand how reordering affects the accuracy and convergence of these al-
gorithms. By reordering the graph’s nodes and edges, we hypothesize that the
structural properties captured by the embeddings may vary, influencing their effec-
tiveness in downstream tasks. To evaluate this, we propose reordering the graph
and then applying LINE and DeepWalk to generate embeddings. Subsequently, we
will test these embeddings using a link prediction model to measure their accuracy
and convergence.
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4. RESULTS AND DISCUSSION

In this chapter, we present the results of our tests on reordering graphs to enhance
node embedding, as detailed in the previous chapter. First, the dataset used is
shared and details on the graphs are given. Then, a detailed explanation of the link
prediction performed on embeddings obtained by GraphVite’s implementation of
LINE and DeepWalk is given, followed by the results. Finally, the details of testing
on reordering graphs to improve embedding speed are given together with results
measuring both embedding speed and accuracy on link prediction.

All matrix visualisations seen in this work have been produced by SparseViz 1.
SparseViz is a matrix reordering and visualisation library written in C/C++. It
includes implementations for all the reordering algorithms mentioned and also pro-
duces visualisations for each of the desired algorithms given an input graph. The
visualisations also include critical stats that are helpful for matrix-based applica-
tions such as bandwidth, average and median nonzero values, empty bin counts,
and average, maximum, and minimum row and column spans.

4.1 Evaluation Metrics

To evaluate the various methods and approaches we apply to see the effects of
reordering on both embedding speed and embedding quality, we decided on several
metrics. Since we want to show if there are any improvements in terms of execution
speed, we present GOSH’s execution time in two segments:

• Time it took to carry samples into GPU memory

• Time it took to remove samples from GPU memory and carry over new samples

1https://github.com/sparcityeu/SparseViz
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To measure the quality of the embeddings after being subjected to our scheme, we
present accuracy values on the validation set obtained from a logistic regression
model trained for link prediction. The preprocessing and evaluation pipeline is
mostly adopted from the work of Akyildiz et al. (2020). First the input graph G is
separated into training and test graphs with an 80-20 split. If there are any isolated
edges in the training set we remove them, and if there are any edges (u,v) in the
test graph where one of u or v is not in the training graph the edge is removed
from the test graph. Features for the training samples are obtained by element-wise
multiplication of the embedding vectors of the nodes belonging to a given sample
(negative or positive).

To show how reordering affects embedding quality, we present AUC scores and
TopHits@K calculations for K values of 20, 50, and 100 obtained from the link
prediction network included in GraphVite (Zhu et al., 2019).

4.2 Dataset

Table 4.1 Graphs used for tests

Graph Name Node Count Edge Count
soc-douban 154908 327162
soc-slashdot 70068 358647
soc-gowalla 196591 950327
soc-youtube 495957 1936748
soc-buzznet 101163 2763066
soc-lastfm 1191805 4519330
soc-digg 770799 5907132
soc-livejournal 4033137 27933062
soc-sinaweibo 58655849 261321071
delaunay_n21 2097152 6291408
delaunay_n22 4194304 12582869
delaunay_n24 16777216 100663202
rgg_n_2_19_s0 524288 3269766
rgg_n_2_20_s0 1048576 6891620
rgg_n_2_24_s0 16777216 265114400
road-belgium-osm 1441295 1549970
road-italy-osm 6686493 7013978
kmer_P1a 139353211 148914992
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We chose to use a varied selection of graphs obtained from SuiteSparse (Davis &
Hu, 2011), and The Network Repository (Rossi & Ahmed, 2015,1). For the tests
involving the convergence of models, we use social graphs soc-livejournal and
soc-buzznet. To show the effects of our partition skipping strategy for GOSH’s
sampling we use kmer_P1a, soc-sinaweibo, rgg_n_2_24_s0 and delaunay_n24
which are all large-scale graphs. 7 social graphs, 2 Delaunay graphs, 2 random
geometric graphs and 2 road graphs are used to obtain and analyse link prediction
AUC scores. In total, we use 8 social graphs, 3 Delaunay graphs, 3 random geometric
graphs, 2 road graphs, and 1 k-mer protein graph. Readers can refer to Table 4.1
for details.

To prepare training and validation data for link prediction models, we removed
edges from the original graph randomly, reordered the training set, and used the
permutation obtained on the removed edges as well. The validation set did not have
any effect on the final matrices produced by reordering.

