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Abstract. We consider the problem of testing sequentially the components of a multi-component reliability
system in order to figure out the state of the system via costly tests. In particular, systems with identical components
are considered. The notion of lexicographically large binary decision trees is introduced and a heuristic algorithm
based on that notion is proposed. The performance of the heuristic algorithm is demonstrated by computational
results, for various classes of functions. In particular, in all 200 random cases where the underlying function is a
threshold function, the proposed heuristic produces optimal solutions.

Keywords: sequential testing, boolean functions, binary decision trees

1. Introduction

The problem of diagnosing a complex system through a series of tests of its components
arises in many practical situations. In many of these cases, testing a component is costly (it
may cost money, take time, or incur pain on the patient, etc.), and therefore it is important to
determine a best diagnosing policy that minimizes the average cost of testing in the long run.

More precisely, we consider complex systems, consisting of several components, in
which the state of the system (e.g. working or failing, healthy or unhealthy, etc.) depends
on the states of its components. We shall assume that this dependency is known, either by
an explicit functional description, or via an oracle. The procedure of diagnosing such a
system consists of testing the components one-by-one, until the state of the whole system
is correctly determined.

There are many variations for such a diagnosis problem. We shall consider one frequently
arising type, in which it is assumed that the cost of testing a component as well as the
(apriori) probability that it is working correctly, are known in advance. A special case
that have attracted the attention of researchers is when the system is composed of identical
components (i.e. inspecting any component costs the same and the probability of functioning
is the same for all components). Furthermore, the components are assumed to work or fail
independently of each other. Since the inspection of the system is usually repeated many
times (the same system is inspected in various different situations; several equivalent systems
are inspected; etc.), it is customary to consider the problem of finding a policy that minimizes
the associated expected cost. This corresponds to the practical desire of minimizing the total
cost in the long run.

Such problems arise in a wide area of applications, including telecommunications (test-
ing reliability systems, connectivity of networks, etc. see e.g. (Cox et al., 1989, 1996),
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manufacturing (testing machines before shipping, or testing for replacement in techni-
cal service centers, see e.g. (Duffuaa and Raouf, 1990)), design of screening procedures
(see (e.g. (Garey, 1973); (Halpern, 1974)), electrical engineering (wafer probe testing, see
(Chang et al., 1990)), artificial intelligence (finding optimal derivation strategies in knowl-
edge bases, see e.g. (Greiner, 1990); best-value or satisficing search algorithms, see e.g.
(Simon and Kadane, 1975); (Smith, 1989), optimal evaluation of Boolean functions, see
e.g. (Hanani, 1977); (Gudes and Hoffman, 1979)).

In this paper, first we define the problem and provide background information. We intro-
duce the notion of lexicographically large trees. Then we provide results that suggest that
lexicographically large trees are good candidate solutions with respect to expected cost.
Finally, a heuristic to find lexicographically large binary decision trees is proposed and
experimental results are given for some special cases when the optimal solution can be
obtained. It turns out that the proposed heuristic performs very well on those instances.

2. Problem definition

We shall consider systems composed of a set N = {u1, u2, . . . , un} of n components, each
of which can be in one of the two states, working or failing. A state vector x = (x1, . . . , xn)
is a binary vector, corresponding to a particular state of the system by recording the state
of each of the components, i.e. xi = 1 if component ui is working, and xi = 0 otherwise,
for i = 1, . . . , n. The system function is the Boolean mapping f : B

n �→ B characterizing
the states in which the system is functioning, i.e.

f (x) =
{

1 if the system is functioning, and

0 otherwise

for every state vector x ∈ B
n . Such a Boolean mapping f : B

n �→ B is called monotone if
f (x) ≥ f (y) whenever x ≥ y. In other words, by fixing some of the failing components of
a functioning monotone system, one cannot make it fail.

Let us denote a system by �(N , f ), where N is the set of its components and f is its
system function.

Sequential diagnosis is a procedure in which the components of a system are inspected,
one by one, in order to find out the functionality of the system at the current (not yet known)
state. We assume that, when inspecting a component, we can learn the correct state of that
component. An inspection strategy S is a rule, which specifies, on the basis of the states
of the already inspected components, which component is to be inspected next or stops by
recognizing the correct value of the system function at the current state vector. Such an
inspection strategy can naturally be represented as a binary decision tree.

Example 1. Let us consider a system consisting of 3 components N = {u1, u2, u3} with
system function

f (x1, x2, x3) = x1x2 ∨ x2x3. (1)



TESTING SYSTEMS OF IDENTICAL COMPONENTS 263

Figure 1. An inspection strategy for the system of Example 1.

Then, figure 1 represents a possible inspection strategy, in which component u1 is in-
spected first, and depending on whether it is working or not, components u2 or u3 are
inspected next, etc. E.g., if the system happens to be in state x = (1, 1, 0), then this strategy
learns that the system is functioning after inspecting components u1 and u2, whereas if the
system’s state is y = (0, 1, 0), then this strategy will stop after inspecting components u1

and u3, recognizing that the system does not function.

The main reason to terminate the inspection algorithm as early as possible, and not to
check all components, is that inspection is costly. Let us denote by ci the cost of inspecting
component i .

Our main goal is to find a strategy for a given system, that minimizes the cost of inspection.
This however, is not a well defined problem, yet, since for different states a different strategy
would be optimal.

