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Abstract—Obstacle avoidance and path planning are essential
for guiding unmanned ground vehicles (UGVs) through envi-
ronments that are densely populated with dynamic obstacles.
This paper develops a novel approach that combines tangent-
based path planning and extrapolation methods to create a
new decision-making algorithm for local path planning. In the
assumed scenario, a UGV has a prior knowledge of its initial and
target points within the dynamic environment. A global path has
already been computed, and the robot is provided with waypoints
along this path. As the UGV travels between these waypoints,
the algorithm aims to avoid collisions with dynamic obstacles.
These obstacles follow polynomial trajectories, with their initial
positions randomized in the local map and velocities randomized
between 0 and the allowable physical velocity limit of the robot,
along with some random accelerations. The developed algorithm
is tested in several scenarios where many dynamic obstacles
move randomly in the environment. Simulation results show the
effectiveness of the proposed local path planning strategy by
gradually generating a collision free path which allows the robot
to navigate safely between initial and the target locations.

Index Terms—Dynamic Obstacle Avoidance, Extrapolation,
Local Path Planning, Dynamic Environment

I. INTRODUCTION

Autonomous vehicles, a significant point of research, are in
high demand for navigating human environments and perform-
ing diverse tasks like self-driving cars, delivery drones, and
service robots [1], [2]. Path planning, vital for safe navigation
in complex environments, stands out as a major challenge for
these systems.

Path planning algorithms are typically classified based on
several criteria, including the nature of obstacles (static or
dynamic), the planning approach (global or local), and the
environmental conditions (known or unknown). Global path
planning proves effective in static and known environments,
leveraging extensive datasets to chart a course. Conversely,
local path planning becomes required in dynamic or unknown
environments, where robots rely on local sensors to adapt their
trajectory as the environment evolves, offering a more adapt-
able approach compared to global planning [3] [4]. Highly
dynamic environments, characterized by multiple static and
dynamic obstacles, pose additional complexities, amplified by
factors such as the behavior of dynamic obstacles, the strategic
placement of surveillance sensors, and onboard sensor ranges
[5] [6] [7].

Path planning algorithms cover various approaches, each
address distinct challenges across varied environments. Graph-
based algorithms like Dijkstra’s, A*, and D* Lite excel

in static landscapes with known obstacles, while sampling-
based methods such as Probabilistic Roadmaps (PRM) and
Rapidly-exploring Random Trees (RRT) succeed in dynamic
environments by probing random points. Heuristic algorithms,
including Potential Fields, Genetic Algorithms, and Simulated
Annealing, offer intuitive approximations for efficient path
navigation, even though potentially sacrificing optimality. Fur-
thermore, hybrid algorithms, combining different techniques,
provide a comprehensive toolkit for adaptable pathfinding
across diverse terrains [8].

Various studies have explored innovative approaches to
path planning in dynamic environments. Conflict-based Search
(CBS) in conjunction with the D* Lite algorithm demonstrates
efficacy in navigating unknown dynamic environments by
harmonizing individual robot path planning with collision
avoidance for multiple robots [9]. Integration of Heuris-
tic Search Based Algorithms like A* with Potential Fields
presents a strategy for navigating Unmanned Surface Vehicles
(USVs) through dynamic environments, combining global path
planning with real-time obstacle avoidance [10]. Advance-
ments such as RRT, RRT*, and Improved Bidirectional RRT*
highlight efficient path planning methods for smart vehicles in
dynamic settings, integrating vehicle-specific constraints and
collision detection mechanisms [11]. Collaboration between
Ant Colony Optimization (ACO) and the Dynamic Window
Approach (DWA) enables effective multi-robot navigation
and obstacle avoidance within complex terrains, leveraging
globally optimized paths generated by ACO and real-time
obstacle avoidance by DWA [12]. Additionally, approaches
like Maximum-Speed Aware Velocity Obstacle (MVO) ensure
safe navigation in the presence of high-speed obstacles, show-
casing effectiveness in collision avoidance [13]. Moreover,
deep learning algorithms, exemplified by ANOA (Autonomous
Navigation and Obstacle Avoidance) using Q-learning, offer
autonomous navigation capabilities superior to conventional
methods in static and dynamic environments [13].