4.3 Embedding Quality

4.3.1 Convergence - Social Graphs
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Figure 4.1 Convergence on soc-buzznet

Figure 4.1 shows the AUC scores of training embeddings after 100, 150, 200, 250 and
500 epochs. As the figure shows, there are clear distinctions between the performance
of different reordering algorithms. Among the best-performing algorithms are AMD,
Rabbit, RCM and SBURN. DynaDeg, BOBA and Gray still outperform the random
ordering but they can not separate themselves as fast or as drastically from the
better-performing reorderings.
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Figure 4.2 Convergence on soc-livejournal

Figure 4.2 shows the AUC scores after 100, 250 and 500 epochs of embedding train-
ing. This time the scores start at lower values compared to soc-buzznet. This
is expected since soc-livejournal has a lot more relationships, therefore repre-
senting it with embeddings is harder for models. When it comes to convergence,
the better-performing algorithms provide the fastest convergence to higher scores
again. This time, the separation between the best-performing algorithms and the
rest is even more clear. DynaDeg performs poorly, however, as it has been beaten
by random ordering.

4.3.2 AUC and TopHits@K - Social Graphs

For social graphs, Table 4.2 shows models are usually successful to some degree in
learning the relationships within the graph. This is due to the fact that social graphs
usually have well-defined community structures and homogenous connectivity pat-
terns. Learning embeddings on random orderings usually result in the worst AUC
scores but even then the values are around 0.8. The better-performing algorithms
like AMD, RCM, Rabbit and SBURN usually exceed 0.9 and the other algorithms
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Table 4.2 AUC scores for social graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
soc-douban 0.882 0.852 0.827 0.831 0.882 0.882 0.821 0.881
soc-slashdot 0.925 0.883 0.891 0.883 0.925 0.924 0.884 0.925
soc-gowalla 0.977 0.914 0.911 0.911 0.977 0.977 0.904 0.977
soc-youtube 0.960 0.905 0.909 0.903 0.960 0.960 0.900 0.960
soc-buzznet 0.925 0.897 0.903 0.895 0.925 0.924 0.896 0.924
soc-lastfm 0.975 0.970 0.971 0.968 0.975 0.975 0.969 0.975
soc-digg 0.975 0.968 0.969 0.967 0.975 0.975 0.968 0.975

never perform worse than the random ordering.

Table 4.3 TopHits@20 for social graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
soc-douban 0.75 0.80 0.75 0.85 0.80 0.85 0.70 0.75
soc-slashdot 0.85 0.70 0.80 0.80 1.00 0.85 0.90 0.95
soc-gowalla 0.95 0.90 0.80 0.85 0.95 0.90 0.80 0.95
soc-youtube 1.00 0.85 0.95 0.85 0.90 0.90 0.85 0.90
soc-buzznet 0.95 0.85 0.75 0.70 0.95 0.90 0.75 0.85
soc-lastfm 0.95 0.90 0.95 0.95 0.90 1.00 0.90 0.90
soc-digg 0.95 0.90 0.95 0.90 0.95 0.90 0.90 0.90

Table 4.4 TopHits@50 for social graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
soc-douban 0.84 0.74 0.70 0.84 0.78 0.80 0.70 0.84
soc-slashdot 0.80 0.76 0.76 0.82 0.94 0.82 0.86 0.94
soc-gowalla 0.94 0.88 0.84 0.88 0.92 0.92 0.82 0.96
soc-youtube 0.94 0.88 0.76 0.84 0.82 0.90 0.84 0.90
soc-buzznet 0.84 0.80 0.76 0.78 0.90 0.86 0.78 0.88
soc-lastfm 0.98 0.94 0.96 0.96 0.94 0.94 0.92 0.92
soc-digg 0.94 0.92 0.92 0.90 0.98 0.92 0.94 0.90

Table 4.5 TopHits@100 for social graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
soc-douban 0.79 0.78 0.68 0.81 0.79 0.81 0.70 0.80
soc-slashdot 0.85 0.76 0.78 0.82 0.90 0.88 0.82 0.95
soc-gowalla 0.91 0.83 0.83 0.89 0.95 0.95 0.81 0.94
soc-youtube 0.93 0.81 0.76 0.84 0.82 0.87 0.86 0.89
soc-buzznet 0.84 0.78 0.81 0.78 0.86 0.85 0.75 0.85
soc-lastfm 0.98 0.93 0.97 0.96 0.95 0.90 0.93 0.94
soc-digg 0.94 0.92 0.91 0.89 0.96 0.92 0.94 0.93
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When it comes to predicting positive edges, the TopHits@K metrics show the better-
performing algorithms still produce the best results for the large part, but the dif-
ference in performance is not as drastic as the previous category of AUC scores.
The results are shown in Tables 4.3, 4.4 and 4.5 for k values of 20, 50 and 100
respectively.