Example 2. Let us return to the system of Example 1. For the state x = (1, 1, 0) the
strategy represented in figure 1 is optimal, since it checks only the first two components
(and inspecting less than that would not be sufficient). However, if the system is in state
y = (0, 0, 1), then this strategy inspects all components to learn that the system is not
functioning, although, it would be enough to check only component u2.

Clearly, the cost of inspection depends not only on our strategy, but also on the state the
system is at. For this reason, let us assume that an apriori distribution of the states of the
components is known. We shall assume in this paper that component i works with probability
pi and fails with probability qi = 1 − pi . We shall also assume that the components work
or fail independently of each other.
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Given an instance of the sequential diagnosis problem, i.e. a system �(N , f ) and the
vectors c and p of costs and probabilities, respectively, we shall consider the problem of
finding an inspection strategy S of the given system which has the minimum expected cost.

When describing an inspection strategy, one could go further, in principle, and inspect
other components, even if the functionality of the system can already be determined. Let
us call a strategy reasonable if it stops as soon as it learns the functionality of the system.
For instance, the strategy in figure 1 is a reasonable inspection strategy. Since it is also
obvious that optimal strategies are reasonable, unless some of the components have zero
inspection cost, we shall consider only reasonable strategies in the sequel, and will drop the
word reasonable, whenever it will not cause ambiguity.

2.1. Classes of monotone system (boolean) functions

Let us recall some basic definitions and well known properties of monotone Boolean func-
tions. For a given Boolean function f let us denote by T ( f ) and F( f ) the sets of binary
vectors at which f takes value 1 and 0, respectively. The vectors in T ( f ) are called the true
points, while the elements of F( f ) are called the false points of f .

Given a subset S ⊆ {1, 2, . . . , n}, let us denote its characteristic vector by 1S , i.e.

1S
j =

{
1 if j ∈ S,

0 otherwise.
(2)

The dual of f denoted by f d is again a monotone Boolean function for which

T ( f d ) = {1S | 1S̄ ∈ F( f )}, (3)

where S̄ = {1, 2, . . . , n}\S.
We shall call a subset I ⊆ {1, 2, . . . , n} an implicant of the monotone Boolean function

f , if 1I ∈ T ( f ). The subset I is called a prime implicant if it is an implicant, and no proper
subset of it is an implicant.

Given a monotone Boolean function f , let us denote by

I( f ) = {I1, . . . , Is} (4)

the family of its prime implicants, and let

J ( f ) = {J1, . . . , Jt } (5)

be the family of the prime implicants of its dual, i.e. J ( f ) = I( f d ). The binary vectors 1I

for I ∈ I( f ) are called minimal true points of f , while vectors of the form 0J for J ∈ J ( f )
are called maximal false points of f , where

0S
j =

{
0 if j ∈ S,

1 otherwise.
(6)
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Proposition 1. A monotone Boolean function f and its dual f d can be represented by
the (unique minimal) positive disjunctive normal forms,

f (x) =
∨

I∈I( f )

( ∧
j∈I

x j

)
and f d (x) =

∨
J∈J ( f )

( ∧
j∈J

x j

)
, (7)

respectively.

We now describe certain classes of Monotone System (Boolean) Functions for which the
Sequential Diagnosis problem is tractable. We will use these classes of systems to evaluate
the performance of the heuristic algorithm that will be proposed later.

2.1.1. Simple series and parallel systems. A series system fails if any one of its components
fails while a parallel system functions if any one of its components functions. If xi is the
variable associated with the i th component, the structure function of the series and parallel
systems can be written (respectively) in the following way.

f (x) = x1 ∧ x2 ∧ · · · ∧ xn and f (x) = x1 ∨ x2 ∨ · · · ∨ xn.

In spite of their simplicity, series and parallel systems arise in numerous applications. In
addition, all other known solvable cases are generalizations of series and parallel systems.

2.1.2. k-out-of-n and threshold systems. Let us first define the well known class of thresh-
old functions, that arise many applications including electrical circuits. A Boolean mapping
f : B

n �→ B is called threshold if there exists non-negative weights w1, w2, . . . , wn and a
constant t such that

f (x) =




1
n∑

i=1

wi xi ≥ t

0 otherwise.

A k-out-of-n system functions if at least k of its n components function. In particular a
series system is an n-out-of-n system and a parallel system is a 1-out-of-n system. One can
easily see that a k-out-of-n function is a threshold function for which all weights are equal.

2.1.3. Series-parallel systems (SPSs). Another class of Boolean functions we shall con-
sider is the class of Read-Once functions. These are the structure function of Series-Parallel
Systems (or SPSs in short). An SPS is a specially structured network between two terminal
nodes, called the source and the sink. The structure function takes the value 1 if there is a
path from the source to the sink consisting of functioning components. The simplest SPS
consists of only one component: a single link connecting the source to the sink. All other
SPSs can be defined recursively as a series or parallel connection of smaller SPSs. A series
connection identifies the sink of one SPS with the source of the another one, while a parallel
connection identifies the sources and the sinks of the two systems. Formally, if �(N1, f1)
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Figure 2. Examples for an SPS (a), and a non series-parallel network (b), dual SPS (c).

and �(N2, f2) are two systems with no common components, then �(N1 ∪ N2, f1 ∨ f2) is
their parallel connection, and �(N1 ∪ N2, f1 ∧ f2) is their series connection, where N1 and
N2 are disjoint. All smaller SPSs, appearing recursively in the above definition, are called
the subsystems of the considered SPS.