This paper develops a novel local path planning algorithm
tailored for highly dynamic and complex environments where
the map is initially unknown. An initial global map can be
constructed with the help of other robots, such as UAVs, or
with alternative methods. Using this global map information,
global path planning is completed with any well-known algo-
rithm, such as A* or RRT*. Afterwards, extracted waypoints
are provided to the robot. The algorithm proposed in this
paper focuses on traveling between waypoints. It relies on two



key environmental data which are environmental density and
real-time detection of dynamic obstacles. The environmental
density, which defines the density of moving obstacles across
the drivable terrain, is acquired during the initial global path
construction. Real-time detection of dynamic obstacles can
be facilitated by UAVs or onboard sensors such as LIDAR
or cameras. Utilizing the global map information, the UGV
navigates using the proposed local path planning algorithm
to circumvent collisions with dynamic obstacles in complex
environments. The primary contribution of this paper is in-
troduction of a novel decision algorithm for local path plan-
ning, aimed at avoiding dynamic obstacles in highly dynamic
environments to enhance path safety and reduce travel time.
This approach draws inspiration from tangent-based methods
and the dynamic window approach, supported by rigorous
numerical analysis incorporating future state estimation tech-
niques for dynamic obstacles. As detailed in the methodology
section, the proposed algorithm does not consider obstacles
that are outside the critical area, and thus, computational cost
is decreased.

The paper is structured as follows: Section 2 provides a
detailed description of the methodology used in this work.
Section 3 presents and discusses some simulation results.
Finally, Section 4 concludes the paper with some remarks and
indicate possible future directions.

Fig. 1. Environment visualisation with CoppeliaSim.

II. METHODOLOGY

Continuous tracking and surveillance is one of the most es-
sential steps of the all dynamic obstacle avoidance algorithms.
This surveillance process can be done by using different types
of onboard sensors or creating a collaborative system where
there exist different assistant robots besides master. UAVs are
widely preferred assistant robots for collaborative studies be-
cause of their wide looking angles and high degree of freedoms
[14]. They can easily adopt to mosaicking whole maps [15], or
help to find the proper routes even by considering the structure
of the terrain [16] besides surveillance of dynamic scenes. As
it can be seen in the Fig. 1, the master robot, which have
a QR on top of it, tries to reach to desired location which
represented by a flag, by avoiding yellow routes that represent
the predicted routes of the dynamic obstacles. Additionally, the

blue route shows the path UGV followed by avoiding from the
possible collisions.

The environment is highly dynamic and complex. The
global waypoints are predetermined by one of the methods
mentioned in the introduction. The robot needs to follow these
waypoints sequentially. For each travel from one waypoint to
another, our proposed local path planning algorithm is used.

The initial position of the robot is (xinitial, yinitial), and the
aimed waypoint is (xtarget, ytarget). The map area (Amap) can
be calculated as:

Amap = |xtarget − xinitial| × |ytarget − yinitial| (1)

The velocity of the robot is v [m/s] where v ∈ [0, V ].
V is the maximum velocity limit of the robot. The existing
literature offers numerous approaches to adjusting the velocity
of robots, but the proposed approach introduces a new local
path planning decision. This decision aims to find the optimum
sensing region while maintaining a constant and high velocity
for the robot to decrease travel time while ensuring high safety.
[20]

There are n dynamic obstacles, in the area where n ∈ [0, N ].
N is the maximum possible dynamic obstacle in the map.
Each dynamic obstacle can reach a maximum velocity the
same as the robot, V [m/s]. The robot can search a closer
area with the help of another helper robot, such as a UAV, or
with its onboard sensors. If onboard sensors are used, then the
maximum range is rmax

sensing [m], which represents the furthest
distance the sensor can read. Consequently, the sensing region
of the robot forms a circle with a radius of rmax

sensing. Otherwise,
the sensing region is limited by the maximum altitude of the
UAV and its camera qualifications.

The dynamic obstacles randomly travel around the map,
and they have no intention of whether to collide or not collide
with the robot. They exhibit random accelerations, and they
may follow higher degree polynomial trajectories.