4.3.3 AUC and TopHits@K - Road Graphs

Table 4.6 AUC scores for road graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
road-belgium-osm 0.632 0.585 0.590 0.584 0.622 0.632 0.584 0.632
road-italy-osm 0.624 0.585 0.590 0.585 0.624 0.624 0.584 0.624

In Table 4.6 the results show that the models have a harder time learning the
embeddings of a road graph than a social graph. This is because road graphs show
complex connectivity patterns. The lengths of roads and complex intersections make
it harder for models to understand the underlying structure. Road graphs also have
spatial characteristics. A road may be a highway, a local street or a roundabout
and being connected to different types of nodes would have different implications
for intersections of these roads, making the learning process even harder.

Reordering still improves link prediction compared to a randomly ordered road
graph. The better-performing class of algorithms again shows the best results with
no algorithm performing worse than random ordering.

Table 4.7 TopHits@20 for road graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
road-belgium-osm 0.50 0.45 0.35 0.25 0.50 0.60 0.50 0.55
road-italy-osm 0.55 0.35 0.45 0.30 0.25 0.50 0.45 0.55

Table 4.8 TopHits@50 for road graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
road-belgium-osm 0.40 0.46 0.42 0.30 0.52 0.68 0.50 0.46
road-italy-osm 0.44 0.32 0.50 0.38 0.52 0.56 0.40 0.54
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Table 4.9 TopHits@100 for road graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
road-belgium-osm 0.42 0.49 0.49 0.49 0.51 0.51 0.54 0.47
road-italy-osm 0.47 0.41 0.44 0.43 0.53 0.52 0.39 0.53

TopHits@K measurements for road graphs, seen in Tables 4.7, 4.8 and 4.9 show
that models are helped by reordering in predicting positive edges since the best
results come from reordered graphs again with the exception of TopHits@100 for
road-belgium-osm.

4.3.4 AUC and TopHits@K - Delaunay Graphs

Table 4.10 AUC scores for Delaunay graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
delaunay_n21 0.999 0.996 0.761 0.893 0.999 0.999 0.756 0.999
delaunay_n22 0.999 0.997 0.764 0.885 0.999 0.999 0.756 0.999

Like road graphs, Delaunay graphs also have spatial properties. The difference is
that while road graphs show complex connectivity structures, Delaunay graphs have
well-defined and straightforward properties on what an edge between two entities
means. Even without reordering the connected nodes are very close to each other in
space. With reordering, this locality is emphasized even more which helps learners
capture local relationships and neighborhoods. Most of the reorderings show excel-
lent results in Table 4.10 and algorithms that may show poor performance for other
types of graphs perform significantly better than the randomly ordered graph.

Table 4.11 TopHits@20 for Delaunay graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
delaunay_n21 1.00 1.00 0.60 0.65 1.00 1.00 0.65 1.00
delaunay_n22 1.00 0.95 0.80 0.90 1.00 1.00 0.35 1.00

TopHits@K measurements seen in Tables 4.11i 4.12 and 4.13 reinforce the findings
of Table 4.10, as the models produce good results for almost all of the reordered
graphs.
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Table 4.12 TopHits@50 for Delaunay graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
delaunay_n21 1.00 1.00 0.62 0.78 1.00 1.00 0.68 1.00
delaunay_n22 1.00 0.96 0.74 0.92 1.00 1.00 0.54 1.00

Table 4.13 TopHits@100 for Delaunay graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
delaunay_n21 1.00 1.00 0.65 0.79 1.00 1.00 0.70 1.00
delaunay_n22 1.00 0.96 0.74 0.91 1.00 1.00 0.64 1.00

4.3.5 AUC and TopHits@K - Random Geometric Graphs

Table 4.14 AUC scores for random geometric graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
rgg_n_2_19_s0 0.999 0.997 0.923 0.943 0.999 0.999 0.923 0.999
rgg_n_2_20_s0 0.999 0.998 0.929 0.952 0.999 0.999 0.929 0.999

Similarly, random geometric graphs benefit greatly from reordering when learning
embeddings, though they are inherently easier for models to understand. Even with
a random node order, the spatial coherence of these graphs ensures that connected
nodes are generally close to each other, resulting in good embedding performance.
When reorderings are applied, the spatial locality is further emphasized, enhanc-
ing the model’s ability to capture local relationships and neighborhoods effectively.
Consequently, even algorithms that struggle with other graph types show marked
improvements with random geometric graphs, achieving impressive results regard-
less of the specific reordering used. Even with a graph type that is easily learned,
the improvement that is obtained by using reordered graphs is significant and helps
show the consistent performance gains achieved by reordering for link prediction
tasks, as can be seen in Table 4.14. These findings are further emphasized by Tables
4.15, 4.16 and 4.17 as the TopHits@K results for each graph is consistent with the
performance of reorderings shown in Table 4.14.