For example, the network �(N , f ) in figure 2(a) works if u1 is working, or if u2 and at
least one of u3 and u4 are working. For this example, we have

f (x1, x2, x3, x4) = x1 ∨ (x2 ∧ (x3 ∨ x4)) . (8)

In figure 2, the second network is not an SPS, since it cannot be obtained by the recursive
procedure described above, while the first one is an SPS, formed by a parallel connection
of the two subsystems {u1} and {u2, u3, u4}. The latter one itself is a series connection of
two smaller subsystems, {u2} and {u3, u4}, where this last subsystem is formed again by a
parallel connection of the two single component subsystems {u3} and {u4}.

The depth of an SPS is a measure of the number of series and/or parallel combinations in
the system and is defined as follows: The depth of a simple series or a simple parallel system
is 1. The depth of any other SPS is 1 + max{depth of proper subsystems}. For instance, the
SPS in figure 2 (a) has depth 3. Thus, every SPS is either a parallel or series connection of
other SPS whose depths are at least 1 less than the original SPS.

2.2. Strategies and binary decision trees

As we noted earlier, inspection strategies can naturally be represented as binary decision
trees (BDT), i.e. as rooted trees, in which every node has two or zero successors. Such a tree
T is representing the system function f in the following way. Nodes of T with two succes-
sors are labelled by the components of the system. The two arcs leading to the successors
from a node represent the two states—the right arc corresponding to working, while the
left arc corresponding to failing. Let us then label the right arc by xi and the left arc by x i .
To every node a of the tree T let us associate the set P(a) ⊆ {x1, x 1, x2, x 2, . . . , xn, x n}
consisting of the labels along the arcs on the unique path connecting the root of T to node
a. Nodes of T with zero successors are called leaves.
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Given a binary vector x ∈ B
n , let us follow a path starting from the root of T until we

reach a leaf in the following way. At a node a of the tree labelled by ui ∈ N we follow the
left arc, if xi = 0, and the right arc if xi = 1. Hence for every binary vector x we follow
a unique path leading to a leaf node of T . For a node a of T let us denote by B(a) the set
of those binary vectors for which the above path contains node a. Since T represents an
inspection strategy for the system �(N , f ), all vectors in a set B(a) corresponding to the
leaf node a are state vectors of the same state (i.e. either all of them are working, or all of
them are failing states), since otherwise the state of f would not be determined at this node
uniquely. Let us denote the leaf nodes of the tree by L(T ).

Let us denote by T( f ) the family of all binary decision trees corresponding to reasonable
strategies which represent the Boolean function f .

Let us consider now a system �(N , f ), a cost vector c and a probability vector p, and a
(reasonable) inspection strategy S ∈ T( f ) of this system.

Let us denote by C(S, x) the cost of inspection by strategy S if the system is in state x.
According to the above remark, this cost is clearly the same for all state vectors that belong
to the same leaf. More precisely, if x ∈ B(a) for a leaf a, then

C(S, x) = Cost(S, a) =
( ∑

i :xi ∈P(a) or x i ∈P(a)

ci

)
. (9)

Furthermore, the probability that the system is at one of the states belonging to B(a) is

Prob(S, a) =
( ∏

i :xi ∈P(a)

pi

) ( ∏
i :x i ∈P(a)

qi

)
(10)

whereas the probability that the system is in the state represented by the vector x is

Prob(x) =
( ∏

i :xi =1

pi

) ( ∏
i :xi =0

qi

)
. (11)

Hence, the expected cost of strategy S can be expressed as

E(S) =
∑

a∈L(S)

Cost(S, a)Prob(S, a) (12)

or equivalently as

E(S) =
∑

x∈T ( f )∪F( f )

C(S, x)Prob(x). (13)

Given a system (N , f ), a cost vector c and a probability vector p, the problem of finding
the best sequential inspection strategy can be restated as

min
S∈T( f )

E(S). (14)
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Let us note that one can consider different measures other than the expected cost to
optimize. For instance, one could try to minimize the worst case cost. In other words

min
S∈T( f )

max
a∈L(S)

C(S, a). (15)

3. Testing systems with identical components

As mentioned before, an interesting special case of the general problem occurs when the
components of the system are identical. In other words, ci = c and pi = p for all i . Let
us note that in this case the expected cost of a strategy is the average number of inspected
components in the long run. In some studies it is further assumed that p = 0.5. It might seem
that this will make the problem easier, but in fact this case can become even more difficult in
the sense that it is difficult to extract information on the functionality of the components, by
using the probability and cost information. For instance, one cannot talk about cheap tests
in this case. There are some results in the literature for some special cases of functions. For
instance in Boros and Ünlüyurt (2000), optimal polynomial time algorithms are provided
for 3-level Series-Parallel systems that consist of identical components. Similar systems
are also considered in Arseneau (1996). The results in Boros and Ünlüyurt (1999) can be
extended to obtain solutions for threshold functions with identical components. This extends
the results in Chang et al. (1990) for k-out-of-n systems. In this section, we are going to
study the case in which the system function is any arbitrary monotone Boolean function.
First, we review the results in the literature and state conditions for certain system functions
that are satisfied by an optimal strategy. Then, we are going to introduce the notion of
lexicographically large B DT s and propose a heuristic algorithm based on this notion.