For simplicity of discussion, let’s assume that the robot and
dynamic obstacles are circular in shape, with radii of rrobot
and robstacle respectively.

The complexity of the dynamic environment is correlated
with the obstacle density (ρobstacle) in the drivable area, which
is calculated as follows.

ρobstacle =
n

Amap
(2)

A. Proposed Dynamic Obstacle Avoidance Approach via Ex-
trapolation

In the algorithm, several key terms are defined, crucial for
navigation and obstacle avoidance. Their visual representation
can be seen in Fig. 2. The critical area is an imaginary
circular zone around the robot, monitored by its sensors, with
a radius (rca) ranging from rrobot to rmax

sensing. The dynamic
obstacle safe zone, an imaginary circular area around dynamic
obstacles, determines the minimum safe distance for the center
of the robot to approach them. It is defined by robstacle plus
a safe zone distance (dsz), yielding the obstacle safe zone
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Fig. 2. Visualisation of key terms and extrapolation explanation

radius (rosz). The safe zone distance must be equal or greater
than rrobot/2, balancing collision risk and travel efficiency.
Smaller distances increase collision risk but may shorten the
total path, while larger distances enhance safety but might
extend travel time. The most critical obstacle poses the highest
risk, requiring immediate action. Intermediate targets are sub-
targets the robot aims to reach before the main target, often
at the intersection of tangent lines drawn from the robot’s
position to the obstacle’s safe zone. The estimated obstacle
position refers to the predicted future position of dynamic
obstacles, while the collision point marks where their safe
zone intersects with the robot’s path. As depicted in Fig. 2,
the critical area is divided into two fields: region I and region
II. This division is utilized in the algorithm, which will be
further explained in the methodology section. The creation of
these regions proceeds as follows: first, the world frame is
translated to the robot’s frame without any rotation. Then, the
region is labeled as region II if it lies within the symmetric
quarter where the target is located, while the remaining areas
are labeled as region I. Frames represent the environmental
and robot conditions at specific time intervals.

In Fig. 2, an angle ϕ and distance r are also depicted, which
are data provided by onboard sensors or external helper robots
such as UAVs. These data consist of the angle ϕ and distance
r for each dynamic obstacle detected in the critical area. At
each frame, the gathered data is kept in the robot for dynamic
obstacles within the critical area, but only the last four data are
stored. This limitation is because the algorithm utilizes third-
order extrapolation to estimate the future position of dynamic
obstacles, and additional storage would be redundant. [rt

i , ϕ
t
i]

represents the relative position of the ith dynamic obstacle

with respect to the robot at time t, denoted by distance r and
angle ϕ.

The algorithm basically consists of two stages: determina-
tion of the most critical obstacle and reaction decision against
the most critical dynamic obstacle to avoid collision.

1) Determination of the Most Critical Obstacle: There are
4 steps for determining the most critical dynamic obstacle.
Firstly, the obstacle needs to be detected in the critical area.
This means that at time t, rt

i , needs to be smaller or equal to
rca − robstaclei . When any obstacle is detected in the critical
area, safe zones are drawn around them. After this process,
all the operations are done by considering the obstacle with
safe zones. When any obstacle is detected within the critical
area, the robot stores their positions. These positions can be
represented as follows:{

(rt0+k∆t
i , ϕt0+k∆t

i )
}

where k ∈ {0, 1, 2, 3} and t0 is the first time the obstacle
is detected in the critical area. If an obstacle is detected more
than four times, t0 corresponds to the earliest of those four
instances. In other words, t0 + 3∆t means current time.

Once the last four positions are stored, the subsequent step
involves listing dynamic obstacles where the distance between
them and the robot decreases. If rt0+3∆t

i − rt0+2∆t
i is smaller

than zero, it means the ith obstacle is approaching the robot.
The third step is collecting the obstacles approaching the

path, which is the line segment from the current position of
the robot to the target point. This can be done by calculating
the shortest distance of the obstacles to the path.

The fourth step is to label the obstacle nearest to the robot
from the latest kept list as the most critical obstacle at the
current time, which means the smallest rt0+3∆t

i . Reactions
and maneuvers will be executed by considering this obstacle
first.