Table 4.15 TopHits@20 for random geometric graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
rgg_n_2_19_s0 1.00 1.00 0.85 0.95 1.00 1.00 0.75 1.00
rgg_n_2_20_s0 1.00 1.00 0.90 0.85 1.00 1.00 0.95 1.00

47



Table 4.16 TopHits@50 for random geometric graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
rgg_n_2_19_s0 1.00 1.00 0.80 0.95 1.00 1.00 0.76 1.00
rgg_n_2_20_s0 1.00 1.00 0.88 0.88 1.00 1.00 0.88 1.00

Table 4.17 TopHits@100 for random geometric graph reorderings

Graph Name AMD BOBA DynaDeg Gray RCM Rabbit Random SBURN
rgg_n_2_19_s0 1.00 1.00 0.80 0.87 1.00 1.00 0.82 1.00
rgg_n_2_20_s0 1.00 1.00 0.86 0.88 1.00 1.00 0.89 1.00

4.4 Embedding Speed

To measure the effects of our part-skipping strategy on embedding speed, we run the
augmented version of GOSH with four different experiment setups. Three of them
use a fixed probability of skipping a region for a given round of embedding. For all
three, the nonzero (edge count) ratio threshold for skipping the part is 10% of the
total edges. If a part has at least 10% of the total amount of edges inside it it won’t
be skipped. Our most forgiving setup has a probability of 0.2 of skipping a part if
it has less than 10% of the edges. The other strategies get more aggressive as one
of them sets 0.5 as the probability and the most aggressive one has 0.8 probability
of skipping an eligible part. One of the setups use a dynamic probability, using
the ratio of non-zeros contained by a given region as the probability value. We
present the results of these experiments performed on soc-sinaweibo, kmer_P1a,
rgg_n_2_24_s0 and delaunay_n24.
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Figure 4.3 Embedding speed measurements on three different part skipping strate-
gies. As the skipping probability increases, the orderings that can skip parts
get faster while the random ordering embedding speed stays about the same.
Graph: soc-sinaweibo, d = 256

Figure 4.3 show that the part-skipping strategy accelerates the embedding process
of GOSH for soc-sinaweibo, with the speedup becoming more apparent as the
skipping probability increases. For soc-sinaweibo, we set d embedding vector
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dimension, as 256. When the total node count of soc-sinaweibo is considered, the
embedding matrix would have a size of 60.06 gigabytes. This puts into perspective
why one may need to carry data in and out of the GPU as most GPUs don’t have
enough memory to contain such data at once.
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Figure 4.4 Embedding speed measurements on three different part skipping strate-
gies. As the skipping probability increases, the orderings that can skip parts
get faster while the random ordering embedding speed stays about the same.
Graph: kmer_P1a, d = 64

With a graph that has fewer edges and more nodes in kmer_P1a, we can create
more regions that are sparse, hence a lot more "skippable". We can see why this is
relevant for the skipping strategy looking at Figure 4.4. The random ordering still
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produces the worst results as there are no part skips there, but the most interesting
result comes from the setup with the highest skip probability. Since there aren’t
many dense regions inside the natural ordered and the PaToH ordered graphs, there
are no part switches performed for those two orderings. The parts needed by the
embedding process are only carried into the GPU once and then the embeddings
are learned only on those parts.
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Figure 4.5 Embedding speed measurements on three different part skipping strate-
gies. As the skipping probability increases, the orderings that can skip parts
get faster while the random ordering embedding speed stays about the same.
Graph: delaunay_n24, d = 1024

The contrast between Figure 4.4 and Figure 4.5 shows that even if the embedding
vector dimensions are very small or very large, as long as part switches are needed
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due to the memory constraints of a device the part skipping strategy accelerates the
process by a significant amount.