3.1. Review and some extensions

In the literature, some heuristic algorithms have been proposed. The basic idea in almost
all related articles is to inspect a variable that appears in short implicants and implicants
of the dual. For instance, the following heuristic, proposed in Breitbart and Reiter (1975)
for the case p = 0.5, inspects next a component which appears the most times in the
minimal length primal and dual prime implicants, with some tie breaking rule to ensure a
unique solution. It is also shown that if the primal DNF has linear terms, then every optimal
algorithm inspects these linear variables first.

We can generalize the latter result for any value of p in the following way:

Lemma 1. If f or f d has a linear implicant, then there exists an optimal algorithm that
starts inspection with that variable.

Proof: Suppose f = x
∨

g(y1, y2, . . . , yn) and let us consider an optimal strategy for f
which does not inspect x first. Observe that x should be on all paths that lead to false leaves.
Then, we have the following two cases.
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Figure 3. Functions with linear implicants.

Case 1 x is also on all paths that lead to true leaves. Then, Prob(x is inspected ) = 1 and
one can construct another B DT which does not have higher cost by inspecting x first
(i.e. the root of the strategy tree is indexed by x .)

Case 2 There exists a true path along which x is not inspected. Let L be a leaf that is at the
deepest level among all such leaves. Let us consider the subtree rooted at t , the twin of
L . (see T 1 in figure 3.) Since x is on all paths for this subtree, we can construct another
subtree that does not have higher cost and such that T 2 inspects x at the root of this
subtree. From T 2, we can obtain T 3 by swapping x and y (see figure 3), which is is
also optimal since it has the same expected cost as T 2 due to the identical nature of the
components. We are now back to case 1, since if there are still true leaves for which the
paths from the root to this leaf do not include x , we can do the same operation, and we
will eventually obtain an optimal tree that starts by inspecting x .

Finally, the case when f d has a linear implicant follows by duality.

In a reasonable tree, associated with each leaf there exists an implicant or implicant of
the dual that causes to end up at that leaf. Related to this, we claim the following result:

Lemma 2. There exists an optimal B DT such that the last two variables on the path
from the root to a leaf associated with a prime implicant (implicant of the dual) belong
to that prime implicant (prime implicant of the dual), assuming that there are at least two
variables for that implicant.

Proof: Without loss of generality, consider a true leaf in an optimal tree. Obviously, the
last variable on the path belongs to the corresponding prime implicant which, by assumption,
has at least two variables. Then, the corresponding function for the parent of the last variable
has a linear term, and by Lemma 1, there exists an optimal tree which begins inspection by
that variable.

In Breitbart and Gal (1978), the class of algorithms which inspect next only variables
appearing in a minimal length conjunction is considered (for the case p = 0.5.) IfA denotes
this class of algorithms, (Breitbart and Gal, 1978) shows that bn ≥ n

log2 n
, wn ≥ n

log n
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and Rw( f ) ≤ n
log n for a (large) class of monotone Boolean functions, where Rw( f ) =

maxA∈A E( f,A)
E( f ) , Rb( f ) = minA∈A E( f,A)

E( f ) , wn = max f ∈M Rw( f ), bn = max f ∈M Rb( f ) and
M is the set of all monotone functions. Here E( f ) denotes the value of the expected cost of
the optimal B DT and E( f, A) denotes the value of the expected cost of the B DT obtained
by an algorithm from A. All these results indicate that inspecting from short implicants
is a promising strategy. An exact branch and bound approach is provided in Breitbart and
Reiter (1975) that works for small problems.

The B DT with the minimum number of nodes has been proposed as a candidate for a
good solution in the literature. (Let us recall that minimizing the number of nodes, itself
could be another type of reasonable objective in a diagnosis problem.) Yet, the problem
of finding such a B DT is hard. Further, the B DT with fewer number of leaves does not
always have smaller cost (for an example see (Ünlüyurt, 1999)).

4. Lexicographically large BDTs

From this point on, in this section, we shall assume that ci = 1 and pi = 0.5 for all
i = 1, 2, . . . , n. We will now introduce the notion of lexicographically large B DT s. Let
us associate with a strategy an n-vector, l(S), whose i th component is the number of leaves
at depth i in the corresponding B DT .

Let a and b be n dimensional vectors. Then a is lexicographically larger than b, denoted
by a 
 b, if there exists an index k such that ai = bi for i ≤ k − 1 and ak > bk . Let us also
note that 
 is a complete ordering of any subset of vectors.

We will say that strategy S, (or its corresponding B DT ) is lexicographically larger than
strategy S ′ (or its corresponding B DT ) if l(S) 
 l(S ′). (Note that this definition does not
require the strategies to correspond to the same Boolean function.)

Let us first note that if the primal or the dual has a linear term, then obviously the
lexicographically largest strategy starts inspection with the variable of the linear term, and
we have already shown the existence of an optimal strategy which starts inspection with
that variable (even when p �= 0.5).