2) Reaction Decision Against the Most Critical Dynamic
Obstacle to Avoid Collision:

2.1) Scenario Classifications: As shown in Fig. 3, there are
6 different scenarios in which the robot can react to the most
critical dynamic obstacles. Case 1 operates independently of
regions within the critical area, while Case 2 occurs when
the most critical obstacle is located in region II. In all other
scenarios, obstacles placed in region I. The block diagram
of the algorithm can be seen in Fig. 3 and the detailed
explanations of these cases are provided below:

• Case 1: When there is no most critical obstacle in the
critical area.

• Case 2: When the most critical obstacle approaches the
robot from region II.

• Case 3: When the most critical obstacle is already on the
path and static.

• Case 4: When the most critical obstacle is already on the
path and dynamic.

• Case 5: When the most critical obstacle is approaching
the robot’s path and the estimated required time of its
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Fig. 3. Algorithm block diagram

safe zone to touch the collision point is bigger than the
required time for the robot to touch the same point.

• Case 6: When the most critical obstacle is approaching
the robot’s path and the estimated required time of its
safe zone to touch the collision point is smaller than the
required time for the robot to touch the same point.

2.2) Corresponding Reactions to Scenarios: The reaction
to scenarios can be seen in Fig. 4. In case 1 and case 5, the
robot maintains its current direction without changing its path.

In case 2, the robot adjusts its direction by becoming
perpendicular to a vector drawn from the last position of the
dynamic obstacle to the robot’s current position.

In case 3 and case 4, 4 tangent lines are drawn to the
obstacle’s safe zone circle: 2 of them from the current robot
position and 2 from the target point. These 4 lines actually
form 2 path solutions by intersecting. In case 3, the robot
prioritizes the shortest available path, while in case 4, it
selects the path from which the dynamic obstacle originated,
determined by comparing ϕt0+2∆t

i and ϕt0+3∆t
i .

For case 5 and case 6, the first step involves estimating
the time required for the dynamic obstacle’s safe zone to
touch the collision point using extrapolation methods. Visual
representation can be seen in Fig. 2. Utilizing the last 4 shortest
distances and their corresponding timestamps, an estimation
is made regarding when the dynamic obstacle’s safe zone
will intersect the path. Subsequently, using this estimated time
alongside the last 4 x and y positions, further extrapolations are
conducted to predict the collision position of the obstacle with
the path. The time for the robot to reach the collision point is

Case 1 Case 2

Case 3 Case 4

Case 5 Case 6

Fig. 4. Reaction against the most critical obstacle

calculated considering its velocity. This calculated time is then
compared with the time estimated for the dynamic obstacle,
and decisions are made based on this comparison. If the time
required for the robot to reach the collision point is smaller
than the required time for the dynamic obstacle’s safe zone to
touch this point, then case 5 is determined; otherwise, case 6
is chosen.

In the case of case 5, the robot does not change its path. If
it is case 6, then the robot prefers the longest path tangent to
the dynamic obstacle’s current position as done in case 4.

B. Highly Dynamic Environment Creation

The positions of the dynamic obstacles with respect to
time can be represented as Pobstacle(x(t), y(t)). To create
a highly dynamic environment, in other words, generating
higher complex trajectories and motions with acceleration, the
trajectories are determined to be 2nd order polynomials.

As explained in [17], according to implicitization by
Sylvester’s matrix, in general, if x and y are polynomials of
degree p, the corresponding algebraic curve f(x, y) = 0 will
also have degree p. So the degree of x(t) and y(t) actually
equals the degree of the position curve P , which is determined
as 2 in the implementation. In order to get the velocity, the



                                    

           

                                       

  

  

  

  

  

  

  

  

   

 
 
 
 
 
 
 
  

 
  
 
   

 

                          

                          

                          

                          

                          

Fig. 5. Critical Area Comparison

position vector can be differentiated with respect to time x′(t)
and y′(t).

As mentioned before, there was a velocity constraint in the
problem definition. The maximum velocities of the obstacles
are as maximum as the robot’s. Therefore, throughout the
motion, the following condition needs to be ensured.

V ≥
√
x′(t)2 + y′(t)2 (3)

In order to get the acceleration, the velocity vector can be
differentiated with respect to time x′′(t) and y′′(t). There is
also an acceleration limitation in the system as follows.