Another way to approach this problem is to make the probability of skipping a part
dynamic. We can use the non-zero ratio of the part in question directly as the
probability of skipping that part if it does not have the required amount of non-
zeros to be directly included in the process. This would allow us to be even more
aggressive while also giving ourselves a chance at including the parts that might
have just fallen short of the threshold given.

Figure 4.6 Embedding speed measurements with dynamic probability scheme.
Graph: soc-sinaweibo

We can see in Figure 4.6 that if we lower the threshold with dynamic probability
scheduling we can achieve similar execution times to the fixed probability setting
while also including more information in the process by way of allowing smaller par-
titions to be included automatically as well. With this, we can treat the probability
and threshold selection as a trade-off between execution time and the amount of
information allowed inside the process.

To show that this process does not affect the quality of the resulting embedding
matrix, we present link prediction results on rgg_n_2_24_s0 in Table 4.18 together
with the speedup results in Figure 4.7.

54



Table 4.18 ROC-AUC values of a logistic regression model trained on various
orderings of rgg_n_2_24_s0 for link prediction.

Skip Probability 0.2 0.5 0.8 No Skip
Random 0.740 0.739 0.738 0.739
Natural 0.975 0.975 0.975 0.975
Rabbit 0.974 0.974 0.973 0.976
RCM 0.976 0.973 0.976 0.976

Figure 4.7 Embedding speed measurements on three different part skipping strate-
gies. As the skipping probability increases, the orderings that can skip parts
get faster while the random ordering embedding speed stays about the same.
Graph: rgg_n_2_24_s0, d = 512
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5. CONCLUSION

This work shows the effects of reordering matrices representing graphs on node
embedding speed and quality. We propose several scheduling strategies for positive
sampling on GOSH, a node embedding framework that can learn embeddings from
arbitrarily large graphs on a single GPU. Taking inspiration from previous work, we
introduced different scheduling schemes with the aim of eliminating certain parts of
the graph by skipping them with a certain probability during the sampling process.
To create regions in the graph that are less meaningful to the embedding process
and therefore more sensible to skip, we reordered the graphs using various reordering
algorithms. The sampling schemes accelerated the overall embedding process and as
the used scheme got more aggressive in terms of probability of skipping a part the
acceleration became more pronounced. We also showed that skipping these regions
with a certain probability does not affect the overall quality of the embeddings as
the ROC-AUC values obtained by performing link prediction on rgg_n_2_24_s0
are not distinguishable to a significant degree whether the used embedding matrix
is produced by our part skipping scheme or the default setting.

We also showed the overall effects of reordering on embedding quality by testing
LINE and DeepWalk embedding algorithms on reordered graphs and using the
learned embeddings on link prediction. Reordering algorithms that emphasize the
community structures within graphs or help make the planar properties more appar-
ent to the embedding learners performed better than algorithms which focus on how
parallelizable the algorithm is or on preserving or enhancing sub-structures within
the graphs. The learners showed poor performance on road graphs as they are the
ones with the most complex connectivity structures. Reordering still had a posi-
tive effect on road graphs as most reordering algorithms lead to improvements on
AUC scores. Delaunay graphs and especially random geometric graphs were very
easy to learn for learners even when they were randomly ordered but this made
the improvements obtained by reordering the graphs more apparent. Overall, most
reordering algorithms helped the embedding process by improving the quality of the
embeddings for all of the different types of graphs used in this thesis.
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Improvements to this thesis are possible. The quality of the embeddings could be
tested on many other downstream tasks where node embeddings are used such as
node label prediction. The work could be expanded to show the effects of reordering
on edge embedding or sub-graph embedding. Another possible improvement is intro-
ducing variety to the part skipping strategy for GOSH. The probability choice could
be dependent on many other functions of the node or edge count or the non-zero ra-
tio of a given region. Reordering algorithms could be used in the initialization stage
for embeddings by choosing initial values for vectors representing a certain node by
looking at the order the node appears in the new ordering and determining a range
for the possible values to put into the vector. This could emphasize the closeness of
connected nodes even further and help improve the quality of the embeddings.
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APPENDIX A

Reordered states of soc-douban

Reordered states of soc-slashdot
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Reordered states of soc-gowalla

Reordered states of soc-youtube
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Reordered states of soc-buzznet

Reordered states of soc-lastfm
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Reordered states of soc-digg

Reordered states of delaunay_n21
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Reordered states of delaunay_n22

Reordered states of rgg_n_2_19_s0
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Reordered states of rgg_n_2_20_s0

Reordered states of rgg_n_2_23_s0
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Reordered states of road-belgium-osm

Reordered states of road-italy-osm
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