Suppose l(S) = (a1, a2, . . . , an) is a vector corresponding to some reasonable strategy
for some function. Such a vector should satisfy certain conditions. First of all,

n∑
i=1

ai 2
n−i = 2n (16)

must hold, since 2−i is the probability of reaching a leaf at depth i , and the sum of all the
probabilities of reaching some leaf should total to 1. In addition we have,

n∑
i=1

ai ≥ n + 1, (17)

since each variable shows up at least once at an internal node, and the number of leaves is
one more than the number of internal nodes in a binary tree.
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Figure 4. Paths of length n − 1.

Further, the following must also hold:

Lemma 3. For any reasonable B DT , an−1 ≥ an
2 .

Proof: Suppose that in our B DT there exists a path that has length n. Let us consider the
subtree that consists of the last two components that are inspected on this path. Since this
subtree should be a reasonable tree, it is not possible to have, with respect to the original
tree, 4 paths of length n. In this subtree, we could have 2 paths of length n and one path of
length n − 1, as can be seen on figure 4. Hence, the result follows.

Let us call a vector (a1, a2, . . . , an) valid if it satisfies (16), (17) and the condition stated
in Lemma 3. The total expected cost for a B DT with l(S) = (a1, a2, . . . , an) can be written
as

C(a) =
n∑

i=1

ai i2n−i . (18)

In the remainder of this section, we state results that support the idea that lexicographically
large BDTs should not have high expected inspection cost. We consider the set of all valid
vectors and we shall, in some sense, try to compare the total cost of lexicographically large
valid vectors with other valid vectors.

Note that a valid vector may not correspond to a reasonable B DT for a particular function
f . In particular, if we have a pair of valid vectors, they may not represent two reasonable
strategies for the same function. Further, it is possible that a valid vector does not correspond
to any reasonable B DT for any monotone function. For instance, when we try construct a
B DT corresponding to a = (1, 0, 2, 4) that is supposed to have only 4 variables, we see
that we need at least 6 variables to do that.
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4.1. Lexicographically large trees with small number of leaves

In this section, we consider the vectors that satisfy (16) and show that the vector that
is lexicographically largest among the vectors with the same number of leaves, has the
minimum cost among those vectors. In other words, we show that C(a) − C(b) ≤ 0 if

n∑
i=1

ai 2
(n−i) = 2n,

n∑
i=1

bi 2
(n−i) = 2n, (19)

n∑
i=1

ai =
n∑

i=1

bi = L , and

and a is the lexicographically largest vector among all vectors with L leaves. We will then
explore what happens as the number of leaves changes. We need a number of technical
lemmas to reach our results.

We first define operation L+ on a vector a, satisfying (16), by defining, a′ = L+(a) for
some indices i and j satisfying the conditions below, as

a′
i−1 := ai−1 + 1, a′

i := ai − 2, where ai ≥ 2,
a′

j := a j − 1, a′
j+1 := a j+1 + 2, where a j ≥ 1 and j ≥ i.

In what follows, we will not refer to the specific indices when L+ is applied, whenever
they can be figured out from the context. Suppose a is a feasible vector for which L+ can be
applied. If a = (a1, . . . , ai−1, ai , . . . , a j , a j+1, . . . , an), then L+(a) = (a1, a2, . . . , ai−1 +
1, ai − 2, . . . , a j − 1, a j+1 + 2, . . . , an).

Proposition 2. Suppose it is possible to perform L+ on a and we obtain valid a′ after the
operation. Then,

(a) a′ 
 a,

(b)
∑n

i=1 ai = ∑n
i=1 a′

i ,

(c) If a satisfies (16), so does a′, and

(d) C(a) ≥ C(a′).

Proof:

(a) The first index that a and a′ differ in is i − 1, and ai−1 < a′
i−1.

(b) To obtain a′, we increase ai−1 by 1 and a j+1 by 2, whereas we decrease ai by 2 and a j

by 1. Hence the net change in the sum is 0.
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(c) We need to show that if
∑n

i=1 2(n−i)ai = 2n , then
∑n

i=1 a′
i = 2n . This is true since

n∑
i=1

a′
i 2

(n−i) =
n∑

i=1

ai 2
(n−i) + 2n−i+1 − 2

(
2(n−i)

) − 2(n− j) + 2
(
2(n− j−1)

)

=
n∑

i=1

ai 2
(n−i)

= 2n. (20)

(d)

C(a) − C(a′) =
n∑

j=1

j2(n− j)(a j − a′
j )

= −(i − 1)2(n−i+1) + i2
(
2(n−i)

) + j2(n− j) − 2( j + 1)2(n− j−1)

= 2(n−i+1) − 2(n− j)

≥ 0, since j ≥ i. (21)

Proposition 3. If L+ cannot be performed on a feasible vector a, then either of the
following is true:
(a) There exists an i < n for which ai = 2 (in which case a j = 0 for n > j > i and

a j ≤ 1 for j < i.), or
(b) ai ≤ 1 for n > i ≥ 1.

Proof: Let us first suppose that that there exists i < n for which ai = 2. If i = 1, we
necessarily have a = (2, 0, 0, . . . , 0); hence, the first statement is true. If n > i > 1 and
if there exists j > i where a j > 0, then we can apply L+ for the indices i and j , which
contradicts the assumption. Hence, a j = 0 for j > i . Again, if n > i > 1 and if we have
i ′ < i such that a′

i = 2, we can apply L+ for indices i ′ and i , which is again a contradiction.
Hence, a j ≤ 1 for j ≤ i . Note there can be no i < n such that ai ≥ 3, since then we could
apply L+ for i = j . Now suppose that there is no i < n with ai = 2, then ai = 0 or 1 for
i < n.