A ≥
√
(x′′(t))2 + (y′′(t))2 (4)

where A is the maximum allowable acceleration for dynamic
obstacles. In other words, dynamic obstacles follow a non-
linear path with non-constant speeds, which increases the
complexity of the dynamic environment.

III. RESULTS AND DISCUSSION

Simulations are carried out in MATLAB environment. The
initial positions of the dynamic obstacles are assigned ran-
domly within the area and the velocity and the acceleration
constraints are taken into account. By considering previous
works such as [7] and [18], the drivable area was determined to
be 10x10 m2. The maximum velocity was determined through
research, based on various ROS robots such as HUSKY, and
other models like the SR7 used in previous works [19]. As a
result, the maximum velocity of the robot in simulation was
set at 2 m/s, with a maximum allowed acceleration of 2 m

s2 .
To maintain the density of the drivable area, which is the

number of dynamic obstacles over the drivable area, when
a dynamic obstacle reaches the end of the area, its trajectory
takes a symmetrical path on the map, similar to the snake game
on a phone. Therefore, throughout the motion, the complexity
of the environment is kept constant as initial.

Numerous scenarios were generated and algorithm was
tested. Some examples of various complex scenarios can be
seen in Fig. 6. The green dots symbolize the position of the
UGV at each frame, and the black ones represent the positions
of the dynamic obstacles. It can be inferred that if the distance
between dots is long, it means the dynamic obstacle is moving
faster, as it covers more distance in one time unit (which was
0.1 seconds in the simulations).

The Fig. 5 illustrates the success ratios of the local path
planning algorithm in these scenarios with varying numbers
of dynamic obstacles. The success ratios were analyzed across
five different critical area radii, from 2 meters to 6 meters.

In low-density environments with 1 to 4 obstacles, success
ratios are consistently high, above 85%, regardless of the
critical area radius. This indicates the algorithm’s high effec-
tiveness in less congested environments, with minimal impact
from the critical area radius. As obstacle density increases

              

          

 

 

 

 

 

 

 

 

  

  

  

 
  
 
  
  
 
 

               

              

          

 

 

 

 

 

 

 

 

  

  

  

 
  
 
  
  
 
 

               

Fig. 6. Reaction against the most critical obstacle

to a medium level (5 to 7 obstacles), success ratios decline
but remain between 70% and 90%. Differences based on the
critical area radius become more apparent, with a radius of 3
meters often performing slightly better, indicating an optimal
balance between caution and agility.

In high-density environments with 8 to 10 obstacles, success
ratios drop significantly. In complex environments, a larger



critical area increases the likelihood of the most critical
obstacle changing frequently, causing the algorithm to react
to different obstacles at each frame. This leads to noisy
and fluctuating inputs, resulting in poor navigation. Thus, a
2-meter radius performs worse in low-density environments
compared to a 6-meter radius but performs better in high-
density environments.

Overall, a critical area radius of 3 meters offers balanced
performance across most density levels, making it a good
choice.

IV. CONCLUSION

A new approach was developed for local path planning
by combining tangent-based methods and extrapolation. With
the help of initial global map information obtained from
UAVs or other methods, the global path is determined before-
hand. The algorithm navigates a UGV between predetermined
waypoints while avoiding collisions with dynamic obstacles
in unstructured and complex environments. Throughout the
robot’s motion, detections can be performed via a helper
UAV or alternative methods such as onboard sensors. The
algorithm aims to enhance navigation safety and reduce travel
time through these local paths when a UGV moves through
scenarios that are highly complex and dynamic. The perfor-
mance of the local path planning algorithm is related to the
critical area, which represents the field that the robot must take
into account for dynamic obstacles to ensure the algorithm
functions effectively. Numerous highly dynamic environments
were created, and simulations were run with different critical
area radii. The success ratios were extracted and analyzed for
each to determine the optimum one.

As part of future work, the hyperparameters of the al-
gorithm, the velocity of the robot, and the radius of the
critical area can be optimized using various learning methods.
Additionally, the algorithm can be extended to operate in three-
dimensional space, making it applicable for use in UAVs or
submarines, thus supporting projects in 3D environments.
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