Lemma 4. Suppose a is a feasible vector with L leaves. Then L+ cannot be performed
on a if and only if a is the lexicographically largest feasible vector with L leaves.

Proof: First suppose a is the lexicographically largest feasible vector with L leaves, then
L+ cannot be performed on a since the resulting vector a′ would be a feasible vector, and
a′ 
 a. Conversely, suppose there exists a vector b which is lexicographically larger than
a, yet L+ cannot be performed on a. First, note that for each i we can subtract min{ai , bi }
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from ai and bi , to get two vectors a∗ and b∗ such that a∗
i b∗

i = 0. These new vectors are no
longer feasible since

∑n
i=1 a∗

i (b∗
i )2(n−i) �= 2n , yet they satisfy the following:

n∑
i=1

a∗
i 2(n−i) =

n∑
i=1

b∗
i 2(n−i)

n∑
i=1

a∗
i =

n∑
i=1

b∗
i

(22)
a∗

i b∗
i = 0 for all i

b∗ 
 a∗.

Let k be the smallest index in which a∗ and b∗ differ. Note that a∗
i = b∗

i = 0 for i < k.
First, consider the case in which there is an index j < n such that a∗

j = 2. Then, by
Proposition 3 we have,

n∑
i=1

a∗
i 2(n−i) ≤ 2n−k + an (23)

since

a∗
i = 0 for i ≤ k

a∗
i = 1 for k < i < j

(24)
a∗

j = 2

a∗
i = 0 for j < i < n.

On the other hand, we have

n∑
i=1

b∗
i 2(n−i) ≥ 2(n−k) + D − 1

≥ 2(n− j) + a∗
n + 1, (25)

since b∗
k ≥ 1 for k ≤ j and

∑n
i=1 b∗

i = D, where
∑n

i=1 a∗
i = ∑n

i=1 b∗
i = D ≥ a∗

n + 2.
Inequalities (23) and (25) give us a contradiction since we should have

n∑
i=1

a∗
i 2(n−i) =

n∑
i=1

b∗
i 2(n−i).
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Now let us consider the case when there is no index i with a∗
i = 2. Then, by Proposition 3,

we have the following inequality:

n∑
i=1

a∗
i 2(n−i) ≤ 2(n−k)−2 + a∗

n , (26)

where
∑n

i=1 a∗
i = ∑n

i=1 b∗
i = D ≥ a∗

n . As in the argument before we also have the follow-
ing:

n∑
i=1

b∗
i 2(n−i) ≥ 2(n−k) + D − 1

(27)≥ 2(n−k) + a∗
n − 1,

which again leads to a contradiction. This proves that if L+ cannot be applied on a, then a
is the lexicographically largest among vectors with L leaves.

Lemma 5. The vector a is minimum cost vector among the vectors with L leaves if and
only if it is the lexicographically largest among the vectors with L leaves.

Proof: If a has the minimum cost, then L+ cannot be applied on a since L+ decreases
the cost. Hence, a is lexicographically largest. Conversely, suppose a is lexicographically
largest but not minimum cost, and a 
 b is the minimum cost vector. But then L+ can be
applied on b to get a vector with less cost by Proposition 2 and Lemma 4. Hence, we have
a contradiction.

Remark 1. Lemma 5 does not say that for a particular function, the tree corresponding to
the lexicographically largest vector has minimum cost. It may be the case that the lexico-
graphically largest vector may not be achieved by any function. If it is achieved then it is
the optimal one.

Next we show how the cost of the lexicographically largest vectors change when the
number of leaves increases. In some sense, we are combining the two criteria, minimum
number of leaves and lexicographically largest. We need a lemma first.

Lemma 6. Suppose a is the lexicographically largest feasible vector with l leaves. Let
i = min j<n{ j : a j > 0}. Let a′ be such that a′

j = a j when j �= i or i + 1, a′
i := ai − 1,

a′
i+1 := ai+1 + 2. Then a′ is the lexicographically largest feasible vector with l + 1 leaves.

Proof: Let us first observe that a′ is a feasible vector with l + 1 leaves. Suppose under
the conditions of the lemma, it is not the lexicographically largest vector with l + 1 leaves.
Then there exists a feasible vector b with l + 1 leaves such that b 
 a′. Let k be the first
index in which they differ, i.e. bk > a′

k . Consider the following cases.
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(1) If k ≤ i and bk = 2, then b′ = (b1, b2, . . . , bk−1 +1, bk −2, . . . , bn) is a feasible vector
with l leaves and b′ 
 a, which contradicts the assumption that a is the lexicographically
largest vector with l leaves. Note that if bk = 1, then ak = 0. Also, we have l+1 ≥ 2+an .
Then we have the following inequality:

n∑
i=k

bk2(n−k) ≥ 2(n−k) + l. (28)

Note that since a is the lexicographically largest vector with l leaves, L+ cannot be
applied on a, and it satisfies the properties of Proposition 3. Thus we have the following:

n∑
j=k

a j 2
(n− j) ≤ 2(n−k) + an

(29)≤ 2(n−k) + l − 1.

Now we have a contradiction since a′ and b cannot be both feasible.
(2) If k = i + 1, then we have bi+1 > ai+1 + 2, but this cannot happen with the lexico-

graphically largest vector by Proposition 3 and Lemma 4.
(3) If k > i + 1, we have the following relations:

n∑
j=k

b j 2
(n− j) ≥ 2(n−k) + an − 1

(30)n∑
j=k

a j 2
(n− j) = an,

which again shows that a′ and b cannot be both feasible.

Since we covered all cases and each case leads to a contradiction, we conclude that a′ is the
lexicographically largest vector among vectors with l + 1 leaves.

Lemma 7. The cost of the lexicographically largest vector with l leaves is not more than
the cost of the lexicographically largest vector with l ′ leaves, where l ′ > l.

Proof: By Lemma 6, we know how to obtain the lexicographically largest vector with
l + 1 leaves, from the lexicographically largest vector with l leaves. To prove the lemma, it
suffices to note that that operation increases the cost. If we use the notation of Lemma 6,



TESTING SYSTEMS OF IDENTICAL COMPONENTS 277

we have the following:

C(a′) − C(a) = (i + 1)2(n−i) − i2(n−i)

= 2(n−i) (31)

≥ 0.

5. A Heuristic to find lexicographically large BDTs

The results of the previous section intuitively support the idea that the lexicographically
large trees are candidates for “good” solutions. In this section, we propose a heuristic to
find lexicographically large B DT s.

It is possible that the lexicographically largest tree for a particular function does not
necessarily have the minimum number of leaves and that lexicographically largest tree may
have less cost than another tree, which has fewer leaves (see (Ünlüyurt, 1999) for such
examples).

We have not found any reference about finding the lexicographically largest tree for a
function. Yet, one can make the following easy observation.

Proposition 4. If the first component inspected is not in any of the shortest prime implicates
or shortest prime implicants, then that tree cannot be lexicographically largest.

For each leaf of a reasonable B DT of a monotone Boolean function, there exists a unique
prime implicant or implicant of the dual whose variables are all set to 1 or 0 respectively.
Furthermore, for each prime implicant or implicant of the dual of the function, there exists
such a corresponding leaf. This means, for instance, if we have k prime implicants and
implicants of the dual of length h, in any of the reasonable binary decision tree there should
be at least k leaves at depth h or more.

Let us associate an n-vector l f for a monotone Boolean function such that l f
i is the total

number of prime implicants and prime implicates of f of length i . Let l∗ be the lexico-
graphically largest vector among the vectors for all reasonable B DT s for f . Obviously, we
have that l f 
 l∗, due to the discussion above.

Let us now use this idea to find a variable to inspect next, that will likely lead to lexico-
graphically large B DT s. Let l∗i be the lexicographically largest vector among the vectors
for all reasonable trees whose root is indexed by component i . First, observe the following
proposition that follows from the discussion above of the relation between prime implicants
and leaves of reasonable B DT s.

Proposition 5. The vector l f |xi =0 + l f |xi =1 + 2e 
 l∗i , where e is the vector of all 1s.

In other words, l f |xi =0 +l f |xi =1 +2e is an upper bound on the vector we can obtain for any
tree if we start inspection with xi . Depending on this observation and all the results of the
previous section, we propose the following heuristic for finding a minimum cost strategy.
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LEXICO ( f )

Input: A monotone boolean function f and f d in DN F .
Output: A subset I ⊆ {1, 2, . . . , n} containing the indices of the inspected components,

together with the values xi , i ∈ I of these components at the current state x, and the
value f (x).

Step 1: Calculate for all relevant variables the vector, l f |xi =0 + l f |xi =1.
Step 2: Choose xi for which the corresponding vector computed in Step 1 is the lex-

icographically largest. Inspect xi and let α denote its value. Set I := I
⋃{i},

f := f |xi = α. If the value of f is not determined yet, return to Step 1.

Note that in order to compute the total expected cost of a strategy, we build the whole
B DT obtained using the heuristic, which can be exponentially larger than the input. The
input in this case is the DN Fs of the primal and dual, which can be exponentially larger than
the number of components n. In an actual problem, this blow up in sizes can be overcome by
just specifying a rule to choose the next component to inspect unless the state of the system
can be determined uniquely. For this reason, we are interested in the quality of the solution
rather than the running time. In particular, LEXICO can determine the next component to
inspect in polynomial time in the size of the input. We compare LEXICO to the exact optimal
solution for cases where optimal solutions can be obtained.

The second heuristic we consider has been proposed in various papers both for the
general case and for the case of identical components. We describe this, INTERSECTION

SORT heuristic in detail below.

INTERSECTION SORT( f )

Input: A monotone Boolean function f and f d in DN F .
Output: A subset I ⊆ {1, 2, . . . , n} containing the indices of the inspected components,

together with the values xi , i ∈ I of these components at the current state x, and the
value f (x).

Step 1: Pick a shortest prime implicant of f , say P∗.
Step 2: Pick a shortest prime implicant of f d , say Q∗.
Step 3: Pick a variable in P∗ ∩ Q∗ to inspect next, say xh .
Step 4: I = I ∪ {h}. Update the prime implicants of f and f d by assigning the appro-

priate value to xh . If the value of f cannot be determined uniquely, return to step
1.

Step 5: Output I and the correct value of f .

Let us note that there are generalizations of INTERSECTION SORT for general costs and
probabilities in the literature. (See for instance (Boros and Ünlüyurt, 2000; Cox et al.,
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1989; Ben-Dov, 1981)). This generalization essentially picks a best prime implicant and a
best prime implicant of the dual and inspects a variable in the intersection.

Note that the algorithm does not discriminate between the prime implicants with the
same length. One of these prime implicants is chosen in step 1 and step 2. In addition, if
there is more than one element in the intersection in step 3, the algorithm picks any one of
these components.

First, we compare the performance of the heuristic algorithm LEXICO for 3-level deep
S P Ss with identical components. (p = 0.5) For such systems optimal algorithms are
provided in Boros and Ünlüyurt (2000). We also compute the expected cost of the strategy
induced by the INTERSECTION SORT algorithm in each case. The parameters we used to
create random instances are explained in Table 1. The global problem is parallel in each
case.

The results are presented in Table 2. Each row corresponds to 20 random instances with
the indicated parameters. Number of variables vary for each instance with respect to the
parameters.

Similar results are shown in Table 3. For this table, we created random instances of 3-level

Table 1. Notation for experiments.

NS number of subsystems

NSS maximum number of subsubsystems

NP maximum size of parallel sub-subsubsystems

N number of problems (out of 20) that could be solved without memory problem.

MIN VARS minimum number of variables out of the N problems

MAX VARS maximum number of variables out of the N problems

OPT number of times heuristic was optimal

MAX maximum percentage error of heuristic

AVG average percentage error of heuristic

Table 2. LEXICO and INTERSECTION SORT versus Optimal Solution for 3-level deep SPSs.

LEXICO INTERSECTION SORT

NS NSS NP N MIN VARS MAX VARS OPT MAX AVG OPT MAX AVG

2 4 3 20 6 22 17 3.57 0.26 16 7.02 0.83

3 3 3 20 11 24 18 0.76 0.05 11 4.94 1.1

3 4 3 20 11 32 17 1.32 0.11 13 6.05 0.96

3 4 4 20 15 35 16 1.48 0.17 13 11.16 1.7

4 3 3 19 15 29 19 0 0 10 4.45 1.01

4 4 3 17 13 35 15 1.42 0.14 8 7.72 1.42

5 5 3 13 20 30 12 0.18 0.01 4 3.89 1.18
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Table 3. LEXICO and INTERSECTION SORT versus Optimal Solution for 3-level deep
SPSs.

LEXICO INTERSECTION SORT

NUM OF VARS OPT AVG MAX OPT AVG MAX

16 20 0 0 14 0.89 6.07

18 20 0 0 10 1.93 10.86

20 19 0.06 1.21 11 1.7 9.18

22 19 0.06 1.11 9 1.94 8.94

24 18 0.04 0.74 8 1.46 6.38

26 18 0.01 0.16 11 0.94 6.36

28 20 0 0 10 1.7 10.09

30 17 0.01 0.1 8 1.63 9.43

32 18 0.001 0.01 9 1.22 8.14

deep SPSs consisting of certain number of variables shown in column 1. These 3-level deep
SPSs consist of at most 5 subsystems. Each subsystem consists of at most 5 subsubsystems
and finally the parallel subsystems consist of up to 7 components. Other columns are labeled
in the same manner as Table 2.

LEXICO performed very well in the case of 3-level deep SPSs with identical components
and p = 0.5. Another class of functions for which optimal strategies can be obtained for
identical components, is the class of threshold functions (for details see (Boros and Ünlüyurt,
1999)). We experimented on two sets of randomly generated functions with 12, 15 and 18
variables. For one of the sets, the weights are drawn uniformly from the interval [2,20], for
the second set from [2,10]. For both sets of randomly generated problem instances, we tried
5 threshold values. Namely, if T = ∑n

i=1 wi where n is the number of variables, then we
tried 0.1T, 0.25T, 0.5T, 0.75T, and 0.9T for the threshold values. So in total, we had 200
random instances. We don’t need to display the results in a table since in all of these 200
instances LEXICO found the optimal solution. Let us note that for the case when weights
are drawn from [1,10], t = 0.5T and the number of variables is 18, the number of prime
implicants of f and f d are both over 20,000.

6. Conclusion and future directions

In this study, sequential testing of systems that consist of identical components is considered.
It turns out that this problem has various quite unrelated application areas. The notion of
lexicographically large B DT s is introduced and it is shown that lexicographically large
B DT s tend to have less cost. A heuristic is proposed to find lexicographically large B DT s
and the computational results show that strategies produced by this heuristic are quite good.
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One question that may be investigated further is to characterize subclasses of problems
when LEXICO is optimal. Another direction to explore is to consider entropy based heuristic
algorithms. Also, apart from the notion of lexicographically large B DT s, one can observe
that optimal algorithms are provided for quite special cases. For instance, no results are
known for general S P Ss with identical components. Another extension of this problem is
when there are precedence constraints between the tests. For certain type of precedence
constraints and only for the simple series system, optimal algorithms are provided in Garey
(1973) for general costs and probabilities. There is a complete review on such issues in
Ünlüyurt (2004).
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T. Ünlüyurt, “Sequential testing of complex systems: A review,” Discrete Applied Mathematics, vol. 142, nos. (1–

3), pp. 189–205, 2004.


